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Abstract A canonical d.c. (difference of canonical and convex functions)
programming problem is proposed, which can be used to model general global opti-
mization problems in complex systems. It shows that by using canonical duality
theory, a large class of nonconvex minimization problems can be equivalently con-
verted to a unified concave maximization problem over a convex domain, which can
be solved easily under certain conditions. Additionally, a detailed proof for triality
theory is provided, which can be used to identify local extremal solutions. Applica-
tions are illustrated and open problems are presented.

1 Mathematical Modeling and Objectivity

It is known that in Euclidean space every continuous global optimization problem
on a compact set can be reformulated as a d.c. optimization problem, i.e., a non-
convex problem which can be described in terms of d.c. functions (difference of
convex functions) and d.c. sets (difference of convex sets) [19]. By the fact that any
constraint set can be equivalently relaxed by a nonsmooth indicator function, gen-
eral nonconvex optimization problems can be written in the following standard d.c.
programming form

min{f (x) = g(x) − h(x) | ∀x ∈ X }, (1)
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whereX = R
n, g(x), h(x) are convex proper lower-semicontinuous functions onRn,

and the d.c. function f (x) to be optimized is usually called the “objective function”
in mathematical optimization. A more general model is that g(x) can be an arbitrary
function [19]. Clearly, this d.c. programming problem is artificial. Although it can
be used to “model” a very wide range of mathematical problems [15] and has been
studied extensively during the last thirty years (cf. [16, 18]), it comes at a price:
it is impossible to have elegant theory and powerful algorithms for solving this
problemwithout detailed structures on these arbitrarily given functions. As the result,
even some very simple d.c. programming problems are considered as NP-hard. This
dilemma is mainly due to the existing gap between mathematical optimization and
mathematical physics.

The real-world applications show a simple fact, i.e., the functions g(x) and h(x)
in the standard d.c. programming problem (1) cannot be arbitrarily given, they must
obey certain fundamental laws in physics in order to model real-world systems. In
Lagrange mechanics and continuum physics, a real-valued functionW : X → R is
said to be objective if and only if (see [6], Chap. 6)

W (x) = W (Rx) ∀x ∈ X , ∀R ∈ R, (2)

where R is a special rotation group such that R−1 = RT , det R = 1, ∀R ∈ R.
Based on the original concept of objectivity, a general multi-scale mathematical
model was proposed by Gao in [6]:

(P) : inf{Π(x) = W (Dx) − F(x) | ∀x ∈ X }, (3)

where D : X → Y is a linear operator;W : Y → R ∪ {+∞} is an objective func-
tion on its effective domain Ya ⊂ Y , in which, certain physical constraints (such
as constitutive laws, etc.) are given; correspondingly, F : X → R ∪ {−∞} is a so-
called subjective function, which must be linear on its effective domain Xa ⊂ X ,
wherein, certain “geometrical constraints” (such as boundary/initial conditions, etc.)
are given. By Riesz representation theorem, the subjective function can be written
as F(x) = 〈x, x̄∗〉, where x̄∗ ∈ X ∗ is a given input (or source), the bilinear form
〈x, x∗〉 : X × X ∗ → R putsX andX ∗ in duality. Therefore, the extremality con-
dition 0 ∈ ∂Π(x) leads to the equilibrium equation [6]

0 ∈ D∗∂W (Dx) − ∂F(x) ⇔ D∗y∗ − x∗ = 0 ∀x∗ ∈ ∂F(x), y∗ ∈ ∂W (y). (4)

In this model, the objective duality relation y∗ ∈ ∂W (y) is governed by the consti-
tutive law, which depends on mathematical modeling of the system; the subjective
duality relation x∗ ∈ ∂F(x) leads to the input x̄∗ of the system,which depends only on
each given problem. Thus, the problem (P) can be used to model general real-world
applications.

Canonical duality-triality is a breakthrough theory which can be used not only
for modeling complex systems within a unified framework, but also for solving
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real-world problems with a unified methodology. This theory was developed origi-
nally fromGao and Strang’s work in nonconvexmechanics [11] and has been applied
successfully for solving a large class of challenging problems in both nonconvex
analysis/mechanics and global optimization, such as phase transitions in solids [12],
post-buckling of large deformed beam [17], nonconvex polynomial minimization
problems with box and integer constraints [8, 10, 13], Boolean and multiple integer
programming [3, 20], fractional programming [4], mixed integer programming [14],
polynomial optimization [9], high-order polynomial with log-sum-exp problem [1].

The goal of this paper is to apply the canonical duality theory for solving the chal-
lenging d.c. programming problem (1). The rest of this paper is arranged as follows.
Based on the concept of objectivity, a canonical d.c. optimization problem and its
canonical dual are formulated in the next section. Analytical solutions and triality
theory for a general d.c. minimization problem with sum of nonconvex polynomial
and exponential functions are discussed in Sects. 3 and 4. Four special examples are
illustrated in Sect. 5. Some conclusions and future work are given in Sect. 6.

2 Canonical D.C. Problem and Its Canonical Dual

It is known that the linear operatorD : X → Y can’t change the nonconvexW (Dx)
to a convex function. According to the definition of the objectivity, a nonconvex
functionW : Y → R is objective if andonly if there exists a functionV : Y × Y →
R such that W (y) = V (yTy). Based on this fact, a canonical transformation was
proposed by Gao in 2000 [7].

Definition 1 (Canonical Transformation and Canonical Measure).
For a given nonconvex function g : X → R ∪ {∞}, if there exists a nonlinear map-
ping Λ : X → E and a convex, l.s.c function V : E → R ∪ {∞} such that

g(x) = V (Λ(x)), (5)

then, the nonlinear transformation (5) is called the canonical transformation and
ξ = Λ(x) is called a canonical measure.

The canonical measure ξ = Λ(x) is also called the geometrically admissible mea-
sure in the canonical duality theory [7], which is not necessarily to be objective. But
the most simple canonical measure inRn is the quadratic function ξ = xTx, which is
clearly objective. Therefore, the canonical function can be viewed as a generalized
objective function.

According to the canonical duality theory, the subjective function F(x) = 〈x, x̄∗〉
is necessary for any given real-world system in order to have non-trivial solutions
(states or outputs). Since the function g(x) in the standard d.c. programming (1)
could be nonconvex, it is reasonable to assume the convex function h(x) in (1) is a
quadratic function
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Q(x) = 1

2
〈x,Cx〉 + 〈x, f 〉, (6)

where C : X → X ∗ is a given symmetrical positive definite operator (or matrix)
and f ∈ X ∗ is a given input. Thus, a canonical d.c. (CDC for short) minimization
problem can be proposed as the following

(CDC) : min {Π(x) = V (Λ(x)) − Q(x)| x ∈ X } (7)

Since the canonical measure ξ = Λ(x) ∈ E is nonlinear and V (ξ) is convex on
E , the composition V (Λ(x)) has a higher order nonlinearity than Q(x). Therefore,
the coercivity for the target function Π(x) should naturally satisfied, i.e.,

lim‖x‖→∞{Π(x) = V (Λ(x)) − Q(x)} = ∞ (8)

which is a necessary condition for the existence of the global minimal solution to
(CDC). Clearly, this generalized d.c. minimization problem can be used to model a
reasonably large class of real-world systems.

By the fact that V (ξ) is convex, l.s.c. on E , its conjugate can be uniquely defined
by the Fenchel transformation

V ∗(ξ ∗) = sup{〈ξ ; ξ ∗〉 − V (ξ)| ξ ∈ E }. (9)

The bilinear form 〈ξ ; ξ ∗〉 puts E and E ∗ in duality. According to convex analysis (cf.
[2]), V ∗ : E ∗ → R ∪ {+∞} is also convex, l.s.c. on its domain E ∗ and the following
generalized canonical duality relations [7] hold on E × E ∗

ξ ∗ ∈ ∂V (ξ) ⇔ ξ ∈ ∂V ∗(ξ ∗) ⇔ V (ξ) + V ∗(ξ ∗) = 〈ξ ; ξ ∗〉. (10)

Replacing V (Λ(x)) in the target function Π(x) by the Fenchel-Young equality
V (ξ) = 〈ξ ; ξ ∗〉 − V ∗(ξ ∗), Gao and Strang’s total complementary function (see [7])
Ξ : X → E ∗ → R ∪ {−∞} for this (CDC) can be obtained as

Ξ(x, ξ ∗) = 〈Λ(x); ξ ∗〉 − V ∗(ξ ∗) − Q(x). (11)

By this total complementary function, the canonical dual of Π(x) can be obtained as

Πd(ξ ∗) = inf{Ξ(x, ξ ∗)| x ∈ X } = QΛ(ξ ∗) − V ∗(ξ ∗), (12)

where QΛ : E ∗ → R ∪ {−∞} is the so-called Λ-conjugate of Q(x) defined by
(see [7])

QΛ(ξ ∗) = inf{〈Λ(x); ξ ∗〉 − Q(x) | x ∈ X }. (13)
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If thisΛ-conjugate has a non-empty effective domain, the following canonical duality

inf
x∈X

Π(x) = sup
ξ∗∈E ∗

Πd(ξ ∗) (14)

holds under certain conditions, which will be illustrated in the next section.

3 Application and Analytical Solution

Let us consider a special application in Rn such that

g(x) =
p∑

i=1

exp

(
1

2
xTAix − αi

)
+

r∑

j=1

1

2

(
1

2
xTBjx − βj

)2

, (15)

where {Ai}pi=1 ∈ R
n×n are symmetricmatrices and {Bj}rj=1 ∈ R

n×n are symmetric pos-
itive definite matrices, αi and βj are real numbers. Clearly, g : Rn → R is nonconvex
and highly nonlinear. This type of nonconvex function covers many real applications.

The canonical measure in this application can be given as

ξ =
(

θ

η

)
= Λ(x) =

({
1
2x

TAix
}p
i=1{

1
2x

TBjx
}r
j=1

)
: R

n → Ea ⊆ R
m

where m = p + r. Therefore, a canonical function can be defined on Ea:

V (ξ) = V1(θ) + V2(η)

where

V1(θ) =
p∑

i=1

exp (θi − αi) ,

V2(η) =
r∑

j=1

1

2
(ηj − βj)

2.

Here θi and ηj denote the ith component of θ and the jth component of η, respec-
tively. Since V1(θ) and V2(η) are convex, V (ξ) is a convex function. By Legendre
transformation, we have the following equation

V (ξ) + V ∗(ζ ) = ξTζ, (16)
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where

ζ =
(

τ

σ

)
=

(∇V1(θ)

∇V2(η)

)
=

({ exp (θi − αi)}pi=1{
ηj − βj

}r
j=1

)
: Ea → E ∗

a ⊂ R
m

and V ∗(ζ ) is the conjugate function of V (ξ), defined as

V ∗(ζ ) = V ∗
1 (τ ) + V ∗

2 (σ ) (17)

with

V ∗
1 (τ ) =

p∑

i=1

(αi + ln(τi) − 1) τi,

V ∗
2 (σ ) = 1

2
σ Tσ + βTσ,

where β = {βj}.
Since the canonical measure in this application is a quadratic operator, the total

complementary function � : Rn × E ∗
a → R has the following form

�(x, ζ ) = 1

2
xTG(ζ )x − f T x − V ∗

1 (τ ) − V ∗
2 (σ ), (18)

where

G(ζ ) =
p∑

i=1

τiAi +
r∑

j=1

σjBj − C.

Notice that for any given ζ , the total complementary function �(x, ζ ) is a quadratic
function of x and its stationary points are the solutions of the following equation

∇x�(x, ζ ) = G(ζ )x − f = 0. (19)

If det(G(ζ )) �= 0 for a given ζ , then (19) can be solved analytically to have a unique
solution x = G(ζ )−1f . Let

Sa = {
ζ ∈ E ∗

a | det(G(ζ )) �= 0
}
. (20)

Thus, on Sa the canonical dual function �d(ζ ) can then be written explicitly as

�d(ζ ) = −1

2
f TG(ζ )−1f − V ∗

1 (τ ) − V ∗
2 (σ ). (21)

Clearly, both �d(ζ ) and its domainSa are nonconvex. The canonical dual problem
is to find all stationary points of �d(ζ ) on its domain, i.e.,
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(Pd) : sta
{
�d(ζ ) | ζ ∈ Sa

}
. (22)

Theorem 1 (Analytic Solution and Complementary-Dual Principle).
Problem (Pd) is canonical dual to the problem (P) in the sense that if ζ̄ ∈ Sa is a
stationary point of �d(ζ ), then

x̄ = G(ζ̄ )−1f (23)

is a stationary point of �(x), the pair (x̄, ζ̄ ) is a stationary point of �(x, ζ ), and we
have

�(x̄) = �(x̄, ζ̄ ) = �d(ζ̄ ). (24)

The proof of this theorem is analogous with that in [6]. Theorem1 shows that
there is no duality gap between the primal problem (P) and the canonical dual
problem (Pd).

4 Triality Theory

In this section we will study the global optimality conditions for the critical solutions
of the primal and dual problems. In order to identify both global and local extrema
of both two problems, we let

S +
a = { ζ ∈ Sa | G(ζ ) � 0} ,

S −
a = { ζ ∈ Sa | G(ζ ) ≺ 0} .

where G � 0 means that G is a positive definite matrix and where G ≺ 0 means that
G is a negative definite matrix. It is easy to prove that bothS +

a andS −
a are convex

sets and

QΛ(ζ ) = inf{〈Λ(x); ζ 〉 − Q(x)| x ∈ R
n} =

{− 1
2 f

TG(ζ )−1f if ζ ∈ S +
a

−∞ otherwise
(25)

This shows that S +
a is an effective domain of QΛ(ζ ).

For convenience, we first give the first and second derivatives of functions �(x)
and �d(ζ ):

∇�(x) = Gx − f , (26)

∇2�(x) = G + Z0HZ
T
0 , (27)

∇�d(ζ ) =
({

1
2 f

TG−1AiG−1f − αi − ln(τi)
}p
i=1{

1
2 f

TG−1BjG−1f − σj − βj
}r
j=1

)
, (28)

∇2�d(ζ ) = −ZTG−1Z − H−1, (29)

where Z0,Z ∈ R
n×m and H ∈ R

m×m are defined as
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Z0 = [
A1x, . . . ,Apx,B1x, . . . ,Brx

]
,

Z = [
A1G−1f , . . . ,ApG−1f ,B1G−1f , . . . ,BrG−1f

]
,

H =
[
diag(τ ) 0

0 En

]
,

where En is a n × n identity matrix. By the fact that τ > 0, the matrixH−1 is positive
definite.

Next we can get the lemma as follows whose proof is trivial.

Lemma 1. If M1,M2, . . . ,MN ∈ R
n×n are symmetric positive semi-definite matri-

ces, then M = M1 + M2 + . . . + MN is also a positive semi-definite matrix.

Lemma 2. If λG is an arbitrary eigenvalue of G, it follows that

λG ≥
p∑

i=1

τiλ
Ai
min +

r∑

j=1

σjλ̄
Bj − λC

max,

in which λ
Ai
min is the smallest eigenvalue of Ai, λCi

max is the largest eigenvalue of Ci,
and

λ̄Bj =
{

λ
Bj

min, σj > 0

λ
Bj
max, σj ≤ 0,

(30)

where λ
Bj

min and λ
Bj
max are the smallest eigenvalue and the largest eigenvalue of Bj

respectively.

Proof. Firstly, we need prove τi(Ai − λ
Ai
minEn), λC

maxEn − C and σj(Bj − λ̄BjEn) are
all symmetric positive semi-definite matrices.

(a) As λ
Ai
min is the smallest eigenvalue of Ai, then Ai − λ

Ai
minEn is symmetric positive

semi-definite, so τi(Ai − λ
Ai
minEn) is symmetric positive semi-definite with τi =

exp (θi − αi) > 0.
(b) As λC

max is the largest eigenvalue of C, then λC
maxEn − C is a symmetric positive

semi-definite matrix.
(c)(c.1) As λ

Bj

min is the smallest eigenvalue of Bj, then Bj − λ
Bj

minEn is symmet-

ric positive semi-definite, so when σj > 0 it holds that σj(Bj − λ
Bj

minEn) is
symmetric positive semi-definite.

(c.2) As λ
Bj
max is the largest eigenvalue of Bj, then Bj − λ

Bj
maxEn is symmetric

negative semi-definite, so when σj ≤ 0 it holds that σj(Bj − λ
Bj
maxEn) is

symmetric positive semi-definite.
From (c.1) and (c.2), we know σj(Bj − λ̄BjEn) is always symmetric positive
semi-definite.

Then by (a), (b), (c) and Lemma1, we have

p∑

i=1

τi(Ai − λ
Ai
minEn) +

r∑

j=1

σj(Bj − λ̄BjEn) + λC
maxEn − C



On D.C. Optimization Problems 211

is a positive semi-definite matrix, which is equivalent to

G −
⎛

⎝
p∑

i=1

τiλ
Ai
min +

r∑

j=1

σjλ̄
BjEn − λC

max

⎞

⎠En

is a positive semi-definite matrix, which implies that for every eigenvalue of G, it is
greater than or equal to

∑p
i=1 τiλ

Ai
min + ∑r

j=1 σjλ̄
Bj − λC

max. ��
Basedon the above lemma, the following assumption is given for the establishment

of solution method.

Assumption 1 There is a critical point ζ = (τ, σ ) of�d(ζ ), satisfyingΔ > 0where

Δ =
p∑

i=1

τiλ
Ai
min +

r∑

j=1

σjλ̄
Bj − λC

max.

Lemma 3. If ζ̄ is a stationary point ofΠd(ζ ) satisfying Assumption1, then ζ̄ ∈ S +
a .

Proof. From Lemma3, we know if λG is an arbitrary eigenvalue of G, it holds that
λG ≥ Δ. If ζ̄ is a critical point satisfying Assumption1, then Δ > 0, so for every
eigenvalue of G, we have λG ≥ Δ > 0, then G is a positive definite matrix, i.e.,
ζ̄ ∈ S +

a . ��
The following lemma is needed here. Its proof is omitted, which is similar to that

of Lemma6 in [5].

Lemma 4. Suppose that P ∈ R
n×n, U ∈ R

m×m and W ∈ R
n×m are given symmetric

matrices with

P =
[
P11 P12

P21 P22

]
≺ 0, U =

[
U11 0
0 U22

]
� 0, and W =

[
W11 0
0 0

]
,

where P11, U11 and W11 are r × r-dimensional matrices, and W11 is nonsingular.
Then,

− WTP−1W − U−1 � 0 ⇔ P + WUWT � 0. (31)

Now, we give the main result of this paper, triality theorem, which illustrates the
relationships between the primal and canonical dual problems on global and local
solutions under Assumption1.

Theorem 2. (Triality Theorem) Suppose that ζ̄ is a critical point of �d(ζ ), and
x̄ = G(ζ̄ )−1f .

1. Min–max duality: If ζ̄ is the critical point satisfying Assumption1, then the canon-
ical min–max duality holds in the form of

�(x̄) = min
x∈Rn

�(x) = max
ζ∈S +

a

�d(ζ ) = �d(ζ̄ ). (32)
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2. Double-max duality: If ζ̄ ∈ S −
a , the double-max duality holds in the form that if

x̄ is a local maximizer of �(x) or ζ̄ is a local maximizer of �d(ζ ), we have

�(x̄) = max
x∈X0

�(x) = max
ζ∈S0

�d(ζ ) = �d(ζ̄ ) (33)

where x̄ ∈ X0 ⊂ R
n and ζ̄ ∈ S0 ⊂ S −

a .
3. Double-min duality: If ζ̄ ∈ S −

a , then the double-min duality holds in the form
that when m = n, if x̄ is a local minimizer of �(x) or ζ̄ is a local minimizer of
�d(ζ ), we have

�(x̄) = min
x∈X0

�(x) = min
ζ∈S0

�d(ζ ) = �d(ζ̄ ) (34)

where x̄ ∈ X0 ⊂ R
n and ζ̄ ∈ S0 ⊂ S −

a .

Proof. 1. Because ζ̄ is a critical point satisfyingAssumption1, byLemma4 it holds
ζ̄ ∈ S +

a , i.e., G(ζ̄ ) � 0. As G(ζ̄ ) � 0 and H � 0, by (29) we know the Hessian
of the dual function is negative definitive, i.e., ∇2�d(ζ ) ≺ 0, which implies that
�d(ζ ) is strictly concave over S +

a . Hence, we get

�d(ζ̄ ) = max
ζ∈S +

a

�d(ζ ).

By the convexity of V (ξ), we have V (ξ) − V (ξ̄ ) ≥ (ξ − ξ̄ )T∇V (ξ̄ ) = (ξ −
ξ̄ )T ζ̄ (see [11]), so

V (Λ(x)) − V (Λ(x̄)) ≥ (Λ(x) − Λ(x̄))T ζ̄ ,

which implies

�(x) − �(x̄) ≥ (Λ(x) − Λ(x̄))T ζ̄ − 1

2
xTCx + 1

2
x̄TCx̄ + f T (x − x̄)

= 1

2
xTG(ζ̄ )x − 1

2
x̄TG(ζ̄ )x̄ − (x − x̄)TG(ζ̄ )x̄, (35)

Because G(ζ̄ ) � 0, the convexity of 1
2x

TG(ζ̄ )x with respect to x in Rn leads to

1

2
xTG(ζ̄ )x − 1

2
x̄TG(ζ̄ )x̄ ≥ (x − x̄)TG(ζ̄ )x̄

Then by (35),�(x) ≥ �(x̄) for any x ∈ R
n, whichwith Theorem1 and (4) shows

that the Eq. (32) is true.
2. If ζ̄ is a local maximizer of �d(ζ ) over S −

a , it is true that ∇2�d(ζ̄ ) =
−ZTG−1Z − H−1 � 0 and there exists a neighborhoodS0 ⊂ S −

a such that for
all ζ ∈ S0, ∇2�d(ζ ) � 0. Since the map x = G−1f is continuous over Sa, the
image of the map over S0 is a neighborhood of x̄, which is denoted by X0.
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Now we prove that for any x ∈ X0, ∇2�(x) � 0, which plus the fact that x̄ is
a critical point of �(x) implies x̄ is a maximizer of �(x) over X0. By singular
value decomposition, there exist orthogonal matrices J ∈ R

n×n, K ∈ R
m×m and

R ∈ R
n×m with

Rij =
{

δi, i = j and i = 1, . . . , r,
0, otherwise,

(36)

where δi > 0 for i = 1, . . . , r and r = rank(F), such that ZH
1
2 = JRK , then

Z = JRKH− 1
2 . (37)

For any x ∈ X0, let ζ be a point satisfying x = G−1f . Therefore, ∇2�d(ζ ) =
−ZTG−1Z − H−1 � 0, then it holds that

− H− 1
2KTRTJTG−1JRKH− 1

2 − H−1 � 0. (38)

Multiplying above inequality by KH
1
2 from the left and H

1
2KT from the right, it

can be obtained that
− RTJTG−1JR − Em � 0, (39)

which, by Lemma4, is further equivalent to

JTGJ + RRT � 0, (40)

then it follows that

− G � JRRTJT = JRKH− 1
2HH− 1

2KTRTJT = ZHZT . (41)

Thus, ∇2�(x) = G + ZHZT � 0, then x̄ is a maximizer of �(x) over X0.
Similarly, we can prove that if x̄ is a maximizer of �(x) over X0, then ζ̄ is a
maximizer of �d(ζ ) over S0. By the Theorem1, the Eq. (33) is proved.

3. Now we prove the double-min duality. Suppose that ζ̄ is a local minimizer of
�d(ζ ) in S −

a , then there exists a neighborhood S0 ⊂ S −
a of ζ̄ such that for

any ζ ∈ S0, ∇2�d(ζ ) � 0. LetX0 denote the image of the map x = G−1f over
S0, which is a neighborhood of x̄. For any x ∈ X0, let ζ be a point that satisfies
x = G−1f . It follows from∇2�d(ζ ) = −ZTG−1Z − H−1 � 0 that−ZTG−1Z �
H−1 � 0, which implies the matrix F is invertible. Then it is true that

− G−1 � (ZT )−1H−1Z−1, (42)

which is further equivalent to

− G � ZHZT . (43)
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Fig. 1 The min–max duality in Example1: a contour plot of function �d(τ, σ ) near (τ̄1, σ̄1);
b contour plot of function �(x, y); c graph of function �(x, y) near (x̄1, ȳ1)

Thus, ∇2�(x) = G + ZHZT � 0 and x is a local minimizer of �(x). The con-
verse can be proved similarly. By Theorem1, the Eq. (34) is then true.

The theorem is proved. ��

5 Examples

In this section, let p = r = 1. From the definition of (CDC) problem, A1 is a symmet-
ric matrix, B1 and C1 are two positive definite matrices. According to different cases
of A1, following five motivating examples are provided to illustrate the proposed
canonical duality method in our paper. By examining the critical points of the dual
function, we will show how the dualities in the triality theory are verified by these
examples.

Example 1

We consider the case that A1 is positive definite. Let α1 = β1 = 1 and

A1 =
[
2 0
0 3

]
, B1 =

[
1 0
0 1.5

]
, C1 =

[
0.5 0
0 2

]
, and f =

[
1
2

]
,

then the primal problem:

min
(x,y)∈R2

�(x, y) = exp
(
x2 + 1.5y2 − 1

) + 0.5
(
0.5x2 + 0.75y2 − 1

)2 − 0.25x2

−y2 − x − 2y.

The corresponding canonical dual function is

�d(τ, σ ) = −0.5

(
1

2τ + σ − 0.5
+ 4

3τ + 1.5σ − 2

)
− τ ln(τ ) − 0.5σ 2 − σ.

so there is no duality gap, then (x̄1, ȳ1) is the global solution of the primal problem,
which demonstrates the min–max duality(see Fig. 1).
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Example 2

We consider the case that A1 is negative definite. Let α1 = −4, β2 = 0.5 and

A1 =
[−1 0
0 −1.5

]
, B1 =

[
2 0
0 1

]
, C1 =

[
2 0
0 3

]
, and f =

[
5
2

]
,

then the primal problem:

min
(x,y)∈R2

�(x, y) = (−0.5x2 − 0.75y2 + 4
) + 0.5

(
x2 + 0.5y2 − 0.5

)2 − x2

−1.5y2 − 5x − 2y.

The corresponding canonical dual function is

�d(τ, σ ) = −0.5

(
25

−τ + 2σ − 2
+ 4

−1.5τ + σ − 3

)
− τ ln(τ ) + 5τ − 0.5σ 2 − 0.5σ.

In this problem, λ
A1
min = −1.5, λ

B1
min = 1, λB1

max = 2, and λC1
max = 3. It is noticed that

(τ̄1, σ̄1) = (0.145563, 3.95352) is a critical point of the dual function �d(τ, σ )(see
Fig. 2a). As σ̄1 > 0, we have λ̄B1 = λ

B1
min and

Δ = τ̄1λ
A1
min + σ̄1λ

B1
min − λC1

max = 0.7352 > 0,

so Assumption1 is satisfied, then (τ̄1, σ̄1) is inS +
a . By Theorem1, we get (x̄1, ȳ1) =

(0.867833, 2.72044). Moreover, we have

�(x̄1, ȳ1) = �d(τ̄1, σ̄1) = −13.6736,

so there is no duality gap, then (x̄1, ȳ1) is the global solution of the primal problem,
which demonstrates the min–max duality(see Fig. 2).

For showing the double-max duality of Example2, we find a local maximum
point of �d(τ, σ ) in S −

a : (τ̄2, σ̄2) = (54.3685,−0.492123). By Theorem1, we get
(x̄2, ȳ2) = (−0.0871798,−0.023517). Moreover, we have

�(x̄2, ȳ2) = �d(τ̄2, σ̄2) = 54.9641,

and (x̄2, ȳ2) is also a localmaximumpoint of�(x, y), which demonstrates the double-
max duality(see Fig. 3).
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Fig. 2 The min–max duality in Example2: a contour plot of function �d(τ, σ ) near (τ̄1, σ̄1);
b contour plot of function �(x, y); c graph of function �(x, y) near (x̄1, ȳ1)

Fig. 3 The double-max duality in Example2: a contour plot of function �d(τ, σ ) near (τ̄2, σ̄2);
b contour plot of function �(x, y) near (x̄2, ȳ2); c graph of function �(x, y) near (x̄2, ȳ2)

Example 3

We consider the case that A1 is indefinite. Let α1 = β1 = 1 and

A1 =
[
1 0
0 −2

]
, B1 =

[
1 0
0 1

]
, C1 =

[
1.5 0
0 1

]
, and f =

[
1
1

]
,

then the primal problem:

min
(x,y)∈R2

�(x, y) = exp
(
0.5x2 − y2 − 1

) + 0.5
(
0.5x2 + 0.5y2 − 1

)2

−0.75x2 − 0.5y2 − x − y.

The corresponding canonical dual function is

�d(τ, σ ) = −0.5

(
1

τ + σ − 0.5
+ 1

−2τ + σ − 1

)
− τ ln(τ ) − 0.5σ 2 − σ.

In this problem, λ
A1
min = −2, λ

B1
min = λB1

max = 1, and λC1
max = 1.5. It is noticed that

(τ̄1, σ̄1) = (0.143473, 1.91093) is a critical point of the dual function �d(τ, σ )(see
Fig. 4a). As σ̄1 > 0, we have λ̄B1 = λ

B1
min and

Δ = τ̄1λ
A1
min + σ̄1λ

B1
min − λC1

max = 0.1240 > 0,
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Fig. 4 The min–max duality in Example3: a contour plot of function �d(τ, σ ) near (τ̄1, σ̄1);
b contour plot of function �(x, y); c graph of function �(x, y) near (x̄1, ȳ1)

Fig. 5 The double-max duality in Example3: a contour plot of function �d(τ, σ ) near (τ̄2, σ̄2);
b contour plot of function �(x, y) near (x̄2, ȳ2); c graph of function �(x, y) near (x̄2, ȳ2)

so Assumption1 is satisfied, then (τ̄1, σ̄1) is inS +
a . By Theorem1, we get (x̄1, ȳ1) =

(1.80375, 1.60261). Moreover, we have

�(x̄1, ȳ1) = �d(τ̄1, σ̄1) = −5.16136,

so there is no duality gap, then (x̄1, ȳ1) is the global solution of the primal problem,
which demonstrates the min–max duality(see Fig. 4).

For showing the double-max duality of Example3, we find a local maximum
point of�d(τ, σ ) inS −

a : (τ̄2, σ̄2) = (0.358833,−0.785507). By Theorem1, we get
(x̄2, ȳ2) = (−0.519029,−0.399493). Moreover, we have

�(x̄2, ȳ2) = �d(τ̄2, σ̄2) = 1.30402,

and (x̄2, ȳ2) is also a localmaximumpoint of�(x, y), which demonstrates the double-
max duality(see Fig. 5).

Example 4

We also consider the case that A1 is indefinite. Let α1 = 1, β1 = 2 and

A1 =
[−3 0
0 1

]
, B1 =

[
1 0
0 1

]
, C1 =

[
4 0
0 4.4

]
, and f =

[
1
1

]
,

then the primal problem:
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min
(x,y)∈R2

�(x, y) = exp
(−1.5x2 + 0.5y2 − 1

) + 0.5
(
0.5x2 + 0.5y2 − 2

)2

−2x2 − 2.2y2 − x − y.

The corresponding canonical dual function is

�d(τ, σ ) = −0.5

(
1

−3τ + σ − 4
+ 1

τ + σ − 4.4

)
− τ ln(τ ) − 0.5σ 2 − 2σ.

In this problem, λ
A1
min = −3, λ

B1
min = λB1

max = 1, and λC1
max = 4.4. It is noticed that

(τ̄1, σ̄1) = (0.0612941, 4.67004) is a critical point of the dual function�d(τ, σ )(see
Fig. 6a). As σ̄1 > 0, we have λ̄B1 = λ

B1
min and

Δ = τ̄1λ
A1
min + σ̄1λ

B1
min − λC1

max = 0.0862 > 0,

so Assumption1 is satisfied, then (τ̄1, σ̄1) is inS +
a . By Theorem1, we get (x̄1, ȳ1) =

(2.05695, 3.01812). Moreover, we have

�(x̄1, ȳ1) = �d(τ̄1, σ̄1) = −22.6111,

so there is no duality gap, then (x̄1, ȳ1) is the global solution of the primal problem,
which demonstrates the min–max duality(see Fig. 6).

For showing the double-max duality of Example4, we find a local maximum
point of �d(τ, σ ) in S −

a : (τ̄2, σ̄2) = (0.361948,−1.97615). By Theorem1, we get
(x̄2, ȳ2) = (−0.141603,−0.166273). Moreover, we have

�(x̄2, ȳ2) = �d(τ̄2, σ̄2) = 2.52149,

and (x̄2, ȳ2) is also a localmaximumpoint of�(x, y), which demonstrates the double-
max duality(see Fig. 7).

For showing the double-min duality of Example4, we find a local minimum
point of �d(τ, σ ) in S −

a : (τ̄3, σ̄3) = (0.149286, 3.90584). By Theorem1, we get
(x̄3, ȳ3) = (−1.84496,−2.89962). Moreover, we have

�(x̄3, ȳ3) = �d(τ̄3, σ̄3) = −12.7833,

and (x̄3, ȳ3) is also a a local minimum point of �(x, y), which demonstrates the
double-min duality(see Fig. 8).

From above double-min duality in Example4, we can find our proposed canonical
dual method can avoids a local minimum point (x̄3, ȳ3) of the primal problem. In fact,
by the canonical dual method, the global solution is obtained, so any local minimum
point is avoided. For instance, the point (1.29672,−2.09209) is a local minimum
point of the primal problem in Example2 (see Fig. 9a), and the minimum value is -
3.98411, but our proposed canonical dual method obtains the global minimum value



On D.C. Optimization Problems 219

Fig. 6 The min–max duality in Example4: a contour plot of function �d(τ, σ ) near (τ̄1, σ̄1);
b contour plot of function �(x, y); c graph of function �(x, y) near (x̄1, ȳ1)

Fig. 7 The double-max duality in Example4: a contour plot of function �d(τ, σ ) near (τ̄2, σ̄2);
b contour plot of function �(x, y) near (x̄2, ȳ2); c graph of function �(x, y) near (x̄2, ȳ2)

Fig. 8 The double-min duality in Example4: a contour plot of function �d(τ, σ ) near (τ̄3, σ̄3); b
contour plot of function �(x, y) near (x̄3, ȳ3); c graph of function �(x, y) near (x̄3, ȳ3)

Fig. 9 graph of the primal problem near a local minimum point: a in Example2; b in Example3

-13.6736; the point (1.88536,−1.10196) is a local minimum point of the primal
problem in Example3 (see Fig. 9b), and the minimum value is −2.45219, but our
proposed canonical dual method obtains the global minimum value −22.6111.
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6 Conclusions

Based on the original definition of objectivity in continuum physics, a canonical d.c.
optimization problem is proposed, which can be used to model general nonconvex
optimization problems in complex systems. Detailed application is provided by solv-
ing a challenging problem in R

n. By the canonical duality theory, this nonconvex
problem is able to reformulated as a concave maximization dual problem in con-
vex domain. A detailed proof for the triality theory is provided under a reasonable
assumption. This theory can be used to identify both global and local extrema, and
to develop a powerful algorithm for solving this general d.c. optimization problem.
Several examples are given to illustrate detailed situations. All these examples sup-
port the Assumption1. However, we should emphasize that this assumption is only
a sufficient condition for the existence of a canonical dual solution in S +

a . How
to relax this assumption and to obtain a necessary condition for S +

a �= ∅ are open
questions and deserve detailed study.
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