
Lecture Notes in Mathematics 2184

Laurent Najman
Pascal Romon   Editors

Modern 
Approaches 
to Discrete 
Curvature



Lecture Notes in Mathematics 2184

Editors-in-Chief:
Jean-Michel Morel, Cachan
Bernard Teissier, Paris

Advisory Board:
Michel Brion, Grenoble
Camillo De Lellis, Zurich
Alessio Figalli, Zurich
Davar Khoshnevisan, Salt Lake City
Ioannis Kontoyiannis, Athens
Gábor Lugosi, Barcelona
Mark Podolskij, Aarhus
Sylvia Serfaty, New York
Anna Wienhard, Heidelberg



More information about this series at http://www.springer.com/series/304

http://www.springer.com/series/304


Laurent Najman • Pascal Romon
Editors

Modern Approaches
to Discrete Curvature

123



Editors
Laurent Najman
Laboratoire d’Informatique Gaspard Monge
Université Paris-Est - ESIEE Paris
Noisy-le-Grand, France

Pascal Romon
Laboratoire d’Analyse et de Mathématiques

Appliquées
Université Paris-Est Marne-la-Vallée
Marne-la-Vallée, France

ISSN 0075-8434 ISSN 1617-9692 (electronic)
Lecture Notes in Mathematics
ISBN 978-3-319-58001-2 ISBN 978-3-319-58002-9 (eBook)
DOI 10.1007/978-3-319-58002-9

Library of Congress Control Number: 2017949896

© The Editor(s) (if applicable) and The Author(s) 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Discrete curvature is one of the key concepts in modern discrete geometry. Discrete
geometry itself is nothing new and boasts on the contrary an ancient and rich history,
reaching back to Antiquity and the Platonic solids. The geometry of points, lines,
polygons, and polyhedra predates differential geometry. The latter’s progress in
the last centuries though has made it a crucial field in mathematics and a tool of
choice in many applications. And yet, discrete geometry has not ceased to stimulate
researchers, as the works of Alexandrov and many others show. It has nevertheless
taken a new twist at the end of the twentieth century, first with the onset of
computer science and engineering, requiring a science based on discrete objects,
bits and integers, molecules or bricks, graphs, and networks. This has greatly
stimulated mathematic research and keeps doing so. But another impulse came from
mathematics itself, from fields as varied as probabilities, integrable systems theory,
or differential calculus; the aim is to construct a modern theory of discrete geometry
akin to its smooth cousin while solving applied problems. This double motivation,
a need for efficient tools and problems to solve, as well as a renewed approach on
geometry in the discrete realm, has been a powerful incentive for research and has
generated many advances in discrete geometry. And at the heart of this geometry
lies the notion of discrete curvature, as it does in smooth geometry. Indeed, as we
know now, curvature is often the key to understanding the metric and topological
properties of geometric objects: genus (Gauss-Bonnet), diameter (Bonnet-Myers),
functions and spectrum (Poincaré, Sobolev, Lichnerowicz), classification, flows
and smoothing (Hamilton and Perelman), local description, etc. However, the
challenge is to understand and use curvature in this non-smooth setting. Unlike
the differential theory, where definitions have been cast more than a century ago
by Riemann, discrete differential geometry still searches for the appropriate analog
of the many curvatures (see [17]). It is not clear yet which notion is the most
adapted to a given problem nor whether a single notion will (or should) arise. The
reader will discover in this book many possible takes on curvature, with complex
dependencies. This panoramic approach shows the wealth of contexts and ideas
where curvature plays a role. And the material gathered here is but a sample—albeit
a wide and representative one—of the dynamic publications currently happening in
mathematics and computer science.

v



vi Preface

A word of warning might be necessary. Given the many possible approaches on
discrete curvature, it is not possible to present the ideas with unified formalism and
notations. Indeed, there is no unique definition of the various discrete settings, and
thus the different notions in this book are different and apply to different objects.
In this introduction, we try to provide some organization to this profusion and to
present the different chapters in some logical way (see Fig. 1). But achieving such
a task is probably wishful thinking. Nevertheless, we are deeply convinced that the
interested reader will find her or his pain and efforts rewarded by the various gems
that can be found in this monograph.

Discrete curvature has started its modern life with the approximation theory and
finite differences, mimicking the smooth definition at a very basic level, derivatives
being replaced with differences. This has met the needs of applied science for a

1.Local and nonlocal aspects of Ricci curvature

2.Metric curvatures revisited

3.Distances between datasets

4.Inference of curvature5.Entropic Ricci curvature

6.Geometric and spectral consequences of curvature bounds

7.The geometric spectrum of a graph and associated curvatures

8.Discrete minimal surfaces of Koebe type

9.Robust and convergent curvature estimators

Fig. 1 A reading graph for this book, showing the strongest links between the chapters. The reader
is thus invited to choose their own reading path
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practical notion of curvature but has soon showed its limits. These were both on
the theoretical side, since these approximations hardly ever obeyed the topological
properties of their smooth ideal counterparts. But also on the practical side, since,
(half-)surprisingly, such notions lack consistency, in general, the limit of such
approximated curvatures either does not exist or does not converge to the smooth
value. Such indeed was the (negative) answer of Xu et al. [26] to the question
posed by Meek and Walton [18]: “Is there a closed-form expression based on local
geometric data (lengths and angles) for the curvature of a discretized surface, that
converges to the smooth one as the discretization is refined.” This shortcoming
challenges the mere idea of discretization. In reality, the lack of convergence of
order two quantities is not so surprising to geometers, and counterexamples such as
the Schwarz lantern have been known to mathematicians for a long time, especially
in geometric measure theory. Yet, this does not preclude convergence results (see,
for instance, Chaps. 2 and 9) under proper hypotheses, which are the scope of
today’s research. Typically, these rely either on stricter discretization (e.g., thick
or fat triangulations (see Chap. 2), and also discretization along curvature lines as
in [4]) or on adapting the type of convergence that is expected (e.g., Chaps. 2 and 3
on Gromov-Hausdorff convergence and Chap. 9) or more generally, as in the spirit
of this book, on redefining the curvature itself, as a curvature measure (Chap. 4 and
many others). A general overview of the lack of pointwise convergence and possible
solutions can be found in [14].

Among the new approaches to discrete curvature, one finds a new take on local
data (known to fail at pointwise convergence, as mentioned above), averaged as a
measure rather than a vertex/edge-based quantity. In a way, the curvature ceases to
be a Dirac measure to become more diffuse, by applying a (geometric) smoothing.
A better and deeper understanding of this phenomenon can be found using normal
cycles (in the Grassmannian) and geometric measure theory (see Chaps. 3 and 4
and the book of Morvan on generalized curvatures [7, 19], especially for extrinsic
curvatures). As an advantage, this formalism gives a framework for managing the
continuous, the discrete, and the semi-continuous cases, even point clouds. Very
little regularity is required of the geometric object, a property which will also be
encountered in the metric geometry approach. This is an asset when dealing with
noisy real-world data; however this requires the choice of a characteristic length or
convolution function to recover actual numeric values. Note that other geometric
data such as sharp features can be obtained with these methods.

The starting point of these methods is the Steiner formula, which links the
(extrinsic) curvatures to the area of the offsets of the surface under study, a method
much used by Alexandrov. Interestingly enough, this approach turns out to be
the starting point also of quadrangle/offset formalism for surfaces, developed in
Chap. 8. This approach, derived from the integrable systems theory of geometric
partial differential equations, is based on the following idea: A specific choice of
parametrization (such as conformal, asymptotic, isothermic, etc.) transforms the
study of a given (sub-)manifold into the study of a specific (simpler) PDE. In the
discrete setup though, there is no such thing as a change of parametrization. On the
contrary, it seems that one handles the surface itself instead of a parametrization,
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as is the rule in differential geometry (although not in geometric measure theory,
as the reader should notice). But even though changes of variables are hardly
possible, special parametrizations do exist, e.g., conformal, isothermic, etc., inspired
by Thurston’s work in complex analysis (circle patterns). This leads to a beautiful
theory of quadrangle-based discrete surfaces with special offsets, which allows to
define Gaussian and mean curvature through offsets (à la Steiner) and minimal as
well as constant mean or Gaussian curvature surfaces. The analogy with the smooth
cases is justified by the convergence and the existence of similar structural properties
(transformations of the space of solutions). In this approach, the geometric prop-
erties of the moduli space characterizes the discrete differential geometry. These
special surfaces are—as expected—solution to an integrable system given by a Lax
pair, analog to the smooth one, or described by conserved quantities [6]. In spite of
their abstraction, these definitions often correspond to intuitive three-dimensional
geometry; for instance, for K-nets, Steiner-defined curvature coincides with the
product of orthogonal osculating circles. And logically but remarkably enough, this
theoretical development has direct applications in architecture, in the construction
of free form surfaces with constrained faces of fixed width and parallelism (see
[24]). Surfaces made of panels of fixed width or with beams of fixed breadth are
specific types of geometric quad-surfaces: Koebe and conical meshes. This leads to
a new paradigm for discrete surfaces: instead of considering the vertices/edges/faces
of one surface, one considers the surface together with its offset or equivalently
the surface with its “Gauss map.” By doing so, one avoids the tricky problem of
defining the normals (thus guaranteeing convergence), but more than that, we have
a consistent theory, even at a low discretization level [5]. Such indeed is the goal of
discrete differential geometry.

Another and more classical view of curvature dates back to the early twentieth
century. It is based on comparison between distances in a metric (actually a length)
space and distances in a model space, usually of constant curvature, the Euclidean
space, the round sphere, or the hyperbolic space with varying curvatures. By
comparing triangles or quadrangles, Alexandrov, Toponogov, and Wald give bounds
on the curvature, when it exists, and define a working curvature in most generalities.
This is explored in Chaps. 2 and 3. Since it requires no smoothness, it applies
well to discrete spaces (but not only to them). Convergence results are mentioned
and we link to point cloud reconstruction as in Chap. 4. Moreover, this theory is
deeply intertwined with image processing and other applications. There is also a
tentative definition of what the Ricci flow might be for piecewise linear surfaces, a
thriving topic in mathematics and computer science, with applications in smoothing
(although Ricci curvature is intrinsic, while smoothing often relies on extrinsic
curvature).

Adding a measure to a metric space, new ideas came from probability theory
and optimal transportation, in the pioneering works of Bakry and Ledoux [3]
and Ollivier [22]. The first authors, followed by many others, proposed a notion
of curvature via Bochner-type functional inequalities on processes and functions
(as explained in the discrete setting in Chap. 1). While coherent with Riemannian
geometry, this extends easily to the discrete case (though not exclusively); see, for
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instance [16], some recent estimates on graphs. This mixed two simple ideas: (1)
work on the curvature via functional inequalities, often using the Laplace operator,
and (2) separate the measure from the metric (which are linked in Riemannian
geometry). The inspiration of Ollivier is quite different. Ricci curvature, as the rate
of divergence of geodesics, is measured as a (logarithmic) difference between opti-
mal transportation distance (Wasserstein distance; see also Chap. 3) and standard
distance. This point of view applies very well to discrete spaces, in particular to
graphs, and is the focus of Chap. 1 (which as the introductory chapter also recalls
many basic definitions in classical geometry). It has been developed since by many
authors, including algorithmically. These two approaches to intrinsic curvature are
close but different: the former naturally yields lower bounds, while the latter gives an
explicit—if difficult to compute—expression. Both cases though rely on a diffusion
process (the Laplacian) which is known to be elusive in discrete geometry [25].
They also embody the same vision: By adding measures to a space, one reintroduces
continuous objects that are lacking in a discrete space. Such is also the philosophy
of Chap. 5, where curvature is defined through entropy. Continuity is realized by the
geodesics in the probability space, over which functional inequalities are derived.
This relies of course on metric ideas presented in Chaps. 2 and 3. Finally, let us
note that optimal transportation appears also in shape reconstruction, to minimize
the tension (or the Laplace energy); see [12].

Among discrete spaces, the graphs hold a particular position. It is certainly an
old mathematical subject with strong research themes, stimulated by ever-growing
applications and also, from our point of view, a geometrization taking place (after
earlier works of Gromov). Graphs are interesting per se but may also be seen as
a crude version of cell complexes or even discrete manifolds. Whatever works
on the former can also be conceived for the latter, and we shall give finer results
for those. In this book, Chaps. 1, 6, and 7 are devoted to graphs, with various
geometric conditions attached. In these appears with the greatest clarity how much
the curvature is linked with the Laplacian. Indeed bounds on the Ollivier-Ricci
curvature yield Poincaré estimates, and so do other curvatures. Finer discrete
geometric aspects, such as the frequency of triangles, the degree, etc., play a role in
the curvature, or equivalently, in the Laplacian, and influence the global geometry,
with Myers’ and Cartan-Hadamard theorem. The reader will note with interest how
different choices of the weights yield different results (combinatorial Laplacian vs.
probabilistic, a.k.a. harmonic, Laplacian).

Chapter 7 tackles the “extrinsic” part (which is also present in Chap. 4); curvature
appears again via function spaces, i.e., via the geometric spectrum of the Laplacian
on graphs. Similar and yet different realizations of the eigenfunctions, as local or
global embeddings in space, are presented, the goal being a reconstruction of the
geometry. The definitions in Chap. 7 show nevertheless the strong dependence on
intrinsic data.

Finally, this work also tackles the topic of digital spaces (i.e., the geometry
of Z

n), another clear application of discrete geometry, with obvious applications
to imaging. This is typically a setup where a naive approximation of smooth
geometry may lead to vast errors, such as metrication artifacts. Chapter 9 presents
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smarter and geometrically meaningful integral invariants as curvature estimators.
The issue of approximation is handled through multigrid convergence to their
continuous counterpart when the digital shape is a digitization of a sufficiently
smooth Euclidean shape. Furthermore a good noise robustness is shown.

The crucial problem of connectedness in digital shapes is a key issue in Chap. 9,
inducing definitions of curvature, determined by their consistency (the Gauss-
Bonnet theorem). The different local configurations that can arise on a digital
shape are studied, and curvature indices and normals are introduced, leading to
an important transform called digital curvature flow, which can be seen as a
digitized version of the classical curvature flow. Several applications of this flow
are illustrated, such as thinning and snakes.

There are of course many aspects of discrete curvature that could not fit in this
book. A wider overview of the topic may already be found in the 2014 CIRM
Proceedings of the Meeting on Discrete Curvature [21]. But, of all the missing
aspects, discrete exterior calculus (DEC) is in our opinion one of the most important.
Luckily, many fine articles have been written on this topic recently, and we will
happily direct the reader to them (see references below).

Let us just make a brief presentation of the topic and recall that discrete
curvature, while not the main subject of DEC, is present through the ubiquitous
Laplace operator, which is central in discrete calculus. DEC starts by defining
the basic objects: discrete differential forms and vector fields. Simple operators
are then constructed: the discrete exterior derivative d, the Hodge star ? and the
codifferential d? operating on forms, the discrete wedge product for combining
forms, the discrete flat and sharp operators to interchange vector fields and one
forms, the discrete interior product operator for combining forms and vector fields,
and the Lie derivative. Using these, more sophisticated operators can be constructed,
such as the gradient, divergence, and curl operators. Because the basic operators
were defined by their algebraic properties, we obtain easily exact Green, Gauss, and
Stokes theorems (for instance, the differential must commute with the boundary
operator:

R
c d! D R

@c !).
There is no unique or unequivocally better discretization of differential calcu-

lus, and the construction depends on the choice of the building bricks: discrete
differential forms and vector fields. Often, these must be thought of as integrals of
continuous forms over discrete elements (simplices or cells). For instance, Polthier
and Preuß [23] presents a calculus based on finite elements on triangles exclusively.
Another approach, followed by Desbrun et al., rests upon the (discrete) dual,
which must be endowed with metric as well. For instance, dual vertices, which are
primal faces, can be identified with a point in the face, e.g., the center of mass,
or the circumcenter when the faces are circular, thus defining dual edge lengths.
However, each choice of the dual geometry will generate a different DEC (see [2]
for Laplacians on general polygonal meshes). Once again, the problem determines
the approach. DEC applications are manifold, including finding geodesics, solving
PDEs, remeshing, and optimal transportation again. For further reading, in addition
to the works already quoted, we recommend the following papers and monographs:
[8, 10, 11, 13, 15] and, for further reading also, [1, 9, 20].
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Chapter 1
The Geometric Meaning of Curvature: Local
and Nonlocal Aspects of Ricci Curvature

Frank Bauer, Bobo Hua, Jürgen Jost, Shiping Liu, and Guofang Wang

Abstract Curvature is a concept originally developed in differential and Rieman-
nian geometry. There are various established notions of curvature, in particular
sectional and Ricci curvature. An important theme in Riemannian geometry has
been to explore the geometric and topological consequences of bounds on those
curvatures, like divergence or convergence of geodesics, convexity properties of
distance functions, growth of the volume of distance balls, transportation dis-
tance between such balls, vanishing theorems for Betti numbers, bounds for the
eigenvalues of the Laplace operator or control of harmonic functions. Several of
these geometric properties turn out to be equivalent to the corresponding curvature
bounds in the context of Riemannian geometry. Since those properties often are
also meaningful in the more general framework of metric geometry, in recent
years, there have been several research projects that turned those properties into
axiomatic definitions of curvature bounds in metric geometry. In this contribution,
after developing the Riemannian geometric background, we explore some of
these axiomatic approaches. In particular, we shall describe the insights in graph
theory and network analysis following from the corresponding axiomatic curvature
definitions.
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1.1 The Origins of the Concept of Curvature

The concept of curvature was first introduced in mathematics to study curves in
the plane or in space. The aim was to quantify the deviation of a curve from
being a straight line, that is, how “curved” it is, in a way that was intrinsic, that
is, did not depend on its parametrization. In fact, the shape of a curve in the
plane is completely characterized by the—possibly varying—curvature at its points.
(For a curve in three-dimensional space, an additional invariant, the torsion, is
needed.) This having been relatively easily understood, mathematicians then wanted
to proceed to surfaces in space. The obvious idea was to investigate the curvature of
curves on the surface. In particular, through each point on such a surface, we have
a one-dimensional family of orthogonal directions, and one can therefore look at
suitable curves on the surface with those tangent directions. This was worked out
by mathematicians like Monge and others, but in fact, this approach confused two
different aspects. This was only clarified by Gauss [36] in 1827. The point is that
while all curves are intrinsically alike and can only possibly differ by the way they
sit in the plane or in space, surfaces possess their own intrinsic geometry. Different
surfaces, regardless of how they sit in space, in general are not isometric, not even
locally. That is, you cannot map a piece of one surface onto another one without
stretching or squeezing it in some directions. The standard example is the distortion
in maps of the surface of the earth where one projects a piece of a (roughly) spherical
surface onto the flat plane and thereby necessarily distorts relative distances or
angles, depending on the chosen projection scheme. On the other hand, one and
the same piece of surface can sit differently in space. Here, the standard example is
a sheet of paper that you can roll into a cylinder or (part of) a cone.

Gauss then disentangled these two aspects, the interior and exterior geometry of
surfaces. His crucial discovery was that there exists a curvature measure, later called
the Gauss curvature K, that solely depends on the interior geometry of a surface and
is independent of how the surface sits in space. Another curvature measure, the mean
curvature H, in contrast describes the exterior geometry, that is, how the surface is
embedded or immersed in space. These curvature concepts, and what they mean for
the geometry of curves and surfaces in space, are presented in [30, 47].

In this chapter, we shall only be concerned with the interior geometry of surfaces
or other metric spaces. Therefore, our starting point is the Gauss curvature. It was
Riemann [74] in his habilitation address in 1854 who conceived the grand picture
of an intrinsic geometry of spaces of arbitrary dimension around the fundamental
concept of curvature. This lead to the development of Riemannian geometry. A
reference is [47] which the reader is invited to consult for background, further devel-
opments and perspectives, and for proofs of the results from Riemannian geometry
that we shall now discuss. For a historical commentary on the development of
geometry, we refer to [74].
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1.2 A Primer on Riemannian Geometry: Not Indispensable

1.2.1 Tangent Vectors and Riemannian Metrics

In this section, we work in the smooth category and assume that all objects possess
all the differentiability properties that will be required for our computations. We
consider a d-dimensional differentiable manifold M. Such a manifold can be locally
described by coordinates taking their values in R

d. These coordinates are more
or less arbitrary, beyond some obvious requirements. The question then is how to
switch from one coordinate system to another one. The convenient calculus for this
purpose is the tensor calculus. This calculus employs some conventions:

• Einstein summation convention

aibi WD
dX

iD1
aibi (1.1)

Thus, a summation sign is omitted when the same index occurs twice in a
product, once as an upper and once as a lower index, with conventions about
placing the indices to be described below. In particular:

• When G D .gij/i;j is a metric tensor, the inverse metric tensor is written as G�1 D
.gij/i;j, that is, by raising the indices. In particular

gijgjk D ıik WD
(
1 when i D k

0 when i ¤ k:
(1.2)

• More generally,

vi D gijvj and vi D gijv
j: (1.3)

In particular, this implies that for the Euclidean metric gij D ıij, there is no
difference between upper and lower indices.

A tangent vector for M at some point represented by x0 in local coordinates x is
an expression of the form

V D vi
@

@x i
I (1.4)

this means that it operates on a function 
.x/ in our local coordinates as

V.
/.x0/ D vi
@


@x i jxDx0
: (1.5)
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The tangent vectors at a point p 2 M form a d-dimensional vector space, called
the tangent space TpM of M at p. Since we have written a tangent vector in local
coordinates, the question then is how the same tangent vector is represented in
different local coordinates y with x D f . y/. Applying here and in the sequel always
the chain rule, we get

V D vi
@y j

@x i

@

@y j
: (1.6)

Thus, the coefficients of V in the y-coordinates are vi @y
j

@x i
. With this transformation

rule, the result of the operation of the tangent vector V on a function 
, V.
/, is
independent of the choice of coordinates.

A vector field then is defined as V.x/ D vi.x/ @
@x i

, that is, by having a tangent
vector at each point of M. As indicated above, we assume here that the coefficients
vi.x/ are differentiable.

Returning to a single tangent vector, V D vi @
@x i

at some point x0, we consider a
covector ! D !idx i at this point as an object dual to V , with the rule

dx i.
@

@x j
/ D ıij (1.7)

yielding

!idx
i.v j @

@x j
/ D !iv

jıij D !iv
i: (1.8)

We write this as !.V/, the application of the covector! to the vector V , or as V.!/,
the application of V to !.

We have the transformation behavior

dx i D @x i

@y˛
dy ˛ (1.9)

required for the invariance of !.V/. Thus, the coefficients of ! in the y-coordinates
are given by the identity

!idx
i D !i

@x i

@yj
dy j: (1.10)

The transformation behavior of a tangent vector as in (1.6) is called contravariant,
the opposite one of a covector as (1.10) covariant.

A 1-form then assigns a covector to every point in M, and thus, it is locally given
as !i.x/dx i.

Having derived the transformation of vectors and covectors, we can then also
determine the transformation rules for other tensors. A lower index always indicates
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covariant, an upper one contravariant transformation. For example, the metric
tensor, written as gijdx i ˝ dx j, with gij D h @

@x i
; @
@x j

i being the product of those two
basis vectors, operates on pairs of tangent vectors. It therefore transforms doubly
covariantly, that is, becomes

gij. f . y//
@x i

@y ˛
@x j

@yˇ
dy ˛ ˝ dyˇ: (1.11)

The metric tensor provides a Euclidean product of tangent vectors,

hV;Wi D gijv
iw j (1.12)

for V D vi @
@x i
;W D wi @

@x i
. In this formula, vi and wi transform contravariantly,

while gij transforms doubly covariantly so that the product as a scalar quantity
remains invariant under coordinate transformations.

Equipped with a Riemannian metric, one can introduce all the notions and carry
out all the constructions that are familiar from Euclidean geometry. For instance,
two vectors V;W are called orthogonal if hV;Wi D 0.

It is a basic property of tensors that computations can be carried out pointwise.
Therefore, at a given point, we can choose our coordinates or our frame of tangent
vectors conveniently. In particular, we can introduce Riemann normal coordinates
at the point under considerations. In those coordinates, we have a basis ei D @

@x i
of

tangent vectors that satisfy

gij D h @
@x i

;
@

@x j
i D ıij; (1.13)

(with ıij D 1 for i D j and D 0 otherwise), and also

� i
jk D 0 for all i; j; k: (1.14)

The Christoffel symbols � i
jk will be defined below in (1.32).

Note, however, that (1.13) and (1.14) can only be achieved at a single point at a
time, and not throughout a local neighborhood. In fact, the curvature tensor, which
will be introduced below, provides the local obstruction for achieving these relations
throughout some local neighborhood.

1.2.2 Differentials, Gradients, and the Laplace-Beltrami
Operator

For a function 
, we have its differential

d
 D @


@x i
dx i; (1.15)
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a 1-form; this depends on the differentiable structure, but not on the metric. The
gradient of 
, however, involves the metric; it is defined as

grad
 D gij
@


@x j

@

@x i
: (1.16)

A characteristic property of the gradient of a function 
 is that it is orthogonal to
the level hypersurfaces 
 � c. In fact, when V 2 TpM is tangent to such a level
hypersurface, it satisfies

V.
/ D vk
@


@xk
D 0: (1.17)

When V then satisfies (1.17), we have

hgrad
;Vi D gikg
ij @


@x j
vk D @


@xk
vk D 0; (1.18)

that is, grad
 and V are orthogonal, indeed.
There also is a formula for the product of the gradients of two functions 
; ,

hgrad
; grad i D gikg
ij @


@x j
gk`
@ 

@x`
D g j` @


@x j

@ 

@x`
: (1.19)

Next, the divergence of a vector field Z D Zi @
@x i

is

divZ WD 1p
g

@

@x j
.
p
gZj/ D 1p

g

@

@x j

�p
ggij

D
Z;

@

@x i

E�
: (1.20)

Geometrically, the divergence can be interpreted as the measure of the rate of change
of the volume when flowing in the direction of the vector field Z.

This allows us to define the Laplace–Beltrami operator

�f WD div grad f D 1p
g

@

@x j

�p
ggij

@f

@x i

�
: (1.21)

(Please note that the sign convention adopted here differs from that of Jost [47].)
A function f W ˝ ! R on some domain˝ � M is called harmonic if

�f D 0: (1.22)

Below, we shall introduce the volume form dvol of a Riemannian metric, see (1.34)
with the help of which we can then compute the L2-product of square integrable
functions f ; g as

. f ; g/ WD
Z

f .x/g.x/dvol.x/: (1.23)
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We then have

.�f ; g/ D �.grad f ; grad g/ D . f ; �g/ (1.24)

for smooth functions f ; g.
The eigenvalues of� on a compact Riemannian manifold M, that is, those  for

which there exists some nontrivial function f, called an eigenfunction, with

�f C f D 0; (1.25)

contain important geometric invariants about the geometry of M. All eigenvalues
are real because� is a symmetric operator by (1.24). The choice of sign in (1.25) is
such that all eigenvalues are nonnegative. Of course, 0 D 0 always is an eigenvalue
with a constant eigenfunction. Or putting it differently, a harmonic function is an
eigenfunction for the eigenvalue 0, and on a compact M, all harmonic functions are
constant by the maximum principle. When M is connected, all other eigenvalues
are positive. (More generally, the multiplicity of the eigenvalue 0 equals the number
of connected components of a Riemannian manifold.) The eigenvalues are usually
numbered in increasing order, that is, when M is connected, they are

0 D 0 < 1 � 2 � : : : : (1.26)

Of course, one may also study the spectrum of noncompact Riemannian man-
ifolds, but in that case, the spectrum needs no longer be discrete, and we do not
consider that here.

There is a more abstract and more general definition of the Laplace operator in
Riemannian geometry. For a p-form ! D 
.x/dxi1 ^� � �^dxip with 1 � i1 < : : : ip �
d, we have

d! D
dX

jD1

@
.x/

@x j
dx j ^ dxi1 ^ � � � ^ dxip : (1.27)

We can then define the formal adjoint d� of d w.r.t. the L2-product (1.23), that is,

.d�f ; g/ D . f ; dg/ (1.28)

for all functions f ; g for which these expressions are well-defined, e.g., smooth with
compact support. We can then define the Laplace operator on p-forms via

�! D �.dd� C d�d/!: (1.29)

A differential form ! is called harmonic if �! D 0. On a compact Riemannian
manifold, ! is harmonic if and only if

d! D 0 and d�! D 0: (1.30)
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For functions, that is, 0-forms, the definition (1.29) agrees with the earlier (1.21). On
a compact Riemannian manifold, harmonic functions are constant, but in general,
there exist nontrivial harmonic forms.

Details can be found in [47]. We should alert the reader to the fact that here we
are using a different sign convention for Laplacians than in [47], in order to conform
to usage in graph theory below.

1.2.3 Lengths and Distances

Equipped with a Riemannian metric, one can measure the length of curves. Let Œa; b�
be a closed interval in R, � W Œa; b� ! M a (smooth) curve. The length of � is defined
as

L.�/ D
Z b

a

q
gij.x.�.t///Pxi.t/Pxj.t/dt: (1.31)

L.�/ does not depend on the parametrization of � , that is if  W Œ˛; ˇ� ! Œa; b� is a
change of parameter, then

L.� ı  / D L.�/:

On a Riemannian manifold M; we can then define the distance between two
points p; q via

d. p; q/ WD inffL.�/ W � W Œa; b� ! M piecewise smooth curve with �.a/ D p; �.b/ D qg:

Any two points p; q in a connected Riemannian manifold can be connected by a
piecewise smooth curve, and d. p; q/ therefore is always defined.

Shortest curves are called geodesic. When they are parametrized proportionally
to arc length, that is, if

L.cjŒt1 ;t2�/ D .t2 � t1/L.c/ whenever a � t1 < t2 � b;

they satisfy the following equations

Rx i.t/C � i
jk.x.t//Px j.t/Pxk.t/ D 0; i D 1; : : : ; d (1.32)

with the Christoffel symbols

� i
jk D 1

2
gi`.gj`;k C gk`;j � gjk;`/;
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where

.gij/i;jD1;:::;d D .gij/
�1 (i.e. gi`g`j D ıij/

and

gj`;k D @

@xk
gj`:

In fact, even though not all solutions of (1.32) need to be globally length minimizing,
they will nevertheless be called geodesics. Actually, any geodesic is locally mini-
mizing, that is, it realizes the distances between any two sufficiently close points on
it. As the example of the great circles on the sphere shows, which are geodesics, but
no longer minimizing beyond a pair of antipodal points, geodesics need not globally
minimize distance. (In fact, compact Riemannian manifolds like the sphere always
possess closed geodesics, that is, geodesics that return to their starting point (with
the same direction they were starting with) and are parametrized on the unit circle.)

We point out that a geodesic is not just a length minimizing curve, but also carries
a particular parametrization, one that is proportional to arc length.

Equation (1.32) is a system of second order ODEs, and the Picard–Lindelöf
theorem yields the local existence and uniqueness of a solution with prescribed
initial values and derivatives, and this solution depends smoothly on the data.

1.2.4 Volumes

On a Riemannian manifold, we can not only measure lengths and distances, but also
volumes. The issue of measurability can be checked in local coordinates, and so we
need not address it here. When ˝ � M then is measurable, we define its volume as

Vol.˝/ WD
Z

˝

dvol.x/ WD
Z

˝

p
gdx (1.33)

with the volume form

dvol WD p
gdx WD

q
det.gij/dx: (1.34)

Lengths of curves and volumes of sets, in particular of the distance balls

U. p; r/ WD fq 2 M W d. p; q/ < rg for r > 0; (1.35)

then are the relevant metric quantities. Their behavior characterizes the geometry of
a Riemannian manifold. In order to control them, Riemann introduced the curvature
tensor that yielded invariants with which one can control distances between points
and volumes of balls.
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1.3 Curvature of Riemannian Manifolds

From our presentation of Riemannian geometry via tensor calculus, every quantity
seemed to depend on the choice of local coordinates. In fact, it is not difficult to
see that by a suitable choice of local coordinates, one can make the metric tensor
become the unit matrix at any given point p,

gij. p/ D ıij: (1.36)

Moreover, Riemann discovered that in addition, one can make also all first deriva-
tives vanish at that point by a suitable choice of local coordinates,

gij;k D 0 for all i; j; k: (1.37)

Coordinates satisfying (1.36) and (1.37) are called (Riemann) normal coordinates.
However, these relations can in general only be achieved at a single point, that is,
unless we are dealing with a Euclidean metric, we cannot have (1.36) or (1.37)
simultaneously for all points in some open set.

Or to put it differently, we seek quantities that can distinguish between different
metric structures, like the geometry on a sphere and that of Euclidean space. Ideally,
in the spirit of Riemannian geometry which works with infinitesimal quantities,
such invariants should be computable at any point. The preceding tells us that such
quantities cannot be constructed from the metric tensor and its first derivatives at
a given point. In contrast, in general the second derivatives of the metric cannot
be made to vanish at a given point by a suitable choice of local coordinates. The
obstruction will be given by the curvature tensor. And the curvature tensor then will
furnish us a set of invariants that characterizes the local, and to a certain extent also
the global geometry of a Riemannian manifold.

1.3.1 Covariant Derivatives

In order to have a more invariant scheme of computation, we shall work with the
covariant derivative of Levi-Cività.

Definition 1.1 The covariant derivative r satisfies

r @

@x i

@

@x j
D � k

ij

@

@xk
for all i; j (1.38)

and is extended to all vector fields V D vi @
@x i

via the product rule

r @

@x i
v j @

@x j
D @v j

@x i

@

@x j
C v jr @

@x i

@

@x j
: (1.39)
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Moreover,

rwi @

@x i
v j @

@x j
D wir @

@x i
v j @

@x j
: (1.40)

With this notation, the geodesic equation becomes

r d
dt

dc

dt
D 0 (1.41)

where we use the transformation rule

d

dt
D dx i

dt

@

@x i
: (1.42)

The geometric meaning is that the tangent vector is covariantly constant along the
curve, or in more intuitive terms, the tangent vectors at different points are parallel
to each other. In that sense, a geodesic is the Riemannian analogue of a Euclidean
straight line.

1.3.2 The Curvature Tensor; Sectional and Ricci Curvature

Since � k
ij D � k

ji , we have

r @

@x i

@

@x j
D r @

@x j

@

@x i
for all i; j: (1.43)

Higher derivatives, however, in general do not commute, and we define

Definition 1.2 The curvature operator R is defined by

R.
@

@x i
;
@

@x j
/ D r @

@x i
r @

@x j
� r @

@x j
r @

@x i
: (1.44)

We shall see below that this operator contains the basic invariants of a Riemannian
metric. But first, we want to express it in local coordinates and define some further
quantities. In local coordinates, we write

R

�
@

@x i
;
@

@x j

�
@

@x`
D Rk

`ij

@

@xk
: (1.45)

We put

Rk`ij WD gkmR
m
`ij;
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i.e.1

Rk`ij D
D
R
� @

@x i
;
@

@x j

� @

@x`
;
@

@xk

E
: (1.46)

When we choose Riemann normal coordinates, this becomes

Rk`ij D 1

2
.gjk;`i C gi`;kj � gj`;ki � gik;`j/: (1.47)

Definition 1.3 The sectional curvature of the plane spanned by the (linearly
independent) tangent vectors X D � i @

@x i
;Y D �i @

@x i
2 TxM of the Riemannian

manifold M is

K.X ^ Y/ W D hR.X;Y/Y;Xi 1

jX ^ Yj2

D Rijk`�
i�j�k�`

gikgj`.� i�k�j�` � � i� j�k�`/

D Rijk`�
i�j�k�`

.gikgj` � gijgk`/� i�j�k�`

(1.48)

(jX ^ Yj2 D hX;XihY;Yi � hX;Yi2).
Definition 1.4 The Ricci curvature in the direction X D � i @

@x i
2 TxM is

Ric.X;X/ D g j`
D
R
�
X;

@

@x j

� @

@x`
;X
E
: (1.49)

In local coordinates, the Ricci tensor is

Rik D g j`Rk`ij: (1.50)

The Ricci tensor is symmetric,

Rik D Rki: (1.51)

Finally, the scalar curvature is

R D gikRik:

1The indices k and l appear in different orders on the two sides of (1.46), according to the
convention of Jost [47] that made an attempt to mediate between the different conventions in use
in Riemannian geometry.
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The preceding quantities are the basic invariants of a Riemannian metric. For
a surface, at any point there only is a single tangent plane, and the corresponding
sectional curvature is nothing but the Gauss curvature of that surface. The Ricci
curvature for a vector X is (up to a normalization constant 1

d�1 that will therefore
occur repeatedly in subsequent formulae) the average of the sectional curvatures of
all the different tangent planes containing the vector X. Again, for a surface, as there
is only one tangent plane containing X, it is again the Gauss curvature. In higher
dimensions, of course, the sectional curvatures provide more refined invariants than
their averages, the Ricci curvatures. Nevertheless, the Ricci tensor does contain a lot
of information about a Riemannian metric, and in the sequel we shall be concerned
with analogues of the Ricci tensor. Finally, the scalar curvature is the average (again,
up to a normalization factor 1

d ) of the Ricci curvatures of the tangent vectors at a
given point.

So, what does the curvature of a Riemannian manifold tell us about its geometry?

1.3.3 The Geometric Meaning of Sectional Curvature

A curve is just a curve and nothing else, that is, an object without any interesting
intrinsic geometry. Its internal structure is trivial, in the sense that any two curves
have the same internal structure. And a geodesic simply is locally a shortest
connection, and since any two points in a complete Riemannian manifold can be
connected by a shortest geodesic, that fact does not carry any specific information.
In order to probe the geometry of a Riemannian manifold, one needs to look at the
relation between different geodesics. The simplest such setting is the collection of
all geodesics emanating from one and the same point p. Let us consider two such
geodesics, c1.t/; c2.t/, with c1.0/ D c2.0/ D p, parametrized by arc length, that is,
d.ci.t/; p/ D t for sufficiently small t 	 0; i D 1; 2. The crucial quantity then is the
distance between those geodesics as a function of t,

f .t/ WD d.c1.t/; c2.t//: (1.52)

In the Euclidean plane, we have

f .t/ D � t; (1.53)

with a constant � that depends on the angle between c1 and c2 at the origin p. In
contrast, on the unit sphere, we have

f .t/ D � sin t; (1.54)

whereas the relation in the hyperbolic plane is

f .t/ D � sinh t: (1.55)
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This already is the typical behavior, in the sense that on spaces of positive sectional
curvature, the distance between geodesics behaves like a trigonometric function,
whereas in spaces of negative curvature, geodesics diverge at an exponential rate.

Of course, the curvature is a quantity that is defined pointwise, and on a general
Riemannian manifold, it will therefore vary from point to point. But when it has a
lower or an upper bound, geometric conclusions follow. That is, when it is � � or 	
, then geodesics locally diverge at least as fast or at most as slowly as on a space of
constant curvature � or , resp. That is, an upper/lower curvature bound controls the
distance between geodesics from below/above. Here, a space of constant curvature
K locally has the geometry of a scaled sphere when K > 0, of Euclidean space for
K D 0, or of a scaled hyperbolic space for K < 0. The scaling factor is determined
by the value of K. For instance, a space of constant curvature K > 0 is a sphere of
radius 1p

K
. The smaller the radius, the larger the curvature, which of course agrees

well with our intuition.
Thus, bounds on the sectional curvature control the distance function between

geodesics, or conversely, when we have a control over the local divergence of
geodesics, we can infer curvature bounds. This is a conceptually very useful result,
as we can turn it around. Geodesics as locally distance minimizing curves exist
in more general spaces than Riemannian manifolds, the so-called geodesic length
spaces, see e.g. [46]. For instance, polytopes are not smooth, but one can easily
define the lengths of curves and determine the distance minimizing ones. And on
such spaces, one can then check for the divergence of geodesics. We can then
simply declare such a geodesic length space to have curvature � K or 	 K when its
geodesics locally exhibit the corresponding distance bounds. This was the approach
taken by Busemann. A somewhat more restrictive curvature concept by Alexandrov
also uses certain convexity properties of distances between geodesics. For a detailed
treatment, we refer to [17, 46] and the references given there.

Putting it more abstractly, the idea simply is to identify a local property on a
Riemannian manifold that is equivalent to a uniform infinitesimal curvature bound.
And when this property then can be meaningfully defined on a class of spaces that
is more general than Riemannian manifolds, we can then use that as a synthetic
definition of a curvature bound. Of course, this then may be no longer compatible
with a colloquial understanding of curvature as a deviation of smooth surfaces from
being planar and thereby also abandon the aesthetic appeal of curvature, but such a
state of affairs is not uncommon in mathematics.

1.3.4 The Geometric Meaning of Ricci Curvature

Since we have just found a local geometric characterization of sectional curvature
bounds, we may now wish to ask whether something similar is possible for Ricci
curvature as well. As it turns out there are two characteristic consequences of (lower)
Ricci curvature bounds which we shall now describe.
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1.3.4.1 Volume Growth

The first concerns the volume of balls. Whereas the sectional curvature contains
information about the distance between geodesics, Ricci curvature yields estimates
for the volume of distance balls U. p; r/ D fq 2 M W d. p; q/ < rg. We have the
Bishop–Gromov volume comparison theorem.

Theorem 1.1 Let M be a d-dimensional Riemannian manifold with the lower Ricci
curvature bound

Ric 	 .d � 1/; (1.56)

which is an abbreviation for Ric.X;X/ 	 .d � 1/hX;Xi for any tangent vector X,
or in local coordinates RijXiXj 	 .d � 1/gijXiXj. (The normalization here is such
that the model space M of dimension d and constant sectional curvature  (i.e.,
a sphere, Euclidean or hyperbolic space depending on the sign of ) has Ric �
.d � 1/.) Let V.r/ be the volume of a ball of radius r about any point in M. Let
p 2 M.

Then

Vol.U. p; r//

V.r/
is monotonically decreasing in r: (1.57)

Of course, we have

lim
r!0

Vol.U. p; r//

V0.r/
D 1; (1.58)

that is, infinitesimally, all volumes agree with the Euclidean one. The Ricci curva-
ture then tells us about the local deviation from the Euclidean volume. However,
only a lower Ricci curvature bound yields such a volume control. An upper Ricci
curvature bound is not strong enough to make the quantity in (1.57) monotonically
increasing. For that, one would rather need an upper sectional curvature bound; this
is the Theorem of P. Günther.

1.3.4.2 The Weitzenböck and the Bochner Formula

The Weitzenböck-Bochner formula relates the Laplacian and the Ricci curvature.
This is not surprising, as both involve the trace of a Hessian, that of a function in the
case of the Laplacian and that of a metric in the case of Ricci.

Actually, the formulas are more general than that. Let e1; : : : ; ed .d D dimM/
be a local orthonormal frame field (that is, hei; eji D ıij), with the dual coframe
field e1; : : : ; ed (that is, ei.ej/ D ıij). Then the Laplace–Beltrami operator acting on
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p-forms . p D 0; 1; : : : ; d/ is given by

� D r2
eiei C ei ^ �.ej/R.ei; ej/: (1.59)

Here, the second covariant derivative is defined as r2
XY D rXrY � rrXY , and by

letting the ei form a Riemann normal frame, we can achieve rrei ej
D 0. � stands for

a contraction operator, and R denotes a certain curvature expression. The details are
not so relevant here; they can be found in [47]. Here, we only want to emphasize the
following general aspect. The Weitzenböck formula (1.59) expresses the Laplace-
Beltrami operator on p-forms as the difference of a covariant second derivative
operator r2

eiei and a curvature term. The second derivative operator is a negative
operator. Therefore, when the curvature term is also negative, so then is �. This
can be used as follows. Let ! be a harmonic p-form, that is, �! D 0. We then
compute �h!;!i with the help of (1.59) and, assuming that the curvature term is
positive, obtain an expression that is negative unless ! � 0. But on a compact
manifold,

R
�f D 0. But by what we have just said, for f D h!;!i, ! being a

harmonic p-form, the integrand is pointwise negative unless ! � 0. Thus, ! must
vanish identically, and there is no harmonic p-form. Here, we do not spell this out
in detail, because in general, it is not so easy to interpret the curvature term in the
Weitzenböck Formula (1.59) geometrically. For 1-forms, however, the curvature

reduces to the negative Ricci curvature. This will allow us to derive interesting
geometric consequences.

Theorem 1.2 (Bochner’s Formula) For a smooth function f on a Riemannian
manifold M, we have

�hdf ; df i D 2h�df ; df i C 2jrdf j2 C 2 Ric.df ; df /: (1.60)

Here, �df is the Laplacian of the 1-form df , as defined in (1.29). Note that since
d2 D 0, we have �df D �dd�df D d�f . Also, rdf is the Riemannian version of
the Hessian of the function f .

We can also desymmetrize (1.60) to obtain, for smooth functions f ; g,

�hdf ; dgi � hdf ; d�gi � hdg; d�f i D 2hrdf ;rdgi C 2Ric.df ; dg/ : (1.61)

Proof Equation (1.60) can be derived from (1.59). Here, however, we want to
provide a direct proof, which, in fact, is not very difficult. We use Riemann normal
coordinates as in (1.13), (1.14). We have

�df D d�f

D d.gij
@2f

@x i@x j
� gij� k

ij

@f

@xk
/

D .
@3f

@x i@x i@xk
� 1

2
.gim;ik C gim;ik � gii;km/

@f

@xm
/dxk:
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We then compute

�hdf ; df i D @2

.@xk/2

�

gij
@f

@x i

@f

@x j

�

D 2
@2f

@xk@x i

@2f

@xk@x i
C 2gij

@3f

.@xk/2@x i

@f

@x j
C @2gij

.@xk/2
@f

@x i

@f

@x j
:

Using the preceding formula for @3f
.@xk/2@x i

, we obtain

D 2jrdf j2 C 2
�
h�df ; df i C 1

2
.gki;kj C gkj;ki � gkk;ij/

@f

@x i

@f

@x j

�
� gij;kk

@f

@x i

@f

@x j

D 2h�df ; df i C 2jrdf j2 C .gki;kj C gkj;ki � gkk;ij � gij;kk/
@f

@x i

@f

@x j

and with (1.47)

D 2h�df ; df i C 2jrdf j2 C 2Rij
@f

@x i

@f

@x j

D 2h�df ; df i C 2jrdf j2 C 2 Ric.df ; df /:

Thus, we have

�hdf ; df i D 2h�df ; df i C 2jrdf j2 C 2 Ric.df ; df /:

For a harmonic 1-form ! on a compact manifold M, which, according to (1.30)
satisfies d! D 0 D d�!, and which therefore, by the Poincaré Lemma, can locally
be written as ! D df for some function f , (1.60) becomes

�h!;!i D 2jr!j2 C 2 Ric.!; !/: (1.62)

As a consequence, we obtain Bochner’s Theorem.

Corollary 1.1 If M is a compact Riemannian manifold of positive Ricci curvature,
then all harmonic 1-forms vanish. Thus, the first cohomology group of M vanishes,

H1.M;R/ D 0: (1.63)

Proof Integrating (1.62) and using
R
M �fdvol D R

M div grad f dvol D 0 for a
function f on a compact manifold by the divergence theorem, yields

0 D
Z

M
�h!;!idvol D 2

Z

M
.jr!j2 C Ric.!; !//dvol: (1.64)
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When the Ricci curvature is positive, the integrand on the right-hand side
is pointwise nonnegative. It therefore has to vanish identically, and sinceR

Ric.!; !//dvol > 0 unless ! � 0, the claim follows.

1.3.4.3 Eigenvalue Bounds

There is another important consequence of a lower Ricci curvature bound, namely
a bound for the smallest nontrivial eigenvalue 1 (1.26) of the Laplace-Beltrami
operator � from below. This is the estimate of Lichnerowicz. This also follows
from Bochner’s formula.

Theorem 1.3 Let M be a compact d-dimensional Riemannian manifold with Ric 	
.d � 1/	, with 	 > 0; this means that for every tangent vector X

Ric.X;X/ 	 .d � 1/	hX;Xi; (1.65)

or equivalently, in local coordinates

RijX
iXj 	 .d � 1/	gijX

iXj:

Then the first eigenvalue of � satisfies

1 	 d	: (1.66)

Proof The proof comes from Bochner’s formula (1.60). As in the proof of Corol-
lary 1.1, integrating this formula yields

0 D .�df ; df /C .rdf ;rdf /C
Z

M
Ric.df ; df /: (1.67)

We have

� .�df ; df / D .�f ; �f / � d .rdf ;rdf / (1.68)

by the Schwarz inequality. Therefore, (1.67) and (1.65) yield

.�f ; �f / 	 d 	.df ; df /: (1.69)

If now f is an eigenfunction of � for an eigenvalue , i.e.,

�f C f D 0;
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we obtain

.df ; df / D �.�f ; f / D .�f ; �f / 	 d 	.df ; df / (1.70)

whence either df D 0, that is, f is constant, and hence  D 0, or (1.66) holds.
By Obata’s theorem, the estimate (1.66) is optimal, and when equality holds, M is a
sphere of constant sectional curvature 	.

Again, however, the situation is asymmetric in the sense that an upper Ricci
bound does not imply an upper estimate for 1.

1.3.5 Harmonic Functions

One may also use the Bochner formula (1.60) to derive local gradient estimates for
harmonic functions f on domains˝ � M when the Ricci curvature of M is bounded
from below. Here, we do not even need to assume that the bound be positive.

In order to develop our geometric intuition and to motivate some of the
subsequent constructions, we now also want to relate harmonic functions to the other
property following from a lower Ricci bound, the control of the volume growth. We
start with the observation that a function h on a Euclidean domain ˝ � R

d is
harmonic iff it satisfies the mean value property, that is,

h.x/ D 1

Vol.U.x; r//

Z

U.x;r/
h. y/dy (1.71)

for all balls U.x; r/ � ˝ . Again, in the spirit of the above local interpretation of
curvature bounds, we can then define a generalized harmonic function h on a domain
˝ � M by the requirement that

h.x/ D 1

Vol.U.x; r//

Z

U.x;r/
h. y/dvol. y/; (1.72)

where now, of course, the volume refers to the Riemannian metric on M. On a
general Riemannian manifold, however, we can require (1.72) only for some fixed
value r > 0, in contrast to the Euclidean mean volume property which holds for all
r > 0. This approach was developed in [44] and [46]. With this, we can relate the
regularity properties of such generalized harmonic functions to volumes of distance
balls. In fact, when x; y satisfy d.x; y/ < 2r, then U.x; r/ \ U. y; r/ ¤ ;, and
consequently

jh.x/ � h. y/j is controlled by
1

Vol.U.x; r//

Z

.U.x;r/[U. y;r//n.U.x;r/\U. y;r//
jh.z/jdvol.z/:

(1.73)
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(There is the slight subtlety that the volumes of U.x; r/ and U. y; r/ need not
agree, but this is not important for the geometric intuition we are trying to develop
here.) The crucial observation is that the larger Vol.U.x;r/\U. y;r//

Vol.U.x;r// , the better the
estimate (1.73) becomes. That is, for such an estimate, we should not only control
the volumes of single balls, but rather the relative size of the volume of the
intersection of two balls. Again, this can be controlled by a lower Ricci bound,
as in Theorem 1.1. Even better, since

h.x/ � h. y/ D 1

Vol.U.x; r//

Z

U.x;r/
h.z/dvol.z/� 1

Vol.U. y; r//

Z

U. y;r/
h.z/dvol.z/;

(1.74)

if we could somehow pair the points � of U.x; r/ with the points � of U. y; r/ in an
optimal manner, that by some transfer � D T.�/ in such a manner that h.�/�h.T.�//
becomes small then we could even improve our estimate. Thus, we are naturally
lead to the issue of the optimal transport of the points in one ball to those of
another ball. The approach to the regularity of generalized harmonic maps by
considering volumes of intersections of balls was first pursued in [45]. Anticipating
some subsequent constructions, the connection between optimal transport and the
regularity of generalized harmonic maps is developed in [18]. We should also
mention the important result of Zhang [90] on the Lipschitz regularity of harmonic
maps on Alexandrov spaces with lower Ricci bounds (a concept to be defined
below).

1.4 A Nonlocal Approach to Geometry

Riemannian geometry constitutes an infinitesimal approach to geometry, in the
sense that the crucial operators like tangent vectors operate by evaluating derivatives
of smooth objects at a point. Nonlocal operations are derived operations in
Riemannian geometry, insofar as they are obtained by processes of integration from
infinitesimal ones. A nonlocal approach to geometry, in contrast, would take objects
or operations that depend on two points as its basic ingredients. For instance, a
vector field then is a function with two arguments, p W M � M ! R. Infinitesimal
objects could then be obtained by limiting processes where the two points approach
each other. However, there also exist spaces where such limiting processes do not
make sense, and in those cases only a nonlocal approach to geometry is feasible.

Such nonlocal approaches have been much utilized in image processing. There,
the basic model is that of Kindermann–Osher–Jones [53] and Gilboa–Osher [37].
Our approach to nonlocal geometry, however, will be different from that of Gilboa
and Osher [37] and other papers in image processing, as well as from that of
Bartholdi et al. [9]. It was developed in [41–43], and as we believe, is more
systematic and natural.
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We start with a function ! W M � M ! R. !.x; y/ may express the similarity or
vicinity between the points x and y. We shall usually assume that ! is nonnegative,

!.x; y/ 	 0; but ! �= 0; (1.75)

and symmetric,

!.x; y/ D !. y; x/: (1.76)

We also put

N!.x/ WD
Z

M
!.x; y/dy; (1.77)

and assume, of course, that this is < 1. We view N! as the density of a metric.
We use N!.x/ and !.x; y/ to define the L2-norms for functions u W M ! R and

vector fields p W M � M ! R. The scalar product for functions with respect N!.x/ is
defined by

.u1; u2/L2
N!

WD
Z

u1.x/u2.x/ N!.x/dx:

In particular, this yields the L2N!-norm for functions,

kuk2
L2

N!

D .u; u/L2
N!

D
Z

u2.x/ N!.x/dx:

For vector fields p; q W M � M ! R, we define their scalar product with respect to
!.x; y/

.p; q/L2
N!

WD
Z

p.x; y/q.x; y/!.x; y/dxdy:

The difference vector field of a function u W M ! R is defined by

Du.x; y/ D u. y/� u.x/: (1.78)

The definition of the difference vector field does not depend on N! or !, but we shall
now use the metric to define a divergence operator as an adjoint.

For a vector field p W M�M ! R, its divergence operator div p W M ! R is now
defined by

div p.x/ WD 1

N!.x/
Z
. p.x; y/� p. y; x//!.x; y/dy: (1.79)
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The divergence operator satisfies for any u W M ! R and p W M � M ! R,

.Du; p/L2
N!

D �.u; div p/L2
N!
: (1.80)

Our nonlocal geometry becomes analogous to Riemannian geometry when we
view N! (and !) as a (Riemannian) metric on ˝ and Du as the differential of u
which does not depend on the metric N! and div as the gradient operator with respect
to the metric N! (and !).

From our new nonlocal variational setting we also obtain a nonlocal Dirichlet
functional

D.u/ WD 1

2
.Du;Du/L2

N!
D 1

2

Z

˝

Z

˝

.u.x/� u. y//2!.x; y/dxdy:

(In image processing, the normalization factor 1
4

is used instead, but here we work
with 1

2
for reasons of compatibility with the rest of this contribution.) Analogously

to what we did above in Riemannian geometry (1.21), we define the Laplacian of a
function as the divergence of the difference vector field of a function u.

� N!u.x/ WD 1

2
div .Du/ D 1

N!.x/
Z
.u. y/� u.x//!.x; y/dy D Nu.x/� u.x/: (1.81)

The Laplace operator satisfies

.� N!u; v/L2
N!

D �.Du;Dv/L2
N!

D .u; � N!v/L2
N!

(1.82)

for all L2-functions u; v. We shall encounter this Laplace operator again below as the
normalized Laplacian of graph theory. Equation (1.81) is also the Euler-Lagrange
equation for the nonlocal Dirichlet functional.

When applied to image analysis (see e.g. [2, 76, 89] for background on PDE and
variational methods in image processing), the nonlocal weight !.x; y/ should reflect
the statistical dependencies between the pixels x and y in collections of images.
(An alternative conceptualization would be that of Kimmel et al. [52] who work
with a varying Riemannian metric obtained by pulling back a fixed metric in the
feature space under consideration via a map u that represents the varying image
during the denoising process.) We now sketch the application of the preceding to
image denoising as developed in [42, 43]. The task of image denoising is to recover
original images u from noise-corrupted versions f

f D u C v:

The variational or PDE based methods constitute an important class of image
denoising strategies, see for [2, 25, 65, 75]. The variational methods for denoising
images balance a fidelity term that measures the deviation of the resulting image u
from the noisy input f and a regularizing or smoothing term that suppresses irregular
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oscillations, which are supposed to stem from the noise, in the image u. The basic
idea can be seen in the classical H1 model

Z
.j grad uj2.x/C .u � f /2.x//dx; (1.83)

where, in the absence of a specific Riemannian metric, grad u would be the
Euclidean gradient. Of course, we can also assume that there is some other
Riemannian metric in the background with respect to which gradient and integration
can be defined.  is a parameter that balances the relative weights of the two
terms, and in some contexts, it also arises as a Lagrange multiplier. However, this
scheme blurs images quickly, and hence is not directly useful in image denoising.
The problems stem from the gradient term. Based on the nonlocal geometry just
developed, we [42, 43] have then proposed the following H1 model

F.u/ D 1

2

Z Z
.u. y/ � u.x//2!.x; y/dydx C 

Z
.u � f /2.x/ N!.x/dx: (1.84)

This is different from Gilboa-Osher’s nonlocal H1 model [37] (which simply works
with 

R
.u � f /2.x/dx as the fidelity term) insofar as here we have derived the

fidelity term from the same geometry as the regularization term. The Euler-Lagrange
equation for (1.84) is

� N!u D .u � f /; (1.85)

or equivalently

u.x/� Nu.x/ D �.u � f /.x/: (1.86)

The variational problem can also be seen as a constrained problem:

u WD arg minfD.u/ j ku � fk2! D jMj!�2g; (1.87)

where �2 is the variance of an additive noise added in a noisy image f and jMj! is
the area of M with respect to !, i.e. jMj! D R

˝ N!.x/dx. Hence in this case  is also
a Lagrange multiplier of this constrained problem and can be computed by

 D � 1

jMj!�2
Z

M
.u � f /� N!u N!: (1.88)

Again, in order to understand the geometric properties of the solutions of (1.85),
one should start with the corresponding harmonic functions, that is, the solutions of

� N!u D 0 (1.89)
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on some domain˝ , that is,

u.x/ D Nu.x/ (1.90)

for all x 2 ˝ . Thus, we are again in the situation described at the end of Sect. 1.3.5.
This time, we would need some control on intersections of weighted sets, that is, on

N!.x/ � N!.y/ (1.91)

for x; y 2 M. Again, as we shall argue below, some concept of generalized Ricci
curvature is adequate here.

1.5 Generalized Ricci Curvature

Over the years, several notions of generalized curvature for metric spaces have
been proposed and investigated. For a long time, research was concerned with
sectional curvature. The reason is that, as explained above, sectional curvature
inequalities can be characterized in terms of relations involving only distance
functions. Thus, no further structure beyond the metric is needed in principle. In
contrast, Ricci curvature in Riemannian geometry involves some averaging and
contains information about volumes and eigenvalues of a Laplace operator which
again we have introduced and discussed in terms of some local averaging. Such
an operation, however, needs a measure. Therefore, in order to define some kind
of generalized Ricci curvature, we need some measure on our space in addition to
the metric, that is, the distance function. In recent years, this has become a rather
active research topic, see for instance [64, 69, 81]. We shall not attempt to survey
this here, but only mention that notions of generalized Ricci curvature for possibly
discrete spaces have been introduced by Bonciocat–Sturm [22], Ollivier [70, 71] and
Bakry and Emery [4]. Here, we shall discuss the latter two approaches, as they are
more suited to those geometric topics that we are interested in, namely eigenvalue
bounds and the regularity of harmonic functions. Another approach, also based on
optimal transport and probability spaces, but using the gradient flow of the entropy,
is presented in Chap. 5.

First, however, we shall develop another notion of generalized Ricci curvature
for simplicial, or more generally, CW complexes, due to Forman [32], which takes
Bochner’s Theorem 1.2 and its Corollary 1.1 as its starting point and does not require
a measure.
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1.5.1 Forman’s Ricci Curvature

This notion of Ricci curvature is defined for CW complexes satisfying the following
combinatorial condition: When, for two p-dimensional cells ˛1; ˛2, it happens that
ˇ � N̨1 \ N̨2 for some . p � 1/-cell ˇ, then N̨1 \ N̨2 D Ň. This condition will
henceforth be assumed. It is satisfied for simplicial, or more generally, polyhedral
complexes.

The notation ˛ < ˇ, or equivalently, ˇ > ˛ means that the cell ˛ is contained in
the boundary of the cell ˇ. Two p-cells ˛1; ˛2 are called upward neighbors if there
is a . p C 1/-cell � with � > ˛i for both i D 1; 2, and they are called downward
neighbors if there is . p � 1/-cell ˇ with ˇ < ˛i for both i D 1; 2. They are called
transverse neighbors if they are both up- and downward neighbors, and parallel
neighbors if they are either up- and downward neighbors, but not both.

When we indicate the dimension p of a cell ˛, we shall also write ˛p.

Definition 1.5 The curvature of the p-cell ˛ is

Fp.˛/ D ]f. pC 1/-cells � > ˛g C ]f. p� 1/-cells ˇ < ˛g � ]fparallel neighbors of ˛g:
(1.92)

More generally, when we have a weighted cell-complex with weights w˛ , the
curvature of a weighted p-cell ˛ is

Fp.˛/ D w˛.
X

�pC1>˛

w˛
w�

C
X

ˇp�1<˛

wˇ
w˛

�
X

Q̨p¤˛
j

X

�pC1>˛;�> Q̨

p
w˛w Q̨
w�

�
X

ˇp�1<˛;ˇ< Q̨

wˇp
w˛w Q̨

j/: (1.93)

With this notion of curvature, Forman [32] can derive an analogue of the Weitzen-
böck formula (1.59). In fact, by Eckmann [29], there is a natural analogy between
the (co)homology of simplicial (or more general) complexes and the Hodge-
de Rham cohomology of p-forms on Riemannian manifolds. For details of the
following, see for instance [49]. Let Cp be the vector space of real p-chains, that is,
formal linear combinations of the p-cells of our complex. We then have a boundary
operator

@p W Cp ! Cp�1; (1.94)

which satisfies @p�1 ı @p D 0 and therefore defines a homology theory. We can also
introduce a scalar product on Cp by letting different cells be orthogonal and setting

h˛; ˛i D w˛ for some w˛ > 0: (1.95)

(In the unweighted case, we should simply put w˛ D 1 for all cells.)
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With this product, we can define the adjoint @�
p W Cp�1 ! Cp of @p via

h@�
pˇ

p�1; ˛pi D hˇp�1; @p˛pi: (1.96)

As in (1.29), we can then define a Laplace operator via

�p D �@�
p @p � @p@

�
p on p-cells: (1.97)

Importantly, Forman found a decomposition that is analogous to (1.59),

�p D Bp � Fp (1.98)

where Bp is a negative operator analogous to r2 in (1.59), and Fp is given by (1.92)
in the unweighted and by (1.93) in the weighted case.

In particular, one can then derive an analogue of Bochner’s vanishing Theo-
rem 1.1,

Corollary 1.2 Let M be a finite regular CW-complex satisfying the above combi-
natorial condition. If Fp.˛/ > 0 for all p-cells ˛, then

Hp.M;R/ D 0: (1.99)

We notice that the preceding corollary holds for all p, and not just for p D 1. There
are, of course, also corresponding versions of Corollary 1.1. but we don’t want to
enter the underlying algebraic aspects of the curvatures appearing in those versions,
which all come, of course, from (1.59). Rather, we specialize Forman’s curvature to
dimension 1, to obtain the Forman-Ricci curvature for 1-dimensional cells, that is,
edges e. Then (1.92) becomes

Ric.e/ WD F1.e/ D ]f2-cells f > eg C 2 � ]fparallel neighbors of eg: (1.100)

In particular, when M is a graph, that is, there are only vertices (0-cells) and edges
(1-cells), then for an edge e D .v1; v2/

Ric.e/ D 4 � degv1 � degv2; (1.101)

where the degree deg v of a vertex is defined as the number of its neighbors, that
is, other vertices connected to v by an edge; see Sect. 1.6.1. Of course, in that case,
the condition of Corollary 1.2 is only satisfied in the trivial case where the graph
consists of a single edge. Actually, the conclusion of that Corollary continues to
hold on a connected graph when Ric.e/ 	 0 for all e and Ric.e0/ > 0 for at least one
e0. That is satisfied when the graph is a path (see Sect. 1.6.1 for the definition. The
Corollary becomes more powerful on complexes that also contain 2-dimensional
cells, because in that case, we may get a positive contribution ]f2-cells f > eg
in (1.100).
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In contrast to the other generalized Ricci curvature notions that we shall
present below, Forman’s version is of a purely combinatorial nature. This is in
line with the approach of Eckmann [29] who, as already noted, developed the
analogy between the theory of the Hodge-Laplace operator (1.29) operating on
p-forms on Riemannian manifolds and the combinatorial properties of the discrete
Laplace operator operating on p-simplices in simplicial complexes. For the issue of
consistent choices of weights w˛ across the different dimensions p, we refer to [39].
In this context, we should also mention the work of Garland [35] who derived and
used a combinatorial Bochner formula on Bruhat-Tits buildings (for a geometric
interpretation, see [51]).

1.5.2 Ollivier’s Ricci Curvature

We now present Ollivier’s definition. We first need to introduce the L1-Wasserstein
distance W1. For more general on Wasserstein distances (also called Wasserstein
metrics), we refer to Chap. 5.

Definition 1.6 Let .X; d/ be a metric space equipped with its Borel sigma algebra,2

and let m1;m2 be (Radon) probability measures on X. The L1-Wasserstein or
transportation distance between the probability measures m1 and m2 is

W1.m1;m2/ D inf
�2Q.m1;m2/

Z

.x;y/2X�X
d.x; y/d�.x; y/; (1.102)

where
Q
.m1;m2/ is the set of probability measures � that satisfy

Z

y2X
d�.x; y/ D m1.x/;

Z

x2X
d�.x; y/ D m2. y/: (1.103)

Of course, on a discrete space, like a graph, the integrals are replaced by sums.
The conditions (1.103) mean that we start with the measure m1 and end up with

m2, or in stochastic terminology, that the marginales of � be m1 and m2. When we
consider the distance d.x; y/ as the transportation cost from x to y, then W1.m1;m2/
is the minimal cost to transport the mass of m1 to that of m2. � is considered as a
transfer plan between m1 and m2, or a coupling of the two random walks governed
by m1 and m2, respectively. Those � which attain the infimum in (1.102) are called
optimal couplings. Optimal coupling exist under rather general conditions, but they

2The Borel sigma algebra is the set of all subsets of X that are obtained from the open balls by
taking complements, finite intersections and countable unions. For the sets in the Borel sigma, one
can then define their volumes w.r.t. to a Radon probability measure. The technical details are not
so important for understanding the essence of the subsequent constructions.
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need not be unique. A comprehensive reference for the theory is [83]. A shorter
introduction is [31].

The transportation distance W1.m1;m2/ can also be expressed by the Kantorovich
duality formula,

W1.m1;m2/ D sup
f WLip. f /�1

�Z

x2X
f .x/dm1.x/ �

Z

y2X
f . y/dm2. y/

	

; (1.104)

where Lip. f / WD supx¤y
j f .x/�f . y/j

d.x;y/ is the Lipschitz seminorm of f .

Definition 1.7 Let .X; d/ be a complete and separable metric space equipped
with its Borel sigma algebra and a family of probability measures mx; x 2
M which depend measurably on x and which have finite first moments, i.e.,R
M d.x; y/dmx. y/ < 1. For any two distinct points x; y 2 X, the (Ollivier-) Ricci

curvature of .X; d;m/ then is defined as

�.x; y/ WD 1 � W1.mx;my/

d.x; y/
: (1.105)

The probability measures mx could also be interpreted as the probability densities
associated to a random walk, as we shall elaborate upon below when we discuss
graphs.

A positive lower bound for �.x; y/ has many geometric consequences. For
instance Ollivier [71] observed the following Bonnet-Myers type result.

Theorem 1.4 Suppose that �.x; y/ 	 � > 0 for all x; y 2 X. Then for any x; y 2 X
one has

d.x; y/ � W1.ıx;mx/C W1.ıy;my/

�.x; y/
; (1.106)

and hence

diam.X/ � 2 supx W1.ıx;mx/

�
: (1.107)

Proof d.x; y/ D W1.ıx; ıy/ � W1.ıx;mx/ C W1.mx;my/ C W1.ıy;my/ �
W1.ıx;mx/C .1 � �/d.x; y/C W1.ıy;my/.
On a Riemannian manifold, however, this result is weaker than the usual Myers
Theorem [68], which scales differently with the Ricci bound. For other Myers type
theorems for tessellations, we refer to Keller’s contribution to this volume (Chap. 6,
Sect. 6.2.3).
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1.5.3 Curvature Dimension Inequality

We now present Bakry and Emery’s approach to a generalized lower bound for
the Ricci curvature [4]. The theory is systematically developed in [8]. As the
approach of Forman, it starts from a Weitzenböck-Bochner identity, but proceeds
very differently, by abstracting the algebraic aspects of the Bochner formula (1.61)
which states that on Riemannian manifolds

1

2
�hdf ; dgi � 1

2
hdf ; d�gi � 1

2
hdg; d�f i D hrdf ;rdgi C Ric.df ; dg/: (1.108)

The symmetric version of this formula, (1.60), is

1

2
�jdf j2 D hdf ; d�f i C krdfk22 C Ric.df ; df /: (1.109)

As a motivation for the algebra, we recall the product formula

1

2
�. fg/ D 1

2
f�g C 1

2
g�f C hdf ; dgi: (1.110)

Bochner’s formula establishes an important connection between geometric and
analytic properties of a manifold. Many analytical consequences of a lower Ricci
curvature bound are established through it, see for instance the proof of the Lich-
nerowicz estimate Theorem 1.3. However on more general spaces than Riemannian
manifolds, it is not clear how to define the Hessian rdf and the Ricci tensor. But
using the simple inequality

krdfk22 	 .�f /2

n
;

an immediate consequence of the Bochner identity is that on an n-dimensional
manifold whose Ricci curvature is bounded from below by K one has

1

2
�jdf j2 	 hdf ; d�f i C 1

n
.�f /2 C Kjdf j2: (1.111)

We have used this already in the proof of Theorem 1.3. The advantage of this
inequality over the Bochner identity (1.109) is that now all the objects in (1.111)
can easily be defined on metric measure spaces.

It was the important insight by Bakry and Emery [4] that one can use the
inequality (1.111) as a substitute for the lower Ricci curvature bound on spaces
where a direct generalization of Ricci curvature is not possible. Indeed, Bakry and
Emery take Eq. (1.111) as the starting point of their approach. We will briefly outline
their approach now.
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For the sake of generality, we state the following definitions for a general
differential operator L instead of restricting ourselves to the Laplace-Beltrami
operator � on a Riemannian manifold. However, it might be helpful to keep the
Laplace-Beltrami operator as one particular example in mind.

Definition 1.8 For a differential operator L we define the gradient form � by

2� . f ; g/.x/ D �
L. f � g/� f � L.g/� L. f / � g�.x/ (1.112)

and the iterated gradient form �2 by

2�2. f ; g/ D L� . f ; g/� � . f ;Lg/� � .Lf ; g/: (1.113)

Here, (1.112) should be seen as an abstract version of (1.110), and (1.113) then
of (1.108).

Definition 1.9 We say that an operator L satisfies the curvature dimension inequal-
ity CD.n;K/ (CD-inequality for short) if, for any function f

�2. f / 	 1

n
.Lf /2 C K� . f /:

Note that for L D �, this definition is nothing but the inequality (1.111) written in
the � notation.
The curvature dimension inequality has proven to be useful in various situations
and many results (including the Lichnerowicz estimate Theorem 1.3 and Myers
theorem), that require a lower bound on the Ricci curvature, could be generalized
to metric measure spaces, see [4, 5, 7]. Another important result that could be
proved in the curvature dimension inequality formalism was a generalization of the
Li-Yau gradient estimates. In the special case of an n-dimensional compact manifold
with non-negative Ricci curvature, the Li-Yau gradient estimates [58] for positive
solutions u of the heat equation L u WD .� � @t/u D 0 read

jruj2
u2

� @tu

u
� n

2t
: (1.114)

Bakry and Ledoux [6] generalized Li and Yau’s result and could show that under
the assumption of CD.n; 0/ the gradient estimate (1.114) is satisfied for diffusion
semigroups (for a definition see below) generated by an operator L.

Definition 1.10 Given an operator L, the semigroup Pt D etL is said to be a
diffusion semigroup if the following identities are satisfied for any smooth function
˚ W R ! R:

� . f ; gh/ D g� . f ; h/C h� . f ; g/ (1.115)

� .˚ ı f ; g/ D ˚ 0. f /� . f ; g/ (1.116)

L.˚ ı f / D ˚ 0. f /L. f /C ˚ 00. f /� . f /: (1.117)
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Gradient estimates are very powerful tools in geometric analysis. In particular
they imply Harnack inequalities, heat kernel and eigenvalue estimates, see [47, 57]
for an overview. We shall discuss in Sects. 1.6.3–1.6.5 the curvature dimension
inequality and the Li-Yau gradient estimates for graphs.

The curvature dimension inequality formalism is also very useful for infi-
nite dimensional analysis. In particular, we mention that CD.1;K/ implies a
dimension-free version of the gradient estimate, the Bakry-Emery gradient estimate
(see Theorem 1.13 below).

1.6 Ricci Curvature and the Geometry of Graphs

We now apply both the geometric intuition developed in the previous sections
and Ollivier’s concept of generalized Ricci curvature (Definition 1.7), Bakry and
Emery’s curvature dimension inequality (Definition 1.9) to the special case where
the underlying metric space is a graph.

1.6.1 Basic Notions from Graph Theory

In order to prepare for the discussion about the relation between Ricci curvature and
the geometry, we introduce some basic definitions and constructions from graph
theory, including the (normalized) graph Laplacian. For more details, see [48] and
the references given there.

We first consider a locally finite unweighted graph G D .V;E/. V is the vertex
and E the edge set. We say that x; y 2 V are neighbors, and write x 
 y, when they
are connected by an edge. The degree dx of a vertex x is defined as the number of
its neighbors. “Locally finite” then means that every vertex has only finitely many
neighbors, or equivalently, that dx is finite for every x 2 V .

While for the moment, we might wish to exclude self-loops, that is, edges
connecting a vertex with itself, subsequently, in Sect. 1.6.2.2, we shall have to
allow for their possibility. We also assume that G is connected, that is, for every
pair of distinct vertices x; y 2 V , there exists a path between them, that is, a
sequence x D x0; x1; : : : ; xm D y of distinct vertices such that x��1 
 x� for
� D 1; : : : ;m. Since we can decompose graphs that are not connected into their
connected components, the connectivity assumption is no serious restriction. A
cycle in G is a closed path x0; x1; : : : ; xm D x0 for which all the vertices x1; : : : ; xm
are distinct. For m D 3; 4; 5; : : : , we speak of a triangle, quadrangle, pentagon,. . . A
graph without cycles is called a tree. A graph is called bipartite if its vertex set can
be decomposed into two disjoint components V1;V2 such that whenever x 
 y, then
x and y are in different components. Any tree is bipartite. More generally, a graph is
bipartite iff it has no cycles of odd length. In particular, it has no triangles.
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Triangles will play a crucial role in our discussion of Ricci curvature on graphs.
Therefore, we now introduce some corresponding notation. For two vertices x; y, we
let Nxy be the set of all vertices z that are neighbors of both x and y. Equivalently,
this is the set of all vertices z for which x; y; z constitute a triangle. We let ].x; y/
then be the number of vertices in Nxy, that is, the number of joint neighbors of x and
y, or equivalently, the number of triangles containing x and y.

We have an obvious metric d on the vertex set V . For neighbors x; y, d.x; y/ D 1.
For arbitrary vertices x; y, d.x; y/ is the length of the shortest path connecting x and
y, i.e. the minimal number of edges that needs to be traversed to get from x to y.

We next introduce the (normalized) graph Laplacian operating on L2-functions
on the vertex set V . Here, we use the scalar product

.v; u/ WD
X

x2V
dxv.x/u.x/ (1.118)

to define L2.G/. We then put

� W L2.G/ ! L2.G/

�v.x/ WD 1

dx
.
X

y;y�x

v. y/ � dxv.x// D 1

dx

X

y;y�x

v. y/ � v.x/: (1.119)

When we attach to each vertex x 2 V the measure

mx. y/ D
(

1
dx

if y 
 xI
0 else,

(1.120)

we see that this is the discrete version of (1.81). We point out that the definition
of the Laplacian utilized here is equivalent to that used in [26], but different from
the algebraic graph Laplacian often considered in graph theory; the latter would not
have the factor 1

dx
. We can also consider, for neighbors x 
 y, the discrete differential

Du.x; y/ WD u. y/� u.x/; (1.121)

the analogue of (1.78). D can be considered as a map from functions on the vertices
of G to functions on the edges of G. In order to make the latter space also an L2-
space, we introduce the product

.Du;Dv/ WD
X

eD.x;y/
.u. y/� u.x//.v. y/� v.x//: (1.122)
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Note that we are summing here over edges, and not over vertices. If we did the latter,
we would need to put in a factor 1=2 because each edge would then be counted
twice. We then have

.�u; v/ D �.Du;Dv/ (1.123)

for all u; v 2 L2.G/, as in (1.82).
We now list some basic properties of �.

1. � is selfadjoint w.r.t. .:; :/:

.u; �v/ D .�u; v/ (1.124)

for all u; v 2 L2.G/. This is the analogue of (1.82). Of course, it follows
from (1.123).

2. � is nonpositive:

.�u; u/ � 0 (1.125)

for all u. This follows from the Cauchy-Schwarz inequality.
3. �u D 0 iff u is constant. In fact, when �u D 0, there can neither be a vertex

x with u.x/ 	 u. y/ for all y 
 x with strict inequality for at least one such y,
since �u.x/ D 0 means that the value u.x/ is the average of the values at the
neighbors of x. Since G is assumed to be connected, u then has to be a constant
(if G were not connected, a solution of �u D 0 would have to be constant on
every connected component of G.) Of course, this is a discrete version of the
standard maximum principle argument.

We are again interested in the eigenvalues of the Laplacian, that is, in those 
with

�u C u D 0 (1.126)

for some nontrivial function u 2 L2.G/, called an eigenfunction for . From the
properties of � just listed, we can infer some immediate consequences for the
eigenvalues.

• All eigenvalues are real, because� is selfadjoint.
• All eigenvalues are nonnegative, because � is a nonpositive operator.
• On a finite graph, the smallest eigenvalue is 0 D 0, with a constant eigenfunc-

tion (when the graph is not finite, a constant function is no longer in L2). Since
we assume that � is connected, this eigenvalue is simple. In other words,

k > 0 (1.127)
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for k > 0 where we order the eigenvalues as

0 D 0 < 1 � : : : � K

and put K WD N � 1.
• The largest eigenvalue N�1 is 2 iff G is bipartite and is < 2 else.

The eigenfunctions vi; vj for different eigenvalues i; j are orthogonal to each
other,

.vi; vj/ D 0: (1.128)

In particular, since the constants are the eigenfunctions for the eigenvalue 0 D 0,
for all i > 0, we then have

X

x

dxvi.x/ D 0: (1.129)

We do not want to go into the more detailed properties of the eigenfunctions
here, but only mention the fact that when G is bipartite, then an eigenfunction
for the largest eigenvalue N�1 equals a constant on one of the two classes and a
different constant on the other classes, where these two constants need to be such
that (1.129) is satisfied. For a non-bipartite graph, we do not have such a simple
highest eigenfunction, and in some sense, this is the reason why N�1 < 2 in that
case. We refer to [11] for details and a systematic analysis of the highest eigenvalue.

The eigenvalues can be obtained from a variational principle, the Courant-
Fischer-Weyl min-max principle,

k D min
u0;:::;uk 6�0

.ui;uj/D0;8i¤j

max
u2spanfu0;:::;ukg

u6�0

.Du;Du/

.u; u/
: (1.130)

In fact, the min-max is obtained for a corresponding eigenfunction. The above facts
about 0 and K can also be obtained from this formula and (1.123).

The normalized graph Laplacian that we have introduced here and whose
properties we shall also investigate below is also called Tutte’s Laplacian or the
harmonic Laplacian (though with the opposite sign convention) in graph theory,
and it should be distinguished from the algebraic or combinatorial Laplacian which
is more commonly used in graph theory and investigated in Keller’s contribution
to this volume (Chap. 6, Sect. 1.3) where it is called the uniform Laplacian. That
Laplacian is defined as

N�v.x/ WD
X

y;y�x

v. y/� dxv.x/ D
X

y;y�x

.v. y/� v.x//; (1.131)
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that is, without the normalization factor 1
dx

. That combinatorial Laplacian also
encodes many important properties of graphs, and in particular, it leads to a trace
formula. Here, however, we work with the normalized instead of the combinatorial
Laplacian, because the former is the operator underlying random walks and
diffusion processes and therefore also seems to be better adapted for our approach
to discrete Ricci curvature. In particular, the reader should note that the Laplacian
used by Keller is different from that employed here, the spectral bounds of Chap. 6,
Sect. 1.3 are not directly comparable with those presented here. On the other hand,
the Laplacian discussed in Baird’s contribution (Chap. 7) is the same as ours.

1.6.2 Ricci Curvature and Clustering

In this section, we essentially describe the results of Jost and Liu [50]. As explained,
in order to define Ricci curvature, we not only need a metric, but also a measure.
Therefore, we recall the probability measures from (1.120)

mx. y/ D
(

1
dx

if y 
 xI
0 otherwise.

(1.132)

We can interpret this in terms of a random walker that sits at x at time t 2 N and
then selects a neighbor of x with equal probability 1

dx
as the target of his walk at time

t C 1.

Theorem 1.5 On a locally finite graph G D .V;E/, we have for any pair of
neighboring vertices x; y,

�.x; y/ 	 �
�

1 � 1

dx
� 1

dy
� ].x; y/

dx ^ dy

�

C
�
�

1 � 1

dx
� 1

dy
� ].x; y/

dx _ dy

�

C
C ].x; y/

dx _ dy
;

where we have put

dx ^ dy WD minfdx; dyg; dx _ dy WD maxfdx; dyg:

Remark For the case where ].x; y/ D 0, this result was obtained in [59]. For our
purposes, however, the key point is to understand how the presence of triangles in a
graph improves the lower Ricci bound.

Proof (Sketch of the Proof of Theorem 1.5) We first establish some notation. A
vertex z is called a common neighbor of x and y if z 
 x and z 
 y. It is called
an exclusive neighbor of x if z 
 x; z 6
 y; z ¤ y.
We suppose w.l.o.g.,

dx D dx _ dy; dy D dx ^ dy:
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In order to estimate �.x; y/ from below, we need a good transfer plan that moves
mx to my; here is the idea.

1. Move the mass of 1
dx

from y to y’s exclusive neighbors;

2. Move a mass of 1
dy

from x’s exclusive neighbors to x;
3. Fill gaps using the mass at x’s exclusive neighbors. Filling the gaps at common

neighbors costs 2 and the one at y’s exclusive neighbors costs 3.

The question then is whether .1/ and .2/ can be realized. For .1/, this means that
the share of mass that y’s exclusive neighbors should receive, 1� 1

dy
� ].x;y/

dy
(the total

mass minus what has to go to x or to the common neighbors of x and y) is at least
what is originally at y, i.e.,

1 � 1

dy
� ].x; y/

dy
	 1

dx
; or 1 � 1

dx
� 1

dy
� ].x; y/

dx ^ dy
	 0; (1.133)

recalling that we assumed dx 	 dy. In the situation depicted in Figs. 1.1 and 1.2
this is possible. But if, for instance, y had no exclusive neighbors, this would not be
possible.

Fig. 1.1 Starting
configuration; mass 0 at all
vertices without number
attached

x y
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Fig. 1.2 Target
configuration

x y
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1
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1
5

1
5



1 The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci. . . 37

Fig. 1.3 Mass moved from
vertices with larger value to
those with smaller ones

x y

2

3

3

3

1

1

1

0

0

Similarly, for step .2/ we would need

1 � 1

dx
� ].x; y/

dx
	 1

dy
; or 1 � 1

dx
� 1

dy
� ].x; y/

dx _ dy
	 0: (1.134)

The construction of the actual transport plan then needs to consider 3 cases
according to whether the first two steps can be realized or not. For the details,
we refer to [50]; suffice it here to consider the following 1-Lipschitz function as
depicted in Fig. 1.3 and recall the duality formula (1.104).

That is, we put

f .z/ D

8
ˆ̂
<

ˆ̂
:

0; at y0s exclusive neighbors;
1; at y or common neighbors;
2; at xI
3; at x0s exclusive neighbors,

If there are no paths of length 1 between common neighbors and x’s exclusive
neighbors, nor paths of length 1 or 2 between the exclusive neighbors of x and y, we
have by Kantorovich duality,

W1.mx;my/ 	 1

dx
Œ f . y/C 3.dx � 1 � ].x; y//C ].x; y/� � 1

dy
. f .x/C ].x; y//

D3 � 2

dx
� 2

dy
� ].x; y/

dy
� 2].x; y/

dx
:

That is, in this case, the estimate in our theorem should be an equality. In other
cases, f is not optimal for Kantorovich duality, and the estimate can be further
improved. In other words, paths of length 1 or 2 between neighbors of x and y also
affect the curvature. Thus, not only triangles, but also quadrangles and pentagons
(but not polygons with more edges) influence Ricci curvature. This aspect has been
investigated in detail in [21].
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In conclusion,

�.x; y/ 	 �2C 2

dx
C 2

dy
C ].x; y/

dx ^ dy
C 2].x; y/

dx _ dy
:

So much for a sketch of the proof.
Looking at examples, the simplest one is the lattice Z

d with edges between
vertices of Euclidean distance 1, that is, the Cayley graph for the abelian group
Z
d with the obvious set of generators. Here, when we look at the neighborhoods of

two lattice points x; y of distance 1, we get the optimal transport plan by moving
each vertex in the neighborhood of x by a distance of 1 to the nearest one among the
neighbors of y. Therefore, W1.mx;my/ D 1, and consequently, for this graph, the
Ricci curvature vanishes.

The lower bound of Theorem 1.5 is sharp both for complete graphs and for trees,
as we shall now explain. On a complete graph Kn .n 	 2/ with n vertices, ].x; y/ D
n � 2 for any x; y. Hence the inequality

�.x; y/ 	 n � 2

n � 1

is sharp.
For some other graphs, the lower bound of Theorem 1.5 is not sharp, however.

For instance, for polyhedral surfaces, recently Loisel and Romon [63] obtained more
precise results.

We shall now show that trees also attain the lower bound of Theorem 1.5. This
coincides with the geometric intuition of Ricci curvature developed in Sect. 1.3.4.1.
Since trees have the fastest volume growth rate, they should have the lowest Ricci
curvature.

Proposition 1.1 On a tree T D .V;E/, for any neighboring x; y,

�.x; y/ D �2
�

1 � 1

dx
� 1

dy

�

C
: (1.135)

Proof We shall prove that 1 C 2
�
1 � 1

dx
� 1

dy

�

C is also a lower bound of W1. If

x or y has degree 1, say dx D 1, so that y is its only neighbor, then obviously
W1.mx;my/ D 1. So only the case 1 � 1

dx
� 1

dy
	 0 remains.

We consider the 1-Lipschitz function

f .z/ D

8
ˆ̂
<

ˆ̂
:

0; if z 
 y; z ¤ xI
1; if z D yI
2; if z D xI
3; if z 
 x; z ¤ x:

(1.136)
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Since on a tree, there is only one path joining two vertices, there is no further path
between neighbors of x and y. So f can be easily extended to a 1-Lipschitz function
on the whole graph. Then by Kantorovich duality, we have

W1.mx;my/ 	 1

dx
.3.dx � 1/C 1/� 1

dy
� 2

D 3 � 2

dx
� 2

dy
: (1.137)

We can also relate this to the above heuristic discussion of the relation between
Ricci curvature and the relative volume of the intersection of balls. In fact,
].x; y/=dx _ dy is mx ^ my.G/ WD mx.G/ � .mx � my/C.G/, i.e. the intersection
measure of mx and my. The vertices x1 that satisfy x1 
 x, x1 
 y constitute the
intersection of the unit metric spheres centered at x and y, resp.

We also have an easy upper bound for the Ricci curvature of a graph.

Theorem 1.6 On a locally finite graph G D .V;E/, for any neighboring x; y, we
have

�.x; y/ � ].x; y/

dx _ dy
: (1.138)

Proof All masses, except those at common neighbors, have to be moved at least a
distance 1. Hence

W1.mx;my/ 	
�

1 � ].x; y/

dx _ dy

�

� 1;

and the conclusion follows from the definition of �.x; y/.
We now return to graphs that may contain triangles. Watts-Strogatz [85] have

introduced the local clustering coefficient

c.x/ WD 1

dx.dx � 1/

X

y;y�x

].x; y/ (1.139)

in order to measure the extent to which neighbors of x are directly connected.
Expressed in words,

c.x/ D number of realized edges between neighbors of x

number of possible edges between neighbors of x
: (1.140)

This clustering coefficient is an important quantity in network analysis. For instance,
in social networks where the vertices represent individuals and the edges friendship
relations, the question addressed by the clustering coefficient is “How many of the
friends of my friends are also my friends?”.
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We may also consider this local clustering coefficient as an average over the
].x; y/ for the neighbors of x. As such an average, we should also try to compare it
to averaged Ricci curvature. In other words, we should consider the discrete version
of scalar curvature,

�.x/ WD 1

dx

X

y;y�x

�.x; y/: (1.141)

This scalar curvature �.x/ and the local clustering coefficient c.x/ then control
each other.

Corollary 1.3 With D.x/ WD maxy;y�x dy, we have

dx � 1
dx

c.x/ 	 �.x/ 	 �2C dx � 1
dx _ D.x/

c.x/:

Proof From Theorems 1.5 and 1.6.

1.6.2.1 Stochastic Processes on Graphs

As a preparation, we consider a graph with a lower Ricci bound

�.x; y/ 	 k for all x 
 y; (1.142)

or equivalently,

W1.mx;my/ � .1 � k/d.x; y/ D 1 � k for all x 
 y: (1.143)

We shall now interpret this in probabilistic terms as a path coupling criterion for
random walks. This translates a lower bound of the Ollivier-Ricci curvature into
a control on the expectation value of the distance between two coupled random
walks. The general tool is the Bubley-Dyer Theorem which tells us that when the
contraction property (1.143) holds for the measures mx, then it also holds for any
other pair of measures (see [23] or [56, 72]).

Theorem 1.7 For a probability measure �, we put

�P.�/ WD
X

x

�.x/mx.�/: (1.144)

If (1.143) holds for each pair x 
 y 2 V, then also for any probability measures �
and � on V

W1.�P; �P/ � .1 � k/W1.�; �/: (1.145)
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The important consequence for us is that we can iterate (1.143) during a random
walk. Initially, two walkers are starting at x and y, with transition probabilities mx

and my. With ıx the Dirac measure at x, we have after the first step ıxP1.�/ WD
ıxP.�/ D mx.�/. By iteration the distribution of a t-step random walk starting from x
with a transition probability mx becomes

ıxP
t.�/ D

X

x1;:::;xt�1

mx.x1/mx1 .x2/ � � �mxt�1 .�/ (1.146)

for t > 1.
Theorem 1.7 therefore implies that when (1.142) and hence (1.143) holds, then

for any t and any Nx; Ny, not necessarily neighbors,

W1.ıNxPt; ıNyPt/ � .1 � k/td.Nx; Ny/: (1.147)

In order to link this to Ricci curvature, we now consider two random walks . NXt; NYt/
with distributions ıNxPt, ıNyPt that are coupled in the sense that the joint probabilities
satisfy

p. NXt D Nx0; NYt D Ny0/ D �
Nx;Ny
t .Nx0; Ny0/;

where � Nx;Ny
t .�; �/ is the optimal coupling of ıNxPt and ıNyPt as in the definition of the

Wasserstein distance W1. The term W1.ıNxPt; ıNyPt/ then becomes the expectation
value of the distance ENx;Nyd. NXt; NYt/ between the coupled random walks NXt and NYt.
Corollary 1.4 If (1.142) holds, then for any Nx; Ny 2 V,

ENx;Nyd. NXt; NYt/ D W1.ıNxPt; ıNyPt/ � .1 � k/td.Nx; Ny/: (1.148)

1.6.2.2 Weighted and Neighborhood Graphs

Following [11], we now translate the properties of random walks into geometric
structures, the neighborhood graphs. In Sect. 1.6.2.3, we shall then use this construct
to derive eigenvalue bounds in terms of lower Ricci curvature bounds on graphs.

For this purpose, we shall need to work with a somewhat more general class of
graphs than before. More precisely, we shall need to consider weighted graphs, and
also allow for the possibility of self-loops. That is, for any x; y 2 V , not necessarily
different, we have a symmetric, nonnegative connection weight

wxy D wyx 	 0: (1.149)

We can then declare x and y to be neighbors, x 
 y, iff wxy > 0. Of course,
the unweighted graphs that we have considered before constitute the special cases
where wxy D 1 iff x 
 y and wxy D 0 else. As mentioned, here, we also allow
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for the possibility of self-loops, that is, vertices x with wxx > 0. A weighted graph
is connected if for every x; y 2 V , there exists a path x0 D x; x1; : : : ; xn D y with
wxi�1xi > 0 for i D 1; : : : ; n.

Remark Of course, one could also allow for non-symmetric or negative weights.
The spectrum of non-symmetric graphs was systematically investigated in [10], and
some results on graphs with possibly negative connection weights can be found,
for instance, in [12, 13]. For our present purposes, however, the class of weighted
graphs satisfying (1.149) suffices.

We now need to adapt some of the preceding constructions and results to
weighted graphs. First of all, we now define the measure mx by

mx. y/ WD wxy

dx
; where now dx WD

X

y

wxy: (1.150)

Of course, all this and what follows reduces to our previous definitions for
unweighted graphs. We can again consider mx. y/ as the probability that a random
walker starting at x moves to y in one time step. Since now possibly mx.x/ > 0,
because there might be a self-loop at x, the random walker might now be lazy and
simply stay at x.

Again, the L2-product is given by

.u; v/ D
X

x

dxu.x/v.x/: (1.151)

The Laplacian now is

�v.x/ D 1

dx

X

y

wxyv. y/ � v.x/ D
X

y

mx. y/v. y/� v.x/: (1.152)

As before, the Laplacian is self-adjoint and nonpositive so that, with the same
conventions as before, the eigenvalues are nonnegative real numbers. We also have
a version of Theorem 1.5 for weighted graphs, taken from [14].

Theorem 1.8 On a weighted graph, we have for neighbors x; y

�.x; y/ 	 �
0

@1 � wxy

dx
� wxy

dy
�
X

x12Nxy

wx1x

dx
_ wx1y

dy

1

A

C

�
0

@1 � wxy

dx
� wxy

dy
�
X

x12Nxy

wx1x

dx
^ wx1y

dy

1

A

C

C
X

x12Nxy

wx1x

dx
^ wx1y

dy
C wxx

dx
C wyy

dy
:
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Again, this inequality is sharp.
With the notation (1.144), i.e.,

�P.�/ D
X

x

�.x/mx.�/;

the Dirac measure ıx at x and ıxP1.�/ D ıxP.�/ D mx.�/, the distribution of a t-step
random walk starting at x with transition probability mx becomes

ıxP
t.�/ D

X

x1;:::;xt�1

mx.x1/mx1 .x2/ � � �mxt�1 .�/ (1.153)

for t > 1. The probability that the random walker moves from x to y in t steps then
is

ıxP
t. y/ D

( P
x1;:::;xt�1

wxx1
dx

wx1x2
dx1

� � � wxt�1y

dxt�1
; if t > 1I

wxy

dx
; if t D 1:

(1.154)

We now define a family of graphs GŒt� for t 	 1 whose weights equal the
transition probabilities of the t-step random walks on the graph G.

Definition 1.11 The neighborhood graph GŒt� D .V;EŒt�/ of the graph G D .V;E/
of order t 	 1 is the weighted graph with vertex set V and edge weights

wxyŒt� WD ıxP
t. y/dx (1.155)

from (1.154).
Obviously, G D GŒ1�. Also, wxyŒt� > 0 if and only if there exists a path of length t
between x and y in G. We also remark here, without exploring this further, that the
discrete heat kernel pt.x; y/ on G is

pt.x; y/ D wxyŒt�

dxdy
;

see for instance Grigor’yan [38].

Example 1.1 We consider the following two examples.

Note that the neighborhood graph GŒ2� is disconnected. In fact the next
lemma shows that this is the case because G is bipartite. Note furthermore that
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E.G/ ª E.GŒ2�/.

For this example we have E.H/ � E.HŒ2�/.
We now list some elementary properties of the neighborhood graph GŒt�, its

Laplacian�Œt� and the latter’s eigenvalues iŒt�, taken from [11, 14].

Lemma 1.1

(i) t even: GŒt� is connected if G is not bipartite, but disconnected if G is bipartite.
And GŒt� is not bipartite.

(ii) t odd: GŒt� is always connected (since G is assumed to be connected) and GŒt�
is bipartite iff G is bipartite.

(iii) dxŒt� D dx for all x 2 V. Hence the inner product (1.151) is the same on all the
GŒt�.

(iv) The Laplacian on GŒt� is

�Œt� D �id C .id C�/t: (1.156)

(v) Therefore, for even t, the eigenvalues of �Œt� satisfy

0 D 0Œt� � 1Œt� � : : : � N�1Œt� � 1: (1.157)

(vi) Let dŒt�.x; y/ be the distance on GŒt� defined as the smallest number of edges
needed for a path connecting x and y (this is independent of the weights, except
that vertices � and � are connected by an edge iff w�� > 0). Then

1

t
d.x; y/ � dŒt�.x; y/; (1.158)

with the convention dŒt�.x; y/ D 1 if GŒt� is not connected and x and y are in
different components. Conversely, if E � EŒt�, then

dŒt�.x; y/ � d.x; y/: (1.159)

Note that at the end of Sect. 1.6.1, we had observed that the largest eigenvalue is
2 for a bipartite graph. In (1.157), in contrast, that eigenvalues is bounded by 1
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for even t. This discrepancy stems from the fact that for even t, the graph GŒt� has
self-loops which were not permitted for the graph G D GŒ1� in Sect. 1.6.1.

In [11], an important relation between the eigenvalues of the original graph G
and those of its neighborhood graphs was found.

Proposition 1.2

(i) If 1Œt� 	 A Œt�, then

1 � .1� A Œt�/
1
t � 1 � � � � � N�1 � 1C .1 � A Œt�/

1
t (1.160)

if t is even and

1 � .1 � A Œt�/
1
t � 1 (1.161)

if t is odd.
(ii) If N�1Œt� � BŒt�, then all eigenvalues of � are contained in

h
0; 1 � .1 � BŒt�/

1
t

i[h
1C .1 � BŒt�/

1
t ; 2
i

for even t, whereas

N�1 � 1 � .1 � BŒt�/
1
t

for odd t.

That is, eigenvalues bounds on GŒt� translate into eigenvalue bounds on the original
graph G. This is a powerful principle for estimating the eigenvalues of G as we
shall see. As the neighborhood graphs constitute a geometric representation of the
random walk on G, this can be seen as a scheme for translating properties of the
random walk into eigenvalue bounds. The scheme itself is not new, but here we can
offer an intuitive and easy to apply geometric version of it. Just read on to the next
section.

1.6.2.3 Ricci Curvature and Eigenvalues of Graphs

In this section, we assume that the graph G is finite, that is, it has finitely many, say
N, vertices, and then also finitely many edges. Here, we present the theory developed
in [14] which partially builds upon the neighborhood graph concept of Bauer and
Jost [11].

We now come to the estimates of the eigenvalues in terms of the Ricci
curvature.We can build here upon well established relations between the coupling
of stochastic processes and eigenvalue estimates, see [23, 28]. In this connection,
Ollivier [70] showed
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Theorem 1.9 When we have a lower Ricci curvature bound

�.x; y/ 	 k; (1.162)

(in fact, it suffices to have this for all x 
 y), then

k � 1 � : : : � N�1 � 2 � k: (1.163)

A problem with this estimate is that for most graphs, k � 0 in (1.162), so that (1.163)
only yields a trivial estimate. We shall subsequently present the estimate of Bauer
et al. [14] which is nontrivial for all connected finite graphs that are not bipartite.
Nevertheless, in order to understand the relation between Ricci curvature and
eigenvalues, let us derive (1.163) here.

Proof We consider the transition probability operator

P W L2.G/ ! L2.G//

Pf .x/ WD
X

y

f . y/mx. y/ D
X

y

f . y/ıxP. y/: (1.164)

Then

Ptf .x/ D
X

y

f . y/ıxP
t. y/: (1.165)

We construct a discrete time heat equation,

f .x; t C 1/� f .x; t/ D �f .x; t/; (1.166)

where the initial state f .x; 0/ D f1.x/ satisfies �f1.x/ D �f1.x/ D Pf1.x/ � f1.x/
for  ¤ 0. By iteration, the solution of (1.166) is

f .x; t/ D Ptf1.x/ D .1 � /tf1.x/: (1.167)

Then we have for any Nx; Ny 2 V

j1� jtj f1.Nx/� f1.Ny/j D j f .Nx; t/ � f .Ny; t/j
D jPtf1.Nx/ � Ptf1.Ny/j
�
X

Nx0;Ny0

j f .Nx0/� f .Ny0/j� Nx;Ny
t .Nx0; Ny0/

� Lip. f1/ENx;Nyd. NXt; NYt/
� Lip. f1/.1 � k/td.Nx; Ny/:
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Here, Lip. f / is always finite since the underlying space V is a finite set. In the last
inequality we used Corollary 1.4.

Since the eigenfunction f1 for the eigenvalue  is orthogonal to the constant
function, i.e. . f1; 1/ D 0, we can always find x0; y0 2 V such that j f1.x0/� f1. y0/j >
0. It follows that

" <

�
1 � k

j1� j
�t

Lip. f1/d.x0; y0/

for some positive ". This, however, leads to a contradiction when t ! 1, unless

1 � k

j1 � j 	 1: (1.168)

(1.168) easily implies (1.163).
Of course, the preceding proof is analogous to methods familiar in Riemannian

geometry. More precisely, the solution of the heat equation

@f .x; t/

@t
D �f .x; t/ (1.169)

on a Riemannian manifold with the eigenfunction f1 as the initial value is f .x; t/ D
f1.x/e�t, containing information about both the eigenvalue  and the eigenfunction
f1.x/. The calculation in the preceding proof then is the discrete analogue of the
gradient estimate for the solution of the heat equation in Riemannian geometry.

This discrete gradient estimate is provided in

Theorem 1.10 On a graph G, the following are equivalent:

(i) The Ricci curvature is bounded from below by k, i.e. �.x; y/ 	 k, for all x 
 y;
(ii) jPtf .x/� Ptf . y/j � .1� k/tLip. f / holds for any function f , x 
 y and t 2 Z

C.

Proof We have already shown that (i) implies (ii). The reverse direction follows
from the Kantorovich duality (1.104).

We shall now show how the Ricci geometry of neighborhood graphs can improve
the estimate of Theorem 1.9 and in fact obtain an estimate that is nontrivial for any
graph that is not bipartite, following [14].

Lemma 1.2 Let k be a lower bound of � on G. If E � EŒt�, then the curvature �Œt�
of the neighborhood graph GŒt� satisfies

�Œt�.x; y/ 	 1 � t.1 � k/t; 8x; y 2 V: (1.170)
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Proof From Lemma 1.1 .vi/ and Corollary 1.4 and using that the transportation
distance (1.102) is linear in the graph distance d.�; �/, we obtain

WdŒt�
1 .ıxP

t; ıyP
t/ � Wd

1 .ıxP
t; ıyP

t/

� .1 � k/td.x; y/

� t.1 � k/tdŒt�.x; y/:

By the definition of the Ricci curvature, we obtain (1.170).
We can now see the upper bound of the largest eigenvalue in Theorem 1.9.

W.l.o.g. k > 0, in which case E � EŒt�. From Lemma 1.2 and 1 	 k, we know on
GŒt�,

1Œt� 	 1 � t.1 � k/t:

Then with Proposition 1.2 .i/, for even t,

N�1 � 1C t
1
t .1 � k/:

Letting t ! C1 yields N�1 � 2 � k, indeed.
The neighborhood graph technique then leads to the following generalization of

Theorem 1.9, the main result of Bauer [14].

Theorem 1.11 Let kŒt� be a lower bound of Ollivier-Ricci curvature of the neigh-
borhood graph GŒt�. Then for all t 	 1 the eigenvalues of � on G satisfy

1 � .1 � kŒt�/
1
t � 1 � � � � � N�1 � 1C .1 � kŒt�/

1
t : (1.171)

If G is not bipartite, then for all sufficiently large t, kŒt� > 0, and hence (1.171) is
nontrivial in the sense that the lower bound is positive and the upper bound is < 2.

1.6.3 Curvature Dimension Inequality and Eigenvalue Ratios

In Sect. 1.5.3 we introduced Bakry and Emery’s curvature dimension inequality
in a general setting. Here we will discuss the curvature dimension inequality for
graphs. Apparently, the first paper on this subject is [77]. We also mention the recent
contribution [1] where a concept of coarse Ricci curvature from the Bakry-Emery
perspective is developed.

For simplicity, we will restrict ourselves to the graph Laplace operator �. We
recall the definition of the curvature dimension inequality from Sect. 1.5.3:
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Definition 1.12 We say that a graph G satisfies the curvature dimension inequality
CD.n;K/ if, for any function f

�2. f / 	 1

n
.�f /2 C K� . f /:

Note that for graphs � is given by

� . f ; g/.x/ D 1

2dx

X

y�x

wxy. f . y/� f .x//.g. y/� g.x//

and � is given by Eq. (1.119). To ease notations, we assume that the graph G is
finite and unweighted in the remaining part of this section. In the graph setting,
the curvature dimension inequality was studied in [50]. We proved the following
theorem, thereby generalizing an earlier result of Lin and Yau [59].

Theorem 1.12 Every graph satisfies CD.2; t.x/ � 1/, where

t.x/ D 1

2
min
y;y�x

�
4

dx
C ].x; y/

D.x/

�

:

Again, the presence of triangles play a crucial role for the lower curvature bound.
Bakry-Emery gradient estimates for a solution u of the continuous time heat

equation .� � @t/u D 0 still hold for a graph G satisfying CD.n;K/. Actually,
if we ignore the role of dimension in Definition 1.12, that is, taking n D 1, the
CD-inequality is characterized by such kind of gradient estimates. Let us denote by
u.x; t/ D Pt f .x/ a solution of the heat equation with u.�; 0/ D f .�/. (Recall that we
used Ptf for solutions of discrete time heat equations in Sect. 1.6.2.3.)

Theorem 1.13 On a graph G, the following are equivalent:

(i) CD.1;K/ holds;
(ii) � . pt f / � e�2KtPt.� . f // holds for all t > 0 and all functions f .

Proof (i) ) (ii): For 0 � s � t, define F.s/ WD e�2KsPs.� . pt�s f // and calculate

d

ds
F.s/ D 2e�2KsPs.�2. pt�s f /� K� . pt�s f // 	 0:

Hence F.s/ � F.t/.
(ii) ) (i): Employ the fact that Pt f D f C t�f C o.t/ to look at the gradient

estimate at t D 0.
For more details of the proof, see Proposition 3.3 in Bakry [3] or [61]. Note that the
proof does not require the diffusion property (Definition 1.10).

We should compare this result with Theorem 1.10; the latter can thus be seen as
a time-discrete version of the Bakry-Emery gradient estimate.
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Partially building upon this characterization of the CD-inequality, in [61] the
following eigenvalue ratio estimates were obtained.

Theorem 1.14 There exists an absolute constant C, such that for any graph G
satisfying CD.1; 0/ and any natural number k,

k � CdGk
21; (1.172)

where dG WD maxx2V dx.
We remark that this estimate does not depend on the size of G. Such dimension-

free eigenvalue ratio estimates also hold in the continuous category, see [60],
improving the previous results of Funano and Shioya [33, 34]. Examples in [61]
show that in (1.172) the order of k is optimal and the dependence on dG is necessary
and optimal.

We shall not elaborate on the proof for Theorem 1.14 here, but only discuss an
interesting application for the analysis of spectral clustering algorithms. Spectral
clustering algorithms are very powerful tools for data mining, see e.g. [54, 55, 82].
Such algorithms typically consist of two steps. In the first step, the first k C 1

eigenfunctions of � are used to provide coordinates for the vertices of a graph
G, thereby embedding G into R

kC1. The second step consists in partitioning the
vertex set V into small groups via the Euclidean metric (or the spherical metric after
normalization). The output will be a partition S0; S2; : : : ; Sk of V , such that each Si
has small expansion. Here, the expansion 
.Si/ of Si is defined as


.Si/ WD jE.Si;V n Si/j
vol.Si/

; (1.173)

where jE.Si;V n Si/j WD P
x2Si;y2VnSi 1, and vol.Si/ WD P

x2V dx. In fact, the
underlying mathematical problem is to find the .k C 1/-partition of V that attains

hk WD min
S0;:::;Sk

max
1�i�k


.Si/; (1.174)

where the minimum is taken over all collections of k C 1 non-empty, mutually
disjoint subsets fSigkiD0 with

Sk
iD0 Si D V . Roughly speaking, in the algorithm,

one tries to use the solutions of the optimization problem in (1.130), i.e. the
eigenfunctions of �, to approximate the solution of the optimization problem
(1.174). Therefore, the efficiency of the clustering algorithm depends on the relation
between k and hk.

Solving a conjecture of Miclo [66], Lee et al. [55] proved the following so-called
higher order Cheeger inequalities. There exists an absolute constant C such that for
any graph G and all natural numbers k,

k

2
� hk � Ck2

p
k: (1.175)
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Roughly speaking, hk lies between k and
p
k. It is an interesting question for

which kind of graphs, hk is equivalent to ˛k up to constants, for some ˛ 2 Œ1=2; 1�.
This would indicate the efficiency of the spectral clustering algorithm when applied
to different kinds of graphs.

In [61], the following higher order Buser type inequalities were derived from
Theorem 1.14.

Theorem 1.15 There exists an absolute constant C, such that for any graph G
satisfying CD.1; 0/ and any natural number k,

C.dGk/
�1pk � h2 � hk: (1.176)

This implies that hk is equivalent to
p
k up to constants for graphs satisfying

CD.1; 0/. Therefore, the curvature condition helps to identify a class of graphs
on which the algorithm performs poorly. A deeper understanding of the structure
of non-negatively curved graphs would provide further insight into the spectral
clustering algorithm. In this respect, it is shown that the Cartesian product of two
regular graphs satisfying CD.1; 0/ satisfies againCD.1; 0/ in [61]. (If we consider
the non-normalized Laplacian in the CD-inequality, the regularity constraints are not
needed.)

1.6.4 Exponential Curvature Dimension Inequality on Graphs

We will now discuss a modification of the curvature dimension inequality that was
introduced in [15].

Definition 1.13 We say that a graph G satisfies the exponential curvature dimen-
sion inequality at the point x 2 V , CDE.x; n;K/ if for any positive function
f W V ! R such that .�f /.x/ < 0 we have

�2. f /.x/ � �
�

f ;
� . f /

f

�

.x/ 	 1

n
.�f /.x/2 C K� . f /.x/ :

We say that CDE.n;K/ is satisfied if CDE.x; n;K/ is satisfied for all x 2 V .
It is useful to note that

�2. f / � �
�

f ;
� . f /

f

�

D 1

2
�� . f /� �

�

f ;
�. f 2/

2f

�

; (1.177)

and we define

e� 2. f / D �2. f /� �

�

f ;
� . f /

f

�

:
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This definition might seem to be rather artificial and not well motivated. However
the exponential curvature dimension inequality is quite natural in several respects. In
[15] it was shown that for diffusion semigroups defined in Definition 1.10 (and thus
in particular of the Laplace-Beltrami operator), the exponential curvature dimension
inequality is in fact weaker than the original curvature dimension inequality.

Theorem 1.16 If the semigroup generated by L is a diffusion semigroup, then the
condition CD.n;K/ implies CDE.n;K/.
An advantage of the exponential curvature dimension inequality over other curva-
ture notions on graphs is that the curvature can be arbitrarily negative. In contrast,
for Ollivier’s Ricci curvature and the classical curvature dimension inequality the
curvature is always bounded from below, see Theorems 1.5 and 1.12. There are
other properties of the exponential curvature dimension inequality that make it a
useful curvature notion. Here however, we only mention that it is the right curvature
notion for Li-Yau gradient estimates on graphs. We will discuss this issue in the next
section.

1.6.5 Li-Yau Gradient Estimate on Graphs and Its Applications

In this section we discuss the gradient estimates obtained in [15]. Bakry and
Ledoux’s general result on gradient estimates [6], discussed in Sect. 1.5.3, cannot be
applied to graphs. The reason is that the graph Laplace operator does not generate a
diffusion semigroup. However in [15] it was observed that, on graphs, for the choice
of ˚. f / D p

f a key formula similar to a combination of (1.116) and (1.117) still
holds:

2
p
f�
p
f D �f � 2� .pf / (1.178)

In fact in the proof of the gradient estimate this simple equality will take over the
role of the key identity

� log u D �u

u
� jr log uj2 (1.179)

in the proofs in the continuous setting. In the special case of a finite graph with
non-negative curvature we have the following gradient estimate:

Theorem 1.17 Let G be a finite graph satisfying CDE.n; 0/, and let u be a positive
solution to the heat equation on G. Then for all t > 0

� .
p
u/

u
� @t.

p
u/p
u

� n

2t
: (1.180)
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After having established the right notion of curvature and having identified the key
identity (1.179), we can now give a rather simple proof of this theorem. But first we
state a simple lemma from [15].

Lemma 1.3 Let G.V;E/ be a (finite or infinite) graph, and let g;F W V�Œ0;T� ! R

be functions. Suppose that g 	 0, and F has a local maximum at .x�; t�/ 2 V��0;T�.
Then

L .gF/.x�; t�/ � .L g/F.x�; t�/;

whereL WD � � @t.

Proof (Proof of the Theorem) Let

F D t

�
2� .

p
u/

u
� 2@t.

p
u/p

u

�

: (1.181)

Fix an arbitrary T > 0. Our goal is to show that F.x;T/ � n for every x 2 V .
Let .x�; t�/ be a maximum point of F in V � Œ0;T�. We may assume F.x�; t�/ > 0.
Hence t� > 0. Moreover, by identity (1.178) which is true both in the continuous
and the discrete setting, we know that

F D t

�
2� .

p
u/

u
� �u

u

�

D t � �2�p
up

u
; (1.182)

where we used the fact that L u D 0 (recall that L D � � @t) which implies

2
@t

p
up
u

D @tu

u
D �u

u
: (1.183)

We conclude from (1.182) that

.�
p
u/.x�; t�/ < 0 : (1.184)

In what follows all computations are understood to take place at the point .x�; t�/.
We apply Lemma 1.3 with the choice g D u. This gives

L .u/ � F 	 L .u � F/ D L .t� � .2� .pu/ ��u//
D t� � L .2� .

p
u/��u/� .2� .

p
u/��u/;

where we used (1.182) and the definition of L . We know that L .u/ D 0. Also,
since � and L commute, L .�u/ D 0. So we are left with

uF

t�
D 2� .

p
u/��u 	 t� � L .2� .

p
u//

D t� � �2�� .pu/� 4� .
p
u; @t

p
u/
� D 4t� � e� 2.

p
u/ : (1.185)
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The last equality is true by (1.177) and (1.183). By (1.184) and the CDE.n; 0/-
inequality applied to

p
u.�; t�/ we get

uF

t�
	 4t�

n

�
�.

p
u/
�2 (1.182)D t�

n

�

�
p
uF

t�

�2
D u

nt�
F2:

Thus F � n at .x�; t�/ as desired.
Let us briefly discuss the differences between the gradient estimates (1.114) on
Riemannian manifolds and (1.180) on graphs. There exists a one parameter family
of gradient estimates Gp for p > 0,

jrupj2
u2p

� @tu

u
� n

2t
:

Note that the larger p, the stronger Gp is. In the Riemannian case, the original Li-Yau
inequality (1.114) corresponds to G1. It is known that the Li-Yau gradient estimate
is sharp, that is p D 1 is optimal on Riemannian manifolds. In the discrete setting
it was shown in [15] that Gp cannot hold for any graph with p > 0:5. Thus the
gradient estimate (1.180) which corresponds to p D 0:5 is in this sense, although
weaker than its continuous counterpart (1.114), optimal.

For simplicity of exposition, we only present the most simplest case of the Li-Yau
gradient estimate on graphs here. In [15] local and global gradient estimates were
also obtained for graphs with general lower curvature bounds and more general
operators than the Laplacian. For possible applications and further generalizations
of the Li-Yau gradient estimates on graphs, including heat kernel estimates and
Harnack inequalities we refer the reader to [15, 16, 73]. See also [67] for related
work.

1.6.6 Applications to Network Analysis

Some of the preceding tools are quite useful for the analysis of empirical networks.
Depending on the data, such networks can be represented by unweighted or
weighted and possibly also directed graphs. For instance, one can then study the
eigenvalue spectrum. More in line with the present contribution, one can also
look at the distribution of their Ricci curvatures. The Forman-Ricci curvature is
computationally easiest, and there are systematic correlations with the Ollivier-
Ricci curvature. This is an ongoing research project with Samal, Saucan, Sreejith,
Mohanraj, and Weber, see [78–80, 86–88].
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1.6.7 Other Curvature Notions for Graphs

At the end, we briefly mention some curvature notions for graphs other than Ricci
curvature.

For the notion of combinatorial curvature, we need to fill in faces into the graph.
We therefore assume that the possibly infinite graph G is embedded into a 2-
manifold S.G/ such that each face is homeomorphic to a closed disk with finite
edges as the boundary. For instance, G could be a planar graph, that is, a graph
embedded into the plane. Therefore, we call such a G D .V;E;F/ that can be
embedded into a 2-manifold as described, with its sets of vertices V , edges E, and
faces F, a semiplanar graph. For each vertex x 2 V , the combinatorial curvature at
x is defined as

˚.x/ D 1 � dx
2

C
X

f3x

1

j f j ; (1.186)

where, as before, dx is the degree of the vertex x, whereas j f j is the degree of the
face f . The sum is taken over all faces incident to x (i.e. x 2 f ). For more details on
the combinatorial curvature, see the contribution of Keller in this volume (Chap. 6).

When we replace each face of G with a regular polygon of side lengths one and
glue them along the common edges and equip the polygonal surface S.G/ with the
resulting metric structure, then (1.186) simply measures the difference of 2� and
the total angle ˙x at the vertex x,

2�˚.x/ D 2� �˙x: (1.187)

Let �.S.G// denote the Euler characteristic of the surface S.G/. We then have the
Gauss-Bonnet formula of G of DeVos and Mohar [27],

X

x2G
˚.x/ � �.S.G//; (1.188)

whenever˙x2GW˚.x/<0˚.x/ converges. Thus, the combinatorial curvature captures a
topological property of semiplanar graphs.

We can also compare the combinatorial curvature with another version of curva-
ture naturally obtained from the surface S.G/, its generalized sectional (Gaussian)
curvature. It turns out that the semiplanar graph G has nonnegative combinatorial
curvature precisely if the polygonal surface S.G/ is an Alexandrov space with
nonnegative sectional curvature, i.e. Sec S.G/ 	 0 (or Sec.G/ 	 0 for short). This
principle is systematically explored in [40].

Here, a metric space .X; d/ is called an Alexandrov space if it is a geodesic space
(i.e. each pair of points in X can be joined by a shortest path called a geodesic)
and locally satisfies the Toponogov triangle comparison. Essentially, nonnegative
curvature in the present context means that the total angles of geodesic triangles
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are at least 2� . Upper curvature bounds, like nonpositive sectional curvature can be
interpreted as convexity properties for the distance function. The basic geometric
setting for Alexandrov curvature type bounds is this. One starts with a geodesic
triangle, that is, three points a1; a2; a3 2 X with mutual distances d.ai; aj/ that satisfy
the triangle inequality, as it befits a metric space. And since X is a geodesic space,
they can be pairwise joined by shortest geodesics. Such a configuration is called a
triangle. Such a triangle, however, does not yet possess nontrivial geometric content,
as we can find a comparison triangle in any surface CK of constant curvatureK (with
the only restriction that for positive K, there is some restriction on the size of our
triangle so that it fits into a hemisphere of CK) with the same side lengths. (Thus,
for positive K, CK is a sphere of curvature K, for K D 0, it is the Euclidean plane,
and for K < 0, it is a scaled version of the hyperbolic plane with curvature K.) That
is, we choose points Na1; Na2; Na3 2 CK with

d
�
ai; aj

� D dK.Nai; Naj/; for i; j D 1; 2; 3;

where dK is the distance in CK . In order to get at specific properties of .X; d/, we
need to consider a fourth point. Alexandrov takes the midpoint a4 of a1 and a2, that
is,

d.a4; a1/ D d.a4; a2/ D 1

2
d.a1; a2/:

In particular, a4 sits on a shortest geodesic from a1 to a2. One then compares
d.a3; a4/ with dK.a3; a4/. When the former is smaller (larger) than the latter for
every such triangle, one says that .X; d/ has curvature smaller (larger) than K. In
particular, an upper curvature bound implies uniqueness of the geodesic from a1
to a2, as one readily observes. (Of course, we have to keep in mind here that for
positive K, we had to restrict the size of our triangle, so that it could be realized
inside a hemisphere of CK .) Monographs on Alexandrov spaces are [20, 24]. In
fact, there was an earlier notion of curvature bounds for metric spaces, by Wald
[84], which looked at general configurations of four points a1; : : : ; a4 2 X with
their mutual distances and checked into which constant curvature spaces such
a quadrilateral can be isometrically embedded. This works nicely for surfaces
(which was Wald’s purpose, as the title of his paper [84] already clarifies), because
a quadrilateral on a surface can be isometrically embedded into some constant
curvature surface, and one can use the latter’s curvature to assign a curvature to the
original quadrilateral. One then gets curvature bounds in the sense of Wald when
every quadrilateral satisfies a corresponding bound. For higher dimensional spaces,
the requirement is perhaps somewhat too general. For instance, a tetrahedron in
Euclidean 3-space, that is, a configuration of four points with all non-zero distances
being equal can be isometrically embedded into some two-dimensional sphere,
but not into the Euclidean plane. The notion of Wald curvature and its relation to
Alexandrov curvature is discussed in more detail in Saucan’s contribution to this
volume (Chap. 2, Sects. 2.3 and 2.5).
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Importantly, the preceding notions of Alexandrov and others refer to sectional,
and not to Ricci curvature. As is already clear from the classical setting of
Riemannian geometry, the content of the two notions is different. Ricci curvature
is an average of the sectional curvatures containing a fixed tangent vectors, and
as such, it is naturally a coarser notion than the latter. In closing this article, we
would like to elucidate this aspect from the perspective gained from the preceding
considerations. Ricci curvature, as we have seen, is essentially about the relation
between two distance balls in a metric space. Ricci curvature is about such quantities
as the relative size of their overlap as a function of their radii and the distances of
their centers, or more precisely, how easy or difficult it is to transport the mass of
one of them to the other. Thus, it is natural to speculate that we should get more
refined invariants when we look at the overlap patterns of three (or perhaps more?)
instead of two balls. In fact, it was found in [19] that this can be used to define
sectional curvature bounds in general metric spaces. Those spaces, in contrast to the
situation covered by Alexandrov’s approach, need not be continuous, but could well
be discrete. Let us now describe this concept.

Again, in the metric space .X; d/, we consider a triangle, that is, a triple of points
.a1; a2; a3/ in X, and the comparison triangle in R

2 (for simplicity of exposition)
with the same side lengths. That is, we choose points Na1; Na2; Na3 2 R

2 with

d
�
ai; aj

� D 


Nai � Naj




 ; for i; j D 1; 2; 3;

where k � k is the Euclidean norm. The idea is now to look at the smallest radius
r > 0 such that the three closed balls around the ai with radius r have a nonempty
intersection,

B.a1; r/ \ B.a2; r/\ B.a3; r/ ¤ ;; (1.189)

(of course, B.a; r/ D f p 2 X W d. p; a/ � rg) and to compare this with the
corresponding radius Nr for the Euclidean comparison triangle. We then say that
.X; d/ has nonpositive sectional curvature if

r � Nr: (1.190)

In more detail, we define the functions

	.a1;a2;a3/.x/ D max
iD1;2;3 d.x; ai/; x 2 X;

and,

	.Na1;Na2;Na3/.x/ D max
iD1;2;3 kx � Naik ; x 2 R

2
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and call

r .a1; a2; a3/˛ inf
x2X 	.a1;a2;a3/.x/ and r .Na1; Na2; Na3/˛ min

x2R 	.Na1;Na2;Na3/.x/

circumradii of the respective triangles. The definition then is

Definition 1.14 (Nonpositive Curvature) We say that the metric space .X; d/ has
generalized nonpositive sectional curvature if, for each triangle .a1; a2; a3/ in X; we
have

r .a1; a2; a3/ � r .Na1; Na2; Na3/ ; (1.191)

where Nai with i D 1; 2; 3 are the vertices of an associated comparison triangle.
Of course, one checks that when .M; g/ is a Riemannian manifold, then it possesses
generalized nonpositive sectional curvature in the sense of Definition 1.14 iff it
has nonpositive sectional curvature in the sense of Riemannian geometry, see
Sect. 1.3.2. And of course, the construction can be naturally extended to define other
upper sectional curvature bounds, by taking appropriate 2-dimensional spheres or
hyperbolic spaces instead of the Euclidean plane as comparison spaces. Also, by
reversing the inequality in (1.191), one may also define lower curvature bounds, as
in Alexandrov’s approach described above.

This leads us to a final remark. As just observed, we can as well define
upper as lower sectional curvature bounds, and either of them has nontrivial
geometric content. In contrast, in our discussion of Ricci curvature bounds, we have
exclusively discussed lower bounds. The reason for this restriction appears already
in the classical context of Riemannian geometry. In fact, an important theorem of
Lohkamp [62] says that every differentiable manifold can be equipped with a metric
of negative Ricci curvature. Therefore, carrying a metric of negative Ricci curvature
imposes no topological restriction whatsoever on a manifold. By way of contrast,
nonnegative Ricci curvature, or more generally, a lower Ricci curvature bound, is
a contentful condition that implies many further geometric properties, as we have
discussed and explored in this article.
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Chapter 2
Metric Curvatures Revisited: A Brief Overview

Emil Saucan

Abstract We survey metric curvatures, special accent being placed upon the Wald
curvature, its relationship with Alexandrov curvature, as well as its application in
defining a metric Ricci curvature for PL cell complexes and a metric Ricci flow
for PL surfaces. In addition, a simple, metric way of defining curvature for metric
measure spaces is proposed.

2.1 Introduction

We begin with a brief motivation for our interest in the material of this chapter:
The reason we study Metric Geometry is due to the fact that it provides us with a
minimalistic framework that requires no additional smoothness, nor does it impose
any supplementary, ad hoc structure upon a given geometric object. It is therefore
our firm belief that this property renders the metric method as an approach ideally
suited for the study of the various structures and problems encountered in computer
Science in general, and in Graphics, Imaging and Vision in particular and that,
moreover, this Newtonian stance of “hypotheses non fingo” represents not only the
philosophically correct attitude, it also is ideally suited for the truthful intelligence
of Digital Spaces. This terse and somewhat vague argument was augmented in
[90] with examples drawn from Wavelet Theory (and practice), DNA Microarray
Analysis, Imaging and Graphics, and we briefly mention them here, too, as well as
a possible application to Networking.

To be sure, the term “Metric Geometry” is extensively used elsewhere and there
exists a quite extensive literature on Metric Geometry and its various applications to
Computer Science. (See, e.g. [1, 15, 49, 54], to mention only very small number of
titles from an impressive literature—without any chance whatsoever of exhausting
it.) Unfortunately, the “linear”, or “first order Geometry” considered in the articles
mentioned above does not fulfill all its expectations, and particularly so in Manifold
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Learning (as well as in Imaging and Graphics). To explain this, we could emphasize
the essential importance of “second order Geometry”, or succinctly, the Geometry of
curvature, in Graphics, Imaging and Manifold Learning. We did this in some detail
in our previous work already alluded to, so we refrain repeating ourselves, except
to quote again the phrase so aptly coined by the regretted Robert Brooks: “The
fundamental notion of differential geometry is the concept of curvature” [17]—
And our goal here is to sketch the very basis of a metric (“discrete”) Differential
Geometry.

Before we conclude the introduction, we wish to outline the structure of the main
part of the paper: In Sect. 2.2 we briefly discuss some metric notions of curvature for
1-dimensional geometric objects, i.e. curves. The accent is placed on the so called
Haantjes (or Finsler–Haantjes) curvature, partly because we shall make appeal to
it in the last section, where we suggest, amongst others, a simple approach to the
introduction of a curvature for metric measure spaces. Section 2.3 represents the
very nucleus, of this chapter. In its beginning we introduce the “main character”
of this paper, namely the Wald (or Wald–Berestovskii) curvature, we discuss its
properties and its relationship to the much better known notion of Alexandrov
curvature and we apply it to develop a metric Ricci flow for PL surfaces as well
as notion of metric Ricci curvature for cell complexes. In the forth—and last—we
recall notion of snowflaking and we apply it to the introduction of a simple approach
to curvature on metric measure spaces, with applications to Sampling Theory.1

2.2 Metric Curvature for Curves

We do not detail here all the basic, simple geometric ideas that reside behind the
various notions of metric curvature; the reader who might feel a slower, more
graduate and detailed exposition is needed is referred to our previous expositions
[86] and [90]. (He might also consult with much benefit [10], and we refer the
reader to this book, as well as to [12, 13] for any missing notions in our exposition.)
Neither do we (as we already warned the reader) go into details over all the metric
curvatures for curves. However, we find impossible to write an overview on the
subject of metric curvatures without mentioning them, even if only very briefly.

1As the reader will become aware while progressing with this text, we have written previously a
book chapters on metric curvatures as well as a largely expository article. However the present
paper does not represent a calque of any of these previous ones. For one, the present one is
addressed to a much more mathematically literate (not to say “very well educated”) audience than
the previous expositions. To be sure, certain repetitions are, unfortunately, unavoidable: After all,
the same subject represents the common theme of all these three papers. However, we have strived
to keep these at an inevitable minimum. Moreover, we did our best to emphasize different aspects
(in general, more modern ones) as well as introducing some novel applications.
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Fig. 2.1 A standard test image (left) and its Menger curvature (right)

2.2.1 Menger Curvature

The simplest and most direct version of metric curvature for curves is the so called
Menger curvature �M . It’s idea is to mimic the definition of the osculatory circle,
by first defining the (metric) curvature of triangles (or triples of points), by defining
the curvature K.T/ of a triangle T to be just 1=R.t/, where R.T/ is the radius of
the circle circumscribed to the triangle, then passing to the limit (exactly like in the
standard, classical osculatory circle definition). To define K.T/, one makes appeal
to some very elementary and quite well know formulas of high-school geometry.
Unfortunately, this impose on the space under scrutiny an intrinsically Euclidean
notion of curvature. Nevertheless, Menger curvature has been employed with
considerable success to the study of such problems as finding estimates (obtained via
the Cauchy integral) for the regularity of fractals and the flatness of sets in the plane
(see [72]). As far as practical implementations are concerned, Menger curvature has
been used for curve reconstruction [27]. Also, one might consider its use in for the
obvious task of approximating the principal curvatures,2 hence the computation of
Gauss and mean curvature, of triangulated (polyhedral) surfaces, and their manifold
uses in Graphics, Imaging and other, related fields. Experiments with the Menger
curvature (see Fig. 2.1) and with the Haantjes curvature (see below and [92]) have
shown, unfortunately, only moderate success.

The reader may have already recognized Menger curvature to be nothing else
than Gromov’s K3.f p; q; rg/, where p; q; r represent the vertices of a triangle, intro-
duced in Mémoli’s exposition in the present volume. However, while the general
setting of the modern discourse are certainly important, there still is use for the
classical, “parochial” Menger curvature, as demonstrated by its many contemporary
uses, thus interest and mathematical activity around the “old fashioned” Menger

2We know that in mentioning this here we anticipate, somewhat, the reminder of the paper.
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curvature still exists, even though the much more general and modern setting
of Kn.X/ is much more alluring. Moreover, it should be noted that, beyond this
generality there rests a lot of uncertainty, as Gromov himself notes [31].

Remark 2.1 Discussing Menger curvature, and mainly the idea behind it, one can
hardly not mention the very recent development [7].3 Here a kind of “comparison
Menger” curvature is introduced. Very loosely formulated, whereas in the classical
Menger curvature a specific, Euclidean in nature, formula is developed for the
circumradius, here it is only compared to that of a triangle of the same sides, in
different model (or gauge) surfaces. This is similar (and presumably inspired by)
the Alexandrov curvature (which we shall discuss later on).

Remark 2.2 While again anticipating higher dimensional curvatures (and mainly
2-dimensional ones), we can not leave this short section on Menger curvature
without mentioning the Menger curvature measure:

�.T / D �p.T / D
X

T2T
�
p
M.T/.diam T/2 ; (2.1)

for some p 	 1, where �M.T/ denotes the Menger curvature (of the triangle T).
(See, e.g. [50] and, for a somewhat different approach and another range of

problems altogether, [98].)
In the applications range, one possible use of the Menger curvature measure (in

its alternative variant) is in the field of Pattern Recognition, for texture segmentation
and classification—see [29]. This represents an approach to non local “operators”
for Imaging, radically different (being “purely” geometric) from those of Osher et al.
[28, 48] and Jost et al. [44, 45].

2.2.2 Haantjes Curvature

Having only very briefly presented the Menger curvature, we shall expound in
somewhat more detail upon another, less commonly known notion of metric
curvature, namely the so called Haantjes curvature or Finsler–Haantjes curvature.4

We have chosen to do so not only because this curvature does not mimic R
2 (we

already have emphasized this point in [90] and elsewhere), nor because of its
adaptivity to applications (again, see [90] and the bibliography within, but see also
Remark 2.4 below). The reasons behind our choice are that we both want to present
some of Haantjes connections with other notions (not just of curvature), and because

3Although, when these notes were started, the mentioned work was still not published.
4Named after Haantjes [40], who extended to metric spaces an idea introduced by Finsler in his
PhD Thesis.
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we wish to suggest it represents a simple and direct alternative—at least in certain
applications—of more involved and fashionable concepts.

Definition 2.1 (Haantjes Curvature) Let .M; d/ be a metric space and let c W I D
Œ0; 1�

�! c.I/ � M be a homeomorphism, and let p; q; r 2 c.I/; q; r ¤ p. Denote by
bqr the arc of c.I/ between q and r, and by qr line segment from q to r.

We say that c has Haantjes curvature �H. p/ at the point p iff:

�2H. p/ D 24 lim
q;r!p

l.bqr/� d.q; r/
�
l.bqr/

�3 I (2.2)

where “l.bqr/” denotes the length—in intrinsic metric induced by d—of bqr.

Remark 2.3 Since for points/arcs where Haantjes curvature exists, l.bqr/
d.q;r/ ! 1, as

d.q; r/ ! 0 (see [40]), �H can alternatively be defined (see, e.g. [47]) as

�2H. p/ D 24 lim
q;r!p

l.bqr/� d.q; r/
�
d.q; r/

�3 I (2.3)

As it turns out, in applications it is this alternative form of the definition of Haantjes
curvature proves itself to be more malleable (see [90] for some details, as well as
Fig. 2.2).

The definition of Haantjes curvature (in both its versions) is quite intuitive and
even the

�
d.q; r/

�3
factor is clearly inserted for scaling reasons. Far less intuitive

(and somewhat puzzling) is the “24” factor. However, it arises quite naturally in the
proof of following basic (and reassuring, so to say5) theorem:

Theorem 2.1 Let � 2 C 3 be smooth curve in R
3 and let p 2 � be a regular point.

Then the metric curvature �H. p/ exists and equals the classical curvature of � at p.
(For a proof, see [40] or—probably somewhat more easily accessible—[12].)

Moreover, the same result holds for Menger curvature (see [12]). In fact, the two
curvatures (when both applicable) coincide, as shown by the next result:

Theorem 2.2 (Haantjes) Let � be a rectifiable arc in a metric space .M; d/, and
let p 2 � . If �M and �H exist, then they are equal.

Remark 2.4 With the risk of being somewhat redundant, but to mirror our presen-
tation of Menger curvature, we mention here, in brief, that Haantjes has proved
its versatility in such diverse fields as Imaging and Graphics, Wavelets (with
applications for texture segmentation) and DNA Microarray Analysis. (For details
see again [90] and the bibliography within. See also [62] for an application to the
quasi-conformal and quasi-isometric planar representation of (medical) images.)

5Since it proves us that, indeed, for smooth curves, Haantjes curvature coincides with the classical
notion of curvature.
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Fig. 2.2 A natural image (left) and its average Haantjes curvature (right)

2.2.2.1 Haantjes Curvature and Excess

A metric geometry concept that has been proven itself as both flexible and powerful,
in many mathematical settings, and in particular in studying the Global Geometry
of Manifolds (see, e.g., [33, 34] and the bibliography therein), is the excess:

Definition 2.2 (Excess) Given a triangle6 T D 4. pxq/ in a metric space .X; d/,
the excess of T is defined as

e D e.T/ D d. p; x/C d.x; q/� d. p; q/: (2.4)

A local version of this notion was introduced (seemingly by Otsu [71]), namely
the local excess (or, more precisely, the local d-excess):

ed.X/ D sup
p

sup
x2B. p;	/

inf
q2S. p;	/ .e.4. pxq// ; (2.5)

where 	 � rad.X/ D infp supq d. p; q/, (and where B. p; 	/; S. p; 	/ stand—as they
usually do—for the ball and respectively sphere of center p and radius 	).

In addition, global variations of this quantity have also been defined:

e.X/ D inf
. p;q/

sup
x
.e.4. pxq// ; (2.6)

and, the so called global big excess (see [71]):

E.X/ D sup
q

inf
p

sup
x
.e.4. pxq// : (2.7)

6Not necessarily geodesic.
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Intuitively, it is clear that (local) excess and curvature are closely related
concepts, since the geometric “content” of the notion of local excess resides in the
fact that, for any x 2 B. p; 	/, there exists a (minimal) geodesic � from p to S. p; 	/
such that � is close to x. More precisely, we have the following relation between the
two notions:

�2H.T/ D e

	3
; (2.8)

where 	 D 	. p; q/, and where by the curvature of a triangle T D T. pxq/ we mean
the curvature of the path bpxq. Here and below we have used a simplified notation
and discarded (for sake of simplicity and clarity) the normalizing constant “24”.7

Thus Haantjes curvature can be viewed as a scaled version of excess. Keeping this
in mind, one can define also a global version of this type of metric curvature, namely
by defining, for instance:

�2H.X/ D E.X/

diam3.X/
; (2.9)

or

�2H.X/ D e.X/

diam3.X/
; (2.10)

as preferred.
To be sure, one can proceed in the opposite direction and express the proper (i.e.

pointwise) Haantjes curvature by means of the definition (2.5) of local excess, as

�2H.x/ D lim
	!0

e.x/: (2.11)

Remark 2.5 We should mention that both Menger and Haantjes curvatures have
their more modern (“updated” and “sophisticated”) respective versions—see [2].
However, let us add here that, at least as far as applications are concerned, we favor
the older notions over their more modern “avatars”, not solely for their simplicity,
but also for a number of reasons, mainly appertaining to their potential:

1. First and foremost, while the Alexander–Bishop variants are more “tight”, so to
say, they coincide with their classical counterparts on all but the most esoteric
spaces;

2. They are applicable to more general settings, fact that represents a further
incentive in their application in discrete (i.e. Computer Science driven) settings;

7In any case, it is not truly required and, in fact, even cumbersome in practical applications (see
[4, 91] for two such examples).
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3. In addition, no a priori knowledge of the global geometry of the ambient space
(i.e. Alexandrov curvature) is presumed, nor is it necessary to first determine
the curves of constant curvature (see [2]) in order to compute these curvatures;
furthermore

4. They are easy to compute in a direct fashion in the discrete setting (at least
amongst those discrete versions we encountered), thus they are simpler and far
more intuitive;

5. Last—but certainly not least—they are more ready to lend themselves to dis-
cretization, hence admit easy and direct “semi-discrete” (or “semi-continuous”)
versions, as the one mentioned in Remark 2.4 above. In view of this and their
simplicity noted above, they prove to be more conducive towards practical
applications.

2.3 Metric Curvature for Surfaces: Wald Curvature

2.3.1 Wald Curvature

We introduce here the main type of metric curvature that we overview in this chapter,
namely the so called Wald curvature. Wald’s seminal idea was to go back to Gauss’
original method of defining surface curvature by comparison to a standard, model
surface (i.e. the unit sphere in R

3), while extending it to general gauge surfaces,
rather than restrict himself to the unit sphere. Moreover, instead of comparing
infinitesimal areas (which would be an impossible task in general metric space not
endowed with a measure), he compared quadrangles. More precisely, his starting
point was the following definition:

Definition 2.3 Let .M; d/ be a metric space, and let Q D f p1; : : : ; p4g � M,
together with the mutual distances: dij D dji D d. pi; pj/I 1 � i; j � 4. The set
Q together with the set of distances fdijg1�i;j�4 is called a metric quadruple.

Remark 2.6 The reader has undoubtedly already recognized that the definition
above conducts toward K4.X/. Indeed, we can view, in a sense, this chapter as
representing an extended overview of and discussion on K4.X/, see also Chap. 3.

Remark 2.7 The following slightly more abstract definition can be also considered,
one that does not make appeal to the ambient space: a metric quadruple being a
4 point metric space, i.e. Q D �f p1; : : : ; p4g; fdijg

�
, where the distances dij verify

the axioms for a metric. However, this comes at a price, as we shall shortly see in
Remark 2.8.

Before being able to pass to the next definition we need to introduce some
additional notation: S� denotes the complete, simply connected surface of constant
Gauss curvature � (or space form), i.e. S� � R

2, if � D 0; S� � S
2p
�

, if � > 0;

and S� � H
2p�� , if � < 0. Here S� � S

2p
�

denotes the sphere of radius R D 1=
p
�,
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Fig. 2.3 Isometric embedding of a metric quadruple in a gauge surface: S
2
p
�

(left) and H
2
p
�

(right)

and S� � H
2p�� stands for the hyperbolic plane of curvature

p��, as represented

by the Poincaré model of the plane disk of radius R D 1=
p�� (Fig. 2.3).

Definition 2.4 The embedding curvature �.Q/ of the metric quadrupleQ is defined
to be the curvature � of the gauge surface S� into which Q can be isometrically
embedded—if such a surface exists.

Remark 2.8 Even though the basic idea of embedding curvature is, in truth, quite
intuitive, care is needed if trying to employ it directly, since there are a number of
issues that arise (as we have anticipated in Remark 2.7 above):

1. If one uses the second (abstract) definition of the metric curvature of quadruples,
then the very existence of �.Q/ is not assured, as it is shown by the following

Counterexample 2.1 The metric quadruple of lengths

d12 D d13 D d14 D 1I d23 D d24 D d34 D 2

admits no embedding curvature.
2. Any linear quadruple is embeddable, apart from the Euclidean plane, in all

hyperbolic planes (i.e. of any strictly negative curvature), as well as in infinitely
many spheres (whose radii are sufficiently large for the quadruple to be realized
upon them).
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3. Moreover, even if a quadruple has an embedding curvature, it still may be not
unique (even if Q is not linear); as it is illustrated by the following examples:

Example 2.1

a. For each � > 0, each neighborhood of any point p 2 S� contains a non-
degenerate quadruple that is also isometrically embeddable in R

2. (For the
proof see [12, pp. 372–373].)

b. The quadruple Q of distances d13 D d14 D d23 D d24 D �; d12 D d34 D
3�=2 admits exactly two embedding curvatures: �1 D 1

2
and �2 2 �

1
4
; 4
9

�
.

(See [13].)

We are now able to define the Wald curvature [106, 107] (or, more precisely, its
modification due to Berestovskii [9]):

Definition 2.5 Let .X; d/ be a metric space. An open set U � X is called a region
of curvature 	 � iff any metric quadruple can be isometrically embedded in Sm, for
some m 	 k. A metric space .X; d/ is said to have Wald-Berestovskii curvature 	 �

iff any x 2 X is contained in a region U D U.x/ of curvature 	 �.
The embedding curvature at a point is now definable most naturally as a limit.

However, we need first yet another preparatory definition:

Definition 2.6 .M; d/ be a metric space, let p 2 M and let N be a neighborhood
of p. Then N is called linear iff N is contained in a geodesic curve.

Definition 2.7 Let .M; d/ be a metric space, and let p 2 M be an accumulation
point. Then M has ( embedding) Wald curvature �W. p/ at the point p iff

1. Every neighborhood of p is non-linear;
2. For any " > 0, there exists ı > 0 such that if Q D f p1; : : : ; p4g � M and if

d. p; pi/ < ı ; i D 1; : : : ; 4; then j�.Q/� �W. p/j < ".
Fortunately, for “nice” metric spaces—i.e. spaces that are locally sufficiently

“plane like”—the embedding curvature exists and it is unique (see, e.g, [12] and,
for a briefer but more easily accessible presentation, [86]). Moreover—and this
represents a fact that is very important for some of our own goals, as detailed further
on (see Sect. 2.6.1)—this embedding curvature coincides with the classical Gaussian
curvature. Indeed, one has the following result due to Wald:

Theorem 2.3 (Wald [107]) Let S � R
3; S 2 C m; m 	 2 be a smooth surface.

Then, given p 2 S, �W. p/ exists and �W. p/ D K. p/, where K. p/ denotes the
Gaussian curvature at p.

Remark 2.9 In the theorem above the metric considered in the computation of Wald
curvature is the intrinsic one of the surface. (Indeed, the reciprocal Theorem 2.4
below is formulated, at least prima facie, for a much more general class of metric
spaces than mere smooth surfaces embedded in Euclidean 3-space.) However, in
applications Euclidean (extrinsic) distances are used instead. However, this does not
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represent a theoretical obstruction (only, perhaps, a practical one)—see, for instance,
[90, Sect. 4.3]and the references therein.8

Moreover, Wald also has shown that the following partial reciprocal theorem
also holds:

Theorem 2.4 Let M be a compact and convex metric space. If �W. p/ exists, for all
p 2 M, then M is a smooth surface and �W. p/ D K. p/, for all p 2 M.

Remark 2.10 Obviously, here the metric considered is the abstract one of the given
metric space, that is proven to coincide with the intrinsic one of a smooth surface.

The results above, in conjunction, show that Wald curvature represents, indeed,
a proper metrization of the classical (smooth) notion, and not just a mathematical
“divertissement”, lacking any significant geometric content.

We continue with a definition whose full significance will become more clear in
the sequel, where it will be viewed in the correct perspective.

Definition 2.8 A metric quadruple Q D Q. p1; p2; p3; p4/, of distances dij D
dist. pi; pj/; i D 1; : : : ; 4, is called semi-dependent (or a sd-quad, for brevity), there
exist three indices, e.g. 1, 2, 3, such that: d12 C d23 D d13.

Remark 2.11 The condition in the definition above implies, in fact, that the three
points in question lie on a common metric segment i.e. a subset of a given metric
space that is isometric to a segment in R (see [12, p. 246]).

Perhaps the main advantages of sd-quads stems from in the following fact:

Proposition 2.1 An sd-quad admits at most one embedding curvature.
In fact, there also exists a classification criterion—due to Berestovskii [9], see

also [79], Theorem 18—for embedding curvature possibilities in the general case:

Theorem 2.5 Let M, Q be as above. Then one and only one of the following
assertion holds:

1. Q is linear.
2. Q has exactly one embedding curvature.
3. Q can be isometrically embedded in some S m

� , m 	 2; where � 2 Œ�1; �2�

or .�1; �0�, where S m
� � R

m, if � D 0; S m
� � S

mp
�
, if � > 0; and

S m
� � H

mp�� , if � < 0. Moreover, � 2 f�0; �1; �2g. represent the only possible
values of planar embedding curvatures, i.e. such that m D 2. (Here Smp

�
denotes

the m-dimensional sphere of radius R D 1=
p
�, and H

mp�� stands for the m-

dimensional hyperbolic space of curvature
p��, as represented by the Poincaré

model of the ball of radius R D 1=
p��.)

4. There exist no m and k such that Q can be isometrically embedded inS m
� .

8The literature on the subject being too vast to even begin and enumerate it here.
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2.3.1.1 A Local-to-Global Result

Before passing to the actual computation of Wald curvature, we include here a
result who’s full importance and relevance will become much clearer later on.
More precisely, we bring the fitting version of the Toponogov (or Alexandrov–
Toponogov) Comparison Theorem:

Theorem 2.6 (Toponogov’s Comparison Theorem for Wald Curvature) Let
.X; d/ be an inner metric space of curvature 	 k. Then the entire X is a region
of Wald curvature 	 k.

Since the proof is somewhat lengthy and technical we do not bring it here—see
[75] (see also [79]).

2.3.1.2 Computation of Wald Curvature I: The Exact Formula

A non-negligible part of the attractiveness of Wald curvature does not reside in its
simplicity and intuitiveness, but also that it comes endowed, so to say, with a simple
formula for its actual computation. (This is in stark contrast with the Alexandrov
(comparison) curvature at least in its usual presentation—but we shall elaborate
later on on this subject.) More precisely, we have the following formula:

�.Q/ D

8
ˆ̂
<

ˆ̂
:

0 if D.Q/ D 0 I
�; � < 0 if det.cosh

p�� � dij/ D 0 I
�; � > 0 if det.cos

p
� � dij/ and

p
� � dij � �

and all the principal minors of order 3 are 	 0I
(2.12)

where dij D d.xi; xj/; 1 � i; j � 4, .cosh
p�� � dij/ is a shorthand for

.cosh
p�� � dij/1�i;j�n, etc., and D.Q/ denotes the so called Cayley–Menger

determinant:

D.x1; x2; x3; x4/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 1 1 1 1

1 0 d212 d
2
13 d

2
14

1 d212 0 d223 d
2
24

1 d213 d
2
23 0 d234

1 d214 d
2
24 d

2
34 0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

: (2.13)

There is, in fact, nothing mysterious about the formula above. Indeed, it has a
very simple geometric meaning ensuing from the following fact:

D. p1; p2; p3; p4/ D 8
�
Vol. p1; p2; p3; p4/

�2
; (2.14)
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where Vol. p1; p2; p3; p4/ denotes the (un-oriented) volume of the parallelepiped
determined by the vertices p1; : : : ; p4 (and with edges ��!p1p2;

��!p1p3;
��!p1p4).9 From here

immediately follows that

Proposition 2.2 The points p1; : : : ; p4 are the vertices of a nondegenerate simplex
in R3 iff D. p1; p2; p3; p4/ ¤ 0̇.
Clearly, this also implies the opposite assertion, namely that a simplex of vertices
p1; : : : ; p4 is degenerate, i.e. isometrically embeddable in the plane R2 � S0 .

It is now relatively easy to guess that the expressions appearing in Formula (2.13)
for the cases where � ¤ 0 represent the equivalents of D.Q/ in the hyper-
bolic, respective spherical cases, using the well known fact, that, in the spherical
(resp. hyperbolic) metric, the distances dij are replaced by cos dij (resp. cosh dij).
However, the proof of this fact, as well for the analogous formulas and results in
higher dimension diverge from the boundaries of this restricted exposition, therefore
we refer the reader to [12].

Remark 2.12 A stronger result along these lines also exists. Moreover, it is readily
generalized to any dimension. For proofs and further details, see [12].

2.3.1.3 Computation of Wald Curvature II: An Approximation

Unfortunately, using Formula (2.12) for the actual computation of �.Q/ is any-
thing but simple, since the equations involved are—apart from the Euclidean
case—transcendental, therefore not solvable, in general, using elementary methods.
Moreover, they tend to display a numerical instability when solved with computer
assisted methods. (See [85, 92] for a more detailed comments and some numerical
results.)

Note that Formula (2.12) implies that, in practice, a renormalization might be
necessary for some of the vertices of positive Wald–Beretkovskii curvature, which
represents yet another impediment in it use.

Fortunate enough, there exists a good approximation result, due to Robinson.
Not only does his result give a rational formula for approximating �.Q/ and provide
good error estimates, it also solves one other problem inherent in the use of the Wald
curvature, namely the possible lack of uniqueness of the computed curvature. The
way to circumvent this difficulty and the other pitfalls of Formula (2.12) is to make
appeal to the simpler geometric configuration of sd-quads:

9As a historical note, it is perhaps worthwhile to recall that Formula (2.14) above was proved by
Cayley in his very first mathematical paper [21] (published while he was still begrudgingly making
his living as a lawyer!. . . ).
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Theorem 2.7 ([81]) Given the metric semi-dependent quadruple Q D
Q. p1; p2; p3; p4/, of distances dij D d. pi; pj/; i; j D 1; : : : ; 4; the embedding
curvature �.Q/ admits a rational approximation given by:

K.Q/ D 6.cos ]02C cos ]02
0/

d24
�
d12 sin2.]02/C d23 sin2.]020/

� (2.15)

where: ]02 D ]. p1p2p4/ ; ]02
0 D ]. p3p2p4/ represent the angles of the

Euclidean triangles of sides d12; d14; d24 and d23; d24; d34 , respectively (see also
Fig. 2.4). Moreover the absolute error R satisfies the following inequality:

jRj D jR.Q/j D j�.Q/� K.Q/j < 4�2.Q/diam2.Q/=.Q/ ; (2.16)

where .Q/ D d24.d12 sin ]02C d23 sin ]02
0/=S2, and where S D Maxf p; p0gI

2p D d12 C d14 C d24 ; 2p0 D d32 C d34 C d24.
We do not bring here the proof of Robinson’ result—the interested reader can

see [85] and in [92] (and, of course, to Robinson’s original paper [81]). However,
we would like to underline that basic idea of the proof is to basically calque, in
a general metric setting, the original way of defining Gaussian curvature—in this
case, rather than accounting for the area distortion, one measures the curvature by
the amount of “bending” one has to apply to a general planar quadruple so that it
may be “straightened” to a triangle 4. p1p3p4/, with p2 lying on the edge p1p3—i.e.
isometrically embedded as a sd-quad— in some S� .

Remark 2.13 In some special cases (e.g. when d12 D d32, etc.) simpler formulas
are obtained instead of (2.15)—see, again, [81], or [85, 92].

Naturally, there raises the question whether Formula (2.15) (or any of its varia-
tions mentioned above) is truly efficient in applications. The following example, due

Fig. 2.4 The Euclidean
triangles corresponding to an
sd-quad
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also to Robinson, indicates that, at least in some cases, the actual computed error is
far smaller then the theoretical one provided by Formula (2.16).

Example 2.2 ([81]) Let Q0 be the quadruple of distances d12 D d23 D d24 D 0:15,
d14 D d34 and of embedding curvature � D �.Q0/ D 1. Then �S2 < 1=16

and K.Q0/ � 1:0030280, whereas the error computed using Formula (2.16) is
jRj < 0:45.
For some experimental results and comparison to other metric curvatures for images,
see [92]. However, we should emphasize that the results therein do comply to the
expectations arising from the following (quite expected, but nevertheless necessary)
theorem:

Theorem 2.8 Let S be a smooth (differentiable) surface. Then, for any point p 2 S:

KG. p/ D lim
n!0

K.Qn/ I

for any sequence fQng of sd-quads that satisfy the following conditions:

Qn ! Q D �p1pp3p4 I diam.Qn/ ! 0 :

Sketch of Proof Recall that the Gaussian curvature KG. p/ at a point p is given by:

KG. p/ D lim
n!0

�.Qn/ I

where Qn ! Q D �p1pp3p4 I diam.Qn/ ! 0. But, if Q is any sd-quad, then
�2.Q/diam2.Q/=.Q/ < 1. Moreover, jRj is small if Q is not close to linearity.
In this case jR.Q/j 
 diam2.Q/, for any given Q (see [81]). The theorem now
follows easily. ut
Remark 2.14 The convergence result provided in Theorem 2.8 is not just in the
sense of measures and errors of different signs do not simply cancel each other.
Indeed, sign.�.Q// D sign.K.Q//, for any metric quadruple Q.

Wald Curvature and Isometric Embeddings

Proposition 2.2 and Remark 2.12 rise the general problem of the existence of iso-
metric embeddings of generic metric metric spaces into gauge spaces. While in its
full generality this is, of course, an unattainable goal, one would still be interested in
the much more restricted, but important in the applied setting (Graphics, Imaging,
Mathematical Modeling, Networking etc.), problem of isometric embedding of PL
surfaces in R

3.
A partial result in this direction is a criterion for the local isometric embedding

of polyhedral surfaces in R
3, resemblant to the classical Gauss fundamental

(compatibility) equation in the classical differential geometry of surfaces, that we
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proved in [88]. However, to be able to formulate it we need first some additional
notations and results:

First, let us note that, in the context of polyhedral surfaces, the natural choice for
the set U required in Definition 2.5 is the star of a given vertex v, that is, the set fevjgj
of edges incident to v. Therefore, for such surfaces, the set of metric quadruples
containing the vertex v is finite.

Equipped with this quite simple and intuitive choice for U (and in in analogy
with Alexandrov spaces—see also Sect. 2.5.1 below) it is quite natural to consider,
for PL surfaces, the following definition of the discrete (PL, or “finite scale”) Wald
curvature KW.v/ at the vertex v:

KW.v/ D min
vi;vj ;vk2Lk.v/

Kijk
W .v/ ; (2.17)

where Kijk
W .v/ D �.vI vi; vj; vk/, and where Lk.v/ denotes the link of the vertex v.10

Note that here we consider the (intrinsic) PL distance between vertices.
Let Q D fx1; x2; x3; x4g be a metric quadruple and let V�.xi/ be defined as

follows:

V�.xi/ D ˛�.xiI xj; xl/C ˛�.xiI xj; xm/C ˛�.xiI xl; xm/ (2.18)

where xi; xj; xl; xm 2 Q are distinct, and � is any number, and where the angles
˛i ; i D 1; 2; 3 are as in Fig. 2.5.

Proposition 2.3 ([79], Theorem 23) Let .X; d/ be a metric space and let U 2 X be
an open set. U is a region of curvature	 � iff V�.x/ � 2� , for any metric quadruple
fx; y; z; tg � U.

We can now state the desired result for local isometric embedding of polyhedral
surfaces in R

3: Given a vertex v, with metric curvature KW.v/, the following system
of inequalities should hold:

8
<

:

maxA0.v/ � 2�I
˛0.vI vj; vl/ � ˛0.vI vj; vp/C ˛0.vI vl; vp/; for all vj; vl; vp 
 vI
V�.v/ � 2�I

(2.19)

Here

A0 D max
i

V0 I (2.20)

10Recall that the link lk.v/ of a vertex v is the set of all the faces of St.v/ that are not incident to
v. Here St.v/ denotes the closed star of v, i.e. the smallest subcomplex (of the given simplicial
complex K) that contains St.v/, namely St.v/ D f� 2 St.v/g [ f� j � 6 �g, where St.v/ denotes
the star of v, that is the set of all simplices that have v as a face, i.e St.v/ D f� 2 K j v 6 �g.
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Fig. 2.5 The angles ˛�.xi; xj; xl/ (right), induced by the isometric embedding of a metric
quadruple in S

2
p
�

(left)

“
” denotes incidence, i.e. the existence of a connecting edge ei D vvj and, of
course, V�.v/ D ˛�.vI vj; vl/C˛�.vI vj; vp/C˛�.vI vl; vp/, where vj; vl; vp 
 v, etc.

Returning to the analogy with the Gauss compatibility equation, the first two
inequalities represent the (extrinsic) embedding condition, while the third one
represents the intrinsic curvature (of the PL manifold) at the vertex v.

Also, for details and a corresponding global embedding criterion see [88].

Remark 2.15 Before passing to more general issues, let us mention here that,
precisely as a Menger measure was introduced, one can also consider (and, in fact,
much more naturally) a Wald measure (for surfaces);

�W.v/ D KW.v/ � Area.St.v//; (2.21)

where St.v/ denotes the star of the vertex v.
We defer the investigation for future study of its usefulness in practice.
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2.4 Wald Curvature Under Gromov–Hausdorff Convergence

It is practically impossible, both from a purely mathematical viewpoint, as well
as considering the background of this volume as a whole (see mainly Memoli’s
contribution) to introduce any notion of curvature without discussing its behavior
under the Gromov–Hausdorff convergence. We begin with a much more general
discussion and continue with some results regarding Wald curvature and Gromov–
Hausdorff convergence (see also Chap. 3).

2.4.1 Intrinsic Properties and Gromov–Hausdorff Convergence

Given that many of Graphics and Imaging tasks (and Sampling Theory, as well),
reduce, in the end, to better and better approximation by certain nets (or graphs),
be they triangular meshes in the first case, or square grids, in the second, it
is most natural (and, indeed, necessary) to have a comprehensive, and sound
approach to investigating the behavior and convergence, under limits, of the relevant
properties.11 We overview here some significant results regarding convergence of
nets in metric spaces (basically due, seemingly, to Gromov).

We begin by reminding the reader the following basic definition:

Definition 2.9 Let .X; d/ be a metric space. A set f p1; : : : ; pmg � X is called an
"- net on(in) X iff the balls B. pk; "/, k D 1; : : : ;m cover X.

It turns out that "-nets in compact metric spaces have the following important
property:

Proposition 2.4 Let X; fXng1
nD1 be compact metric spaces. Then Xn�!

GH
X iff for all

" > 0, there exist finite "-nets S � X and Sn � Xn, such that Sn�!
GH

S and, moreover,
jSnj D jSj, for large enough n.

The importance of the result above does not reside only in the fact that compact
metric spaces can be approximated by finite "-nets—after all, just the existence of
some approximation by such sets is hardly surprising—but rather in the fact that,
as we shall shortly see, it assures the convergence of geometric properties of Sn
to those of S, as Xn�!

GH
X. This would be, in a nutshell, the real significance of the

proposition above.
One can also reformulate Proposition 2.4 in an equivalent, in a less concise

and elegant manner yet, on the other hand, far more useful in concrete
instances (to say nothing of the fact that it is far more familiar in the Applied
Mathematics community):

11It was, it would appear, Gromov’s observation that, in the geometric setting, the relevant
convergence is the Gromov–Hausdorff one.
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Proposition 2.5 Let X;Y be compact metric spaces. Then:

(a) If Y is a ."; ı/-approximation of X, then dGH.X;Y/ < 2"C ı.
(b) If dGH.X;Y/ < ", then Y is a 5"-approximation of X.

Recall that "-ı-approximations are defined as follows:

Definition 2.10 Let X;Y be compact metric spaces, and let "; ı > 0. X;Y are
called "-ı-approximations (of each other) iff: there exist sequences fxigNiD1 � X
and fyigNiD1 � Y such that

(a) fxigNiD1 is an "-net in X and fyigNiD1 is an "-net in Y;
(b) j dX.xi; xj/� d.yi; yj/ j < ı for all i; j 2 f1; : : : ;Ng.

An ."; "/-approximation is called, for short an "-approximation.
Recall that a metric spaces whose metric d is intrinsic, i.e. induced by a length

structure (i.e. path length) by the ambient metric on a subset of a given metric space
is called a length space. Such spaces are, for obvious reasons, of special interest
in Geometry. (As a basic motivation both theoretical and practical, for considering
such spaces, would be that of surfaces in R

3.) The following theorem shows that
length spaces are closed in the Gromov–Hausdorff topology:

Theorem 2.9 Let fXng1
nD1 be length spaces and let X be a complete metric space

such that Xn�!
GH

X. Then X is a length space.
Using "-approximations one can prove the following theorem and corollary, that

are quite important, not only for the specific purpose of this overview, but in a far
more general and powerful context (see e.g. [31] and [19]):

Theorem 2.10 (Gromov) Any compact length space is the GH-limit of a sequence
of finite graphs.

The proof of the theorem above is constructive, therefore potentially adaptable in
practical applications (such as those arising in Graphics, Imaging and related fields).
For this very reason, and for essential simplicity we bring it below:

Proof Let "; ı .ı � "/ small enough, and let S be a ı-net in X. Also, let G D .V;E/
be the graph with V D S and E D f.x; y/ j d.x; y/ < "g. We shall prove that G is an
"-approximation of X, for ı small enough, more precisely, for ı < "2

4diam.X/ .
But, since S is an "-net both in X and in G, and since dG.x; y/ 	 dX.x; y/, it is

sufficient to prove that:

dG.x; y/ � dX.x; y/C " :

Let � be the shortest path between x and y, and let x1; : : : ; xn 2 � , such that n �
length.�/=" (and dX.xi; xiC1/ � "=2/. Since for any xi there exists yi 2 S, such that
dX.xi; yi/ � ı, it follows that dX.yi; yiC1/ � dX.xi; xiC1/C 2ı < ":
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Therefore, (for ı < "=4), there exists an edge e 2 G; e D yiyiC1. From this we
get the following upper bound for dG.x; y/:

dG.x; y/ �
nX

nD0
dX.yi; yiC1/ �

nX

nD0
dX.xi; xiC1/C 2ın

But n < 2 length.�/=" � 2diam.X/=". Moreover: ı < "2=4 diam.X/. It follows that:

dG.x; y/ � dX.x; y/C ı
4diam.X/

"
< dX.x; y/C " :

Thus, for any " > 0, there exists a graph an "-approximation of X by a graph G,
G D G". Hence G"�!

" X.
In fact, one can strengthen the theorem above as follows:

Corollary 2.1 Let X be a compact length space. Then X is the Gromov–Hausdorff
limit of a sequence fGngn�1 of finite graphs, isometrically embedded in X.

Remark 2.16 A certain amount of care is needed when applying the theorem above,
as the following facts show:

1. If Gn!
" X, Gn D .Vn;En/. If there exists N0 2 N such that

./ jEnj � N0; for all n 2 N ;

then X is a finite graph.
2. If condition ./ is replaced by:

./ jVnj � N0; for all n 2 N ;

then X will still be always a graph, but not necessarily finite.

Remark 2.17 Theorem 2.10 can be strengthened as follows: Compact inner metric
spaces can be, in fact, Gromov–Hausdorff approximated by smooth surfaces that,
moreover, are embedded in R

3, as shown by Cassorla [20] (see also [31, p. 99]
and the reference therein). In other words, one can “visualize” in R

3 (up to
some predetermined but arbitrarily small error) any compact inner metric space.
Unfortunately, the genus of the approximating surfaces can not remain bounded. (In
consequence, in order that a good approximation even of a simple space be obtained,
using the method given in Cassorla’s proof, one has to increase the topological
complexity of the approximating surface.)

Note also that there is no geometric (curvature) restriction on the approximating
surfaces. In fact, it is also stated in [20] that one can approximate the given spaces
with a series of smooth surfaces having Gaussian curvature bounded from above by
�1 (this being, however a seemingly unpublished result). Unfortunately, to obtain
this, one has to abandon the embeddability in R

3 of the approximating surfaces.
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We conclude this remark by adding a few words regarding Cassorla’s proof:
He begins by constructing an approximation by graphs, following Gromov, then
he considers the (smooth) boundaries of canonical tube neighborhoods or, in other
words, he builds the smooth surfaces having as axes (or nerve) the graph constructed
previously.

2.4.2 Wald Curvature and Gromov–Hausdorff Convergence

It turns out (not very surprisingly, in fact, in view of the facts that we shall present
in the next section) that it is somewhat naive to hope for a generic result for Wald
curvature as such. It turns out that the upper and lower bound for KW display quite
different behaviors. There are very few results we can state, therefore, in the generic
case. The basic one is

Lemma 2.1 Let .Xi; di/ be compact metric spaces, such that Xi�!
GH

X. If Bi � Xi,
Bi D B. pi; r/ is a region of curvature 	 k, for all i 	 1, and if pi�!

GH
p 2 X, then

B D B. p; r/ is a region of curvature 	 k in X.
(Recall that by Theorem 2.9 X is also an inner metric.)

In view of Toponogov’s Theorem we can now formulate:

Theorem 2.11 Let .Xi; di/ be (compact) metric spaces, such that Xi�!
GH

X. If Xi has
curvature 	 k, for all i 	 1, then X has curvature 	 k.

Remark 2.18 We should note in his context that the diameter function is continuous
under the the Gromov–Hausdorff convergence.

2.4.2.1 The Case KW � K0

This is the case where a plethora of powerful results exist, mainly due to Plaut
[75, 77, 78].

The first such result represents a generalization of the classical by now compact-
ness theorem of Gromov (see, e.g. [31]). For its formulation we need an additional
notation: We denote by M .k; n;D/ the class of all finitely dimensional12 spaces of
curvature 	 k, dimension � n and diameter � D. We can now formulate the theorem
in question:

Theorem 2.12 (Plaut [79]) M .k; n;D/ is compact in the Gromov–Hausdorff
metric.

12The dimension can be taken as the topological dimension or the Hausdorff dimension—see,
e.g. [79].
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Remark 2.19 Let us denote by M.k; n;D/ the set of all Riemannian manifolds
satisfying the same conditions as the spaces in M .k; n;D/ (k denoting, in this case,
sectional curvature). Then (clearly) M.k; n;D/ ¨ M .k; n;D/.

The results above have quite important consequences for a variety of practical
fields (or, at least, for their more theoretical, basic aspects): Since by the now
classical Gromov Precompactness Theorem [31], any element in a compact (hence
a fortiori precompact) collection of compact metric spaces admits, for any " > 0, an
"-net with at most N."/ number of elements, they represent quite general sampling
theorems, giving, moreover, a strong upper bound on the number of sampling
points—a number that depends, apart from the class on the manifold, only on the
quality of the sampling (as given by "). (The price to be paid, so to say, for the
strengths above, is represented by the non-algorithmic nature of these results.)

In fact, even for a larger class of metric spaces, namely M .k; n; "/, where " > 0
denotes a lower bound for the injectivity radius13 some important facts can be
asserted, such as the following theorem:

Theorem 2.13 (Plaut [77]) The elements ofM .k; n; "/ are smoothable, for any n.
Again, the theorem above is also highly relevant to Sampling Theory, since it

shows that the traditional approach in the field, that is of considering smoothings
(“filtrations”) of the given signals/images and sampling them according to a more
traditional, Gauss curvature based scheme is theoretically valid.

Moreover, the following compactness result also holds:

Theorem 2.14 (Plaut [77]) M �.k; n;D; "/ is compact in the Gromov–Hausdorff
metric, where M �.k; n;D; "/ denotes the class of spaces of dimension equal to n,
curvature 	 k, diameter � D and injectivity radius 	 ".

In addition to these compactness results, the following finiteness theorems, rep-
resenting generalizations of classical results of Cheeger [22], respectively Grove–
Petersen [35] and Grove–Petersen–Wu [36] also hold:

Theorem 2.15 (Perelman [73]) The class M �.k; n;D/ has finitely many homeo-
morphism types.
(We believe that by now the notation must be clear to the reader.)

Theorem 2.16 (Perelman [73]) M.k; n;D; v/, where v > 0 denotes a lower
bound on volume, has finitely many types of homeomorphism for all n, and
diffeomorphism, for all n ¤ 4.

Remark 2.20 At first glance Theorems 2.15 and 2.16 seemingly are contradicted by
the existence of infinitely many homotopy types of lens spaces. However, this is not
the case, since they fail to satisfy the conditions of the theorem even as Riemannian
manifolds, thus, a fortiori as Alexandrov spaces (see [35, p. 196]). For instance,
the lens spaces S2nC1=Z� have constant curvature equal to 1 and diameter �=2, but

13Without getting into the technical subtleties of the definition of the space of directions
Sp at a point p in a space of bounded curvature, the injectivity radius at p is defined as
inf�2Sp suptf� jŒ0;t�is minimalg.
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have no lower bound on the volume (and, indeed, they belong to infinitely many
homotopy classes. (Up to a scaling of volume, the same spaces show that the upper
bound on diameter is also necessary.)

These last two theorems, as well as the previous, related results of Grove et al.
mentioned above have quite practical importance in the Recognition Problem (in
Manifold Learning and related fields), in particular in determining the complete so
called “Shape DNA”.

More geometrically interesting, powerful results exists, but for lack of space and
for the sake of cohesiveness of the text, we do not bring here—see [79] and the
bibliography cited therein.

2.4.2.2 The Case KW � K0

As already mentioned in the introduction of this section, spaces of Wald curvature
bounded from above display a behavior widely divergent from those satisfying
the opposite inequality. Most notable they do not satisfy a fitting Toponogov type
theorem, the example of the flat torus T2 D S

1 � S
1 being the basic one (see [79,

p. 886] for details). However, such spaces still have some very interesting geometric
properties, see again [79] as well as [2].

However, the most powerful results, due to Berestovskii [8] and Nikolaev [66–
68] (see also [76]) are obtained when combining the lower and upper curvature
bounds, the main such theorem being:

Theorem 2.17 A topological space admits a smooth manifold structure (with or
without boundary) iff (i) it is finite dimensional; and (ii) has a metric curvature
bounded both from above and from below.

2.5 Wald and Alexandrov Curvatures Comparison

We have alluded many times to the notion of Alexander curvature. Moreover, it is
quite probably that many (if not most) of the readers are quite familiar with this
concept permeating modern Mathematics, certainly much more than with the rather
esoteric (for some) Wald curvature. It is therefore only fitting that we finally discuss
the relationship between these two types of comparison curvature.

2.5.1 Alexandrov Curvature

We begin by reminding the reader the definition of Alexandrov comparison curva-
ture. Before bringing the formal definition, let us just specify the main difference
between this approach and Wald curvature: In defining Alexandrov curvature, one
makes appeal to comparison triangles in the model space (i.e. gauge surface Sk),
rather than quadrangles, as in the definition of Wald curvature.
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A space is said to be of Alexandrov curvature 	 k iff any of the following
equivalent conditions holds locally, and to be of Alexandrov curvature � k iff any
of the conditions below holds with the opposite inequality:

Definition 2.11 Let X be an inner metric space, let T D 4. p; q; r/ be a geodesic
triangle, of sides pq; pr; qr, and leteT denote its(a) representative triangle in Sk.

A0 Given the triangle T D 4. p; q; r/ and points x 2 pq and y 2 pr, there exists
a representative triangleeT in Sk. Let Qx; Qy represent the corresponding points on the
sides ofeT. Then d.x; y/ 	 d.Qx; Qy/.

A01 Given the triangles T D 4. p; q; r/ and eT as above, and a point x 2 pq,
d.x; c/ 	 d.Qx; Qc/.

A1 Given the triangle T D 4. p; q; r/, there exists a representative triangleeT in
Sk, and ].pq; pr/ 	 ].QpQq; QpQr/, where ].pq; pr/ denotes the angle between pq and
pr, etc.

A2 For any hinge H D .pq; pr/, there exists a representative hinge eH D .QpQq; QpQr/
in Sk and, moreover, d. p; q/ � d.Qp; Qq/, where a hinge is a pair of minimal geodesics
with a common end point.

Remark 2.21

1. Axiom A0 represents the basic one in defining Alexandrov comparison. It is also
the one used by Rinow [80], in his seemingly (semi-)independent development of
comparison geometry. (For a shorter presentation of his approach, but somewhat
more accessible and in English, see [12, 13] and, for an even briefer one, but easy
to reach, [86].) This condition represents nothing more the transformation into an
axiom of the following essential geometric fact: Thales Theorem does not hold in
Spherical and Hyperbolic Geometry. (In particular—and most spectacular—the
line connecting the midpoints of two of the edges of a triangle does not equate
half of the third one.14)

2. Condition A01 clearly represents just a particular case of A0, by fixing y to be one
of the end points of pr, say y D r. However, it is, actually, equivalent to A0 and it
is, in fact, usually easier to check. It is sometimes used as the basic definition of
Alexandrov comparison, saying, for instance that “negatively curved spaces have
short ties” (the figure of speech being, we believe, self explanatory)—see, e.g.
[105]. The role of sd-quads in such fundamental results as Theorem 2.5 becomes
now less strange and, in fact, it will become quite clear once the result in the next
section is introduced. We anticipate somewhat by adding that now Robinson’s
method in Theorem 2.7 shows itself as it truly is: A method15 of approximating
the relevant k appearing in Axiom A01.

14This well known “paradox” of the foundations of Geometry is, unfortunately, generally
overlooked in certain applications in Imaging and Graphics, which results in a penalty on the
quality of the numerical results.
15Developed avant la lettre.
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3. We have used here (for the most part) Plaut’s notation in [79]. For an excellent,
detailed, clear (and by now already classical) presentation of the various compar-
ison conditions, see [19].

4. Conditions A1 and A2 show that one can introduce comparison Geometry via
angle comparison. However, we prefer a “purely” metric approach, even if it is
somewhat illusory. (See [90] for the application of this approach to a “purely”
metric Regge calculus.)

2.5.2 Alexandrov Curvature vs. Wald Curvature

Loosely formulated, the important fact regarding the connection between Wald
and Alexandrov curvatures is that (in the presence of sufficiently many minimal
geodesics) Wald curvature is (essentially) equivalent to Alexandrov curvature or,
slightly more precisely, that inner metric spaces with Wald curvature 	 k satisfy
the condition of having sufficiently many geodesics. (This fact may be viewed as
an extended, weak Hopf–Rinow type theorem.) The formal enouncement of this
result requires yet more technical definitions, which we present below for the sake
of completeness:

Definition 2.12 Let X be an inner metric space and let �pq � X be a minimal
geodesic connecting the points p and q. � is called

1. extendable beyond q if there exists a geodesice� , such that � D e� j. p;q/ and q 2
inte� .

2. almost extendable beyond q if for any " > 0, there exists an r 2 X n f p; qg, such
that �.qI p; r/ < ", where �.qI p; r/ denotes the strong excess

�.qI p; r/ D e.T/

min d. p; r/; d.r; q/
; (2.22)

where T D �.q; p; r/ (and where e.T/, stands, as above, for its excess).

We shall also need the following

Definition 2.13 Let X be as above and let p 2 X. We denote

Jp D fq 2 X j 9Š minimal geodesic �pq almost extendable beyond q:g : (2.23)

We have the following

Theorem 2.18 (Plaut [78, 79]) Let X be an inner metric space of Wald–
Berestovskii curvature 	 �. Then, for any p 2 X, Jp contains a dense Gı set.

Since, by the Baire Category Theorem, the intersection of countably many dense
Gı sets is a dense Gı set, we obtain the following corollary:
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Corollary 2.2 Let X be an inner metric space of Wald–Berestovskii curvature 	 �,
and let p1; p2; : : : 2 X. Then there exist points p0

1; p
0
2; : : : 2 X such that

1. pi is arbitrarily close to pi, for all i;
2. There exists a unique minimal geodesic connecting pi and p0

i.

Moreover, one can take p0
1 D p1.

In other words, given any three points p; q; r in X, there exist points p1; q1; r1
arbitrarily close to them (respectively) such that p1; q1; r1 represent the vertices
of a triangle whose sides are minimal geodesics or, simply put, one can construct
(minimal geodesic) triangles “almost everywhere”.

From the corollary above and from the Toponogov Comparison Theorem we
obtain the announced theorem that establishes the essential equivalence between
Alexandrov and Wald curvature, once the existence of “enough geodesics” is
assured:

Theorem 2.19 (Plaut [78]) Let X be an inner metric space. X is a space of
Alexandrov curvature bonded from below iff for every x 2 X, there exists an open
set U, x 2 U, such that for every y 2 U the set Jy contains a dense Gı set of U.

(For a different formulation of the results above see [79, Corollary 40].)
In view of the result above, it is easy to recognize finitely dimensional spaces

of Wald curvature 	 k in the garb that they are widely known in the modern
terminology, namely Alexandrov spaces. The reader can, therefore, substitute, in the
results in the previous section “Alexandrov space” whenever this is possible—this
is the form in which many of the theorems in question are better known.

However, Wald curvature allows us to discard conditions as are usually used
when employing the Alexandrov triangle comparison, e.g. local compactness, while
still being able to obtain many important theorems, such as the Toponogov Theorem
and the Hopf–Rinow Theorem that we have discussed above, as well as fitting
variants of the Maximal Radius Theorem and of the Sphere Theorems, that we have
only alluded too, unfortunately. For details the reader is invited to consult [78].

2.6 A Metric Approach to Ricci Curvature

In this section we concentrate on the application of the metric approach, and more
precisely of Wald curvature, to the defining Ricci flow for cell complexes and, in
dimension 2, to the development of a fitting metric Ricci flow. Since these problems
were studied in detail in our papers [37] and [89], we present only the main ideas,
and hope that the interested reader will consult the original papers (especially
[89], were a more detailed discussion is contained.16) In consequence, we follow
here the exposition in the much shorter and restricted proceedings paper. However,

16Also, we warn the eventual reader of an unfortunate previously unnoticed typo towards the end
of [37].
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we emphasize whenever possible those correlations with the theoretical material
included in the previous section. Also, a new approach to the problem of the Ricci
flow for PL surfaces, also concordant to the theory in the previous section is also
included.

2.6.1 Metric Ricci Flow for PL Surfaces

Motivated mainly by Perelman’s work, the Ricci flow has become lately17 an
object of active interest and research in Graphics and Imaging. Previously, various
approaches have been suggested, encompassing such methods as classical approxi-
mations of smooth differential operators, as well as discrete, combinatorial methods.

Among these diverse approaches, the most successful so far proved to be the one
based on the discrete Ricci flow of Chow and Luo [24], due to Gu (see, e.g. [43]
and, for more details, [38]). In truth, the paper [89] was largely motivated by our
desire to get a better understanding of the discrete, circle-packing based Ricci flow
of Chow and Luo, and its relation with the Ricci flow for smooth surfaces introduced
by Hamilton [40] and Chow [23].

2.6.1.1 A Smoothing Based Approach

Our approach, as developed in [89] to this problem is to pass from the discrete
context to the smooth one and explore the already classical results known in
this setting, by applying Theorem 2.3. To this end we have first to make a few
observations: One can pass from the PL surfaces to smooth ones by employing
smoothings, defined in the precise sense of PL differential Topology (see [61]).
Since, by Munkres [61, Theorem 4.8], such smoothings are ı-approximations, and
therefore, for ı small enough, also ˛-approximations of the given piecewise-linear
surface S2Pol, they approximate arbitrarily well both distances and angles on S2Pol .
(Due to space restrictions, we do not bring here these technical definitions, but rather
refer the reader to [61].) It should be noted that, while Munkres’ results concern PL
manifolds, they can be applied to polyhedral ones as well, because, by definition,
polyhedral manifolds have simplicial subdivisions (and furthermore, such that all
vertex links18 are combinatorial manifolds). Of course, for different subdivisions,
one may obtain different polyhedral metrics. However, by the Hauptvermutung
Theorem in dimension 2 (and, indeed, for smooth triangulations of diffeomorphic

17In what would have been probably consider to be a strange—not to say bizarre—development
even only a few years ago.
18Recall that the link Lk.v/ of a vertex v is the set of all the faces of St.v/ that are not incident
to v. Here St.v/ denotes the closed star of v, i.e. the smallest subcomplex (of the given simplicial
complex K) that contains St.v/, namely St.v/ D f� 2 St.v/g [ f� j � 6 �g, where St.v/ denotes
the star of v, that is the set of all simplices that have v as a face, i.e St.v/ D f� 2 K j v 6 �g.
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manifolds in any dimension) (see e.g. [61] and the references therein), any two
subdivisions of the same space will be combinatorially equivalent, hence they will
give rise to the same polyhedral metric. It follows from the observations above
that metric quadruples on SPol are also arbitrarily well approximated (including
their angles) by the corresponding metric quadruples) on the smooth approximating
surfaces Sm. But, by Theorem 2.3, KW;m. p/—the Wald metric curvature of Sm, at
a point p—equals the classical (Gauss) curvature K. p/. Hence the Gauss curvature
of the smooth surfaces Sm approximates arbitrarily well the metric one of SPL (and,
as in [16], the smooth surfaces differ from polyhedral one only on (say) the 1

m -
neighborhood of the 1-skeleton of SPol—see also the discussion below). Moreover,
this statement can be made even more precise, by assuring that the convergence is in
the Hausdorff metric. This follows from results of Gromov (see e.g. [92] for details).

We can now introduce the metric Ricci flow: By analogy with the classical flow

dgij.t/

dt
D �2K.t/gij.t/ : (2.24)

we define the metric Ricci flow by

dlij
dt

D �2Kilij ; (2.25)

where lij D lij.t/ denote the edges (1-simplices) of the triangulation (PL or piecewise
flat surface) incident to the vertex vi D vi.t/, and Ki D Ki.t/ denotes the Wald
curvature at the same vertex, where, as above, we employ the discrete version of
Wald’s curvature defined by Formula (2.17).

Remark 2.22 Before continuing further on, it is important to remark the asymmetry
in Eq. (2.25), that is caused by the fact that the curvature on two different vertices
acts, so to say, on the same edge. However, passing to the smooth case, is that
the asymmetry in the metric flow that we observed above disappears automatically
via the smoothing process. To this end it is important to note that while the
formula of KW.v/ involves the edges incident to v, it is—precisely by this incidence
criterion—a curvature attached to the vertex v. (For further details see [90] as well
as Sect. 2.6.1.2 below.)

We also consider the close relative of (2.24), the normalized flow

dgij.t/

dt
D .K � K.t//gij.t/ ; (2.26)

and its metric counterpart

dlij
dt

D . NK � Ki/lij ; (2.27)

where K; NK denote the average classical, respectively Wald, sectional (Gauss)
curvature of the initial surface S0: K D R

S0
K.t/dA

ı R
S0
dA, and NK D 1

jVj
PjVj

iD1 Ki,
respectively. (Here jVj denotes, as usually, the cardinality of the vertex set of SPol.)
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An Approximation Result

The first result that we can bring is a metric curvature version of classical result of
Brehm and Kühnel [16] (where the combinatorial/defect definition of curvature for
polyhedral surfaces is used.

Proposition 2.6 Let S2Pol be a compact polyhedral surface without boundary. Then
there exists a sequence fS2mgm2N of smooth surfaces, (homeomorphic to S2Pol),
such that

1. a. S2m D S2Pol outside the
1
m-neighborhood of the 1-skeleton of S

2
Pol,

b. The sequence fS2mgm2N converges to S2Pol in the Hausdorff metric;
2. K.S2m/ ! KW.S2Pol/, where the convergence is in the weak sense.

Remark 2.23 As we have already noted above, the converse implication—namely
that Gaussian curvature K.˙/ of a smooth surface ˙ may be approximated
arbitrarily well by the Wald curvatures KW.˙Pol;m/ of a sequence of approximating
polyhedral surfaces ˙Pol;m—is quite classical.

For a more in-depth discussion and analysis of the convergence rate in the
proposition above, see [90].

Remark 2.24 In view of the equivalence of the Alexandrov and Wald curvatures,
one can view the result above as a elementary, restricted to dimension 2, but on
other hand a more specific and constructive version of Theorem 2.11.

As already stressed, the “good”, i.e. metric and curvature, approximations results
mentioned above, imply that one can study the properties of the metric Ricci flow
via those of its classical counterpart, by passing to a smoothing of the polyhedral
surface. The use of the machinery of metric curvature considered has the benefit that,
by using it, the “duality” between the combinatorics of the packings (and angles) and
the metric disappears: The flow becomes purely metric and, moreover, the curvature
at each stage (i.e. for every “t”) is given—as in the smooth setting—in an intrinsic
manner, that is in terms of the metric alone.

We bring here the most important properties that follow immediately using this
approach (for further results and additional details, see [89]).

Existence and Uniqueness

The first result that we should bring here is the following

Proposition 2.7 Let .S2Pol; gPol/ be a compact polyhedral 2-manifold without
boundary, having bounded discrete Wald curvature. Then there exists T > 0

and a smooth family of polyhedral metrics g.t/; t 2 Œ0;T�, such that
� @g

@t D �2KW.t/g.t/ t 2 Œ0;T� I
g.0/ D gPol :

(2.28)

(Here KW.t/ denotes the Wald curvature induced by the metric g.t/.)
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Moreover, both the forwards and the backwards (when existing) Ricci flows have
the uniqueness of solutions property, that is, if g1.t/; g2.t/ are two Ricci flows on
S2Pol, such that there exists t0 2 Œ0;T� such that g1.t0/ D g2.t0/, then g1.t/ D g2.t/,
for all t 2 Œ0;T�.
Here, by smooth family of polyhedral surfaces we mean family of polyhedral
manifolds, whose edge lengths vary smoothly.

Remark 2.25 An basic critique of the direct approach to the metrization of the
Ricci flow adopted in Formula (2.27) is its lacks of symmetry, a deficiency that
presumably will not not disappear even when passing to the limit. A natural way of
symmetrizing the flow is (using the same notation as before):

dlij
dt

D �Ki C Kj

2
lij ; (2.29)

where in this case, Ki;Kj denote the Wald curvatures at the vertices vi and vj,
respectively. It is worthwhile to remark here that, in fact, this expression appears
also in the practical method of computing the combinatorial curvature, where it is
derived via the use of a conformal factor (see [38]).

Beyond the theoretical importance, the existence and uniqueness of the backward
flow would allow us to find surfaces in the conformal class of a given circle
packing (Euclidean or Hyperbolic). More importantly, the use of purely metric,
Wald curvature based, approach adopted, rather than the combinatorial (and metric)
approach of [24], allows us to give a preliminary and purely theoretical at this point,
answer to Question 2, p. 123, of [24], namely whether there exists a Ricci flow
defined on the space of all piecewise constant curvature metrics (obtained via the
assignment of lengths to a given triangulation of 2-manifold). Since, by the results
of Hamilton’s [40] and Chow [23], the Ricci flow exists for all compact surfaces,
it follows that the fitting metric flow exists for surfaces of piecewise constant
curvature. In consequence, given a surface of piecewise constant curvature (e.g. a
mesh with edge lengths satisfying the triangle inequality for each triangle), one can
evolve it by the Ricci flow, either forward, as in the works discussed above, to obtain,
after the suitable area normalization, the polyhedral surface of constant curvature
conformally equivalent to it; or backwards (if possible) to find the “primitive” family
of surfaces—including the “original” surface obtained via the backwards Ricci flow,
at time T—conformally equivalent to the given one.

Convergence Rate

A further type of result, quite important both from the theoretical viewpoint and for
computer-driven applications, is that of the convergence rate (see [37, 38] for the
precise definition).

Since we already know that the solution exists and it is unique (see also the
subsection below for the nonformation of singularities), by appealing to the classical
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results of [40] and [23], we can control the convergence rate of the curvature, as
follows:

Theorem 2.20 Let .S2Pol; gPol/ be a compact polyhedral 2-manifold without bound-
ary. Then the normalized metric Ricci flow converges to a polyhedral surface of
constant metric curvature. Moreover, the convergence rate is

1. exponential, if NK D NKW < 0 (i.e. �.S2Pol/ < 0) ;
2. uniform; if NK D 0 (i.e. �.S2Pol/ D 0);
3. exponential, if NK > 0 (i.e. �.S2Pol/ > 0).
Here, by a polyhedral surface of constant curvature we mean a polyhedral
2-manifold (without boundary) where curvature is evenly spread among the vertices
(i.e. the only significant vertices for the computation of Wald curvature).

Singularities Formation

Another extremely important aspect of the Ricci flow, both smooth or discrete, is
that of singularities formation. Again, a certain (theoretical, at least) advantage of
the proposed method presents itself. Indeed, by Chow and Luo [24, Theorem 5.1],
for compact surfaces of genus 	 2, the combinatorial Ricci flow evolves without
singularities. However, for surfaces of low genus no such result exists. Indeed,
in the case of the Euclidean background metric, that is the one of greatest
interest in graphics, singularities do appear. Moreover, such singularities are always
combinatorial in nature and amount to the fact that, at some t, the edges of at least
one triangle do not satisfy the triangle inequality. These singularities are removed
in heuristic manner. However, by Hamilton [40, Theorem 1.1], the smooth Ricci
flow exists at all times, i.e. no singularities form. From the considerations above, it
follows that the metric Ricci flow also exists at all times without the formation of
singularities.

Embeddability in R
3

The importance of the embeddability of the flow is not solely theoretical (e.g. if
one considers the problem of the Ricci flow for surfaces of piecewise constant
curvature), as it is essential in Imaging (see [3, 99]), and of high importance in
Graphics. Indeed, even our very capability of seeing (grayscale) images is nothing
but a translation, in the field of vision, of the embeddability of the associated
height-surface into R

3. (Or, perhaps one should view the mathematical aspect as a
formalization of a physical/biological phenomenon. . . ) We should note here that in
this respect there exists a certain (mainly theoretical, at this point in time) advantage
of our proposed metric flow over the combinatorial Ricci flow [38, 43]. Indeed, in the
combinatorial flow, the goal is to produce, via the circle packing metric, a conformal
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mapping from the given surface to a surface of constant (Gauss) curvature. Since in
the relevant cases (see, e.g. [38]) the surface in question is a planar region (usually
a subset of the unit disk), its embeddability (not necessarily isometric) is trivial.
Moreover, in the above mentioned works, there is no interest (and indeed, no need)
to consider the (isometric) embeddability of the surfaces S2t (see below) for an
intermediate time t ¤ 0;T.

The tool that allows us to obtain this type of results is making appeal (again)
to ı-approximations, in combination with classical results in embedding theory.
Indeed, by Munkres [61, Theorem 8.8] a ı-approximation of an embedding is
also an embedding, for small enough ı. Since, as we have already mentioned,
smoothing represent ı-approximations, the possibility of using results regarding
smooth surfaces to infer results regarding polyhedral embeddings is proven. (The
other direction—namely from smooth to PL and polyhedral manifolds—follows
from the fact that the secant approximation is a ı-approximation if the simplices
of the PL approximation satisfy a certain nondegeneracy condition—see [61,
Lemma 9.3].) We state here the relevant facts:

Let S20 be a smooth surface of positive Gauss curvature, and let S2t denote the
surface obtained at time t from S20 via the Ricci flow. (For all omitted background
material (proofs, further results, etc.) we refer to [41].)

Proposition 2.8 Let S20 be the unit sphere S
2, equipped with a smooth metric g,

such that �.S20/ > 0. Then the surfaces S2t are (uniquely, up to a congruence)
isometrically embeddable in R3, for any t 	 0.

In fact, this results can be slightly strengthened as follows:

Corollary 2.3 Let S20 be a compact smooth surface. If �.S20/ > 0, then there exists
some t0 	 0, such that the surfaces S2t are isometrically embeddable in R

3, for any
t 	 t0.

In stark contrast with this positive result regarding surfaces uniformized by the
sphere, for (complete) surfaces uniformized by the hyperbolic plane we only have
the following negative result:

Proposition 2.9 Let .S20; g0/ be a complete smooth surface, and consider the
normalized Ricci flow on it. If �.S20/ < 0, then there exists some t0 	 0, such
that the surfaces S2t are not isometrically embeddable in R

3, for any t 	 t0.

2.6.1.2 An Alexandrov Surfaces Based Approach

After a completed version of our paper [89] was essentially finished, we noted that
there are other works regarding the Ricci flow on surfaces with conical singularities,
and especially Richards paper [80] on the smoothing of (compact) Alexandrov
surfaces via the Ricci flow. We would like to stress that our approach as developed
is different from Richard’s work, being much more direct and, in a sense, more
elementary. Moreover, we should also accentuate the fact that our method facilitates
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concrete, computational treatment of the flow. On the other hand, Richard’s method
uses the very Ricci flow for smoothing, and makes no appeal to approximations,
making it much more alluring for theoretical ends. However, its proof is far from
trivial and we don’t even sketch it here, since it would take us to far afield, and the
interested reader is invited too study Richard’s paper.19

More important to our purpose here, Richard’s method also provides us with a
smoothing of the given PL surface, hence all the theoretical results in the previous
section also follow via this route.

However, Richard’s method of proof seems to be adaptable in order to solve the
following

2.1 Devise a purely metric flow.
Surely, such a flow, independent both from smoothing and to the advanced (and

somewhat abstract) mathematical apparatus of [80] would provide a powerful and
flexible tool for many Imaging and graphics tasks, akin to the one based on Chow
and Luo’s paper (see the relevant bibliography mentioned above).

2.6.1.3 An Application: Smoothable Metrics on Cube Complexes

We illustrate our belief in the many possible applications of the metric Ricci flow
with only one such example (due to space and time restrictions), appertaining to the
corpus of “Pure” Mathematics.

The following seemingly well known problem in the theory of cube complexes20

was posed to the author by Joel Haas [39], together with the basic idea of the first
part of the proof, for which the author is deeply grateful.

Let C be a cube complex, satisfying the following conditions:

1. C is negatively curved (i.e. such that #vQ 	 4, for all vertices v,where #vQ
denotes the number of cubes incident to the vertex v;

2. The link lk.v/ of any vertex is a flag complex, i.e. a simplicial complex such
that any 3-arcs closed curve bounds a triangle (2-simplex), i.e. no such curve
separates without being a boundary.21

Question 1 Does there exist a Riemannian metric g (on C ) such that Kg � K,
where K denotes the comparison (Alexandrov) curvature of C ?

19Note that to apply Richard’s result we have only to consider our surfaces as an Alexandrov
surface having curvature bounded from below, condition that is, evidently, satisfied. (In this regard
and for a discussion on the definition of Wald/Alexandrov curvature for PL surfaces, see [89,
pp. 26–27].
20For a formal definition and more details see, e.g. [82].
21Alternatively, this condition may be expressed either as lk.v/ “has no missing simplices (Sageev
[82]), or as “a nonsimplex contains a non edge” (W. Dicks, see [11]).
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In other words: Does there exist a smoothing of .M; g/ (i.e. Riemannian manifold)
of a given cube complex C (that has a manifold structure), such that K � Kg?
Evidently, an important particular case would be that “cubical version of PL
approximations”), i.e. that of “cubulations” of a (given) Riemannian manifold.

Remark 2.26 The similar problem can be also posed, of course, for positively
curved complexes (i.e. such that #vQ � 4). However, we address here only the
negatively curved case. The similar results for polyhedral manifolds of nonnegative
curvature was also proved recently—see [51].22

Evidently, the answer to Question 1 above is “No”, even if C is actually a
manifold, since it is not always possible to recover the Riemannian metric from
the discrete (“cubical”) one. (Recall that each edge is supposed to be of length 1.)
However, in the special case of 3-dimensional cube complexes the question has a
positive answer.

We sketch below the proof:

1. Away from the vertices, i.e. around the edges,23 one can use a method developed
by Gromov and Thurston [32] to produce a generalized type of branched cover (in
any dimension). More precisely, (a) construct negatively curved conical surfaces
of revolution, with vertex at a vertex v and with apex angle ˛ D 2�=n, where
n D #vQ. Each such cone can be canonically mapped upon a Euclidean cone of
apex angles �=2 ; then (b) glue the outcome of this process to the result of Step
(2) below.

2. Around the vertices excise an "-ball neighborhood B" of v. On the boundary of
B", i.e. on the sphere S" one has the natural triangulation by the intersections of
S" with the cubes of C incident with v. Moreover, the curvature of the vertices
of this triangulation will be K" � c="2, where c is some constant.

However, while the gluing itself is trivial, one still has to ensure that the result
is indeed endowed with a Riemannian metric. For this one has to go through Step
3 of the construction:

3. Smoothen the ball B". In general dimension this represents a daunting problem.
Indeed, even in dimension 3, Ricci flow—who represents a natural candidate for
smoothing with control of curvature—is yet not attainable, since we can offer,
at this point in time, no PL (metric) Ricci flow. However, due to Perelman’s
resolution of the Poincaré conjecture, in dimension 3 suffices to smoothen the
boundary S". It is at this point where the method described in Sect. 2.3 is applied,
producing the required smooth ball QS", that has the same curvature as the PL24

one S".

22The author would like to thank the anonymous reviewer for bringing to his attention this paper.
23Obviously, in the interiors of the faces the metric is already smooth.
24But not piecewise Euclidean.
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2.6.2 PL Ricci for Cell Complexes

Following [37], we briefly review here a definition of a metric Ricci curvature for
PL manifolds in dimension higher than 2, as well as its immediate consequence, a
method that does not make appeal to smoothings, as we did in the previous section.

2.6.2.1 The Definition

While the results in the preceding sections might be encouraging, one would still
like to recover in the metric setting a “full” Ricci curvature, namely one that holds
for 3- and higher dimensional manifolds, and not just in the degenerate case of
surfaces. Our approach (as developed in [37]) is to start from the following classical
formula:

Ric.e1/ D Ric.e1; e1/ D
nX

iD2
K.e1; ei/ : (2.30)

for any orthonormal basis fe1; � � � ; eng, and where K.e1; ej/ denotes the sectional
curvature of the 2-sections containing the directions e1.

To adapt this expression for the Ricci curvature to the PL case, we first have to be
able to define (variational) Jacobi fields. In this we heavily rely upon Stones’s work
[101, 102]. Note, however, that we do not need the full strength of Stone’s technical
apparatus, only the capability determine the relevant two sections and, of course, to
decide what a direction at a vertex of a PL manifold is.

We start from noting that, in Stone’s work, combinatorial Ricci curvature is
defined both for the given simplicial complex T , and for its dual complex T �
(see, e.g. [69, pp. 55–56]). For the dual complex, cells—playing here the role of the
planes in the classical setting of which sectional curvatures are to be averaged—
are considered. Unfortunately, Stone’s approach for the given complex, where one
computes the Ricci curvature Ric.�; �1 � �2/ of an n-simplex � in the direction
of two adjacent .n � 1/-faces, �1; �2, is not natural in a geometric context (even if
useful in his purely combinatorial one), except for the 2-dimensional case, where
it coincides with the notion of Ricci curvature in a direction. However, passing
to the dual complex will not restrict us, since .T �/� D T and, moreover—and
more importantly—considering thick triangulations enables us to compute the more
natural metric curvature for the dual complex and use the fact that the dual of a
thick triangulation is thick (for details, see [37]). Recall that thick (also called fat)
triangulations are defined as follows:

Definition 2.14 Let � � R
n ; 0 � k � n be a k-dimensional simplex. The thickness

(or fatness) ' of � is defined as being:

'.�/ D dist.b; @�/

diam �
; (2.31)
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where b denotes the barycenter of � and @� represents the standard notation for the
boundary of � (i.e the union of the .n � 1/-dimensional faces of �). A simplex � is
'0-thick, for some '0 > 0, if '.�/ 	 '0. A triangulation (of a submanifold of Rn)
T D f�igi2I is '0-thick if all its simplices are '0-thick. A triangulationT D f�igi2I

is thick if there exists '0 	 0 such that all its simplices are '0-thick.
Keeping in mind the notions and facts above, we can now return to the definition

of Ricci curvature for simplicial complexes: Given a vertex v0 in the dual complex,
corresponding to a n-dimensional simplicial complex, a direction at v0 is just an
oriented edge e1 D v0v1. Since there exist precisely n 2-cells, c1; : : : ; cn , having
e1 as an edge and, moreover, these cells form part of n relevant variational (Jacobi)
fields (see [101]), the Ricci curvature at the vertex v, in the direction e1 is simply

Ric.v/ D
nX

iD1
K.ci/ ; (2.32)

where we define the sectional curvature of a cell c in the following manner:

Definition 2.15 Let c be a cell with vertex set Vc D fv1; : : : ; vpg. The embedding
curvature K.c/ of c is defined as:

K.c/ D min
fi;j;k;lg	f1;:::;pg

�.vi; vj; vk; vl/ : (2.33)

Remark 2.27 Note that by choosing to work with the dual complex we have
restricted ourselves largely to considering solely submanifolds of RN , for some N
sufficiently large. However, in the case of 2-dimensionalPL manifolds this does nor
represent restriction, since, by a result of Burago and Zalgaller [18] (see also [88])
such manifolds admit isometric embeddings in R

3.

Remark 2.28 Evidently, the definition above presumes that cells in the dual com-
plex have at least 4 vertices. However, except for some utterly degenerate (planar)
cases, this condition always holds. Still, even in this case Ricci curvature can be
computed using a slightly different approach—see the following remark.

Remark 2.29 It is still possible (by dualization) to compute Ricci curvature accord-
ing, more or less, to Stone’s ideas, at least for the 2-dimensional case. Indeed,
according to [102],

Ric.�; �1 � �2/ D 8n �
2n�1X

jD1
fjˇjj j ˇj < �1 or ˇj < �2I dimˇj D n � 2g : (2.34)

For details and implications of this alternative approach, see [37].
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2.6.2.2 Main Results

The first results one wants to ascertain are those ensuring the convergence of the
newly defined Ricci curvature. These are quite straightforward, so here we content
ourselves with simply stating them (for further details, see [37]).

Theorem 2.21 Let T be a thick simplicial complex, and let T � denote his dual.
Then

lim
mesh.T /!0

Ric.�/ D lim
mesh.T �/!0

C � Ric�.��/ ; (2.35)

where � 2 T and where �� 2 T � is (as suggested by the notation) the dual of � .

Theorem 2.22 Let Mn be a (smooth) Riemannian manifold and let T be a thick
triangulation of Mn. Then

RicT ! C1 � RicMn ; as mesh.T / ! 0 ; (2.36)

where the convergence is the weak convergence (of measures).
Beyond these convergence and approximations results, one would like to address

deeper issues. Indeed, having introduced a metric Ricci curvature for PL manifolds,
one naturally wishes to verify that this represents a proper notion of Ricci curvature,
and not just an approximation of the classical notion. According to the synthetic
approach to Differential Geometry, a proper notion of Ricci curvature should
satisfy adapted versions of the main, essential theorems that hold for the classical
notions. The first and foremost among such theorems is the Bonnet–Myers Theorem
and, as expected, fitting versions for combinatorial cell complexes and weighted
cell complexes were proven by Stone [101–103]. and Forman [26]. Moreover,
the Bonnet part of the Bonnet-Myers theorem, that is the one appertaining to
the sectional curvature, was also proven for PL manifolds, again by Stone—see
[100, 103].

In [37] we proved a series of increasingly more general variants of the Bonnet–
Myers Theorem, with proofs adapted to the various settings and/or notions of
curvature (metric, combinatorial, Alexandrov comparison). Here we bring only two
more representative ones.

Theorem 2.23 (PL Bonnet–Myers-Metric) Let Mn
PL be a complete, n-

dimensional PL, smoothable manifold without boundary, such that

(i) There exists d0 > 0, such that mesh.Mn
PL/ � d0;

(ii) KW.Mn
PL/ 	 K0 > 0 ,

where KW.Mn
PL/ denotes the sectional curvature of the “combinatorial 2-

sections”.
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Then Mn
PL is compact and, moreover

diam.Mn
PL/ � �p

K0
: (2.37)

Unfortunately, determining whether a general PL complex has Wald curvature
bounded from below can be, in practice, a daunting task. However, in the special
case of thick complexes in R

N , for some N one can determine a simple criterion as
follows:

Theorem 2.24 (PL Bonnet-Myers-Thick Complexes) Let M D Mn
PL be a com-

plete, connected PL manifold thickly embedded in some R
N, such that KW .M2/ 	

K0 > 0, where M2 denotes the 2-skeleton of M. Then Mn
PL is compact and, moreover

diam.M2
PL/ � �p

K0
: (2.38)

Remark 2.30 The embedding condition in the theorem above necessitates, perhaps,
further elaboration. One can, for instance, start with a (PL-)submanifold of R

N ,
endowed with a thick triangulation (as it is the case in Graphics and Imaging, for
instance). Alternatively, one can begin with an abstract metric PL manifold (recall
that thickness is a purely metric concept—see Definition 2.14 above and embed it
isometrically, or even just quasi-isometrically in R

N . Moreover, one can be given a
combinatorial PL manifold, i.e. such that the lengths of all the edges equals 1, and
consider a quasi-conformal embedding of this object.

2.6.2.3 Scalar Curvature and a Comparison Theorem

Up to this point of we were concerned, in this section, solely with Ricci curvature.
However, since Ricci curvature is the mean of sectional curvatures we had to
consider them too (and, in fact, even more so in view of our definition of Ricci
curvature for PL complexes). We did not discuss, however, scalar curvature. It is
only fitting, therefore, for us to add a number of observation regarding this invariant,
in particular since a immediate, but significant result presents itself.

Of course, we first have to define the scalar curvature KW.M/ of a PL manifold
M. In light of our preceding discussion and results, the following definition is quite
natural:

Definition 2.16 Let M D Mn
PL be an n-dimensional PL manifold (without

boundary). The scalar metric curvature scalW of M is defined as

scalW.v/ D
X

c

KW.c/; (2.39)

the sum being taken over all the cells of M� incident to the vertex v of M�.
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Remark 2.31 Observe that the definition of scalar curvature of M is defined, some-
what counterintuitively, by passing to its dual M�. However, this is consistent with
our approach to Ricci curvature (and also similar to Stone’s original approach—see
the discussion above).

From this definition and our previous results (see [37]), we immediately25

obtain, the following generalization of the classical curvature bounds comparison
in Riemannian geometry:

Theorem 2.25 (Comparison Theorem) Let M D Mn
PL be an n-dimensional PL

manifold (without boundary), such that KW.M/ 	 K0 > 0, i.e. K.c/ 	 K0, for any
2-cell of the dual manifold (cell complex) M�. Then

KW S K0 ) RicW S nK0 : (2.40)

Moreover

KW S K0 ) scalW S n.n C 1/K0 : (2.41)

Remark 2.32

1. Inequality (2.41) can be formulated in the seemingly weaker form:

RicW S nK0 ) scalW S n.n C 1/K0 : (2.42)

2. Note that in all the inequalities above, the dimension n appears, rather then
n � 1 as in the smooth, Riemannian case (hence, for instance one has in (2.41),
n.n C 1/K0, instead of n.n � 1/K026 as in the classical case). This is due to our
definition (2.32) of Ricci (and scalar) curvature, via the dual complex of the given
triangulation, hence imposing standard and simple combinatorics, at the price of
allowing only for such weaker bounds.27

2.7 Metric Curvatures for Metric Measure Spaces

While divagating somewhat from our professed goal, namely that of studying metric
curvatures, it is impossible, especially in the context of this volume, not to mention
the Ricci curvature for metric measure spaces, either as it was developed by Lott,
Sturm and Villani [56, 104]28 (and its further elaborations [14]), or in the form

25And, in truth rather trivially, since the result holds, regardless of the specific definition for the
curvature of a cell.
26But, on the other hand, this holds even if n D 3!. . .
27Without affecting the analogue of the Bonnet–Myers Theorem—see Sect. 2.2 above.
28See also [105].
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pioneered by Ollivier [70] (and its further developments, mostly for graphs—due
to Yau, Jost and their collaborators [46, 52], but also for polyhedral surfaces [55].29)

Let us begin with the following observation: However simple and alluring the
probabilistic approach may appear, to the geometer it seems somewhat unnatural,
and even more so to those whose interest is drove mainly by possible implemen-
tations, e.g. people working in information geometry, image processing, manifold
learning, etc.

Therefore, without diminishing whatsoever, the extensive theoretical merits of
the Lott–Sturm–Villani approach, it still is a natural desire to find a new metric
that encapsulates the behaviors of both the original metric and of the given
measure. Here the accent should be understood as being placed on “simple”, and
by simple, we mean a “(geo-)metric”, that is a metric that, while incorporating
the measure, can still be investigated with very direct geometric methods, such
as the ones discussed in detail above, or like the more analytic ones that we
shall describe below. This is in some contrast to other means of “coalescing”
metric-and-measure into a unique metric, such as the Gromov–Prokhorov and
Gromov–Hausdorff–Prokhorov distances (see, e.g. [105] for these and also for some
variations, as well as their “practical” versions (such as those in [58, 59]).

2.7.1 The Basic Idea: The Snowflaking Operator

We begin by introducing a number of definitions and facts required in the sequel.
(As general bibliographical references for the material in this subsection, including
missing proofs, we have used [42, 96, 97].)

2.7.1.1 Quasimetrics

We begin with the following basic definition:

Definition 2.17 Let X be a nonempty set. q W X�X ! RC is called a K-quasimetric
iff

1. q.x; y/ D 0 iff x D y;
2. q.x; y/ D q.y; x/, for any x; y 2 X;
3. q.x; y/ � K.q.x; z/C q.z; y//; for any x; y; z 2 X .

Remark 2.33 Some authors replace condition (2) above by the following weaker
one: There exists C0 	 1 such that q.x; y/ � C0q.y; x/, for any x; y 2 X.

29When mentioning generalized curvatures for surfaces, one can not fail to mention Morgan’s [60]
and his students’ [25] work on “weighted” surfaces and curves.
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Remark 2.34 A number of brief comments:

• A quasimetric is not necessarily a metric (while obviously, any metric is a
quasimetric with K D 1).

Counterexample 2.2 The following counterexample is not only the basic one, it
is—as we shall shortly see—very important to us in the sequel:

qs.x; y/ D .d.x; y//s ; (2.43)

where d is a metric, is a quasimetric for any s > 0, but not, in general, a metric,
for s > 1 (but it still is for 0 < s < 1).

• Quasimetric balls can be defined precisely like metric balls, and the constitute
the basis for a topology on X.

• For the next remark we need a definition that may appear a bit superfluous at this
point, but it will prove to be highly relevant later on:

Definition 2.18 Let .X; q/ and .Y; 	/ be quasimetric spaces, and let f W X ! Y
be an injection. f is called �-quasisymmetric, where � W Œ0;1/ ! Œ0;1/ is a
homeomorphism iff

	. f .x/; f .a//

	. f .x/; f .b//
� �

�
q.x; a/

q.x; b/

�

; (2.44)

for any distinct points x; a; b 2 X.
Intuitively, while quasisymmetric mappings may change the size of balls quite

dramatically, they do not change very much their shape. This fact is important in
the next proposition (see, e.g. [96] for its proof), that shows that whereas, as
we noted above, qs is not a metric, the canonical injection .X; d/ ,! .X; qs/ is
quasisymmetric.

Proposition 2.10 Let q be a K-quasimetric on X. Then, there exists s0 D s0.K/
such that, for any 0 < s � s0 there exists a metric ds on X, and a constant
C D C.s;K/ 	 1, such that

1

C
qs.x; y/ � ds.x; y/ � Cqs.x; y/ ; (2.45)

where qs is as in (2.43), i.e. qs.x; y/ D .q.x; y//s .

Remark 2.35 If q is a K-quasimetric (K 	 1), then qs is bilipschitz equivalent to
ds, for any s > 0, such that .2K/2s � 2, that is for any s > 0 such that

s � 1

2
.log2 K C 1/ :



104 E. Saucan

Moreover, the bilipschitz constant can be chosen to be

C D .2K/2s :

The importance of the proposition above (augmented by the precise estimates
in its succeeding remark) is quite evident, but we would still like to emphasize
its relevance for our goal, namely that of combining the metric and measure into
a new metric, that is simple yet unifying of the metric and measure properties.
What we have succeeded to show so far is that given a quasimetric qd obtained
by snowflaking from a metric d, one can find a metric quantifiable close to it.
Therefore, such metric curvatures as, say, Haantjes curvature, can be defined for
(curves in) quasimetric spaces via those of the new metric ds. The properties
of the new metric curvature �H;ds are clearly close to those of �H;d (where the
notation is, we hope, self-explanatory). However, we postpone a more detailed
comparative analysis for future work. Also, instead of choosing to incorporate
the new metric in the Haantjes curvature (that functions as geodesic curvature),
one can as well use it to compute a fitting Wald curvature (as a metric analogue
of sectional curvature).

We still have, however, to be able to produce enough expressive quasimetrics.
Here, by “expressive”, we mean quasimetrics that not only approximate the
original metric, but also incorporate, according the our goal detailed above, as
faithful (or significantly) as possible the given measure as well. It turns out that,
again, this is quite standard and easy, as we shall see in the next subsection.

2.7.1.2 From Doubling Measures to quasimetrics

We first remind the reader the following basic definition:

Definition 2.19 Let .X; d; �/ be a metric measure space X is called doubling iff the
measure� itself is doubling, i.e. iff there exists a constant D such that, for any x 2 X
and any r > 0,

� .BdŒx; 2r�/ � D� .BdŒx; r�/ : (2.46)

(Here BdŒx; r� denotes—as it standardly does—the closed ball of radius r, in the
metric d.) A metric measure space .X; d; �/, where � is doubling is sometimes
called of homogeneous type.

For the record, a metric measure space is a triple X D .X; d; �/ where .X; d/ is
a metric Polish space30 (i.e. complete and having a countable base), and � is a Borel
measure on X.

30At least, this is the usual convention.



2 Metric Curvatures Revisited: A Brief Overview 105

Remark 2.36 If .X; d; �/ is doubling, then it admits atoms, i.e. points of positive
mass, only at isolated points.

Remark 2.37 The notion of doubling measures is, in fact, intrinsically related to
that of curvature, more precisely with that of Ricci curvature: Any Riemannian
manifold of nonnegative Ricci curvature is doubling (with respect to the volume
measure)—see, e.g. [74]. (Indeed, it may be that this case represents one of the
original motivations for studying doubling spaces.) Moreover, this implication
is also preserved for the generalized Ricci curvature of Lott-Villani and Sturm
(see, [105]).

We have now the necessary ingredient that allows us to construct the desired
quasimetric, starting from a metric and a doubling measure: For any s > 0, we
define the quasimetric q�;s as

q�;s.x; y/ D �
� .BŒx; d.x; y/�/C � .BŒy; d.x; y/�/

�s
: (2.47)

(This can be written in compact form as q�;s.x; y/ D �
�.Bx;y/

�s
, where Bx;y D

BŒx; d.x; y/� [ BŒy; d.x; y/�.)

Example 2.3 If X D R
n, with � � Voln, and if s D 1=n, then q�;s � const � dEucl.

(In particular, for n D 2, q�;s D
p
�

2
dEucl .)

Remark 2.38 For X D R
n, one can define q�;s.x; y/ simply by

q�;s.x; y/ D
�

�

�

BŒm;
x C y

2
�

��s

;

where m denotes the midpoint of the segment xy. However, in the general case, and
in particular for graphs, one has to use the more general expression (2.47).

Note that, if K is the quasimetric constant of q�;s, then K D K.�; s/.
Also, by Proposition 2.10, there exists s0 D s0.�/ > 0, such that q�;s is

bilipschitz equivalent to a metric d�;s, for any 0 < s � s0. This fact will play a
crucial role in the sequel, as already hinted.

Remark 2.39 Obviously, the geometry induced by the quasimetric q�;s, and a
fortiori by the metric d�;s, will diverge widely from the geometry given by the
original metric d. This is most evident in the properties of the “new” geodesics,
in comparison with the “old” ones (e.g. when X D R

n equipped with the standard
Euclidean metric and with � being the volume element.) However, the deformation
of the geometry produced by (2.47) is controlled, and many essential properties are
preserved. (For further details, see [96, 97].)

Remark 2.40 To be certain, one would like to explore the relevance of the
“snowflaking” above to Imaging, etc. While further applications will be discussed
below (see Theorems 2.28 and 2.30), even the very definition might prove to be
useful, for instance in texture analysis and segmentation. In the case of images the
substrate distance d can be chosen to be the preferred discrete distance (Euclidean,
L1, etc.) For the measure of the balls BŒx; d.x; y/� one can settle, of course, just
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for the d-area. However, more interesting and relevant for textures measures
present themselves, such as the Hausdorff measure (texture are viewed as fractals,
sometimes) or the energy (of a texton).

As far as the choice of the points x and y is concerned, one possible (typical)
choice would be the centers of adjacent neighborhoods or textons.

Clearly, in this case, one take q�;s.x; y/ to be
�
�
�
BŒm; xCy

2
�
��s

, where m denotes

the midpoint of the segment xy, even if d is not the Euclidean distance. However,
this will not be true when working with (communication) networks.

Also, the relevant parameters s have to be chosen such that s � s0, where s0
should be determined from the proof of Proposition 2.10, as restricted to the given
specific, concrete context.

Unfortunately, the existence of the doubling measure required in producing the
snowflaked quasimetrics may prove to be a quite daunting task (to say nothing about
the lesser degree of geometric intuitiveness we are endowed with, in comparison
with our grasp of the distance). Luckily enough, a simpler, purely metric condition
exists that is, essentially, equivalent to that of doubling measure, at least as far as
compete spaces are concerned. More precisely, we have the following

Definition 2.20 A metric space .X; d/ is called doubling iff there exists D1 	 1,
such that any ball in X, of radius r, can be covered by at most D1 balls of radius r=2.

(Obviously, there is nothing special about r=2, and the metric doubling condition
can be formulated in terms of general sets of bounded diameter.)

Remark 2.41 Clearly, the metric and measures arising in Imaging and Vision are
(quite trivially) doubling.

As expected (and alluded to above), there exists a connection between the notions
of doubling metric and doubling measure. More precisely, we have the following

Lemma 2.2 Let .X; d/ be a metric space such that there exists a doubling measure
� on X. Then .X; d/ is doubling (as a metric space).

(A proof of this fact can be found in [42] or [96].)
The converse statement does not hold in general, a counterexample being

.Q; deucl/ (see [42, p. 103]). However, it does hold for the important case of complete
spaces:

Theorem 2.26 (Luukkainen–Saksman [57]) Let .X; d/ be a doubling, complete
metric space. Then X carries a doubling measure.

The following consequence since it obviously includes the important particular
case of finite graphs:

Corollary 2.4 Any compact, doublingmetric spaces carries a doubling measure�.
The corollary above obviously holds for finite graphs.
Before we formulate the important theorem below, we give, for convenience, the

following definition:

Definition 2.21 If .X; d/ is a metric space, then the metric space .X; d"/; 0 < " < 1,
is called a snowflaked version of .X; d/.
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Theorem 2.27 (Assouad [5, 6]) Let .X; d/ be a doubling metric space. Then, for
each 0 < " < 1, there exists N, such that its "-snowflaked version is bilipschitz
equivalent to a subset of RN, quantitatively.

Here, quantitatively means that the embedding dimension N and the bilipschitz
constant L depend solely on the doubling constant D of X and on the “snowflaking”
factor ", i.e.

N D N.D; "/; L D L.D; "/ :

Remark 2.42 Assouad’s result does not hold, in general, for " D 1. (For a
counterexample, see [42, p. 99]).

From a practical, applicative point of view Assouad’s theorem above allows us to
“translate” the highly nonintuitive geometry of metric measure spaces to that of the
familiar setting of subsets in (some) Euclidean space. In particular, in combination
with our geometric, curvature based approach to sampling of images and higher
dimensional signals (see [93, 94]), enables us to enunciate the following sampling
“meta-theorem”:

Theorem 2.28 Sampling of Ahlfors regular metric measure spaces is quasisymmet-
rically equivalent, quantitatively, to the sampling of sets in RN, for some N.

Before passing further on, let us mention briefly here that the sampling density
is, roughly formulated, proportional to 1=K (or 1=Ric. (For the full details see, for
instance, [35, 93, 94] and the references therein.)

Unfortunately, while the theorem above grants the desired framework for
geometric sampling of metric measure spaces and, even more, it provides with
numerical control over the distortion/error during the embedding in R

N , the
constants involved are far from being ideal—see the remark below for a more
detailed discussion.

Remark 2.43 The beauty of Assouad’s Theorem—and even more so its applicabil-
ity in the sampling of real data—is marred by the “course of dimensionality”: Given
that N D N.D; "/, the fear exist that, as in the case of Nash’s Embedding Theorem
[64, 65], the embedding dimension is prohibitively high for general manifolds (i.e.
data). Obviously, this is even more important if low distortion—i.e. (bi-)lipschitz
constant—is an imperative (as it usually is), that is for " close to 0. And, indeed,
Assouad’s original construction provides lim"!0 N.D; "/ D 1. So it would seem
that, the price to pay for low distortion is a high embedding dimension. It is a quite
recent result of Naor and Neiman [63] (itself based on ideas of Abraham, Bartal
and Neiman [1]), that, in fact, given a (separable) D-doubling metric space, there
exist N D N.D/ 2 N and L D L.D; "/, such that for any " 2 .0; 1=2/, the .1 � "/-
snowflaked version of X admits a bilipschitz embedding in R

N , with distortion L.

Moreover, specific upper bounds forN and L are given:N � a logD;L � b
�

logK
"

�2
,

where a and b are constants. So it appears that, at least as far as Assouad’s Theorem
is concerned, the snowflaking-based embedding is feasible.
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At this point, one has to ask oneself whether this result can be improved. The
belief in the possibility of such an improvement rests upon the following two facts:
On the one hand, Assouad’s Theorem assures the existence of a bilipschitz embed-
ding, which represents a much stronger condition then mere quasisymmetry.31 On
the other hand, as we have seen, Ahlfors rigidity is not the most easy property to
check directly on a metric measure space, therefore one naturally would wish to
find a sampling result similar to Theorem 2.28, that would hold for general doubling
spaces. Such a result does exist, and it makes appeal again to the quasimetric q�;s as
defined by (3.3). However, we have to make an additional assumption, that ensures
that q�;s-lengths of curves in R

N do not “shrink” too much, due to the presence of
the measure � in the definition of q�;s (see [96]). We encode this restriction via

Definition 2.22 A doubling measure � on R
N is called a metric doubling measure

iff there exist a constant C6, and a metric ı, such that

1

C6
ı.x; y/ � q�; 1n � C6ı.x; y/ ;

for any x; y 2 X, where q�; 1n is associated to � as in (3.3), with s D 1=n.
We can now formulate the desired result, in terms of metric doubling measures:

Theorem 2.29 (Semmes [95], Theorem 1.15; [96], Proposition B 20.2) Let
.X; d/ be a doubling metric space. Then there exists a natural number N and a
metric doubling measure �, such that .X; d/ is bilipschitz equivalent to a subset of
.RN ; q�; 1N /, where q�; 1N is as above.

Clearly PL surfaces (a.k.a. in Graphics as triangular meshes), endowed with a
specific additional measure (e.g. luminosity), as well as images satisfy the metric
doubling condition. (Even if modelled as fractals, certain textures are not truly
such objects, due to the inherent discreteness, hence finiteness, therefore they
also can be viewed as metric doubling measure spaces.) Again, this implies, in
view of the theorem above, that, at least theoretically, images and meshes can be
sampled as “weighted” manifolds, but using classical by now, geometric means of
sampling subsets (hypersurfaces) of Euclidean space. The theorem is also relevant
for sampling weighted networks, such as communication networks, for instance
for choosing positions for routers/sensors [30], load balancing [83], or in-network
sensor data storage [84].

Theorem 2.29 above represents a most encouraging result, and the idea of the
proof is quite simple: By Assouad’s Theorem, .M; d

1
2 / is bilipschitz equivalent to

a subset Y of some R
N . The sought for measure on R

N will be define as � D
dist.x;Yn/dx—for details of the proof see [95].

31However, quasisymmetry represents a much more flexible analytic tool, than the rigid bilipschitz
condition—see [42, 96, 97] for a deeper and far more detailed discussion.
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One would naturally would hope that .Rn; q�; 1n / can be bilipschitzly embedded

in some R
N , for any doubling measure �. This is a quite ambitious wish and,

unfortunately, it is not true in general (see [95]). However, such an embedding
exists for “most” metric doubling measures—for a precise formulation and the proof
see [95]. Still, in view of the discussion proceeding Theorem 2.28 above, we can
formulate the fitting sampling result (recall that given the quasimetric q�;s , there
exists a metric ds bilipschitz equivalent to it):

Theorem 2.30 Sampling of doubling metric spaces is bilipschitz equivalent quan-
titatively to the sampling of sets in .RN ; d 1

N
/, for some N, where d 1

N
represents the

snowflaked version of d, associated to a certain metric doubling measure �.
How relevant this approach to metric curvature for metric measure spaces

will turn prove itself to be, besides providing a sound, intuitive and convenient
theoretical setting for a wide range of signals is, unfortunately, to early to ascertain.
However, in view of the success of the basic snowflaking approach (and related
ideas) in solving such problems as the existence of (“enough”) Lipschitz functions
and Poincaré and Sobolev inequalities (i.e. that of “novel types” of “decent
calculus”—see [96, 97]), as well as the existence of fitting versions on metric
measure spaces satisfying the CD.K;N/ condition (see, for instance, [105]), one
can display at least a moderate amount of optimism. For a different approach to
sampling spaces satisfying a CD.K;N/ condition, as well as an application of the
approach exposed in this section to the sampling of weighted graphs/networks, see
[87]. Moreover, it turns out that the particular case of N D C1, when the CD.K;N/
condition reduces to the generalized Ricci curvature of Bakry, Emery and Ledoux
it is natural and easy to implement of grayscale images, where the density function
appearing in the formula of generalized Ricci curvature is nothing the grayscale
level—see [53] for further details. We illustrate this new approach to sampling of
grayscale images (natural images, but also range images, as well as cartoons) in
Fig. 2.6. This is approach is even more natural and having far higher potential
benefits in the context of medical images, such as CT and MRI images since, for
instance, the density of many types of MRI images is equal to the proton density.
A further application of the generalized Ricci curvature is in Graphics, where the
density can be taken as, e.g. luminosity or shading of a mesh model. (This represents
work in progress.) We should also note that while the generalized Ricci curvature (of
metric measure spaces) might appear, prima facie, as an unnecessary complication,
it allows not only for the sampling of wider range of images and signals, but it is
also an intrinsic curvature, i.e. independent of the specific embedding considered.
This is not a purely theoretical advantage, for it allows us to dispense with the need
to compute the embedding curvature (e.g. tubular radius, reach, etc.), a task that is,
in general, both non-trivial and cumbersome.
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Fig. 2.6 A standard rest image (above, left) as a grayscale surface (above, right). One can compare
the geometric sampling methods: The Gaussian curvature based one (bottom, left) and one using
the generalized Ricci curvature (bottom, right)
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Chapter 3
Distances Between Datasets

Facundo Mémoli

Abstract We overview the construction and quantitative aspects of the Gromov–
Hausdorff and Gromov–Wasserstein distances.

3.1 Introduction

Modeling datasets as metric spaces seems to be natural for some applications and
concepts revolving around the Gromov–Hausdorff distance—a notion of distance
between compact metric spaces—provide a useful language for expressing proper-
ties of data and shape analysis methods. In many situations, however, this is not
enough, and one must incorporate other sources of information into the model, with
“weights” attached to each point being one of them. This gives rise to the idea
of representing data as metric measure spaces, which are metric spaces endowed
with a probability measure. In terms of a distance, the Gromov–Hausdorff metric is
replaced with the Gromov–Wasserstein metric.

3.1.1 Notation and Background Concepts

The book by Burago et al. [4] is a valuable source for many concepts in metric
geometry. We refer the reader to that book for any concepts not explicitly defined in
these notes.

We let M denote the collection of all compact metric spaces and by M iso

the collection of all isometry classes of M . Recall that for a given metric space
.X; dX/ 2 M , its diameter is defined as diamX WD maxx;x02X dX.x; x0/: Similarly,
the radius of X is defined as rad .X/ WD minx2X maxx02X dX.x; x0/.
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For a fixed metric space .Z; dZ/, we let dZH denote the Hausdorff distance between
(closed) subsets of Z: for A;B � Z closed,

dZH
�
A;B

� WD inf
˚
" > 0jA � B"; and B � A"

�
:

Here, A" WD fz 2 Zj; dZ.z;A/ � "g: For " 	 0, and "-net of a the metric space Z is
any subset A � Z such that dZH

�
A;Z

� � ":

We will often refer to a metric space .X; dX/ by only X, but the notation for
the underlying metric will be implicitly understood to be dX . Recall that a map
' W X ! Y between metric spaces .X; dX/ and .Y; dY/ is an isometric embedding
if dY.'.x/; '.x0// D dX.x; x0/ for all x; x0 2 X. The map ' is an isometry if it is a
surjective isometric embedding.

Recall that given measurable spaces .X; ˙X/ and .Y; ˙Y/, a measure � on
.X; ˙X/ and a measurable map f W X ! Y, the push-forward measure f#� on .Y; ˙Y /

acts according to f#�.B/ D �. f�1.B// for any B 2 ˙Y .
A metric measure space (mm-space for short) is a triple .X; dX; �X/ where

.X; dX/ is a compact metric space and �X is a Borel probability measure with
full support: supp .�X/ D X. We denote by M w the collection of all mm-spaces.
An isomorphism between X;Y 2 M w is any isometry � W X ! Y, such that
�#�X D �Y :

3.2 The Gromov–Hausdorff Distance

The goal is to measure distance between two given abstract compact metric spaces.
In general, these two spaces may not be readily given as subsets of a common metric
space. In this case, the following construction by Gromov [7] applies.

Given .X; dX/ and .Y; dY/ in M one considers any “sufficiently rich” third metric
space .Z; dZ/ inside which one can find isometric copies of X and Y and measures
the Hausdorff distance in Z between these copies. Finally, one minimizes over the
choice of the isometric copies and Z. Formally, let Z, 
X W X ! Z and 
Y W Y ! Z
be respectively a metric space and isometric embeddings of X and Y into Z. Then,
the Gromov-Hausdorff distance between X and Y is defined as

dGH.X;Y/ WD inf
Z;
X ;
Y

dZH
�

X.X/; 
Y.Y/

�
: (3.1)
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Theorem 3.1 ([7]) dGH is a legitimate distance on the collection of isometry
classes ofM .

From the practical point of view this definition might not look appealing. As we
recall below, there are other more computational suggestive equivalent definitions
whose implementation has been explored. But now we try to interpret the definition
we have given so far.

3.2.1 An Example

Consider the metric spaces X consisting exactly of three points at distance 1 from
each other, and Y consisting of exactly one point. Notice that X and Y can be
simultaneously embedded into R

2 in an isometric way so that Z D R
2 is a valid

choice in (3.1) above. The maps 
X and 
Y represent the relative positions of X and
Y in the plane.

By homogeneity, we can assume that the the embedding of X is fixed. When
choosing 
Y one notices that the optimal relative position of q WD 
Y.Y/with respect
to � WD 
X.X/ happens when q is the center of the (equilateral) triangle �. In that
case, the Hausdorff distance in (3.1) is ı0 WD 1p

3
and we conclude that dGH.X;Y/ �

ı0. One would be tempted to think that ı0 is in fact equal to Gromov-Hausdorff
distance between X and Y but this is not the case!
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The same construction that we did above for R2 can in fact be done on the model
hyperbolic two-dimensional space H� of curvature �� for any � � 0. As � ! �1,
the (geodesic interpolation of the) triangle � becomes ‘thinner’ and intuitively, the
Hausdorff distance ı� between the optimal embeddings in H� will decrease as �
decreases.

One can in fact consider the following target metric space: Z1 consists of four
points p1; p2; p3; and p such that dZ. pi; pj/ D 1 for i ¤ j and dZ. pi; p/ D 1

2
for

all i. This metric space with four points can be regarded as a subset of the real tree
(geodesic) metric space below:

p1

p

p2p3

0.5

0.50.5

This metric space can be regarded as an extremal case of the construction
involving the H� that was described above. The interesting fact is that if we let

X.X/ D fp1; p2; p3g and 
Y.Y/ D fqg, then ı1 WD dZ1

H

�

X.X/; 
Y.Y/

� D 1
2

which
is strictly smaller than ı0! and thus proves that

dGH.X;Y/ � 1

2
<

1p
3
:

One can in fact check that ı1 < ı� � ı0 for all � 2 Œ0;1/. In any case, as we recall
in Corollary 3.2 below, dGH.X;Y/ is always bounded below by 1

2
j diamX � diamYj.

Since in the present case diamX D 1 and diamY D 0, we obtain that dGH.X;Y/ 	 1
2

which together with the reverse inequality obtained above implies that in fact, for
the example under consideration, dGH.X;Y/ D 1

2
Š

3.2.2 A Simplification

Kalton and Ostrovskii [8] observed that one can equivalently define the Gromov-
Hausdorff distance between X and Y by considering Z in (3.1) to be the disjoint
union X t Y together with any metric d such that djX�X D dX and djY�Y D dY . Let
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D.dX; dY/ denote the set of all such metrics on X t Y. Then, they observe that

dGH.X;Y/ D inf
d2D.dX ;dY /

d.XtY;d/
H

�
X;Y

�
: (3.2)

This expression for the Gromov-Hausdorff distance seems more appealing for
the computationally minded: imagine that X and Y are finite, then the variable d
in the underlying optimization problem can be regarded as a matrix in R

jXj�jYj. If
we assume that jXj D jYj D n then the number of linear constraints that each d in
D.dX; dY/must satisfy is of order n3 (all triangle inequalities). Even more explicitly,
the optimization problem over D.dX; dY/ that one must solve in practice is (cf. [11])
mind J.d/ where

J.d/ WD max

�

max
x2X min

y2Y d.x; y/;max
y2Y min

x2X d.x; y/

�

:

The complexity from the original definition (3.1) is now hidden in the fact that J.�/
is highly non-linear.

Going back to the example discussed in 3.2.1, one can state that in the context
of (3.2), the optimal metric on X t Y is

d� WD

2

6
6
4

0 1
2
1
2
1

1
2
0 1
2
1

1
2
1
2
0 1

1 1 1 0

3

7
7
5 :

3.2.3 Another Expression

One says that a subsetR � X�Y is a correspondence between sets X and Y whenever
�1.R/ D X and �2.R/ D Y; where �1 W X � Y ! X and �2 W X � Y ! Y are the
canonical projections. Let R.X;Y/ denote the set of all correspondences between X
and Y.

The Gromov–Hausdorff (GH) distance between compact metric spaces .X; dX/
and .Y; dY / can be proved to be equal to [8]:

dGH.X;Y/ WD 1

2
inf
R

sup
.x;y/;.x0;y0/2R

ˇ
ˇdX.x; x0/� dY.y; y

0/
ˇ
ˇ (3.3)

where R ranges over R.X;Y/:

Example 3.1 The GH distance between any compact metric space X and the space
with exactly one point is equal to 1

2
diamX:
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It turns out that .M ; dGH / is a nice space in that is has many compact
subclasses.

Theorem 3.2 ([4]) Let N W Œ0;C1/ ! N be a bounded function and D > 0. Let
F .N;D/ � M be any family of compact metric spaces, such that diamX � D for
all X 2 F .N;D/, such that for any " > 0, any X 2 F .N; "/ admits an "-net with
at most N."/ elements. Then, F .N;D/ is pre-compact in the Gromov–Hausdorff
topology.

Example 3.2 An important example of families, such as the above, is given by
those closed n-dimensional Riemannian manifolds .X; gX/ 2 M .n; �;D/ with the
diameter bounded by D > 0 and the Ricci curvature bounded below by �.

Theorem 3.3 ([19]) The space .M iso; dGH/ is complete.
It then follows from the two theorems above that classes F .N;D/, such as

above, are totally bounded for the Gromov–Hausdorff distance. This means that
such classes are easy to organize in the sense of clustering or databases.

3.2.4 The Case of Subsets of Euclidean Space

Even if we saw in Sect. 3.2.1 above that when X and Y are subsets of Rd the optimal
Z in (3.1) may not be R

d, one can still relate dGH.X;Y/ with some natural notion
of distance for subsets of Euclidean space. Doing this provides more insight into as
to how the Gromov-Hausdorff distance operates in situations for which we already
have a well developed intuition.

An intrinsic approach to comparing two subsets X and Y of R
d would be to

regard them as metric spaces by endowing them with the restriction of the ambient
space metric: dX.�; �/ D k � � � k etc. So, one can consider dGH.X;Y/ as a possible
notion of dissimilarity between X and Y.

Another notion of dissimilarity that is frequently considered in shape and data
analysis arises from the Hausdorff distance modulo rigid isometries and constitutes
an extrinsic approach: let E.d/ denote the group of isometries of Rd and define

dR
d ;rigid

H .X;Y/ WD inf
T2E.d/ d

R
d

H

�
X;T.Y/

�
:

Since in this case, one can always choose Z D R
d in (3.1) above, one

immediately sees that dGH.X;Y/ � dR
d ;rigid

H .X;Y/. Even if we already saw in
Sect. 3.2.1 that the equality cannot take place in general, one could hope that for

some suitable C > 0, dR
d ;rigid

H .X;Y/ � C � dGH.X;Y/ for all X;Y � R
d compact.

Interestingly, however, this cannot happen! Consider X D Œ�1; 1�. Fix 0 < " � 1

and let f".x/ WD jxj � p
". Let Y" be the set f.x; f".x//I x 2 Œ�1; 1�g: Notice that

rad .X/ D 1 and rad .Y"/ D p
1C ".
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In any case, it is clear that for " > 0 small enough, dR
d ;rigid

H .X;Y"/ D
p
"

2
.

However, since by Proposition 3.1 and Corollary 3.1 below,

• dGH.X;Y"/ 	 1
2
jrad .X/� rad .Y"/ j D 1

2
.
p
1C " � 1/ 	 "

2C2p2
and

• dGH.X;Y"/ � 1
2

supjxj¤jx0j jx � x0j �
�r

1C " �
� jxj�jx0 j

x�x0

�2 � 1

�

� ", since
ˇ
ˇjxj � jx0jˇˇ � jx � x0j for all x; x0 2 X.

It follows that dGH.X;Y"/ is of order " and therefore no constant C > 0 will

guarantee that C � dGH.X;Y"/ 	 dR
d ;rigid

H .X;Y"/ for all 1 � " > 0!

What does hold for this construction is that C � �dGH.X;Y"/
�1=2 	 dR

d ;rigid
H .X;Y"/

for some constant C > 0: It turns out that this is not an isolated phenomenon:

Theorem 3.4 ([10]) For each natural number d 	 2 there exists cd > 0 such that
for all X;Y 2 R

d one has

dGH.X;Y/ � dR
d ;rigid

H .X;Y/ � cd � M1=2 � �dGH.X;Y/
�1=2

;

where M D max.diamX; diamY/:

3.2.5 Another Expression and Consequences

For two sets X and Y let R.X;Y/ denote the set of all correspondences between X
and Y, that is, sets R � X � Y such that �1.R/ D X and �2.R/ D Y. In general, we
will refer to any non-empty set R of X�Y as a relation between X and Y. Obviously,
all correspondences are relations.

The distortion of a relation R between the metric spaces .X; dX/ and .Y; dY/ is
defined as the number

dis.R/ WD sup
.x;y/;.x0;y0/2R

ˇ
ˇdX.x; x

0/� dY.y; y
0/
ˇ
ˇ:
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Notice that given a function ' W X ! Y one can define the relation
R' WD f.x; '.x//I x 2 Xg; and in that case we write dis.'/ WD dis.R'/ D
supx;x02X

ˇ
ˇdX.x; x0/ � dY.'.x/; '.x0//

ˇ
ˇ: Similarly, when  W Y ! X is given, it

induces the relation R WD f. .y/; y/I y 2 Yg. Note that the structure of R' is
different from the structure of R .

Now, when a map ' W X ! Y and a map  W Y ! X are both specified,
we consider the relation R'; WD R'

S
R and note that in fact R'; is actually a

correspondence between X and Y.
Furthermore, one can explicitly compute that

dis.R'; / D max
�
dis.'/; dis. /;C.';  /

�
;

whereC.';  / WD supx2X;y2Y
ˇ
ˇdX.x;  .y//�dY.'.x/; y/

ˇ
ˇ. Notice that if C.';  / < �

for some � > 0, then
ˇ
ˇdX.x;  .y// � dY.'.x/; y/

ˇ
ˇ < � for all .x; y/ 2 X � Y. In

particular, for x D  .y/, it follows that dY.' ı  .y/; y/ < � for all y 2 Y. Similarly
one can obtain dX.x;  ı '.x// < � for all x 2 X. These two conditions are often
interpreted as meaning that ' and  are close to being inverses of each other. This
proximity is quantified by �.

An interesting and useful characterization of the Gromov-Hausdorff distance
based on optimization over correspondences is the following:

Theorem 3.5 ([8]) For all X;Y 2 M one has that

dGH.X;Y/
.I/D 1

2
inf

R2R.X;Y/
dis.R/

.II/D 1

2
inf
'; 

dis.R'; /:

Corollary 3.1 Let X be a set and d and d0 be any two metrics on X. Then,

dGH..X; d/; .X; d
0// � 1

2
sup
x;x02X

ˇ
ˇd.x; x0/� d0.x; x0/

ˇ
ˇ:

The theorem above is significant for several reasons. First of all, (I) indicates that
solving for the Gromov-Hausdorff distance between two finite metric spaces is an
instance of a well known combinatorial optimization problem called the bottleneck
quadratic assignment problem or bQAP. The bQAP is NP-Hard and furthermore,
computing any .1 C "/ of the optimal solution is also NP-Hard for any " > 0 [18].
See [3, 14, 15] for some heuristic approaches.

A second observation stemming from the equality (II) in the theorem is the fact
that since the term C.';  / acts as a coupling term in the optimization

dGH.X;Y/ D 1

2
inf
'; 

max
�
dis.'/; dis. /;C.';  /

�
;
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one could conceive of dropping it from the expression above yielding

dGH.X;Y/ 	 1

2
max

�
inf
'

dis.'/; inf
 

dis. /
� DWbdGH .X;Y/ :

It is important to notice that computing bdGH .X;Y/, which we call the modified
Gromov-Hausdorff distance [13], leads to solving two decoupled optimization
problems, a feature which is desirable in applications. However, the computational
complexity of the problems of the type inf' dis.'/ could still be high. We will
explore some interesting structure that arises from this modified definition in the
next section but for now we will make one more observation based on the expression
given by Theorem 3.5.

From equality (I) it follows that the Gromov-Hausdorff distance between any
compact metric space and the metric space consisting of exactly one point is
dGH.X;/ D 1

2
diamX. As a corollary from Theorem 3.1 and this observation one

has

Corollary 3.2 For all X;Y 2 M , dGH.X;Y/ 	 1
2

ˇ
ˇ diamX � diamY

ˇ
ˇ:

Proof The inequality dGH.X;Y/ 	 ˇ
ˇdGH.X;/ � dGH.Y;/

ˇ
ˇ is guaranteed by the

triangle inequality for the Gromov-Hausdorff distance. The remark preceding the
statement completes the proof.

A similar lower bound for the Gromov-Hausdorff distance arises from consider-
ing the radius of metric spaces:

Proposition 3.1 ([13]) For all X;Y 2 M , dGH.X;Y/ 	 1
2

ˇ
ˇrad .X/� rad .Y/

ˇ
ˇ:

3.3 The Modified Gromov-Hausdorff and Curvature Sets

It could appear plausible that by dropping the coupling term C.';  / in the
optimization above one might have lost some of the nice theoretical properties
enjoyed by the Gromov-Hausdorff distance. This is not the case, and in fact the
modified Gromov-Hausdorff retains many of these good properties:

Theorem 3.6 ([13]) The modified Gromov-Hausdorff distance satisfies:

1. bdGH is a legitimate metric on the isometry classes of M .
2. dGH.X;Y/ 	bdGH .X;Y/ for all X;Y 2 M :

3. dGH andbdGH are topologically equivalent within dGH-precompact families ofM :

It is however interesting that the equality in item (2) does not take place in general.
In fact, [13] provides a counterexample.
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3.3.1 Curvature Sets

Gromov [7] defines for each n 2 N the curvature sets of X 2 M in the following
way: let �.n/

X W X�n ! R
n�n be the matrix valued map defined by .x1; : : : ; xn/ 7!

..dX.xi; xj///ni;jD1. This map simply assigns to each n-tuple of points its distance
matrix: the matrix arising from restricting the metric on X to the given n-tuple.
Then, the n-th curvature set of X is

Kn.X/ WD ˚
�
.n/
X .x1; : : : ; xn/I .x1; : : : ; xn/ 2 X�n

�
:

In colloquial terms, curvature sets are just ‘bags’ containing all the possible distance
matrices of a given size arising from points sampled from X.

For example, when n D 2, K2.X/ contains the same information as
fdX.x; x0/I x; x0 2 Xg � RC. In contrast, K3.X/ contains all ‘triangles’ from X
and this particular case suggest one possible justification for the name ‘curvature
sets’. Indeed, let X be a smooth planar curve. Consider any three points x1; x2 and x3
on X close to each other. Then, if a D kx2 � x1k, b D kx1 � x3k, and c D kx1 � x2k,
the inverse of the radius R of the circle circumscribed to the triangle�x1x2x3 admits
an explicit expression in terms of a; b and c: R�1 D 4 S.a;b;c/

a b c where S.a; b; c/ is the
area of the triangle as given by Heron’s formula.1 The crucial observation is that
R can be computed exclusively from the information contained in K3.X/. Now, by
an argument involving a series expansion [5], as a; b; c ! 0 R�1 converges to the
curvature � of X at the point of coalescence of x1; x2; x3.

Curvature sets absorb all the information that one needs in order to determine
whether two compact metric spaces are isometric or not.

Theorem 3.7 ([7]) Let X;Y 2 M . Then, X and Y are isometric if and only if
Kn.X/ D Kn.Y/ for all n 2 N:

Constructions similar to curvature sets have also been considered by Peter Olver
in the context of subsets of Euclidean space [16]. The Reader should compare with
the metric quadruples of Chap. 2.

3.3.1.1 An Example: Curvature Sets of Spheres

We illustrate the definition with an example from [13]. Consider first the case of the
standard circle S1 endowed with the angular distance. We will exactly characterize
K3.S1/. For that purpose first consider any embedding of S1 into R

2 and observe that
for any three points on S1 exactly one the following two conditions holds: (a) there
exists a line through the center of the circle such that the three points are contained
on one side of the line; (b) no such line exists.

1S.a; b; c/ D 1
4

�
.a C b C c/.a � b C c/.a C b � c/.�a C b C c/

�1=2
.
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Case (a) means that one of the three distances defined by the three points must
forcibly be equal to the sum of the other two distances. Case (b) implies that the sum
of the three distances is exactly 2�: Also note that, by symmetry, case (a) unrolls
into three different cases depending on the identity of the distance that is equal to the
sum of the other two. Each of these four situations gives a linear relation between
the three distances! Thus, we obtain that K3.S1/ is isomorphic to the tetrahedron
with vertices .0; 0; 0/, .0; �; �/, .�; 0; �/, and .�; �; 0/.

The case of S2, when endowed with the standard geodesic distance, is similar and
one can prove that K3.S2/ is the convex hull of K3.S1/.

3.3.2 Comparing Curvature Sets?

An interesting property of curvature sets is that they are isometry invariants of
metric spaces which ‘live’ in fixed target spaces. More precisely, for any X;Y 2 M ,
Kn.X/ and Kn.Y/ are both subsets of Rn�n.

With the purpose of discriminating X and Y one may conceive of comparing
Kn.X/ and Kn.Y/. Since they are both (compact) subsets of Rn�n one could compute
the Hausdorff distance between them. For this we first endow R

n�n with the distance
d`1.A;B/ WD maxi;j jai;j � bi;jj for A D ..ai;j// and B D ..bi;j// in R

n�n: Then, we
compute

dn.X;Y/ WD 1

2
dR

n�n

H

�
Kn.X/;Kn.Y/

�
;

and use this number as an indication of how similar X and Y are. The best possible
measure of dissimilarity that this sort of idea suggests is to consider

d1.X;Y/ WD sup
n2N

dn.X;Y/:

Theorem 3.7 guarantees that d1 defines a legitimate metric on M modulo
isometries.

Interestingly, one has the following ‘structural theorem’ for the modified
Gromov-Hausdorff distance in terms of curvature sets:

Theorem 3.8 ([13]) For all X;Y 2 M ,bdGH .X;Y/ D d1.X;Y/:
This theorem provides a useful path for computing estimates to the Gromov-

Hausdorff distance. Furthermore, the theorem suggests a way of ‘slicing’ the
computation/approximation of the Gromov-Hausdorff distance between finite met-
ric spaces, since one might want to consider computing dn for a fixed n and hope that
this provides enough information for discriminating spaces within a given family.
For finite spaces, the computation of dn would incur a polynomial cost, albeit of
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a high order. There are some known classes of metric spaces C � M that are
characterized up to isometry by Kn.�/ for some finite n D n.C /, see [13].

3.3.2.1 A Lower Bound for dGH.S1; S2/

Theorems 3.6 item (2) and 3.8 then guarantee that

dGH.S
1; S2/ 	 d3.S

1; S2/ D 1

2
dR

3�3

H

�
K3.S

1/;K3.S
2/
� DW �:

Since K3.S2/ is the convex hull of K3.S1/, K3.S1/ � K3.S2/, and therefore,

� D 1

2
max

p2K3.S2/
min

q2K3.S1/
kp � qk1 D min

q2K3.S1/
kg � qk;

where g D �
2
.1; 1; 1/ is the center of K3.S2/. But now, the center c D 2�

3
.1; 1; 1/ of

the face of K3.S1/ determined by � .0; 1; 1/, � .1; 0; 1/, and � .1; 1; 0/ is at minimal
`1 distance from g so that � D 1

2
j�
2

� 2�
3

j D �
12
; and we find the lower bound

dGH.S1; S2/ 	 �
12
:

3.3.3 Asking for More

In many practical applications, one would like to take into account “weights”
attached to points in a dataset. For example, the two metric spaces with the weights
below are isometric, but not isomorphic in the sense that no isometry respects the
weights:

1
2

1
2

1
4

3
4

1 1

The idea is that weights represent how much we trust a given “measurement” in
practical applications. This leads to considering a more general collection of datasets
and, in turn, an adapted notion of equality and a compatible metric over them. This
naturally leads to regarding datasets as mm-spaces and then finding a notion of
distance on M w compatible with isomorphism of mm-spaces.
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3.4 A Metric on M w

Let .X; dX; �X/ and .Y; dY ; �Y / be two given mm-spaces. In our path to defining
a distance between mm-spaces, we emulate the construction of the Gromov–
Hausdorff distance and start by identifying a notion of correspondence between
mm-spaces.

A probability measure � over X � Y is called a coupling between �X and �Y if
.�1/#� D �X and .�2/#� D �Y : We denote by U .�X ; �Y/ the collection of all
couplings between �X and �Y .

Example 3.3 When Y D fpg,�Y D ıp, and thus, there is a unique coupling between
X and Y: U .�X; �Y / D f�X ˝ ıpg:
Example 3.4 Consider for example the spaces with two points each that we depicted
above. In that case,�X can be identified with the vector . 1

2
; 1
2
/ and�Y with the vector

. 3
4
; 1
4
/: In this case, one sees that the matrix:

�
1
4
1
2

1
4
0

	

induces a valid coupling.
Now, given p 	 1, consider the function

.x; y; x0; y0/ 7! ˇ
ˇdX.x; x0/� dY.y; y

0/
ˇ
ˇp

and pick any � 2 U .�X ; �Y/: One then integrates this function against the measure
� ˝ � and infimizes over the choice of � 2 U .�X ; �Y/ to define the Gromov–
Wasserstein distance of order p [11] (cf. the definition of the Wasserstein distance
in Chaps. 1 and 5):

dGW;p.X;Y/ WD 1

2
inf
�

�“
jdX.x; x0/� dY.y; y

0/jp �.dx � dy/ �.dx0 � dy0/
�1=p

Remark 3.1 This is an Lp analogue of Eq. (3.1).

Theorem 3.9 ([11]) The Gromov–Wasserstein distance of order p 	 1 defines a
proper distance on the collection of isomorphism classes of mm-spaces.

By standard compactness arguments, one can prove that the infimum above
is always attained [11]. Let U

opt
p .X;Y/ denote the set of all the couplings in

U .�X; �Y / that achieve the minimum. The structure of the former set depends not
only on �X and �Y , but also on dX , dY and p.

Example 3.5 Consider the mm-space with exactly one point: .fg; .0/; ı�/. Then,

dGW;p.X; fg/ D 1

2

�“
�
dX.x; x

0/
�p
�X.dx/ �X.dx

0/
�1=p
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and we define diamp .X/—the p-statistical diameter of X—as twice the right-hand
side. Notice that limp!1 diamp .X/ is equal to the usual diameter of X (as a metric
space).

Question 3.1 To what extent are we able to replicate the nice properties of
.M ; dGH/ in the context of .M w; dGW;p/? In particular, it is of interest to investigate
whether this new space of datasets is complete and whether one can easily identify
rich pre-compact classes.

Remark 3.2 A different version of the Gromov–Wasserstein distance was consid-
ered by Sturm in [21]. In his construction, in analogy with (3.1), Sturm embeds
mm-spaces X and Y into a common third metric space Z via isometric embeddings

X and 
Y . Then, one computes the Wasserstein distance between the push-forward
measures .
X/#�X and .
Y/#�Y in Z. Finally, one infimizes the resulting quantity
over all possible choices of 
X , 
Y , and Z. It is important to remark that Sturm’s
version and the one discussed here do not agree in general. See [11] for details.

3.4.1 Pre-compactness

Theorem 3.10 ([11]) For a non-decreasing function	 W Œ0;1/ ! Œ0; 1�, such that
	."/ > 0 for " > 0 and D > 0, letFw.	;D/ � M w denote the set of all mm-spaces
X, such that diamX � D and infx �X

�
B".x/

� 	 	."/ for all " > 0. Then, Fw.	;D/
is pre-compact for the Gromov–Wasserstein topology, for any p 	 1.

Remark 3.3 Recall Example 3.2, where closed n-dimensional Riemannian man-
ifolds were regarded as metric spaces. One can, all the same, embed closed
Riemannian manifolds into M w via .X; gX/ 7! .X; dX; �X/, where dX is the
geodesic distance induced by the metric tensor gX and �X stands for the normalized
volume measure on X. It is well known [20] that for " > 0 small, �X

�
B".x/

� D
cn

vol.X/"
n
�
1 � sX.x/

6.nC1/"
2 C O."4/

�
, where sX.x/ is the scalar curvature of X at x, and

vol.X/ is the total volume of X. Thus, a lower bound on �X .B".x// somehow plays
the role of a proxy for an upper bound on curvature.

3.4.2 Completeness

The Space M w with any p-Gromov–Wasserstein distance is not complete. Indeed,
consider the following family of mm-spaces:�n 2 M w, where�n consists of n 2 N

points at distance one from each other, and all with weights 1=n.

Claim For all n;m 	 1, dGW;p.�n; �m/ � 1
2

�
n�1=p C m�1=p�.

The claim will follow from the following claim and triangle inequality for dGW;p:
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Claim For all n;m 	 1, dGW;p.�n; �n
m/ � 1
2
n�1=p:

In order to verify the claim, we denote by fx1; x2; : : : ; xng the points of �n and label
the points in �n
m by fy11; : : : ; y1m; y21; : : : ; y2m; : : : : : : ; yn1; : : : ; ynmg: Consider the
following coupling between �n and �n
m, the reference measures on �n and �n
m:

�.xi; ykj/ WD 1

n � mıik; for all i; k 2 f1; : : : ; ng and j 2 f1; : : : ;mg

It is clear that this defines a valid coupling between �n and �n
m:
Now, note that

J.�/ WD
X

i;i0

X

.k;j/;.k0;j0/

jd�n.xi; xi0/� d�n�m.ykj; yk0j0/jp�.xi; ykj/ �.xi0 ; yk0j0/

D 1

.n � m/2
X

i;i0

X

j;j0

jd�n.xi; xi0/ � d�n�m.yij; yi0j0/jp

D 1

.n � m/2
X

i

X

j;j0

j1� ıjj0 jp

Dm � 1

n � m
�n�1

Now, by definition, dGW;p.�m; �n
m/ � 1
2

�
J.�/

�1=p
, so the claim follows.

Claim 3.4.2 indicates that f�ngn2N constitutes a Cauchy sequence in M w.
However, a potential limit object for this sequence will have countably infinitely
many points at distance one from each other. This space is not compact, thus dGW;p

is not a complete metric.

3.4.3 Other Properties: Geodesics and Alexandrov Curvature

Recently, Sturm [22] pointed out that M w is a geodesic space when endowed with
any dGW;p, p 	 1. This means that given any two spaces X0;X1 in M w, one can find
a curve Œ0; 1� 3 t 7! Xt 2 M w, such that

dGW;p.Xt;Xs/ D jt � sj dGW;p.X0;X1/; s; t 2 Œ0; 1�:

Proposition 3.2 ([22]) For each p 	 1, the space .M w; dGW;p/ is geodesic.
Furthermore, for p > 1, the following curves on M w define geodesics between
.X0; d0; �0/ and .X1; d1; �1/ in M w:

Œ0; 1� 3 t 7! .X0 � X1; dt; �/
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where dt
�
.x0; x1/; .x0

0; x
0
1/
� WD .1 � t/ d0.x0; x0

0/C t d1.x1; x0
1/ for .x0; x1/; .x

0
0; x

0
1/ 2

X0�X1 and � 2 U
opt
p .X;Y/: Furthermore, for p > 1, all geodesics are of this form.

Sturm further proved that the completionM w of the space M w with metric dGW;2

satisfies:

Theorem 3.11 ([22]) The metric space
�
M w; dGW;2

�
is an Alexandrov space of

curvature 	 0.
Amongst the consequences of this property is the fact that one can conceive of
gradient flows on the space of all mm-spaces [22]. See also Chap. 5.

3.4.4 The Metric dGW;p in Applications

Applications of the notion of Gromov-Wasserstein distance arise in shape and
data analysis. In shape analysis, the main application is shape matching under
invariances. Many easily computable lower bounds for the GW distance have been
discussed in [9, 11]. All of them lead to solving linear programming optimization
problems (for which there are polynomial time algorithms) or can be computed via
explicit formulas. As an example, consider the following invariant of an mm-space
.X; dX; �X/:

HX W Œ0;1/ ! Œ0; 1�; t 7! �X ˝ �X
�f.x; x0/j dX.x; x0/ � tg�

This invariant simply encodes the distribution of pairwise distances on the dataset
X, and it is defined by analogy with the so-called shape distributions that are well
known in computer graphics [17]. Then, one has:

Proposition 3.3 ([9, 11]) Let X;Y 2 M w be any two mm-spaces and p 	 1. Then,

dGW;p.X;Y/ 	 1

2

Z 1

0

jHX.t/ � HY.t/j dt

Remark 3.4 This invariant is also related to the work of Boutin and Kemper [1] and
Brinkman and Olver [2].
Other lower bounds which can be computed in time polynomial with respect to
the number of points in the underlying mm-spaces have been reported in [11]. As
a primary example, one has that the local shape distributions of shapes provide a
lower bound which is strictly stronger than the ones in the Proposition above. In
more detail, consider for a given mm-space .X; dX; �X/ the invariant:

hX W X � Œ0;1/ ! Œ0; 1�; .x; t/ 7! �X

�
Bt.x/

�
:
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Then, for mm-spaces X and Y consider the cost function cX;Y W X � Y ! R
C

given by:

cX;Y.x; y/ WD
Z 1

0

ˇ
ˇhX.x; t/ � hY.y; t/

ˇ
ˇ dt:

One then has:

Proposition 3.4 ([9, 11]) Let X;Y 2 M w be any two mm-spaces and p 	 1. Then,

dGW;p.X;Y/ 	 1

2
inf
�

“
cX;Y.x; y/ �.dx � dy/;

where � ranges in U .�X ; �Y/:

Remark 3.5 Solving for the infimum above leads to a mass transportation problem
for which there exists efficient linear programming techniques. See discussion in [6].

Remark 3.6 It is possible to define a notion of spectral Gromov-Wasserstein
distance which operates at the level of compact Riemannian manifolds without
boundaries, and is based on the comparison of heat-kernels. This notion permits
inter-relating many pre-existing shape matching methods and suggests some oth-
ers [12].

3.5 Discussion and Outlook

The Gromov–Hausdorff distance offers a useful language for expressing different
tasks in shape and data analysis. Its origins are in the work of Gromov on synthetic
geometry. For finite metric spaces, the Gromov–Hausdorff distance leads to solving
NP-hard combinatorial optimization problems. Related to construction is Gromov–
Wasserstein distances that operate on metric measure spaces [11, 21]. In contrast to
the Gromov–Hausdorff distance, the computation of Gromov–Wasserstein distances
leads to solving quadratic optimization problems on continuous variables. The space
of all metric measures spaces endowed with a certain variant of the Gromov–
Wasserstein distance [11] enjoys nice theoretical properties [22]. It seems of interest
to develop provably correct approximations to these distances when restricted to
some suitable subclasses of finite metric spaces. Other aspects of the Gromov–
Wasserstein distance are discussed in [10–12, 21, 22].
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Neighborhoods
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Abstract Geometric inference deals with the problem of recovering the geometry
and topology of a compact subset K of Rd from an approximation by a finite set
P. This problem has seen several important developments in the previous decade.
Many of the proposed constructions share a common feature: they estimate the
geometry of the underlying compact set K using offsets of P, that is r-sublevel
set of the distance function to P. These offset correspond to what is called tubular
neighborhoods in differential geometry. First and second-order geometric quantities
are encoded in the tube Kr around a manifold. For instance, the classical tube
formula asserts that it is possible to estimate the curvature of a compact smooth
submanifold K from the volume of its offsets. One can hope that if the finite set P
is close to K in the Hausdorff sense, some of this geometric information remains
in the offsets of P. In this chapter, we will see how this idea can be used to infer
generalized notions of curvature such as Federer’s curvature measures.
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4.1 Introduction

Geometric inference deals with the problem of recovering the geometry and
topology of a compact subset K of Rd from an approximation by a finite set P. This
problem has seen several important developments in the previous decade. Many of
the proposed constructions share a common feature: they estimate the geometry of
the underlying compact set K using offsets of P,

Pr WD
[

p2P
B. p; r/; (4.1)

which can also be seen as the r-sublevel set of the distance function to P. These
offset correspond to what is called tubular neighborhoods in differential geometry.
First and second-order geometric quantities are encoded in the tube Kr around
a manifold. For instance, the classical tube formula asserts that it is possible to
estimate the curvature of a compact smooth submanifold K from the volume of its
offsets. One can hope that if the finite set P is close to K in the Hausdorff sense,
some of this geometric information remains in the offsets of P. In this chapter, we
will see how this idea can be used to infer generalized notions of curvature such as
Federer’s curvature measures. This approach based on tubular neighborhoods also
lies at the root of Chap. 8, and, more remotely, Chap. 9, albeit in a more specific
setting.

Notation The space R
d is equipped with the canonical dot product h:j:i and the

induced norm k:k

4.2 Distance Function and Sets with Positive Reach

Throughout this chapter, K will denote a compact set in the Euclidean d-space
R

d, usually with no additional regularity assumption. The distance function to K,
denoted dK , is defined by

dK W x 2 R
d 7! min

p2K kx � pk (4.2)

In this short section, we review some regularity properties of the distance function to
a compact set, which we will use to establish stability results for generalized notions
of curvature. We also introduce the class of sets with positive reach and sets with
positive �-reach, for which it is possible to define and infer generalized notions of
curvature.

Definition 4.1 (Offset) The r-offset of K, also called tubular neighborhood in
geometry, is the set Kr of points at distance at most r of K, or equivalently the
sublevel set Kr WD fx 2 R

dI dK.x/ � rg.
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Definition 4.2 (Hausdorff Distance) The Hausdorff distance between two com-
pact subsets K and P of Rd can be defined in term of offsets:

dH.K;P/ WD minfr 	 0 s.t. K � Pr and P � Krg (4.3)

Loosely speaking, a finite set P is within Hausdorff distance r from a compact set
K if it is sampled close to K (P � Kr) and densely in K (K � Pr). An alternative
characterization of the Hausdorff distance is given by the following equality, where
k fk1 D supx2Rd k f .x/j.

dH.K;K
0/ WD kdK � dK0k1 (4.4)

4.2.1 Gradient of the Distance and Sets with Positive Reach

4.2.1.1 Projection Function, Medial Axis and Gradient

The semi-concavity of the squared distance function to a compact set has been
remarked and used in different contexts [3, 14, 17, 21]. We will use the fact that
for any compact subset K � R

d, the square of the distance function to K is
1-semiconcave.

Definition 4.3 A function 
 defined on a subset ˝ of Rd is -concave if and only
if the function 
 �  k:k2 is concave.

It is easy to see that the distance function to a compact set is 1-Lipschitz.
By Rademacher’s theorem, this implies that this function is differentiable almost
everywhere. The next proposition shows that the squared distance function to a
compact set has the same regularity as a concave (or convex) function. In particular,
Alexandrov’s theorem implies that distance functions to compact set are twice
differentiable almost everywhere.

Definition 4.4 (Projection Function and Medial Axis) A point p of K that
realizes the minimum in the definition (4.2) of the distance function dK.x/ is called
a projection of x on K. The set of such projections is denoted projK.x/, and is always
non-empty by compactness of K. The medial axis of K, denoted Med.K/ is the set
of points x in R

d that have more than one projection on K. On the complement of
the medial axis, points have a single projection on K, allowing one to define a map
pK W Rd n Med.K/ ! K called the projection function on K.

Proposition 4.1 The squared distance function to a compact subset K of Rd is
1-semiconcave and differentiable on R

d n Med.K/. For every x … Med.K/ [ K,
one has

rxd2K D 2.x � pK.x// rxdK D x � pK.x/

kx � pK.x/k (4.5)
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Proof The function dK.:/
2 � k:k2 is a minimum of linear functions:

dK.x/
2 � kxk2 D min

p2P kx � pk2 � kxk2

D min
p2P kpk2 � 2 hxjpi

and is therefore concave. A concave function is differentiable almost everywhere,
and one has rxŒdK.:/

2 � k:k2� D �2pK.x/ at points of differentiability. This implies
the desired formulas. ut

4.2.1.2 Sets with Positive Reach

In his seminal article on curvature measures [12], Federer introduced the class of
sets with positive reach, a class which generalizes both convex subsets and compact
smooth submanifolds of Rd.

Definition 4.5 (Reach) The reach of a compact set K, denoted by reach.K/ is the
minimum distance between K and its medial axis.

Example 4.1 It is well known that the projection to a closed convex set K � R
d is

uniquely defined on the whole space, so that reach.K/ D C1. The reciprocal of
this statement is a theorem of Motzkin [20]: if reach.K/ D C1, then K is convex.

Example 4.2 The tubular neighborhood theorem implies that a smooth compact
submanifold of R

d always has positive reach. In the case of a smooth compact
hypersurface, this follows from the proof of Proposition 4.3. In addition, the reach
of submanifold M is always less than the minimum radius of curvature of M.

Example 4.3 Note however, that the reach is a global quantity, and cannot be lower
bounded by any function of the minimum curvature radius. For instance, consider
a compact set consisting of two spheres of radius R at distance ". Then, the reach
of the union of those two sphere is "

2
while the minimum curvature radius remains

constant and equal to R. It is also possible to construct similar examples involving
connected manifolds.

The definition of curvature measures of sets with positive reach relies on the fact
that the boundary of small tubular neighborhoods around those sets are hypersurface
of class C 1;1, that is C 1 hypersurface with a Lipschitz normal vector field (see [12,
Theorem 4.8]).

Proposition 4.2 ([12]) Let K � R
d be a set with positive reach. Then, for any

r in .0; reach.K// the restriction of the projection function to Kr is Lipschitz. In
particular, the level set @Kr D d�1

K .frg/ is a C 1;1 hypersurface.
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4.2.2 Generalized Gradient and Sets with Positive �-Reach

The reach of a compact set a very unstable quantity. For instance, the reach of a
triangulation is always zero, whereas smooth surfaces, which have positive reach,
can be approximated arbitrarily well by triangulations. In this section, we will see
how to define a relaxed notion of reach using a generalized gradient of the distance
function.

4.2.2.1 Generalized Gradient

The distance function to a compact set is differentiable everywhere but on the
medial axis. However, the semiconcavity property allows one to define a generalized
gradient of the distance function everywhere. This generalized gradient coincides
with the usual gradient of the distance function when it is differentiable.1

Definition 4.6 Let K be a compact subset of Rd and let x be a point in R
d n K. We

define the generalized gradient of the distance function to K at x by:

rdK.x/ D x �epK.x/
dK.x/

; (4.6)

whereepK.x/ is the center of the (uniquely defined) smallest ball containing the set
of projections projK.x/.

In particular, the norm krdK.x/k equals one if and only if projK.x/ is contained
in a ball with zero radius, i.e. if it is a singleton. In other words,

Med.K/ D fx 2 R
d n KI krdK.x/k < 1g: (4.7)

4.2.2.2 Sets with Positive �-Reach

The �-reach is a relaxed version of the reach, which had originally been introduced
because of its better stability properties with respect to perturbations of the compact
set [6]. By Eq. (4.7), the reach of a compact set K is equal to the maximal radius r
such that krdK.x/k D 1 on the offset Kr:

reach.K/ D sup fr 	 0I 8x 2 Kr; krdK.x/k D 1g : (4.8)

This remark suggests a parameterized notion of reach, called the �-reach.

1This generalized gradient coincides with the orthogonal projection of the origin on the supdiffer-
ential of the distance function [5, Lemma 5.2].
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Definition 4.7 (�-Reach) Let � 2 .0; 1/. The �-reach of a compact set K is the
maximal radius r such that krdK.x/k 	 � on the offset Kr:

reach�.K/ D sup fr 	 0I 8x 2 Kr; krdK.x/k 	 �g : (4.9)

With � D 1, we recover the notion of reach introduced earlier.
In addition to smooth manifolds and convex sets, the class of compact sets with
positive �-reach also contains triangulations and non-convex polyhedra. Offsets of
sets with positive �-reach are not smooth in the sense of Proposition 4.2, but they
still possess some regularity properties.

4.2.2.3 Offsets of Compact Sets with Positive �-Reach

Let K � R
d be a compact set with positive �-reach. A theorem of Fu [14,

Corollary 3.4] implies that for any radius r in .0; reach�.K//, the closure of the
complement of the tubular neighborhood Kr has positive reach. This lower bound
was made quantitative in [4].

Theorem 4.1 ([4]) Let K � R
d be a set with positive�-reach. Then, for any radius

r in .0; reach�.K//, one has

reach
�
Rd n Kr

�
	 �r: (4.10)

From Proposition 4.2, this implies that offsets of Rd n Kr are of class C 1;1. These
so-called double offsets are used in computer aided design to smoothen a surface.
The .r; t/-double offset of K is the set of points that are at distance t of the
complementary of Kr:

Kr;t WD Rd n Kr
t D

n
x 2 R

dI d
�
x;Rd n Kr

�
� t
o

(4.11)

The following theorem is thus a direct consequence [4].

Theorem 4.2 (Double Offset Theorem) Let K � R
d be a set with positive �-

reach. Then, for any radius r in .0; reach�.K// and every t < �r the hypersurface
@Kr;t is C1;1-smooth. In addition,

reach.@Kr;t/ 	 min.t; �r � t/: (4.12)

This implies in particular that the smallest of the principal radii of curvature at any
point of @Kr;t is at least min.t; �r � t/.



4 Inference of Curvature Using Tubular Neighborhoods 139

4.3 Boundary Measures and Federer’s Curvature Measures

In this section, we introduce Federer’s curvature measures, which apply to a large
class of compact subsets embedded in the Euclidean space. The main objective here
is to prove a stability theorem for these curvature measures which implies that it
is possible to estimate them from point cloud data. As a first step, we consider a
simpler notion called boundary measures and introduced in [8] for the purpose of
geometric inference.

4.3.1 Boundary Measures

Loosely speaking, the boundary measure associated to a surface encodes the
distribution of normals to the surface at a certain scale, and can be used to detect
sharp edges, or highly curved areas, where the concentration of normals is much
higher.

Definition 4.8 (Boundary Measures) If K is a compact subset and E a domain
of Rd, the boundary measure �K;E is defined as follows: for any subset B � R

d,
�K;E.B/ is the d-volume of the set of points of E whose projection on K is in B, i.e.

�K;E.B/ D H d. p�1
K .B \ K/ \ E/: (4.13)

Here and in the following, H d denotes the d-dimensional Hausdorff measure.
By construction, the total mass of this measure is equal to H d.E/. The construction
of the boundary measure is illustrated on Fig. 4.1.

Example 4.4 Let S be a unit-length segment in the plane with endpoints a and b.
The set Sr is the union of a rectangle of dimension 1 � 2r whose points project on
the segment and two half-disks of radius r whose points are projected on a and b.
It follows that

�S;Sr D 2r H 1
ˇ
ˇ
S

C �

2
r2ıa C �

2
r2ıb (4.14)

Fig. 4.1 Boundary measure
of K � R

d . The medial axis
Med.K/ of K is the dashed
line. Remark that the
boundary of the offset @Kr is
smooth everywhere but at its
point of intersection with the
medial axis

x

Kr

K

B

pK(x)

p−1
K (B)

M(K)
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Example 4.5 If P is a convex solid polyhedron of R3, F its faces, E its edges and V
its vertices, then one can see that:

�P;Pr D H 3
ˇ
ˇ
P

C r
X

f2F
H 2

ˇ
ˇ
f

C r2
X

e2E
H.e/H 1

ˇ
ˇ
e

C r3
X

v2V
K.v/ıv (4.15)

where H.e/ is the angle between the normals of the faces adjacent to the edge e and
K.v/ the solid angle formed by the normals of the faces adjacent to v. As shown by
Steiner and Minkowski, for general convex polyhedra the measure �K;Kr is a sum
of weighted Hausdorff measures supported on the i-skeleton of K, and whose local
density is the local external dihedral angle.

4.3.2 Stability of Boundary Measures

In this section, we suppose that E is a fixed open set with rectifiable boundary, and
we obtain a quantitative stability theorem for the map K 7! �K;E. What we mean by
stable is that if the Hausdorff distance between two compact sets K and P is small,
then the bounded-Lipschitz distance between the boundary measures �K;E and �P;E

is also small.

Definition 4.9 (Bounded-Lipschitz Distance) The bounded-Lipschitz distance
between two signed measures �; � with finite total mass is

dbL.�; �/ D sup
f

ˇ
ˇ
ˇ
ˇ

Z
fd� �

Z
fd�

ˇ
ˇ
ˇ
ˇ ; (4.16)

where the supremum is over all 1-Lipschitz function in R
d s.t. k fk1 � 1.

Theorem 4.3 If E is a fixed open subset of Rd with rectifiable boundary, for each
compact K � R

d, then

dbL.�K;E; �K0;E/ � const.E;K; d/dH.K;K
0/1=2 (4.17)

Moreover the constant only depends on the diameter of K.
Before proving this theorem, we will first show that the exponent 1=2 in the

right-hand side of Eq. (4.17) is optimal.

Lemma 4.1 There exists a sequence of compact subsets Kn of Rd converging to a
compact set K and a domain E, such that

dbL.�K;E; �Kn;E/ 	 const �dH.K;Kn/
1=2 (4.18)

Proof Let K be the closed unit disk in the plane, Kn be the regular polygon with
n edges inscribed in K, and let E be the annulus B.0; 2/ n B.0; 1/. Denote ` the
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edge length of Kn. Pythagoras theorem can be used to bound the Hausdorff distance
between K and Kn in term of `n: dH.K;Kn/ � const �`2n. The measure � D �K;E is
proportional to the uniform (lineic) measure on the unit circle. On the other hand,
the map pKn projects a constant fraction of the mass of E onto the vertices Vn of Kn.
The cost of spreading out the mass concentrated on these vertices to get a uniform
measure on the circle is proportional to the distance between consecutive vertices,
so that dbL.�D;E; �P`;E/ 	 const �`n. ut

The next lemma shows that Theorem 4.3 can be deduced from a L1 stability result
for projection functions.

Lemma 4.2 dbL.�K;E; �L;E/ � kpK � pLkL1.E/

Proof Consider a 1-Lipschitz function f on R
d. Then, by the change of variable

formula, and using the Lipschitz property,

Z

Rd
f . p/d.�K;E. p/� �L;E. p// D

Z

E
f .pK.x// � f .pL.x//dH

d.x/

�
Z

E
kpK.x/ � pL.x/k dH d.x/ D kpK � pKkL1.E/

Taking the maximum over 1-Lipschitz functions bounded by 1 gives the desired
bound. ut

Proposition 4.1 allows us to rewrite the projection function pK as the gradient of
a convex function: setting  K.x/ WD 1

2
.kxk2 � dK.x/2/, one has pK D r K . This

rewriting recasts a difficult geometric question into a seemingly easier analytical
question, namely a L1-stability of gradients of convex functions. This is the object
of the next theorem. The proof presented here is different from the original proof in
[8] and gives a slightly better constant.

Theorem 4.4 ([8]) Let 
; W R
d ! R be two convex functions and E be a

bounded domain with rectifiable boundary. Then,

kr
 � r k2L2.E/ � 2 k
 �  kL1.E/ .kr
kL1.E/ C kr kL1.E//H
d�1.@E/

(4.19)

Proof Note that if the inequality (4.19) holds for smooth convex functions, then it
also holds for any convex function. Indeed, it suffices to remark that any convex
function 
 can be approximated by a sequence of smooth convex functions .
n/
such that r
n converges uniformly to r
 on any compact domain. By another
approximation argument, it is possible to replace E by a domain with smooth
boundary. From now on, we will assume that 
; and @E are smooth. We use
Stokes theorem to get:

Z

E
kr
 � r k2 D

Z

@E
.
 � / hr
 � r jnEi �

Z

E
.
 � /�.
 � / (4.20)
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The first term of this sum is easily bounded, using the fact that an integral is bounded
by the maximum of the integrand multiplied by the measure of the domain, and the
Cauchy-Schwarz inequality:

ˇ
ˇ
ˇ
ˇ

Z

@E
.
 �  / hr
 � r jnEi

ˇ
ˇ
ˇ
ˇ � k
 �  kL1.E/ .kr
kL1.E/C kr kL1.E//H

d�1.@E/

(4.21)

We can bound the second term similarly:

ˇ
ˇ
ˇ
ˇ

Z

E
.
 �  /�.
 �  /

ˇ
ˇ
ˇ
ˇ � k
 �  kL1.E/

Z

E
.j�
j C j� j/ (4.22)

We now use the convexity hypothesis, which implies that�
 is non-negative, which
allows us to apply Stokes theorem again:

Z

E
j�
j D

Z

E
�
 D

Z

@E
hr
jnEi � kr
kL1.E/H

d�1.@E/ (4.23)

Combining Equations (4.22)–(4.23), we get

ˇ
ˇ
ˇ
ˇ

Z

E
.
 �  /�.
 �  /

ˇ
ˇ
ˇ
ˇ � k
 �  kL1.E/ .kr
kL1.E/ C kr kL1.E//H

d�1.@E/
(4.24)

Finally, Equations (4.20), (4.21) and (4.24) give the desired inequality (4.19). ut
Proof (Proof of Theorem 4.3) We introduce the functions  K.x/ WD 1

2
.kxk2 �

dK.x/2/, which is convex, and we define  K0 similarly. Now, thanks to Lemma 4.2
and using the Cauchy-Schwarz inequality, we have

dbL.�K;E; �K0 ;E/ � kpK � pK0kL1.E/ � H d.E/ kpK � pK0kL2.E/ : (4.25)

We are now ready to apply Theorem 4.4. Without loss of generality, we assume
that the Hausdorff distance between K and K0 is bounded by diam.K/ and that K
contains the origin. Using kpKk1 D maxp2K kpk � diam.K/,

kr KkL1.E/ C kr K0kL1.E/ � kpKk1 C kpK0k1 � 3 diam.K/: (4.26)

Finally, we need to control the quantity k
 �  kL1.E/. For this purpose, we use the
relation kdK � dK0k1 D dH.K;K0/:

k
 �  kL1.E/ D 


d2K � d2K0






L1.E/

� .kdKkL1.E/ C kdK0kL1.E//dH.K;K
0/

� const.K;E/dH.K;K
0/; (4.27)
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where the last inequality follows from the assumption that dH.K;K0/ � diam.K/,
which implies that kdK0kL1.E/ � kdKkL1.E/ C diam.K/. The stability inequal-
ity (4.17) then follows from (4.25), Theorem 4.4 and Eqs. (4.26)–(4.27). ut

4.3.3 Tube Formulas and Federer’s Curvature Measures

We start with the tube formulas of Steiner, Minkowski and Weyl, before turning to
the more precise tube formula of Federer, which is then used to define the curvature
measures of a large class of compact sets.

4.3.3.1 Tube Formulas

A tube formula for a compact set K in Euclidean space asserts that the Lebesgue
volume of the tubular neighborhoods Kr is a degree d polynomial in r on a certain
interval. The first tube formula is due to Steiner and shows that if K is a convex
polygon in the Euclidean plane, the function r 7! H d.Kr/ is a polynomial of degree
two, and more precisely,

H d.Kr/ D H 2.K/C rH 1.@K/C �r2 (4.28)

The proof of this fact is (almost) contained in Fig. 4.2: every vertex with exterior
angle ˛i contributes a volume of ˛ir2 to Kr, while every segment contributes r � `j.
Summing these up on every segment and vertex yields the 2D Steiner formula.
Minkowski proved a similar polynomial behavior for the volume of the offsets of
any compact convex set in R

d.
Weyl [24] proved that the polynomial behavior for r 7! H d.Kr/ also holds

for small values of r when K is a compact smooth submanifold of R
d. He also

proved that the coefficients of this polynomial can be computed from the second

Fig. 4.2 Offset of a polygon
in the Euclidean plane

r
K

Kr

αi

�j
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fundamental form of K. The following proposition deals with the (simple) case of
an hypersurface bounding a compact domain.

Proposition 4.3 Let K be a bounded domain ofRd with smooth boundaryM. Then,
for sufficiently small values of r > 0,

H d.Kr/ D H d.K/C
d�1X

kD1
const.d; k/rkC1

Z

M

2

4
X

i1<


<ik
�i1 : : : �ik . p/

3

5 dp (4.29)

where �1. p/; : : : ; �d. p/ are the principal curvatures at point p of @K D M.

Proof Let n be an oriented normal field on M. The map˚ W M�R ! R
d; . p; t/ 7!

p C tn is locally injective; by compactness of M, it is also injective on M � Œ0; r�
for r small enough. One has d. p;t/˚ D idTpM C tdpn C n, i.e.

ˇ
ˇdet.d. p;t/˚/

ˇ
ˇ Dˇ

ˇdet.id C tdpn/
ˇ
ˇ. For t D 0, det.d. p;t/˚/ D 1 > 0 at any point p 2 M; as a

consequence, and by compactness of M again, this determinant remains positive
for small enough values of t. This allows us to apply a following change-of-variable
formula for small values of r:

H d.Kr/ D H d.K/C
Z

KrnK
1dx

D H d.K/C
Z

M

Z r

0

det.id C tdpn/dtdn

(4.30)

The eigenvalues of the map dpn are the d principal curvatures of M at p, which
means:

det.id C tdpn/ D
d�1Y

iD1
.1C t�i. p// D

dX

kD1
tk

2

4
X

i1<


<ik
�i1 . p/ : : : �ik. p/

3

5 (4.31)

We conclude the proof by putting Eq. (4.31) in Eq. (4.30). ut

4.3.3.2 Federer’s Curvature Measures

The contribution of Federer to the theory of tube formulas is twofold. First, Federer
defines the class of compact sets with positive reach, which includes both compact
convex sets and compact smooth submanifolds of Rd. The reach of a compact subset
of Rd is an interesting quantity, because it gives a lower bound on the largest R such
that the map r 7! H d.Kr/ is a polynomial of degree d on Œ0;R�. Second, Federer
associates to any set with positive reach a family of d C 1 curvature measures,
which allow one to recover local curvature information. The construction of these
curvature measures rely on a local version of the tube formula [12].
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As mentioned in Sect. 4.2.1.1, sets with positive reach generalize both convex
sets and compact smooth submanifolds. In order to introduce the curvature mea-
sures of a set K with positive reach, Federer first proves that for any positive r
in .0; reach.K/�, the boundary of the offset @Kr is a hypersurface of class C 1;1,
i.e. @Kr is a C 1 hypersurface with a Lipschitz normal field. Federer’s then extends
the tube formula presented in Proposition 4.3 to this less smooth setting. Finally,
the existence of curvature measures for K, as well as the polynomial behavior for the
volume of the offsets is obtained by approximation, by letting r go to zero. We will
not prove these facts, but only quote Federer’s existence result. As usual, !k denotes
the volume of the k-dimensional sphere in R

kC1.

Theorem 4.5 (Federer) For any compact set K � R
d with positive reach, there

exists d C 1 signed measures ˚K;0; : : : ; ˚
d
K;d such that for r � reach.K/,

�K;Kr D
dX

iD0
!d�i˚K;ir

i: (4.32)

Definition 4.10 The measures˚K;0; : : : ; ˚K;d introduced in Theorem 4.5 are called
Federer’s curvature measures of K.

4.3.4 Stability of Federer’s Curvature Measures

The purpose of this section is to show that Federer’s curvature measures of a
compact set with positive reach can be estimated from a Hausdorff approximation
of this set, without any regularity hypothesis on the approximating set. In order to
do so, we explain how to associate an ersatz of Federer’s curvature measures to any
compact set, which coincide with the original curvature measures when the set has
a sufficiently large reach.

Definition 4.11 (Approximate Curvature Measures) Let R > 0 and r be a family
of numbers .ri/0�i�d such that 0 < r0 < : : : < rd. Given any compact set K in R

d

and any Borel set B, we define the approximate curvatures .˚.r/
K;i.B//0�i�d as the set

of coefficients which satisfy the interpolation equations:

80 � i � d � 1; �K;Kri .B/ D
dX

jD0
!d�j˚

.r/
K; j.B/r

j
i (4.33)

Since the numbers .ri/ are distinct, this define the approximate curvature measures
uniquely. More precisely, by Lagrange interpolation, there exist real coefficients
.Lij/ such that

80 � i � d � 1; ˚.r/
K; j D

X

0�i�d

Lij�K;Kri : (4.34)
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This shows that the approximate curvature measure ˚.r/
K; j is a signed measure.

Moreover, one recovers Federer’s curvature measures when the reach of K is
sufficiently large. More precisely, if rd � reach.K/, then ˚.r/

K; j D ˚K; j.
We are now able to state the following stability theorem from [8].

Theorem 4.6 Given any compact set K � R
d and .r/ as in Definition 4.11, there

exist a constant C D const.K; r; d/ such that for any compact set K0 sufficiently
close to K,

dbL

�
˚
.r/
K; j; ˚

.r/
K0; j

�
� CdH.K;K

0/1=2

Moreover, if rd � reach.K/ then one can estimate Federer’s curvature measures of
K from K0:

dbL

�
˚
.r/
K; j; ˚K0; j

�
� CdH.K;K

0/1=2:

We will see first how Theorem 4.6 can be deduced from the following stability
result for boundary measures.

Theorem 4.7 Given any compact set K � R
d and r a positive number, there exist a

constant C D const.K; r; d/ such that for any compact set K0 sufficiently close to K,

dbL
�
�K;Kr ; �K0;K0r

� � CdH.K;K
0/1=2:

Proof (Proof of Theorem 4.7) Let E be the symmetric difference between Kr and
K0r. Then, by the triangle inequality for the bounded-Lipschitz distance,

dbL
�
�K;Kr ; �K0 ;K0r

� � dbL .�K;E; �K0 ;E/C dbL .�K;Kr ; �K;E/C dbL
�
�K0 ;K0r ; �K0 ;E

�

Theorem 4.3 implies that the first term of the right-hand side is of order
O.d1=2H .K;K0//. We only need to deal with the two last terms. Given any 1-Lipschitz
function f with k fk1 � 1, the change-of-variable formula implies

Z

Rd
f .x/d.�K;Kr � �K;E/ �

Z

Kr
f .pK.x//dH d.x/�

Z

E
f .pK.x//dH d.x/

� H d.Kr n E/

Taking the maximum over such functions gives a bound on the bounded-Lipschitz
distance between these measures. Overall, we have

dbL
�
�K;Kr ; �K0 ;K0r

� � Cd1=2H .K;K0/C H d.Kr n E/C H d.K0r n E/:
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Defining " D dH.K;K0/, one has the inclusion Kr n E � Kr n Kr�". This term
can be shown to be of order O.dH.K;K0// using Proposition 4.2 from [8] and the
coarea formula. ut
Proof (Proof of Theorem 4.6) Thanks to Eq. (4.34), one has for any 1-Lipschitz
function f such that k fk1 � 1,

ˇ
ˇ
ˇ
ˇ

Z

Rd
fd.˚.r/

K; j � ˚
.r/
K0; j/

ˇ
ˇ
ˇ
ˇ �

X

0�i�d

ˇ
ˇLij
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Z

Rd
fd.�K;Kri � �K;Kri /

ˇ
ˇ
ˇ
ˇ

�
X

0�i�d

ˇ
ˇLij
ˇ
ˇ dbL.�K;Kri ; �K;Kri /

� const.K; .r/; d/dH.K;K
0/1=2;

where the second inequality follows from the definition of the bounded-Lipschitz
distance, and the third inequality comes from Theorem 4.7. To conclude, it suffices
to apply the definition of the bounded-Lipschitz distance once again. ut

4.3.5 Computation of Boundary Measures and Visualization

We explain briefly how to compute the boundary measure of a point cloud, that is
a finite subset P of Rd. The Federer’s curvature measures can be recovered from
the boundary measures through polynomial fitting. The computation relies on the
Voronoi diagram of P, which is a practical way of encoding the distance function to
P in low dimension.

Definition 4.12 (Voronoi Diagram) Let P be a point cloud of R
d. The Voronoi

diagram of P is a decomposition of the space into convex polyhedra called Voronoi
cells. The Voronoi cell of the point p in P is defined by:

VorP. p/ D fx 2 R
dI 8q 2 P; kx � pk � kx � qkg: (4.35)

Lemma 4.3 Let P be a point cloud of Rd. The boundary measure of P with respect
to a domain E is given by

�P;E D
X

p2P
H d.VorP. p/\ E/ıp: (4.36)

In addition, when E D Pr is an offset of P, one has

�P;Pr D
X

p2P
H d.VorP. p/\ B. p; r//: (4.37)
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Proof Equation (4.36) follows from the fact that a point x belongs to the Voronoi
cell of p in P if and only if dP.x/ D p and iff pP.x/ D p. To prove the second
equation, we only need to remark that

VorP. p/\ Pr D fx 2 R
dI dP.x/ D kx � pk and dP.x/ � rg

D fx 2 R
dI dP.x/ D kx � pk and kx � pk � rg

D VorP. p/\ B. p; r/

ut
Thanks to this lemma, computing boundary measures amounts to evaluating

the volume of intersections of Voronoi cells with balls. This leads to a practical
algorithm in dimension 2 and 3 [19]. This approach becomes too costly in higher
dimensions due to the exponential complexity of the Voronoi diagram, but it is
possible to resort to a Monte-Carlo method [8].

4.3.5.1 Visualization

It is not trivial how to visualize a finitely supported measure �P;Pr on R
d, even when

the ambient dimension is d D 2; 3. The obvious idea is to display a ball whose
volume is proportional to the mass of the Dirac at each point in the support of
the measure. This is however not satisfactory as two measures which are close for
the bounded-Lipschitz distance could lead to very different visualizations. Indeed,
consider � D ıx and �� D .ıx C ıy/=2 where kx � yk � �: � would be displayed
as a single ball B.x; r/ while the nearby measure �� would be displayed as two
overlapping balls of smaller radius B.x; ˛r/ [ B.x; ˛r/ with ˛ D 2�1=d.

In order to construct a visualization which is stable with respect to the bounded-
Lipschitz distance, we therefore convolve each boundary measure with a fixed
bounded-Lipschitz function �.

Definition 4.13 (Convolution) The convolution of a finite measure � on R
d with

a bounded measurable function � is the function �  � W Rd ! R defined by

Œ�  ��.x/ WD
Z

Rd
�.y � x/d�.y/ (4.38)

The convolved measure �  � is stable with respect to the bounded-Lipschitz
distance, by its very definition. More precisely,

Lemma 4.4 Let � be a function on R
d such that Lip� � 1 and k�k1 � 1. Then

for finite measures �; �,

k�  � � �  �k1 � dbL.�; �/ (4.39)

In practice, we choose the convolution kernel to be the “hat function” �".y/ D
max." � kx � yk ; 0/, and we display at each point in P a ball whose volume is
proportional to the value of the function �P;Pr  �". Figure 4.3 shows the convolved
boundary measures of point clouds sampling piecewise-smooth surfaces in R

3.
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(a) (b)

Fig. 4.3 Convolved boundary measures of 100k point clouds sampled from point clouds sampled
from the fandisk and sharp sphere models and rescaled so as to have unit diameter. The offset
radius is set to r D 0:05 and r D 0:1 respectively and the convolution radius is given by " D 0:02

and " D 0:03. (a) Fandisk; (b) Sharp sphere

Fig. 4.4 Feature points extracted from a point cloud sampling of a CSG model by thresholding
low values of the convolved boundary measure

4.3.5.2 Sharp Features Extraction

Extracting the set of sharp features of a compact sets known through a finite point
cloud sampling is of interest in many geometry processing applications. Figure 4.3
suggests that the sharp corners carry more mass than the points on the sharp edges,
which again carry more mass than the smooth points. This observation can be turned
into more quantitative estimations, see e.g. [18, Chap. 3]. In Fig. 4.4 we display
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points whose boundary measures carries more mass than some threshold, or more
precisely (for the same reasons as in the previous paragraph), where the values of
the function �K;Kr  �" are higher than some threshold.

4.4 Voronoi Covariance Measures and Local
Minkowski Tensors

In some applications, such as feature-aware surface reconstruction, scalar quantities
such as those encoded in Federer’s curvature measures are not sufficient, and one
also wishes to recover directional information such as principal curvature directions
or the direction of a sharp edge in a piecewise smooth surface.

4.4.1 Covariance Matrices of Voronoi Cells

Voronoi-based normal estimation [1, 2] rely on the intuition that for a noiseless
sampling of a smooth surface the Voronoi cells are elongated in the direction of the
normal to the surface. For instance, in Fig. 4.5, the Voronoi cell of the red point on
upper face is an elongated cylinder, and it is possible to estimate the normal to that
face by analyzing the shape of this Voronoi cell. A practical tool for estimating the
direction in which a domain is elongated is the notion of covariance matrix.

Definition 4.14 (Covariance Matrix) The covariance matrix of a bounded
domain V � R

d is the symmetric matrix, or tensor, defined by:

cov.V; p/ D
Z

V
.x � p/˝ .x � p/dx

where v ˝ w denotes the n � n matrix defined by Œv ˝ w�i; j D wivj.

Fig. 4.5 The Voronoi cell of
a point x on a cube is pencil,
triangle or cone-shaped
depending on the dimension
of the normal cone
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The covariance matrix of a domain is also known as the inertia matrix in
solid mechanics and its eigenvectors capture the principal axes of the domain
V with respect to the base point p. In the case of a noiseless sampling of a
smooth surface, one can approximate the normal direction at each sample by the
eigenvector corresponding to the largest eigenvalue of the covariance matrix of the
corresponding Voronoi cell intersected with a bounding box of the point set [1].
Under strong noise, individual Voronoi cells can become ill shaped, but it is possible
to average the covariance matrices of nearby Voronoi cells to recover the correct
normal directions.

Note, however, that the shapes of Voronoi cells provide more information than
just the normal direction. When the underlying surface is not smooth, some of its
points will have normal cones rather than single normal directions. Nevertheless,
even in this case, the shapes of Voronoi cells accurately reflect the shapes of the
underlying normal cones. Some geometric properties of these normal cones can
then be estimated using the covariance matrices of the Voronoi cells.

4.4.2 Voronoi Covariance Measure

It is possible to mimic the definition of the boundary measure to construct a
tensor-valued measure which summarizes and extends the covariance matrices of
Voronoi cells.

Definition 4.15 The Voronoi covariance measure (also called VCM) of a compact
subset K of Rd with respect to a bounded domain E a tensor-valued measure denoted
by VK;R. This measure maps every (Borel) subset B of Rd to the symmetric matrix
defined by:

VK;E.B/ WD
Z

E\p�1
K .B\K/

.x � pK.x//˝ .x � pK.x//dx (4.40)

Example 4.6 The Voronoi covariance measure of a point cloud P � R
d summarizes

the covariance matrices of Voronoi cells. More precisely, the Voronoi covariance
measure of P with respect to a bounded domain E is a sum of Dirac masses. The
weight in front of each Dirac is the covariance matrix of the corresponding Voronoi
cell. More precisely,

VK;E D
X

p2P
cov.VorP. p/; p/ıp: (4.41)

These quantities can be computed efficiently, provided that one is able to compute
(or approximate) the intersection between the Voronoi cell and E.
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Definition 4.16 The bounded-Lipschitz distance between two measures�; � taking
values in a normed vector space .X; k:k/ is defined by

dbL.�; �/ D sup
f










Z
fd��

Z
fd�








 : (4.42)

For tensor-valued measure, the vector space is the space of symmetric matrices and
k:k is the operator norm.

The Hausdorff stability result for boundary measures (Theorems 4.3 and 4.7)
can be generalized to Voronoi covariance measures. The VCM can be used for the
estimation of the location and direction of sharp features, leading to a practical and
efficient algorithm [19].

Theorem 4.8 Given any compact set K � R
d and r a positive number, there exist a

constant C D const.K; r; d/ such that for any compact set K0 sufficiently close to K,

dbL
�
VK;Kr ;VK0;K0r

� � CdH.K;K
0/1=2:

4.4.2.1 Extensions

The Voronoi covariance measure is closely related to the notion of local Minkowski
tensor, which was recently introduced by Hug and Schneider [15]. Theorems 4.8
and 4.6 have been extended to this setting by Hug et al. [16]. A robust variant of the
Voronoi covariance measure is introduced and studied in the PhD thesis of Cuel [10].

4.5 Stability of Anisotropic Curvature Measures

In this last section, we consider the question of approximating anisotropic curvature
measures of a compact set from a Hausdorff-approximation. Here, we assume that
the unknown compact set K has positive �-reach: this include smooth manifolds,
convex domains and triangulations (see Sect. 4.2.2). We show that it is possible to
approximate the anisotropic curvature measures of Kr from those of K0r, where K0
is a Hausdorff approximation of K and where r lies in some range. In practical
applications, the second set K0 is a point cloud and its offset K0r is a finite union of
balls, whose anisotropic curvature measures can be computed.

4.5.1 Anisotropic Curvature Measures of Sets with
Positive Reach

Let V be a compact set with positive reach and let t in .0; reach.V//. Since the
hyper-surface @Vt is of class C1;1, the second fundamental form and the principal
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curvatures of @Vt are defined almost everywhere. One can therefore define the
anisotropic curvature measure introduced in [9].

Definition 4.17 Let V be a compact set with positive reach. The anisotropic
curvature measure of V associates to any Borel set B the matrix

HV.B/ D lim
t!0

Z

@Vt\p�1
V .B/

H@Vt . p/dp;

where H@Vt is a matrix-valued function defined on R
d that coincides with the second

fundamental form of @Vt on the tangent space, and vanishes on the orthogonal
component.

Remark that this definition is coherent with the Federer curvature measures.
Indeed, the kth Federer curvature measures satisfies for every Borel subset B of Rd:

˚V;k.B/ D lim
t!0

Z

@Vt\p�1
V .B/

sk. p/dp;

where pV is the projection onto V and sk is the k-th elementary symmetric
polynomial of the principal curvatures 1,. . . ,d�1 of @Vt.

Now, let K be a compact set whose �-reach is greater than r > 0. Then
V D Rd n Kr has a reach greater than �r. It is then possible to define the curvature
measures of Kr [22, 23] by:

˚ k
Kr.B/ D .�1/k˚ k

V.B/ and HKr.B/ D �HV.B/:

4.5.2 Stability of the Curvature Measures of the Offsets

The following theorem states that if a compact set K is close in the Hausdorff sense
to a compact set K0 with positive �-reach, then the Federer curvature measures and
anisotropic curvature measure of the offsets Kr and K0r are close for the bounded-
Lipschitz distance. This result is similar but not equivalent to Theorem 4.6. The
result in Theorem 4.6 is limited to the Federer curvature measures but it derives from
Theorem 4.7, which holds without any assumptions on the underlying compact set,
whereas Theorem 4.9 requires to assume a lower bound on the �-reach. We recall
that the bounded-lipschitz distance is given in Definition 4.16.

Theorem 4.9 Let r > 0, K and K0 be two compact subsets of Rd such that
reach�.K0/ > r. We suppose that the Hausdorff distance " D dH.K;K0/ between
K and K0 is such that " < �2

60C9�2 r. Then one has

dbL.˚Kr ;k; ˚K0r;k/ � const.r; �; d;K/
p
�
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and

dbL.HKr ;HK0r/ � const.r; �; d;K/
p
�;

where const.r; �; d;K/ depends on r, �, d and the diameter of K.
This theorem implies that one can estimate locally the curvature measures of a

compact set K0 with positive�-reach from an Hausdorff approximation. If f W Rd !
R is measurable function, the previous theorem implies that

ˇ
ˇ
ˇ
ˇ

Z
fd˚Kr ;k �

Z
fd˚K0r ;k

ˇ
ˇ
ˇ
ˇ � const.r; �; d;K/ k fkBL

p
�; (4.43)

where k fkBL D Lip. f / C k fk1k is the bounded-lipschitz norm of f . The similar
inequality holds for the anisotropic curvature measure. In practice, we take the hat
function f .x/ D max.1 � kx � ck=r; 0/ equal to 1 at a point c 2 @K0r. Then we can
retrieve local information about the curvature of K0r from the curvature of Kr in the
neighborhood of c.

As illustrated in Fig. 4.6, the upper bound of Theorem 4.9 is tight. However the
constant const.r; �; d;K/ in Eq. (4.43) can be localized. It does not have to depend
on the whole compact set K, but can only depend on the diameter of the support
spt f D fx 2 R

d; f .x/ ¤ 0g of f . See [7] for more details.

4.5.3 Computation of the Curvature Measures of
3D Point Clouds

When the compact set K is a finite point set in R
3 it is possible to provide explicit

formula for the curvature measures. The boundary of Kr is a spherical polyhedron:
its faces are spherical polygons; its edges are circle arcs contained in the intersection
of pairs of spheres of radius r with centers in K; its vertices belong to the intersection
of three spheres of radius r with centers in K. One has explicit integral formula

Fig. 4.6 Tightness of the
bound of Theorem 4.9. We
consider compact sets
K D Œ p; q� and
K0 D Œ p; q�[ fsg, where s is
at a distance � from K. We
have dH.K;K0/ D � and the
total curvature � of K0

r
between a and b satisfies � D
2 arccos

�
r��
r

� D O
�p
�
�

ε

p q

θ

K ′r

r
s

r

a b
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Fig. 4.7 The Gauss (left) and mean (right) curvatures computed on the offset of a point set
sampled around a smooth surface. The colors are related to the values of the curvature according
to the colorbar on the right, the blue color corresponding to the lowest values

Fig. 4.8 The Gauss (first and second image) and mean (third and fourth image) curvatures
computed on the offset of a point cloud sampled around a non-manifold set union of a cube with
a disc and a circle. As expected, the vertices and the boundary of the disc have a large Gaussian
curvature

for the curvature measures for each vertex/edge/face of the spherical polygon [7].
Moreover, the combinatorial structure of @Kr is in one-to-one correspondence with
the boundary of the ˛-shape of K [11].

In Figs. 4.7 and 4.8 below, the curvatures are represented on the boundary of the
˛-shape (for ˛ D r) of the point clouds where each triangle is colored according to
the curvature value of its corresponding vertex in @Kr and to the colorbar on the right
of Fig. 4.7. Note that the color values are different for the different examples (since
the extrema values are different). This algorithm can be easily adapted to calculate
the anisotropic curvature measures for a finite set of points. In particular, this allows
to estimate the principal curvatures and principal directions from a point set.

4.5.4 Sketch of Proof of Theorem 4.9

We first need to introduce the notion of normal cycle for sets with positive reach.
Let V be a set with positive reach. We define the set:

S.V/ D f. p; n/ 2 R
d � S

d�1; p 2 @V and n 2 NorV. p/g;
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where NorV. p/ WD fv 2 R
dI 9t > 0; pV. p C tv/ D pg is the normal cone of V at p.

One can show that S.V/ is a Lipschitz (d-1)-manifold. The normal cycle N.V/ of V
is then by definition the (d-1)-current on R

d �R
d defined for every (d-1)-differential

form ! by:

N.V/.!/ D
Z

S.V/
!:

The normal cycle contains in fact all the curvature information and allows to define
the curvature measures [9]. For every k, the curvature measure ˚V;k.B/ is given by
N.V/. Nf!k/ where Nf . p; n/ D 1B. p/ and !k is a d � 1-differential form on R

d � R
d

that does not depend on V . Similarly, the anisotropic curvature measure HV.X;Y/
applied in the directions X and Y is given by N.V/. Nf!X;Y

H /, where !X;Y
H is a d � 1-

differential form that depends on X and Y.
The proof can now be divided into three steps: in the first step, we show that

the problem can be carried onto the double offsets (that are smooth); in a second
step, we compare the normal cycles of the double offsets; in the last step, we
combine Step 1 and Step 2 to show that the curvature measures of the two offsets
are close. Let K and K0 be two compact sets with positive �-reach that satisfy all
the assumptions of Theorem 4.9.
Step 1: Carrying the problem into the double offsets

First note that Rd n Kr and Rd n K0r have positive reach. We introduce the map:

F�t W Rd � R
d ! R

d � R
d

. p; n/ 7! . p � tn; n/
:

If V is any compact set with positive reach, the map F�t induces naturally a one-
to-one correspondence between the support of the normal cycle of the offset Vt

and the support of the normal cycle of V . In particular, this map allows to send
simultaneously the normal cycles of Kr;t and K0r;t to respectively the normal cycles
of Kr and K0r. More precisely, one has:

N.Rd n Kr/� N.Rd n K0r/ D F�t].N.K
r;t/� N.Kr;t//;

where F�t] denotes the push-forward for currents. Therefore, in order to compare
the normal cycles of Rd n Kr and Rd n K0r, it is sufficient to compare the normal
cycles of the double offsets Kr;t and K0r;t.
Step 2: Comparison of the normal cycles of the double offsets

In order to compare the normal cycles of Kr;t and K0r;t, we first need to compare
their (geometrical) supports in R

d �R
d. One first shows that the Hausdorff distance

between @Kr;t and @K0r;t is less than �=�. Using a result of [5] one also shows that
the difference between the normals of @Kr;t and @K0r;t is bounded by 30

p
�=.�t/.

Hence the (geometrical) supports of N.Kr;t/ and N.K0r;t/ are close to each other. Let
us take t D �r=2. Since the reach of @Kr;t is larger than t, the projection map p@Kr;t
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onto @Kr;t is then defined on the offset Ut WD .@Kr;t/t. Since @K0r;t � Ut, the map
p@Kr;t induces a one-to-one map between @K0r;t and @Kr;t. We now define

 W Ut � R
d ! spt .N .Kr;t//

.x; n/ 7! . p@Kr;t.x/; np@Kr;t .x//
:

Using the affine homotopy between  and the identity, the homotopy Lemma [13,
4.1.9, pp. 363–364] allows to show that N.Kr;t/ and N.K0r;t/ are close.
More precisely

N.Kr;t/ � N.K0r;t/ D @R; (4.44)

where @R is the boundary of a particular d-rectifiableR current whose support spt.R/
has a d-volume bounded by H d.spt.R// � k.r; �; d/H d�1.@K0r;t/

p
", where H k

denotes the k-dimensional Hausdorff measure and k.r; �; d/ is a constant that only
depends on r, � and d.
Step 3

Here, instead of applying the measures to a Borel set, we apply them to a
function f W R

d ! R (that can be for example indicatrix of Borel sets). Let us
take an differential form !k associated to a given curvature measure. We could
also consider the form !X;Y

H associated to the anisotropic curvature measure. By
combining previous equations, one has:

˚
RdnKr ;k. f /�˚RdnK0r ;k. f / D N.Rd nKr/. Nf!k/�N.Rd n K0r/. Nf!k/ D F�t]@R. Nf!k/:

We show that F�t is
p
1C t2-Lipschitz. Since !k and d!k are uniformly bounded

by a constant depending on the dimension, Lip. Nf / D Lip. f /, one gets by Stokes
theorem:

j˚
RdnKr ;k. f /� ˚

RdnK0r ;k. f /j � k.r; �; d/ k fkBL H d�1.@K0r;t/
p
�;

The previous inequality still holds for Kr and K0r . To conclude the proof, we use the
bound on H d�1.@K0r;t/ [8] and also use the critical function stability result to get
rid of the assumption on the �-reach of K.
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Chapter 5
Entropic Ricci Curvature for Discrete Spaces

Jan Maas

Abstract We give a short overview on a recently developed notion of Ricci
curvature for discrete spaces. This notion relies on geodesic convexity properties of
the relative entropy along geodesics in the space of probability densities, for a metric
which is similar to (but different from) the 2-Wasserstein metric. The theory can be
considered as a discrete counterpart to the theory of Ricci curvature for geodesic
measure spaces developed by Lott–Sturm–Villani.

5.1 Ricci Curvature Lower Bounds for Geodesic
Measure Spaces

In the last decade, ideas from the theory of optimal transport have led to significant
progress in the analysis and geometry on non-smooth spaces. The starting point for
these developments were the independent works by Lott and Villani [20] and Sturm
[29], who introduced a notion of Ricci curvature for metric measure spaces based
on a beautiful connection between optimal transport and entropy that originates in
McCann’s pioneering work [22].

Let .X ; d/ be a complete and separable metric space and let P.X / be the
space of Borel probability measures on X . For 1 � p < 1 and �; � 2 P.X /

we consider the Monge-Kantorovich metric Wp (often called Wasserstein metric or
Wasserstein distance), defined by

Wp.�; �/ WD inf
� 2˘.�;�/

�Z

X �X
d.x; y/pd� .x; y/

�1=p
for �; � 2 P.X / ;

where ˘.�; �/ denotes the set of all couplings of � and �, i.e., all probability
measures � 2 P.X � X / satisfying

� .A � X / D �.A/ and � .X � A/ D �.A/
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for all Borel sets A � X . Loosely speaking, Wp.�0; �1/
p is the minimal trans-

portation cost required to transport an amount of mass from its initial configuration
� to a prescribed final configuration �, at a cost of d.x; y/p per unit. It can be
shown that Wp defines a metric on Pp.X /, the space of probability measures
with finite p-th moment. Moreover, if .X ; d/ is a geodesic space (i.e., every pair
of points x0; x1 2 X can be joined by a curve � W Œ0; 1� ! X such that
d.�.s/; �.t// D js � tjd.x0; x1/ for all s; t 2 Œ0; 1�), then the 2-Wasserstein space
.P2.X /;W2/ is a geodesic space as well.

Given a reference measure � 2 P.X /, the relative entropy with respect to � is
defined by

Ent�.�/ WD
Z

X

	.x/ log	.x/d�.x/

whenever � 2 P.X / is absolutely continuous with density 	 D d�
d� , provided that

the integral is well-defined. If � is a probability measure, this quantity takes values
in Œ0;C1�.

The following result, proved in [9, 27, 28], characterizes Ricci curvature lower
bounds on Riemannian manifolds in terms of convexity properties of the relative
entropy (with respect to the volume measure) and optimal transport.

Theorem 5.1 (Characterization of Ricci Lower Bounds on Riemannian Man-
ifolds) Let � 2 R. For a complete Riemannian manifold M , the following
assertions are equivalent:

1. Ric 	 � onM .
2. Each pair of probability measures �0; �1 2 P2.M / can be connected by a

constant speed W2-geodesic .�t/t2Œ0;1� along which the entropy satisfies the �-
convexity inequality

EntVol.�t/ � .1 � t/EntVol.�0/C t EntVol.�1/ � �

2
t.1 � t/W2.�0; �1/

2 :

While the definition of the Ricci tensor requires a Riemannian structure on the
underlying space, the second condition makes sense in much greater generality: the
sole requirements are a metric (to define the Wasserstein metric) and a measure (to
define the relative entropy). Therefore the following definition makes sense:

Definition 5.1 (Lott–Sturm–Villani) Let � 2 R. A metric measure space
.X ; d; �/ is said to have “Ricci curvature bounded from below by �” if every
pair of probability measures �0; �1 2 P2.X / can be connected by a constant
speed W2-geodesic .�t/t2Œ0;1� along which the relative entropy Ent� satisfies the
�-convexity inequality

Ent�.�t/ � .1� t/Ent�.�0/C t Ent�.�1/� �

2
t.1 � t/W2.�0; �1/

2 :
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This definition has become the starting point for many interesting developments
in the analysis and geometry on metric measure spaces. A large number of geometric
and functional inequalities with sharp constants can be derived from this definition.
A crucial feature of the theory is its robustness, i.e., the stability of lower Ricci
curvature bounds under convergence of metric measure space in the sense of
measured Gromov–Hausdorff convergence. A stronger version of Definition 5.1,
a curvature-dimension criterion, has been introduced in [20, 29] as well. We refer
to [30] for an overview of this theory. More recently, important refinements of the
curvature-dimension criterion have been introduced in [2, 13].

5.1.1 Discrete Spaces

If .X ; d/ is a geodesic space, the Lott–Sturm–Villani criterion is non-trivial, since
we have already mentioned that the 2-Wasserstein space .P2.X /;W2/ is a geodesic
space as well. If .X ; d/ is discrete, the situation turns out to be completely different.
Indeed, suppose that .�t/t2Œ0;1� is W2-Lipschitz, i.e., W2.�s; �t/ � Ljs � tj for some
L < 1. Fix a point x 2 X and set m.t/ WD �t.fxg/. Since X is discrete, there
exists ı > 0 such that all other points are at least at distance ı from x. As a
consequence, W2.�s; �t/ 	 ı

pjm.t/� m.s/j. Combining the estimates above, we
infer that t 7! m.t/ is Hölder continuous with exponent 2, hence m is constant. Since
x was arbitrary, we conclude that every W2-Lipschitz curve is constant. In particular,
there are no W2-geodesics, so that the Lott–Sturm–Villani criterion is (trivially) not
satisfied for any � 2 R.

While the curvature concept based on geodesic convexity of the entropy has been
extremely powerful in the continuous (geodesic) setting, these observations show
that the 2-Wasserstein metric is not the appropriate object for an analogous discrete
theory.

To motivate the definition of a suitable discrete counterpart of W2, we shall
describe a seminal result in the continuous setting in which the Wasserstein metric
plays a central role.

5.2 The Heat Flow as Gradient Flow of the Entropy

It is a classical fact that the heat equation @tu D �u can be regarded as the gradient
flow equation in L2.Rn/ for the Dirichlet energy E W L2.Rn/ ! R[fC1g given by

E .u/ D
�
1
2

R
Rn jru.x/j2dx ; u 2 H1.Rn/ ;

C1 ; otherwise:

A quite different gradient flow structure for the heat equation, physically very
appealing, was discovered by Jordan et al. [18] at the end of the 1990s.
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Theorem 5.2 (Heat Flow is Gradient Flow of the Entropy) The heat equation
@t	 D �	 is the gradient flow equation for the Boltzmann-Shannon entropy in the
2-Wasserstein space .P2.R

n/;W2/.
Note that the meaning of this statement is not clear a priori . While gradient flows

are traditionally considered in smooth (e.g. Riemannian or Hilbertian) settings, the
statement of this result involves the notion of a gradient flow in a metric space, in
which the notion of a gradient is not defined.

In the original paper [18], the result was made rigorous using the discrete
minimizing movement scheme given by

�.0/ WD �0 ; �.kC1/ WD argmin�2P.Rn/

�

Ent.�/C 1

2h
W2.�

.k/; �/2
�

The authors showed that the piecewise constant functions .�h/ defined by

�h.t/ WD �.k/ ; t 2 Œkh; .k C 1/h/ ;

converge, as h # 0, to the solution of the heat equation @t� D �� with initial
condition �jtD0 D �0. It is also possible to interpret Theorem 5.2 using the theory
of gradient flows in metric spaces, which has been systematically developed in [1].

Another interpretation of this result can be given in terms of a formal infinite-
dimensional Riemannian structure on the space of probability measures [26]. This
structure is closely related to the so-called Benamou–Brenier Formula, which
provides a dynamical characterization of the 2-Wasserstein metric inspired by fluid
mechanics.

5.2.1 The Benamou-Brenier Formula

Fix two probability measures �0; �1 2 P2.R
n/. Instead of considering couplings

as in the Monge–Kantorovich problem, we consider continuous-time interpolations
.�t/t2Œ0;1� between �0 and �1. Under mild regularity conditions, such interpolations
satisfy the continuity equation (in the sense of distributions)

@t�t C r�.�tvt/ D 0 (5.1)

for a suitable time-dependent velocity vector field v W Œ0; 1� � R
n ! R

n. The
remarkable Benamou–Brenier formula [4] asserts that the squared Wasserstein
distance is obtained by minimizing the total kinetic energy among all solutions to
the continuity equation. More precisely,

W2.�0; �1/
2 D inf

.�t;vt/t

� Z 1

0

Z

Rn
jvt.x/j2 d�t.x/dt



; (5.2)
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where the infimum runs over all sufficiently regular solutions .�t; vt/t2Œ0;1� to (5.1)
with boundary conditions �jtD0 D �0 and �jtD1 D �1.

Given a sufficiently regular curve of probability measures .�t/t2.��;�/, there are
many different velocity vector fields v that satisfy the continuity equation (5.1) at
t D 0. However, it turns out that only one of those vector fields is a generalized
gradient, in the sense that it belongs to the closure of fr W  2 C1

c .R
n/g in

L2.Rn; �0IRn/. This vector field minimizes the kinetic energy
R
Rn jv.x/j2d�0.x/

among all vector fields v satisfying the continuity equation at t D 0, see, e.g., [1,
Sect. 8] for details.

It was realized by Otto [26] that the Benamou–Brenier formula can be regarded
as the Riemannian distance formula associated to a formal infinite-dimensional
Riemannian structure on P2.R

n/, which can be described as follows:

• Given a smooth curve .�t/t2.��;�/ in P2.R
n/ with �0 D �, let v D r be

the unique (generalized) gradient vector field satisfying the continuity equation
@t�t C r�.�r / D 0 at time 0. The velocity vector field r is regarded as
the tangent vector at � 2 P2.R

n/ associated to the curve .�t/t2.��;�/. Thus, by
means of the continuity equation, the tangent space at � is identified with the
space of generalized gradients.

• Taking this identification into account, the tangent space at � 2 P.Rn/ will be
endowed with the L2.�/-scalar product:

hr 1;r 2iT� WD
Z

Rn
hr 1.x/;r 2.x/id�.x/ :

It is then clear that the Benamou–Brenier formula is precisely the formula for
the Riemann distance induced by this formal infinite-dimensional Riemannian
structure.

5.3 A Gradient Flow Structure for Reversible
Markov Chains

We shall now describe a (standard) discrete framework in which an analogue of
Theorem 5.2 has been obtained.

Let L W RX ! R
X be the generator of a continuous time Markov chain on a

finite set X . Thus L is given by

.L /.x/ WD
X

y2X
Q.x; y/. .y/ �  .x// ;

whereQ.x; y/ 	 0 denotes the transition rate from x to y. We shall use the convention
that Q.x; x/ D 0 for all x 2 X . Assuming that the Markov chain is irreducible, there
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exists a unique invariant probability measure � on X , which means that

.L ��/.x/ WD
X

y2X
�.y/Q.y; x/� �.x/Q.x; y/ D 0 ; x 2 X :

We shall assume in addition that � is reversible, i.e., the detailed balance equations

�.x/Q.x; y/ D �.y/Q.y; x/

hold for all x; y 2 X . This assumption implies that L is selfadjoint as an operator
on L2.X ; �/. The associated Markov semigroup .etL /t�0 may be regarded as a
discrete analogue of the heat semigroup. Note that the set of probability densities

D.X / WD
n
	 W X ! RC j

X

x2X
	.x/�.x/ D 1

o

is invariant under the action of the semigroup .etL /t�0.
Let H W D.X / ! R be the relative entropy functional given by

H .	/ WD
X

x2X
	.x/ log 	.x/ �.x/ :

It is straightforward to check that H decreases along solutions to the discrete “heat
equation” @t	 D L 	. In view of Theorem 5.2 one might wonder whether this
equation has a gradient flow structure for the relative entropy with respect to the
2-Wasserstein metric (for a suitable metric on X ). However, the discussion at the
end of Sect. 5.1 demonstrates that this is not the case: since the 2-Wasserstein space
does not contain any Lipschitz curves, there aren’t any gradient flows at all!

It turns out to be possible to construct a different metric on P.X /, which allows
one to prove a discrete analogue of the JKO-Theorem. The construction is inspired
by the Benamou–Brenier formula (5.2).

5.3.1 Discrete Transport Metrics

In order to define suitable discrete transport metrics, it will be necessary to state a
discrete version of the continuity equation (5.1). For this purpose, let E WD f.x; y/ W
Q.x; y/ > 0g be the set of edges in the incidence graph induced by Q, and set
w.x; y/ WD Q.x; y/�.x/. The discrete gradient is given by

r W L2.X ; �/ ! L2.E ;w/ ; r .x; y/ WD  .y/ �  .x/ :
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This operator maps functions (defined on X ) to vector fields (defined on E ). The
negative of its adjoint is the discrete divergence given by

r� W L2.E ;w/ ! L2.X ; �/ ; .r � V/.x/ WD 1

2

X

y2X
Q.x; y/.V.x; y/� V.y; x// :

Note however that a problem arises if one attempts to formulate a discrete analogue
of the continuity equation (5.1). Namely, the divergence term contains the product
of the density 	 (defined on X ) and the velocity vector field V (defined on E ). Since
these objects are defined on different spaces, there is no canonical way to multiply
them, hence there is no canonical discretization of the continuity equation.

In fact, there is additional freedom that we need to exploit: given a probability
density 	 2 D.X /, we introduce the quantity O	 W E ! R by

O	.x; y/ WD �.	.x/; 	.y// ; (5.3)

where � W RC � RC ! RC is a symmetric continuous function, smooth and
strictly positive on .0;1/� .0;1/, which will be carefully chosen below. In many
applications, �.r; s/ will be a suitable mean of r and s. Having introduced this
quantity, the natural discrete analogue of the continuity equation (5.1) is given by
@t	C r � . O	V/ D 0, or more explicitly,

@t	t.x/C 1

2

X

y2X

�
Vt.x; y/� Vt.y; x/

�
b	t.x; y/Q.x; y/ D 0 (5.4)

The following definition is now a natural discrete analogue of the Benamou–Brenier
formula.

Definition 5.2 (Discrete Transport Metric) For 	0; 	1 2 D.X / we define

W .	0; 	1/
2 D inf

	;V

�
1

2

Z 1

0

X

x;y2X
jVt.x; y/j2b	t.x; y/Q.x; y/�.x/dt



; (5.5)

where the infimum runs over all pairs .	t;Vt/t2Œ0;1� solving the continuity equa-
tion (5.4) with boundary conditions 	jtD0 D 	0 and 	jtD1 D 	1.

Note that the definition depends on the Markov triple .X ;Q; �/ as well as on
the choice of the function � . As in the continuous setting, it is possible to show that
one may restrict the infimum to vector fields .Vt/t2Œ0;1� of gradient type, i.e., one may
assume that Vt.x; y/ D r t.x; y/ for some function  t W X ! R. One can show
that W .	0; 	1/ < 1 if 	0; 	1 are everywhere strictly positive. If 	0 or 	1 vanishes
somewhere, then W .	0; 	1/ may be finite or infinite, depending on the choice of � .
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5.3.2 A Riemannian Structure on the Space of Probability
Measures

The distance W is induced by a Riemannian structure on DC.X /, the space of
strictly positive probability densities on X . This structure is a natural discrete ana-
logue of the one described in Sect. 5.2.1. Indeed, given a smooth curve .	t/t2.��;�/
in D.X /S with 	0 D 	, there exists a unique discrete gradient r satisfying the
discrete continuity equation

@t	t.x/C
X

y2X

�
 t.y/�  t.x/

�
b	t.x; y/Q.x; y/ D 0 (5.6)

at time 0. As before, we shall regard r as the tangent vector at 	 associated to
the curve .	t/t2.��;�/ . We thus identify the tangent space at 	 with the set of discrete
gradients. Under this identification, we define a scalar product on the tangent space
at 	 2 P.Rn/ by

hr 1;r 2iT	 WD 1

2

X

x;y2X

�
 1.x/ �  1.y/

��
 2.x/ �  2.y/

� O	.x; y/Q.x; y/�.x/ :

The induced Riemannian distance coincides with (5.5), since it is not hard to show
that the minimizing vector field v in (5.5) is a discrete gradient for every t 2 .0; 1/.

5.3.3 The Discrete JKO-Theorem

We are now in a position to obtain an analogue of Theorem 5.2 in the discrete
setting. Let us first compute the gradient of the relative entropy H in the
Riemannian structure described above. For this purpose, take a smooth curve .	t/t in
DC.X / satisfying the discrete continuity equation (5.6). Using the detailed balance
assumption, it follows that

@tH .	t/ D
X

x2X

�
1C log	t.x/

�
@t	t.x/�.x/

D �
X

x;y2X

�
1C log	t.x/

��
 t.y/�  t.x/

�
b	t.x; y/Q.x; y/�.x/

D 1

2

X

x;y2X

�
log 	t.x/ � log	t.y/

��
 t.x/�  t.y/

�
b	t.x; y/Q.x; y/�.x/

D hr log 	t;r tiT	t
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On the other hand, by the definition of the gradient in the Riemannian structure
inducing W , we have @tH .	t/ D hgradW H .	t/;r tiT	t . Since the computation
above holds for any curve .	t/t (hence for any vector field r t), we infer that

gradW H .	/ D r log 	 (5.7)

for 	 2 D.X /S. It follows from this identity that the gradient flow equation
for H (in the Riemannian structure associated to W ) is given by the discrete
continuity equation (5.6) together with the additional equation r t D �r log 	t.
More explicitly, we arrive at

@t	t.x/ �
X

y2X

�
log 	t.y/� log 	t.x/

�
b	t.x; y/Q.x; y/ D 0 :

Of course, this equation depends on the choice of � in (5.3), since the Riemannian
metric depends on � . Note however that this equation reduces to the discrete heat
equation @t	 D L 	 if we choose � in such a way that .log 	.y/� log 	.x// O	.x; y/ D
	.y/� 	.x/. In other words, if � is the logarithmic mean defined by

�log.r; s/ WD r � s

log r � log s
D
Z 1

0

r1�pspdp ;

we obtain the following discrete JKO-Theorem:

Theorem 5.3 (Discrete JKO) The gradient flow equation for the relative entropy
H with respect to W is given by the discrete heat equation @t	 D L 	, provided
� D �log.

This result has been obtained in the independent papers [21] (in the setting of
Markov chains) and [23] (in the setting of reaction-diffusion systems). Related
gradient flow structures for Fokker-Planck equations on graphs have been dis-
covered in [8]. A modification of the proof above shows that the discrete porous
medium equations @t	 D �'.	/ can be formulated as gradient flow for the entropy
functional F .	/ D P

x2X f .	.x//�.x/ with respect to the metric W , provided that
�.r; s/ D '.r/�'.s/

f 0.r/�f 0.s/ for some increasing function ' and some convex function f , cf.
[12].

5.4 Discrete Entropic Ricci Curvature

In view of the gradient flow result of Theorem 5.3, the metric W (with � D �log)
can be viewed as a natural discrete counterpart of the Wasserstein metric W2. The
following definition, proposed in [21], is a discrete analogue of Definition 5.1 by
Lott–Sturm–Villani.
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Definition 5.3 (Discrete Entropic Ricci Curvature) Let � 2 R. A reversible
Markov chain .X ;Q; �/ is said to have “Ricci curvature bounded from below by
�” if every pair of probability densities 	0; 	1 2 DC.X / can be connected by a
constant speed W -geodesic .	t/t2Œ0;1� along which the relative entropy H satisfies
the �-convexity inequality

H .	t/ � .1 � t/H .	0/C tH .	1/� �

2
t.1 � t/W .	0; 	1/

2 :

We shall use the notation Ric.X ;Q; �/ 	 � for brevity.
The restriction to probability densities 	0; 	1 2 D.X /S is not essential: if � D

�log it can be shown that W is finite on the full space D.X /, and the condition
in Definition 5.3 may be imposed for all 	0; 	1 2 D.X / without changing the
definition.

It has been shown in [11] that several discrete analogues of classical continuous
results can be obtained from this definition. The following result is a discrete
analogue of a classical result by Bakry and Émery [3].

Theorem 5.4 (Discrete Bakry–Émery) If Ric.X ;Q; �/ 	 � for some � > 0,
then the modified logarithmic Sobolev inequality

H .	/ � 1

2�
I .	/ (MLSI(�))

holds for all 	 2 DC.X /, where

I .	/ WD 1

2

X

x;y2X

�
log 	.x/� log 	.y/

��
	.x/� 	.y/

�
Q.x; y/�.x/

is a discrete version of the Fisher information.
There are different (non-equivalent) versions of the logarithmic Sobolev inequal-

ity that appear in discrete settings. The relevance of the inequality (MLSI(�)) is due
to the fact that it implies the exponential convergence result H .	t/ � e�2�tH .	0/

for solutions to the discrete heat equation @t	 D L 	.
The following result from [11] is a discrete version of a celebrated result by Otto

and Villani [27].

Theorem 5.5 (Discrete Otto–Villani) If .X ;Q; �/ satisfies (MLSI(�)) for some
� > 0, then the modified Talagrand inequality

W .	; 1/ �
r
2

�
H .	/ (TW .�/)

holds for all 	 2 D.X /.
In this result, 1 denotes the constant probability density corresponding to the

invariant measure � . The analogous inequality with W replaced by W2 has been
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extensively studied in continuous settings, but it is not hard to see that it can
never hold in the discrete case. The inequality (TW .�/) provides a natural discrete
substitute, which captures two different phenomena. On the one hand, (TW .�/)
contains spectral information, since it implies the Poincaré inequality (or spectral
gap inequality)

k'k2L2.X ;�/ � 1

�
D.'/ (P(�))

where D.'/ D 1
2

P
x;y2X

�
'.x/ � '.y/

�2
Q.x; y/�.x/ denotes the Dirichlet energy.

On the other hand, (TW .�/) yields the T1-transport inequality

W1.	; 1/ �
r
2

�0H .	/

for a possibly different constant �0, where W1 is the 1-Wasserstein distance induced
by the graph distance on the incidence graph of .X ;Q; �/. The latter inequality
implies an exponential concentration inequality for � with an explicit rate, cf. [11].

5.4.1 Discrete Spaces with Lower Ricci Curvature Bounds

As discrete entropic Ricci curvature bounds have significant consequences for the
Markov chains under consideration, it is of interest to obtain sharp bounds for the
Ricci curvature in concrete examples. Since such bounds are defined in terms of
convexity properties of the relative entropyH , one needs to calculate the Hessian of
H in the Riemannian structure inducing W . Therefore, we would like to compute
the second derivative of the entropy along W -geodesics. The geodesic equations for
W are given by the continuity equation (5.6) in conjunction with the equations

@t t.x/C 1

2

X

y2X

�
 t.x/ �  t.y/

�2
@1�.	.x/; 	.y//Q.x; y/ D 0 ; x 2 X :

(5.8)

This equation is reminiscent of the Hamilton-Jacobi equation @t C 1
2
jr j2 D 0,

which appears in the description of 2-Wasserstein geodesics in continuous settings.
Note however that the discrete equation (5.8) depends both on 	 and  , which is
a source of additional difficulties in the discrete setting. An explicit computation
based on the Eqs. (5.4) and (5.8) shows that the second derivative of the entropy
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along a unit speed W -geodesics .	t/t is given by

@2t
ˇ
ˇ
tD0H .	t/ D 1

4

X

x;y;z2X

�
 .x/ �  .y/

�2�
@1�

�
	.x/; 	.y/

��
	.z/� 	.x/

�
Q.x; z/

C@2�
�
	.x/; 	.y/

��
	.z/ � 	.y/�Q.y; z/

�
Q.x; y/�.x/

D �1
2

X

x;y;z2X

�
Q.x; z/

�
 .z/ �  .x/

� � Q.y; z/
�
 .z/ �  .y/

��

�� .x/ �  .y/
� O	.x; y/Q.x; y/�.x/ DW B.	;  / ;

Proving a bound of the form Ric.X ;Q; �/ 	 � thus corresponds to showing that

B.	;  / 	 �

2

X

x;y

. .x/ �  .y//2 O	.x; y/Q.x; y/�.x/ : (5.9)

The right-hand side above may be seen as a discrete version of the continuous
formula

R �
1
2
jr j2�	 � hr� ;r i	�dx. On a Riemannian manifold, such an

expression can be simplified after integration by parts with the help of Bochner’s
identity, which asserts that

1

2
�
�jr tj2

� � hr t;r� ti D jD2 j2 C Ric.r ;r / :

Hence a lower bound on the Ricci curvature yields a corresponding bound for
the Hessian of the entropy. In the discrete case there doesn’t seem to be an exact
analogue of Bochner’s formula, and the challenge is to get around this difficulty in
concrete examples of interest.

5.4.2 Examples

In recent years, discrete entropic Ricci curvature bounds have been obtained in
several concrete examples.

A result by Mielke [24] asserts that every reversible Markov chain on a finite
state space X satisfies Ric.X ;Q; �/ 	 � for some (possibly negative) � 2 R.
Even though the Riemannian manifold DC.X / is finite-dimensional, this result is
non-trivial (and its proof is rather delicate), since the Riemannian metric inducing
W is degenerate at the boundary of DC.X /.

If the state space X has a one-dimensional structure, the situation is quite well
understood. Consider a birth-death chain (on a finite set f0; 1; : : : ;Ng for some N 	
1) with transition rates Q.n; nC 1/ D a.n/ and Q.n; n� 1/ D b.n/. In this situation,
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Mielke [24] obtained the following lower bounds on the Ricci curvature for birth-
death processes (see also [16] for a different proof).

Theorem 5.6 (Ricci Bounds for Birth-Death Chains) Let � 2 Œ0;1/. Assume
that the rate of birth a is non-increasing, and that the rate of death b is non-
decreasing. Assume moreover that

1

2

�
a.n/� a.nC 1/C b.nC 1/� b.n/

�C 1

2
�
�
a.n/� a.nC 1/; b.nC 1/� b.n/

� 	 �

(5.10)

for all n D 0; : : : ;N � 1, where

�.˛; ˇ/ D inf
s;t>0

�.s; t/

�
˛

s
C ˇ

t

�

;

and �.s; t/ is the logarithmic mean of s and t. Then the birth-death process has Ricci
curvature bounded from below by �.

In general this result does not give the optimal constants, but the result is
asymptotically sharp in the sense that one recovers the optimal Ricci curvature
bounds for one-dimensional Fokker-Planck equations by passing to the continuum
limit after a suitable rescaling, cf [24].

The following result, taken from [11], asserts that Ricci bounds are preserved
under taking product chains. If Li generates a Markov chain on Xi with reversible
measure �i for i D 1; 2, the corresponding product chain on X1�X2 is the Markov
chain with transition semigroup etL WD etL1 ˝etL2 . Note that the generator is given
by

L ˝ D L1 ˝ I C I ˝ L2 :

We shall write Q˝ accordingly. The product measure �1 ˝ �2 is the reversible
invariant measure for L ˝.

Theorem 5.7 (Tensorisation of Discrete Entropic Ricci Curvature) For i D
1; 2, let .Xi;Qi; �i/ be reversible Markov chains with lower Ricci bounds �i 2
R. Then the associated product chain satisfies Ric.X1 � X2;Q˝; �1 ˝ �2/ 	
minf�1; �2g.

This result allows one to consider product chains in arbitrarily high dimension,
without any loss in the Ricci curvature constant. As a consequence, it can be proved
that the optimal Ricci curvature bound for simple random walk on the discrete cube
f0; 1gN is given by 2

N . Similarly, it follows that the Ricci curvature for any regular
rectangular lattice in any dimension is non-negative.

Much less is known for Markov chains in multiple dimensions which do not
have a product structure, but there has been some recent progress in this direction.
Using combinatorial methods, entropic Ricci curvature bounds have been obtained
for the Bernoulli-Laplace model, which describes a simple random walk on a slice
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of the discrete cube, as well as for the random transposition model, which describes
a random walk on the group of permutations [14]. A more systematic method for
proving discrete Ricci bounds, inspired by the work of Caputo et al. [6] on functional
inequalities, has been developed in [16] and applied to zero-range processes on the
complete graph.

We conclude by mentioning that there are several other interesting notions of
discrete Ricci curvature that have been actively studied in recent years. Important
examples include Ollivier’s Ricci curvature [25] and the Bakry-Émery criterion [3]
and its variants. It is not hard to show that the Bakry-Émery criterion can be obtained
from the inequality (5.9) that characterizes discrete entropic Ricci curvature, by
replacing the logarithmic mean �log by the arithmetic mean. Since the proofs in
[11, 14, 16] remain valid for the arithmetic mean, these papers also yield curvature
bounds in the sense of Bakry-Émery. We refer to other chapters in this volume, in
particular the contribution by F. Bauer, B. Hua, J. Jost, S. Liu and G. Wang (Chap. 1)
for a discussion of Ollivier’s Ricci curvature and the Bakry-Émery condition.

A discretization of the Lott-Sturm-Villani theory based on the notion of approx-
imate W2-midpoints (different from the theory described in this note) was given
by Bonciocat and Sturm [5]. Convexity of the entropy in discrete settings has been
investigated along other interesting curves of probability measures in [17] and in
[19].

Note added: After this short paper was written, several papers dealing with
discrete entropic Ricci curvature have appeared. In particular, Erbar and Fathi
[10] obtained various interesting functional inequalities under the assumption of
non-negative entropic Ricci curvature. Moreover, entropic Ricci curvature bounds
have been proved for several weakly interacting Markov chains (including Glauber
dynamics for a class of spin systems) by Erbar et al. [15]. Related functional
inequalities have been investigated by Che et al. [7].

References

1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of
Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag,
Basel (2008)

2. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature
bounded from below. Duke Math. J. 163(7), 1405–1490 (2014). http://dx.doi.org/10.1215/
00127094-2681605.

3. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX,
1983/1984. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985).
http://dx.doi.org/10.1007/BFb0075847

4. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000). http://dx.doi.org/
10.1007/s002110050002

5. Bonciocat, A.I., Sturm, K.T.: Mass transportation and rough curvature bounds for discrete
spaces. J. Funct. Anal. 256(9), 2944–2966 (2009). http://dx.doi.org/10.1016/j.jfa.2009.01.029

http://dx.doi.org/10.1215/00127094-2681605
http://dx.doi.org/10.1215/00127094-2681605
http://dx.doi.org/10.1007/BFb0075847
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1016/j.jfa.2009.01.029


5 Entropic Ricci Curvature for Discrete Spaces 173

6. Caputo, P., Dai Pra, P., Posta, G.: Convex entropy decay via the Bochner-Bakry-Emery
approach. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 734–753 (2009). http://dx.doi.org/
10.1214/08-AIHP183

7. Che, R., Huang, W., Li, Y., Tetali, P.: Convergence to global equilibrium for Fokker-Planck
equations on a graph and Talagrand-type inequalities. J. Differ. Equ. 261(4), 2552–2583
(2016). http://dx.doi.org/10.1016/j.jde.2016.05.003

8. Chow, S.N., Huang, W., Li, Y., Zhou, H.: Fokker-Planck equations for a free energy functional
or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012). http://dx.
doi.org/10.1007/s00205-011-0471-6

9. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation
inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001). http://dx.
doi.org/10.1007/s002220100160

10. Erbar, M., Fathi, M.: Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for
Markov chains with non-negative Ricci curvature. arXiv preprint arXiv:1612.00514 (2016)

11. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch.
Ration. Mech. Anal. 206(3), 997–1038 (2012). http://dx.doi.org/10.1007/s00205-012-0554-z

12. Erbar, M., Maas, J.: Gradient flow structures for discrete porous medium equations. Discrete
Contin. Dyn. Syst. 34(4), 1355–1374 (2014). http://dx.doi.org/10.3934/dcds.2014.34.1355

13. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension
condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071
(2015). http://dx.doi.org/10.1007/s00222-014-0563-7

14. Erbar, M., Maas, J., Tetali, P.: Discrete Ricci curvature bounds for Bernoulli-Laplace and
random transposition models. Ann. Fac. Sci. Toulouse Math. (6) 24(4), 781–800 (2015). http://
dx.doi.org/10.5802/afst.1464

15. Erbar, M., Henderson, C., Menz, G., Tetali, P.: Ricci curvature bounds for weakly interacting
Markov chains. arXiv preprint arXiv:1602.05414 (2016)

16. Fathi, M., Maas, J.: Entropic Ricci curvature bounds for discrete interacting systems. Ann.
Appl. Probab. 26(3), 1774–1806 (2016). http://dx.doi.org/10.1214/15-AAP1133

17. Gozlan, N., Roberto, C., Samson, P.M., Tetali, P.: Displacement convexity of entropy and
related inequalities on graphs. Probab. Theory Relat. Fields 160(1–2), 47–94 (2014). http://
dx.doi.org/10.1007/s00440-013-0523-y

18. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck
equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

19. Léonard, C.: Lazy random walks and optimal transport on graphs. Ann. Probab. 44(3), 1864–
1915 (2016). http://dx.doi.org/10.1214/15-AOP1012

20. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann.
Math. (2) 169(3), 903–991 (2009). http://dx.doi.org/10.4007/annals.2009.169.903

21. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–
2292 (2011). http://dx.doi.org/10.1016/j.jfa.2011.06.009

22. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997).
http://dx.doi.org/10.1006/aima.1997.1634

23. Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion
systems. Nonlinearity 24(4), 1329–1346 (2011). http://dx.doi.org/10.1088/0951-7715/24/4/
016

24. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var.
Partial Differ. Equ. 48(1–2), 1–31 (2013). http://dx.doi.org/10.1007/s00526-012-0538-8

25. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–
864 (2009). http://dx.doi.org/10.1016/j.jfa.2008.11.001

26. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Com-
mun. Partial Differ. Equ. 26(1–2), 101–174 (2001). http://dx.doi.org/10.1081/PDE-100002243

27. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic
Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000). http://dx.doi.org/10.1006/jfan.
1999.3557

http://dx.doi.org/10.1214/08-AIHP183
http://dx.doi.org/10.1214/08-AIHP183
http://dx.doi.org/10.1016/j.jde.2016.05.003
http://dx.doi.org/10.1007/s00205-011-0471-6
http://dx.doi.org/10.1007/s00205-011-0471-6
http://dx.doi.org/10.1007/s002220100160
http://dx.doi.org/10.1007/s002220100160
http://dx.doi.org/10.1007/s00205-012-0554-z
http://dx.doi.org/10.3934/dcds.2014.34.1355
http://dx.doi.org/10.1007/s00222-014-0563-7
http://dx.doi.org/10.5802/afst.1464
http://dx.doi.org/10.5802/afst.1464
http://dx.doi.org/10.1214/15-AAP1133
http://dx.doi.org/10.1007/s00440-013-0523-y
http://dx.doi.org/10.1007/s00440-013-0523-y
http://dx.doi.org/10.1214/15-AOP1012
http://dx.doi.org/10.4007/annals.2009.169.903
http://dx.doi.org/10.1016/j.jfa.2011.06.009
http://dx.doi.org/10.1006/aima.1997.1634
http://dx.doi.org/10.1088/0951-7715/24/4/016
http://dx.doi.org/10.1088/0951-7715/24/4/016
http://dx.doi.org/10.1007/s00526-012-0538-8
http://dx.doi.org/10.1016/j.jfa.2008.11.001
http://dx.doi.org/10.1081/PDE-100002243
http://dx.doi.org/10.1006/jfan.1999.3557
http://dx.doi.org/10.1006/jfan.1999.3557


174 J. Maas

28. Renesse, M.K.v., Sturm, K.T.: Transport inequalities, gradient estimates, entropy, and Ricci
curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005). http://dx.doi.org/10.1002/cpa.
20060

29. Sturm, K.T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177
(2006). http://dx.doi.org/10.1007/s11511-006-0003-7

30. Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wis-
senschaften, vol. 338. Springer, Berlin (2009). http://dx.doi.org/10.1007/978-3-540-71050-9

http://dx.doi.org/10.1002/cpa.20060
http://dx.doi.org/10.1002/cpa.20060
http://dx.doi.org/10.1007/s11511-006-0003-7
http://dx.doi.org/10.1007/978-3-540-71050-9


Chapter 6
Geometric and Spectral Consequences
of Curvature Bounds on Tessellations

Matthias Keller

Abstract This chapter focuses on geometric and spectral consequences of curva-
ture bounds. Several of the results presented here have analogues in Riemannian
geometry but in some cases one can go even beyond the Riemannian results
and there also striking differences. The geometric setting of this chapter are
tessellations and the curvature notion arises as a combinatorial quantity which can
be interpreted as an angular defect and goes back to Descartes. First, we study
the geometric consequences of curvature bounds. Here, a discrete Gauss–Bonnet
theorem provides a starting point from which various directions shall be explored.
These directions include analogues of a theorem of Myers, a Hadamard–Cartan
theorem, volume growth bounds, strong isoperimetric inequalities and Gromov
hyperbolicity. Secondly, we investigate spectral properties of the Laplacian which
are often consequences of the geometric properties established before. For example
we present analogues to a theorem of McKean about the spectral gap, a theorem
by Donnelly-Li about discrete spectrum, we discuss the phenomena of compactly
supported eigenfunctions and briefly elaborate on stability of the `2 spectrum for
the Laplacian on `p.

6.1 Introduction

This chapter focuses on the theme of geometric and spectral consequences of
curvature bounds. The geometric setting are tessellations of surfaces with finite
and zero genus. Our main focus is on infinite tessellations. Several of the results
presented here have analogues in Riemannian geometry. In some cases one can go
even beyond the Riemannian results and there also striking differences which shall
be highlighted.
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The curvature under investigation arises as a combinatorial quantity with the
geometric interpretation of an angular defect. For a vertex v the curvature is given
by

˚.v/ D 1 � dv
2

C
X

f face with v2f

1

deg. f /
D 1

2�

�
2� �

X

f face with v2f
ˇ. f /

�
;

where dv is the vertex degree, deg. f / the number of vertices contained in a face
f and ˇ. f / D .deg. f / � 2/=2 deg. f / the inner angle of f considered as a regular
deg. f /-gon. We introduce this concept in detail and discuss the basic features below
which is the first part of the chapter.

In the second part of the chapter, in Sect. 6.2, geometric consequences of
curvature bounds are discussed. Here, the discrete Gauss–Bonnet Theorem provides
a starting point from which various directions shall be explored. First, it is
discussed that positivity of the curvature yields finiteness of the graph which is
an analogue to a theorem of Myers from Riemannian geometry. In contrast, non-
positive curvature yields infinite tessellations for which we study further geometric
properties. Specifically, a Hadamard–Cartan theorem is presented which states that
geodesics can be continued indefinitely as a consequence of non-positive curvature.
Furthermore, volume growth bounds are derived from upper and lower curvature
bounds. Finally, hyperbolicity properties such as strong isoperimetric inequalities
and Gromov hyperbolicity as consequences of negative curvature are studied.

In the third part of the chapter, in Sect. 6.3, we focus on spectral properties of the
combinatorial Laplacian

�'.v/ D
X

w�v
.'.w/ � '.v//

on `2.V/. Let us stress that this combinatorial Laplacian differs from the normalized
Laplacian introduced in the previous chapter (which is also referred to as the Tutte
Laplacian or harmonic Laplacian). The main reason is that the operator above
captures phenomena related to unbounded geometry for infinite graphs much better.

Many of the spectral properties of � are consequences of the geometric prop-
erties which were established before. First, we discuss whether the combinatorial
Laplacian admits a spectral gap due to the curvature being non-negative or negative
which includes an analogue to a classical theorem of McKean. Secondly, we focus
on the case of uniformly decreasing curvature which was studied in the Rieman-
nian setting by Donnelly/Li. Here, we not only characterize the situation, where
the combinatorial Laplacian has only discrete eigenvalues as spectrum but also
determine the asymptotics of eigenvalues as well as the decay of eigenfunctions.
Here, it appears that the eigenvalue asymptotics behave differently than in the
case of manifolds. Thirdly, we explore the phenomena of compactly supported
eigenfunctions which is often studied under the term unique continuation of
eigenfunctions. It came as a surprise that in contrast to the continuous setting such
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compactly supported eigenfunctions appear in the discrete setting. However, they
can be excluded in situations of non-positive curvature. Finally, we briefly consider
the `p-spectrum of the combinatorial Laplacian and ask when it differs from the `2

spectrum, which are discrete analogues of results of Sturm.
In the outlook section, which forms the fourth part, we discuss how the results

of the first parts can be generalized to planar graphs or more general polygonal
complexes including two dimensional buildings.

All the results are discussed in the light of the present literature which reaches
back from the seventies to the very present and has contributions from various
schools of researchers. We sketch the key ideas of the proofs without going into
too much detail.

6.1.1 Graphs

Let a connected simple graph .V;E/ be given. We call two vertices x; y 2 V which
are connected by an edge adjacent and denote x 
 y. We call a sequence .xr/r�0
of subsequently adjacent and pairwise distinct vertices a path. For a finite path
.x0; : : : ; xn/, we call n the length of the path. For two vertices x; y 2 V , we define
the distance d.x; y/ of x and y to be the length of the shortest path connecting x and
y. We call a path .xr/ a geodesic if d.x0; xn/ D n for all indices n of the path.

The sphere Sr D Sr.o/ of radius r about a fixed vertex o (which is mostly
suppressed in notation) includes the vertices with distance r to o. The ball Br D
Br.o/ of radius r about o is the union of all spheres of distance less or equal to r.
Denote the cardinality of a set A by #A or jAj.

6.1.2 Tessellations of Surfaces

In this chapter we consider tessellations. From a purely graph-theoretic approach
this might seem rather restrictive but it is natural from a discretization and geometric
point of view and it allows to prove finer results.

We assume that .V;E/ can be embedded in an oriented topological surface
S without self intersections. That means that the vertices V are identified with
points in S and the edges E are identified with simple curves connecting its end
vertices such that two different edges intersect only in the vertices they have in
common. Throughout this chapter we will not distinguish between the graph and its
embedding.

We always assume that the embedding is locally compact, i.e., every compact
K � S intersects only finitely many edges.

A graph is called planar if there is a locally compact embedding into a surface
S homeomorphic to R

2 and spherical if S can be chosen to be homeomorphic to
the sphere S2.
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For an embedded graph .V;E/, we let the set of faces F consist of the closures
of the connected components of

S n
[

E:

We denote G D .V;E;F/ and following [5, 6] we call G a tessellation or a tiling if

(T1) every edge is included in two faces,
(T2) every two faces are either disjoint or intersect in one vertex or one edge,
(T3) every face is homeomorphic to a closed disc.

Let us shortly discuss the local compactness assumption in the light of tessella-
tions. This assumption can be violated for two reasons. The first is that the point
where the assumption fails is a vertex. This, however, implies that infinitely many
edges emanate from this vertex. So, a locally compact embedding first of all implies
that the graph is locally finite, i.e., each vertex has only finitely many neighbors.
Secondly, the assumption can fail for a point which is not a vertex. Removing all
such points from the surface, annihilates the problem and the embedding becomes
locally compact. So, in this case the graph can be embedded locally compactly in a
different surface.

6.1.3 Curvature

To define a curvature function, we introduce the vertex degree and the face degree.
First we let the degree of a vertex v 2 V be defined as

dv D #edges emanating from v:

The face degree of a face f 2 F is defined as

deg. f / D #boundary edges of f D #boundary vertices of f :

The vertex curvature ˚ W V ! R is defined as

˚.v/ D 1 � dv
2

C
X

f2F;v2f

1

deg. f /
:

This idea is already found in the works of Descartes, see e.g. [21]. Later it was
introduced in the above form by Stone, [51], where he refers ideas going back to
Alexandrov. The notion reappeared in various settings [25, 31] and was studied
intensively since then [5, 6, 15, 28, 30, 32, 33, 35, 48, 57, 60].

This notion of curvature is motivated by an angular defect as follows (cf. Chap. 2
and 1): Think of a face f as a regular polygon. Then, the interior angles of f are
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equal to

ˇ. f / D 2�
deg. f / � 2
2 deg. f /

:

This formula is easily derived as going around f results in an angle of 2� , while
going around the deg. f / corners of f one takes a turn by an angle of � � ˇ. f / each
time. With this interpretation the curvature of a vertex v 2 V can be rewritten as

2�˚.v/ D 2� �
X

f2F;v2f
ˇ. f /:

Despite of this interpretation, it should be stressed that the mathematical nature of˚
is purely combinatorial. However, when we assume an embedding such that every
polygon is regular we have the geometric interpretation above. Furthermore, the
curvature satisfies a Gauss-Bonnet formula which is found in the next section in
Theorem 6.1.

Before we come to this, we introduce a finer notion of curvature. To this end, we
let the set of corners C.G/ of the graph G be given by the set of pairs .v; f / 2 V �F
such that v is contained in f . One can picture the corners around a vertex as the
connected components of a small neighborhood of v in S after removing the edges
emanating from v. The corner curvature ˚C W C.G/ ! R is given by

˚C.v; f / D 1

dv
� 1

2
C 1

deg. f /
:

This quantity was first introduced in [5, 6] for tessellations and in [33] for general
planar graphs (cf. Sect. 6.4.1). The corner curvature measures the contribution of
every corner of a vertex to the vertex curvature, i.e., summing over all corners of a
vertex, we get

˚.v/ D
X

.v;f /2C.G/
˚C.v; f /:

With the interpretation of the angular defect above the corner curvature can be
expressed as

2�˚C.v; f / D 1

dv
.2� � dvˇ. f //; .v; f / 2 C.G/:

We say a tessellation is flat if ˚ � 0. Let us discuss a few examples.

Example 6.1 We say a tessellation of S is . p; q/-regular if q regular polygons
of degree p meet in every vertex. Then, the sign of vertex curvature is already
determined by the sign of the corner curvature which is constantly 1=q�1=2C1=p.
Let us come to more specific examples.
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(a) The examples of . p; q/-regular tessellations of S2 of positive curvature are the
platonic solids, i.e., the tetrahedron .3; 3/, the octahedron .3; 4/, the icosahedron
.3; 5/, the cube .4; 4/ and the dodecahedron .5; 3/.

(b) Flat . p; q/-regular tessellations of R2 are exactly either the square tessellation
associated to Z

2 of type .4; 4/, the flat triangular tessellation .3; 6/ and
the hexagonal honeycomb tessellation .6; 3/. Furthermore, any large enough
rectangular subset of Z2 can be realized as a tessellation of the torus in the usual
way by identifying opposite sides. This results again flat curvature. Similar
constructions can be realized for the other two flat tessellations.

(c) Planar . p; q/-regular tessellations of the type .4; 5/, .5; 5/, .5; 6/, .5; 4/, .6; 5/
or such that p 	 7 or q 	 3 give rise to tessellations of the hyperbolic plane
with negative curvature.

See Fig. 6.1 for examples of (a), (b) and (c).
Next, we discuss examples of non definite curvature, see Fig. 6.2 as well.

Example 6.2 The so called Cairo tiling consists of pentagons. For each pentagon
there are two non adjacent vertices that are contained in four other pentagons. This
results in negative corner and vertex curvature. The other three vertices are contained
in three pentagons resulting in positive corner and vertex curvature.

Example 6.3 The Penrose tiling consists of squares. There are vertices adjacent to
five and six squares resulting in negative curvature, vertices adjacent to four squares

Fig. 6.1 (a) The dodecahedron, (b) the hexagonal tiling and (c) the .5; 4/ tessellation embedded
in the Poincaré disc

Fig. 6.2 The Cairo tiling, the Penrose tiling and the Kagome lattice
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resulting in zero curvature and vertices adjacent to three squares resulting in positive
curvature. This holds for the corner curvatures as well as for the vertex curvature.

Finally, we discuss examples of non-positive and negative vertex curvature which
have yet non definite corner curvature.

Example 6.4 The class of example we discuss next consists of regular polygons of
degree p 	 6 and of triangles. In each vertex two triangles and two p-gons meet
such that faces of the same type are opposite to each other. The vertex curvature in
a vertex is then 1=p � 1=6 � 0. However, the curvature in corners of a triangle is
1=12 and in the corners of a p-gon is 1=p � 1=2 < 0. Hence, the corner curvature
is non-definite. A special case with q D 6 is called the trihexagonal tiling or the
Kagome lattice or the hexadeltille.

6.1.4 Duality

We make some brief remarks about duality. To every tessellation G D .V;E;F/ we
can relate a dual tessellation G� D .V�;E�;F�/ in the following way: To define the
vertex set we chose for each face in F a point in its interior which we refer to as a
vertex in V�. If two faces in F intersect in an edge we connect the corresponding
vertices in V� by an edge. This gives a graph embedded in the same surface and it
can be seen that the faces of .V�;E�/ can be related one-to-one to the vertices in V .
Let C.G�/ be the corners of G�. We see that, there are bijective maps from V to F�,
E to E�, F to V� and C.G/ to C.G�/. Denote the bijective maps V ! F�, v 7! v�
and F ! V�, f 7! f � and observe that

dv D deg.v/ and deg.f / D df� :

We stress that dv� is a face and f � is a vertex in G�. We denote the corner curvature
of G� by ˚�

C and observe that

˚C.v; f / D 1

dv
� 1

2
C 1

deg. f /
D 1

deg.v�/
� 1

2
C 1

df�

D ˚�
C . f

�; v�/:

Moreover, defining the face curvature˚�
F W F� ! R on G� viz

˚�
F . f / D

X

.v;f /2C.G�/

˚�
C .v; f / D 1 � deg. f /

2
C

X

v2V�;v2f

1

dv
;

for f 2 F�, we see that

˚.v/ D
X

.v;f /2C.G/
˚C.v; f / D

X

. f� ;v�/2C�.G/

˚�
C . f

�; v�/ D ˚�
F .v

�/;
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for v 2 V . Similarly, if we define a face curvature on G, then the vertex curvature
on G� can be related analogously. We summarize that for each tessellation G the
dual graph G� gives rise to a tessellation. Moreover, these two graphs have the same
corner curvature with respect to the canonical bijection. The vertex curvature in G
translate into a face curvature in G� and vice versa.

6.2 Geometry

6.2.1 Gauss–Bonnet Theorem

In Riemannian geometry the Gauss–Bonnet Theorem is a link between the geometry
and topology of a surface. In particular, it relates the curvature of a surface to its
Euler characteristic. An analogous theorem holds true in the discrete setting. Various
versions of the theorem below are found in [5, 13–15, 33].

For a surfaceS the genus g is defined to be the largest number of nonintersecting
simple closed curves that can be drawn on the surface without separating it. It can
be thought as the number of holes in a surface. The Euler characteristic �.S / of S
is given as

�.S / D 2 � 2g:

Theorem 6.1 (Gauss–Bonnet Theorem) Let G D .V;E;F/ be a tessellation
embedded locally compactly in a compact oriented surfaceS of finite genus. Then,

X

v2V
˚.v/ D �.S /:

Proof (Sketch of the proof) Since the embedding is locally compact, the tessellation
G embedded in a compact surface is finite. We calculate

X

v2V
˚.v/ D

X

v2V

X

.v;f /2C.G/

� 1

dv
� 1

2
C 1

deg. f /

�
:

Using #f.v; f / 2 C.G/g D dv for fixed v 2 V , we arrive at

: : : DjVj � 1

2

X

v2V
dv C

X

f2F

X

.v;f /2C.G/

1

deg. f /
:

Now, employing
P

v2V dv D 2jEj and #f.v; f / 2 C.G/g D deg. f / for fixed f 2 F,
yields

: : : DjVj � jEj C jFj:
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The statement now follows from the identity jVj�jEjCjFj D �.S /which is known
as Poincaré formula. This formula is proven by induction over g. The base case
g D 0 is known as the Euler-Descartes formula. The induction step for a tessellation
Gg D .Vg;Eg;Fg/ embedded in a surface Sg of genus g works by cutting along
a path of edges that separates the surface. Say the length of the path is p. The cut
surface has now a boundary consisting of two paths of edges of length p. In each
of these boundary paths one glues a polygon of degree p to “close up” the surface
in order to get a surface of genus g � 1. For this surface we know the formula by
the induction hypothesis. Now by cutting and gluing, we increased the number of
vertices by p, we also increased the number of edges also by p and we increased the
number of faces by 2. This results in the formula jVgj � jEgj C jFgj D �.Sg/. ut

6.2.2 Approximating Flat and Infinite Curvature

From the definition of the curvature it follows that ˚ takes only values in Q. So
a question is which values can actually be obtained or approximated. Here, we
discuss that ˚ is bounded from above but not from below. Moreover, we find that
flat curvature can be approximated from above but not from below.

Clearly, the minimal vertex and face degree is 3 by assumption. Hence, the
maximal value that can be assumed by ˚ is 3=2.

On the other hand, ˚ is not necessarily bounded from below as it can be seen by
the next proposition.

Proposition 6.1 Let G D .V;E;F/ be a tessellation. Then, for all v 2 V

�dv
2

� ˚.v/ � 1 � dv
6
:

In particular, ˚.v/ � 0 if dv 	 6 and for .vn/ we have dvn ! 1 if and only if
˚.vn/ ! �1 for n ! 1.

Proof The lower bound is immediate and the upper bound follows as deg. f / 	 3

for all f 2 F and the number of corners about a vertex equals the vertex degree. ut
Let us now turn to flat curvature. We discuss that the value zero can be

approximated from below but not from above.
For positive curvature we consider so called prisms or antiprisms, see Fig. 6.3. In

the figure, the unbounded face outside arises from a face in the sphere.
A prism is a tessellation of the sphere. It is given by two polygons of degree p

that are surrounded by p squares. In particular, each vertex is adjacent to two squares
and one of the two p-gons. The curvature of any vertex v is given by

˚.v/ D 1 � 3

2
C
�1

p
C 2

1

4

�
D 1

p
:
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Fig. 6.3 A prism and an antiprism projected from the sphere to the Euclidean plane

Similarly, an antiprism consists of two p-gons that have triangles glued along
the boundary such that in the resulting tessellation every vertex is adjacent to three
triangles and one p-gon. The curvature of any vertex v is given by

˚.v/ D 1 � 4

2
C
�1

p
C 3

1

3

�
D 1

p
:

In the case when p tends to 1, the curvature of prisms and antiprisms tends to 0
from above.

In the case of negative curvature there is a uniform lower bound which was shown
by Higuchi [28], via listing all essential cases.

Theorem 6.2 ([28, Proposition 2.1.]) Let G be a tessellation. If ˚ < 0, then
˚ � �1=1806. This maximum is can be assumed at a vertex v with dv 	 3 and
which is adjacent to faces f1; f2; f3 such that .j f1j; j f2j; j f3j/ D .3; 7; 43/.

The theorem implies that flat curvature can not be approximated from below.

6.2.3 Finiteness

Next, we turn to question how the sign of the curvature determines finiteness or
infiniteness of the tessellation. A rough synopsis is that positive curvature implies
finiteness and in the case of planar tessellations non-positive curvature implies
infiniteness.

In Riemannian geometry a theorem that positive curvature implies compactness
of the manifold goes back to Myers, [46]. For graphs this question was first studied
in [51, 52] and came up again later as Higuchi’s conjecture [28, Conjecture 3.2.]. A
definite answer was given by DeVos/Mohar [15, Theorem 1.7] after first steps were
taken in [14, 54].
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Theorem 6.3 (Myers Theorem for Tessellations, [15]) Let G D .V;E;F/ be a
tessellation embedded locally compactly in a surface such that ˚ > 0. Then, the
graph is finite.

The arguments of the proof use an asymptotic Gauss–Bonnet formula for infinite
graphs with non-negative curvature. Furthermore, it is then shown that big faces of
degree larger than 42 can not be too close. In particular, if an edge connects two big
faces by its end vertices then the graph is a prism or antiprism which is essentially
proven by listing all possible cases. Then, a lower bound on the sum of the curvature
is derived in terms of the number of vertices for graphs which are neither prisms or
antiprisms.

The upper bound for the number of vertices of a graph with positive curvature
given in [15] for graphs that are not prisms or antiprisms is 3444. This was later
improved by Zhang [59] to 580 vertices and by Oh [10] to 380 vertices while the
largest known graphs with positive curvature has 208 vertices and was constructed
by Nicholson and Sneddon [47].

Next, we turn to results which complement the result above. An interpretation of
the theorem below is that non-positive curvature implies that a planar tessellation is
infinite.

Theorem 6.4 Let G D .V;E;F/ be a tessellation embedded locally compactly in
S
2. Then, the graph admits some positive curvature.

Proof The statement follows directly from the Gauss–Bonnet theorem. ut
We end this section by a result of Chen [13] that states that an infinite tessellation

with non-negative curvature can have at most finitely many vertices with positive
curvature.

Theorem 6.5 ([13, Theorem 3.5.]) Let G be a tessellation such that ˚ 	 0. Then,
the number of vertices with non-vanishing curvature is finite.

6.2.4 Absence of Cut Locus

In Riemannian geometry the Hadamard–Cartan theorem states that on the universal
cover of a complete manifold with non-positive sectional curvature all geodesics
can be continued indefinitely.

For graphs such a theorem can be proven under the assumption of non-positive
corner curvature. Below we will discuss examples how such a statement may fail
for non-positive (or even negative) vertex curvature.

For a vertex v the cut locus is the set of vertices, for which the distance function
d.v; �/ assumes a local maximum. We say the graph has empty cut locus if the cut
locus of every vertex is empty. This is equivalent to the fact that one can continue
every finite geodesic indefinitely.

Theorem 6.6 ([6, Theorem 1]) Let G be a planar tessellation such that ˚C � 0.
Then, the graph has empty cut locus.
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The proof of the theorem involves an analysis of the boundary structure of
distance balls of tessellations with non-positive corner curvature. In [6] it is shown
that the balls satisfy a subtle notion of convexity which is referred to as admissibility.

The statement of the theorem can easily be seen to fail if one only assumes ˚ �
0. An example is the Kagome lattice of Example 6.4. This tessellation satisfies ˚ �
0 but has corners of positive curvature, so, it does not satisfy the assumption of
Theorem 6.6. Indeed, for an arbitrary vertex o there are two vertices in B3 that have
only neighbors in B3—these are the opposite vertices in the hexagons that contain o.

For negative vertex curvature, consider a tessellation with 2p-gons, p 	 4, instead
of hexagons as also mentioned in Example 6.4. Then this tessellation satisfies˚ < 0

but also has corners of positive curvature. Indeed, every vertex o has vertices in Bp

that have no neighbor in SpC1.

6.2.5 Volume Growth

We turn to implications of the sign of the curvature on the volume growth of
planar tessellations. The rough synopsis of the exposition below is that non-negative
curvature implies polynomial growth and for negative curvature implies at least
exponential growth.

In [30] Hua, Jost and Liu showed that a tessellation of non-negative curvature
does not grow faster than quadratically.

Theorem 6.7 ([30, Theorem 1.1]) Let G be a tessellation embedded locally
compactly in a surface of finite genus such that ˚ 	 0. Then, there is a constant C
depending only on the maximal face degree such that for all r 	 0

#Br � Cr2:

The strategy of the proof is to relate volume growth of the tessellation to the one of
the corresponding Alexandrov space in which it is canonically embedded.

Next, we turn to the case of negative curvature. We first discuss lower bounds on
the volume growth that are proven in [5].

Theorem 6.8 ([5, Corollary 5.2.]) Let G D .V;E;F/ be a planar tessellation that
has empty cut locus and satisfies ˚ � �k < 0. Then,

#Br 	 .1C 2Ck/r;

where C D p=. p � 1/ if p D supf2F deg. f / < 1 and C D 1 otherwise.
The assumption of emptiness of cut locus is for example implied by non-positive

corner curvature, Theorem 6.6.
Next, we turn to upper bounds. There is a rough immediate result by comparing

the tessellation with a tree. Note that for a regular trees with vertex degree q, the
number of vertices in Sr is exactly .q � 1/r. We estimate the volume growth of a
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tessellation by removing edges within spheres and splitting geodesics from o that
intersect in a vertex into two different ones. This results in the theorem below.

Theorem 6.9 ([35, Theorem 4]) Let G D .V;E;F/ be a planar tessellation such
that q D supv2V dv < 1. Then,

#Br � .q � 1/r:

For tessellations whose faces have fixed degree p, one can give an explicit
recursion formula for the size of the distances spheres. The recursion is expressed
in terms of normalized average curvatures over spheres

˚ r WD ˚.Sr/ WD
�
2p

p � 2

�
1

#Sr

X

v2Sr
˚.v/:

Recall that the constant 2�. p�2/=2p is the internal angle ˇ. f / of a regular p-gon f .
Similar to the lower bound above the growth formula can be proven for

tessellations without cut locus which is implied by non-positive corner curvature,
Theorem 6.6. In the case of face regular graphs non-positive corner curvature is
equivalent to non-positive curvature. However, the theorem below is not restricted
to the non-positive curvature case.

For 3 � p < 1, let N D p�2
2

if p is even and N D p � 2 if p is odd, and

bl D
(

4
p�2 � 2 W if p is odd and l D N�1

2
;

4
p�2 W else,

for 0 � l � N � 1.

Theorem 6.10 ([35, Theorem 2]) Let G D .V;E;F/ be a p-face regular
tessellation with empty cut locus. Then the following .NC1/-step recursion formulas
for r 	 1 holds

#SrC1 D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Pr�1
lD0.bl � ˚ r�l/#Sr�l C #S1 W if r < N;

PN�1
lD0 .bl �˚N�l/#SN�l W if r D N;

PN�1
lD0 .bl �˚ r�l/#Sr�l � #Sr�N W if r > N:

The .N C 1/-step recursion formula gives rise to a recursion matrix Mr , r 	 0,
mapping R

N to R
N such that Mr.#Sr�N ; : : : ; #Sr/ D .#Sr�NC1; : : : ; #SrC1/.

In the special case when also the vertex degree is constant, say q, we have a
. p; q/-regular tessellation. Then, the constant bl � ˚ k is equal to q � 2, except for
l D .N�1/=2 and q odd in which case we have q�4. In particular, there is a matrix
M such that M D Mr for all r 	 0. The characteristic polynomial of M is then given
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by the complex polynomial

gp;q.z/ D 1 � .q � 2/z � � � � � .q � 2/zN C zNC1;

if p is even, and

gp;q.z/ D 1 � .q � 2/z � � � � � .q � 4/z NC1
2 � � � � � .q � 2/zN C zNC1;

if p is odd. By Bartholdi and Ceccherini-Silberstein [2] and Cannon and Wagreich
[11], gp;q is a reciprocal Salem polynomial, i.e., its roots lie on the complex unit
circle except for two positive reciprocal real zeros

1

xp;q
< 1 < xp;q < p � 1:

This yields

lim sup
t!1

1

r
log #Sr D log xp;q

in the special case of a . p; q/-regular tessellation. In particular, the considerations
above recover the results of Cannon and Wagreich [11] and Floyd and Plotnick [22,
Sect. 3] that the growth function is a rational function.

To relate growth rate of an arbitrary face regular tessellation to a . p; q/-regular
tessellation we present a volume growth comparison theorem which is an analogue
to the Bishop-Guenther-Gromov comparison theorem from Riemannian geometry.

Theorem 6.11 (Theorem 3 in [35]) Let G D .V;E;F/ and eG D .eV;eE;eF/ be two
p-face regular tessellations with non-positive vertex curvature and let Sr � V and
eSr � eV be spheres with respect to the centers o 2 V andeo 2 eV, respectively. Assume
that the normalized average spherical curvatures satisfy

˚.eSr/ � ˚.Sr/ � 0; r 	 0:

Then the difference sequence .#eSr � #Sr/ satisfies #eSr � #Sr 	 0, r 	 0, and is
monotone non-decreasing.

Proof (Idea of proof) The proof given in [35] depends heavily on the assumption
of constant face degree. Let us briefly illustrate the underlying idea. We count the
number of faces crj that intersect a ball Br in 1 � j � p vertices, where p is the

constant face degree. If j � p� 2, then this number equals the number of faces crC1jC2
that intersect the ball BrC1 in j C 2 vertices. Finally, one can relate the numbers crj
to the number of vertices in a sphere Sr. ut
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An important quantity to relate volume growth to spectral theory is the exponen-
tial growth rate. For a set W � V , define

vol.W/ D
X

v2W
dv:

Let EW be the set of edges that have both vertices in W. We find

vol.W/ D 2#EW C #@W

which can be interpreted as twice the number of edges within W and once the
number of edges leaving W. The exponential growth rate is defined as

� D lim sup
r!1

1

r
log vol.Br/:

For connected graphs � does not depend on the choice of the center o of the balls.
In order to relate the results above to � we need the following lemma.

Lemma 6.1 Let G be a tessellation of a surface of finite genus. Then,

� D lim sup
r!1

1

r
log #Br D lim sup

r!1
1

r
log #Sr:

Proof Let g be the genus of the surface. Using the fact that every face is included in
two edges and every face includes at least three vertices we derive from Poincaré’s
formula for finite W � V

#EW � C#W

with C D maxf2g C 1; 3g, (for details see [8, Lemma 6.2.]). We derive for r 	 1

#Br � vol.Br/ D 2#EBr C #@Br � 2#EBrC1
� 2C#BrC1:

This yields the first equality. To see the second equality we observe first that #Sr �
#Br. Furthermore, let Rk be a subsequence realizing the lim sup. Let 0 � rk � Rk

such that #Srk 	 #Sj, 0 � j � Rk. Then,

1

Rk
log #BRk D 1

Rk
log

�
#Srk

RkX

jD0

#Sj
#Srk

�
� 1

rk
log #Srk C 1

Rk
logRk:

Hence, the assertion follows by taking limits. ut
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6.2.6 Isoperimetric Inequalities

The isoperimetric problem goes back to a tale about Dido of Carthage. Here, we
consider such a problem in the graph case and want to minimize the ratio of the
boundary area and the volume of finite sets. The ratio is called the isoperimetric
constants and it has many applications in mathematics and computer science, as
e.g. applications to mixing times of Markov chains which is relevant in simulation,
[41, 45].

A rough synopsis of this section is that non-negative curvature implies zero
isoperimetric constant, while negative curvature implies positive isoperimetric
constant.

In the negative curvature case, we further discuss an explicit formula for
. p; q/-regular tessellations, give lower bounds as results of upper bounds on the
curvature and give a criterion for positivity by asymptotically negative curvature.
As a corollary we show that this implies Gromov hyperbolicity of the tessellation.
Finally, we discuss an isoperimetric constant at infinity.

Let us be more precise. We let

@W D f.v;w/ 2 W � .V n W/ j v 
 wg

for a finite set W � V . This set can be interpreted as the edges leaving W and
the area of the boundary will be number of elements in @W. Furthermore, as in the
previous section we let the volume of a finite set W be given by

vol.W/ D
X

v2W
dv:

We define the isoperimetric constant to be

˛ D inf
W�Vfinite

#@W

vol.W/
:

By the formula vol.W/ D 2#EW C #@W we conclude

0 � ˛ < 1:

One can also define the volume by the number of vertices of the set and define the
isoperimetric constant accordingly. However, measuring volume by counting edges
as above proves to be more effective for spectral estimates as the estimate does not
become trivial for unbounded vertex degree; compare the results of [16] and [17].
Another choice for the area of the boundary is to involve so called intrinsic metrics,
see [4]. Although the corresponding isoperimetric constant works well for spectral
estimate, the constant is hard to estimates combinatorially in the tessellation case.

We first start with a theorem which is a corollary of Theorem 6.7.
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Theorem 6.12 Let G be a tessellation embedded in a surface of finite genus such
that ˚ 	 0. Then,

˛ D 0

Proof First of all notice that ˚ � 0 implies dv � 6 by Proposition 6.1. Thus,
#@Br � 6#Sr. As vol.Br/ 	 #Br 	 #Sr C #Sr�1, we derive

˛ � #@Br

vol.Br/
� 6#Sr

#Sr C #Sr�1
:

We set a D ˛=6

1�˛=6 and observe that a > 1whenever ˛ > 0. We conclude by iteration

ar � #Sr which stands in contradiction to #Br � Cr2 of Theorem 6.7. ut
We consider now graphs with negative curvature. First, we mention that the

isoperimetric constant can be calculated explicitly for . p; q/-regular tessellations.
These formulas were independently obtained by Häggström et al. [26] and Higuchi
and Shirai [29] by quite different techniques.

Theorem 6.13 ([26, 29]) Let G be a . p; q/-regular tessellation such that ˚C D
1
p � 1

2
C 1

q � 0. Then,

˛ D q � 2

q

s

1 � 4

. p � 2/.q � 2/ :

While [29] give a rather explicit construction of the minimizing sets, the authors
of [26] use duality. We give a rough sketch of the proof.

Proof (Idea of proof [26]) Recall that EW are the edges with both vertices in W and
consider

ˇ.G/ D inf
W	V finite

#W

#EW
;

ı.G/ D inf
W	V finite

#W

#EW C #@W
:

It can be observed that

ˇ.G/ D 2

q.1 � ˛/ and ı.G/ D 2

q.1C ˛/
:

For the proof of the theorem one needs to show that the minimizing sets for ˛; ˇ
and ı have to grow whenever ˛ > 0. Knowing this the major step in the proof is to
show the relation

ˇ.G/C ı.G�/ D 1;
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where G� is the dual tessellation. Resolving this formula with the equations for ˇ
and ı above yields the statement. ut

We now look at the non-regular case, where we have a uniform upper bound on
the curvature. In this case we get explicit estimates on ˛. Although, these estimates
are not sharp for planar tessellations, they are sharp if one considers sequences of
tessellations where the face degrees grow to infinity. This is discussed in [35].

Whenever the face degree is bounded by some p and the vertex degree is
bounded by some q the following constant Cp;q 	 1 will enter the estimate of the
isoperimetric constant below

Cp;q WD

8
ˆ̂
<

ˆ̂
:

1 W if p D 1;

1C 2
p�2 W if p < 1 and q D 1;�

1C 2
p�2
��
1C 2

. p�2/.q�2/�2
�

W if p; q < 1:

Theorem 6.14 ([35, Theorem 1]) Let G be a planar tessellation such that
deg. f / � p for all f 2 F and dv � q for all v 2 V with p; q 2 Œ3;1�. Assume
˚ < 0 and let K WD infv2V � 1

dv
˚.v/. Then

˛ 	 2Cp;qK:

A key insight for the proof is a formula which is attributed in [5] to Harm
Derksen. It is an immediate consequence of the Gauss–Bonnet theorem and direct
calculation. It can be interpreted that the formula for the curvature of a simply
connected finite set has the same form as the curvature of a vertex. Here, we call
a set W � V simply connected if W and V n W are connected.

Lemma 6.2 ([5, Proposition 2.1.]) Let W � V be a finite simply connected subset
of a planar tessellation. Then,

X

v2W
˚.v/ D 1 � #@W

2
C

X

f2F;f\W¤;;f\.VnW/¤;

#. f \ W/

deg. f /
:

From this lemma, one immediately derives the estimate

#@W

vol.W/
	 �2Pv2W ˚.v/

vol.W/
	 2K:

To obtain the statement of Theorem 6.14 on still has to squeeze in Cp;q 	 1. This
needs some further rather subtle considerations.

Next, we turn to a result of Woess [57]. It states that if the asymptotic curvature
defined as

˚ D lim
n!1 sup

W	V;#W�n

1

#W

X

v2W
˚.v/
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is negative, then the isoperimetric constant is positive. The limit exists or is �1 as
the sequence is monotone decreasing.

Theorem 6.15 ([57, Theorem A]) Let G be a planar tessellation such that˚ < 0.
Then, ˛ > 0.

Again the result can be proven by the formula in Lemma 6.2 above which is
however not stated explicitly in [57]. Preceding the result above, Dodziuk proved
in [16] that planar graphs with dv 	 7, v 2 V , satisfy ˛ > 0. In particular, this
assumption implies ˚ < 0 by Proposition 6.1.

By considerations of Oh [48], we see that planar tessellations satisfying ˚ < 0

are Gromov hyperbolic provided there is an upper bound on the face degree. A
metric space is called Gromov hyperbolic if there is ı > 0 such that every geodesic
triangle T is ı-thin, i.e., any side of T is contained in the ı-neighborhood of the union
of the other two sides. For graphs we consider the combinatorial graph distance d
as a metric.

Corollary 6.1 ([48]) Let G be a planar tessellation such that ˚ < 0 and assume
there is an upper bound on the face degree. Then, .G; d/ is Gromov hyperbolic.

Proof By Oh [48, Theorem 6] we see that a planar graph is Gromov hyperbolic if a
constant called ˚.G/, which is defined in [48], is positive. By Oh [48, Theorem 1]
this constant ˚.G/ is positive if and only if our isoperimetric constant ˛ is positive.
This equivalence holds true for all planar graphs whose faces are homeomorphic to
a closed disk, an assumption which is satisfied for tessellations. ut

To complement this result we remark that by a result of Cao [12] one can check
that Gromov hyperbolicity of a planar tessellation with bounded vertex degree
implies ˛ > 0. For details see [36, Proof of Theorem 3.8].

We end this section by discussing an asymptotic isoperimetric constant called
the isoperimetric constant at infinity. This constant is discussed in [24, 32, 44]. We
define the isoperimetric constant at infinity to be

˛1 D sup
K�Vfinite

inf
W�VnK finite

#@W

vol.W/
:

Clearly, ˛ � ˛1. Furthermore, it is discussed in [3, Sect. 6.3] that ˛ > 0 if and only
if ˛1 > 0. The arguments employed there use basic spectral theory.

Accordingly, we define an upper bound on the curvature at infinity by

˚1 D inf
K�Vfinite

sup
v2VnK

˚.v/:

For the curvature at infinity and the isoperimetric constant at infinity can be
related as a consequence of [32] and Proposition 6.1.

Theorem 6.16 ([32, Proposition 6]) Let G be a planar tessellation such that
˚1 D �1. Then, ˛1 D 1.
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6.3 Spectral Theory

In this section we study the spectral theory of the combinatorial Laplacian on
tessellations. Many of the results are based on the geometric insights gathered in
the previous section.

Since the definition of the combinatorial Laplacian does not depend on the
tessellating structure, we introduce it on general graphs. It shall be stressed that
although the Laplace operator considered here has the same quadratic form as the
normalized Laplacian introduced in the previous Chap. 1, it is defined on a different
Hilbert space. This arises from a different notion of volume. Indeed, there are two
canonical ways to measure volume on graphs, either by counting vertices or edges.
The volume considered by Jost is the function vol used in the previous section and
is associated to counting edges. Here, we use the counting measure which means
volume is determined by counting vertices.

Both viewpoints have there merits. The normalized Laplacian considered by Jost
based on the edge volume captures perfectly the metric features which come from
the combinatorial graph distance, see e.g. [34, Sect. 3.2.2.]. Moreover, this operator
has the advantage that it is always bounded which avoids various technicalities.
On the other hand, phenomena which are related to unbounded geometry are much
better captured by the combinatorial Laplacian we study here. In summary both
Laplacians arise from natural geometric considerations and each is suitable for the
study of certain phenomena. Specifically, we study here discreteness of spectrum
in the case of uniformly decreasing curvature together with eigenvalue asymptotics
and decay properties of eigenfunctions. We also study spectral bounds implied by
geometric data and consider unique continuation properties of eigenfunctions.

6.3.1 The Combinatorial Laplacian

In this section we introduce the combinatorial Laplacian on graphs. This operator
has many applications in various fields of mathematics. We introduce the operator
for general graphs since the restriction to tessellations yields no additional basic
information or properties.

Let .V;E/ be a graph. Then, the combinatorial Laplacian � acts on functions
' W V ! R as

�'.v/ D
X

w�v
.'.w/ � '.v//; v 2 V:

In order to study spectral theory, we restrict � to a space of functions with more
structure. We refer to [55] for a background on operator theory. Let `2.V/ be the
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space of square summable real valued functions, i.e.,

`2.V/ D f' W V ! R j
X

v2V
j'.v/j2 < 1g:

The space `2.V/ equipped with the scalar product

h'; i D
X

v2V
'.v/ .v/

is a Hilbert space. We denote the corresponding norm by k � k.
One can check easily that � is a bounded operator on `2.V/ if and only if

sup
v2V

dv < 1:

In the case, where � is unbounded we have to restrict � to a dense subspace of
`2.V/ to define a selfadjoint operator. It was first shown in [58, Theorem 1.3.1.] that
� is a selfadjoint on

D.�/ D f' 2 `2.V/ j�' 2 `2.V/g:

From now on we refer to � restricted to D.�/ as the combinatorial Laplacian.
It can be shown that the functions of finite support Cc.V/ are dense in D.�/ with

respect to the graph norm. (Note that the graph norm is a functional analytic quantity
referring to the norm k'k C k�'k on D.�/.) Since

h�'; 'i D �1
2

X

v;w2V;v�w

.'.v/ � '.w//2;

the operator �� is positive. In what follows we study the spectral theory of ��.
Clearly, D.�/ D D.��/.

We denote the spectrum of �� by

�.��/ D fz 2 C j �� � zId has no bounded inverseg;

where Id is the identity operator on `2.V/. Since �� is selfadjoint and positive, we
have by general theory

�.��/ � Œ0;1/:

In the case supv dv � D, we even have

�.��/ � Œ0; 2D�:
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For finite graphs the spectrum only consists of eigenvalues of �. If the graph is
infinite the space `2.V/ is infinite dimensional and, therefore, there might be values
 2 �.�/ which do not allow for an `2.V/ eigenfunction. However, by a criterion
of Weyl one still has approximate eigenfunctions.

We denote the bottom of the spectrum of �� by 0 D 0.��/ D min �.��/.
We have by the Rayleigh-Ritz characterization and the density of Cc.V/ in `2.V/

0.��/ D inf
'2Cc.V/;k'kD1

h.��/'; 'i:

In the case where 0 > 0 one says that �� has a spectral gap.
For finite graphs the constant functions are in `2.V/ and are, therefore, eigen-

functions to the eigenvalue 0. For infinite graphs the constant functions are never in
`2.V/. However, in some cases it is still possible that the constant functions can be
approximated with respect to graph norm by functions in `2.V/ in which case there
is no spectral gap.

It is said that �� has pure discrete spectrum if �.��/ consists only of discrete
eigenvalues of finite multiplicity. This implies that they only accumulate at infinity.
Clearly, this can only happen if � is unbounded. In the case of pure discrete
spectrum we denote the eigenvalues of �� by n, n 	 0, in increasing order counted
with multiplicity.

The part of the spectrum which are no discrete eigenvalues of finite multiplicity
is called the essential spectrum and is denoted by �ess.��/. Furthermore, we let

ess
0 .��/ D min �ess.��/:

6.3.2 Bottom of the Spectrum

Let us recall some well known results from discrete spectral geometry to estimate
the bottom of the spectrum. These results are classically proven for general graphs
and the normalized Laplacian which we denote here by e� (confer Chap. 1). We
relate the bottom of spectra 0.�e�/ to 0.��/ and ess

0 .�e�/ to ess
0 .��/ as it was

shown by very elementary arguments in [32]

m0.�e�/ � 0.��/ � ess
0 .��/ � M1ess

0 .�e�/

with m D minv2V dv and M1 D infK	V; finite supv2VnK dv whenever M1 < 1.
Recall the definition of the volume growth rate

� D lim sup
r!1

1

r
log vol.Br/
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from Sect. 6.2.5 and the isoperimetric constant

˛ D inf
W�Vfinite

#@W

vol.W/
:

from Sect. 6.2.6. Then, by results of Fujiwara [23, 24]

m
�
1 �

p
1 � ˛2

� � 0.��/ � ess
0 .��/ � M1

�
1 � 2e�=2

e� C 1

�
:

The lower bound was preceded by a result of Dodziuk and Kendall [17] and is found
in a similar form in the work of Mohar [43]. The upper bound is preceded by results
of Dodziuk and Karp [18] and Ohno and Urakawa [49].

We first use the upper bound in the case of non-negative curvature. We conclude
by the estimate above and Theorem 6.7.

Corollary 6.2 Let G be a tessellation embedded in a surface of finite genus such
that ˚ 	 0. Then, 0.��/ D ess

0 .��/ D 0.
Furthermore, we use Theorem 6.15 to derive the following.

Theorem 6.17 Let G be a planar tessellation such that ˚ < 0. Then, 0 > 0.
Finally, we combine both estimates above with Theorem 6.11 and Theorem 6.12.

Theorem 6.18 Let G be a planar tessellation such that deg. f / � p for all f 2
F and dv � q for all v 2 V with p; q 2 Œ3;1�. Assume ˚ < 0 and let K D
infv2V � 1

dv
˚.v/. Then,

2mK2 � m.1 �
q
1 � 4C2p;qK

2/ � 0.��/;

where Cp;q is defined in Sect. 6.2.6. If additionally p; q < 1, then

ess
0 .��/ � M1

�
1 � 2x1=2p;q

xp;q C 1

�
;

where xp;q is the largest real zero of gp;q defined in Sect. 6.2.5.
The lower bound above can be considered as a discrete analogue to a theorem of

McKean [42]. McKean proved for a n-dimensional complete Riemannian manifold
M with upper sectional curvature bound �k that the bottom of the spectrum of the
Laplace-Beltrami ��M satisfies

.n � 1/2k=4 � 0.��M/:

It shall be noted that by Theorem 6.2 the assumption ˚ < 0 implies K > 0 and,
therefore, 0.��/ > 0 in this case.
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6.3.3 Discrete Spectrum, Eigenvalue Asymptotics and Decay
of Eigenfunctions

We now turn to a characterization of pure discrete spectrum. The theorem below is
an analogue of a theorem of Donnelly/Li [20] from Riemannian geometry. Recall
the definition of the upper asymptotic curvature bound

˚1 D sup
K�V finite

inf
v2VnK

˚.v/

Theorem 6.19 ([32, Theorem 3]) Let G be a planar tessellation. Then the
spectrum of �� is purely discrete if and only if ˚1 D �1.

Proof (Idea of proof) If the spectrum of �� is purely discrete, then, by a criterion
attributed to Perrson in the continuous case, h.��/'n; 'ni ! 1 for every
normalized sequence .'n/ in `2.V/ which converges weakly to zero. For a sequence
.vn/ of vertices and the delta functions ıvn , we have

h.��/ıvn ; ıvni D dvn � �2˚.vn/;

where the last inequality follows from Proposition 6.1. This implies ˚1 D �1.
On the other hand, assume˚1 D �1. By Theorem 6.14 we infer that outside of

large enough finite sets the isoperimetric constant is uniformly positive. Moreover,
by an argument as in Theorem 6.18 the bottom of the spectrum of the operator
restricted to functions supported outside of larger and larger finite sets converges to
1. This, however, is equivalent to pure discrete spectrum, as the restricted operators
are finite rank perturbations of the original operator. ut

In [24] Fujiwara proved a similar statement as the theorem above for the
normalized Laplacian on trees, namely that spectrum is discrete except for the point
1, where the discrete eigenvalues accumulate. Furthermore, Wojciechowski [58]
showed discreteness of the spectrum of �� on general graphs in terms of a different
curvature quantity sometimes referred to as a mean curvature.

We observe the following standard fact. Whenever, the spectrum of �� is purely
discrete, then 0.��/ > 0: If 0 was in the spectrum, then it must be a discrete
eigenvalue. However, the only eigenfunctions ' to 0 which have finite energy, (i.e.,P

v�w.'.v/�'.w//2 < 1) are the constant functions which are not in `2.V/ in the
case of infinite graphs).

In the case of discrete spectrum we next present asymptotics for eigenvalue n
of ��, i.e.,

�.��/ D f0 < 0 � 1 � : : : � n � : : :g



6 Geometry and Spectrum of Tessellations 199

For the case ˚1 D �1, it follows from Proposition 6.1 that the vertices can be
ordered V D fvng such that

dvn � dvnC1
; n 	 0:

Theorem 6.20 ([7, Theorem 1.6.]) Let G be a planar tessellation such that˚1 D
�1. Then,

dvn � 2
p
dvn . n . dvn C 2

p
dvn ;

that is

lim
n!1

n

dvn
D 1

and

�2 � lim inf
n!1

n � dvnp
dvn

� lim sup
n!1

n � dvnp
dvn

� 2:

Proof (Idea of proof) The proof in [7] is divided into two steps. First one shows
that every tessellation whose curvature decreases to �1 allows for a spanning tree
such that the combinatorial Laplacian on the tessellation and the tree are bounded
perturbations of each other. Equivalently this means that there is a number N
such that from each vertex at most N adjacent edges are canceled to obtain the
spanning tree. By the Min-Max-Principle both operators share the same eigenvalue
asymptotics.

Secondly, one shows the corresponding eigenvalue for the operator on the tree.
The proof uses isoperimetric techniques and again a version of the Min-Max-
Principle. ut

In the case of planar tessellations with constant face degree one can show bounds
with an even more geometric flavor. Assume all faces have degree p. Then, the
internal angle of every face f is given by

ˇ. f / D ˇ. p/ D 2�
. p � 2/

p
:

Corollary 6.3 ([7, Corollary 1.8.]) Let G be a planar tessellation such that˚1 D
�1. Suppose the face degree is constantly p 	 3 outside of some finite set. Then,
for large n

�2�˚.vn/
ˇ. p/

� 2
s

�2�˚.vn/
ˇ. p/

. n . �2�˚.vn/
ˇ. p/

C 2

s

�2�˚.vn/
ˇ. p/

;
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that is

�2�˚.vn/
n

! ˇ. p/;

and

�ˇ. p/
2

� lim inf
n!1

p�2�˚.vn/
n C 2�˚.vn/=ˇ. p/

� lim sup
n!1

p�2�˚.vn/
n C 2�˚.vn/=ˇ. p/

� ˇ. p/

2
:

The eigenvalue asymptotics in the theorem and the corollary above present a case
where phenomena in the discrete and continuous world drift apart. In particular,
for Riemannian manifolds one expects upper bounds of eigenvalues k by some
constant multiplied by k2, see [38].

Next, we come to the decay of eigenfunctions. It turns out that eigenfunctions
decay exponentially in an `2 sense.

Theorem 6.21 ([37]) If ˚1 D �1 and 'n 2 D.�/, n 	 0, are eigenfunctions,
i.e.,

�'n D n'n;

then, for any ˇ < e�1 and o 2 V,

j˚ j 12 eˇd.o;
/'n 2 `2.V/;

where d.�; �/ is the natural graph distance.
The proof is based on ideas of Agmon for Schrödinger operators in R

n. The
somewhat curious constant e�1 comes in via an optimization that is necessary by
the non-locality of the graph Laplacian in contrast to the strongly local Laplace
operator on R

n.

6.3.4 Unique Continuation of Eigenfunctions

Under the phenomena unique continuation one understands that a function which
is zero outside of a compact set must also be zero on the compact set. Such
unique continuation properties for eigenfunctions hold in great generality for
local elliptic operators. Often very strong quantitative statements, called Carleman
estimates, can be proven which all have the basic corollary that there are no
eigenfunctions supported on a compact subset of the space. However, for graphs
such eigenfunctions can be produced rather easily. This was observed by many
authors, see e.g. [1, 9, 19, 39]. Below we will also discuss examples. The purpose
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of this section is to discuss that non-positive corner curvature excludes such a
phenomena, i.e., there are no compactly eigenfunctions.

Klassert et al. [40] proved a unique continuation result for tessellations with non-
positive corner curvature. This result was later generalized to planar graphs in [33]
with a different proof.

Theorem 6.22 ([40, Theorem 4]) Let G be a planar tessellation such that˚C � 0.
Then, there are no eigenfunctions of compact support.

Proof (Idea of proof) The proof given in [33] works by a polar decomposition of
the Laplacian into � D E> C D C E, where D is the combinatorial Laplacian on
the spheres with Dirichlet boundary conditions and E is the operator with matrix
elements E.v;w/ D 1 if v 2 SrC1, w 2 Sr, v 
 w for all r 	 0 and zero otherwise.
Hence, the operator E encodes the edges reaching a sphere from the previous one.
Denote the restriction of E and D to the functions supported on Sr by Er and Dr. For
an eigenfunction ' let 'r be the restriction of ' to Sr. Then, the eigenvalue equation
�' D ' reads in polar decomposition as

Er'r C .D � /'rC1 C E>
rC1'rC2 D 0; r 	 0:

Now, by subtle geometric arguments it is shown by induction over r that Er is
injective. Therefore, if ' vanishes outside of Br, the above equation reads as
Er'r D 0 which implies 'r D 0 by injectivity of Er. ut

Let us discuss, that the statement of the theorem fails, if one only assumes˚ � 0.

Example 6.5 Consider the Kagome lattice of Example 6.4. Pick a hexagon and
denote the vertices of the adjacent triangles which are not in the hexagon by
v1; : : : ; v6. Now let ' W V ! f�1; 1g be supported on v1; : : : ; v6 such that
'.vj/ D .�1/j, j D 1; : : : ; 6. Then it follows that �' D 6' and ' is therefore
an eigenfunction of compact support. The same idea works if one considers the
other examples of Example 6.4 when we replace the hexagon with a 2p-gon with
p > 3. In this case we even have ˚ < 0.

A question that arises is whether it is sufficient that the corner curvature is non
positive outside of a finite set in order to have at most finitely many compactly
supported eigenfunctions. Still this is not the case as the example in Fig. 6.4 shows.

However, if the curvature is sufficiently large outside of a finite set a unique
continuation result can be proven.

Theorem 6.23 ([7, Theorem 1.9.]) Let G be a planar graph. Assume ˚1 D �1.
Then, outside of a finite set there are no eigenfunctions of compact support of �.
In particular, there are at most finitely many linearly independent eigenfunctions of
finite support.
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Fig. 6.4 The first six distance spheres of a tessellation that admits infinitely many linearly
independent compactly supported eigenfunctions and has ˚C � 0 outside of B2

6.3.5 `p Spectrum

In this section we study the spectral theory of �� as an operator on the Banach
spaces `p.V/, p 2 Œ1;1�. Denote the restriction of � to

D.�p/ D f f 2 `p.V/ j �f 2 `p.V/g

by �p and let �1 D ��
1 . Clearly, D.�p/ D D.��p/.

A question asked by Simon [50] and affirmatively answered by Hempel and Voigt
[27] for Schrödinger operators is whether the spectrum depends on the underlying
Banach space. Sturm, [53], addressed this question in the setting of uniformly
elliptic operators on manifolds. As a special case, he considers consequences of
curvature bounds. For the tessellation case the following result is found in [3].

Theorem 6.24 ([3, Theorem 7.1., 7.2. and 7.3.]) Let G be a planar tessellation.

(a) If ˚ 	 0, then �.��2/ D �.��p/ for p 2 Œ1;1�.
(b) If �K � ˚ < 0, then 0.��2/ ¤ 0.��1/, i.e., �.��2/ ¤ �.��1/.
(c) If ˚1 D �1, then �.��2/ D �.��p/ for all p 2 .1;1/.
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6.4 Extensions to More General Graphs

In this final section we discuss how the results of the previous section can be
generalized to planar graphs and more general polygonal complexes.

6.4.1 Curvature on Planar Graphs

First we address general planar graphs as it was studied in [33]. The first step is to
extend the notion of curvature. Secondly, we show that non-positive already implies
that the graph looks locally like a tessellation. Such graphs allow for a suitable
embedding into a tessellation which is used to extend the results for tessellations to
general planar graphs.

Let .V;E/ be a planar graph which is embedded locally compactly into a surface
homeomorphic to R

2 which gives rise to faces F as above. To define curvature on
planar graphs, we have to extend the definitions of degrees of faces and vertices. In
order to do so, we introduce the degree of a corner. As above the corners C.G/ are
the pairs .v; f / 2 V � F such that v 2 f . For a corner .v; f / 2 C.G/ we define the
degree j.v; f /j by the minimal number of times the vertex v is met by a boundary
walk of f . Roughly speaking the degree of the corner .v; f / is the number of times f
touches v.

This gives rise to a definition of the degree of v 2 V and f 2 F by

dv D
X

.v;g/2C.G/
j.v; g/j and deg. f / D

X

.w;f /2C.G/
j.w; f /j:

In a tessellation the degree of a corner is always one. So, these definitions indeed
extend the ones of tessellations.

A face f is called unbounded if deg. f / D 1. Moreover, a planar graph is simple
if and only if deg. f / 	 3 for all f 2 F.

We define the corner curvature ˚C W C.G/ ! R by

˚C.v; f / D 1

dv
� 1

2
C 1

deg. f /

and the vertex curvature by ˚ W V ! R by

˚.v/ D
X

.v;f /2C.G/
j.v; f /j˚C.v; f /:

These definitions are consistent with the definition of ˚C and ˚ on tessellations.
Furthermore, they allow to show a Gauss–Bonnet formula, [33, Proposition 1].
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It turns out that non-negative curvature already has strong consequences on the
structure of the graph. To this end, we look at a generalization of tessellations. We
call a face a polygon if it is homeomorphic to an open disc and we call it an infinigon
if it is homeomorphic to the upper half space in R

2. For example the faces of a
tessellation are all polygons by (T3) and the faces of a tree are infinigons.

We call a planar graph locally tessellating if it satisfies the following properties:

(T1) Every edge is contained in two faces.
(T2*) Two faces are either disjoint or intersect in a vertex or in a path of edges. If

this path consists of more than one edge then both faces are unbounded.
(T3*) Every face is a polygon or an infinigon.

The assumption (T1) is the same as in the definition of tessellations.
Tessellations, trees as well as hybrids of both of these are examples of locally

tessellating graphs. As mentioned above non-positive curvature on planar graphs
implies a graph is almost a tessellation.

Theorem 6.25 ([33, Theorem 1]) Let G be a connected planar graph. If ˚C � 0

or if G is simple with ˚ � 0 then G is locally tessellating and infinite.

Proof (Idea of proof) To prove this theorem one isolates finite subgraphs with
simply closed boundary of the tessellation on which some of the assumptions (T1),
(T2*), (T3*) fail. Then one copies this subgraph finitely many times and pastes the
copies along their boundary paths to be finally embedded into the unit sphere. Now,
the Gauss–Bonnet theorem implies that there must be some positive curvature. ut

By Keller [33, Theorem 2] locally tessellating graphs can be embedded into
tessellations in a way that approximates the original curvature arbitrarily close.

Theorem 6.26 Let G be a locally tessellating graph that satisfies ˚ � 0. Let
W � V be a finite and simply connected set and " 2 .0; 1=1806/. Then, there
is a tessellation G0 which is a supergraph of G such that the following properties
hold.

(a) The embedding of G into the supergraph G0 is a graph isomorphism of the
subgraphs GW and G0

W and the embedding is an isometry on W.
(b) If ˚C � 0, then ˚ 0

C � ˚C C " and if ˚ � 0, then ˚ 0 � ˚ C ".

By doing so, one can carry over results from tessellations to locally tessellating
graphs and by Theorem 6.26 above to planar graphs in the case of non-positive
curvature.

Among the geometric applications are the following:

• Absence of cut locus for non-positive corner curvature [33, Theorem 3].
• Bounds for the growth of distance balls for negative vertex curvature [33,

Theorem 5].
• Positivity and bounds for the isoperimetric constant for negative vertex curvature

[33, Theorem 6].
• Gromov hyperbolicity for negative corner curvature [33, Theorem 7].
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There are also applications in spectral theory.

• The geometric bounds yield bounds on the bottom of the spectrum.
• Uniformly decreasing curvature is equivalent to purely discrete spectrum [33,

Theorem 8].
• The same eigenvalue asymptotics as in Theorem 6.20 [7], and the same decay of

eigenfunctions as in Theorem 6.21 [37].
• Unique continuation results for eigenfunctions [33, Theorem 9].

6.4.2 Sectional Curvature for Polygonal Complexes

To end this chapter we discuss generalizations to non planar graphs for which we
can define a notion of sectional curvature. In [56] such a program was undertaken to
study questions in group theory. In [36] another somewhat more restrictive approach
was taken to define curvature for polygonal complexes which however allows to
prove various results in geometry and spectral theory.

Let us be more precise. In [36] a polygonal complex G D .V;E;F/ is said to have
planar substructures if there is a system A of subcomplexes called the apartments
that satisfy the following axioms:

(PCPS1) For every two faces there is an apartment which contains both of them.
(PCPS2) The apartments are convex, that is every geodesic of faces, which starts

and ends in an apartment, stays completely in the apartment.
(PCPS3) The apartments are planar or spherical tessellations.

An important example of such polygonal complexes are two dimensional buildings.
We define the degree deg. f / of a face f 2 F as in the case of tessellation by

the number of edges included in f . Moreover, we denote the degree of a vertex v
with respect to an apartment ˙ by d.˙/v . The corners of an apartment are denote
by C˙.G/. For an apartment ˙ D .V˙;E˙;F˙/, we define the sectional corner
curvature ˚C W C˙.G/ ! R with respect to ˙ by

˚
.˙/
C .v; f / D 1

d˙v
� 1

2
C 1

deg. f /

and the sectional face curvature by ˚.˙/
F W F˙ ! R by

˚
.˙/
F . f / D

X

.v;f /2C˙ .G/
˚
.˙/
C .v; f / D 1 � deg. f /

2
C

X

v2V˙ ;v2f

1

d˙v
:

With this definition one can prove various of the results of Sects. 6.2 and 6.3.
Here, we refrain from stating the results precisely but only mention them and refer



206 M. Keller

to [36] for details:

• Finiteness and infiniteness depending on the sign of the curvature, [36, Theo-
rem 3.13.]

• Absence of cut locus for non-positive sectional corner curvature [36, Theo-
rem 3.1.]

• Positivity and bounds for an isoperimetric constant for negative sectional face
curvature, [36, Theorems 3.8. and 3.11.]

• Gromov hyperbolicity for negative sectional corner curvature, [36, Theorem 3.6.]

To study spectral theory one considers the combinatorial Laplacian on functions
defined on faces. This is due to the fact that the geometric assumptions for the
polygonal complexes are made with respect to the faces. For a function ' W F ! R,
we define

�'. f / D
X

g2F; g�f

.'.g/� '. f //;

where g 
 f means that f and g share an edge. Restricting � to

D.�/ D f' 2 `2.F/ j �' 2 `2.F/g

gives rise to a selfadjoint operator. For this operator one can prove:

• Discreteness of spectrum and eigenvalue asymptotics under the assumption of
uniform decreasing corner curvature, [36, Theorem 4.1.]

• Unique continuation of eigenfunctions, [36, Theorem 4.3.].
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Chapter 7
The Geometric Spectrum of a Graph
and Associated Curvatures

Paul Baird

Abstract We approach the problem of defining curvature on a graph by attempting
to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as
a configured star. How this should be done depends upon the global structure of
the graph which is reflected in its geometric spectrum. Various curvatures naturally
arise from local liftings of the graph into a suitable Euclidean space.

7.1 Introduction

One of the challenges of graph theory is to define notions of curvature purely in
terms of combinatorial structure without recourse to a predefined metric structure.
One would like to see geometry and curvature emerge from combinatorial structure
rather than being imposed upon it. Different approaches go back to classical work
of Descartes in the context of 3-dimensional polyhedra. In this volume, Chap. 6, M.
Keller discusses a notion of combinatorial curvature that arises when there exists an
embedding of a graph into a surface. Defined at each vertex, this doesn’t depend on
any metric structure, but only on the number of vertices (the face degree) of incident
faces. The Ricci curvature of Ollivier, studied in Chap. 1 of this volume, is defined in
terms of optimal transport of local measures. Its relation to the clustering coefficient,
a measure of local connectedness, has been explored by Jost and Liu [19], see also
Chap. 1. Common themes occur in this chapter: on the one hand local embeddings
of a graph arise from the geometric spectrum leading to notions of curvature; on the
other hand connectedness appears to have a crucial influence on the nature of the
geometric spectrum, and so on the local geometry that arises.

Our approach is to appeal directly to the way sense data correlates with our
brains to infer 3-dimensionality, just as we visualize a 3D-cube in the planar graph
illustrated in Fig. 7.1.
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Fig. 7.1 A planar graph can
produce the mental image of
a 3D-object

Table 7.1 The geometric
spectral values associated to
the convex regular polyhedra

Polyhedron �

Tetrahedron 3=4

Cube 0

Octahedron 1=2

Icosahedron 2�
p

5

3�
p

5
< 0

Dodecahedron 3.1�
p

5/

2.3�
p

5/
< 0

More specifically, we would like metric structure and curvature to emerge
from combinatorial structure, but in a way that derives from potential geometric
realizations. In order to achieve this end, we introduce what we refer to as the
geometric spectrum of a graph. An element of this spectrum is a real-valued function
defined on the vertices which need not be constant, and occurs as the parameter �
in the quadratic difference equation:

�.�
/2 D .r
/2; (7.1)

where 
 is a complex-valued function on the vertices (for definitions, see below),
thought of as an orthogonal projection to the complex plane of a (local) realization
of the graph in a Euclidean space. A requirement is that � should remain invariant
under any similarity transformation of this realization. In this way, the geometry that
arises is implicit in the graph, rather than being imposed by the way it is embedded
into Euclidean space. As an example, the convex regular polytopes in Euclidean
3-space satisfy (7.1) with � constant as given in Table 7.1.

To a solution 
, we cannot in general hope for a global realization of the
graph, just a local one of each vertex and its neighbors. However, this is sufficient
to enable one to develop notions of (relative) edge length and curvature. More
precisely, a non-trivial solution allows one to fit a configured star to each vertex
and its neighbors, giving an invariant lifting into Euclidean space. A configured
star generalizes the vertex figure of a regular polytope, so an intuitive picture to
have in mind, is that of attempting to attach a ‘best-fit’ regular polytope to each
vertex, just as in smooth geometry we can approach curvature via ‘best-fit’ circles,
or spheres. How we do this depends on the global structure of the graph as reflected



7 The Geometric Spectrum of a Graph and Associated Curvatures 213

in its geometric spectrum. Such lifts to a configured star in Euclidean 3-space are
essentially unique up to a sign ambiguity, however, if we wish to extend the lifting
beyond the immediate neighbors of a vertex, then in general one needs to relax this
condition and allow more general invariant stars.

An embedded graph is one that can be embedded in a surface. This allows one
to associate faces to the graph, which in turn determines a combinatorial quantity
called face degree, defined to be the number of boundary edges (or vertices) of
each face. In this volume, Chap. 6, M. Keller discusses a natural combinatorial
curvature associated to an embedded graph, and in particular, its relation to the so-
called physical Laplacian (rather than the harmonic, or Tutte Laplacian that appears
in (7.1) above). In view of Theorem 7.1 below, which relates our combinatorial
construction to smooth submanifolds, there should be strong connections between
these two approaches.

We begin in Sect. 7.2 by defining the geometric spectrum and in Sect. 7.3 we
derive the lifting properties discussed above. For an arbitrary graph, the geometric
spectrum may be quite complicated and difficult to compute. We indicate how this
may be done using Gröbner bases in Appendix 1 and give some examples. Also, in
this appendix we introduce a polynomial graph invariant, the � -polynomial, whose
roots determine the constant elements of the spectrum. At present we know of no
two non-isomorphic graphs with the same � -polynomial. Connections with vertex
colorings of a graph are discussed in respect of a particular example.

The most immediate consequence of the lift to a configured star, explored in
Sect. 7.4, is the designation of a Gauss map at each vertex given by the axis of the
star. If the lift is into R

3, then this defines a point on the 2-sphere, which we can
connect to other points according to whether or not they are connected by an edge
in the original graph. The geodesic distance between two such points now gives an
edge curvature on the graph. Another consequence of the lift is to endow each edge
with a length, which in turn allows us to define the distance between two points, for
which we establish a triangle inequality. The graph now has the structure of a path
metric space and we can explore notions of curvature in the sense of Alexandrov,
by comparing triangles with those in a 2-dimensional space form (see also Chap. 2
in this book). To establish curvature bounds in the general case requires further
investigation, but we indicate how this may be done with an example.

Our main goal is to define curvature in a way that depends only on the element �
of the geometric spectrum and not on the solution 
 to (7.1). For Gaussian curvature,
defined in terms of angular deficit at a vertex, this is possible provided we accept
an approximation to well-known classical theorems for polytopes (Sect. 7.5). In
Sect. 7.6, we show how to define sectional curvature and Ricci curvature in terms
of the edge curvature. Finally, in Appendix 2, we explore methods to construct
solutions on new graphs from given solutions. An interesting model occurs in the
theory of random graphs which suggests how geometry could naturally emerge in
scale-free networks, so prevalent in biology and social networks.
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7.2 The Geometric Spectrum

We use the notation G D .V;E/ to denote a graph with vertex set V and edge set E.
Graphs will be assumed simple (no multiple edges or loops) and undirected. We will
suppose also that G is locally finite, that is the degree of each vertex is finite. For
x 2 V define the tangent space to G at x to be the set of oriented edges with base
point x together with the zero vector: TxG D fxy W y 
 xg [ f0g. Define the tangent
bundle to G to be the union: TG D [x2VTxG. Inclusion of the zero vector is useful
when we come to discuss holomorphic mappings between graphs in Appendix 2.

A 1-form on G is a map ! W TG ! C such that !.xy/ D �!.yx/ and !.0/ D 0.
To a function 
 W V ! C, we can naturally associate a 1-form, the derivate r
,
by setting r
.xy/ D 
. y/ � 
.x/ and r
.0/ D 0. For differential calculus on a
simplex, see the book by Romon [24], where the notion of 1-form coincides with
that given above (Sect. IV, Section 1.1 of [24]).

For two 1-forms !; �, define their pointwise symmetric product at x 2 V by

h!; �ix D 1

dx

X

y�x

!.xy/�.xy/ ;

where dx is the degree of vertex x. The above definition is the complex symmetric
analogue of standard L2 products that arises in functional analytic theory on a graph;
in the latter situation it is replaced by a Hermitian product rather than a symmetric
product, see Chap. 1 in this volume. Write .r
/2.x/ for the symmetric square of the
derivative of the function 
 W V ! C:

.r
/2.x/ WD 1

dx

X

y�x

�

. y/� 
.x/�2 :

The Tutte Laplacian (or harmonic Laplacian) on G is defined by

�
.x/ D 1

dx

X

y�x

�

. y/� 
.x/

�
:

The choice of conventions means that the spectrum is negative and lies in the interval
Œ�2; 0�.

Given a graph G D .V;E/ together with a real-valued function � W V ! R, we
are interested in the equation:

�.x/

dx

�X

y�x

�

. y/� 
.x/

��2 D
X

y�x

�

. y/� 
.x/

�2
; (7.2)

at each vertex x, where 
 W V ! C is a complex-valued function. In the notation
above, this has the convenient form of (7.1) of the Introduction. Solutions with
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� � 0 have been called holomorphic functions1 and have been used to give a
description of massless fields in a combinatorial setting [4], see also Appendix 2.
Note that the equations are invariant under the transformations


 7! 
 C � . 2 C n f0g; � 2 C/; and 
 7! 
: (7.3)

We shall consider two solutions related in this way as equivalent. Equation (7.2)
only depends on the derivative r
 and more generally can be defined for an
arbitrary 1-form ! on replacing 
. y/� 
.x/ with !.xy/.

If in (7.2) we label the neighbors of x by y1; : : : ; yd and write z` D 
. y`/�
.x/,
then if the z` are all real, an application of the Cauchy-Schwarz inequality gives

dX

`D1
z`
2 D �

d

 
dX

`D1
z`

!2

� �

dX

`D1
z`
2 ; (7.4)

so that if the z` are not all zero, necessarily 1 � � . Otherwise said, if � < 1 at least
one of the z` must be complex. When defining the geometric spectrum below, we
impose the condition �.x/ � 1 for all x 2 V with the inequality strict if dx 	 3. This
is necessary for our invariance requirement that we discuss later.

For a given graph, we would like to know what are the admissible functions
� W V ! R for which (7.2) has a solution. Define the geometric spectrum of G to
be the collection of equivalence classes of such functions:

˙ D f� W V ! Œ�1; 1� � R W 9 non � const 
 W V ! C satisfying (7.2)
with �.x/ < 1 if dx 	 3g ;

where two functions are identified when they determine a common solution 
 and
agree on the compliment of the set fx 2 V W �
.x/ D .r
/2.x/ D 0g. The function
� may take on the value �1 at points where the Laplacian vanishes.

By a framework in Euclidean space, we mean a graph that is realized as a
subset of Euclidean space with edges straight line segments joining the vertices.
We say that it is immersed if all vertices are distinct and embedded if it is immersed
and edges only intersect at end points. The framework is called invariant if for a
particular � , it satisfies (7.2) with 
 the restriction to the vertices of some orthogonal
projection to the complex plane independently of any similarity transformation of
the framework.

1A notion of holomorphic function somewhat similar to this has been introduced by S. Barré and A.
Zeghib [7]; however, in addition to (7.2) with � � 0, Barré and Zeghib require that 
 be harmonic.
An alternative notion of discrete holomorphic function in the special case of quad-graphs is given
by Bobenko et al. [8].
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Questions that arise are:

• For a given graph G, what is its geometric spectrum?
• Does a solution to (7.2) arise from an embedding of the graph as an invariant

framework in Euclidean space?
• Even if the answer to the last question is no, can we still derive geometric

quantities such as edge length and curvature from a solution?
• To what extent do such quantities depend only on � rather than on the choice of

solution 
?

For an arbitrary graph, the geometric spectrum is determined by a fairly
complicated set of algebraic equations. For graphs of sufficiently small order, these
can be solved with computer software, for example MAPLE; see Appendix 1. One
can check that for the complete graph on N C 1 vertices, with 2 � N � 5, the
geometric spectrum consists of the single value N=.N C 1/, with corresponding
invariant realization as the 1-skeleton of a regular simplex in R

N . It is not known
if this remains so for N > 5. At the other extreme, for a cyclic or linear graph
(connected graphs with the least internal connections), the geometric spectrum
arises from realizations in the plane of corresponding frameworks with all edges
of equal length. Now, the geometric spectrum has continuous components with
complicated branching behavior. These properties are discussed in Appendix 1.

In general, after taking into account the freedom (7.3), an equation count shows
that for a graph on N vertices, (7.2) is equivalent to 2N real equations in 3N � 4

real parameters, together with the N inequalities: � < 1 at each vertex. Empirical
evidence indicates that the more connected the graph, the more restricted its
geometric spectrum. Another question that now arises is:

• Does the geometric spectrum have any relation to the Laplace spectrum?

The spectrum of the Tutte Laplacian is reviewed in Sect. 1.6.1 of Chap. 1 of
this volume, and for the physical Laplacian, see Chap. 6. Any connection is not
immediately obvious, since both have different structures: for a graph on N vertices,
its (Tutte) Laplacian has precisely N eigenvalues, whereas, as noted above, the
geometric spectrum can range from a single element to continuous components.
The structure of the geometric spectrum seems to be related to rigidity in the
context of bar-and-joint frameworks, although this connection needs to be explored
further. In recent work, Zelazo et al. introduce a rigidity matrix associated to a
framework which they show is similar (in the mathematical sense) to a weighted
graph Laplacian; the eigenvalues of the rigidity matrix are related to the rigidity of
the bar-and-joint framework [29]. However, the rigidity that occurs in our situation
is not quite the same. Although arising from embeddings in Euclidean space (see
Sect. 7.3 below), edge length can change through different realizations. Examples
occur with both the dodecahedron and icosahedron, which are one of a family of
realizations of graphs consisting of their respective 1-skeletons with vertices given
by the columns of the matrices (7.25) and (7.26) below.
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In order to interpret � , it is instructive to consider Eq. (7.1) for the case of a
smooth hypersurface in Euclidean space, where we find an interesting connection
with mean-curvature.

Theorem 7.1 ([2]) Let Mn be a smooth hypersurface in R
nC1 .n 	 1/ and let g

denote the metric on Mn induced from the standard metric on Rn. Let 
 W .Mn; g/ !
C be any orthogonal projection; then

.�
/2 D �H2.r
/2 ; (7.5)

where H is the mean curvature of Mn, and where in local coordinates, �
 D
gij.
ij � � k

ij 
k/ and .r
/2 D gij
i
j (summing over repeated indices).
In the case when n D 1, the theorem confirms the identity

c00.s/ D �.s/ic0.s/ ;

for a regular curve c W I � R ! C parametrized with respect to arc length. It is
necessary that Mn be a hypersurface in order to satisfy the smooth version of (7.1).
For example, consider the surface in R

4 parametrized in the form:

.x1; x2/ 7! .x1; x2; x1x2; x1 C x2/ :

Let 
 W R4 ! C be the projection 
.x1; x2; x3; x4/ D x1 C x2i. Then it is readily
checked that the function � defined by (7.1) is not even real.

Given the above theorem, we expect an invariant framework that closely
coincides with a smooth hypersurface to have � approximately equal to �1=H2

modulo a scaling factor (Eq. (7.5) is not scale invariant; in order to make it so, a
volume term should be added).

The study of constant elements of the geometric spectrum is particularly
interesting and leads to the association of a polynomial invariant to a finite graph,
which we refer to as the � -polynomial. Its definition is given in Appendix 1, where
examples are given of its construction. Further work needs to be done to understand
if this invariant is related to other polynomial invariants and to what extent it
distinguishes isomorphism classes of graphs.

7.3 Invariant Stars and the Lifting Problem

A star graph, or bipartite graph K1;d , has one internal vertex connected to d external
vertices; there are no other connections. A star framework in R

N with internal vertex
located at the origin can be specified by a .N � d/-matrix W whose columns are the
components of the external vertices. We will refer to W as the star matrix. Provided
the center of mass of the external vertices does not coincide with the origin, then it
defines a line through the origin which we refer to as the axis of the star. We are
interested in a particular class of star frameworks whose external vertices form what
we call a configuration in a plane orthogonal to the axis of the star.
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7.3.1 Configured Stars

For N 	 2, a collection of points fv1; : : : ; vdg in R
N�1 forms a configuration if the

..N � 1/ � d/-matrix U D .v1jv2j � � � jvd/ whose columns have as components the
coordinates v`j of v` . j D 1; : : : ;N � 1I ` D 1; : : : ; d/, satisfies:

UUt D 	IN�1 ;
dX

`D1
v` D 0 ; (7.6)

for some non-zero constant 	 (necessarily positive), where 0 denotes the zero vector
in R

N�1 and Ut denotes the transpose of U. Necessarily rank.U/ D N � 1 so
that d 	 N. A star in R

N whose external vertices form a configuration in a plane
not passing through the origin, is referred to as a configured star. If all edges are
of identical length, we call the star regular. An invariant of a configured star is
a quantity that is invariant by orthogonal transformation. The following lemma
characterizes configured stars [3].

Lemma 7.1 Consider a configured star in R
N (N 	 2) with internal vertex

the origin connected to d external vertices fx1; : : : ; xdg .d 	 N/. Let W D
.x1jx2j � � � jxd/ be the .N � d/-matrix whose columns are the components x`j of x`
( j D 1; : : : ;NI ` D 1; : : : ; d). Then

WWt D 	IN C �uut;

dX

`D1
x` D

p
d.� C 	/ u ; (7.7)

where the unit vector u 2 R
N is the axis of the star, 	 > 0 and 	 C � > 0. The

quantities d; 	; � are all invariants of the star; the vector u is normal to the affine
plane containing x1; : : : ; xd.

Conversely, any matrix W D .x1jx2j � � � jxd/ satisfying (7.7) determines a
configured star with internal vertex the origin and external vertices x1; : : : ; xd.

Proof Consider a configured star in standard position given by (7.6). Set

V D
�

v1 v2 � � � vd

c c � � � c

�

and let A W R
N ! R

N be an orthogonal transformation; set xd D A

�
vd

c

�

. Then

W D .x1jx2j � � � jxd/ D AV and

WWt D AVVtAt D 	IN C �.AeN/.AeN/t ;

where

� D dc2 � 	 : (7.8)
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Furthermore
Pd

`D1 x` D dcAeN , which gives the form (7.7) with u D AeN . The
independence of the quantities d; 	; � under the orthogonal transformationA is clear.

Conversely, suppose we are given an .N � d/-matrix W D .x1jx2j � � � jxd/
satisfying (7.7). Let A be an orthogonal transformation such that Au D eN and
let V D AW. Write

V D
�

v1 v2 � � � vd
y1N y2N � � � ydN

�

:

Then

VVt D 	IN C �eNeNt and
X

`

�
v`
y`N

�

D p
d.� C 	/ eN ; (7.9)

so that
P

` v` D 0 and
P

` y`N D p
d.� C 	/. Furthermore, (7.9) implies thatP

` y`N
2 D 	C � . In particular

d
dX

`

y`N
2 D

 
dX

`

y`N

!2

:

But then equality in the inequality (7.4) implies that y1N D y2N D � � � D ydN Dp
.� C 	/=d. ut

Corollary 7.1 LetW D .x1jx2j � � � jxd/ define a configured star and let 
 W RN ! C

be the orthogonal projection 
. y1; y2; : : : ; yN/ D y1 C iy2. Then if z` D 
.x`/ D
x`1 C ix`2, we have

�

d.� C 	/

 
dX

`D1
z`

!2

D
dX

`D1
z`
2 ;

where 	 and � are given by (7.7). In particular, with reference to Eq. (7.2), � D
�=.� C 	/ is real and depends only on the star invariants.

Proof Let u D .u1; : : : ; uN/ be the unit normal to the plane of the star. Then for
each j D 1; : : : ;N, we have

dX

`D1
x`j D p

d.� C 	/ uj :

Thus

 
dX

`D1
z`

!2

D
dX

k;`D1
.xk1x`1 � xk2x`2 C 2ixk1x`2/

D d.� C 	/.u1
2 � u2

2 C 2iu1u2/ D d.� C 	/.u1 C iu2/
2 ;



220 P. Baird

whereas

dX

`D1

z`
2 D

dX

`D1

.x`1
2�x`2

2C2ix`1x`2/ D .WWt/11�.WWt/22C2i.WWt/12 D �.u1Ciu2/2 :

The formula now follows. ut

7.3.2 Invariant Stars

To test whether a framework in Euclidean space is invariant, it suffices to see
whether the star about each of its vertices is invariant at the internal vertex. A
consequence of Corollary 7.1 is that any configured star is invariant at its internal
vertex. The star framework about the vertex of any regular polytope is configured,
so that the underlying framework of a regular polytope is invariant [3]. On the other
hand, not all invariant stars are configured. For example, the star in R

3 with 2r
external vertices represented by the columns of the .3 � .2r//-matrix

W D
0

@
x1 x2 � � � xr x1 x2 � � � xr
s1 s2 � � � sr �s1 �s2 � � � �sr
t1 t2 � � � tr �t1 �t2 � � � �tr

1

A ;

where the vectors s D .s1; : : : ; sr/ and t D .t1; : : : ; tr/ are orthogonal and of the
same length, is invariant, but it is only configured when x1 D x2 D � � � D xr. As
a specific case, take W to be the star on four vertices represented by the following
matrix.

W D
0

@
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1

A (7.10)

The external vertices lie on the corners of a cube as indicated in Fig. 7.2.

Fig. 7.2 An invariant star
which is not configured
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Contrary to a configured star, the external vertices don’t lie in any half-space
whose boundary passes through the internal vertex. When we come to discuss
Gaussian curvature in Sect. 7.5, such a star will have negative curvature associated
to the internal vertex. On the other hand, a configured star will always have positive
curvature at the internal vertex.

We can give a characterization of all invariant stars in R
3 with the following.

Proposition 7.1 Consider a general star in R3 with matrix

W D
0

@
x11 x12 � � � x1d
x21 x22 � � � x2d
x31 x32 � � � x3d

1

A ;

where we assume that d 	 2, that the columns of W are non-zero and that there is
at least one i D 1; 2; 3 such that

Pd
`D1 xi` is non-zero. Then W is invariant if and

only if there exists a real number � such that

�

d

2

4

 
dX

`D1
xi`

!2

�
 

dX

`D1
xj`

!23

5 D
dX

`D1
xi`

2 �
dX

`D1
xj`

2 (7.11)

�

d

 
dX

`D1
xi`

! 
dX

`D1
xj`

!

D
dX

`D1
xi`xj` (7.12)

for all i; j D 1; 2; 3; i ¤ j.

Proof Let A D .aij/ be an arbitrary orthogonal transformation. Then

AW D
0

@
a1jxj1 a1jxj2 � � � a1jxjd
a2jxj1 a2jxj2 � � � a2jxjd
a3jxj1 a3jxj2 � � � a3jxjd

1

A

where, in the matrix, we sum over repeated indices. Now project to the complex
plane via . y1; y2; y3/ 7! yi C iy2, so that the end points of the star are projected to
the complex numbers

z` D
3X

jD1
.a1j C ia2j/xj`; ` D 1; : : : ; d :

In order that W represents an invariant star we require that

�

d

 
dX

`D1
z`

!2

D
dX

`D1
z`
2 ; (7.13)
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for some real number � independently of A. Since A is an orthogonal matrix, we
have

3X

jD1
.a1j C ia2j/2 D 0 ) .a13 C ia23/2 D �.a11 C ia21/2 � .a12 C ia22/2 ;

and (7.13) is equivalent to

�

d

(

.a11 C ia21/2

0

@

 
dX

`D1
x1`

!2

�
 

dX

`D1
x3`

!21

A

C.a12 C ia22/2

0

@

 
dX

`D1
x2`

!2

�
 

dX

`D1
x3`

!21

A

C2
X

j<k

.a1j C ia2j/.a1k C ia2k/

 
dX

`D1
xj`

! 
dX

`D1
xk`

!)

D .a11 C ia21/2
dX

`D1
.x1`

2 � x3`
2/C .a12 C ia22/2

dX

`D1
.x2`

2 � x3`
2/

C2
X

j<k

.a1j C ia2j/.a1k C ia2k/
dX

`D1
xj`xk`

and the sufficiency of Eqs. (7.11) and (7.12) follow.
To see that the equations are necessary, it suffices to set

A D
0

@
cos � 0 sin �
0 1 0

� sin � 0 cos �

1

A

for � an arbitrary parameter and to compare coefficients of cos2 �; sin2 � and
cos � sin � . ut

If
Pd

`D1 xi` D 0 for all i D 1; 2; 3, then for � finite, whatever the projection to the
plane, the left-hand side of (7.13) vanishes. In this case, in certain circumstances, it
is desirables to allow � to take on the value �1 and to interpret (7.13) by continuity
arguments, even with a non-zero right-hand side. This can occur for example, when
the degree d D 2; see Section “First Cases” in Appendix 1 and below.

In the statement of the above proposition, we do not exclude the possibility that
some columns ofW may coincide. In this case the star will not be embedded. Indeed,
the only invariant star satisfying the hypotheses of the proposition with d D 2 must
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have identical external vertices. To see this, we perform a similarity transformation
so that the matrix W has the form

W D
0

@
1 x12
0 0

0 x32

1

A :

Then the projection of the star to the plane is real and provided x12 ¤ �1, by the
Cauchy-Schwarz inequality (7.4), we must have � D 1. The same conclusion arises
if x32 ¤ 0 and x12 D �1; to see this we permute the 1st and 3rd lines of W prior
to projection. Equations (7.11) and (7.12) now imply that necessarily x32 D 0 and
x12 D 1. This leaves the case when x12 D �1 and x32 D 0, i.e. column two is minus
column one. As discussed in the preceding paragraph, it makes sense to interpret
this as an invariant star with � D �1.

Any star with just one external vertex is automatically invariant with � D 1. On
the other hand, for d D 3 we have the following.

Corollary 7.2 Any invariant star in R3 with three distinct external vertices must be
configured.

Proof By a similarity transformation of R3, we may suppose that W has the form

W D
0

@
1 x12 x13
0 x22 x23
c c c

1

A ;

for some constant c, that is, all the external vertices lie in the plane x3 D c and
further, by a rotation about the x3 axis and a dilation, the first external vertex has the
form indicated. Write rj for the jth line of W and

P
rj for the sum of its components.

Thus (7.11) and (7.12) can be written

�

3

�
.
X

rj/2 � .
X

rk/2
�

D rj � rj � rk � rk and
�

3

�X
rj
� �X

rk
�

D rj � rk

for all j ¤ k.
If c D 0, then we deduce that �

3

�P
rj
�2 D rj � rj for j D 1; 2 and from the

Cauchy-Schwarz inequality, we must have � 	 1 which contradicts our hypothesis
that � < 1. Thus c ¤ 0 and from the second equation, noting that

P
r3 D 3c, we

deduce that

�c
X

rj D c
X

rj :

for j D 1; 2. Then if
P

rj ¤ 0 . j D 1; 2/ we would have � D 1, a contradiction,
so that

P
rj D 0 for j D 1; 2, in particular 1 C x12 C x13 D 0 and x22 C x23 D 0.
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We exclude the case x22 D x23 D 0 which again gives a contradiction. But now the
necessary conditions

1C x12
2 C x13

2 D x22
2 C x23

2 and x12x22 C x13x23 D 0 ;

have only x12 D x13 D �1=2 and x22 D �x23 D ˙p
3=2 as possible solutions.

Thus the external vertices are symmetrically placed as the third roots of unity in the
plane x3 D c and the star is configured. ut

Note that, up to dilation and rotation, the only configuration of three points in the
plane is given by the third roots of unity. In particular, any star on this configuration
is regular.

Examples of invariant frameworks in R
3 with vertices of degree three are the 1-

skeleta of the tetrahedron, the cube and the dodecahedron. However, the necessity
that invariant stars about a vertex of degree three be configured, means that the
piecing together of such stars to form an extensive invariant framework is bound to
be restrictive. On the other hand, if the degree is four, then one has more flexibility.
For example, if one fixes two of the external vertices then there is a certain freedom
in the choice of the other two. This may make it possible to construct an invariant
mesh which approximates arbitrarily closely a smooth surface. Such problems are
for future investigation.

7.3.3 The Lifting Problem

Given a solution 
 to (7.2), at each vertex x, our aim is to construct a configured
star in some Euclidean space R

N whose external vertices project to the points

. y/ � 
.x/ ( y 
 x) of the complex plane. To do this, we establish a converse
to Corollary 7.1. We shall refer to the problem of constructing such a star as the
lifting problem. At a vertex of degree three with 
 holomorphic, this is the Theorem
of Axonometry of Gauss [15].

Fix a vertex x of degree d and label its neighbors y1; : : : ; yd. Set z` D 
. y`/�
.x/
(` D 1; : : : ; d/, which we suppose not all zero. From (7.2):

�

d

 
dX

`D1
z`

!2

D
dX

`D1
z`
2 .� 2 R/ : (7.14)

For a given N with 2 � N � d, we wish to construct a configured star W D
.x1jx2j � � � jxd/ in R

N with z` the orthogonal projection of x`. For convenience, write
z` D x`1 C ix`2 D ˛` C iˇ`, so that

W D

0

B
B
B
B
B
@

˛1 ˛2 � � � ˛d
ˇ1 ˇ2 � � � ˇd
x13 x23 � � � xd3
:::

:::
:::

:::

x1N x2N � � � xdN

1

C
C
C
C
C
A
:
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For the case N D 2, see Appendix 1. For N 	 3, we are required to solve the system:

WWt D 	IN C �uut;

dX

`D1
x` D

p
d.� C 	/u ; (7.15)

for x`j .` D 1; : : : ; dI j D 3; : : : ;N/, 	 > 0, � such that 	C� > 0 and u 2 R
N unit,

with � D �=.� C 	/. This is a matter of linear algebra which we now detail for the
case N D 3. The general case is dealt with in [3].

Let fz1; : : : ; zdI �g be a non-trivial solution to (7.14) satisfying � < 1. Set

	 D 1

2

X

`

z`z` � �

2d

�X

`

z`
��X

`

z`
�
> 0 ; (7.16)

and

� D �	

1 � � .) � C 	 D 	=.1� �/ > 0/ : (7.17)

Define

u1 D 1
p
d.� C 	/

dX

`D1
˛`; u2 D 1

p
d.� C 	/

dX

`D1
ˇ` I (7.18)

and let u3 D p
1� u12 � u22. Set

A WD
0

@
˛1 ˛2 � � � ˛d
ˇ1 ˇ2 � � � ˇd
1 1 � � � 1

1

A ; X WD

0

B
B
B
@

x13
x23
:::

xd3

1

C
C
C
A
: (7.19)

Then (7.15) is equivalent to solving

AX D B WD u3

0

@
�u1
�u2p

d.� C 	/

1

A (7.20)

subject to the constraint:

XtX D 	IN�2 C �u3
2: (7.21)

It is important to note the sign ambiguity: the equations are invariant under the
simultaneous replacement of u3 by �u3 and of X by �X. This ambiguity represents
two choices for the configured star.
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When A has maximal rank 3, the system (7.20) and (7.21) has the unique solution
X D ACB, where AC D At.AAt/�1 (together with the sign ambiguity discussed
above). If the rows of A are dependent then AAt is no longer invertible and u12 C
u22 D 1 ) u3 D 0, so we are required to solve the system AX D 0 with the
constraint XtX D 	. There is now a 1-parameter family of solutions. This case
occurs if and only if the complex numbers z` in (7.14) satisfy (see [3]):

d
dX

`D1
jz`j2 C .� � 2/

ˇ
ˇ
ˇ

dX

`D1
z`
ˇ
ˇ
ˇ
2 D 0 :

Thus, apart from special cases, we have a lift about each vertex of a solution
to (7.2) into R

3 which is unique modulo translation along the axis of projection
R
3 ! R

2 and up to the twofold ambiguity corresponding to the sign of X. This
already enables certain geometric quantities to be defined in an unambiguous way,
for example edge length. Furthermore, the twofold ambiguity may sometimes be
removed by a requirement of global consistency, as is the case with the cube: a
choice at one vertex imposes a choice of lift at neighboring vertices.

The problem of when a global lifting of a given graph exists remains relatively
unexplored. An obvious geometric obstruction occurs when the lifts at neighboring
vertices defines a different length to the connecting edge. This is particularly relevant
when we try to lift into R

3 since then, in general, edge length of each lift is unique
(see, for example [3], Example 4.4). However, in general there is a smooth family
of lifts into R

N when N > 3 subject to the constraint that N � d (d D degree
of the vertex), so that it may still be possible to find a global lift into a higher
dimensional Euclidean space. A next step in order to extend the lifting beyond the
immediate neighborhood of a vertex, will be to relax the condition that a lifted star
be configured while maintaining invariance.

Examples of invariant frameworks other than the regular polytopes are given in
[2, 3]. A particularly interesting example is given by a double cone on a convex
planar regular polygon as illustrated in Fig. 7.3, sometimes referred to as an n-gonal
bipyramid. In this case, there is a unique height (distance from the plane of the
polygon to the apex) for which it becomes invariant. The invariant stars about the
lateral vertices are only configured when the polygon is a square, which corresponds
to the octahedron.

Fig. 7.3 The double cone on
a regular convex polygon has
a unique height for which it
becomes invariant
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7.4 Edge Length and the Gauss Map

Let G D .V;E/ be a graph and let � W V ! Œ�1; 1� be an element of its geometric
spectrum. We are interested in quantities related to distance and curvature, defined
in terms of a lift of a vertex and its neighbors to a configured star, that depend
only on the geometric spectrum rather than the representative solution 
 to (7.2).
Sometimes this will be possible, sometimes not. To a given solution 
, suppose that
the matrix A of (7.19) is of maximal rank 3. This property is clearly independent
of the equivalence (7.3). The most obvious object that first arises is the axis u of a
configured star, whose components are given by (7.18), with u3 D p

1 � u12 � u22.
In fact, we may write

u1 C iu2 D
s
1 � �
d	

dX

`D1
z` ;

which, from the expression (7.16) for 	, is scale invariant under z` 7! rz` (8` ; r 2
R

�), but not invariant under complex conjugation z` 7! z` (8`), which changes
the sign of u2. This ambiguity represents a global freedom in the solution of the
form 
 7! 
, which corresponds to the isometry . y1; y2; y3/ 7! . y1;�y2; y3/ in the
ambient Euclidean space, which will not affect subsequent quantities such as edge
curvature and edge length. Note also that the axis is well-defined as � ! �1.

However, there is a further sign ambiguity in the choice of u3 which we can trace
back to the two choices of lifted star. What additional information is required in
order to make a unique choice for the lifted star? One way to do this is to define
orientation on a graph.

7.4.1 Graph Orientation

In [4], a notion of orientation was considered on a regular graph of degree d, say,
whereby the graph is endowed with an edge coloring of the d colors f1; 2; : : : ; dg.
Thus each edge is colored in such a way that no two edges of the same color
are incident at a vertex. This enables one to uniquely label the edges at each
vertex to give an ordering. One could then attempt to apply a right-hand rule say,
in order to make a choice of lift. However, although this can be done with the
solution corresponding to the framework of the tetrahedron in a way consistent
with its canonical embedding, it turns out to be impossible for the cube and the
dodecahedron. In the latter examples, any edge coloring with three colors leads to
at least one of the two choices of lifted stars being directed in the opposite way
required. We therefore proceed to define an orientation in terms of an edge coloring
together with an n-form at each vertex of degree d.
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Definition 7.1 Let G D .V;E/ be a graph with largest vertex degree equal to M.
Then an edge coloring of G is an association of one of the colors f1; 2; : : : ;M;M C
1g to each edge so that no two same colors are incident at any vertex. By a theorem
of Vizing, any graph can be colored with either M or M C 1 colors (see [12]). We
make the convention to choose the minimum M colors when possible. Given an
edge coloring of G, at each vertex, a volume form is an alternating mapping � of the
edges which takes on the value C1 or �1. Thus if x is a vertex with d incident edges
e1; : : : ; ed arranged so that color(ej)< color(ek) for j < k, then �x.e1; : : : ; ed/ D ˙1
with �x.e�.1/; : : : e�.d// D sign .�/�.e1; : : : ; ed/ for any permutation � of f1; : : : ; dg.
An orientation ofG is given by an edge coloring together with a volume form at each
vertex.

Suppose that N D 3 and that the matrix A of Eq. (7.19) is of maximal rank 3.
There is now either a unique lifted configured star in the case when u3 D 0, or two
choices if u3 ¤ 0 depending on the sign chosen for u3 D ˙

p
u12 C u22. The star

matrix is now given by

W D
0

@
˛1 ˛2 � � � ˛d
ˇ1 ˇ2 � � � ˇd
x13 x23 � � � xd3

1

A ;

where the last row is only defined up to sign. Suppose that the vertex in question
has an orientation according to Definition 7.1. Without loss of generality, we can
suppose that the edges are colored with the colors f1; 2; : : : ; dg, in such a way
that the external vertex x` is joined to the internal vertex by the edge with color
`. Suppose that the volume form satisfies �.e1; : : : ; ed/ D ", where " 2 fC1;�1g.
Then provided the determinant of the 3 � 3-minor given by the first three columns
of W is non-zero, we choose the sign of the third row so that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

˛1 ˛2 ˛3
ˇ1 ˇ2 ˇ3

x13 x23 x33

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D "ı;

where ı > 0. If on the other hand this determinant vanishes, then we proceed in a
lexicographic ordering, to choose next the minor formed from columns 1, 2 and 4
and so on, until we encounter a non-zero determinant and apply the above rule.

Example 7.1 Consider the framework of a regular octahedron with vertices placed
at the points .˙1; 0; 0/, .0;˙1; 0/, .0; 0;˙1/. Then this can be edge-colored as
indicated in Fig. 7.4 and there is a volume form which gives the lifts that correspond
to the standard embedding in R

3. However, in order to do this at the lateral vertices,
we have to impose an additional condition that the star be regular. This is because at
these vertices u3 D 0 and we do not satisfy the conditions of the discussion above.
The corresponding solution to (7.2) has � D 1=2 and 	 D � D 2.

Consider the vertex x0 and define the volume form �x0 by �x0 .1234/ D �1
(for convenience, we write �.1234/ rather than �.e1; e2; e3; e4/). Then, with this
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Fig. 7.4 An edge coloring
for the octahedron

= 1

= 2

= 3

= 4

x0

x1

edge-coloring, at this vertex z1 D 1; z2 D i; z3 D �1 and z4 D �i. Thus u1 D u2 D
0 and u3 D ˙1. The solution to (7.20) is given by .x13; : : : ; x43/ D ˙.1; 1; 1; 1/. In
order to be consistent with the orientation, we must take the negative sign, to give
the lifted star:

W D
0

@
1 0 �1 0

0 1 0 �1
�1 �1 �1 �1

1

A

whose sign of the determinant of the 3� 3-minor given by the first three columns is
negative, which coincides with the sign of �x0 .1234/.

At the vertex x1, we choose �x1 .1234/ D C1. Then the edge-coloring dictates
that z1 D �1 C i; z2 D 1 C i; z3 D i; z4 D i, so that u1 D 0, u2 D 1 and u3 D 0.
The solution to (7.20) gives a 1-parameter family of lifted stars:

W D

0

B
@

1 0 �1 0

0 1 0 �1
� cos tp

2
� cos tp

2

cos tp
2

C sin t cos tp
2

� sin t

1

C
A :

If we now impose the condition that the lift must be a regular star, then there are just
two solutions given by t D �=2 or t D 3�=2. The choice t D 3�=2 is required in
order that the determinant of the 3 � 3-minor consisting of the first three columns
be positive, to coincide with the sign of �x1 .1234/. This gives the lift that coincides
with the canonical embedding of the octahedron. We proceed similarly with the
other vertices, defining the appropriate volume form, with the proviso that the stars
at the lateral vertices be regular.

7.4.2 Edge Curvature and Edge Length

For a given graph G D .V;E/ together with a solution 
 to (7.2), a unique choice of
lifted star at each vertex now determines a unit vector u which gives the associated
Gauss map u W V ! S2. If two vertices are connected by an edge, we may connect
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them by the shortest geodesic arc in S2, so realizing a copy of G in S2. For a given
edge e D xy 2 E, we can define the edge-curvature to be the length of the spherical
arc joining u.x/ to u. y/. For example, for the standard cube, the curvature of each
edge is arccos.1=3/; for the octahedron, it is �=2.

Edge-length clearly depends on the choice of representative solution 
. A
convenient way to obtain the mean length of edges incident with a particular vertex
is to reverse the order of multiplication of W D .x1jx2j � � � jxd/ and Wt:

WtW D

0

B
B
B
@

jjx1jj2 hx1; x2i � � � hx1; xdi
hx1; x2i jjx2jj2 � � � hx2; xdi
:::

:::
: : :

:::

hx1; xdi hx2; xdi � � � jjxdjj2

1

C
C
C
A
;

where hxj; xki denotes the standard Euclidean inner product of xi and xj. But then

X

`

jjx`jj2 D traceWtW D traceWWt

D N	 C � jjujj2 D N	 C � :

The latter quantity can be expressed in terms of � and z` from (7.16) and the relation
� D �=.� C 	/ to give the mean of the values jjx`jj2:

1

d

X

`

jjx`jj2 D
�
N C .1 � N/�

�

d.1� �/
	 : (7.22)

This equation expresses the mean length of the edges of a lift to a configured star
in R

N whose external vertices x` project to z`. This motivates our definition of edge
length in a graph.

Let G D .V;E/ be a graph coupled to a solution 
 W V ! C to Eq. (7.2). For
each x 2 V , following (7.16), set

	.x/ D 1

2

(
X

y�x

j
. y/� 
.x/j2 � �.x/

dx

ˇ
ˇ
ˇ
X

y�x

.
. y/� 
.x//
ˇ
ˇ
ˇ
2

)

;

where dx is the degree of G at x.

Definition 7.2 If x 2 V is a vertex of degree dx such that �.x/ < 1, then we define
the median edge length at x relative to 
 to be the quantity r.x/ 	 0 whose square
is given by

r.x/2 D
�
N C .1 � N/�.x/

�

dxŒ1 � �.x/� 	.x/ :
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If xy 2 E is an edge which joins x to y such that both �.x/ < 1 and �. y/ < 1, then
we define the length of xy relative to 
 to be the mean `.xy/ of the median edge
lengths at x and y:

`.xy/ D r.x/C r. y/

2
:

As emphasized in the above definition, the lengths so defined are relative to the
solution 
 of (7.2), which is only defined up to 
 7! 
 C � for ;� 2 C. This
means that the only meaningful quantities are relative lengths, say `.e/=`. f /, for
two edges e; f 2 E. In particular, if both d and � are constant on the graph, we may
take the quantity 2	 defined by (7.16) as a measure of median edge length at each
vertex:

r.x/2 D 2	 D
X

y�x

j
. y/ � 
.x/j2 � �

d

ˇ
ˇ
ˇ
X

y�x

.
. y/� 
.x//
ˇ
ˇ
ˇ
2

:

If desired, we can define an absolute length by normalizing with respect to the
square L2-norm of the derivative of 
:

jjd
jj2 D
X

xy2E
jd
.xy/j2 D 1

2

X

x;y2V;x�y

j
. y/� 
.x/j2 ;

and setting

rabs.x/
2 D r.x/2

jjd
jj2 ;

where r.x/ is the median edge length at x relative to 
. If e 2 E is an edge joining x
to y such that both �.x/ < 1 and �. y/ < 1, then we define the absolute length of e
relative to 
 to be the mean `abs.e/ of the absolute median edge lengths at x and y:

`abs.e/ D rabs.x/C rabs. y/

2
:

Then both the quantities rabs.x/ and `abs.e/ are independent of the freedom (7.3).
The median edge length of Definition 7.2 is defined so as to give the length of

the edges of a corresponding regular star in R
N , when such exists. In particular, if

G D .V;E/ is the 1-skeleton of a regular polytope and 
 W V ! C associates to each
vertex its value after an orthogonal projection, then the edge-length at each vertex
coincides with the lengths of the edges of the regular polytope. More generally, we
can interpret edge length at each vertex as the length of the edges of the “best fit”
configured star at that vertex. The median edge length then gives the average length
at two adjacent vertices.

Example 7.2 Consider the graph on five vertices sketched in Fig. 7.5, with solutions

 to (7.2) normalized so as to take the value 0 at the central vertex and 1 on one of
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0

1 x

yz

Fig. 7.5 The most general non-constant solution can be normalized to take on the value 0 at the
central vertex and 1 at any one of the other vertices

0

1 i

−i

−1

0 −1+ i

−1− i

Fig. 7.6 The solution is now normalized to take on the value 0 at the internal vertex of the star

the other vertices. The symmetry of the figure means that this determines the most
general non-constant solution.

There are two solutions to (7.2) with � constant, namely:

� D 1=3 I x D ˙ i ; y D �1 ; z D � i I
� D 1 I x D yz ; y D 1

2
˙

p
3
2

i ; z D 3˙ 2
p
2 :

We reject the latter solution, since the inequality � < 1 is violated. Consider the
solution with � D 1=3. Let us construct the lift at the bottom left-hand vertex. First,
we normalize so that the solution takes on the value 0 at this vertex as indicated in
Fig. 7.6.

The choice n D N D 3 is determined and from (7.16) and (7.17); we obtain
	 D 2 and � D 1. From (7.18) we find that u12 C u22 D 1 so that u3 D 0.
Then the 3 � 1-matrix B vanishes and system (7.20) has general solution x3 WD
.x13; x23; x33/ D .2;�;�/. The constraint (7.21) requires that hx3; x3i D 	 D 2,
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so that  D ˙1=p3. The star matrix W (whose columns give the positions of the
external star vertices) is given by:

W D

0

B
@

�1 �1 �1
0 1 �1

˙ 2p
3

� 1p
3

� 1p
3

1

C
A :

We can proceed similarly with the central vertex of degree 4. Now we can choose
N D 3 or N D 4. In either case, u1 D u2 D 0, 	 D 2 and � D 1, so that, for N D 3

we must have u3 D ˙1. Then

A D
0

@
1 0 �1 0

0 1 0 �1
1 1 1 1

1

A ; B D
0

@
0

0

2
p
3

1

A

and the unique (minimizing) solution is given by

Z D ACB D

0

B
B
B
@

p
3
2p
3
2p
3
2p
3
2

1

C
C
C
A
:

The star matrix W is given by

W D

0

B
@

1 0 �1 0

0 1 0 �1p
3
2

p
3
2

p
3
2

p
3
2

1

C
A ;

where the last line is only defined up to sign.
The (unique) common dimension to define edge length is N D 3. At the central

vertex the edge length is
p
7=2 and at any of the other vertices, it is

p
7=3. Thus

the median edge length of the edge joining the central vertex to one of the other

vertices is .
p
7=2/Cp

7=3

2

 1:4252, whereas the median edge length of one of the

outside edges is
p
7=3 
 1:5275. So, for example, the shortest path joining x to z

is given by passing through the central vertex. Note that, as already remarked, the
edge lengths are only defined up to a multiple and so only relative edge lengths have
meaning.
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7.4.3 Path Metric Space Structure and Curvature in the Sense
of Alexandrov

Does the notion of edge length, either relative or absolute, that we have defined
above, endow a graph with the structure of a path metric space (see [16])? We first
of all note a triangle inequality around complete subgraphs on three vertices.

Given a function 
 W V ! C and a vertex x 2 V , we say that 
 is constant on the
star centered on x if the restriction of 
 to x and its neighbors y 
 x, is constant.

Proposition 7.2 (Local Triangle Inequality) Let G D .V;E/ be a graph coupled
to a solution 
 W V ! C to Eq. (7.2). Suppose x; y; z 2 V are three vertices of a
complete subgraph: x 
 y; y 
 z; z 
 x, such that the inequality � < 1 is satisfied
at each vertex. Then the triangle inequality is satisfied:

`.xy/C `.xz/ 	 `.yz/ :

If further 
 is non-constant on the star centered on x, then the inequality is strict.

Proof This is an immediate consequence of the definition. Specifically,

`.xy/C `.xz/ D 1

2
.r.x/C r. y//C 1

2
.r.x/C r.z// D `.yz/C r.x/ 	 `.yz/ ;

since because of the inequality �.x/ < 1, we have r.x/ 	 0. If further, 
 is non-
constant on the star centered on x, then r.x/ > 0 and the inequality is strict. ut

In spite of this local triangle inequality, we may encounter a difficulty in trying
to endow a graph coupled to a solution 
 to (7.2) with a metric space structure. This
may arise when, for a given vertex x, the function 
 is constant on the star centered
on x, as well as on the star centered on one of its neighbors y. Then `.xy/ D 0. We
can either agree to allow distinct points to have zero distance between them, and so
consider rather a pseudo-metric space structure, or we can avoid this situation by
introducing a notion of collapsing.

Definition 7.3 Let .G; 
/ be a graph coupled to a solution to Eq. (7.2). Then we
collapse G to a new grapheG by removing all edges that connect vertices at which 

takes on identical values; then remove all isolated vertices.

It is clear that after collapse, if we let e
 denote the restriction of 
 to eG, then e

also satisfies (7.2) withe� D �ed=d whereed is the new degree at each vertex. Indeed,
if we check at a vertex x, then if y is a neighbor at which 
. y/ D 
.x/, then since
only the difference 
. y/ � 
.x/ occurs in (7.2), removing the edge xy only affects
the degree. However, it is to be noted that collapsing may disconnect a graph.

Let .G; 
/ be a connected graph coupled to a solution of Eq. (7.2). Suppose that
for each edge xy, its length `.xy/ > 0. Given a path c WD x0x1x2 � � � xn joining x to y
(so we have x D x0, y D xn and xj 
 xjC1 for all j D 0; : : : ; n � 1), we define the
length `.c/ to be the sum:

n�1X

jD0
`.xjxjC1/ :
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Let X be the underlying topological space formed from the union of the vertices
and the edges (where edges only intersect at a common end point). We can extend
path length to include points belonging to edges in the obvious way, by identifying
the segment Œ0; `.xy/� � R with xy and attributing length linearly along the interval
Œ0; `.xy/�. Now any two points �; � 2 X have a well-defined distance d.�; �/ between
them given as the length of the shortest path joining them. A geodesic segment
Œ�; �� is a path of length d.�; �/ joining � and �. Since any pair of points �; � 2
X can be joined by a continuous path of length d.�; �/, X has the structure of a
geodesic space. In this setting, curvature bounds in the sense of Alexandrov arise
by comparing triangles in the path metric space X with those in a 2-dimensional
space form M.K/ of constant Gaussian curvature K; see Chap. 2 by E. Saucan in
this volume. In Example 7.2, due to the simple nature of the graph, we can find an
exact comparison.

If we let a D .
p
7=2Cp7=3/=2 and b D p

7=3, then there exists a unique radius
r of the 2-sphere for which the graph can be placed as indicated sketched in Fig. 7.7,
where we require two neighboring exterior vertices to be subtended by a right-angle
at the central vertex and the two geodesic segments to have respective lengths a and
b. A numerical calculation shows that the required radius r is approximately given
by 0:9811, which yields Gauss curvature K D 1=r2 
 1:0389, very close to 1.

For a general graph coupled to a solution 
 of (7.2), we can only expect to obtain
bounds on the curvature in the sense of Alexandrov, rather than an exact figure as in
the above example. If we first normalize 
 so as to use absolute edge length, then
an interesting problem would be to express such bounds in terms of the geometric
spectrum � .

Note that the positive curvature of the above example can also be deduced by
drawing a Euclidean triangle with side-lengths as indicated in Fig. 7.8.

Fig. 7.7 There is a unique
2-sphere into which the graph
can be embedded to realize
the correct edge lengths

a
b

Fig. 7.8 Angle deficit at the
internal vertex also implies
positive curvature aa

b

θ
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The angle � subtended by the two external vertices is calculated to be about 1:13
radians, yielding an angular deficit for the sum of the interior angles at the central
vertex to be approximately 2��4�1:13 
 2:04 radians. Gaussian curvature in this
sense, defined in terms of angular deficit is the subject of the next section.

7.5 Gaussian Curvature

We first review some classical notions of curvature associated to polytopes defined
in terms of angular deficiency at a vertex, see also Sect. 6.2.1 of Chap. 6 in this
volume. Even though we are mainly interested in liftings into dimension N D 3, we
shall in the first instance consider general N, since, as we shall see, this provides a
practical way to calculate � for any regular polytope. Our approach is pragmatic in
that our expression for curvature is approximate, exact formulae being difficult in
general to write down.

7.5.1 The Theorem of Descartes

A convex polytope is by definition, the closed intersection of a finite number of
half-spaces (whether this be in Euclidean space, or in spherical space). In the case
when a polytope is regular (convex or not), its vertices all lie on a sphere called
the circumsphere [11]. It is useful to use absolute angle measure when measuring
solid angles (see [17, 26]). We will write HM.�/ for the M-dimensional Hausdorff
measure of a set � in these units. Then, in any dimension, the angle is measured as
a fraction of the total angle subtended by a sphere centered at the point in question.
Thus in two dimensions, a right-angle has value 1=4, whereas in three dimensions,
the angle subtended by the vertex figure of a cube has value 1=8. Equivalently,
H2.�/ D 1=8, where � � S2 represents one eighth portion: x; y; z > 0 of the
sphere x2 C y2 C z2 D 1.

A family fF1; : : : ;Frg of .N � 1/-dimensional convex polytopes in R
N form an

elementary polytope P of dimension N if: (i) for all j; k, Fj \ Fk is either empty or a
face of each of Fj and Fk; (ii) [jFj is an .N � 1/-dimensional manifold.

Given an elementary polytope P � R
N , denote by P the face decomposition of

P; thus P is the collection of all (open) faces of all dimension, consisting of the
vertices, edges, . . . , .N � 1/-faces. For x 2 R

N ; w 2 SN�1, following Ehrenborg
[14], we define the quantity R.x;w/ WD lims!0C 1P.x C s � w/, where 1P is the
characteristic function of P. Note that this takes on the value 0 or 1. Then given a
face F 2 P , we have R.x;w/ D R.y;w/ for all x; y 2 F; write this as R.F;w/ and
define�F D fw 2 SN�1 W R.F;w/ D 1g.
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Let S.�F/ D HN�2.@�F/ and let �N D HN .SN/, so that in absolute angle
measure, �N D 1. Let F be a face of P of dimension � N � 3. We define the
deficiency at F to be the quantity:

ı.F/ WD �N�2 � S.�F/ :

Note that if Q � SN�1 is spherically convex (that is, it is the intersection of
hemispheres), then S.Q/ D HN�2.@Q/ is proportional to the Haar measure of all
the great circles which intersect Q. The following theorem generalizes a classical
result of Descartes.

Theorem 7.2 ([14, 17, 26]) Let P be an elementary polytope with face decompo-
sitionP . Then

X

F2P; dimF�N�3
".F/ı.F/ D �N�2 ".P/ ;

where ".F/ denotes the Euler characteristic of F given by .�1/k when F is of
dimension k and ".P/ is the Euler characteristic of P.

In the case when N D 3 and P is a convex polyhedron (now using radians for our
measure), we obtain the classical theorem of Descartes:

X

`

ı.v`/ D 4� ;

where the sum is taken over the vertices of P. Here, the deficiency ı.v`/ is 2�� (the
sum of the internal angles at v` of the faces which contain v`) (see also Theorem 2.1
of Chap. 6).

7.5.2 Vertex Curvature

The definition of curvature that we give below coincides with the angular deficiency
discussed in the above paragraph when the solution to (7.2) arises from the
underlying framework of a regular convex polyhedron. The term vertex-curvature is
used to distinguish it from the previously defined edge-curvature. In the case when
N D 3, the vertex curvature coincides with the same notion considered by M. Keller,
Chap. 6, Sect. 6.1.3 in this volume for graphs embedded in a surface, provided the
embedding permits a configuration about the vertex in question.

Definition 7.4 (N-dimensional Vertex-Curvature) Let .G; 
/ be a pair consist-
ing of a graph G coupled to a solution 
 to (7.2) with � < 1. Let y be a vertex of
G and let d be the degree of G at y. Let fv1; : : : ; vdg be the configuration in R

N�1
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(centered on 0 2 R
N�1) of an associated lifted configured star in R

N with invariant
	 given by (7.6). Let

x` D 1
p
	 C dr2.1 � �/

�p
d.1 � �/ v`p

	

�

2 SN�1 .` D 1; : : : ; d/ ;

be the corresponding normalized vertices of a configured star in R
N centered on 0.

Let � be the convex hull in SN�1 of the set fx1; : : : ; xdg � SN�1. We define the
N-dimensional vertex-curvature of .G; 
/ at y to be the deficit:

ı� . y/ D 1 � HN�2.@�/ ;

in absolute angle measure.
Note that in the above definition, if we rescale the vertices v` by v` 7! v �

` D v`,
say, then r 7!er D r, 	 7!e	 D 2	 and both xj and the curvature ı� . y/ are well-
defined and independent of this scaling.

Let us now consider the different dimensional curvatures that arise from Def-
inition 7.4. In general, we would like this curvature to depend only on � and
not on the solution 
 to (7.2). For this reason, we will consider only cases when
the configuration given by fv1; : : : ; vdg in the above definition, coincides with the
vertices of a regular polytope in R

N�1. Note that the vertices of a regular polytope
always form a configuration [3].

By convention, at a vertex of degree 1, we assign the curvature ı D 1. At a
vertex of degree 2, the 2-curvature just measures the exterior angle in absolute angle
measure. Note that in this dimension, a configured star with two external vertices
corresponds to two line segments in the plane of equal length meeting at the internal
vertex (see Appendix 1). If � is the exterior angle, then from Section “First Cases”
in Appendix 1,

� D 2 cos �

cos � � 1
;

from which one deduces the following expression for the vertex curvature.

Proposition 7.3 Let .G; 
/ be a pair consisting of a graph G coupled to a solution

 to (7.2). Let y be a vertex of degree 2 where � � 1. Then the 2-dimensional
vertex-curvature of .G; 
/ at y is given by the quantity:

ı� . y/ D 1

2�
arccos

�
�

� � 2

�

:

Note that lim�!1� ı� . y/ is well-defined and equals 1=2. For example, if G is
a cyclic graph of even order 2n and 
 is a function taking on alternate values at
neighboring vertices, then 
 satisfies (7.2) with � D 1. The total curvature is then
given by n. If G is a convex polygon in the plane and 
 the corresponding position
function, then the total 2-curvature is equal to 1, or in radians, to 2� , as required.
We now proceed to higher dimensional curvature.
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Proposition 7.4 (3-dimensional Vertex-Curvature) Let .G; 
/ be a pair consist-
ing of a graph G coupled to a solution 
 to (7.2). Let y be a vertex of G and let d
be the degree of G at y. Suppose that the vertices of a lifted configured star coincide
with those of a regular planar polygon. Then the 3-dimensional vertex-curvature of
.G; 
/ at y is given by the quantity:

ı� . y/ D 1 � d

2�
arccos

(
1C 2.1� �/ cos 2�d

3 � 2�

)

: (7.23)

Proof The configuration of vertices is given by v` D e2� i`=d (` D 1; : : : ; d). The
boundary of the convex hull � of the set fx1; : : : ; xdg in S2 is made up of arcs of
great circles of length ˛ D arccos.x1 � x2/. In absolute angle measure, the deficit,
or 3-curvature, is given by 1 � d

2�
˛. Substitution of the expressions for x` given by

Definition 7.4 gives the required formula. ut
Although the above proposition only applies to configured stars whose vertices

coincide with a regular planar polygon, since the expression for the curvature
depends only on � , we can apply the formula to more general situations. However,
we can only expect this to give an approximation of the true angular deficit. Note
that lim�!1� ı�. y/ is well-defined and equals 1 and that lim�!�1 ı� . y/ D 0. As
a further remark, an invariant framework may contain an invariant star which is not
configured, for which one would desire a negative curvature, as illustrated:

An example of an invariant star with negative curvature at the internal vertex

The challenge in future investigations will be to characterize conditions that
allow for a global lifting to an invariant framework, but without the constraint that
each star be configured. Thus we allow stars such as that given by (7.10) with
negative curvature at the internal vertex given as 2� � P

�j where the �j are the
angles between the incident edges. This requires an ordering of the edges in order to
decide how to calculate the angles. However, since in this example, all the angles are
equal, simple trigonometry gives 2� � 8 arcsin.

p
2=3/ 
 �1:36 for the curvature

in radian measure.
For the convex polyhedra, Proposition 7.4 gives the required result. For example,

the 1-skeleton of a tetrahedron in R
3 has d D 3 and � D 3=4. The 3-curvature at

each vertex is given by ı D 1=2, giving a total curvature of 2. To obtain the total
curvature in radian measure, we multiply by 2� to give the value 4� , which confirms
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the theorem of Descartes. The same proposition can also be used to calculate the
values of � for the regular convex polyhedra as given in the Introduction. For
example, the dodecahedron has 20 vertices, so by the Theorem of Descartes, the
deficit ı at each vertex must equal 1=10. The degree of each vertex is d D 3 and

substitution into (7.23) gives the required value � D 3.1�p
5/

2.3�p
5/

.

Example 7.3 Consider the double cone on the triangle discussed at the end of
Sect. 7.3. Now there is an underlying polytope and we can calculate angular deficit
at each vertex in the traditional way. By the theorem of Descartes, the total angular
deficit is 4� . However, let us calculate it by taking a lift to a configured star at each
vertex as determined by the corresponding solution to (7.2). In the original figure,
the stars at the lateral vertices are not configured, so an error will occur. We find:

ıapex D 2� � 3 arccos
1

7
and ılat D 2� � 4 arccos

5

7
;

to give a total curvature of

ıtot D 3ılat C 2ıapex D 10� � 6

�

arccos
1

7
C 2 arccos

5

7

�
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The above example illustrates one of the problems in defining the curvature.
The advantage of lifting to a configured star is that, in dimension N D 3, the lift
is unique up to sign changes, to give a uniquely defined curvature. However, any
expression of the total curvature as an invariant quantity would need to involve some
approximation.

For the 4-curvature, there are some special cases to consider. We list these in the
proposition below.

Proposition 7.5 (4-dimensional Vertex-Curvature) Let .G; 
/ be a pair consist-
ing of a graph G coupled to a solution 
 to (7.2). Let y be a vertex of G and let d be
the degree of G at y. Suppose that d 2 f4; 6; 12; 20g and that the configuration
associated to a lifted configured star coincides with the vertices of a regular
3-polytope (having d vertices). Then depending on the degree, the 4-dimensional
vertex-curvature of .G; 
/ at y is given by one of the expressions below:

Degree Configuration Curvature

4 Tetrahedron 2� 3

�
arccos

�
�

4� 2�

�

6 Octahedron 3� 6

�
arccos

�
1

5� 3�

�

12 Icosahedron 6� 15

�
arccos

 
6.

p
5C 1/� � 11� 7

p
5

2Œ6.
p
5C 3/� � 23� 7

p
5�

!

20 Dodecahedron 10� 15

�
arccos

 
5� � 1� 2

p
5

2Œ�5� C 8� p
5�

!
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Proof Given two vectors u; v 2 SM.r/ in a sphere of radius r, the arc of the great
circle joining u to v is given by

� 7!
 

cos � � .u � v/ sin �
p
r4 � .u � v/2

!

u C r2 sin �
p
r4 � .u � v/2

v

.0 � � � arcsin
p

r4�.u
v/2
r2

/ :

When r D 1, this is unit speed. Furthermore, the tangent vector to this arc at v is
given by

t D 1
p
r4 � .u � v/2

.�r2u C .u � v/v/ : (7.24)

The area of a spherical polygon with n sides and with interior angles �k (k D
1; : : : ; n) is given by

KA D
X

k

�k � .n � 2/� ;

where K is the curvature of the sphere. We are required to calculate the spherical
surface area of the boundaries of the various vertex figures in S3. These are made
up of faces lying in great 2-spheres which are either triangles, or in the case of the
dodecahedron, pentagons, whose edges are arcs of great circles. In order to calculate
the interior angles, we calculate the scalar product of the unit tangents to these edges
at a vertex. By symmetry, any vertex will do. We calculate this for the icosahedron
and the dodecahedron, the other cases being similar.

For the dodecahedron, a configuration of vertices is given by

0

@
0 ˙ ˙�1 ˙1

˙�1 0 ˙ ˙1
˙ ˙�1 0 ˙1

1

A ; (7.25)

where  D 1Cp
5

2
(see [11], Sect. 3.8). With the notation of Definition 7.4, three

consecutive vertices around one pentagonal face are given by

x1 D 1p
8C 3a2

0

B
B
@

a�1
a
0p
8

1

C
C
A ; x2 D 1p

8C 3a2

0

B
B
@

a
a
ap
8

1

C
C
A ; x3 D 1p

8C 3a2

0

B
B
@

0

a�1
ap
8

1

C
C
A ;

where a D p
d.1 � �/ and  D .1C p

5/=2. These three vertices determine a great
2-sphere in S3 which contains the pentagonal face. With this arrangement, x2 is the
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central vertex joined to x1 and x3 by arcs of great circles. In order to calculate the
interior angle at each vertex of the pentagon, we calculate the tangent to each of
these arcs at x2. To do this we apply (7.24). For the first arc we set u D x1 and
v D x2, to obtain the tangent vector:

t1 D 1

2
p
3a2 C 8

p
a2 C 12� 4

p
5

0

B
B
B
@

a2

2
.3 � p

5/C 4.3� p
5/

� a2

2
.3C p

5/C 4.1 � p
5/p

5a2 C 8

�a
p
8.3 � p

5/

1

C
C
C
A
:

For the second arc, we set u D x3 and v D x2, to obtain:

t2 D 1

2
p
3a2 C 8

p
a2 C 12� 4

p
5

0

B
B
B
@

p
5a2 C 8

a2

2
.3 � p

5/C 4.3� p
5/

� a2

2
.3C p

5/C 4.1 � p
5/

�a
p
8.3 � p

5/

1

C
C
C
A
:

Then

t1 � t2 D �a2 C 16� 8
p
5

2.a2 C 12 � 4
p
5/
;

which gives the cosine of the interior angle (it is indeed the interior angle, being
greater than �=2). Then the area (in absolute angle measure) of each pentagonal
face is given by

1

4�

(

5 arccos

 
�a2 C 16 � 8p5
2.a2 C 12� 4

p
5/

!

� 3�
)

;

so that the surface area of the spherical dodecahedron is given by twelve times this
quantity. We then obtain the angular deficiency, or 4-curvature:

ı D 10 � 15

�
arccos

 
�a2 C 16 � 8p5
2.a2 C 12� 4

p
5/

!

:

On substituting the value of a, we obtain the required formula.
For the icosahedron, a configuration of vertices is given by

0

@
0 ˙1 ˙

˙1 ˙ 0

˙ 0 ˙1

1

A ; (7.26)
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where  D 1Cp
5

2
. Three vertices which form one of the triangular faces are given

by:

v1 D
0

@
0

1



1

A ; v2 D
0

@
1



0

1

A ; v3 D
0

@


0

1

1

A ;

where  D .1Cp
5/=2. Then 	 D 2C22 D 5Cp

5, n D 12 and r2 D .5Cp
5/=2.

This gives the corresponding vertices in S3 as:

x` D
p
2

p
2C d.1 � �/

 q
d.1��/
5Cp

5
v`

1

!

.` D 1; 2; 3/ :

We then proceed as above for the dodecahedron to calculate the angular deficiency.
ut

Example 7.4 The 600-cell is a convex 4-dimensional regular polytope made up of
600 tetrahedral 3-polytopes. It has 120 vertices and 720 edges. Its vertex figure is a
regular icosahedron. If we consider an orthogonal projection onto the complex plane
and let 
 associate the corresponding value to each vertex, then 
 satisfies (7.2) with
� constant. We can find the value of � as follows.

Since the edges of the 600-cell all have the same length, in the notation of the
above proof, we must have the distance from the origin to x1, that is 1, equal to the
distance between two neighbors of the vertex figure: jjx1 � x2jj. One can readily
calculate:

jjx1 � x2jj2 D 8d.1 � �/
.5C p

5/Œ2C d.1� �/�
;

to obtain the negative value:

� D 5.1� 2
p
5/

3
:

One can now confirm the generalization of the theorem of Descartes (Theorem 7.2).
The 600-cell has 5 tetrahedra around each of its edges, each having dihedral angle

arccos.1=3/. Thus the angular deficiency at each edge (in absolute angle measure)
is given by:

ıe D 1 � 5

2�
arccos

1

3
:

Substitution of the above value of � into the third formula of Proposition 7.5 gives
the deficit, or curvature at each vertex, as

ıv D 6 � 15

�
arccos

1

3
:

On then finds that 120ıv � 720ıe D 0, as required.
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We can proceed similarly to obtain explicit formulae for higher dimensional N-
curvature. This is simplified by the fact that there are just three regular polytopes
in dimensions N 	 5, namely the N-simplex, the N-cube and the cross-polytope,
with vertex figures an .N � 1/-simplex in the first two cases and another cross-
polytope in the last case. To find the N-curvature requires the calculation of the
.N � 2/-dimensional measure of .N � 2/-simplices in great spheres of SN�1. This
is a standard, but non-trivial procedure using Schläfli’s differential equality [25].
See also the expository article of J. Milnor for a nice account and references [21,
pp. 281–295]. The article of J. Murakami provides explicit expressions in the 3-
sphere [22]. We do not attempt to derive these formulae here.

7.6 Other Curvatures

Recall from Sect. 7.4, that given an edge e D xy 2 E, the edge-curvature of e is
defined to be the unique angle �.e/ WD arccos.hu.x/;u. y/iRN / 2 Œ0; �� between the
axes of lifted configured stars. By analogy with Riemannian geometry, various other
curvatures can now be defined. If we let `.e/ denote the length of an edge e D xy as
given by Definition 7.2, and �.e/ its edge-curvature, then the radius of the best-fit
circle is given by r.e/ D `.e/=�.e/ (by best-fit circle, we mean the circle subtending
the same arc length `.e/ for the given angle �.e/). The normal curvature of e is then
the reciprocal 1=r.e/ D �.e/=`.e/. The mean curvature at a vertex x can then be
defined to be the mean of the normal curvatures of the edges incident with x. Since
`.e/ depends on the scaling 
 7! 
, this quantity also depends on the scaling;
the mean curvature should be thought of as the analogue of the same notion in the
smooth setting, whereby we locally embed a Riemannian manifold in a Euclidean
space.

From Theorem 7.1, we already have � related to mean curvature by the formula
� D �1=H2. However, this latter quantity will only approximate mean curvature for
an invariant framework that closely approximates a smooth surface. For example,
the cube has � � 0, which is far from the mean curvature of a sphere, whereas the
600-cell has negative � , which is more realistic. We don’t know if the two notions
are related, or if they are related to more classical definitions of mean curvature for
polytopes such as are given in [18, 23].

Ricci curvature is one of the most natural curvatures intrinsic to a Riemannian
manifold. Recall that given two unit directions X and Y, the sectional curvature
Sec .X;Y/ can be interpreted as the Gaussian curvature of a small geodesic surface
generated by the plane X ^ Y. This in turn is the product of the principal curvatures
which are the extremal values of the normal curvatures. The Ricci curvature
Ric .X;X/ is then the sum:

P
j Sec .X;Yj/ taken over an orthonormal frame fYjg

with each Yj orthogonal to X. This motivates the following definition.
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Definition 7.5 Given a vertex x 2 V and two edges e1 D xy1 and e2 D xy2 with
endpoint x, we define the sectional curvature Sec .e1; e2/ determined by e1 and e2
to be the product:

Secx .e1; e2/ D �.e1/

`.e1/

�.e2/

`.e2/
;

where �.ej/ ( j D 1; 2) are the edge-curvatures. For an edge e D xy, the Ricci
curvature Ric .e; e/ is the sum

Ricx .e; e/ D `.e/2
X

z�x;z¤y

Secx.e; xz/ D `.e/2
X

z�x;z¤y

�.xy/

`.xy/

�.xz/

`.xz/
;

and the scalar curvature at x is given by

Scalx D
X

y�x

Ric .xy; xy/=`.xy/2:

As in Riemannian geometry, the Ricci curvature is scale invariant. In fact, it
makes complete sense to introduce the factor `.e/2, since the Ricci curvature is
bilinear in its arguments. On the other hand, both the sectional curvature and the
scalar curvature will decrease as we dilate a solution to (7.2) by some scaling

 7! 
 ( constant), since that will modify edge length by the same factor .
In Riemannian geometry, one usually applies the polarization identity to define
Ric .X;Y/, however, there would seem to be no reasonable interpretation for the
sum of two edges in our setting.

In [20], Romon, provides numerical calculations of various curvatures associated
to the convex regular polyhedra, notably the Ricci curvature of Ollivier. In Table 7.2,
we produce similar calculations for the above curvatures, together with Ollivier’s
Ricci curvature for comparison. Since the sectional and scalar curvatures are scale
dependent, we have taken edge length equal to 1 in their definitions. Rational values
are exact.

Table 7.2 Table of the various curvatures associated to the convex polyhedra with Ollivier’s Ricci
curvature included for comparison

Curvature Tetrahedron Cube Octahedron Icosahedron Dodecahedron

Vertex (Gauss) 1/2 = 0.50 1/4 = 0.25 1/3 = 0.33 1/6 = 0.17 1/10 = 0.10

Edge 0.30 1/4 = 0.25 1/4 = 0.25 0.18 0.11

Sectional 0.09 1/16 = 0.63 1/16 = 0.63 0.03 0.01

Scalar 0.54 3/8 = 0.36 3/4 = 0.75 0.60 0.07

Ricci 0.18 1/8 = 0.13 3/16 = 0.19 0.12 0.02

Ollivier’s Ricci 4/3 = 1.33 2/3 = 0.67 1 = 1.00 2/5 = 0.40 0 = 0.00
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Appendix 1: The Geometric Spectrum, Gröbner Bases and the
�-Polynomial

To compute the geometric spectrum, even for simple graphs, is quite challenging.
We consider some fundamental cases and then make a simplifying assumption in
order to apply the technique of Gröbner bases. This motivates the construction of a
new polynomial invariant associated to a graph.

First Cases

Consider a vertex v0 of degree 2. Suppose that a solution 
 to (7.2) is non-constant
on a neighborhood of this vertex, thus 
 takes a different value on at least one of
its two neighbors v1; v2, say v1. By the normalization (7.3), we may suppose that

.v0/ D 0 and that 
.v1/ D 1. If we let 
.v2/ D z as illustrated in Fig. 7.9, then at
vertex v0, Eq. (7.2) takes the form:

�

2
.1C z/2 D 1C z2 :

Suppose that z ¤ �1. Then the requirement that � be real is equivalent to

either =.z/ D 0 or jzj D 1:

If z is real and z ¤ ˙1, then � > 1, so we reject this case since � will not lie in
the geometric spectrum. Suppose that z is not real and write it in polar coordinates:
z D ei˛. Then

� D 2 cos˛

1C cos˛
D 2 cos �

cos � � 1 ;

where � D � � ˛ is the external angle. The two limiting cases ˛ D 0 and ˛ D �

correspond to � D 1 and � D �1, respectively. This justifies the admissibility of
the value 1 in the geometric spectrum at a vertex of degree 2 (see Sect. 7.3.2).

As a consequence, for a cyclic graph, solutions to (7.2) correspond to realizations
in the plane as a polygonal framework with sides of equal length. A cyclic graph on

Fig. 7.9 The general
invariant star at a vertex of
degree 2

z

1
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Fig. 7.10 An invariant cyclic graph of order 4 has geometric spectrum corresponding to realiza-
tions in the plane as a polygonal framework with sides of equal length

three vertices can only have one such realization (up to similarity transformation) as
an equilateral triangle, so that � D 2=3 is the only value in the geometric spectrum.

A cyclic graph on four vertices is realized as a rhombus, with the possibility of
its edges collapsing onto themselves as indicated in Fig. 7.10.
In this case, the geometric spectrum has continuous components corresponding to
continuous deformations of the rhombus which may be parametrized by one of the
internal angles. Branching phenomena occurs as edges collapse onto themselves.
As the number of vertices increases, so too does the number of variables that
parametrize the geometric spectrum.

Let us turn to the other extreme, that of a complete graph. The complete graph on
three vertices is cyclic and as shown above, there is just one element in its geometric
spectrum, the constant value � D 2=3. Since any invariant star in R

3 with three
external vertices is necessarily configured [3], it follows that a complete graph on
four vertices which has a realization as an invariant framework in R

3 is necessarily
a tetrahedron with � taking the constant value 3=4. However, the results of Sect. 7.3
only guarantee a local lifting of a vertex and its neighbors in an invariant way, so in
general, we don’t know if such a realization exists. However, we can use a computer
to solve the equations for a sufficiently small number of vertices.

Consider the complete graph on NC1 vertices. Label the vertices by the integers
0; 1; : : : ;N and set �j D �. j/, zj D 
. j/. After normalization (7.3), we may suppose
that z0 D 0 and z1 D 1. Then (7.2) becomes:

�k

N

0

@
NX

jD0
.zk � zj/

1

A

2

D
NX

jD0
.zk � zj/

2 .k D 0; 1; 2; : : : ;N/ ;

with the constraints that each �k be real and < 1. The software MAPLE can
now solve this algebraic system at least up to N D 5 (the complete graph on 6
vertices), which confirms that the only element in the geometric spectrum is given
by � constant equal to N=.N C 1/. We currently don’t have a mathematical (non-
computer) proof of this fact and don’t know if the constancy of � persists for N > 5.

The Constant Geometric Spectrum and the �-Polynomial

From now on, to simplify matters, we consider only constant values of � that may
lie in the spectrum and attempt an algebraic geometric approach to compute this set
which we refer to as the constant geometric spectrum.
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Let G D .V;E/ be a connected graph. We are interested in the possible real
numbers � for which there are non-constant solutions to the equation:

��
2 D .d
/2 : (7.27)

Any solution is invariant by 
 7! 
 C �, for complex constants ;�.¤ 0/.
We will no longer insist that � < 1. Consider first how to parametrize all possible
complex fields on the graph under this invariance.

Label the vertices of the graph x1; x2; : : : ; xN and consider a non-constant
complex field 
 that assigns the value 
.xk/ D zk to vertex xk. Then the space of all
such fields is identified with the complex space C

N n f�.1; 1; : : : ; 1/ W � 2 Cg. Up
to the equivalence .z1; : : : ; zN/ 
 .z1 C�; : : : ; zN C�/, we can identify these fields
with the set˘ nf0g, where˘ is the linear subspace˘ D fZ D .z1; : : : ; zN/ 2 C

N W
z1 C � � � C zn D 0g � C

N . In effect, given any non-constant field .z1; : : : ; zN/,
then .z1 C �; : : : ; zN C �/ lies in the plane z1 C � � � C zN D 0, when we set
� D � 1

N .z1 C � � � C zN/. By non-constancy, this is non-zero. Furthermore, it is
clear that any two equivalent fields correspond to the same point.

Now consider the relation Z 
 Z, for  2 C n f0g. This defines the moduli
space of fields up to equivalence to be Z WD CPN�2. Specifically, given a point
Œz1; : : : ; zN�1� 2 Z in homogeneous coordinates, we define a representative field
by .z1; : : : ; zN�1; zN D �PN�1

kD1 zk/ 2 C
N . In practice, we can set a field equal to 0

and 1 on two selected vertices x0 and x1, respectively, and label the other vertices
arbitrarily. This is only one chart and we miss those fields which coincide at these
two vertices.

If we consider � as an arbitrary complex parameter, then (7.27) imposes a
constraint at each vertex, so we have N equations in N � 1 parameters. In general
these are independent so that this is an overdetermined system, which may have no
solutions.

For each ` D 2; : : : ;N, consider the following set of N polynomials defined over
the algebraically closed field C. The variables are the values fz1; : : : ; zNg of a field
on G with constraints z1 D 0 and z` D 1; we suppose the degree of vertex j is dj and
that zjk 2 fz1; : : : ; zNg .k D 1; : : : ; dj/ are the values of the field on the neighbors xjk
of xj. The polynomials are then defined by

fj
` WD �

dj

0

@
djX

kD1
.zj � zjk/

1

A

2

�
djX

kD1
.zj � zjk/

2 .z1 D 0; z` D 1/ ;

in the N � 1 complex variables f�; z2; z3; : : : ;bz`; : : : ; zNg. Recall some facts and
terminology from commutative algebra. We are particularly interested in the
techniques of Gröbner bases, for which we refer the reader to [1, 27].

For an ideal I D< f1; : : : ; fN > in a polynomial ring CŒx1; x2; : : : ; xM�, we denote
by V.I/ the corresponding variety: f1 D 0; f2 D 0; : : : ; fN D 0. Then I is said to be
zero-dimensional if V.I/ is finite. A Gröbner basis for I is a basis of polynomials



7 The Geometric Spectrum of a Graph and Associated Curvatures 249

which can be constructed from f1; : : : ; fN using a particular algorithm, called the
Buchberger algorithm. To employ this algorithm, one is required first to choose an
order on monomials. We shall only be concerned with lexicographical order here,
which means we first choose an ordering of the variables, say x1 > x2 > � � � > xM
and then order monomials x˛ WD x1˛1 � � � xM˛M , xˇ WD x1ˇ1 � � � xMˇM , by x˛ < xˇ if
and only if the first coordinate from the left for which ˛i and ˇi are different, satisfies
˛i < ˇi. With respect to the monomial order, every polynomial f in I has a leading
term lt . f / which is the product lt . f / D lc . f /lm . f / of the leading coefficient with
the leading monomial.

A set of non-zero polynomials G D fg1; : : : ; gPg in I is called a Gröbner basis
for I if and only if for all f 2 I such that f ¤ 0, there is a gj in G such that lm .gj/
divides lm . f /. The Gröbner basis is further called reduced if for all j, lc .gj/ D 1

and gj is reduced with respect to G n fgjg, that is, no non-zero term in gj is divisible
by any lm .gk/ for any k ¤ j. A theorem of Buchberger states that every non-zero
ideal has a unique reduced Gröbner basis with respect to a monomial order [9].
Gröbner bases are particularly useful for understanding the solution set of a system
of polynomial equations.

Let I be an ideal in the polynomial ring CŒx1; x2; : : : ; xM� and let G D
fg1; : : : ; gPg be the unique reduced Gröbner basis with respect to the lexicographical
ordering induced by the order x1 > x2 > � � � > xM. Then V.I/ is finite if and only
if for each j D 1; : : : ;M, there exists a gk 2 G such that lm gk D xjnj for some
natural number nj. As a consequence, if I is a zero-dimensional ideal, it follows that
we can order g1; : : : ; gP so that g1 contains only the variable xM, g2 contains only
xM; xM�1 and so on. This is because the leading monomial of one element, g1 say,
of G must be a power of xM and then no other term of g1 can contain powers of any
other variable (for such terms would be greater that any power of xM with respect
to the monomial order), and so on for successive elements g2; g3; : : : of G. We note
also that V.I/ is empty if and only if 1 2 G.

It is also the case that, with the above hypothesis, the polynomial g1 is the least
degree univariate polynomial in xM which belongs to I (any zero-dimensional ideal
contains such a polynomial for every variable). For if there was another univariate
polynomial p.xM/ with deg p < deg g1, then lm p would divide lm g1 in a strict
sense, which would contradict the fact that G is a reduced Gröbner basis. Let us
now return to the case under consideration.

For each ` D 2; : : : ;N, consider the ideal I` D< f1`; : : : ; fN` >. Suppose that
for each ` D 2; : : : ;N this admits a least degree univariate polynomial p` in � . This
can be constructed by first choosing a lexicographical ordering of the variables with
� the smallest and then applying an algorithm (say the Buchberger algorithm) to
construct the unique reduced Gröbner basis for I`. The first element of this basis
gives p`.

Definition 7.6 We define the � -polynomial p D pG of the connected finite graph
G D .V;E/ to be the least common multiple of the least degree univariate
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polynomials p` (` D 2; : : : ;N) in � associated to the Eq. (7.2) for fields .z1; : : : ; zN/
on G with z1 D 0 and z` D 1:

p WD lcm . p2; : : : ; pN/ ;

when each p` exists.
The � -polynomial p.�/ is defined up to rational multiple and has rational

coefficients. This is because the initial polynomials fj` used to define p all have
integer coefficients and the Buchberger algorithm then generates polynomials with
rational coefficients—it involves at most division by coefficients—see [1]. Clearly
p depends only on the isomorphism class of a graph and in the case when the
Eq. (7.27) admit no solutions for � constant and complex, then p � 1. In this case
we shall say that p is trivial. The polynomials p` and so p may still be well-defined
even if the solution set of the equations is infinite (that is the corresponding ideal
is no longer zero-dimensional). In fact we know of no case when they are not well-
defined.

The constant geometric spectrum arises as real roots of p (the problem of
establishing the discreteness of the spectrum is clearly intimately related to knowing
if p is well-defined in all cases). However, not all real roots may occur in the
spectrum, for in general they must also solve the other equations determined by
the Gröbner basis: g1 D 0; : : : ; gP D 0. Examples below illustrate this property. We
know of no two non-isomorphic connected graphs with non-trivial � -polynomial
having the same � -polynomial.

The examples of the triangle C3 (the cyclic graph on three vertices) and the
bipartite graphs K23 and K33 are instructive. We label the vertices as shown in
Fig. 7.11 and consider fields 
 taking the values 
.xj/ D zj at each vertex xj.

For the triangle, there are precisely two solutions to (7.27) when we normalize

so that z1 D 0; z2 D 1; specifically z3 D 1
2

˙ i
p
3
2

. Then p D p2 D p3 D 3� � 2

is the � polynomial and the only constant element (in fact the only element) of the
geometric spectrum is the unique root � D 2=3.

For K23, we find p2 D 1 with no solution and p3 D �2 � 2� C 1 D .� � 1/2 with
solution z1 D 0; z3 D 1, z2 D 0, z5 D  arbitrary and z4 D Œ1C˙p

3.1�/i�=2.
Then p D �2 � 2� C 1 and the constant geometric spectrum is given by˙ D f1g.

For K33, we find p2 D 9�2 � 26� C 17 D .� � 1/.9� � 17/ and p4 D 9�3 �
35�2C43��17 D .��1/p2, so that the � -polynomial p D 9�3�35�2C43��17.

x1 x2

x3

x1 x2

x3 x4 x5

x1 x2 x3

x4 x5 x6

C3 K23 K33

Fig. 7.11 Three graphs for which the �-polynomial can be easily calculated by an appropriate
labeling of the vertices
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Fig. 7.12 An example of a
simple graph with
complicated �-polynomial

Although this has � D 17=9 as a root, the constant geometric spectrum˙ D f1g. In
fact for � D 1; z1 D 0; z2 D 1 we find a two complex parameter family of solutions
to (7.27). The next example shows that even for simple graphs, the � -polynomial
can be quite complicated.

Consider the graph of constant degree three on six vertices whose edges form
two concentric triangles as shown in Fig. 7.12.
The � -polynomial is given by

5859375�10 � 67656250�9 C 333521875�8 � 926025000�7
C1603978830�6 � 1808486028�5 C 1339655598�4

�639892872�3 C 186760323�2 � 29598858� C 1883007 :

This has eight real roots, four of which are rational: � D 3=5; 21=25; 1; 3. There
remain two conjugate complex roots. Since the � -polynomial differs from that of the
bipartite graph K33 calculated above, we deduce that these two graphs of constant
degree three on six vertices cannot be isomorphic.

It is interesting to consider the real roots that are 	 1, which can be seen to arise
from surjective mappings 
 W V ! SN WD fz0; : : : ; zNg � C, where z0; : : : ; zN are
the images under any orthogonal projection to the complex plane of the vertices of
a regular N-simplex in R

N . This is because of the translation-invariant relation

.z0 C � � � C zN/
2 D .N C 1/.z0

2 C � � � C zN
2/

between these projections whenever N 	 2 [13]. For example, if N D 4, we may
take S4 D f0; 1; i; 1Cig. WhenN D 1, we take S1 D f0; 1g and .z0Cz1/2 D z02Cz12.

The root 3 corresponds to the solution 
 W V ! S1 D f0; 1g to (7.2) which takes
the value 0 say, on the vertices of the inner triangle and 1 on the vertices of the outer

triangle. The root 1 corresponds to the solution 
 W V ! S2 D f0; 1; 1
2

C i
p
3
2

g, as
indicated in Fig. 7.13. Thus, 
 takes on the colors red, green and blue which are in
bijective correspondence with S2.

More generally, if we can “color” the vertices of a regular graph G of degree d
with SN in such a way that each vertex is connected by an edge to precisely one
vertex of each of the other colors, then � D d=.N C 1/ will be an element of
the constant geometric spectrum. Clearly we must have d 	 N. For the complete
graph on N C 1 vertices, we can take the coloring given by any bijection V ! SN
to give � D N=.N C 1/. The above example can be generalized by taking two
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Fig. 7.13 Certain roots of
the �-polynomial correspond
to graph colorings

Table 7.3 The �-polynomial
for the complete graph on
N C 1 vertices

N p.�/

3 8�2 � 18� C 9

4 5� � 4

5 18�2 � 45� C 25

6 7� � 6

7 32�2 � 84� C 49

copies of the complete graph on NC1 vertices and connecting each vertex of one of
the graphs to precisely one vertex of the other in a bijective correspondence. Now
d D N C 1 and � D 1 lies in the constant geometric spectrum. Relations to vertex
colorings suggest potential connections between the � -polynomial and other more
well-known polynomial invariants, such as the Tutte polynomial.

Finally, let us consider the � -polynomial of the complete graph on NC1 vertices.
We may apply the method of Gröbner bases with an appropriate lexicographical
ordering which produces the � -polynomial as its first basis element. In fact, by the
symmetry of the complete graph, it is clear that all the univariate polynomials p`
(` D 2; : : : ;N) in Definition 7.6 are identical. If we denote the � -polynomial by
p.�/, then using MAPLE, we obtain the suggestive list given in Table 7.3.

It is reasonable to conjecture that for N even, the � -polynomial is given by
p.�/ D .N C 1/� � N and that for N D 2k C 1 odd, it is given by

p.�/ D 2.k C 1/2�2 � 3.k C 1/.2k C 1/� C .2k C 1/2

D
�
2.k C 1/� � .2k C 1/

��
.k C 1/� � .2k C 1/

�
:

Appendix 2: New Solutions from Old

Holomorphic Mappings Between Graphs

The natural class of mappings between graphs which preserve Eq. (7.2) are the
so-called holomorphic mappings. These were introduced for simple graphs under
the name semi-conformal mappings by Urakawa [28], as the class of maps which
preserve local harmonic functions (i.e. functions which are harmonic at a vertex).
The notion was later extended to non-simple graphs by Baker and Norine [5, 6],
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who used the term holomorphic mapping. In [4], it was shown that the holomorphic
mappings are precisely the class of mappings which preserve local holomorphic
functions, defined as solutions to (7.2) for which � � 0. The definition requires
that we restrict to mappings of graphs that determine a well-defined mapping of the
tangent space at each vertex, which also justifies our inclusion of the zero vector in
the definition of tangent space (see Sect. 7.2).

Definition 7.7 Let f W G D .V;E/ ! H D .W;F/ be a mapping between graphs.
Then f is holomorphic if

(i) x 
 y implies either f .x/ D f . y/ or f .x/ 
 f . y/;
(ii) there exists a function  W V ! N such that for all x 2 V and for all z0 
 z D

f .x/, we have

.x/ D .x; z0/ D ]fx0 2 V W x0 
 x; f .x0/ D z0g ;

is independent of the choice of z0; we set .x/ D 0 if f .x0/ D z for all x0 
 x.
Call  the dilation of f .

Proposition 7.6 Let f W G D .V;E/ ! H D .W;F/ be a holomorphic mapping
between graphs of dilation  W V ! N. Suppose  W W ! C satisfies the equation

�.� /2 D .d /2 ;

for some � W W ! R. Then for each x 2 V such that .x/ ¤ 0, the function

 D  ı f satisfies (7.2) at x with

�.x/ D dx�. f .x//

.x/df .x/
; (7.28)

where dz also denotes the degree of a vertex z 2 W.

Proof Let f W G D .V;E/ ! H D .W;F/ be a holomorphic mapping between
graphs of dilation  W V ! N. Let x 2 V and set z D f .x/. Then

�.z/

dz

 
X

z0�z

. .z0/ �  .z//
!2

D
X

z0�z

. .z0/�  .z//2:

Since f is holomorphic

X

x0�x

Œ. ı f /.x0/� . ı f /.x/� D .x/
X

z0�z

. .z0/ �  .z// :
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Suppose that .x/ ¤ 0. Then

X

x0�x

Œ. ı f /.x0/� . ı f /.x/�2 D .x/
X

z0�z

. .z0/ �  .z//2

D .x/�.z/

dz

 
X

z0�z

. .z0/�  .z//

!2

D �.z/

.x/dz

 
X

x0�x

Œ. ı f /.x0/� . ı f /.x/�

!2

;

from which the formula follows. If on the other hand .x/ D 0, then f .x0/ D f .x/
for all x0 
 x and both sides of (7.2) vanish. ut

Given a holomorphic mapping between graphs, the above proposition shows
how an element of the geometric spectrum on the co-domain determines one on
the domain. A simple example of a holomorphic mapping between planar graphs
is given in Fig. 7.14. In this example, the outer “wheel” of the domain graph is
mapped cyclically onto the outer wheel of the image, covering it twice, while the
central vertex of the domain is mapped onto the central vertex of the image.

The dilation at the central vertex is given by  D 2, whereas it equals 1 at
the other vertices. With reference to Example 7.2, we see that the constant value
� � 1=3 is also an element of the geometric spectrum of the domain graph, the
doubling of the degree at the central vertex being exactly compensated for by the
doubling of the dilation in the formula (7.28).

Applying Normalization to Construct New Solutions

Another method to construct new solutions to (7.2) is to exploit the freedom to
normalize a solution 
 by (7.3). Whilst not exhaustive, we describe some examples.

Fig. 7.14 An example of a holomorphic mapping between graphs: the outer wheel covers its
image twice, while the central vertex is preserved
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x1

y1

x2

y2

G1 G2

Fig. 7.15 Solutions to equation (7.2) on two graphs can be normalized at two vertices in such a
way that the graphs can be connected by edges to give a new solution

x1

y1

x2

y2

G1 G2

Fig. 7.16 Solutions to equation (7.2) on two graphs can be normalized at two vertices to allow
edge rotations which connect the two graphs, giving a new solution

The process of collapsing was described at the end of Sect. 7.4, whereby edges
that connect vertices on which a solution to (7.2) takes on the same value can be
removed. This operation can be reversed as follows. Given a non-constant solution

1 to (7.2) on a graph G1 D .V1;E1/, then for two vertices x1; y1 2 V1 where

1.x1/ ¤ 
1. y1/, we can apply the normalization (7.3) and suppose that 
1.x1/ D
0 and 
1. y1/ D 1. Similarly for a non-constant solution 
2 to (7.2) on a graph
G2 D .V2;E2/, we may find two vertices x2; y2 and normalize so that 
2.x2/ D 0

and 
2. y2/ D 1. As illustrated in Fig. 7.15, define a new graph G whose vertex set
V D V1 [ V2 and whose edge set E D E1 [ E2 [ fx1x2; y1y2g.

Note that we are not obliged to add both edges, and indeed we can connect any
vertices on which 
1 and 
2 take on the same value. We then define 
 W V ! C

by 
.x/ D 
1.x/ if x 2 V1 or 
.x/ D 
2.x/ if x 2 V2. Clearly 
 satisfies (7.2), but
with � modified to take into account the fact that the degrees at x1; y1; x2; y2 have
increased by one.

As a variant, if both x1 and y1 and x2 and y2 are connected by edges in G1 and
G2, respectively, then we can remove these edges and replace them by x1y2 and
y1x2. Thus the new graph G D .V;E/ (illustrated in Fig. 7.16) has V D V1 [ V2
and E D .E1 n fx1y1g/ [ .E2 n fx2y2g/ [ fx1y2; y1x2g. As before we can define a
solution to (7.2) to be the restriction of 
1 to V1 and 
2 to V2, but now the degrees
are preserved, so � is unchanged.

The Preferential Attachment Model

In random graph theory, an important generative model is the preferential attach-
ment scheme which proceeds as follows. For the current graphG, add a new vertex y
and add an edge xy from y by randomly and independently choosing x in proportion
to the degree of x in G. As demonstrated rigorously by Chung and Lu, as the order
of the graph approaches infinity, this model generates the scale-free graphs that are
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so prevalent in biology and social networks [10]. Geometry may be seen to emerge
from this process by exploiting our construction of invariant stars.

Consider an invariant (not necessarily configured) star in R
N with internal vertex

located at the origin and with d external vertices. Let x 2 R
N be the center of mass

of the external vertices. Suppose that x ¤ 0. Let b > 0 denote the distance of the
center of mass from the origin along the axis of the star.

Lemma 7.2 ([2]) The addition of a new external vertex at any point other than
�db along the axis of the star produces a new invariant star. Furthermore, if �
denotes the invariant of the original star and x 2 R is the position along the axis of
the star, then the new star invariant is given by

e� D .d C 1/.x2 C db2�/

.x C db/2
: (7.29)

Proof Without loss of generality, we may suppose that the center of mass of the star
lies along the yN-axis. In particular, if v1; : : : ; vd denote the external vertices, then

dX

`D1
v` D dbeN :

We now add a new vertex at the point xeN , for some x 2 R. Thus the new star matrix
is given by

.v1j � � � jvdjxeN/ :

Let A D .ajk/ be an arbitrary orthogonal transformation of RN and let 
 W RN ! C

be the projection 
. y1; : : : ; yN/ D y1 C iy2. Set z` D 
 ıA.v`/ for ` D 1; : : : ; d and
zdC1 D 
 ı A.xeN/. Then

z` D
NX

jD1
.a1j C ia2j/v`j ; zdC1 D x.a1N C ia2N/ :

Furthermore,
Pd

`D1 z` D db.a1N C ia2N/, so that

dX

`D1
z`
2 D �

d

 
dX

`D1
z`

!2

D db2�.a1N C ia2N/2 ;

where � is the invariant of the original star. We require that there is a real numbere�
such that

e�

 

zdC1 C
dX

`D1
z`

!2

D .d C 1/

 

zdC12 C
dX

`D1
z`
2

!

:

But this is uniquely given by (7.29). ut
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We note that as x approaches �db, then je� j becomes arbitrary large. Indeed, when
x D �db, then the Laplacian of 
 vanishes at the internal vertex of the new star, so
thate� is not well-defined in this case.

Suppose we are given a solution to (7.2) on a graph G D .V;E/. For a given
x 2 V , let fy1; : : : ; ydg be its neighbors. Then by the lifting property described in
Sect. 7.3, there is an invariant star K in R

3 (or R2 if the degree of x is two) whose
external vertices project to the values 
. y1/; : : : ; 
. yd/ and whose internal vertex
projects to 
.x/. Introduce a new vertex y and form the grapheG D .eV;eE/ for which
eV D V [ fyg and eE D E [ fxyg. Define e
 W eV ! C by e
.u/ D 
.u/ for u 2 V
and e
. y/ D z, where z is the projection of any point along the axis K. Then e

satisfies (7.2) on eG with � modified according to the above lemma (note that any
vertex of degree one always satisfies (7.2) with � D 1). The choice of distance along
the axis of the star may depend on some other parameter of the model, for example,
so as to best uniformize � .

Acknowledgements The author would like to express his thanks to Pascal Romon and the referee
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Chapter 8
Discrete Minimal Surfaces of Koebe Type

Alexander I. Bobenko, Ulrike Bücking, and Stefan Sechelmann

Abstract There is an increasing interest to find suitable discrete analogs for
known geometric notions and shapes like minimal surfaces. In this article, we
consider parametrized surfaces which lead to quadrilateral meshes. In particular,
we choose a parametrization where the second fundamental form is diagonal. In
addition to the discrete surface we consider a line congruence at the vertices which
can be interpreted as a discrete Gauss map. This easily leads to parallel offset
meshes. Comparing the areas of two such parallel planar quadrilaterals can then
be used to define discrete mean and Gaussian curvature analogously as in the
smooth case. This approach leads to a simple notion of discrete minimal surfaces
which contains several known definitions as special cases. We especially focus
on discrete minimal surfaces whose discrete Gauss map is given by a Koebe
polyhedron, i.e. a polyhedral surface with edges tangent to the unit sphere. This
case is closely connected to the theory of S-isothermic discrete minimal surfaces.
We remind the construction scheme and present analogs for several known smooth
minimal surface.

8.1 Introduction

Minimal surfaces have been studied for a long time, but still contain unsolved
aspects. Stimulated by the relevance for computer graphic and visualization, there
is actually an increasing interest to find suitable discrete analogs for known geo-
metric notions and shapes like minimal surfaces. Usually, one can suggest various
discretizations which have quite different properties. See [6, 15, 17, 18, 24, 27, 38]
for a choice of examples from the huge variety of different approaches for discrete
minimal surfaces. We consider this class of surfaces in the context of discrete
differential geometry. The goal of this theory is to find a discretization which inherits
as many essential properties of the smooth theory as possible.
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Our approach is based on the discretization of parametrized surfaces which
lead to quadrilateral meshes. In particular, we choose a parametrization where
the second fundamental form is diagonal. Such conjugate nets exist (locally)
for general surfaces in R

3 and lead to discrete parametrized surfaces built from
planar quadrilateral faces, which are particular polyhedral surfaces. In addition to
the discrete surface we consider a line congruence at the vertices which can be
interpreted as a discrete Gauss map. This easily leads to parallel offset meshes, see
Fig. 8.3 below. Comparing the areas of two such parallel planar quadrilaterals can
then be used to define discrete mean and Gaussian curvature analogously as in the
smooth case. This approach leads to a simple notion of discrete minimal surfaces
which contains several known definitions as special cases.

We especially focus on discrete minimal surfaces whose discrete Gauss map is
given by a Koebe polyhedron, i.e. a polyhedral surface with edges tangent to the unit
sphere. This case is closely connected to the theory of S-isothermic discrete minimal
surfaces as studied in [7]. We remind the construction scheme which, in particular,
allows to build an analog for (a finite part of) any given smooth minimal surface.

S-isothermic discrete minimal surfaces can be constructed using suitable orthog-
onal circle patterns. These are configurations of circles for a given planar graph G
such that to each vertex of G there corresponds a circle. If two vertices are connected
by an edge in G then the corresponding circles intersect orthogonally. The circles
corresponding to the vertices of a face of G intersect in one point. Furthermore, for
any circle corresponding to an interior vertex the disks filling the neighboring circles
have mutually disjoint interiors. For the construction of such circle patterns we use
a variational principle from [4, 37]. This has advantages for the explicit calculation
of examples and has been used to create our various examples of Sect. 8.4.

An important connection to the smooth theory is demonstrated by the conver-
gence of a large class of S-isothermic discrete minimal surfaces to their smooth
analogons. The main ideas are explained in Sect. 8.5; for a detailed version and a
proof see [12].

8.2 Discrete Minimal Surfaces

Every smooth immersed surface in R
3 can (locally) be written as a parametrization,

that is as a smooth mapping

F W R2 � D ! R
3; .x; y/ 7! F .x; y/;

such that in any point the partial derivatives @xF and @yF are linearly independent.
We focus on special parametrizations where the second fundamental form is
diagonal, that is @xyF 2 span.@xF ; @yF /, where @xy denotes the mixed partial
derivative. Such parametrizations are also called conjugate nets. This condition can
be interpreted as the planarity of infinitesimal quadrilaterals with vertices F .x; y/,
F .xC"; y/, F .xC"; yC"/, F .x; yC"/. As a discrete analog, it is therefore natural
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to consider discrete parametrized surfaces built from planar quadrilateral faces. The
corresponding discrete parameter space will be a special cell decomposition.

Recall that a cell decomposition of a two-dimensional manifold possibly with
boundary is a graph embedded in the manifold such that the complement of the
graph is (topologically) a disjoint union of open disks. Thus, a cell decomposition
decomposes a two-dimensional manifold into vertices, edges, and faces. The sets of
vertices and edges will be denoted by V and E respectively. The cell decomposition
is called regular, if it has no loops (edges with the same vertex on both ends), and
if the boundary of a face contains an edge or vertex at most once. A regular cell
decomposition is called strongly regular if two edges have at most one vertex in
common at their boundaries, and if two faces have at most one edge or one vertex
in common at their boundaries.

Definition 8.1 A strongly regular cell decomposition D of a two-dimensional
oriented manifold possibly with boundary is called a quad-graph, if all 2-cells
(faces) of D are embedded, carry the same orientation, and are quadrilaterals, that
is there are exactly four edges incident to each face. See Fig. 8.1 for an example.

A mapping F W D ! R
3 from a quad-graph D is called a quadrilateral surface

if each face of D is mapped by F to a planar quadrilateral in R
3, see Fig. 8.2.

Given a smooth immersed surface F W R2 � D ! R
3 there exists in every point

a normal direction, i.e. a line orthogonal to the surface. In fact, there is even (locally)
a smooth map N W D ! S

2, called Gauss map, such that N . p/ is orthogonal to
the surface at F . p/. As a discrete analog of normals to a surface we introduce lines
at the vertices building a line congruence:

Fig. 8.1 Example of a
quad-graph

Fig. 8.2 Example of a
quadrilateral surface
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Definition 8.2 Let L3 be the space of affine lines in R
3 and denote by L

3. p/ the
subset of affine lines in R

3 passing through the point p 2 R
3. A line congruence for

a quadrilateral surface F W D ! R
3 is a mapping ` W V.D/ ! L

3 which assigns
to every vertex v 2 V.D/ an affine line `.v/ 2 L

3.F.v// such that for neighboring
vertices vi; vj the corresponding lines `.vi/ and `.vj/ are coplanar, i.e. intersect or
are parallel.

Remark 8.1 Line congruences belong to projective geometry. Therefore, instead of
affine lines in L

3, it is natural to consider the space of lines in RP
3.

Given a quadrilateral surface F W D ! R
3 with a line congruence ` note that

for every edge e D Œv1; v2� 2 E.D/ joining the vertices v1; v2 the lines `.v1/ and
`.v2/ and the edge of the surface F.Œv1; v2�/ are coplanar. Therefore one can easily
construct parallel surfaces to F, see Fig. 8.3 (left).

Conversely, given two such parallel quadrilateral surfaces F1 and F2, we can
easily obtain a line congruence by adding lines through corresponding points.
Furthermore, the vectors joining the points corresponding to the same vertex v can
be interpreted as a generalized discrete Gauss map N.v/ D F2.v/ � F1.v/. Now
consider these vectors for one face of the quadrilateral surface F1 and translate the
vectors within that face such that they all start at one vertex, see Fig. 8.3 (right).
Their endpoints still lie in the corresponding plane of the parallel surface F2. Thus
moving all vectors N.v/ such that they all start at the origin we again obtain a
quadrilateral surface N W D ! R

3 parallel to F1 and F2.
These reasonings show that for a given quadrilateral surface F we can identify

a line congruence ` with a one parameter family N for  6D 0 of associated
generalized discrete Gauss maps by `.v/ D fF.v/ C �N.v/ W � 2 Rg for every
vertex v.

N(v3)N(v0)

N(v2)

N(v1)

�(v3)
F(v1)

�(v1)

F(v3)

�(v0) �(v2)

F(v2)
F(v0)

Fig. 8.3 Left: planar face of a quadrilateral surface F with line congruence ` and a corresponding
parallel face (dashed lines), Right: corresponding face of the associated generalized discrete Gauss
map N
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Definition 8.3 A quadrilateral surface F W D ! R
3 with a generalized discrete

Gauss map N W D ! R
3, i.e. a parallel quadrilateral surface N, is called a line

congruence net .F;N/.

8.2.1 Discrete Curvatures

Given a smooth surfaceF with its Gauss map N , a parallel surfaceFt can (locally)
be defined by the formula Ft D F C tN for sufficiently small t 2 R. The classical
Steiner formula states that the infinitesimal area of the parallel surface Ft is the
quadratic polynomial

dA.Ft/ D .1 � 2tH C t2K/dA.F /: (8.1)

Here dA.F / denotes the infinitesimal area of the surface F and H and K are
its mean and Gaussian curvature respectively. See also Chap. 4, Sect. 4.3.3, of
this volume.

For quadrilateral surfaces, parallel offset surfaces or equivalently a generalized
discrete Gauss map can be used in an analogous way to define Gaussian and mean
curvature.

First we note that the oriented area functional A.P/ of a planar polygon P is a
quadratic form. The corresponding symmetric bilinear form A.P;Q/ is called mixed
area. It will be important for the following theory and may be obtained as follow.

Consider two planar polygons P D .p0; : : : ;pk�1/ and Q D .q0; : : : ;qk�1/ with
vertices pi and qi respectively and whose corresponding edges are parallel. Then
A.P;Q/ D 1

2
.A.PCQ/�A.P/�A.Q//where PCQ D .p0Cq0; : : : ;pk�1Cqk�1/ is

the polygon obtained by pointwise addition. For further use, we express the mixed
area using the determinant. Let n be the unit normal vector of the parallel planes
containing the polygons P and Q. Then

A.P;Q/ D 1

4

k�1X

jD0
Œdet.pj;q jC1;n/C det.q j;p jC1;n/�: (8.2)

Given a line congruence net .F;N/, consider one quadrilateral face f with area
A. f / 6D 0. Denote by n the corresponding face of the surface N. Then the one
parameter family of parallel offset faces is ft D f C tn for t 2 R. The area of ft is

A. ft/ D A. f C tN; f C tN/ D
�

1C 2t
A. f ; n/

A. f /
C t2

A.n/

A. f /

�

A. f /: (8.3)

Comparing this equation with the corresponding formula for smooth surfaces (8.1)
leads to the following curvature definitions on faces, see [8, 28].
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Definition 8.4 Let .F;N/ be a line congruence net such that the faces of F are not
degenerate, i.e. A. f / 6D 0. Then the discrete Gaussian curvature K and the discrete
mean curvature H are defined by

K D A.n/

A. f /
and H D �A. f ; n/

A. f /
: (8.4)

Here f denotes a quadrilateral face of F and n is the corresponding face of N.
Note that the Gaussian curvature is defined as the quotient of the areas of

the Gauss image and of the original surface analogously as in the smooth case.
Moreover, as for a quadrilateral surface with a line congruence the generalized
Gauss map is only defined up to a common factor, the curvatures at faces are also
defined up to multiplication by a common constant.

The principle curvatures �1; �2 are in the smooth case defined by the formulas
H D .�1C�2/=2 and K D �1�2 as the zeros of the quadratic polynomial .1�2tHC
t2K/ D .1 � t�1/.1 � t�2/.

Discrete principle curvatures can be defined in an analogous way in the following
case. Let .F;N/ be a line congruence net such that all faces of F are non-degenerate
and all quadrilaterals of F are convex (or equivalently all quadrilaterals of N are
convex), that is the vertices of every face are on the boundary of their convex
hull. Then the discrete principle curvatures �1; �2 on the faces are the zeros of the
quadratic polynomial .1 � 2tH C t2K/ D .1 � t�1/.1 � t�2/ where H and K are
the discrete mean and the discrete Gaussian curvature respectively. Note that in this
case H2 �K 	 0 and Minkowski’s first inequality A. f ; n/2�A. f /A.n/ 	 0 applies,
see [32].

Using these definitions, one easily obtains special classes of quadrilateral
surfaces. This article focuses on discrete minimal surfaces:

Definition 8.5 A line congruence net .F;N/ is called a discrete minimal surface if
H D 0 for all faces.

8.2.2 Characterization of Discrete Minimal Surfaces

Lemma 8.1 A line congruence net .F;N/ is a discrete minimal surface if and
only if the mixed areas vanish, A. f ; n/ D 0, for all quadrilaterals f of F and the
corresponding quadrilaterals n of N.

Thus, we first study planar quadrilaterals P, Q with parallel edges whose mixed
area vanishes, A.P;Q/ D 0, and which are called dual.

Lemma 8.2 For every planar quadrilateral there exists a dual one. For non-zero
quadrilaterals the dual is unique up to scaling and translation.

Furthermore two planar quadrilaterals P D .p0; : : : ;p3/ and Q D .q0; : : : ;q3/
with parallel corresponding edges are dual to each other if and only if their
diagonals are antiparallel, that is p2 � p0 k q3 � q1 and p3 � p1 k q2 � q0.
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Proof In the following, we will only consider quadrilaterals with non-zero edges.
The degenerate cases can easily be treated using projective geometry.

We first show the characterization of dual quadrilaterals by their diagonals. Using
Eq. (8.2) and the multilinearity of the determinant we obtain

4A.P;Q/ D det.p0 � p2;q1 � q3;n/C det.p1 � p3;q2 � q0;n/:

As corresponding edges piC1 � pi and qiC1 � qi (for indices .mod 4/) are parallel,
we further deduce

det.p0 � p2;q1 � q3;n/ D det.p1 � p3;q2 � q0;n/;

which proves the claim.
The conditions of antiparallel diagonals for dual quadrilaterals show the unique-

ness claim, as Q is already fixed by specifying q0 2 R
3 and a common scaling factor

 6D 0.
Existence of a quadrilateral dual to a non-zero quadrilateral P can be seen as

follows. Let m be the intersection point of the diagonals of P and define the two
diagonal directions

e1 D p0 � m
kp0 � mk D � p2 � m

kp2 � mk and e2 D p1 � m
kp1 � mk D � p3 � m

kp3 � mk :

Set

Q� D .q�
0 ; : : : ;q

�
3 / WD

�

� e2
kp0 � mk ;�

e1
kp1 � mk ;

e2
kp2 � mk ;

e1
kp3 � mk

�

:

Then Q� is a planar quadrilateral whose diagonals are antiparallel to those of P by
construction. Furthermore, the edges of Q� are parallel to the corresponding edges
of P. We just show this for one edge as the other cases are analogous.

q�
1 � q�

0 D � e1
kp1 � mk C e2

kp0 � mk D p1 � p0
kp0 � mkkp1 � mk

Although dual quadrilaterals always exist locally, global dualization requires
additional properties in order to result again in a surface.

Definition 8.6 A quadrilateral surface F W D ! R
3 is called a discrete Koenigs

net if it admits a dual net F� W D ! R
3, i.e. F� is a quadrilateral surface such that

corresponding quadrilaterals of F and F� are dual.
There are further characterizations of Koenigs nets, in particular in projective

geometry, see for example [5, Chap. 2.3] for more details.

Theorem 8.1 Let F be a discrete Koenigs net. Then the line congruence net .F;N/
with N D F� is a discrete minimal surface.
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Fig. 8.4 Three possible types of spherical polyhedra

Proof By Lemma 8.1 we know that H D 0 is equivalent to A. f ; n/ D 0 for all
corresponding faces f of F and n of N. This holds by the definition of the dual
surface N D F�.

For smooth minimal surfaces F the characterization N D F� for the Gauss
map N is due to Christoffel [14], for a modern treatment see for example [20].

In order to obtain a discrete Gauss map N which is related to the unit sphere S2 as
for its smooth analog, one may consider spherical polyhedra. There are three natural
types of such polyhedra (see Fig. 8.4) with

vertices on S
2:

In this case kN.v/k D 1 and for all parallel surfaces Ft D F C tN the distance
between corresponding vertices is constant.
Furthermore, we obtain a circular net N W D ! S

2, that is for every
quadrilateral exists a circle through its vertices. The dual net F D N� is then
also a circular net, see [5] for a proof and more details.
faces tangent to S

2:
In particular, for every vertex of the polyhedron the incident faces are tangent
to a cone of revolution touching S

2. Thus we have a conical net and this
property is conserved by dualization, see [1, 9, 28] for more details.
edges tangent to S

2, called Koebe polyhedra:
In this case every face ofN intersects S2 in a circle which touches the boundary
edges of the face from inside.

Note that from circular nets in S
2 one obtains discrete minimal surfaces which

have been defined in [2]. Moreover, circular nets belong to Moebius geometry
whereas conical nets are part of Laguerre geometry. Some examples of Koebe
polyhedra can also be found in the new project DGD GALLERY1 for storage and
publication of digital research data (see also [21]).

In the following, we will only consider Koebe polyhedra further. These are
closely connected to the theory of circle patterns. Above, we have already identified
a family of touching circles on S

2 corresponding to the faces of the Koebe
polyhedron. There is another family of circle corresponding to the vertices. Consider

1http://gallery.discretization.de.

http://gallery.discretization.de
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every vertex of the Koebe polyhedron as the apex of a cone which touches S2. The
intersections of the cones with S

2 are circles which touch at points where the edges
of the Koebe polyhedron touch S

2. Moreover, the circles corresponding to faces
intersect the circles corresponding to vertices orthogonally at these touching points.

Conversely, to an orthogonal circle pattern in S
2 we can associated a Koebe

polyhedron by choosing one family of touching circles as above and adding the
corresponding cones. Their apices are the vertices of the polyhedron which are by
construction connected by edges touching S

2. Thus to an orthogonal circle pattern
there are associated two corresponding Koebe polyhedra.

Furthermore, instead of cones, we may consider the spheres with centers at the
vertices of a Koebe polyhedron which intersect S2 orthogonally. This also leads to
the same family of circles as for the touching cones. Also, Koebe polyhedra are thus
discrete S-isothermic surface which were originally introduced in [3] and will be
explained in the following.

Definition 8.7 LetD be a bipartite quad-graph, that is the vertices are colored white
and black such that every edge is incident to one white and one black vertex. D is
called a S-quad-graph if all interior black vertices have degree 4 and if the white
vertices can be labelled �c and �s in such a way that each quadrilateral has one white
vertex labelled �c and one white vertex labelled �s . Furthermore, the �c -labelled
white vertices have degree 4 and the �s -labelled white vertices have even degree.

Let D be an S-quad-graph and let Vb.D/ be the set of all black vertices. A
discrete S-isothermic surface is a map Fb W Vb.D/ ! R

3 with the following
properties:

(i) If v1; : : : ; v4 2 Vb.D/ are the neighbors of a �c -labelled vertex in cyclic order,
then Fb.v1/; : : : ;Fb.v4/ lie on a circle in R

3 in the same cyclic order. This
defines a map from the �c -labelled white vertices to the set of circles in R

3.
(ii) If v1; : : : ; v2m 2 Vb.D/ are the neighbors of a �s -labelled vertex in cyclic

order, then Fb.v1/; : : : ;Fb.v2m/ lie on a sphere in R
3. This defines a map from

the �s -labelled white vertices to the set of spheres in R
3.

(iii) If vc and vs are the �c -labelled and the �s -labelled vertices of a quadrilateral
of D , the circle corresponding to vc intersects the sphere corresponding to vs
orthogonally.

Given an S-quad-graph D , we can construct an associated graph D�s by taking as

vertices all �s -labelled white vertices. Two such vertices are connected by an edge
in D�s if they are incident to the same black vertex in D . If Fb W Vb.D/ ! R

3 is a
discrete S-isothermic surface, the central extension of Fb is the discrete quadrilateral
surface F W V.D�s / ! R

3 defined by

F.v/ D the center of the sphere corresponding to v:

By abuse of notation, we also call F a discrete S-isothermic surface.
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Theorem 8.2 Every discrete S-isothermic surface is a Koenigs net (i.e. dualizable).

Proof As the vertices of the quad-graph D�s have even degree, the edges can
be labelled C and � such that opposite edges of every quadrilateral carry the
same label. Given the centers of spheres c and the radii r of a discrete S-isothermic
surface F, define new centers of spheres c� and radii r� by

r�.v/ D 1

r.v/
and c�.v1/ � c�.v0/ D ˙c.v1/� c.v0/

r.v1/r.v0/
; (8.5)

where the sign ˙ is given by the label of the edge Œv1; v0� 2 E.D�s /.
We first show that this definition leads indeed to a quadrilateral surface F�.

In particular, we need to show that for any quadrilateral of F we get a new
corresponding quadrilateral of F� by (8.5). Let c0; c1; c2; c3 and r0; r1; r2; r3 be the
centers of spheres and the corresponding radii of a quadrilateral of F enumerated
in counterclockwise orientation. By assumption there is a circle inscribed in this
quadrilateral with center m and radius R. It touches the boundary edges at the
points p01; p12; p23; p30 where pij D ci C ri

cj�ci
riCrj

are images of black vertices. See
Fig. 8.5. Note that the quadrilaterals Pi D .ci; pi;iC1;m; pi�1;i/, where all indices
are taken .mod 4/, are orthogonal rhombi. Now scale Pi by 1=.Rri/ and reflect it in
the edge labelled C. The new orthogonal rhombi P�

i then have two edges of length
1=R and another two of length r�

i D 1=ri. By suitable translations these orthogonal
rhombi P�

i may be combined into a new quadrilateral face with an inscribed circle
with radius 1=R. The corresponding vertices c�

0 ; : : : ; c
�
3 of this quadrilateral then

satisfy (8.5) by construction and kc�
iC1 � c�

i k D r�
iC1 C r�

i for the radii r�
0 ; : : : ; r

�
3 .

Therefore it remains to show that corresponding quadrilaterals of F and F� are
dual. Using the above notations, it is by Lemma 8.2 sufficient to show that

c�
1 � c�

3 k c2 � c0 ” c�
1 � c�

0 C c�
0 � c�

3 k c2 � c0;

where k means that the vectors are parallel. By the definition of c� this condition is
equivalent to

c1 � c0
r0r1

C c3 � c0
r3r0

k c2 � c0: (8.6)

Fig. 8.5 A quadrilateral face
of an S-isometric surface

p01

c1

p12

c2

p23

p30

m

c0

c3
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Fig. 8.6 The vector v.'/j is
obtained by rotating vj in the
tangent plane to the sphere S
at cj

S

rj

wj

n

ϕ

v
(ϕ)
j

vj
rj+1

cjpj

pj+1

As F� is a quadrilateral surface, we have with the definition of c�

1

r0

�
c1 � c0

r1
C c3 � c0

r3

�

D 1

r2

�
c2 � c3

r1
C c2 � c1

r3

�

”
�
1

r1
C 1

r3

�

.c2 � c0/ D
�
r2
r0

C 1

��
c1 � c0

r1
C c3 � c0

r3

�

:

This immediately shows that condition (8.6) holds.

Definition 8.8 An S-isothermic discrete minimal surface (or discrete minimal
surface of Koebe type) is an S-isothermic discrete surface F W V.D�s / ! R

3

whose dual surface is a Koebe polyhedron.
The associated family F' of an S-isothermic discrete minimal surface F0 consists

of the one-parameter family of discrete surfaces that are obtained by the following
construction. Before dualizing the Koebe polyhedron, rotate each edge by an equal
angle ' in the plane which is tangent to the unit sphere in the point where the edge
touches the unit sphere, see Fig. 8.6.

This definition implies that the discrete associated family keeps essential prop-
erties of the smooth associated family. In particular, the surfaces are isometric and
have the same Gauss map.

Theorem 8.3 ([7, Theorem 8]) The discrete surfaces F' of the associated family
of an S-isothermic discrete minimal surface F0 consist of touching spheres. The radii
of the spheres do not depend on '.

In the generic case, when the S-quad-graph is a part of the regular square grid,
there are also circles through the points of contact. The normals of these circles do
not depend on '.

8.3 Construction of Koebe Polyhedra and Discrete
Minimal Surfaces

Definition 8.8 leads to the following construction scheme for discrete minimal
analogs of known smooth minimal surfaces, see also [7].

Step 1: Consider a smooth minimal surface together with its conformal curvature
line parameterization. Map the curvature lines to the unit sphere by the
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Gauss map to obtain a qualitative picture. The goal is to understand
the combinatorics of the curvature lines.
From the combinatorial picture of the curvature lines we choose finitely
many curvature lines to obtain a finite cell decomposition of the unit
sphere S2 (or of a part or of a branched covering of S2) with quadrilateral
cells. The choice of the number of curvature lines corresponds to the level
of refinement (and possibly to the choice of different length parameters).
Generically, all vertices have degree 4. Exceptional vertices correspond
to umbilic or singular points, ends or boundary points of the minimal
surface. So the cell decomposition (or a suitable subdivision) leads to an
S-quad-graph which provides a combinatorial conformal parameteriza-
tion.

Step 2: Given the combinatorics from step 1, construct an orthogonal spherical
circle pattern where circles correspond to white vertices of the S-quad-
graph. If two vertices are incident to the same face the corresponding two
circles intersect orthogonally. Circles corresponding to vertices which are
not incident to the same face, but to the same black vertex touch. The
interiors of the disks filling such touching circles are disjoint. At boundary
vertices we use information about the smooth minimal surface to specify
angles. Ends have also to be taken care of but we do not consider this
case further.

Step 3: From the circle pattern, construct the Koebe polyhedron. Choose half
of the circles, that is those corresponding to white vertices labelled
�c or those labelled �s . The two choices lead to different discrete
surfaces close to each other. Take these circles and build the spheres
which intersect S2 orthogonally in these circles. Then build the Koebe
polyhedron by joining the apices corresponding to touching circles.

Step 4: Dualize the Koebe polyhedron to arrive at the desired discrete minimal
surface.

Note that we obtain the geometry (discrete minimal surface) from the combina-
torics of the curvature lines (and eventually some boundary conditions). Therefore
the first two steps are most important and may require some care. In Sect. 8.3.2, we
present some more details on how to find the combinatorics of the curvature lines
and the boundary conditions for the concrete examples presented in Sect. 8.4. Also
note that the dualization may be impossible for the whole Koebe polyhedron. Then
we first cut the polyhedron along suitable edges.

8.3.1 Construction of Koebe Polyhedra and Spherical
Circle Patterns

Given the combinatorics, there remains the task to construct the corresponding
spherical circle pattern and the Koebe polyhedron. The existence of Koebe poly-
hedra was first studied by Koebe [23]. There are several generalizations of Koebe’s
theorem, for example
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Theorem 8.4 Every polytopal cell decomposition of the sphere can be realized by
a polyhedron with edges tangent to the sphere. This realization is unique up to
projective transformations which fix the sphere.

A proof of this theorem has been given in [11], see also [4, 31, 34] for
generalizations. Bobenko and Springborn [4] contains a variational proof. A suitable
stereographic projection of the orthogonal circle pattern on S

2 which corresponds to
the sought-after polyhedron is shown to be the critical point of a strictly convex
functional. This implies existence and uniqueness. By its explicit formula the
functional is also easy to compute and therefore particularly suitable for explicit
constructions. Furthermore, an adaption of the functional can be used to compute
planar circle patterns with given angles at boundary vertices corresponding to
Neumann boundary conditions.

As orthogonal circle patterns are crucial for our construction, we specify
this notion.

Definition 8.9 Let D be a bipartite quad-graph. Let G be the associated graph
constructed from all white vertices of D , that is V.G/ D Vw.D/. Two vertices of G
are connected by an edge if they are incident to the same face in D .

An orthogonal planar circle pattern for D or G is a configuration of circles
in the complex plane C, such that to each white vertex of Vw.D/ D V.G/ there
corresponds a circle (all with the same orientation). If two white vertices are incident
to the same face in D , i.e. are incident in G, the corresponding circles intersect
orthogonally. Furthermore, if two white vertices are incident to the same black
vertex of Vb.D/, but are not incident to the same face in D , the corresponding
circles touch and have disjoint interiors.

Remark 8.2 Note that an orthogonal planar circle pattern for D exists only if
all black vertices have degree 4. For the graph G this means that all faces are
quadrilaterals.

The notion of orthogonal circle patterns may easily be generalized, for example
to spherical or hyperbolic geometry. Accordingly, a spherical orthogonal circle
pattern for D or G is a configuration of circles on the sphere S

2 intersecting
orthogonally corresponding to the combinatorics ofD orG respectively analogously
as for an orthogonal planar circle pattern. In other terms, spherical orthogonal circle
patterns for D or G and orthogonal planar circle patterns for D or G are related by
a suitable orthogonal projections.

Theorem 8.5 LetD be a strongly regular cell decomposition of a compact oriented
surface with or without boundary which is a bipartite quad-graph. Let G be the
associated graph built from all white vertices. Let ˚ 2 .0;1/V be a function on
the set V D V.G/ of vertices of G which correspond to the white vertices of D
such that ˚.v/ D 2� for interior vertices v 2 V.G/. ˚ prescribes for boundary



272 A.I. Bobenko et al.

vertices of G the Neumann boundary conditions. A planar orthogonal circle pattern
corresponding to these data exists if and only if the following condition is satisfied:

If V 0 � V is any nonempty set of vertices and E0 � E D E.G/ is the set of all
edges which are incident with any vertex v 2 V 0, then

X

v2V0

˚.v/ �
X

e2E0

�;

where equality holds if and only if V 0 D V.
If it exists, the orthogonal circle pattern is unique up to similarities.
See [4] for a proof of a more general statement.
Theorem 8.5 is useful for the application of Step 2 of our construction scheme

above as we usually do not obtain in Step 1 a cell decomposition of the whole
sphere but only of a part. In order to construct the Koebe polyhedron, the main
task is to suitably specify the corresponding boundary conditions after stereographic
projection.

However, for the examples presented in Sect. 8.4 the boundary conditions are
simplest for the spherical circle patterns. Therefore, we have actually used a method
developed by Springborn for calculating the spherical circle patterns directly by
a variational principle, see [7, Sect. 8] or [37] for more details. The solutions
of the spherical circle pattern problem with given boundary angles are in one-
to-one correspondence with the critical points of another functional. Since this
functional is not convex and has negative index at least one, the critical points
cannot be obtained by simply minimizing the functional. In order to numerically
compute the spherical circle pattern, a convenient reduced functional is used instead.
Existence and uniqueness of a solution are not yet proven. Nevertheless, this method
has proven to be amazingly powerful, in particular to produce the spherical circle
patterns for the examples in Sect. 8.4. More details concerning the implementation
can be found in [36].

8.3.2 Construction of S-Isothermic Discrete Minimal Surfaces
with Special Boundary Conditions

In the following we explain some details of how to perform the first step (finding
the combinatorial parametrization and boundary conditions) of the general construc-
tions scheme for S-isothermic discrete minimal surfaces. We restrict ourselves to
examples with boundary conditions specified below (Schwarzian chains).

8.3.2.1 Boundary Conditions and Reduction of Symmetries

We consider the family of smooth minimal surfaces which are bounded by a closed
curve consisting of finitely many arcs of positive length each of which
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either (i) lies within a plane which intersects the surface orthogonally. Then this
boundary arc is a curvature line and the surface may be continued
smoothly across the plane by reflection in this plane.

or (ii) lies on a straight line. Then this boundary arc is an asymptotic line and
the surface may be continued smoothly across this straight line by 180ı-
rotation about it.

In each case the image of the boundary arc under the Gauss map is (a part of) a great
circle on the unit sphere. The implications in (i) and (ii) are well-known properties
of smooth minimal surfaces (Schwarz’s reflection principles); see for example [16].

Since the boundary conditions are translated into angle conditions for boundary
circles, an S-isothermic discrete minimal surface may also be continued by reflection
in the boundary planes or by 180ı-rotation about straight boundary lines. In partic-
ular, the boundary circles of the spherical circle pattern intersect the corresponding
great circle orthogonally.

Thus in order to simplify the construction of a discrete analog, we only consider
a fundamental piece of the smooth (and the discrete) minimal surface. This piece of
the surface is bounded by planar curvature lines and/or straight asymptotic lines (like
the whole surface itself) and the whole surface is obtained from the fundamental
piece by successive reflection/rotation in its boundary planes/lines and the new
obtained boundary planes/lines. See Fig. 8.7 for an example of a fundamental piece.
Furthermore, there is no strictly smaller piece with this property.

8.3.2.2 Combinatorics of Curvature Lines

Given a fundamental piece of a smooth minimal surface, first determine

• a combinatorial picture of the image of the boundary arcs under the Gauss map
(which are parts of great circles on S

2),
• the angles between different boundary arcs on S

2,
• and eventually the lengths of the boundary arcs on S2 if the angles do not uniquely

determine the boundary curve on S
2 (up to rotations of the sphere). This case is

more difficult; see Remark 8.3.

Second, from the smooth curvature line parametrization we deduce the following
conditions.

(1) Umbilic and singular points are taken from the smooth minimal surface, but
only their combinatorial locations matter. The smooth surface also determines
the number of curvature lines meeting at these points. For interior umbilic or

Fig. 8.7 A combinatorial picture of the boundary conditions on S
2 of a fundamental piece of

Schwarz’s H surface



274 A.I. Bobenko et al.

curvature line
asymptotic line
umbilic point

Fig. 8.8 A combinatorial conformal parametrization of a fundamental domain of Schwarz’s H
surface

singular points, we additionally have to take care how many times the interior
region is covered by the Gauss map. This case does not occur in any of the
examples presented in Sect. 8.4, so we assume for simplicity that all umbilic or
singular points lie on the boundary.

(2) At a regular intersection point of a boundary curvature line and a boundary
asymptotic line possibly additional curvature lines are taken from the smooth
surface (depending on the intersection angle).

(3) The curvature lines of the combinatorial parametrization divide the domain into
combinatorial squares. The only exceptions are combinatorial triangles formed
by two curvature lines and by an asymptotic line on the boundary.

Hence, first determine all special points from conditions (1) and (2) and continue
the additional curvature line(s) meeting at these points. In this way, the combinato-
rial domain is divided into finitely many subdomains such that condition (3) holds
and the discrete curvature lines correspond to or approximate the smooth (infinite)
curvature line pattern; see Fig. 8.8 (left).

Given this coarse subdivision the parametrization of the subdomains is obvious.
The only additional conditions occur at common boundaries of two subdomains,
where the number of crossing curvature lines has to be equal on both sides. The
remaining free integer parameters of the discrete minimal surface correspond to
smooth parameters of the continuous minimal surface such as scaling or quotients
of lengths (for example of the boundary curves).

Remark 8.3 By construction, the free parameters of the combinatorial curvature
line parametrization take integer values and the number of (quadrilateral) sub-
domains is finite. Also, all combinatorial curvature lines are closed modulo the
boundary. In general these properties do not hold for curvature lines of smooth
minimal surfaces. Furthermore, there may be dependencies between the numbers
of curvature lines of different types which have to be approximated by the choice
of the free integer parameters of the combinatorial curvature line parametrization.
These three aspects affect the different appearances of the smooth minimal surfaces
and its discrete minimal analog.

In the special case that the smooth curvature lines are closed modulo the
boundary and the combinatorial curvature line parametrization has only one free
parameter (corresponding to overall scaling), the discrete minimal analog will have
exactly the same boundary planes/straight lines (up to translation and scaling).
In this way we can construct some triply-periodic S-isothermic discrete minimal
analogs to triply-periodic minimal surfaces.
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8.4 Examples of Discrete Minimal Surfaces

In the following, the construction of discrete minimal surfaces explained in the
beginning of Sect. 8.3 and in Sect. 8.3.2 is applied to some examples. In each
case we present the boundary conditions and deduce suitable reduced conditions,
a combinatorial picture of the curvature and/or the asymptotic lines and the
image of the reduced boundary conditions under the Gauss map. If this image is
uniquely determined by the intersection angles between arcs of great circles (up
to rotation of the sphere), then the corresponding spherical circle pattern will also
be unique (due to the simple combinatorics). This is the case in Sects. 8.4.1–8.4.6,
for symmetric quadrilaterals and for the cubic frames considered in Sect. 8.4.7.3.
Reflection in straight boundary lines and/or boundary planes results in triply
periodic discrete minimal surfaces analogously as for smooth surfaces. This is
the case in Sects. 8.4.3–8.4.6 without generalizations and in Sects. 8.4.1, 8.4.2
and 8.4.7.3 for special cases. The figures often show one cubical unit cell of the
periodic lattice.

Pictures of the corresponding smooth minimal surfaces can be found in textbooks
like [16, 26], in [22], on Brakke’s web-page [10], or in some of the original treatises
cited below.

Notation
For the combinatorial pictures of the curvatures lines we use the following notation.

curvature line Angles of the boundary

asymptotic line configuration on S
2:

umbilic point q right angle

n,m,k,l integer parameters of ˛; ˇ; �; ı; � given angles

curvature or asymptotic lines

8.4.1 Gergonne’s Surface

Gergonne’s surface traces back to Gergonne [19], who posed the first geometric
problem leading to minimal surfaces with free boundaries in 1816. A correct
solution was only found by H.A. Schwarz in 1872; see [35, pp. 126–148]. Figure 8.9
shows two discrete minimal analogues.

Boundary conditions: Given a cuboid take two opposite faces as boundary faces
and non-collinear diagonals of two other opposite faces, as in Fig. 8.10a. Then
the two axes of 180ı-rotation symmetry (see Fig. 8.10b) will lie on the minimal
surface and cut it into four congruent fundamental pieces bounded by three straight
asymptotic lines and one planar curvature line; see Fig. 8.10c. Its images under the
Gauss map are spherical triangles with angles �

2
, �
2

, and ˛.
A combinatorial picture of the asymptotic lines or of the curvature lines is shown

in Fig. 8.10d. The two parameters correspond to the free choice of two length
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Fig. 8.9 Discrete Gergonne’s surface with ˛ D �
6

(left, case 3 of Fig. 8.10d with m D 1; n D 3)
and ˛ D �

4
(right, case 2 of Fig. 8.10d with n D 4)

Fig. 8.10 Gergonne’s surface: boundary conditions and combinatorial conformal parametriza-
tions. (a) Boundary conditions. (b) Symmetry axes. (c) Reduced boundary conditions. (d) Different
types of combinatorial conformal parametrizations

parameters of the cuboid, given the angle .�
2

� ˛/ between the diagonal and the
planar boundary face. If ˛ D �

4
, the minimal surface [see Fig. 8.9 (right)] can be

continued by reflection and rotation in the boundary faces/edges to result in a triply
periodic (discrete) minimal surface.
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8.4.2 Schwarz’s CLP Surface

Schwarz’s CLP surface is one of the triply periodic minimal surfaces already
constructed by H.A. Schwarz, see [35, vol. 1, pp. 92–125]. The name CLP is due
to Schoen [33]. He considered the labyrinth formed by the periodic surface and
associated the name to properties of the underlying spatial lattice.

Boundary conditions: Consider a frame of two pasted rectangles (with edge
lengths a; b; c) which enclose an angle ˛ 2 .0; �/, as in Fig. 8.11 (left). Then
there is a plane of reflection symmetry orthogonal to the sides with length a and
a corresponding planar curvature line. If b D c there is another plane of reflection
symmetry through both corners with angle ˛ and yet another curvature line. This
curvature line persists if b 6D c. The image of a fundamental domain for the generic
case b 6D c under the Gauss map is a spherical triangle with angles �

2
, �
2

, and .��˛/.
The combinatorics of curvature lines of one fourth of the surface are depicted

in Fig. 8.11 (right). The two integer parameters correspond to the two boundary
lengths of the first rectangle. Thus for the whole frame there are three parameters
corresponding to the three lengths a; b; c. If ˛ D �

2
the surface [see Fig. 8.12 (right)]

Fig. 8.11 A generalization of Schwarz’s CLP surface: boundary frame (left) and combinatorics of
curvature lines (right)

Fig. 8.12 A generalization of Schwarz’s CLP surface (left, ˛ D 2�
3

, m D 5; n D 1) and Schwarz’s
CLP surface (right, ˛ D �

2
, m D 5; n D 1)
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Fig. 8.13 Schwarz’s CLP surface

can be continued across its boundaries to build a triply periodic discrete minimal
surface. Figure 8.13 shows a cubical unit cell.

8.4.3 Schwarz’s D Surface

Schwarz’s D surface is another triply periodic minimal surfaces already constructed
by H.A. Schwarz, see [35, vol. 1, pp. 92–125]. The surface was named D by
A. Schoen because its labyrinth graphs are 4-connected ‘diamond’ networks.

Boundary conditions: From the edges of a cuboid take a closed boundary frame
as in Fig. 8.14 (left). The three straight lines of 180ı-rotation symmetry lying within
the minimal surface and one of the three planes of reflection symmetry orthogonal to
the boundary frame which give planar curvature lines are depicted in Fig. 8.14 (left).
Therefore a fundamental piece is a triangle bounded by two straight asymptotic lines
and one planar curvature line. Its image under the Gauss map is a spherical triangle
with angles �

2
(between the two asymptotic lines) and �

4
and �

3
.

The simple combinatorics of the curvature lines is shown in Fig. 8.14 (right). The
only parameter corresponds to overall scaling or refinement. The minimal surface
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n

Fig. 8.14 Schwarz’s D surface: boundary frame with symmetries (left) and combinatorics of
curvature lines of a fundamental piece (right)

Fig. 8.15 Schwarz’s D surface (n D 4)

constructed by the boundary frame can be continued across the boundary to result
in a triply periodic minimal surface, see Fig. 8.15.

8.4.4 Neovius’s Surface

Schwarz [35] began to consider minimal surfaces bounded by two straight lines
and an orthogonal plane. His student E.R. Neovius continued and deepened this
study and found another triply periodic surface, see [25]. This surface has the same
symmetry group as Schwarz’s P surface and was named C(P) by A. Schoen.

Boundary conditions: One unit cell of the lattice of Neovius’s surface is basically
a cubical cell with one central chamber and necks out of the middle of each edge
of the cube; see Fig. 8.16. By symmetry, it is sufficient to consider one eighth of
the unit cell. All the faces of this cuboid are boundary planes and we have the same
three planes of reflection symmetry and three lines of 180ı-rotation symmetry as
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Fig. 8.16 Neovius’s surface (n D 15)

n

Fig. 8.17 Combinatorics of curvature lines of a fundamental piece of Neovius surface

for Schwarz’s D surface; see Fig. 8.14 (left). Therefore a fundamental piece is a
triangle bounded by one straight asymptotic lines and two planar curvature lines. Its
image under the Gauss map is a spherical triangle with angles 3�

4
(between the two

curvature lines) and �
4

and �
3

.
The combinatorics of the curvature lines is again very simple, see Fig. 8.17.

8.4.5 Schwarz’s H Surface

Schwarz’s H surface is another triply periodic minimal surface which was already
known to H.A. Schwarz, see [35, vol. 1,pp. 92–125].

Boundary conditions: Take the edges of two parallel copies of an equilateral
triangle as boundary frame for a minimal surface spanned in between them, as in
Fig. 8.18. Then there are one plane of reflection symmetry parallel to the triangles
and three other orthogonal planes as symmetry group of the equilateral triangle.
Thus a fundamental piece is bounded by three planar curvature lines and one straight
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Fig. 8.18 Schwarz’s H surfaces with different heights (left: m D 3; n D 3, right: m D 3; n D 6)

(a)

m

n

(b) (c) 

Fig. 8.19 Schwarz’s H surface and (a generalization of) Schoen’s I-6 surface. (a) Boundary frame
of Schwarz’s H surface with a fundamental piece. (b) Combinatorics of the curvature lines of
(one half of) a fundamental piece. (c) Boundary frame of Schoen’s I-6 surface with a fundamental
piece

asymptotic line; see Fig. 8.19a. Its image under the Gauss map is a spherical triangle
with angles �

2
, �
2

, �
3

; see Fig. 8.7.
The combinatorics of the curvature lines is shown in Fig. 8.8 or 8.19b. The two

parameters correspond to the side length of the equilateral triangle and to their
distance.

8.4.6 Schoen’s I-6 Surface and Generalizations

About 1970, the physicist and crystallographer A. Schoen discovered many triply
periodic minimal surfaces. His reports [33] were a bit sketchy, but Karcher [22]
established the existence of all of Schoen’s surfaces.

Boundary conditions: Similarly as for Schwarz’s H surface, take the edges of two
parallel copies of a rectangle as boundary frame for a minimal surface between
them. There are one plane of reflection symmetry parallel to the rectangles and
two other orthogonal planes as symmetry group of the rectangle (four in case of a
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square). Thus a fundamental piece is generically bounded by three planar curvature
lines and one straight asymptotic line; see Fig. 8.19c. Its image under the Gauss map
is a spherical triangle with angles �

2
, �
2

, and �
4

. There is one additional curvature line
splitting the piece into two parts which can easily be found be reflection symmetry
in the case of squares.

For both parts the combinatorics of curvature lines are the same as for the
fundamental piece of Schwarz’s H surface; see Fig. 8.19b or Fig. 8.8. The three
remaining parameters correspond to the side lengths of the two rectangles and to
their distance.

In an analogous way to the construction of Schwarz’s H surface and Schoen’s
I-6 surface, we may consider all regular symmetric planar polygons with sides of
equal length or to non-regular planar polygons with additional symmetry planes.
The fundamental piece is always combinatorially the same as for Schwarz’s
H surface. The only difference is the angle ˛ D �

n for an n-gon. These minimal
surfaces may also be understood as an approximation to a piece of the catenoid;
see Fig. 8.21 (left). The construction may easily be generalized to further similar
examples; see Fig. 8.20 (right) and Fig. 8.21 (right).

8.4.7 Polygonal Boundary Frames

As a special class of Plateau’s problems, all non-planar, simple, unknotted polygons
can be considered as boundary conditions. The main task is to determine the
corresponding discrete combinatorics of the conformal parameter lines. The number
of different special cases increases with the number of boundary segments, so we
confine ourselves to quadrilaterals, pentagons, and a cubical boundary frame as
one more complicated example. Since the boundary frame consists only of straight

Fig. 8.20 Schoen’s I-6 surface (left, m D 7; n D 14) and a generalization (right)
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Fig. 8.21 An approximation of a piece of a catenoid using a polygonal boundary frame (left,
n D 10;m D 3) and a generalization (right, m1 D 3; n1 D 6;m2 D 7; n2 D 2)

asymptotic lines, we use the conjugate minimal surface from the associated family
for the construction, see Definition 8.8.

8.4.7.1 Quadrilateral

The minimal surface spanned by a quadrilateral with equal side lengths and equal
angles of �

3
was the first known solution in the class of Plateau’s problems. In 1865,

H.A. Schwarz found the explicit solution [35, pp. 6–125]. About the same time,
B. Riemann independently solved this problem [30, pp. 326–329]. His paper [29]
appeared posthumously in 1867. At the same time H. A. Schwarz sent his prize-
essay to the Berlin Academy. Later on, Plateau’s problem was tackled for other
polygonal boundaries, see for example the historical remarks in [16, 26].

Given a non-planar quadrilateral of straight boundary lines as in Fig. 8.22, the
combinatorics of asymptotic lines is easily found; see Fig. 8.23b (left). Then the
corresponding curvature lines may also be determined, as in Fig. 8.23b (right). The
two parameters correspond to a global scaling and the to a ratio of lengths of the
boundary segments. As explained in Remark 8.3, in general we do not obtain exactly
a given quadrilateral boundary frame but an approximation which converges for a
suitable choice of parameter values.

In the case of a non-planar symmetric quadrilateral the combinatorics of curva-
ture lines are obvious; see Fig. 8.23a. The only parameter corresponds to a global
scaling or refinement. Thus we can obtain any symmetric quadrilateral boundary
frame as the exact boundary of a discrete minimal surface, see Fig. 8.22.
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Fig. 8.22 Two examples of discrete quadrilateral boundary frames: a symmetric version (left with
˛ D ˇ D � D �=6, n D 9) and a general version (right)

Fig. 8.23 Boundary conditions and combinatorial parametrizations for symmetric (a) and general
(b) quadrilaterals

8.4.7.2 Pentagon

In the symmetric case the boundary configuration allows a plane of mirror symmetry
containing one boundary vertex and cutting the opposite edge. The remaining
reduced domain is similar to the boundary conditions of Gergonne’s surface and
thus has the same combinatorics of asymptotic lines; see Fig. 8.24a.

The general case is more difficult. In principle, there are two possibilities for the
combinatorial position of an additional umbilic point; see Fig. 8.24b. The integer
parameters correspond to lengths of boundary segments. See Fig. 8.25 for two
examples.

8.4.7.3 A Cubical Frame

As a last example consider a more complicated polygonal boundary frame as
illustrated in Fig. 8.27a. By construction, the minimal surface spanned by this
frame has two planes of reflection symmetry and yet two planar curvature lines.
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Fig. 8.24 Boundary conditions and combinatorics of asymptotic lines for symmetric (a) and
general (b) pentagons

Fig. 8.25 Two examples of discrete pentagons: a symmetric boundary frame (left, m D 4; n D 4)
and a general boundary frame (right)

A fundamental piece is therefore bounded by three straight asymptotic lines and
two curvature line. Its image under the Gauss map is a spherical triangle with three
right angles.

The possible combinatorics of curvature lines are depicted in Fig. 8.27b. The
three integer parameters correspond to the three edge lengths of the cuboid. A
minimal surface constructed by this boundary conditions is shown in Fig. 8.26 (left)
and can be continued across the boundary to result in a triply periodic minimal
surface. Of course, this example may be generalized to related problems. Figure 8.26
(right) shows an example of such a generalization.
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Fig. 8.26 An example of a discrete minimal surface with cubical boundary frame (left, first case
of Fig. 8.27b with k D 2; n D 4) and a generalization (right)

a

b

c
(a)

n

k

n

mk

n

m

k

(b)

Fig. 8.27 A general cubical boundary frame. (a) A cubic boundary frame and its symmetry planes.
(b) Different possible types for the combinatorics of curvature lines of a fundamental piece

8.5 Weierstrass Representation and Convergence of Discrete
Minimal Surfaces

The convergence of the S-isothermic discrete minimal surfaces can easily be
deduced from the convergence of the orthogonal circle patterns, which are used
for the construction of the associated Koebe polyhedron, to the corresponding
smooth Gauss map. More precisely, we prove the convergence of the stereographic
projections of the spherical orthogonal circle patterns to the corresponding complex
Gauss map. Then the convergence of the corresponding S-isothermic discrete
minimal surfaces is obtained using a suitable discrete Weierstrass representation.
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8.5.1 Discrete Weierstrass Representation

The classical Weierstrass representation relates a conformal mapping of the complex
plane, i.e. a bijective holomorphic mapping, to a smooth minimal surface. In the dis-
crete case, we take suitable orthogonal circle patterns with the same combinatorics
as discrete conformal mappings. This leads to an analogous discrete Weierstrass
representation formula.

Theorem 8.6 (Discrete Weierstrass Representation; [7, Theorem 6]) Let D be
an S-quad-graph. Let C be a planar orthogonal circle pattern for D . Denote the
centers and intersection points of this circle pattern by cC and pC respectively.
Then an S-isothermic discrete minimal surface F W V.D�s / ! R

3 is given by the
following formula:

Let v1; v2 2 V.D�s / be two vertices, which correspond to touching circles of the
pattern. Let y 2 Vb.D/ be the black vertex between v1 and v2, which corresponds to
the point of contact. Then the centers F.v1/ and F.v2/ of the corresponding touching
spheres of the S-isothermic discrete minimal surface F satisfy

F.v2/�F.v1/ D ˙<
0

@ r.v2/C r.v1/

1C jpj2
cC .v2/� cC .v1/

jcC .v2/� cC .v1/j

0

@
1 � p2

i.1C p2/
2p

1

A

1

A ; (8.7)

where p D pC .y/ and the radii r.vj/ of the spheres are

r.vj/ D
ˇ
ˇ
ˇ
ˇ
1C jcC .xj/j2 � jcC .xj/pj2

2jcC .xj/� pj
ˇ
ˇ
ˇ
ˇ : (8.8)

The sign on the right-hand side of equation (8.7) depends on the label of the edge
connecting v1 with v2.

8.5.2 Convergence of Discrete Minimal Surfaces

The discrete Weierstrass representation and its smooth analogon are the basis of
our convergence proof. In fact, note that C1-convergence of the orthogonal circle
patterns to a conformal mapping implies the C1-convergence of the associated
discrete S-isothermic minimal surfaces (suitably scaled and translated) to the
corresponding smooth minimal surface.

We restrict ourselves to the class of (discrete) minimal surfaces which are
bounded, homeomorphic to a disk, and have a boundary curve consisting of planar
curvature lines or straight asymptotic lines. As a simple example, consider a part of
Schwarz’s D surface.
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First, we fix some notation. Let SGD be the regular square grid cell decomposi-
tion of the complex plane, that is the vertices are V.SGD/ D Z C iZ and the edges
are given by pairs of vertices Œz; z0� with z; z0 2 V.SGD/ and jz� z0j D 1. Bicolor the
vertices V.SGD/ such that the black vertices are Vb.SGD/ D fn C im 2 Z C iZ W
n C m D 1 .mod 2/g and the white vertices are Vw.SGD/ D fn C im 2 Z C iZ W
n C m D 0 .mod 2/g.

Adding circles of radius 1 with centers at the vertices Vb.SGD/ leads to an
isoradial circle pattern filling the whole complex plane, where circles intersect only
orthogonally or touch.

Definition 8.10 Consider a cell decomposition of a two-dimensional manifold
which is isomorphic to a subset of SGD and let G be its bicolored graph. An SG-
circle pattern with the combinatorics of G is a configuration of circles, such that to
each white vertex of G there corresponds a circle (all with the same orientation). If
two vertices are incident to the same face then the corresponding circles intersect
orthogonally. Furthermore, if two vertices are incident to the same black vertex of
G but are not incident to the same face, the corresponding circles touch and have
disjoint interiors.

Let D be simply connected bounded region in the complex plane whose
boundary is a convex kite with straight edges, or a stereographic projection of a
convex spherical kite whose edges are parts of great circles and lying strictly within
one half-sphere. Let R D fxCiy W x; y 2 Œ0; 1�g be the closed unit square in R

2 Š C.
For n 2 N, denote by SGn the cell decomposition SGD scaled by the factor

1=.2n/ > 0. Denote the subdecomposition corresponding to all vertices of SGn

contained in R by SGR
n . By abuse of notation, we will not distinguish between

the abstract cell decomposition SGR
n and its embedding into R. The isoradial

orthogonal circle pattern of all circles with the same radius 1=.2n/ and centers in
the white vertices Vw.SGR

n / is denoted by Cn. The four vertices a C ib 2 Vw.SGR
n /

with a; b 2 f0; 1g at the corners of R will be referred to as corner points of R.
Assume that for each n 2 N there is an SG-circle pattern CD

n with the
combinatorics of SGR

n such that all boundary circles intersect the boundary @D
orthogonally and the circles corresponding to corner points of SGR

n intersect the
two corresponding boundary arcs of @D orthogonally. In the case of a convex
kite (i.e. straight edges), the existence of CD

n is guaranteed by Theorem 8.5. The
general question on existence for the spherical case is still open, see Sect. 8.3 and
[7] for further remarks and special cases. Nevertheless, existence can be proven
for some special cases, for example for a symmetric spherical quadrilateral with
angles ˛ D 2�=3 D � , ˇ D �=2 D ı. This choice of angles leads to four
fundamental pieces of Schwarz’s D surface bounded by four planar curvature lines,
see Sect. 8.4.3.

Given the cell decomposition SGR
n , we can easily obtain a triangulation by

adding edges between white vertices which are incident to the same face. Given the
circle patterns Cn and CD

n , we denote the embeddings of the above triangulations
by Tn � R and TD

n � Dn respectively. Here Dn is the convex hull of the centers and
the intersection points of CD

n . Note that all triangles of Tn and TD
n are right-angled.
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�
gn

Fig. 8.28 An example of two corresponding orthogonal circle patterns filling a square and a kite-
shaped convex quadrilateral respectively

Now we construct a homeomorphism corresponding to the circle patterns which
approximates a given conformal mapping from R onto D .

Fix a conformal homeomorphism from R onto D which maps the corner points
of R to the corner points of D . Let gcorn be the restriction of g to the corner
points of R. Denote by gcornn the corresponding bijective mapping which maps the
corner points of R to the corresponding centers of circles of CD

n . As approximating
mapping we define gn W R ! Dn to be the simplicial map determined by the
correspondence of vertices and edges of Tn and TD

n which agrees with gcornn at the
corner points. Recall that a simplicial map for two triangulations as Tn and TD

n maps
vertices to corresponding vertices and is linear on every triangular face. An example
of Cn and CD

n —and hence gn—is given in Fig. 8.28.
For abbreviation we denote R� D R n fcorner pointsg. Compact sets K � R�

will always mean compact subsets of C with respect to the standard metric which
are contained in R�. Furthermore, we define the radius function rn W Vw.SGR

n / !
.0;1/ of CD

n which assigns to every white vertex the radius of the corresponding
circle of CD

n . Now we can state our convergence result:

Theorem 8.7 The mappings gn converge to the unique conformal homeomorphism
g W R ! D which coincides with gcorn at the corner points. The convergence is
uniform on R and in C1 on compact subsets of R�. Furthermore, the quotients
of corresponding radii, 2nrn, converge to jg0j in C1 uniformly on compact subsets
ofR�.

A detailed version and a generalization of Theorem 8.7 as well as a proof can be
found in [12, Chap. 7] or in [13].

Remark 8.4 If the angle of D at a corner point is �=2 then the convergence is also
in C1 on compact sets of R including the corresponding corner point. Instead of
R, we may consider the rotated region R 0 D ei�=4R and the part of SGn contained
in R 0. Note that the corresponding combinatorics differ from SGR

n . Theorem 8.7
also holds in this case.

Theorem 8.8 Let D be the projection of a symmetric spherical quadrilateral
Q � S

2 bounded by parts of great circles which is entirely contained in one half
of the sphere. Assume that for all n 2 N orthogonal circle patterns CD

n with the
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combinatorics of SGR
n exist such that all boundary circles intersect the boundary

@D orthogonally and the circles corresponding to corner points of SGR
n intersect

two corresponding boundary lines of @D orthogonally. For n 2 N, define gn as in
Theorem 8.7.

Let Fn be the discrete minimal surface obtained from the stereographic projection
of CD

n by dualization and scaled as in Theorem 8.6. Then the scaled S-isothermic
discrete minimal surfaces Mn corresponding to 1

n2
Fn converge uniformly for the

images of compact subsets ofR� to a smooth minimal surface M. The stereographic
projection of the Gauss map, determining M up to translation and scaling, is given
by the conformal map g W R ! D .
The proof is a straight forward application of the Weierstrass Representation
Theorem 8.6, see also the proof of [7, Theorem 9].
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Chapter 9
Robust and Convergent Curvature and Normal
Estimators with Digital Integral Invariants

Jacques-Olivier Lachaud, David Coeurjolly, and Jérémy Levallois

Abstract We present, in details, a generic tool to estimate differential geometric
quantities on digital shapes, which are subsets of Zd. This tool, called digital integral
invariant, simply places a ball at the point of interest, and then examines the inter-
section of this ball with input data to infer local geometric information. Just counting
the number of input points within the intersection provides curvature estimation in
2D and mean curvature estimation in 3D. The covariance matrix of the same point
set allows to recover principal curvatures, principal directions and normal direction
estimates in 3D. We show the multigrid convergence of all these estimators, which
means that their estimations tend toward the exact geometric quantities on—smooth
enough—Euclidean shapes digitized with finer and finer gridsteps. During the
course of the chapter, we establish several multigrid convergence results of digital
volume and moments estimators in arbitrary dimensions. Afterwards, we show
how to set automatically the radius parameter while keeping multigrid convergence
properties. Our estimators are then demonstrated to be accurate in practice, with
extensive comparisons with state-of-the-art methods. To conclude the exposition,
we discuss their robustness to perturbations and noise in input data and we show
how such estimators can detect features using scale-space arguments.
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9.1 Curvature Estimation on Discrete Data

Context and Objectives In many shape processing applications, the estimation of
differential quantities on the shape boundary is usually an important step. Their
correct estimation makes easier further processing, like quantitative evaluation,
feature detection, shape matching or visualization. This paper focuses on estimating
the curvature tensor on the boundary of digital shapes. Such digital structures
are subsets of the 3-dimensional digital space Z

3 and come generally from the
digitization of some Euclidean shape. Of course, the curvature tensor estimation
should be as close as possible to the curvature tensor of the underlying Euclidean
shape before digitization. Digital data form a special case of discrete data with
specific properties: (1) digital data cannot sample the boundary of the Euclidean
shape (i.e. they do not lie on the shape boundary), (2) digital data are distributed
around the true sample according to arithmetic noise, which looks rather uniform
over a range Œ�h; h� from a statistical point of view, where h is the digitization
grid step. Another way of stating these characteristics is to say that the Hausdorff
distance between the Euclidean shape and its digitization is some O.h/. Of course,
the quality of the estimation should be improved as the digitization step gets finer
and finer. This property is called the multigrid convergence [12, 29]. It is similar in
spirit with the stability property in geometry processing: given a continuous shape
and a specific sampling of its boundary, the estimated measure should converge to
the Euclidean one when the sampling become denser (e.g. [2, 45]).

Curvature Estimation on Meshes Digital data being discrete in nature, it is
interesting to look at the curvature estimation techniques on triangulated meshes. In
computer graphics and geometry processing, there exists a vast family of techniques
to estimate either the mean or Gaussian curvatures, or sometimes the full curvature
tensor. Most of them are local (i.e. limited to a 1-ring or 2-ring of neighbors) but
exhibit correct results for nice meshes. They generally fall into three categories:
fitting, discrete methods, curvature tensor estimation. We may refer to [56] and [24]
for comprehensive evaluations, and Desbrun et al. [20] or Bobenko and Suris [5]
for an entirely discrete theory. Most of them do not have theoretical convergence
guarantees even without noise on the mesh. We may quote [47] and [54] as
approaches trying to tackle perturbation through averaging.

For Gaussian curvature estimated with Gauss-Bonnet approach (angle defect),
Xu [58] provides a stability theorem for triangulated mesh whose vertices lie on
the underlying smooth manifold, with valence 6 and parallelogram condition (each
1-ring of neighbors is projected as a parallelogram onto a plane). Assuming a
sampling with density ı, he provides an additional convergence property whenever
the sampling is perturbated by some O.ı˛/, but ˛ > 2 (inadequate for discrete
data). Note that if the triangulated mesh does not satisfy these requirements, such
estimation does not converge.

The integral measures of curvatures, based on normal cycle theory [16, 17] is
another notable approach for estimating curvature information on a triangulated
mesh. The authors exhibit some convergence results for triangulated meshes with
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vertices lying on the underlying smooth Euclidean shape boundary. In this case,
if the mesh has Hausdorff distance to shape boundary below �, convergence is
obtained with speed/error O.�/ under some hypotheses.

Finally, in geometry processing, interesting mathematical tools have been devel-
oped to design differential estimators on smooth surfaces based on integral invari-
ants [48, 49]. They consist in moving a kernel along the shape surface and
in computing integrals on the intersection between the shape and the kernel.
The authors have demonstrated that some integral quantities provide interesting
curvature information when the kernel size tends to zero. They also achieve stability
depending on the kernel radius and on �, for instance in the case of a mesh sampling.
Our new estimators rely on the same ideas.

Curvature Estimation on Point Clouds When having only discrete data (i.e. a
point cloud), the most natural way to approach curvature(s) is to fit a polynomial
surface of degree two at least. Perhaps the most representative of these techniques
is the osculating jets of Cazals and Pouget [10]. The authors provide O.ı2/
convergence results when the data is a surface sampling, assuming ı is the density of
points. There is no theoretical result in presence of noise, although the least-square
fitting of osculating jets is very robust to noise in practice.

Another family of techniques exploits the Voronoi diagram [1, 44, 45]. The idea
behind these approaches is, instead of fitting the tangent space, to estimate at best
the orthogonal space. The convolved covariance measure introduced by Mérigot
et al. [45] is particularly appealing since this measure achieves robustness even
for arbitrary compact sets, essentially in O.

p
�/. It is, in some sense, an integral

measure of the covariance matrix of the normal cone around the point of interest.
However, convergence of curvature(s) is subject to several parameters r and R
which contribute contradictorily to the error. In practice, this approach gives results
comparable to osculating jets for curvatures.

Recently, several authors have developed new interesting approaches for esti-
mating the normal vector field on noisy point clouds, even in the presence of sharp
features [6, 41, 59]. Furthermore, Boulch and Marlet [6] gives probabilistic con-
vergence results. Although they cannot be used “as is” for curvature computation,
they could be used in parallel with curvature estimation techniques to locate sharp
features in a first pass, and to limit curvature estimations to smooth zones.

Following integral invariants approaches proposed in [48, 49], Digne and Morel
[21] propose several differential estimators on point clouds. These estimators
(normal vector field, curvature tensor. . . ) also consider a spherical integration kernel
and covariance matrices are constructed from point clouds or oriented point clouds
(i.e. points equipped with normal vector). For a large set of estimators, the authors
provide convergence results (as the spherical kernel radius tends to zero) in the
continuous case. Our estimators on digital surfaces follow similar principles making
explicit convergence speed.

Last, a very recent approach coming from geometric measure theory uses the
theory of varifolds to design stable mean curvature estimations [7, 8]. This theory
is generic enough to include smooth manifolds, discrete meshes, point clouds,
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and digital data into the same framework. For geometric estimation, this approach
requires to have both position and normal approximation. If both are convergent (in
some sense), then the regularized first variation of the varifold measure converges
toward the mean curvature. The speed of convergence of this approach as well as its
accuracy in practice remain to be explored.

Curvature Estimation on Digital Contours and Surfaces In digital geometry,
we usually consider multigrid convergence as an essential criterion [12]. Hence, in
dimension 2, parameter free convergence results have been obtained for length [11]
and normal vector estimation [57]. Based either on binomial convolution principles
[22, 42], or polynomial fitting [50], convergence results can also be obtained for
higher order derivatives of digital curves. Algorithms are parametrized by the size
of the convolution or fitting kernel support and convergence theorems hold when
such support size is an increasing function of the grid resolution and some shape
characteristics.

For curvature estimation along 2D curves, multigrid convergence of parameter-
free estimators is still challenging, although accurate experimental results have
been obtained with maximal digital circular arcs [53] and with global optimization
[28]. In 3D digital space, several empirical methods exist for estimating curvatures,
but none achieves multigrid convergence (e.g. see [23, 38]). In [14], we recently
presented a digital estimator for mean curvature for 2D and 3D digital objects, which
achieves multigrid convergence in O.h

1
3 /.

Desirable Properties for Digital Curvature Estimators Our objective is to
design a curvature tensor estimator for digital data such that: (1) it is provably
multigrid convergent, (2) it is accurate in practice, (3) it is computable in an exact
manner, (4) it can be efficiently computed either locally or globally (evaluation at
a single surface point or extraction of the curvature tensor field), (5) it is robust to
further perturbations (like bad digitization around the boundary, outliers).

Contributions and Outline of the Chapter We achieve such a goal by adapting
the integral invariant tool originally designed for smooth manifolds and triangulated
meshes [48, 49]. We begin in Sect. 9.2 by giving some background on digitization
processes with a few useful lemma, and by recalling the multigrid convergence
property as well as integral invariants in the continuous setting. In order to define
a sound digital version of such object, it appears clearly that digital moments
(of up to 2nd order) must replace continuous moments. This is why we study
digital moments in Sect. 9.3 and we establish several results related to volume
and moments approximation. Then, Sect. 9.4 shows how curvature in 2D and
mean curvature in 3D can be approximated with digital integral invariants. This
approach relies solely on simple volume estimates. We are then ready to address in
Sect. 9.5 the more involved issue of estimating principal curvatures and directions,
as well as the normal vector. This is done by building a local digital covariance
matrix. Section 9.6 provides a method to automatically set the radius parameter
of integral invariants so as to achieve multigrid convergence. Section 9.8 presents
a comprehensive evaluation of the practical accuracy of our estimators. Their
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robustness to perturbation on input data is then illustrated on numerous examples.
Last, such estimators are shown to be useful for feature detection on digital surfaces.
Singularities (edges) on shapes are detected by examining the behavior of curvature
estimators in scale-space.

9.2 Background: Multigrid Convergence and Integral
Invariants

9.2.1 Digital Space and Digitizations Operators

Since we are interested in evaluating both theoretically and experimentally the
behavior of several differential estimators on digital object boundaries, we first have
to formalize links between Euclidean objects and digital ones with the help of a
digitization process. Let us consider a family X of compact subsets of Rd whose
smoothness requirements will be specified later. The digital space is defined as the
set of points of Rd with integer coordinates, naturally denoted by Z

d. We denote
Gh.X/ the Gauss digitization of X in a d�dimensional grid of grid step h:

Gh.X/WD
˚
z 2 Z

d; .h � z/ 2 X
�
; (9.1)

where h � z is the uniform scaling of z by factor h. If z 2 Z
d, then Qz denotes the

(closed) unit d-dimensional cube of Rd centered on z and aligned with the axes of
Z
d. We further define Qh.z/WDh � Qz, so-called h-cube, as the scaled version of Qz

(i.e. Qh.z/ is a d-dimensional cube centered at h � z with edge length h). In addition
to the Gauss digitization operator, we consider the inner Jordan digitization J�

h.X/
and outer Jordan digitization JC

h.X/ at step h of a shape X 2 X as follows (see
Fig. 9.1):

J�
h.X/WD

˚
z 2 Z

d;Qh.z/ � X
�
; (9.2)

JC
h.X/WD

˚
z 2 Z

d;Qh.z/\ X ¤ ;� : (9.3)

Given a digital set Z � Z
d, the body of Z is the embedding of Z into R

d, denoted by
Œ��h and defined as:

ŒZ�hWD
[

z2Z
Qh.z/ : (9.4)

Let us now formalize relationships between Gauss, Jordan digitizations and the
Euclidean shape X. We call Jordan strip the digitization J0h.X/WDJC

h.X/nJ�
h.X/.

Its body is clearly a union of h-cubes, with a thickness of at least one h-cube. First,
it is straightforward to check that:
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Fig. 9.1 Illustration of the digitization models and notations

Lemma 1 J�
h.X/ � Gh.X/ � JC

h.X/ and ŒJ�
h.X/�h � X � ŒJC

h.X/�h.
From these objects, it is natural to consider the relations of @X, the topological
boundary of X, with the digitized boundaries @ŒGh.X/�h, @ŒJ�

h.X/�h or @ŒJC
h.X/�h.

We have:

Lemma 2 ŒJ0h.X/�h D ŒJC
h.X/�h n Int.ŒJ�

h.X/�h/ and @X � ŒJ0h.X/�h.
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Proof The first equality is straightforward. For the inclusion @X � ŒJ0h.X/�h, on the
one hand we have by Lemma 1 that ŒJ�

h.X/�h � X, hence Int.ŒJ�
h.X/�h/ � Int.X/,

so @X \ Int.ŒJ�
h.X/�h/ D ;. On the other hand we have by the same lemma that

X � ŒJC
h.X/�h. By compactness of X, we have @X � X and thus @X � ŒJC

h.X/�h.
Putting these two facts together concludes. ut

The �-offset of a shape X is the set of points at distance lower or equal to � from
X. It is denoted by X�. Furthermore, the medial axis MA.@X/ of @X is the subset of
R

d whose points have more than one closest point to @X. The reach reach(X) of X
is the infimum of the distance between @X and its medial axis. Shapes with positive
reach have principal curvatures bounded by ˙1=reach.X/. They have a C2 smooth
boundary almost everywhere. The boundary of the Gauss digitization of X is close
to the surface @X for smooth shapes:

Theorem 1 ([36]) Let X be a compact domain of Rd such that the reach of @X is
greater than 	. Then, for any digitization step 0 < h < 2	p

d
, the Hausdorff distance

between sets @X and @ŒGh.X/�h is less than
p
dh=2. Hence

@ŒGh.X/�h � .@X/
p

d
2 h : (9.5)

This is also true for Jordan digitizations, with lesser hypotheses on X, but with a
larger bound:

Lemma 3 Let X be a compact domain of Rd. Jordan digitizations of X are close to
the boundary of X in the Hausdorff sense:

@ŒJ�
h.X/�h � .@X/

p
dh ; (9.6)

@ŒJC
h.X/�h � .@X/

p
dh ; (9.7)

ŒJ0h.X/�h � .@X/
p
dh : (9.8)

Proof First of all, one can check that @ŒJ0h.X/�h D @ŒJ�
h.X/�h [ @ŒJC

h.X/�h. It
follows that proving the last inclusion implies the first two ones.

Now, let x 2 ŒJ0h.X/�h. There exists some h-cube Qh.z/ that contains x, such
that (i) Qh.z/ \ X ¤ ; since z 2 JC

h.X/, and (ii) Qh.z/ 6� X since z 62 J�
h.X/.

From (i), there exists y1 2 Qh.z/ \ X. From (ii), there exists y2 2 Qh.z/ and y2 62
X. The straight segment Œy1y2� joining y1 to y2 is an arc that goes from X to the
complementary of X. By compactness of X, there exists some y3 2 Œy1y2� with
y3 2 @X. By convexity of Qh.z/, y1 2 Qh.z/ and y2 2 Qh.z/ implies Œy1y2� � Qh.z/.
It follows that y3 belongs also to Qh.z/. We have just found a point in the same h-
cube as x, which lies in @X. Since two points in some h-cube may not be further
away than

p
dh, x is no further away than this distance from @X. ut

The following result will also be useful.
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Lemma 4 (Proof of Lemma 10 [36]) Let X be a compact domain of Rd such that
the reach of @X is greater than 	, and let � be some value smaller or equal to 	.
Then

Vol.@X�/ � 2dC1Area.@X/�: (9.9)

9.2.2 Multigrid Convergence of Global and Local Geometric
Estimators

As discussed in various previous works (see for instance [12] for a survey), the
idea of multigrid convergence is that when we define a quantity estimator on the
digitization of some shape X � R

d, we check if the estimated quantity converges
(theoretically and/or experimentally) to the associated one on X when h tends to
zero. More formally,

Definition 1 (Multigrid Convergence for Local Geometric Quantities) Given
a digitization process D, a local discrete geometric estimator OE of some geometric
quantity E is multigrid convergent for the family of shapes X if and only if, for
any X 2 X, there exists a grid step hX > 0 such that the estimate OE.Dh.X/; Ox; h/ is
defined for all Ox 2 @ŒDh.X/�h with 0 < h < hX, and for any x 2 @X,

8Ox 2 @ŒDh.X/�h with kOx�xk1 � h; j OE.Dh.X/; Ox; h/�E.X; x/j � �X;x.h/; (9.10)

where �X;x W RC n f0g ! R
C has null limit at 0. This function defines the speed of

convergence of OE toward E at point x of X. The convergence is uniform for X when
every �X;x is bounded from above by a function �X independent of x 2 @X with null
limit at 0.

Note that when a geometrical quantity is global (e.g. area or volume), we do
not need an explicit mapping between @X and @ŒDh.X/�h, and Definition 1 can be
rephrased to define the simpler multigrid convergence of global geometric quantities
[12].

Instead of estimating the geometric quantity for all Ox 2 @ŒGh.X/�h, classical
local discrete estimators estimate the quantity at cells of the cellular boundary
of a digital set, otherwise said at elements of the interpixel representation of the
digital set boundary (pointels, linels or surfels). We usually consider a canonical
Euclidean embedding of k�cells into R

d (1-cells are mapped into unitary Euclidean
segments, 2-cells into unit squares. . . ), scaled by the factor h. Furthermore the
estimated quantity OE.Dh.X/; Ox; h/ is constant for all Ox belonging to the embedding
of a boundary k�cell.
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9.2.3 Integral Invariants in the Continuous Setting

In geometry processing, integral invariants have been widely investigated to define
estimators of differential quantities (see [48, 49] for a complete overview). For short,
the main idea is to move a kernel on points x 2 @X and to compute integrals on the
intersection between X and the kernel. Even if different kernels (e.g., Euclidean ball,
Euclidean sphere) and different integration functions can be considered, we focus
here on volumetric integral invariants defined as follows:

Definition 2 Given X 2 X and a radius R 2 R
C�, the volumetric integral VR.x/ at

x 2 @X is given by (see Fig. 9.3)

VR.x/WD
Z

BR.x/
�.p/dp ; (9.11)

where BR.x/ is the Euclidean ball with radius R and center x and �.�/ the
characteristic function of X. In dimension 2, we simply denote AR.x/ such quantity.
Several authors have detailed connections between VR.x/ and curvature (resp. mean
curvature) at x for shapes in R

2 (resp. R3) [9, 48, 49].

Lemma 5 ([49]) For a sufficiently smooth shape X in R
2, x 2 @X, we have

AR.x/ D �

2
R2 � �.X; x/

3
R3 C O.R4/ ; (9.12)

where �.X; x/ is the curvature of @X at x. For a sufficiently smooth shape X in R
3

and x 2 @X, we have

VR.x/ D 2�

3
R3 � �H.X; x/

4
R4 C O.R5/ ; (9.13)

where H.X; x/ is the mean curvature of @X at x.
Such results are obtained by Taylor expansion at x of the surface @X approximated
by a parametric function y D f .x/ in 2D and z D f .x; y/ in 3D. From Eqs. (9.12)
and (9.13) and with a fixed radius R, one can derive local estimators Q�R and QHR

respectively:

Q�R.X; x/WD3�
2R

� 3AR.x/
R3

; QHR.X; x/WD 8

3R
� 4VR.x/

�R4
: (9.14)

In this way, as R tends to zero, both estimated values converge to expected ones
(respectively � and H). More formally:

Q�R.X; x/ D �.X; x/C O.R/; QHR.X; x/ D H.X; x/C O.R/ : (9.15)
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Similarly, directional information such as principal curvatures and thus Gaussian
curvature can be retrieved from integral computations. Indeed, instead of computing
the measure of BR.x/\X as in Definition 2, we consider its covariance matrix. Given
a non-empty subset Y � R

d, the covariance matrix of Y is given by

V .Y/WD
Z

Y
.p � Y/.p � Y/Tdp D

Z

Y
ppTdp � Vol.Y/YY

T
; (9.16)

where Y is the centroid of Y and Vol.Y/ its volume. For non negative integers p, q
and s, we recall the definition of pqs-moments mpqs.Y/ of Y:

mpqs.Y/WD
•

Y

xpyqzsdxdydz : (9.17)

Note that the volume Vol.Y/ is the 0-moment m000.Y/, and that the
centroid Y is the vector of 1-moments normalized by the 0-moment, i.e.
.m100.Y/;m010.Y/;m001.Y//T=m000.Y/: For simplicity, let us denote by A the
Euclidean set BR.x/\ X. The covariance matrix of A is then rewritten as1:

V .A/ D
2

4
m200.A/ m110.A/ m101.A/
m110.A/ m020.A/ m011.A/
m101.A/ m011.A/ m002.A/

3

5

� 1

m000.A/

2

4
m100.A/
m010.A/
m001.A/

3

5˝
2

4
m100.A/
m010.A/
m001.A/

3

5

T

: (9.18)

In [48], authors have demonstrated that eigenvalues and eigenvectors of V .A/
provide principal curvature and principal direction information:

Lemma 6 ([48], Theorem 2) Given a shape X 2 X, the eigenvalues 1, 2, 3 of
V .A/, where AWDBR.x/ \ X and x 2 @X, 1 	 2 	 3, have the following Taylor
expansion:

1 D 2�

15
R5 � �

48
.3�1.X; x/C �2.X; x//R6 C O.R7/ ; (9.19)

2 D 2�

15
R5 � �

48
.�1.X; x/C 3�2.X; x//R6 C O.R7/ ; (9.20)

3 D 19�

480
R5 � 9�

512
.�1.X; x/C �2.X; x//R6 C O.R7/ ; (9.21)

where �1.X; x/ and �2.X; x/ denote the principal curvatures of @X at x.2

1˝ denotes the usual tensor product in vector spaces.
2There is a typographic error in the 1 expression in [48].
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Hence, similarly to Eq. (9.14), one can define local estimators Q�R1 , Q�R2 and finally
the Gaussian curvature QKRWDQ�R1 � Q�R2 as functions of fig1;2;3 and R. From Lemma 6,
all these estimators approach expected quantities when R tends to 0.

When dealing with digital shapes Dh.X/, implementation of these estimators
becomes straightforward: choose a radius R, center a Euclidean (or digital) ball at
chosen points of @ŒDh.X/�h (e.g. centroids of linels or surfels), compute the quantities
(area, volume, covariance matrix) and finally estimate curvature information Q�, QH,
Q�1, Q�2 or QK.

However, several issues are hidden in this approach: What are meaningful values
for R according to the shape size and geometry? Do points of @ŒDh.X/�h converge
to points x 2 @X for which Lemmas 5 and 6 are valid? Does counting the number
of pixels (resp. voxels) converge to AR.x/ (resp. VR.x/)? Does the digital covariance
matrix converges to the expected one? The rest of the chapter addresses all these
questions.

9.3 Digital Moments

Integral invariants rely on the precise estimation of the volume and covariance
matrix of specific Euclidean subsets. These quantities can be expressed as functions
of zeroth, first and second order moments of Euclidean subsets. It is thus of critical
importance to estimate properly moments in the digital world in order to use integral
invariants for approximating curvatures of digital shapes.

Since the approximation of moments is directly related to area and volume
estimation, but also to integral approximation, there exists a vast literature on this
topic. It is known since Gauss and Dirichlet that counting the number of integer
points within a convex set provides an order one approximation of its total area (in
2D) / volume (in dD). In fact, much better bounds are achievable for 2D shapes
if the boundary is strictly C3-convex [26]. This holds also in higher dimensions
[25, 33, 46]. The estimation of moments of digital sets was tackled in a series of
papers of Klette and Žunić [30–32]. To sum up their results, they give error upper
bounds that are similar to Huxley’s bound for arbitrary moments of 2D shapes.

However, we will not use these bounds for several reasons: (i) they are valid for
(strictly) smooth convex shapes while integral invariants may involve non smooth
and non convex shapes, (ii) the bounds are given as big “O” and some shape
geometry is hidden in the constant. We prefer possibly weaker bounds but we want
them to be explicit and valid for more general shapes.

9.3.1 Moments and Digital Moments

Let X be some compact domain of Rd. The p1 � � � pd-moment of X is defined as

mp1


pd.X/WD
Z

� � �
Z

X
x1

p1 � � � xd pddx1 : : : dxd: (9.22)
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The 0 � � �0-moment of X is the volume of X (denoted Vol.X/). For any subset Z of
Z
d, the p1 � � � pd-digital moment of Z at step h is defined as

Omp1


pd
h .Z/WDhdCp1C


Cpd

X

.z1;:::;zd/2Z
z1

p1 � � � zd pd : (9.23)

The 0 � � � 0-digital moment of Z is the digital volume of Z (denoted by bArea.Z; h/
when d D 2 and by cVol.Z; h/ when d 	 3).

In the sequel, points and vectors of Rd and Z
d are written in bold, and for some

point or vector z 2 Z
d, its coordinates or components are written with subscripts

as z D .z1; : : : ; zd/. We wish to bound the error between moments of X and digital
moments of the digitization of X as some function of the digitization gridstep h. We
thus give a particular attention to moments and digital moments of h-cubes. The
following equalities are easily obtained by simple integration.

Lemma 7 Let z 2 Z
d. Point z is the Gauss digitization of h-cube Qh.z/, but also

its inner or outer Jordan digitization. First orders moments and digital moments of
h-cubes follow

m0


0.Qh.z// D hd Om0


0h .fzg/ D hd (9.24)

m10


0.Qh.z// D hdC1z1 Om10


0h .fzg/ D hdC1z1 (9.25)

m110


0.Qh.z// D hdC2z1z2 Om110


0h .fzg/ D hdC2z1z2 (9.26)

m20


0.Qh.z// D hdC2
�

z21 C h2

12

�

Om20


0h .fzg/ D hdC2z21 (9.27)

Discrepancies between digital and continuous moments appear for moments
p1 � � � pd, when one of the pi is greater or equal to 2.

9.3.2 General Results for Volume Estimation Errors

The theorem below shows that the error between the volume of a shape X and the
naive volume estimation on its digitization by simple enumeration is smaller than
the volume of the offset of @X with distance

p
dh.

Theorem 2 Let X be a compact domain of Rd. Let D be any digitization process
such that J�

h.X/ � Dh.X/ � JC
h.X/. Digital and continuous volumes are related

as follows:

ˇ
ˇ
ˇVol.X/� cVol.Dh.X/; h/

ˇ
ˇ
ˇ � Vol.@X

p
dh/: (9.28)
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Proof First of all, 0-order continuous and digital moments of h-cubes coincide, so
we have the following equality:

cVol.Dh.X/; h/ D
X

z2Dh.X/
Om0


0h .fzg/

D
X

z2Dh.X/
m0


0.Qh.z// (Lemma 7)

D Vol.ŒDh.X/�h/ : (9.29)

Then, by denoting A�B the symmetric difference between sets A and B, we bound
the volume difference as

jVol.X/� Vol.ŒDh.X/�h/j � Vol.X�ŒDh.X/�h/ : (9.30)

Indeed, given two sets A and B, we have

j Vol.A/� Vol.B/j D j Vol.A n B/� Vol.B n A/j (9.31)

� j Vol.A n B/C Vol.B n A/j (9.32)

� Vol.A�B/ : (9.33)

Now, for any sets A;B;Y1;Y2 with A � Y1 � B and A � Y2 � B, we have Y1�Y2 �
BnA. This follows from Y1�Y2 D .Y1[Y2/n.Y1\Y2/. Then, obviously .Y1[Y2/ � B
and A � .Y1 \ Y2/.

Now, by Lemma 1, we have that ŒJ�
h.X/�h � X � ŒJC

h.X/�h. But by hypothesis,
J�

h.X/ � Dh.X/ � JC
h.X/, so we also have ŒJ�

h.X/�h � ŒDh.X/�h � ŒJC
h.X/�h.

We may thus apply the preceding property setting AWDŒJ�
h.X/�h, BWDŒJC

h.X/�h,
Y1WDX and Y2WDŒDh.X/�h. We get

X�ŒDh.X/�h � ŒJC
h.X/�h n ŒJ�

h.X/�h : (9.34)

Putting preceding relations together gives

ˇ
ˇ
ˇVol.X/�cVol.Dh.X/; h/

ˇ
ˇ
ˇ � Vol.ŒJC

h.X/�h n ŒJ�
h.X/�h/ (using Eq.(9.29), (9.30) and (9.34))

� Vol.ŒJ0h.X/�h/ (definition of Jordan strip)

� Vol.@X
p

dh/ : (Lemma 3) (9.35)

This concludes. ut
It would be tempting to extend the preceding result to arbitrary moments.

However, some moments are not non-negative measures and we cannot use directly
the preceding argument. Hence, we postpone results on moment estimation to a later
section.
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Lemma 4 in conjunction with the preceding theorem allows us to relate this error
to the shape area, for smooth enough shapes.

Corollary 1 Let X be a compact domain of Rd such that the reach of @X is greater
than 	, and h is smaller than 	p

d
. Let D be any digitization process such that

J�
h.X/ � Dh.X/ � JC

h.X/. Digital and continuous volumes are related as follows:

ˇ
ˇ
ˇVol.X/� cVol.Dh.X/; h/

ˇ
ˇ
ˇ � 2dC1pdArea.@X/h : (9.36)

9.3.3 Volume Approximation Within a Ball of Radius R

Integral invariants rely on moment estimation along the boundary of a shape X
within a ball BR.x/ of given radius R, for x 2 @X. Most results on volume and
moments estimation are valid for smooth enough shapes, which is not the case of
X\BR.x/. We thus establish results for intersection of smooth shapes. The following
lemma is required.

Lemma 8 Let A;B be compact domains of Rd and � some positive number. Then
.@.A \ B//� D ..@A/\ B/� [ .A \ .@B//� .
Proof Figure 9.2 illustrates this lemma. It suffices to show that @.A \ B/ D ..@A/\
B/ [ .A \ .@B//. For � , this comes from the facts that @.A \ B/ � A \ B and
@.A \ B/ � .@A/ [ .@B/. For � , let y be a point of .@A/ \ B. If Int.A/ is the
interior of A, we have that @A D A n Int.A/ since A is compact. It follows that
y 2 .A n Int.A//\B, then y 2 .A\B/ n .Int.A/\B/. But it holds that Int.A \ B/ �
.Int.A/ \ B/. Hence .A \ B/ n Int.A \ B/ � .A \ B/ n .Int.A/ \ B/. Noticing
that .A \ B/ n Int.A \ B/ D @.A \ B/, we conclude that y 2 @.A \ B/. The case
y 2 A \ @B is similar. ut

We prove below that the volume of the
p
dh-offset of the boundary of a compact

domain X intersected with a ball a radius R can be upper bounded by a constant

Fig. 9.2 Illustration of Lemma 8
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times h. Furthermore, this bound does not depend on the geometry of X, as long as
the radius R is smaller than half the reach of X.

Theorem 3 Let X be a compact domain of Rd such that the reach of @X is greater
than 	. Let x 2 R

d. Let R (the radius of the ball) and h (the gridstep) be some
positive numbers such that h � Rp

2d
and 2R � 	.

Vol
�
.@.X \ BR.x///

p
dh
�

� K1.d/R
d�1h ; (9.37)

with K1.d/WD2
p
d

�

d C
�
1C 1p

2

�d�

Vd C 2
p
6

3

�
4Cp

2
2

�d
Vd�1. As a corollary, this

volume is upper bounded by 68Rh when d D 2, and upper bounded by 154R2h for
d D 3.

Proof Lemma 8 shows that

Vol
�
.@.X \ BR.x///

p
dh
�

� Vol
�
.@X \ BR.x//

p
dh
�

C Vol
�
.X \ @BR.x//

p
dh
�
:

(9.38)

The rightmost term is not hard to bound above. Letting Vd be the volume of the
d-dimensional ball of radius 1, we proceed as follows:

Vol
�
.X \ @BR.x//

p

dh
�

� Vol
�
.@BR.x//

p

dh
�

D Vol
�
BRC

p

dh.x// � Vol.BR�

p

dh.x/
�

D Vd

h
.R C p

dh/d � .R � p
dh/d

i

D 2Vd

2

4

 
d

1

!

Rd�1
p
dh C

b
d�1
2 cX

kD1

 
d

2k C 1

!

Rd�.2kC1/
�p

dh
�2kC1

3

5

� 2Vd

2

4d
p
dRd�1h C Rd�1

p
dh

b
d�1
2 cX

kD1

 
d

2k C 1

!
1

p
2
d�.2kC1/

3

5 (since
p
dh � R=

p
2)

� 2Vd

"

d
p
dRd�1h C

�

1C 1p
2

�d p
dRd�1h

#

(since
dX

iD0

 
d

i

!

xd�i D .1C x/d)

� 2Vd

 

d C
�

1C 1p
2

�d
!p

dRd�1h : (9.39)

The other term is harder to bound. The idea is to define a kind of cylinder of
thickness 2

p
dh that includes the set .@X\BR.x//

p
dh, and then we bound its volume.
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We define the set PWD@X \ BRCp
2dh.x/. It is a d � 1-manifold which is

homeomorphic to a d � 1-disk since R C p
2dh � 	. We choose thus a local

parameterization z W U ! P sending any u 2 U into P, where U � R
d�1. Let n

be the function that associates to each point of @X its outward unit normal vector.
Let also N be the function which assigns to each u 2 U the vector N.u/ D n.z.u//,
i.e. the unit vector normal to @X at z.u/. By definition of the reach, the map
Zt W U ! R

d such that Zt.u/ D z.u/ C tN.u/ is injective for �	 � t � 	.
Let S denote the shape operator of P, defined for surfaces by SvWD � rvN for any
tangent vector v of P. It is straightforward to check that S @z

@ui
D � @N

@ui
.

Looking now at partial derivatives of Zt, it follows that @Zt

@ui
D .Id � tS/ @z

@ui
. The

deformation of an area element of z onto Zt is thus given by det.Id � tS/ and we
may write:

Area.Zt.U // D
Z

� � �
Z

U









@Zt

@u1
^ � � � ^ @Zt

@ud�1








 du1 � � � dud�1;

D
Z

� � �
Z

U
det.Id � tS/









@z
@u1

^ � � � ^ @z
@ud�1








 du1 � � � dud�1:

(9.40)

Now, since @X has positive reach, function N is differentiable almost everywhere
(a.e.). Furthermore, the normal vector variation is a.e. bounded by 1=	. It follows
that det.Id � tS/ � .1C jtj=	/d�1 almost everywhere. Injecting this inequality into
Eq.(9.40) gives

Area.Zt.U // � .1C jtj=	/d�1Area.P/: (9.41)

For any x 2 R, 0 < x � 	, the cylindric shape C.x/WDfZt.u/;u 2 U ; t 2 R;�x �
t � xg has a volume that is bounded as follows:

Vol.C.x// D
Z x

�x
Area.Zt.U //dt

� 2Area.P/
Z x

0

.1C t=	/d�1dt

D 2Area.P/
	

d

�
.1C x=	/d � 1� : (9.42)

We look more precisely at the volume of C.
p
dh/. After some simple computations,

we get:

Vol.C.
p
dh// � 2Area.P/

	

d

p
dh

	

0

@
dX

iD1

 
d

i

! p
dh

	

!i�11

A ;

� 4

 
4C p

2

4

!d p
d

d
Area.P/h; (9.43)
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since
p
dh � Rp

2
�

p
2	

4
and using the binomial expansion of .1C

p
2
4
/d.

It remains to show that (i) .@X \ BR.x//
p
dh � C.

p
dh/ and (ii) to estimate

Area.P/.

(i) Let y 2 .@X\BR.x//
p
dh. There is some y0 2 @X\BR.x/ with ky �y0k � p

dh.
As y is within the reach of @X, since d.y; @X/ � p

dh � 	=2, there is only
one closest point y00 to y on @X. Let t be the distance ky � y00k. It follows
that t � ky � y0k � p

dh since y0 belongs also to @X. And we may write
y D y00 C tn.y00/.

If y0 D y00, then y00 2 P and y belongs to C.
p
dh/ since t � p

dh.
Otherwise, we prove that ky0 � y00k � p

2dh. Without loss of generality,
assume y is outside of X. Since y00 2 @X and X has reach greater than 	, there
is an outside osculating ball of radius 	 at y00 [36], which contains no point
of X except y00. It contains of course y. We denote p the orthogonal projection
of y0 onto the straight line passing through y00 and pointing along the normal
direction to @X. This straight line goes through y and through the center c of
this osculating ball. We may also write p D y00 C pn.y00/, where p is the signed
distance between y00 and P along the normal direction. We use now Pythagoras’
theorem to get

ky0 � y00k2 D p2 C ky0 � pk2; ky0 � pk2 C .t � p/2 D ky � y0k2;

which implies

ky0 � y00k2 D ky � y0k2 C t.2p � t/: (9.44)

Using first the fact that c D y00 C 	n.y00/ and point y0 is outside the osculating
ball of radius 	, and second the fact that ky � y0k � p

dh, we obtain

ky0 � pk2 C .	 � p/2 	 	2 and ky0 � pk2 C .t � p/2 � dh2

) dh2 	 t2 C 2p.	 � t/

) p � dh2 � t2

	
(since t � p

dh � 	=2):

We now inject the last inequality into Eq.(9.44) to bound ky0 � y00k:

ky0 � y00k2 � .ky � y0k2 � t2/C 2
t

	
.dh2 � t2/

� 2dh2: (since t=	 < 1=2 and ky � y0k � p
dh)

It follows that ky00 �xk � ky00 �y0kCky0 �xk � p
2dhCR, and since t � p

dh
we conclude that y 2 C.

p
dh/.
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(ii) To estimate Area.P/, we go back to its parametric definition as Area.z.U //.
Since the maximal distance of an element of P to x is R C p

2dh and is
smaller than the reach, it follows that P projects injectively orthogonally on
the tangent plane to @X at x. We may thus choose U to be the orthogonal
projection of P onto this tangent plane. It follows that we can define z as
8u 2 U ; z.u/WD.u1; : : : ; ud�1; f .u//, where f is a height function. The area
of P is then:

Area.P/ D
Z

� � �
Z

U









@z
@u1

^ � � � ^ @z
@ud�1








 du1 � � � dud�1:

D
Z

� � �
Z

U

s

1C
�
@f

@u1

�2
C � � � C

�
@f

@ud�1

�2
du1 � � � dud�1:

(9.45)

Let �WDR C p
2dh. Now, on the boundary of a shape with reach greater than

	, the angle variation of the normal vector cannot exceed the angle variation on
the sphere of radius 	. It follows that we can bound above this angle variation
by measuring the angle variation ˇ between the pole and a point at distance �
of the pole onto this sphere. One easily checks that sinˇ D �

2	
. Since � D

R C p
2dh � 	, we get ˇ � �

6
. It follows immediately that

ˇ
ˇ
ˇ @f@ui

ˇ
ˇ
ˇ cannot exceed

the tangent of ˇ, that is
ˇ
ˇ
ˇ @f@ui

ˇ
ˇ
ˇ � tanˇ �

p
3
3

. We may now bound above all

partial derivatives in Eq.(9.45) to get:

Area.P/ �
Z

� � �
Z

U

r

1C 1

3
C : : :C 1

3
du1 � � � dud�1:

�
r

d C 2

3
Area.U /

�
r

d C 2

3
Vd�1.2R/d�1; (9.46)

since U is included in the disk of radius� centered on x and� � 2R.

We are now in position to conclude the proof.

Vol
�
.@X \ BR.x//

p
dh
�

� Vol.C.
p
dh// (using (i))

� 4

 
4C p

2

4

!d p
d

d
Area.P/h (with Eq.(9.43))

� 2
p
6

3

 
4C p

2

2

!d

Vd�1Rd�1h (with Eq.(9.46)):
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In the last line, we also use the fact that for d 	 2we have
p
1C 2=d � p

2. Putting
all together gives the result. ut

9.3.4 Errors on Volume and Moment Estimation Within a Ball
of Radius R

Theorem 3 gives us the main key to bound above the error in volume estimation,
and more generally moments estimation, within a ball around the boundary of a
compact domain X. We summarize in the following theorem our results on moments
estimation.

Theorem 4 Let X be a compact domain of Rd such that the reach of @X is greater
than 	. Let D be any digitization process such that J�

h.X/ � Dh.X/ � JC
h.X/. Let x

be any point ofRd. Let R (the radius of the ball) and h (the gridstep) be some positive
numbers such that h � Rp

2d
and 2R � 	. Let .pi/iD1:::d be the integers defining the

moment exponents, with 0 � pi � 2, and let � WDp1 C � � � C pd, with � � 2. Then
digital moments within a ball are multigrid convergent toward continuous moments
as follows

ˇ
ˇmp1


pd.X \ BR.x// � Omp1


pd

h .Dh.X \ BR.x///
ˇ
ˇ

� K1.d/R
d�1.kxk1 C 2R/� h C h4

12
VdR

d; (9.47)

where Vd is the volume of the unit d-dimensional ball. Furthermore, the term in h4

is only present when one pi is equal to 2.

Proof The difficult part lies in the fact that moments may not be positive. To
simplify notations, let YWDX \BR.x/. We must split the error in moment estimation
into three sets, corresponding to parts of Y lying in ŒJ�

h.Y/�h, in ŒDh.Y/�hnŒJ�
h.Y/�h

and in ŒJC
h.Y/�h n ŒDh.Y/�h.

ˇ
ˇmp1


pd.Y/ � Omp1


pd

h .Dh.Y//
ˇ
ˇ �

X

z2JC
h.Y/nDh.Y/

jmp1


pd.Y \ Qh.z//j

C
X

z2Dh.Y/nJ�
h.Y/

ˇ
ˇmp1


pd.Y \ Qh.z// � Omp1


pd

h .fzg/ˇˇ

C
X

z2J�
h.Y/

ˇ
ˇmp1


pd.Qh.z// � Omp1


pd

h .fzg/ˇˇ

(9.48)
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The first term of this sum does not have any digital moment contribution since it
lies outside the digitization of X. The third term does not require to intersect Y with
the h-cube, since we are within the inner Jordan digitization.

1. We look at the third term. Lemma 7 tells us that it is equal to zero as long as 0 �
pi � 1 for 1 � i � d. Otherwise, if one pi is equal to 2, it is then straightforward
to bound it as follows:

X

z2J�
h.Y/

ˇ
ˇmp1


pd.Qh.z// � Omp1


pd

h .fzg/ˇˇ D
X

z2J�
h.Y/

ˇ
ˇ
ˇ
ˇ
hdC4

12

ˇ
ˇ
ˇ
ˇ (Lemma 7)

D h4

12
Vol.ŒJ�

h.Y/�h/

� h4

12
Vol.Y/ ; (9.49)

since the inner Jordan digitization of Y lies inside Y. It is clear then that Vol.Y/ D
Vol.X \ BR.x// � Vol.BR.x// D VdRd.

2. We now consider the second term. For some z 2 Dh.Y/ n J�
h.Y/, we reason on

the sign of each component zi for i in 1 to d. We notice that, in the h-cube Qh.z/,
the component xi has the same sign as zi except when zi D 0. Let �i D 1 when
zi 	 0 and �i D �1 otherwise. We can thus eliminate the signs and rewrite the
difference below as:

ˇ
ˇmp1


pd .Y \ Qh.z// � Omp1


pd

h .fzg/ˇˇ

D
ˇ
ˇ
ˇ
ˇ

Z
� � �
Z

Y\Qh.z/
x1

p1 � � � xd pddx1 : : : dxd � hdC�z1 p1 � � � zd pd

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

Z
� � �
Z

Y\Qh.z/
.�1x1/

p1 � � � .�dxd/pd dx1 : : : dxd � hdC�.�1z1/p1 � � � .�dzd/pd
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

Z
� � �
Z

Y\Qh.z/
j�1x1jp1 � � � j�dxdjpddx1 : : : dxd � hd.�1hz1/

p1 � � � .�dhzd/pd
ˇ
ˇ
ˇ
ˇ

(9.50)

The integral on the left is necessarily non-negative while the term on the right
is non-negative and is subtracted to it. It follows that this error can be upper
bounded by the maximum of both terms.

ˇ
ˇmp1


pd.Y \ Qh.z// � Omp1


pd

h .fzg/ˇˇ

D max

�Z
� � �
Z

Y\Qh.z/
j�1x1jp1 � � � j�dxdjpddx1 : : : dxd; hd.�1hz1/p1 � � � .�dhzd/pd

�

(9.51)
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Since points involved in the left integral are all in BR.x/, it follows that the left
term is easily bounded by .kxk1 C R/� Vol.Y \ Qh.z//. Since the point z is in
Dh.Y/ n J�

h.Y/, we have z 2 JC
h.Y/ n Int.J�

h.Y// and Lemma 3, equation

Eq.(9.8), concludes that .hz/ 2 @Y
p
dh. it follows that khzk1 � kxk1 C R Cp

dh � kxk1 C 2R, since h < R=
p
2d. The second term is thus bounded by

.kxk1 C 2R/� Vol.Qh.z//. Since Vol.Y \ Qh.z// � Vol.Qh.z//, we obtain

X

z2Dh.Y/nJ�
h.Y/

ˇ
ˇmp1


pd.Y \ Qh.z//� Omp1


pd

h .fzg/ˇˇ

� .kxk1 C 2R/� Vol.ŒDh.Y/ n J�
h.Y/�h/: (9.52)

3. We finally look at the first term of the sum, which is easier to bound:

X

z2JC
h.Y/nDh.Y/

jmp1���pd .Y \ Qh.z//j � .kxk1 C R/�
X

z2JC
h.Y/nDh.Y/

Vol.Y \ Qh.z//:

� .kxk1 C R/� Vol.ŒJC
h.Y/ n Dh.Y/�/:

(9.53)

Since Dh.Y/ n J�
h.Y/ and JC

h.Y/ n Dh.Y/ are disjoint, we may add inequalities
Eqs. (9.52) and (9.53) as

X

z2Dh.Y/nJ�
h.Y/

ˇ
ˇmp1


pd.Y \ Qh.z//� Omp1


pd

h .fzg/ˇˇ

C
X

z2JC
h.Y/nDh.Y/

jmp1


pd.Y \ Qh.z//j

� .kxk1 C 2R/� Vol.ŒJC
h.Y/ n J�

h.Y/�h/

� .kxk1 C 2R/� Vol
�
.@Y/

p
dh
�

(Lemma 3, Eq.(9.8), page 299)

� .kxk1 C 2R/�K1.d/R
d�1 h (Theorem 3)

This concludes by simple addition of the bound on the third term, i.e. Eq.(9.49). ut

9.3.5 Conclusion

In this section we have determined links between continuous and digital moments
of order up to 2 in arbitrary dimension. We have established several approximation
error bounds for arbitrary compact domains. Furthermore, we have been able to
estimate the approximation error on moments of intersections of a smooth shape
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with a ball of radius R and center x. Our error bound only depends on the dimension
of the space, the radius R of the ball and the norm kxk1, and scales linearly with
the digitization gridstep h. It is worthy to note that our results apply for arbitrary
digitization processes, as long as they contain the inner Jordan digitization and
are included in the outer Jordan digitization. In particular, it includes the Gauss
digitization. We will use these results in the next sections to show the multigrid
convergence of curvature estimators based on digital integral invariants.

9.4 Multigrid Convergence of Mean Curvature in 2D and 3D

We show in the section that the local mean curvature on the boundary of a digital
shape can be approximated simply by intersecting the digital shape with a ball
around the point of interest and counting the number of digital points within. This
is related to integral invariants results [49] (recalled in Lemma 5, page 301), which
requires only the computation of the volume of the shape intersected with a ball.

9.4.1 Definition of Mean Curvature Estimators

We begin by defining a 2D digital curvature estimator and a 3D digital mean
curvature estimator, whose computation requires only the enumeration of digital
points within a neighborhood around the point of interest.

Definition 3 (2D Integral Digital Curvature Estimator) For any positive radius
R, we define the 2D integral digital curvature estimator O�R of a digital shape Z � Z

2

at any point x 2 R
2 and for a grid step h > 0 as:

80 < h < R; O�R.Z; x; h/WD3�

2R
� 3bArea.BR=h.x=h/\ Z; h/

R3
: (9.54)

Definition 4 (3D Integral Digital Mean Curvature Estimator) For any positive
radius R, we define the 3D integral mean digital curvature estimator OHR of a digital
shape Z � Z

3 at any point x 2 R
3 and for a grid step h > 0 as:

80 < h < R; OHR.Z; x; h/WD 8

3R
� 4cVol.BR=h.x=h/\ Z; h/

�R4
: (9.55)

As one can see on Fig. 9.3, these estimators place a ball of Euclidean radius R
around the point of interest x and count the number of digital points of Z, scaled back
in .hZ/d, within this ball. A simple linear formula is then applied on this number to
get a curvature approximation.
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x x

Fig. 9.3 Illustration of 2D integral digital curvature estimator O�R. The shape X is a disk of radius
7:5. To the left, the digitization gridstep h is 1, while h is 0:5 to the right. We choose a ball of radius
R D 3 and we wish to estimate the curvature at some arbitrary point x. We count the number of
digital points within the orange ball, centered at x and of radius 3. To the left we count 12 points.
Hence for h D 1, the estimated curvature O�3.G1.X/; x; 1/ is 3�=.2�3/�3�12�12=33 � 0:237.
To the right we count 50 points. Hence for h D 0:5, the estimated curvature O�3.G0:5.X/; x; 0:5/ is
3�=.2 � 3/� 3� 51� 0:52=33 � 0:154. Ground truth curvature is 1=7:5 � 0:133

The 2D example displayed on Fig. 9.3 indicates that the finer the digitization step,
the better the approximation. This is indeed true, at least for shapes with smooth
enough boundary.

9.4.2 Convergence at Points of @X (Weak Formulation)

In this section, we show that the curvature estimator O�R (resp. the mean curvature
estimator OHR) converges to the expected curvature (resp. mean curvature) for points
x belonging to the boundary of a compact shape X, as long as X has positive reach.
A preliminary version of this theorem that requires X to be convex with C3-smooth
boundary has been published in [14].

Theorem 5 (Convergence of Curvature Estimator O�R Along @X) Let X be a
compact domain ofR2 such that its boundary @X is C3-smooth and has reach greater
than 	.

Then the curvature estimator O�R at any point x of @X is multigrid convergent
to the curvature �.X; x/ of X at point x for the Gauss digitization process, with
convergence speed at least O.h

1
3 / when R D �.h

1
3 / and R < 	=2. More precisely,

we have

80 < h � R

2
;

ˇ
ˇ O�R.Gh.X/; x; h/� �.X; x/ˇˇ � O

�
h
1
3

�
: (9.56)

Proof Note that the boundary is smooth enough so that integral invariants do have a
Taylor expansion (and Lemma 5 applies). Furthermore, the domain being compact,
it has necessarily a positive reach. Since the Gauss digitization lies in the Jordan
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strip (Lemma 1, page 298), we are in the hypotheses of Theorem 4. We bound the
curvature approximation error as follows:

j O�R.Gh.X/; x; h/ � �.X; x/j

�
ˇ
ˇ
ˇ O�R.Gh.X/; x; h/ � Q�R.X; x/

ˇ
ˇ
ˇC O.R/ (from Eq.(9.15), page 301)

D
ˇ
ˇ
ˇ
ˇ
ˇ
3AR.x/
R3

� 3bArea.BR=h.x=h/ \ Gh.X/; h/

R3

ˇ
ˇ
ˇ
ˇ
ˇ
C O.R/ (from Eq.(9.54) and (9.14))

D 3

R3

ˇ
ˇ
ˇm00.X \ BR.x//� Om00h .Gh.X \ BR.x///

ˇ
ˇ
ˇC O.R/ : (9.57)

The last equality follows from the definitions of AR and bArea expressed as 00-
moments, and also from the fact Gh.X \ BR.x// D BR=h.x=h/\Gh.X/ (this is easily
checked for Gauss digitization). Theorem 4 then implies

j O�R.Gh.X/; x; h/� �.X; x/j � 3K1.2/

R2
h C O.R/ : (9.58)

The error is the sum of two terms, in which R has an opposite effect. The right term
requires a radiusR tending to zero, while the left term is minimized by a large radius.
If R is chosen as some function kh˛, where k is a constant, then the asymptotically
minimizing error is for ˛ D 1

3
. ut

We have a similar result for the digital mean curvature estimator on 3D shapes.

Theorem 6 (Convergence of Mean Curvature Estimator OHR
Along @X) Let X

be a compact domain of R3 such that its boundary @X is C3-smooth and has reach
greater than 	.

Then the mean curvature estimator OHR at any point x of @X is multigrid
convergent to the mean curvature H.X; x/ of X at point x for the Gauss digitization
process, with convergence speed at least O.h

1
3 / when R D �.h

1
3 / and R < 	=2.

More precisely, we have

80 < h � Rp
6
;

ˇ
ˇ
ˇ OHR.Gh.X/; x; h/� H.X; x/

ˇ
ˇ
ˇ � O

�
h
1
3

�
: (9.59)

Proof The proof follows exactly the same steps as the proof of Theorem 5, since
on the one hand integral invariants also have a Taylor expansion in 3D and on
the other hand Theorem 4 applies in arbitrary dimension. We bound the curvature
approximation error as follows:

j OHR.Gh.X/; x; h/� H.X; x/j
�
ˇ
ˇ
ˇ OHR.Gh.X/; x; h/� QHR.X; x/

ˇ
ˇ
ˇC O.R/ (from Eq.(9.15), page 301)
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D
ˇ
ˇ
ˇ
ˇ
ˇ
4VR.x/
�R4

� 4cVol.BR=h.x=h/\ Gh.X/; h/

�R4

ˇ
ˇ
ˇ
ˇ
ˇ
C O.R/ (from Eq.(9.55) and (9.14))

D 4

�R4
ˇ
ˇm000.X \ BR.x//� Om000h .Gh.X \ BR.x///

ˇ
ˇC O.R/ : (9.60)

The last equality follows from the definitions of VR and cVol expressed as 000-
moments, and also from the fact Gh.X \ BR.x// D BR=h.x=h/ \ Gh.X/. Theorem 4
then induces

ˇ
ˇ
ˇ OHR.Gh.X/; x; h/� H.X; x/

ˇ
ˇ
ˇ � 4K1.3/

�R2
h C O.R/ : (9.61)

As in 2D, the error is the sum of two terms, in which R has an opposite effect. We
also obtain that the asymptotically minimizing error is for R D kh

1
3 , with k some

constant. ut

9.4.3 Multigrid Convergence for Smooth Enough Shapes

Theorems 5 and 6 are not multigrid convergence theorems, since convergence
results are only valid on points of @X. However, the exact location of @X is generally
unknown, and only approximate digital data is available. To achieve multigrid
convergent theorems, we have to take into account the possible error in the position
at which the curvature is estimated.

We therefore examine the perturbation of the moments when they are evaluated
at a shifted position x C t.

Lemma 9 For any point x, a positive number R, and any vector t with norm
tWDktk2 � R, we have

jVol.BR.x C t// � Vol.BR.x//j � 3d

2d
VdR

d�1 t : (9.62)

Proof We simply bound this difference of volumes by the volume of the difference
of two balls with same center, as illustrated on Fig. 9.4. More precisely, we have:

jVol.BR.x C t//� Vol.BR.x//j D jVol.BR.x C t/�BR.x//j
�
ˇ
ˇ
ˇVol

�
BRC t

2
.q/ n BR� t

2
.q/
�ˇˇ
ˇ ;
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x
x+t

q
x

x+t

Fig. 9.4 Left: illustration of Lemma 9 for bounding volume. The symmetric difference of two
balls is included in the shell with thickness equal to the distance between the centerpoints of these
two balls and centered at their midpoint. Right: illustration of Lemma 11 for bounding moments.
The symmetric difference of two balls is included in the shell with thickness equals to twice the
distance between the centerpoints of these two balls and centered on one of the ball

where q is the midpoint between x and x C t. Since Vd is the volume of the unit
d-dimensional ball, it follows that:

jVol.BR.x C t//� Vol.BR.x//j � Vd

�
.R C t

2
/d � .R � t

2
/d
�

� 3d

2d
VdR

d�1 t :

ut
We may now prove the uniform multigrid convergence of both the 2D curvature

estimator O�R and the 3D mean curvature estimator OHR towards respectively the
curvature � and the mean curvatureH for the Gauss digitization process and smooth
enough shapes.

Theorem 7 (Multigrid Convergence of 2D Curvature Estimator O�R) Let X be
a compact domain of R2 such that its boundary @X is C3-smooth and has reach
greater than 	.

Then the curvature estimator O�R is multigrid convergent to the curvature � for
the Gauss digitization process on such shapes X, with convergence speed at least
O.h

1
3 / when R D �.h

1
3 / and R < 	=2. More precisely, we have

80 < h � R

2
; 8x 2 @X; 8Ox 2 @ŒGh.X/�h with kOx � xk1 � h;

ˇ
ˇ O�R.Gh.X/; Ox; h/� �.X; x/

ˇ
ˇ � O

�
h
1
3

�
: (9.63)

More precisely the bound is no greater than . 27
4
�

p
2C 3K1.2//R�2h C O.R/.
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Proof Note that from Theorem 1 (page 299), we have that any point of @X is close
to a point of @ŒGh.X/�h (distance less than h=

p
d) and the converse is also true. We

proceed similarly as in Theorem 5, using Eq.(9.15) to get:

j O�R.Gh.X/; Ox; h/� �.X; x/j
� ˇ
ˇ O�R.Gh.X/; Ox; h/� Q�R.X; Ox/ˇˇC ˇ

ˇ Q�R.X; Ox/ � Q�R.X; x/ˇˇC O.R/:

The first error term is bounded by 3K1.2/
R2

h (see proof of Theorem 5). We take care of
the second error term, letting t WD Ox � x and t WD ktk2 :

ˇ
ˇ Q�R.X; Ox/ � Q�R.X; x/ˇˇ D 3

R3
jAR.Ox/� AR.x/j

D 3

R3
jVol.BR.x C t/\ X/� Vol.BR.x/\ X/j

� 3

R3
jVol.BR.x C t//� Vol.BR.x//j

� 27

4
�R�2 t : (using Lemma 9)

The last bound is valid since t D kOx � xk2 � p
2h by the fact that kOx � xk1 � h.

By hypothesis, h � R=2, so t < R.
We have just shown

ˇ
ˇ Q�R.X; Ox/ � Q�R.X; x/ˇˇ � 6�

p
2R�2h, which concludes. ut

We have a similar result for the 3D mean curvature estimator, whose proof
follows the same arguments.

Theorem 8 (Multigrid Convergence of 3D Mean Curvature Estimator OHR
) Let

X be a compact domain ofR3 such that its boundary @X is C3-smooth and has reach
greater than 	.

Then the 3D mean curvature estimator OHR is multigrid convergent to the mean
curvature H for the Gauss digitization process on such shapes X, with convergence
speed at least O.h

1
3 / when R D �.h

1
3 / and R < 	=2. More precisely, we have

80 < h � Rp
6
; 8x 2 @X; 8Ox 2 @ŒGh.X/�h with kOx � xk1 � h;

ˇ
ˇ
ˇ OHR.Gh.X/; Ox; h/� H.X; x/

ˇ
ˇ
ˇ � O

�
h
1
3

�
: (9.64)

More precisely the bound is no greater than .18
p
3C 4K1.3/=�/R�2h C O.R/.
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9.5 Multigrid Convergence of Curvature Tensor in 3D

We show in this section how we can approach the whole curvature tensor by simply
intersecting a ball with the digital input shape. However, we do not simply count the
number of digital points within but we rather compute the digital covariance matrix.
The digital covariance matrix is shown to be close to the covariance matrix, which
is known to contain curvature information. Although most of the results presented
here could be naturally extended to arbitrary dimension d, we prefer to expose them
in 3D.

9.5.1 Digital Covariance Matrix and Digital Principal
Curvature Estimators

Similarly to the covariance matrix, the digital covariance matrix is defined through
zeroth, first and second order digital moments.

Definition 5 (Digital Covariance Matrix) For any digital subset Z � Z
3, its

digital covariance matrix Vh at step h is

Vh.Z/WD
2

4
Om200h .Z/ Om110h .Z/ Om101h .Z/
Om110h .Z/ Om020h .Z/ Om011h .Z/
Om101h .Z/ Om011h .Z/ Om002h .Z/

3

5

� 1

Om000h .Z/

2

4
Om100h .Z/
Om010h .Z/
Om001h .Z/

3

5˝
2

4
Om100h .Z/
Om010h .Z/
Om001h .Z/

3

5

T

: (9.65)

Following the truncated Taylor expansion of Lemma 6, we define estimators of
principal curvatures from the diagonalization of the digital covariance matrix.

Definition 6 Let Z � Z
3 be a digital shape and h > 0 a grid step. For R 	 h, we

define the integral principal curvature estimators O�R1 and O�R2 of Z at point y 2 R
3

and step h their respective integral principal direction estimators OwR
1 and OwR

2 , and
the integral normal estimator OnR as

O�R1 .Z; y; h/WD
6

�R6
. O2 � 3 O1/C 8

5R
; OwR

1 .Z; y; h/WDO�1 (9.66)

O�R2 .Z; y; h/WD
6

�R6
. O1 � 3 O2/C 8

5R
; OwR

2 .Z; y; h/WDO�2 (9.67)

OnR.Z; y; h/WDO�3 ; (9.68)

where O1 	 O2 	 O3 are the eigenvalues of Vh.BR=h.y=h/ \ Z/, and O�1; O�2; O�3 are
their corresponding eigenvectors.
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In the following sections, we show that such estimators are indeed multigrid
convergent to their respective geometric quantity. Proofs rely on the convergence of
digital moments, on the stability of moments with respect to small displacements,
and on matrix perturbation theory. Most of the work presented here has been
published in [15].

9.5.2 Some Properties of Covariance Matrix and Moments

Before proving the multigrid convergence, we need to establish a few preliminary
lemmas. First of all, we notice easily that covariance matrices are translation
invariant.

Lemma 10 Translation invariance for covariance matrices:

• 8Y � R
3, 8v 2 R

3, V .Y C v/ D V .Y/.
• 8Z � Z

3, 8v 2 Z
3, 8h > 0, Vh.Z C v/ D Vh.Z/.

Then, we must examine how moments are perturbated by a positioning error of
the ball.

Lemma 11 For any point x, a positive number R, and any vector t with norm
tWDktk2 � R, we have

ˇ
ˇm000.BR.x C t// � m000.BR.x//

ˇ
ˇ � O.tR2/; (9.69)

ˇ
ˇm100.BR.x C t// � m100.BR.x//

ˇ
ˇ � O.tR3/C O.kxk1tR2/; (9.70)

ˇ
ˇm200.BR.x C t// � m200.BR.x//

ˇ
ˇ � O.tR4/C O.kxk1tR3/C O.kxk21tR2/:

(9.71)

Other moments with same order have the same respective bounds. Furthermore,
these relations remain true if both BR.x C t/ and BR.x/ are intersected with the
same set X.

Proof We notice first that Eq.(9.69) has already been established in Lemma 9. For
higher order moments pqs, we will use the following fact:

; ¤ Y1 � Y2 � R
3) sup

Y�Y1

jmpqs.Y/j � sup
Y�Y2

jmpqs.Y/j : (9.72)

As in Lemma 9, we notice that the difference of balls is included in the difference
of two balls with same center. This is illustrated in Fig. 9.4, right.

jmpqs.BR.x C t//� mpqs.BR.x//j � sup
Y�BR.xCt/�BR.x/

jmpqs.Y/j ;

� sup
Y�BRCt.x/nBR�t.x/

jmpqs.Y/j :
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Hereafter we denote SR;t.x/WDBRCt.x/ n BR�t.x/.
For first order moments, we translate the shape to the origin, then we use the

previous result plus the fact that the centered 100-moment is maximized for the
x-positive half-ball3:

sup
Y�SR;t.x/

jm100.Y/j � sup
Y�SR;t.0/

jm100.Y/j C jx1j � m000.Y/

D m100.BC
RCt.0/� BC

R�t.0//C O.jx1jtR2/
D 2�.R3t C Rt3/C O..kxk1/tR2/

D O.tR3/C O.kxk1tR2/: (9.73)

For second order moments, we translate the shape to the origin, then we use the two
previous results plus the fact that the 200-moment is maximized for the ball:

sup
Y�SR;t.x/

jm200.Y/j � sup
Y�SR;t.0/

jm200.Y/j C 2jx1j � jm100.Y/j C x21 � m000.Y/

D m200.SR;t.0//C kxk1.O.tR3/C O.kxk1tR2//C kxk21O.tR2/

D O.tR4/C O.kxk1tR3/C O.kxk21tR2/ (9.74)

Other moments are proved similarly. ut

9.5.3 Multigrid Convergence of Digital Covariance Matrix

With Lemma 10 and Lemma 11, we can prove the multigrid convergence of the
digital covariance matrix. Theorem 9 establishes its simple convergence (covariance
matrices are computed at the same point y) and then Theorem 10 establishes its
multigrid convergence.

Theorem 9 (Convergence of Digital Covariance Matrix) Let X be a compact
domain of R3 such that its boundary @X has reach greater than 	.

Then for any grid step h and radius R with 0 < h � R=
p
6 < 	=.2

p
3/, for

arbitrary y 2 R
3 with d.y; @X/ � h, we have:




Vh.BR=h.y=h/\ Gh.X// � V .BR.y/\ X/




 � O.R4h/:

The constants hidden in the big O do not depend on the shape size or geometry. k � k
denotes the spectral norm on matrices.

3BC

R .x/ denotes the x-positive half ball of center x and radius R. Remember that xi is the i�th
component of x.
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Proof To simplify expressions, we set AWDBR.y/ \ X, AhWDBR=h.y=h/ \ Gh.X/ D
Gh.BR.y/\ X/ (the last equality is valid for the Gauss digitization). We begin by
translating the sets A and Ah towards the origin w.r.t. y. We must use a vector that
takes into account the digitization, hence we shift Ah by the vector

� y
h

�
, the integer

vector closest to y
h , and we shift A with the vector h

� y
h

�
. We further set QAhWDAh�� y

h

�

and QAWDA � h
� y
h

�
. With these definitions and the translation invariance of digital

covariance matrixes (Lemma 10), we get

Vh.BR=h.y=h/\ Gh.X// D Vh.Ah/ D Vh

� QAh C
hy
h

i�
D Vh. QAh/

D Vh.Gh. QA//: (9.75)

The last equality comes from the fact that QAh D Gh.A/ � � y
h

� D Gh.A � h
� y
h

�
/ D

Gh. QA/. We use also the translation invariance of the (continuous) covariance matrix
to get

V .BR.x/\ X/ D V .A/ D V
� QA C h

hy
h

i�
D V . QA/: (9.76)

With Eq.(9.75) and Eq.(9.76), we rewrite the covariance estimation error as:

kVh.BR=h.y=h/\ Gh.X//� V .BR.x/\ X/k D kVh.Gh. QA// � V . QA/k: (9.77)

We take a closer look at Vh.Gh. QA//:

Vh.Gh. QA// D
" Om200h . QAh/

: : :

#

� 1

Om000h . QAh/

" Om100h . QAh/
:::

#

˝
" Om100h . QAh/

:::

#T

:

We may rewrite the factor in front of the tensorial product using Theorem 4:

1

Om000h . QAh/
D 1

m000. QA/ C
�

1

m000. QA/
�2

O.R2h/:

Since QA is some translation of X \ BR.y/, it has the same volume. This volume is
some �.R3/ since y is at most at distance h of @X and h � R=

p
6. We get:

1

Om000h . QAh/
D 1

m000. QA/ C O.R�4h/: (9.78)

We bound above the terms in the tensorial product. We write tWDy � h
� y
h

�
, which

is the center of the ball of QA. As an example, we examine its top left term and use
again Theorem 4:

Om100h . QAh/ � Om100h . QAh/ D �
m100. QA/C O

�
R2 .ktk1 C 2R/ h

��2

D �
m100. QA/�2 C O.R7h/C O.R6h2/: (9.79)
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The last equality comes from the fact that jm100. QA/j � m100.BC
RCp

3h
.0// � 2�R4

and that ktk1 is smaller than h which is smaller than a constant times R.
Other terms of the tensorial product are upper bounded similarly. We look now

at the upper left term of the whole covariance matrix difference:

ˇ
ˇ
ˇ
�
Vh.Gh. QA//� V . QA/�

1;1

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
Om200h . QAh/� 1

Om000h . QAh/

� Om100h . QAh/
�2 � m200. QA/C 1

m000. QA/
�
m100. QA/�2

ˇ
ˇ
ˇ
ˇ
ˇ
:

� ˇ
ˇ Om200h . QAh/ � m200. QA/ˇˇ (using Eq.(9.78) and Eq.(9.79))

(9.80)

C
ˇ
ˇ
ˇ
ˇ
ˇ

�
1

m000. QA/ C O.R�4h/
���

m100. QA/�2 C O.R7h/C O.R6h2/
�

�
�
m100. QA/�2
m000. QA/

ˇ
ˇ
ˇ
ˇ
ˇ

� O.R2.ktk1 C 2R/2/h C O.R3h4/ (Theorem 4)

C O.R4h/C O.R3h2/C O.R2h3/: (using m100. QA/ D O.R4/)
(9.81)

Noticing that from ktk1 � h and h � R=
p
6, we conclude for this term. All other

terms of the matrix are bounded above in a similar way. ut
Theorem 10 (Multigrid Convergence of Digital Covariance Matrix) Let X be
a compact domain of R3 such that its boundary @X has reach greater than 	.

Then the digital covariance matrix is multigrid convergent toward the covariance
matrix for the Gauss digitization on such shapes X for any radius R <

	

2
. More

precisely, we have

80 < h <
Rp
6
; 8x 2 @X; 8Ox 2 @ŒGh.X/�h with kOx � xk1 � h;




Vh.BR=h.Ox=h/\ Gh.X// � V .BR.x/\ X/




 � O.R4h/ : (9.82)

The constants hidden in the big O do not depend on the shape size or geometry. k � k
denotes the spectral norm on matrices.

Proof We split the difference of matrices into two parts:

kVh.BR=h.Ox=h/\ Gh.X//� V .BR.x/\ X/k
� kVh.BR=h.Ox=h/\ Gh.X// � V .BR.Ox/\ X/k

C kV .BR.Ox/ \ X/� V .BR.x/\ X/k:
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The first term is directly bounded by O.R4h/ with Theorem 9, since point Ox is at
distance less than h=

p
3 from @X according to Theorem 1. It remains to bound the

second term. Denoting tWDOx�x, tWDktk2, and X0WDX�x, we simply shift everything
to the origin using the invariance by translation of the covariance matrix:

kV .BR.Ox/ \ X/� V .BR.x/\ X/k D kV .BR.t/\ X0/ � V .BR.0/\ X0/k:
(9.83)

We will apply Lemma 11 for the different moments occurring in the covariance
matrix V . We denote by Yt the set BR.t/ \ X0 and by Y0 the set BR.0/\ X0.

kV .Yt/� V .Y0/k D











"
m200.Yt/� m200.Y0/

: : :

#

� 1

m000.Yt/

"
m100.Yt/

:::

#

˝
"
m100.Yt/

:::

#T

C 1

m000.Y0/

"
m100.Y0/

:::

#

˝
"
m100.Y0/

:::

#T












: (9.84)

Matrix V .Yt/ � V .Y0/ contains differences of geometrical moments of order

two (e.g. m200.Yt/ � m200.Y0/) and quantities in the form of�WDm100.Yt/
2

m000.Yt/
� m100.Y0/

2

m000.Y0/

(component .1; 1/ in V .Yt/ � V .Y0/ matrix). From Lemma 11, every error on
second-order moments is in O.tR4/. To bound � quantities, we first observe that
jm000.Yt/�m000.Y0/j D �R2.t CO.t2/CO.tR2// using Theorem 7 in [49]. Hence,
we get

� D m100.Yt/
2

m000.Y0/C O.tR2/
� m100.Y0/

2

m000.Y0/

D O.tR2/
m100.Yt/

2

m000.Y0/2
C m100.Yt/

2 � m100.Y0/
2

m000.Y0/
:

Since a
bCO.x/ D a

b C a
b2
O.x/, a2 � b2 D .a � b/.aC b/, and using again Lemma 11,

we have

� D O.tR4/C .m100.Yt/C m100.Y0//
m100.Yt/ � m100.Y0/

m000.Y0/

D O.tR4/C .O.tR3/C O.R4//
m100.Yt/� m100.Y0/

m000.Y0/

Since the boundary of X0 D X � x goes through point 0 and is smooth, the volume
of Y0 D BR.0/ \ X0 is some �.R3/. Then, Lemma 11, Eq.(9.70), bounds the error
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of the 100-moments. Last, we have t < R since t <
p
3h and h < R=

p
6. It follows

� D O.tR4/C .O.tR3/C O.R4//
O.tR3/

�.R3/
D O.tR4/:

The same bound is found for all terms of the matrix. Putting everything together
gives the result. ut

9.5.4 Useful Results of Matrix Perturbation Theory

We have shown above that the digital covariance matrix tends toward the continuous
covariance matrix, if we compute it on the intersection of the shape with a ball.
We have defined curvature estimators from the eigenvalues and eigenvectors of the
digital covariance matrix. To show their multigrid convergence, it is thus necessary
to understand how an error on a matrix can perturb its eigendecomposition. This
is why we present first useful results from matrix perturbation theory [3, 4, 19, 55]
before establishing the multigrid convergence of our estimators.

Let M and M0 be two symmetric matrices, we want to quantify the difference
between the eigenvalues and eigenvectors of M and the eigenvalues and eigenvectors
of M0 as functions of norms of M � M0. For instance, if M0 is the covariance matrix
of a noisy data and M the noise-free covariance matrix, matrix perturbation results
would allow us to bound eigenvalues defect (and thus principal curvature defect as
described in Lemma 6).

Let .; �/ be an eigenpair of M, i.e.,  is an eigenvalue of M and � its associated
eigenvector. The eigengap ı.M/ associated to an eigenvalue  is the minimum
distance between  and any distinct eigenvalue of M. Note that the eigengap
vanished if  has multiplicity greater than 1. We also consider the operator norm
(or 2�norm) of a matrix:

kMkopWD sup
kxk2D1

kMxk2 ; (9.85)

please note that if mmaxWD maxmij2M jmijj, then mmax � kMkop � p
nm � mmax for

n � m matrix M.
The main theorem we use is due to Davis-Kahan [19] presented in a simplified

version due to [43]:

Theorem 11 (Davis-Kahan) Let M and M0 be two symmetric matrices,  an
eigenvalue of M and ıWDı.M/. Then for every eigenpair .; �/ of M, there exists
an eigenpair .0; �0/ of M0 such that:

j � 0j � p
2kM � M0kop and k� � �0k � 2kM � M0kop

ı
; (9.86)

provided that kM � M0kop < ı
p
2.
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Concerning eigenvalues, stronger results can be used to pair eigenvalues of M to
eigenvalues of M0. For instance, sorting the values by increasing order and using the
rank to pair values leads to an equivalent result on the eigenvalue difference. We
mention here the Lidskii-Weyl inequality, which bounds eigenvalues defect without
constraint on the eigengap:

Theorem 12 (Lidskii-Weyl Inequality) If i.M/ denotes the ordered eigenvalues
of some symmetric matrix M and i.M0/ the ordered eigenvalues of some symmetric
matrix M0, then maxi ji.M/� i.M0/j � p

2kM � M0kop.
Another consequence of Theorem 11 is that the eigengap between eigenvalues

plays an important role in eigenvector deviations. For example, if M is a covariance
matrix of a perfectly symmetric shape around the Oz axis, one eigenvalue would
have multiplicity 2. Any infinitely small perturbations of the shape breaking
the symmetry would lead to large defects of the eigenvectors associated to the
eigenvalues with infinitely small eigengaps (in other words, the two eigenvectors
could rotate around the third one).

In the our context where eigenvalues/eigenvectors are used to estimate principal
curvature and principal directions, it means that on some flat or spherical surface
patches, we can expect convergence of the principal curvature values but not the
direction (in the sense of the norm of the vector deviation).

9.5.5 Multigrid Convergence of Integral Principal Curvature
Estimators

The multigrid convergence of (local) digital covariance matrix and stability results
of matrix perturbation theory induce multigrid convergence for integral principal
curvature estimators:

Theorem 13 (Multigrid Convergence of Integral Principal Curvature Estima-
tors O�R

1 and O�R
2 ) Let X be a compact domain of R3 such that its boundary @X

has reach greater than 	 and has C3-continuity.
Then, for the Gauss digitization process, the integral principal curvature estima-

tors are multigrid convergent toward the principal curvatures on such shapes X for
well-chosen gridsteps h and radius R. More precisely, setting R D kh

1
3 with k an

arbitrary positive constant, we have

8h 2 R; 0 < h < min

 
� 	

2k

�3
;

�
kp
6

� 3
2

!

;

8x 2 @X;8Ox 2 @ŒGh.X/�h with kOx � xk1 � h;

kO�R1 .Gh.X/; Ox; h/� �1.X; x/k � O.h
1
3 / ; (9.87)

kO�R2 .Gh.X/; Ox; h/� �2.X; x/k � O.h
1
3 / : (9.88)
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Proof First of all, requirements on h imply that h < Rp
6

and R <
	

2
. We are thus

in the hypotheses of Theorem 10, which indicates that the digital covariance matrix
is multigrid convergent to the covariance matrix. We denote M0WDVh.BR=h.Ox=h/ \
Gh.X// and MWDV .BR.x/\ X/. It follows from this convergence property that:

kM0 � Mkop � O.R4h/:

Since both M and M0 are symmetric, it follows from matrix perturbation theory
(Theorem 12) that eigenvalues of M and M0 are close. Recalling that 1 	 2 	
3 are the eigenvalues of the covariance matrix M and O1 	 O2 	 O3 are the
eigenvalues of the digital covariance matrix M0, it follows that 8i 2 f1; 2; 3g; j Oi �
ij < O.R4h/. For instance, for O�R1 , we write:

O�R1 .Gh.X/; Ox; h/ D 6

�R6
. O2 � 3 O1/C 8

5R

D 6

�R6
�
2 � 31 C O.R4h/

�C 8

5R
:

With the hypothesis of C3-continuity, we can substitute the truncated Taylor
expansion of Lemma 6 into the latter equation. After some simple calculations, we
get:

O�R1 .Gh.X/; Ox; h/ D �1.X; x/C O.R/C O.h=R2/: (9.89)

Setting R D kh˛, we optimize the value ˛ to minimize all errors. The optimal value
is ˛ D 1

3
and the bound follows. The reasoning is strictly similar for O�R2 . ut

As noticed in [15], slightly better bounds could be obtained if the shape X has
a C3-boundary with strictly positive curvature and if the distance between x and
Ox could be reduced. The formulation of this theorem in [15] (Theorem 6) requires
that the shape X can be decomposed into a finite number of monotonous pieces.
Here, this is unnecessary since we have rewritten convergence theorems of digital
moments for shapes with the sole property of having positive reach (see Sect. 9.3).

As indicated by Theorem 11, convergence of principal curvature directions is
more tricky. The problem lies near places of the surface where there are umbilical
points, i.e. places where principal curvatures are equal. Otherwise said, at these
points, two eigenvalues coincide and their eigenvectors span a plane. We can
nevertheless state:

Theorem 14 (Multigrid Convergence of Integral Principal Direction Estima-
tors OwR

1 and OwR
2 and of Integral Normal Estimator OnR) Let X be a compact

domain of R3 such that its boundary @X has reach greater than 	 and has C3-
continuity.

Then, for the Gauss digitization process, the integral principal direction esti-
mators are multigrid convergent toward the principal directions w1 and w2 on such
shapes X for well-chosen gridsteps h and radius R, provided the principal curvatures
are distinct. The integral normal vector estimator is also multigrid convergent
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toward the normal direction n. More precisely, setting R D kh
1
3 with k an arbitrary

positive constant, we have

9hX 2 R
C; 8h 2 R; 0 < h < hX;

8x 2 @X;8Ox 2 @ŒGh.X/�h with kOx � xk1 � h;

k OwR
1 .Gh.X/; Ox; h/� w1.X; x/k � 1

j�1.X; x/� �2.X; x/jO.h
1
3 / ; (9.90)

k OwR
2 .Gh.X/; Ox; h/� w2.X; x/k � 1

j�1.X; x/� �2.X; x/jO.h
1
3 / ; (9.91)

kOnR.Gh.X/; Ox; h/� n.X; x/k � O.h
2
3 / : (9.92)

NB: Involved vectors are oriented to point to the same side.

Proof As stated in Theorem 11, eigenvectors of two similar symmetric matrices are
close provided the corresponding eigengap is not null. We take the same notations
as in the proof of Theorem 13 and we recall that kM0 �Mkop � O.R4h/. We denote
.1; �1/, .2; �2/ and .3; �3/ the decreasing eigenpairs of M and . O1; O�1/, . O2; O�2/
and . O3; O�3/ the decreasing eigenpairs of M0. Since no confusion may arise, we write
�1 for �1.X; x/ and �2 for �2.X; x/. We start by expressing the eigengaps ıi.M/ using
Lemma 6:

ı1.M/WD1 � 2 D �

24
.�2 � �1/R6 C O.R7/;

ı3.M/WD2 � 3 D 3�

32
R5 � �

1536
.69�2 C 5�1/R

6 C O.R7/;

ı2.M/WD min.ı1.M/; ı3.M//:

As R approaches zero as h tends toward zero, it is clear that there exists some hX > 0
such that ı1.M/ � ı3.M/. Hence we suppose hereafter that ı2.M/ D ı1.M/.

If �1 ¤ �2, it follows from Theorem 11 that

kO�1 � �1k � 2

ı1.M/
kM � M0kop

� 48

�.�2 � �1/O
�

h

R2

�

C O

�
h

R

�

: (9.93)
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By Definition 6, O�1 D OwR
1 .Gh.X/; Ox; h/. Second, Theorem 3 of [48] tells that the

eigenvectors of M are close to the directions of the principal curvatures and of the
normal. More precisely, we have:

†.�1;w1.X; x// D O

�
R

�2 � �1
�

;

†.�2;w2.X; x// D O

�
R

�2 � �1
�

;

†.�3;n.X; x// D O
�
R2
�
:

Third, for unit vectors u and v, ku � vk D 2 sin ˛
2

where ˛ is the angle between
u and v. If 0 � ˛ � �

2
, it is thus straightforward to check that p̨

2
� sin ˛ � ˛ and

p̨
2

� ku � vk � ˛. Putting these three facts together with Eq.(9.93) gives:




 OwR

1 .Gh.X/; Ox; h/� w1.X; x/



 � kO�1 � �1k C k�1 � w1.X; x/k

� 1

j�1 � �2jO
�

h

R2

�

C O

�
R

�2 � �1

�

;

� 1

j�1 � �2jO
�
h
1
3

�
;

since R D kh
1
3 . The proof for the second principal direction is strictly similar, since

ı2.M/ D ı1.M/. For the normal estimator, we use the relation on ı3.M/ to get:

kO�3 � �3k � 2

ı3.M/
kM � M0kop

� 48

3�
O

�
h

R

�

C O.h/:

Since O�3 D OnR.Gh.X/; Ox; h/ by definition and with the same reasoning as above, we
derive:

kOnR.Gh.X/; Ox; h/� n.X; x/k � kO�3 � �3k C k�3 � n.X; x/k

� O

�
h

R

�

C O.R2/ D O
�
h
2
3

�
;

since R D kh
1
3 . ut

To conclude this section, we have shown that digital integral invariants provide
convergent estimates of curvatures values and directions in 3D. Furthermore,
they provide also a 3D normal estimator to digital surfaces, whose worst case
convergence speed is very fast compared to the literature (see [12] for a survey).
Last, everything has been presented for the 2D and 3D case, but most of the results
remain valid in arbitrary dimension. This is due to the fact that we have shown the
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convergence of digital moments in arbitrary dimension, and other stability results
come from matrix perturbation theory, which are also valid in arbitrary dimension.
Only the Taylor expansion of integral invariant in general dimension is missing.
We will show in the next sections that these estimators compare well with other
estimators in practice.

9.6 Parameter-Free Digital Curvature Estimation

In the multigrid convergence framework, the notion of scale is explicit with
parameter h. For instance, convergence results can be obtained for any radius
integration kernel R in O.h

1
3 /. In some practical situations, we have to analyze a

given digital object Z � Z
d without any information about its Euclidean embedding.

As a consequence, setting suitable values for R can be challenging. Note that
beside integral invariant estimators described in the previous sections, most existing
curvature estimators are also parametrized by such kernel size or window size
parameter.

In this section, we propose techniques to automatically set such radius parameter
for a given digital object Z in dimension 2 and 3 with the property that if Z comes
from a multigrid digitization process, then we remain in the convergence theorem
hypothesis. For short, the key point here is to rely on a geometrical information
extracted from the digital contour, here maximal digital straight segments, from
which multigrid parameter h can be retrieved. Let us first formalize this property.

9.6.1 Asymptotic Laws of Straight Segments Along
the Boundary of Digitized Shapes and Scale
Determination

First of all, we remind the definition of digital straight segment [29, 51].

Definition 7 (Standard Line and Digital Straight Segment) The set of points
.x; y/ 2 Z

2 satisfying � � ax�by < �CjajCjbj, with a, b and � integer numbers,
is called the standard digital line with slope a=b and shift �. Any connected subset
of pixels of a standard digital line is a digital straight segment (DSS for short).

On a digital set Z � Z
2, we denote by Bd.Z/ its (cellular) topological boundary

composed of pointels (0-cell) and linels (1-cell). Following the discussion in
Sect. 9.2.3, the canonical embedding of Bd.Z/ into R

2 coincides with @ŒZ�h. On
Bd.Z/, we can define maximal segments and maximal segment pencils:

Definition 8 (Maximal Segment and Maximal Segment Pencil [37]) The poin-
tels composing the digital boundary Bd.Z/ form a 4-connected contour. They can
thus be numbered consecutively as .pi/iD0:::n�1. A sequence of pointels .pi; : : : ;pj/,
indices taken modulo n, is a maximal segment on @Z iff fpi; : : : ;pjg is a DSS,
while neither fpi�1;pi; : : : ;pjg nor fpi; : : : ;pj;pjC1g are DSS. At a given pointel
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p 2 Bd.Z/, the pencil of maximal segment at p is the set of maximal segments on
Bd.Z/ containing p.

In many situations, maximal segments and maximal segment pencils play a very
important role in multigrid digital contour geometry processing [34, 57]. For the
purpose of this paper, let us focus on the asymptotic properties of lengths of maximal
segment:

Lemma 12 (Asymptotic Laws of Maximal Segments [34, 57]) Let X be some
convex shape of R2, with at least C3-boundary and non-null bounded curvature.
The discrete length of maximal segments in Bd.Z/ for Z D Gh.X/ follows:

• the shortest is lower bounded by˝.h� 1
3 /;

• the longest is upper bounded by O.h� 1
2 /;

• their average length, denoted LD.Z/, is such that:

�
�
h� 1

3

�
� LD.Z/ � �

�

h� 1
3 log

�
1

h

��

: (9.94)

We now have the key ingredient for the scale inference of Z (if Z is the
digitization of a C3 Euclidean shape): If we compute the average length of all
maximal segments in Bd.Z/, Eq. (9.94) allows us to retrieve the scale parameter
h. We can now introduce our parameter free curvature estimator in 2D:

Definition 9 Given Z � Z
2, the parameter-free digital curvature estimator O�� at a

pointel p 2 Bd.Z/ is defined as:

O��.Z;p/WD 3�

2	.Z/
� 3A.Z;p/

	.Z/3
; (9.95)

where 	.Z/ D L2D.Z/ and A.Z;p/ D Card.B	.Z/.p/\ Z/.
To rephrase the definition, we first compute the average discrete length of all
maximal segments on Bd.Z/. Then 	 is the square of this length. The estimation
O��.Z;p/ is a function of the number of digital points in Z intersected with the ball
of radius 	 centered at p. This definition mimics continuous definition in Eq. (9.14)
and is a scale-independent version of Definitions 3 and 4 (page 314).

9.6.2 Parameter-Free Digital Curvature Estimators

In dimension 2, O��.Z;p/ is parameter-free and only related to a digital object Z.
However, if Z is the digitization of a continuous shape X, i.e. if Z D Gh.X/, then
multigrid convergence is obtained:

Theorem 15 (Multigrid Convergence of Curvature Estimator O�� [39]) Let X
be some convex shape of R2, with at least C3-boundary and non null bounded
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curvature. Let Z D Gh.X/. Then, there exist a positive constant h0, for any
0 < h � h0, we have, 8x 2 @X and 8p 2 Bd.Z/

khp � xk1 � h)
ˇ
ˇ
ˇ
ˇ
1

h
O��.Z;p/ � �.X; x/

ˇ
ˇ
ˇ
ˇ � O

�

h
1
3 log2

�
1

h

��

: (9.96)

Note that p 2 Bd.Z/ implies hp 2 @ŒGh.X/�h. The parameter-free curvature is
rescaled by h in order to compare comparable shapes. To sketch the proof, Eq. (9.94)

implies that h	.Z/ is in O
�
h
1
3 log2

�
1
h

��
. Theorem 7 (page 318) only requires the

kernel radius R to be in O.h
1
3 / to achieve multigrid convergence. In [39], we show

that considering R D O
�
h
1
3 log2

�
1
h

��
does not change the convergence property.

9.6.3 Local Parameter-Free Digital Curvature Estimator
and 3D Case

Several extensions can be considered. The first one is a local definition of O��.Z;p/.
Indeed, Definition 9 imposes the same radius parameter for each point of Bd.Z/
(average of all maximal segment lengths). We may be interested in a local version
to obtain adaptive estimations. For instance, a local version is easily defined by
considering, at each point p, the average length of DSS in its maximal segment
pencil, denoted 	.Z;p/. Hence, we define:

O��
l .Z;p/WD

3�

2	.Z;p/
� 3A0.Z;p/
	.Z;p/3

; (9.97)

where A0.Z;p/ D Card.B	.Z;p/.p/ \ Z/.
Doing so, we cannot prove anymore the multigrid convergence of 1

h O��
l .Z;p/

since in the maximal pencil, we may have pathological DSS with too long length
(those in O.h� 1

2 / in Lemma 12). However, experimental evaluation shows good
convergence properties and we observe that O��

l .Z;p/ outperforms O��.Z;p/.
A second extension considers the 3D case with Z � Z

3. In this case, we first want
to construct a mean curvature estimator setting the radius kernel R to geometrical
characteristics, denoted 	0, of Bd.Z/. A first issue is that in dimension 3, even if
digital planes can be defined, no result similar to Lemma 12 exists. In [39], we
have presented a slice based approach: intersecting Z with planes aligned with grid
axis defines a set of 2D digital curves on which maximal DSS can be computed
and thus average maximal DSS length can be obtained. Similarly, at a given surfel
s, two specific 2D curves can be defined and thus local parameter-free estimator
can be defined considering average DSS length in the two maximal segment
pencils containing the projection of s. As in the local 2D case, some pathological
configurations may occur preventing us to have a complete convergence proof of
such estimators (see details in [39]). However, experimental convergence can be
observed. The following section details these results.
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9.7 Experimental Evaluation

In this section, all presented estimators are evaluated experimentally and compared
with state-of-the-art techniques.

9.7.1 Implementation Details

Integral invariant estimators are based on spherical kernels with radius given by
R D kh˛ as described in theorem statements. Then, the digital object boundary is
tracked and the kernel is centered on each surface elements. For 2D and 3D mean
curvature estimators, the volumetric integral of the intersection between the kernel
and the object is computed; for 3D principal curvature estimators, the covariance
matrix of this intersection is computed and then eigenvalues and eigenvectors are
deduced from it by diagonalization.

A brute-force implementation would lead to a computational cost of O..R=h/d/
per surface element (i.e. the size of the kernel at grid step h). However, all quantities
are additive and we can take advantage of the digital surface structure to speed
up this algorithm considerably: if we consider a surface tracker for which surface
elements are processed by proximity (the current surface element is a neighbor of
the previous one through a translation vector ı), the area/volume estimation can be
done incrementally:

bArea .Gh.X/\ BR.x C ı/; h/ D bArea .Gh.X/\ BR.x/; h/

C bArea .Gh.X/\ .BR.x C ı/ n BR.x//; h/

� bArea .Gh.X/\ .BR.x/ n BR.x C ı//; h/ :

Similarly we have for moments:

Omp;q;s .Gh.X/\ BR.x C ı/; h/ D Omp;q;s .Gh.X/\ BR.x/; h/

C Omp;q;s .Gh.X/\ .BR.x C ı/ n BR.x//; h/

� Omp;q;s .Gh.X/\ .BR.x/ n BR.x C ı//; h/ :

Then, if we precompute all kernels Gh.BR.0˙ ı/ n BR.0// for some ı displace-
ments (based on surface element umbrella configurations, 8 in 2D and 26 in 3D
for kık1 D h), the computational cost per surface element can be reduced to
O..R=h/d�1/. Finally, in the ideal case of a Hamiltonian traversal of the surface,
only the first surfel has to be computed using kernel BR.Ox/ and every subsequent
neighboring surfel is processed using sub-kernels Gh.BR.0˙ ı/ n BR.0//.

To perform precise performance evaluation in both the multigrid framework and
with respect to the state of the art, we need a family of Euclidean shapes X on
which the estimated quantity is known. Table 9.1 and Fig. 9.5 present continuous
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Table 9.1 Equations, parameters and domains of Euclidean shapes considered in the experimental
evaluation (t 2 Œ0; 2�� for parametric curves)

Shape Equation (parametric
in 2D, implicit in 3D)

Parameters Domain kmin kmax

Ellipse .x.t/; y.t// D .	.t/ 

cos.t/; 	.t/ 
 sin.t//
with 	.t/ D

bp
1�.a2�b2/=a2 �cos.tC
/

.a; b/ D .20; 7/ Œ�20; 20�2 0:018 0:408

Flower .x.t/; y.t// D .	.t/ 

cos.t/; 	.t/ 
 sin.t//
with 	.t/ D
r1 C r2 
 cos. p 
 t/

.r1; r2; p/ D .20; 7; 6/ Œ�20; 20�2 �1:414 0:383

AccFlower .x.t/; y.t// D .	.t/ 

cos.t/; 	.t/ 
 sin.t//
with 	.t/ D
r1 C r2 
 cos.p 
 t3/

.r1; r2; p/ D .20; 5; 3/ Œ�20; 20�2 �10:45 3:1482

Sphere x2Cy2C z2�a2 D 0 a D 9 Œ�10; 10�3 0:111 0:111

Rounded
cube

x4Cy4C z4�a4 D 0 a D 9 Œ�10; 10�3 0 0:282

Goursat’s
surface

ax4 C ay4 C az4 C
bx2Cby2Cbz2Cc D
0

.a; b; c/ D .0:03;�2;�8/ Œ�10; 10�3 �0:15 0:453

Please refer to Fig. 9.5 for illustrations

(a) (b) (c) (d) (e) (f)

Fig. 9.5 Illustrations of 2D and 3D shapes considered in the experimental evaluation (please refer
to Table 9.1 for equations and parameters): ellipse (a), flower (b), accelerated flower (c), sphere
(d), rounded cube (e) and Goursat’s surface (f)

shapes considered in this analysis. Please note that, for parameter-free curvature
estimators, only convex ones match with theorem statements. However, we can still
experimentally evaluate the behavior of estimators when considering shapes that do
not satisfy all theorem hypotheses.

All curvature estimators have been implemented in DGTAL.4 DGTAL is an
opensource library devoted to digital geometry tools. Beside proposing curvature
integral invariant based estimators, this library offers mathematical shapes with
known curvature values and Gauss digitization of such objects on a grid with
gridstep h. Furthermore, many existing curvature estimators from the literature are
also available, making easy comparative evaluations.

4The DGTAL library is available at http://dgtal.org.

http://dgtal.org


336 J.-O. Lachaud et al.

10−4 10−3 10−2 10−1 100
h

10−2

10−1

l ∞
er
ro
r

BC
MDCA
MDSS
II

O(h1/3)

10−4 10−3 10−2 10−1 100
h

10−1

100

l ∞
er
ro
r

BC
MDCA
MDSS
II

O(h1/3)

10−4 10−3 10−2 10−1 100
h

100

101

l ∞
er
ro
r

BC
MDCA
MDSS
II

O(h1/3)

10−2 10−1 100
h

10−2

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

2 × 10−1

3 × 10−1

4 × 10−1

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−2l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

100

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−2

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

6 × 10−2

2 × 10−1

3 × 10−1

4 × 10−1

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

10−2 10−1 100
h

10−1

100

l ∞
er
ro
r

Jet Fitting
II

O(h1/3)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9.6 Multigrid analysis of the estimation error with l1 norm in 2D and 3D. (a) Ellipse-O�R-
l1. (b) Flower-O�R-l1. (c) AccFlower-O�R-l1. (d) Sphere- OHR-l1. (e) RoundedCube- OHR -l1. (f)
Goursat- OHR-l1. (g) Sphere-O�1R-l1. (h) RoundedCube-O�1R -l1. (i) Goursat-O�1R-l1. (j) Sphere-O�2R-
l1. (k) RoundedCube-O�2R-l1. (l) Goursat-O�2R-l1

9.7.2 Multigrid Convergence Analysis

We have first checked experimentally that the ˛ parameter (for the ball radius
R D kh˛) should indeed be set around 1

3
to get multigrid convergence. This was

empirically observed in [15], where a complete discussion on convergence behavior
for different ˛ values is detailed. In all following experiments, we have set ˛ to 1

3
.

In Figs. 9.6 and 9.7, we compare our digital integral invariant estimators (II) to
state-of-the-art methods for respectively the l1 and l2 error norms. In dimension 2,
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Fig. 9.7 Multigrid analysis of the estimation error with l2 norm in 2D and 3D. (a) Ellipse-
O�R-l2. (b) Flower-O�R-l2. (c) AccFlower-O�R-l2. (d) Sphere- OHR-l2. (e) RoundedCube- OHR -l2. (f)
Goursat- OHR-l2. (g) Sphere-O�1R-l2. (h) RoundedCube-O�1R-l2. (i) Goursat-O�1R-l2. (j) Sphere-O�2R-l2. (k)
RoundedCube-O�2R-l2. (l) Goursat-O�2R-l2

other curvature estimators are: curvature from Most-centeredMaximal Segmentwith
length information (MDSS) [13, 57], curvature fromMost-centered Digital Circular
Arc (MDCA) [53] and Binomial based convolution (BC) [22]. In dimension 3, we
have considered the curvature estimation from polynomial surface approximation
(Jet Fitting) [10]. For the latter, we have also chosen a window size in kh

1
3 . In

Fig. 9.8, we detail timings in logscale for various estimators on the flower shape
in 2D and the rounded cube in 3D. As expected, approaches based on object
recognition in dimension 2 (MDSS and MDCA) provide faster computations. We
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(a) (b)

Fig. 9.8 Timings in milliseconds for 2D estimators on a flower (a) and 3D estimators on a rounded
cube (b). Results have been obtained on a Intel Xeon 2.27 GHz desktop machine

also observe that II is a bit slower but has an asymptotic behavior much more
favorable that BC. In dimension 3 (Fig. 9.8b), we observe that Jet fitting and II
behaviors are similar and that II is 10 times faster than our implementation of Jet
fitting.5

Finally, Fig. 9.9 illustrates various curvature maps on binary shapes.

9.7.3 Parameter-Free Estimators

As described in Sect. 9.6, the ball radius can be deduced by the contour/surface
geometry in order to design a parameter-free estimator. More precisely, in dimen-
sion 2, setting the radius to the square of the average length of all maximal
DSS allows us to keep a multigrid convergence property (estimator O��.Z; p/
in Theorem 15). Furthermore, this ball radius can be defined locally (estimator
O��
l .Z; p/) to capture local behavior of the contour and thus reduce the l2 error.

The main drawback of the locally adapted estimator is that since radius may
change for each surfel, we cannot use anymore the incremental propagation of
area/volume or moments as described in Sect. 9.7.1. We can define an intermediate
estimator based on a quantification of all local ball radii along the contour using for
instance a k-means approach ( O��

KD5 denotes the local curvature estimator defined
from a quantification of ball radii into five classes). Figures 9.10 and 9.12 present
convergence results in dimension 2 and 3 respectively. As expected, we observe
the multigrid convergence of parameter-free estimators for both l1 and l2 error
metrics. Furthermore, we can observe that local approaches (and local approaches

5For an implementation, we refer to the CGAL library available at http://www.cgal.org.

http://www.cgal.org
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Fig. 9.9 Integral invariant based differential estimators on a digital surface (2563 OctaFlower
shape). From left to right, mean curvature, Gaussian curvature, first principal direction, second
principal direction and normal vector field (zooms in third row)

based on a quantification) induce smaller l2 errors. This means that better estimation
can be obtained if we locally adapt the ball radius to the curve/surface geometry.
Represented in scale-scale, Fig. 9.11 shows the scale that has been selected for a
2D flower shape (Fig. 9.12). Finally, in Fig. 9.13, we show the multiresolution
behavior of O��.Z; p/. Indeed, since the parameter depends only on the object
geometry, we can obtain consistent curvature estimation whichever is the object
resolution.



340 J.-O. Lachaud et al.

h

101

100

10−1

10−2

10−3

10−4 10−3 10−2 10−1 100

h

10−4 10−3 10−2 10−1 100

l ∞
er
ro
r

l ∞
er
ro
r

101

100

10−1

10−2

l ∞
er
ro
r

k̂∗

k̂∗
l

k̂R

MDCA

O(h1/3)

(a) (b)

(c) (d) (c)

k̂∗

k̂∗
l

k̂R

MDCA

O(h1/3)

h

100

10−1

10−2

10010−2 10−1

h

10010−2 10−1

h

10010−2 10−1
10−3

l ∞
er
ro
r

100

10−1

100

10−1

10−2

10−3

Ĥ∗
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Fig. 9.10 Comparison in log-space of parameter-free curvature l1 errors in dimension 2 (first
row), and parameter-free mean and principal curvatures (second row) l1 errors on a multigrid
ellipsoid. (a) Ellipse-l1. (b) Flower-l1. (c) Ellipsoid-l1. (d) Ellipsoid-l1. (e) Ellipsoid-l1

Fig. 9.11 Curvature scale-space analysis of a flower: x-axis is the curvilinear abscissa, y-axis is
the kernel radius, curvature values are mapped between the blue (lowest curvature) and the yellow
color (highest curvature). In black are drawn the radius 	.Z/ for global estimator O�� (first row),
radii 	.Z; p/ for local estimator O��

l (second row), and radii 	.Z; p/ after K-mean clustering for local
estimator O��

KD5. (last row)
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Fig. 9.12 Comparison in log-space of parameter-free curvature l2 errors in dimension 2 (first row),
and parameter-free mean and principal curvatures (second row) l2 errors on a multigrid ellipsoid.
(a) Ellipse-l2. (b) Flower-l2 . (c) Ellipsoid-l2. (d) Ellipsoid-l2. (e) Ellipsoid-l2

Fig. 9.13 (Left) Mean curvature mapped on “bunny” at different resolution using OH�

l (yellow color
is the highest curvature, blue the lowest)

9.8 Discussion, Applications and Further Works

9.8.1 Robustness to Noise

Thanks to the volumetric integration principle of Integral Invariant estimators,
robustness to noise and outliers can be expected. Intuitively, if the noise is modeled
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Fig. 9.14 Robustness of II estimator on the OCTAFLOWER shape: mean, (a)–(b), and Gaussian
curvature, (c)–(d), estimation on a noise-free and noisy surface (noise level=0.5). Comparison of
2D estimators on different level of noise on an ellipse (e). Comparison of 3D estimators for mean
(f) and principal curvatures (g) and (h) on different level of noise on an ellipsoid

as a zero-mean noise around the object surface or if outliers are of measure zero,
geometrical moments would be stable.

Experimentally, robustness in dimension 2 and 3 can be observed in Fig. 9.14.
Our noise model consists in swapping the grid point value at p with probability
defined by a power law ˇ1Cdt. p/ for some user-specified ˇ 2 Œ0; 1� (dt. p/
corresponds to the distance of p to the boundary of the original digital shape).
Such noise model, so-called KANUNGO noise [27], is particularly well-adapted to
evaluate the stability of digital geometry algorithms. As expected, integral invariants
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approaches provide robust estimation as the noise parameter increases. Since Jet
Fitting considers a principal component analysis of the point set, robustness to noise
can also be observed for this approach. In dimension 2, methods which rely on the
geometry of the digital contour (MDCA, MDSS) are highly perturbated, even for
limited noise parameters.

9.8.2 Feature Detection with Multiscale Approach

As discussed in previous sections, integration radius should be set properly to
have relevant curvature estimations. The radius should be set either by the user or
automatically thanks to the parameter-free approach. In this section, we use the
radius as a scale-space parameter to detect features on digital surfaces. First of all,
as described in Eqs. (9.12) and (9.13), area and volume at a point x on a smooth
manifold @X are related to curvature in 2D and mean curvature in 3D. If we consider
now a piece-wise smooth surface X and a point x lying on a C1-discontinuity of @X,
Pottmann et al. [48, 49] have shown that area and volume are related to left/right
side curvatures but also solid angle of normal vectors at x (see Fig. 9.15):

AR.x/ D ˛0R2

2
� �� C �C

6
R3 C O.R4/ ; (9.98)

VR.x/ D 2˛0R3

3
� �.H� C HC/

8
R4 C O.R5/ : (9.99)

If we define now the following quantities:

GX;x.R/WD3�

2R
� 3AR.x/

R3
; GX;x.R/WD 8

3R
� 4VR.x/

�R4
: (9.100)

At a smoothC3 point x, these quantities converge to �.X; x/ and H.c; x/ respectively
as R tends to zero (see Sect. 9.2.3, Eq. (9.15)). On the contrary, at singular point x,

xxxx
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a

Fig. 9.15 Scale-space analysis on a spherical shape (a) and a shape with a singularity (b)
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Fig. 9.16 Evaluation of feature detection on perfectly digitized and noisy shapes. SpheresUnion:
400�200�200 voxels, CubeSphere: 2003 voxels, Fandisk: 5123 voxels, OctaFlower: 5123 voxels.
The range of radii used for all classifications is given by rmin D 5 and rmax D 25

we have:

GX;x.R/ D 3

2

1

R
.� � ˛0/C �� C �C

6
C O.R/ ; (9.101)

GX;x.R/ D 8

3

1

R
.1 � ˛0

�
/C H� C HC

2
C O.R/ : (9.102)

In other words, as R tends to zero, these quantities have a dominant 1
R term. We

do not go further into details, please refer to [40] for a complete state-of-the-art
discussion and mathematical insights but feature detector on digital surfaces can be
defined looking to the behavior of GX;x.R/ and GX;x.R/ for a given range of radii:
if the quantities remain constant, we classify x as belonging to a smooth part of
the object. If the quantities follow �.R�1/ speed, we classify x as belonging to
an edge. In Fig. 9.16 we present some classification results into Edge (red), Flat
(green) and Smooth (blue) classes on both noise-free and noisy data for the same
set of parameters.

9.8.3 Current Limitations and Possible Research Directions

We have presented a whole set of estimators based on integral invariant principle
that can be applied to analyze the local geometry of digital shapes: mean and
principal curvatures, normal and principal directions. We have shown that they
achieve multigrid convergence for some classes of shapes et we have made explicit
their convergence speed. Furthermore, these estimators compare favorably to other
methods in practice, even in the presence of noise.
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These estimators suffer of course of some limitations. A first limitation is that
these estimators require to know an approximation of the volumetric shape X. An
approximation of the boundary of X is not a usable input for these estimators. This is
a strong limitation when analyzing clouds of points. Fortunately, in digital geometry,
most input shapes are approximations of X.

Secondly, these estimators are multigrid convergent for a whole range of radii
and, even in the case of the parameter-free curvature estimator, it is not obvious
what is the optimal value for the k parameter. We know pretty clearly the bound on
errors related to moment estimations, but the error bound on the Taylor expansion is
not explicit. Certainly, the parameter k depends in some ways on maximal curvature
derivatives, but this result remains to be shown.

Thirdly, these estimators are rather costly to compute for “big” digital shapes
(about 12s for a 2563 object with R D 5, about 58s with R D 10). However, this has
to be tempered by the fact that this is the price of being robust to noise. Indeed, even
if the object is highly perturbated along its boundary, the volumetric integrals make
the estimators very robust.

Many research directions could be carried on from this point. A first one would
be to use other kernels than the simple ball. A good candidate is the Gaussian
kernel, because computations could be conducted in the Fourier domain. Hence,
computations will be almost linear in the size of the object, whatever the kernel
radius. Furthermore, multiscale analysis would be much less costly to compute. It
remains to show their multigrid convergence.

Another direction is related to Voronoi based approaches, especially to Voronoi
Covariance Measure methods [18, 44, 45]. They are also based on covariance
analysis, not of the shape but of the tangent cone. Such approaches are thus
complementary and should be combined. Besides, looking at image processing
methods, VCM approaches share similarities with image curvature estimators based
on the image structure tensor [35, 52], and could also benefit from Fourier analysis.

Further information on digital integral invariant estimators can be found in [14,
15, 39, 40].
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