
Design of a Task-Parallel Version of ILUPACK
for Graphics Processors

José I. Aliaga1, Ernesto Dufrechou2(B), Pablo Ezzatti2,
and Enrique S. Quintana-Ort́ı1

1 Dep. de Ingenieŕıa y Ciencia de la Computación, Universidad Jaime I,
12.701, Castellón, Spain

{aliaga,quintana}@icc.uji.es
2 Instituto de Computación, Universidad de la República,

11.300, Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. In many scientific and engineering applications, the solution
of large sparse systems of equations is one of the most important stages.
For this reason, many libraries have been developed among which ILU-
PACK stands out due to its efficient inverse-based multilevel precondi-
tioner. Several parallel versions of ILUPACK have been proposed in the
past. In particular, two task-parallel versions, for shared and distributed
memory platforms, and a GPU accelerated data-parallel variant have
been developed to solve symmetric positive definite linear systems. In this
work we evaluate the combination of both previously covered approaches.
Specifically, we leverage the computational power of one GPU (associ-
ated with the data-level parallelism) to accelerate each computation of
the multicore (task-parallel) variant of ILUPACK. The performed exper-
imental evaluation shows that our proposal can accelerate the multicore
variant when the leaf tasks of the parallel solver offer an acceptable
dimension.

Keywords: ILUPACK · Graphic processors · Multi-core processors ·
Sparse linear systems · High performance

1 Introduction

In several scientific applications, the solution of large sparse systems of equa-
tions arise as one of the most important stages. Some examples appear in circuit
and device simulations, quantum physics, large-scale eigenvalue computations,
nonlinear sparse equations, and all kind of applications that involve the dis-
cretization of partial differential equations (PDEs) [6].

ILUPACK1 (incomplete LU decomposition PACKage) is a numerical package
that contains highly efficient sparse linear systems solvers, and can handle large-
scale application problems of up to millions of equations. The solvers are based

1 http://ilupack.tu-bs.de.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 91–103, 2017.
DOI: 10.1007/978-3-319-57972-6 7

http://ilupack.tu-bs.de

92 J.I. Aliaga et al.

on Krylov subspace methods [9], preconditioned with an inverse-based multilevel
incomplete LU (ILU) factorization, which keeps a unique control of the growth of
the inverse triangular factors that determines its superior performance in many
cases [7,10,11].

Despite the remarkable mathematical properties of ILUPACK’s precondi-
tioner, it has the disadvantage of a costly computation and application, in com-
parison with more simple ILU preconditioners like ILU0. In [4] and [5] we pro-
posed the exploitation of task-level parallelism in ILUPACK, for shared and
distributed memory platforms, focusing on symmetric positive definite systems
(s.p.d.), by using the preconditioned Conjugate Gradient (PCG) method. More
recently, in [1] we used graphics accelerators to exploit data-level parallelism in
the application of ILUPACK’s preconditioner without altering its mathematical
and numerical semantics, by off-loading the computationally-intensive kernels to
the device.

In this work we evaluate the combination of both previous approaches, i.e.
shared memory and co-processor data parallelism. Specifically, we leverage the
computational power of one GPU (associated with the data-level parallelism)
to accelerate the individual tasks – i.e. the operations that compose the appli-
cation of the multilevel preconditioner – of the multicore (task-parallel) variant
of ILUPACK. The experimental evaluation shows that our proposal is able to
accelerate the multicore variant when the leaf tasks of the parallel solver offer
an acceptable dimension.

The rest of the paper is structured as follows. In Sect. 2 we review the s.p.d.
solver integrated in ILUPACK and we offer a brief study about the application
of both parallel techniques (task and data-level). This is followed by the detailed
description of our proposal in Sect. 3, and the experimental evaluation in Sect. 4.
Finally, Sect. 5 summarizes the main concluding remarks and offers a few lines
of future work.

2 Overview of ILUPACK

Consider the linear system Ax = b, where A ∈ R
n×n is sparse, b ∈ R

n, and
x ∈ R

n the sought-after solution. ILUPACK integrates an “inverse-based app-
roach” into the ILU factorization of matrix A, in order to obtain a multilevel
preconditioner. In this paper, we only consider systems with A s.p.d., on which
PCG [9] is applied. Although each iteration of the PGC also involves a sparse
matrix-vector product (SpMV) and several vector operations, in the remaining
part of this section we mainly focus on the computation and application of the
preconditioner, which are by far the most challenging operations.

2.1 Sequential (and Data Parallel) ILUPACK

Computation of the Preconditioner. This operation of ILUPACK relies
on the Crout variant of the incomplete Cholesky (IC) factorization, yielding
the approximation A ≈ LΣLT , with L ∈ R

n×n sparse lower triangular and

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 93

Σ ∈ R
n×n diagonal. Before the factorization commences, a scaling and a reorder-

ing (defined respectively by P,D ∈ R
n×n) are applied to A in order to improve

the numerical properties as well as reduce the fill-in in L. After these initial
transforms, the factorization operates on Â = PTDADP . At each step of the
Crout variant, the “current” column of Â is initially updated with respect to the
previous columns of the triangular factor L, and the current column of L is then
computed. An estimation of the norm of the inverse of L, with the new column
appended, is obtained next. If this estimation is below a predefined threshold κ,
the new column is accepted into the factor; otherwise the updates are reversed,
and the corresponding row and column of Â are moved to the bottom-right
corner of the matrix. This process is graphically depicted in Fig. 1. Once Â is
completely processed in this manner, the trailing block only contains rejected
pivots, and a partial IC factorization of a permuted matrix is computed:

P̂T ÂP̂ ≡
[

B FT

F C

]
=

[
LB 0
LF I

] [
DB 0
0 Sc

] [
LT
B LT

F

0 I

]
+ E. (1)

Here, ‖L−1
B ‖ � κ and E contains the elements dropped during the IC factoriza-

tion. Restarting the process with A = Sc, we obtain a multilevel approach.

Fig. 1. A step of the Crout variant of the preconditioner computation.

Application of the Preconditioner. The application of the preconditioner
in the PCG algorithm consists in the solution of the linear system z := M−1r,
where M is the preconditioner and r is the current residual. From (1), the pre-
conditioner can be recursively defined, at level l, as

Ml = D−1PP̂

[
LB 0
LF I

] [
DB 0
0 Ml+1

] [
LT
B LT

F

0 I

]
P̂TPTD−1, (2)

where M0 = M . Operating properly on the vectors,

P̂TPTD−1z = ẑ =
[

ẑB
ẑC

]
, P̂TPTDr = r̂ =

[
r̂B
r̂C

]
, (3)

94 J.I. Aliaga et al.

and applying LF = FL−T
B D−1

B (derived from (1)), we can expose the following
computations to be performed at each level of the preconditioner [1]:

Before: r̂ := P̂TPTDr, Solve LBDBLT
BsB = r̂B for sB ,

tB := FsB , yC := r̂B − tB,
Recursive step: Solve Ml+1ẑC = yC for ẑC ,
After: t̂B := FT ẑC , Solve LBDBLT

B ŝB = t̂B for ŝB,

ẑB := sB − ŝB , z := DPP̂ ẑ.

(4)

To conclude this subsection, we emphasize that the data-parallel version of
ILUPACK proceeds exactly in the same manner as the sequential implementa-
tion and, therefore, preserves the semantics of a serial execution.

2.2 Task Parallel ILUPACK

Following, we summarize the main ideas behind the task parallel version of
ILUPACK. A more detailed explanation can be found in [4].

Computation of the Preconditioner. The task parallel version of this pro-
cedure employs Nested Dissection [9] to extract parallelism. To illustrate this,
consider a ND partition, defined by a permutation P̄ ∈ R

n×n, such that

P̄TAP̄ =

⎡
⎣ A00 0 A02

0 A11 A12

A20 A21 A22

⎤
⎦ . (5)

Computing a partial IC factorizations of the two leading blocks, A00 and A11,
yields the following partial approximation of P̄TAP̄

⎡
⎢⎣

L00 0 0
0 L11 0

L20L21 I

⎤
⎥⎦

⎡
⎢⎣

D00 0 0
0 D11 0
0 0 S22

⎤
⎥⎦

⎡
⎢⎣

LT
00 0 LT

20

0 LT
11 LT

21

0 0 I

⎤
⎥⎦ + E01,

where
S22 = A22 − (L20D00L

T
20) − (L21D11L

T
21) + E2, (6)

is the approximate Schur complement. By recursively proceeding in the same
manner with S22, the IC factorization of P̄TAP̄ is eventually completed.

The block structure in (5) allows the permuted matrix to be decoupled into
two submatrices, so that the IC factorizations of the leading block of both sub-
matrices can be processed concurrently, with

A22 = A0
22 + A1

22,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
A00 A02

A20 A0
22

]
=

[
L00 0
L20 I

] [
D00 0
0 S0

22

] [
LT
00 LT

20

0 I

]
+ E0

[
A11 A12

A21 A1
22

]
=

[
L11 0
L21 I

] [
D11 0
0 S1

22

] [
LT
11 LT

21

0 I

]
+ E1,

(7)

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 95

and

S0
22 = A0

22 − (
L20D00L

T
20

)
+ E0

2 ; S1
22 = A1

22 − (
L21D11L

T
21

)
+ E1

2 .

Once the two systems are computed, S22 can be constructed given that

E2 ≈ E0
2 + E1

2 → S22 ≈ S0
22 + S1

22. (8)

To further increase the amount of task-parallelism, one could find a permutation
analogous to P̄ for the two leading blocks following the ND scheme. For example,
a block structure similar to (5) would yield the following decoupled matrices:

⎡
⎢⎢⎢⎢⎢⎣

A00 0 0 0 A04 0 A06
0 A11 0 0 A14 0 A16
0 0 A22 0 0 A25 A26
0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46
0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

⎤
⎥⎥⎥⎥⎥⎦

→

Ā00 =

⎡
⎣
A00 A04 A06

A40
A60

A0
44 A0

46
A0

64 A0
66

⎤
⎦Ā11 =

⎡
⎣
A11 A14 A16

A41
A61

A1
44 A1

46
A1

64 A1
66

⎤
⎦

Ā22 =

⎡
⎣
A22 A25 A26

A52
A62

A2
55 A2

56
A2

65 A2
66

⎤
⎦Ā33 =

⎡
⎣
A33 A35 A36

A53
A63

A3
55 A3

56
A3

65 A3
66

⎤
⎦

(9)

Figure 2 illustrates the dependency tree for the factorization of the diagonal
blocks in (9). The edges of the preconditioner directed acyclic graph (DAG)
define the dependencies between the diagonal blocks (tasks), which dictate the
order in which these blocks of the matrix have to be processed.

Fig. 2. Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj .
The leaf tasks are associated with the subgraphs of the leading block of the ND, while
inner tasks are associated to separators.

Thus, the task-parallel version of ILUPACK partitions the original matrix
into a number of decoupled blocks, and then delivers a partial IC factorization
during the computation of (7), with some differences with respect to the sequen-
tial procedure. The main change is that the computation is restricted to the
leading block, and therefore the rejected pivots are moved to the bottom-right
corner of the leading block; see Fig. 3. Although the recursive definition of the
preconditioner, shown in (2), is still valid in the task-parallel case, some recur-
sion steps are now related to the edges of the corresponding preconditioner DAG,
therefore different DAGs involve distinct recursion steps yielding distinct precon-
ditioners, which nonetheless exhibit close numerical properties to that obtained
with the sequential ILUPACK [4].

96 J.I. Aliaga et al.

Fig. 3. A step of the Crout variant of the parallel preconditioner computations.

Application of the Preconditioner. As the definition of the recursion is
maintained, the operations to apply the preconditioner, in (4), remain valid.
However, to complete the recursion step in the task parallel case, the DAG has
to be crossed two times per solve zk+1 := M−1rk+1 at each iteration of the
PCG: once from bottom to top and a second time from top to bottom (with
dependencies/arrows reversed in the DAG).

3 Proposal

In this section we present our strategy to enable GPU acceleration in the mul-
ticore version of ILUPACK. We analize two different approaches. The first one
entirely off–loads the leaf tasks of the preconditioner application phase to the
GPU, while the second one uses a threshold to use the GPU only when there is
enough work to take advantage of the accelerator.

Our solution is designed for multicore platforms equipped with one GPU,
using different streams to queue work that belongs to different tasks, but the
idea is easily extensible to a multi-GPU context.

3.1 All Leafs in GPU, GPUall

The task-parallel version of ILUPACK is based on a ND, that results in a task
tree where only leaf tasks perform an important amount of work. Inner tasks
correspond to the separator subgraphs in the ND process, and hence have much
less work than their leaf counterparts. For this resason we only consider leaf
tasks from here on.

The leaf tasks are independent from each other and can be executed concur-
rently provided sufficient threads were available. Therefore, we associate each
of these tasks with a different GPU stream. Also, each task has its own data
structure, both in CPU and GPU memory, containing the part of the multilevel
preconditioner relevant to it, together with private CPU and GPU buffers. At the

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 97

beginning of the application, where these buffers are allocated, our GPU-enabled
versions make this memory non-pageable in order to perform asynchronous mem-
ory transferences between the CPU and the GPU.

For the GPUall version of the preconditioner application, the computation
on each node of the DAG is based on the data-parallel version presented in [1].
It proceeds as described in Sect. 2.1, with the difference that, in this case, the
forward and backward substitution are separated and spread upon the levels of
the task-tree. Now, entering or leaving the recursive step in Eq. (2) sometimes
implies moving to a different level in the task tree hierarchy. In these cases, the
residual rk+1 has to be transferred to the GPU at the beginning of the forward
substitution phase, and the intermediate result has to be transfered back to
the CPU buffers before entering the recursive step. This communication can be
broken down into several asynchronous transfers from the device to pinned host
memory, given the nature of the multilevel forward substitution. Furthermore,
it can be overlapped almost entirely with other computations. Once the inner
tasks compute the recursive steps, the backward substitution proceeds from top
to bottom until finally reaching the leaf tasks again, where the zk+1 vector has
to be transferred to the GPU, on which the last steps of the calculation of the
preconditioned residual zk+1 := M−1rk+1 are performed. Upon completion, the
preconditioned residual zk+1 is retrieved back to the CPU, making asynchronous
transfers for each algebraic level of the preconditioner.

The computational cost of the preconditioner application corresponds mostly
to two types of operations, the solution of (LD

1
2) and (D

1
2 LT) linear systems and

SpMVs. The rest of the operations involve vector scalings, reorderings, and sub-
stractions, which have relatively lower cost. We employ the CUSPARSE library
kernels for the first two operations, while the lower cost operations (i.e. a diago-
nal scalings, vector permutations and a vector updates) are performed by ad-hoc
kernels. The optimal block size for this kernels was determined experimentally,
and was set to 512 threads.

This version aims to accelerate the computations involved by the leaf tasks
while keeping a low communication cost, relying on the results obtained for the
GPU acceleration of the serial version, and the streaming capabilities offered by
the new GPU architectures. However, this version has serious drawbacks. The
division of the work in various leaf tasks reduces the size of each independent lin-
ear system, and the multilevel ILU-factorization of the preconditioner produces
levels of even smaller dimension. This can have a strong negative impact on the
performance of massively parallel codes [8], and specifically on the CUSPARSE
library kernels. It should be noted that the amount of data-parallelism available
in the sparse triangular linear systems is severely reduced, leading to a poor
performance of the whole solver. Additionally, the work assigned to the CPU in
this variant is really minor, impeding the concurrent use of both devices.

3.2 Threshold Based Version, GPUthres

In order to deal with the disadvantages of the previous version, we propose a
threshold-based strategy, that computes the algebraic levels in the GPU until

98 J.I. Aliaga et al.

certain granularity, and the remaining levels in the CPU. This aims to produce
two effects. On one hand, allowing the smaller and highly data-dependent levels
to be computed on the CPU while the first levels, of larger dimension and higher
data-parallelism, run on the GPU, implies that each operation is performed in
the most convenient device. On the other hand, this strategy also improves the
concurrent execution of both devices, increasing the overlap of the CPU and
GPU sections of the code.

Regarding data transfer, in this approach the working buffer has to be
brought to the CPU memory at some point of the forward substitution phase,
and it has to be transferred to the GPU before the backward substitution of the
upper triangular system ends. Moreover, these transfers are synchronous with
respect to the current task or GPU stream, since the application of one algebraic
level of the multilevel precondioner cannot commence until the results from the
previous level are available.

In this variant we determine the threshold value experimentally. Our on-going
work aims to identify the best algorithmic threshold from a model capturing the
algorithm’s performance.

4 Numerical Evaluation

In this section we summarize the experiments carried out to evaluate the per-
formance of the proposal. Our primary goal is to assess the use of the GPU
in the task-parallel version of ILUPACK. In order to do so, we compare our
two GPU-accelerated versions with the original task-parallel ILUPACK, which
exploits shared-memory parallelism via the OpenMP interface. All experiments
reported were obtained using IEEE double-precision arithmetic.

4.1 Experimental Setup

The performance evaluation was carried out in a server equipped with an Intel(R)
Xeon(R) CPU E5-2620 v2 of six physical cores, running at 2.10 GHz, with 132 GB
of DDR3 RAM memory. The platform also features a Tesla K40m GPU (of the
Kepler generation) with 2,880 CUDA Cores and 12 GB of GDDR5 RAM.

The CPU code was compiled with the Intel(R) Parallel Studio 2016 (update
3) using the -O3 flag. The GPU compiler and the CUSPARSE Library correspond
to version 6.5 of the CUDA Toolkit.

The benchmark utilized for the test is a s.p.d. case of scalable size derived
from a finite difference discretization of the 3D Laplace problem. We generated
4 instances of different dimension; see Table 1. In the linear systems, the right-
hand side vector b was initialized to A(1, 1, . . . , 1)T , and the preconditioned CG
iteration was started with the initial guess x0 ≡ 0. For the tests, the parameter
that controls the convergence of the iterative process in ILUPACK, restol, was
set to 108. The drop tolerance, and the bound to the condition number of the
inverse factors, which control ILUPACK’s multilevel incomplete factorization
process, where set to 0.01 and 5 respectively.

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 99

Table 1. Matrices employed in the experimental evaluation.

Matrix Dimension n nnz nnz/n

A126 2,000,376 7,953,876 3.98

A159 4,019,679 16,002,873 3.98

A171 5,000,211 19,913,121 3.98

A200 8,000,000 31,880,000 3.99

A252 16,003,008 63,821,520 3.99

4.2 Results

Each test instance was executed with 2 and 4 CPU threads with f = 2 and
f = 4 respectively. The parameter f is related with the construction of the task
tree. The algorithm that forms this tree relies on an heuristic estimation of the
computational cost of each leaf task and divides a leaf into two whenever its
correspondent subgraph has more edges than the number of edges of the whole
graph divided by f . The parameter f is chosen so that, in general, there are
more leaf tasks than processors. In [2,3] the authors recomend choosing a value
between p and 2p, where p is the number of processors.

Table 2 summarizes the structure of the multilevel preconditioner and the
linear systems corresponding to leaf tasks that were generated using the afore-
mentioned parameters. For each one of the tested matrices, the table presents the
number of leaf tasks that resulted from the task tree construction for f = 2 and
f = 4, and next to it shows the average dimension of the algebraic levels of the
corresponding multilevel preconditioner, the average number of nonzeros, and
the average row density of the levels, with their respective standard deviation.
It can be easily observed that a higher value of f results in more leaf tasks of
smaller dimension. Regarding the algebraic levels of the factorization, the table
shows how the average dimension of the involved matrices decreases from one
level to the next. It is important to notice how, in the second algebraic level,
the submatrices already become about one third smaller in dimension, and have
five times more non zero elements on each row. In other words, the subproblems
become dramatically smaller and less sparse with each level of the factorization,
causing that, in this case, only the first algebraic level is attractive for GPU
acceleration.

Table 3 shows the results obtained for the original shared-memory version
and the two GPU-enabled ones for the matrices of the Laplace problem. In the
table, the total runtime of PCG, as well as the time spent on the preconditioner
application stage and the SpMV are presented. The table also shows the number
of iterations taken to converge to the desired residual tolerance, and the final
relative residual error attained, which is calculated as

R(x∗) :=
||b − Ax∗||2

||x∗||2 ,

where x∗ stands for the computed solution.

100 J.I. Aliaga et al.

Table 2. Number of leaf tasks and average structure of each algebraic level of the pre-
conditioner using f = 2 and f = 4. To represent the structure of the levels, the average
dimension, the number of non-zeros and the rate of non-zeros per row is presented,
toghether with the respective standard deviations.

Matrix # th./f # leaves Level Avg. n σ(n) Avg. nnz σ(nnz) nnz
n

σ(nnz
n

)

A159 2 3 0 1,006,831 345,798 6,193,794 2,183,862 6.1 0.1

1 317,362 113,151 9,682,114 3,486,401 30.5 0.2

2 2,875 736 10,099 2,014 3.6 0.6

4 6 0 502,108 159,044 3,116,629 1,005,408 6.2 0.1

1 156,048 50,647 4,685,500 1,537,905 30.0 0.2

2 1,251 437 4,095 1,754 3.2 0.4

A171 2 2 0 1,881,030 16,604 11,421,390 123,868 6.1 0.1

1 598,152 1,384 18,490,583 154,695 30.9 0.2

2 6,304 984 23,444 7,247 3.7 0.6

4 4 0 937,998 6,011 5,764,461 71,397 6.1 0.1

1 294,702 1,310 8,967,985 72,180 30.4 0.2

2 2,845 506 10,885 3,768 3.7 0.7

A200 2 3 0 2,003,212 795,192 12,207,556 4,592,834 6.1 0.1

1 636,895 253,696 19,665,756 8,089,987 30.8 0.4

2 6,466 3,316 23,189 12,912 3.5 0.2

4 7 0 856,365 186,595 5,283,746 1,141,907 6.2 0.1

1 268,523 595,53 8,155,375 1,842,559 30.3 0.2

2 2,449 525 8,552 2,032 3.5 0.4

A252 2 3 0 4,004,955 1,694,044 24,271,087 9,856,575 6.1 0.1

1 1,283,180 543,882 39,965,828 17,408,294 31.0 0.3

2 14,762 7,162 57,168 28,744 3.8 0.1

4 6 0 1,998,470 494,294 12,196,071 3,070,313 6.1 0.1

1 635,612 159,942 19,603,140 4,936,718 30.8 0.1

2 6,523 1,429 23,807 5,758 3.6 0.3

First, it should be noted that there are no significant differences, from the
perspective of accuracy, between the task-parallel CPU variant and the GPU-
enabled ones. Specifically, the three versions reach the same number of iterations
and final relative residual error for each case, see Table 3.

From the perspective of performance it can be observed that, on one hand,
GPUall only outperforms the multi-core version for the largest matrices (A252)
and in the context of 2 CPU threads. This result was expected, as the GPU
requires large volumes of computations to really leverage the device and hide
the overhead due to memory transfer. On the other hand, GPUthres is able
to accelerate the multi-core counterpart for all covered cases, see Fig. 4. This
result reveals the potential benefit that arise from overlapping computations
on both devices. Hence, even in cases where the involved matrices presented
modest dimension, this version outperforms the highly tuned multi-core version.
Additionally, the benefits related with the use of the GPU are similar for all
matrices of each configuration, though the percentage of improvement is a bit
higher for the smaller cases. This behavior is not typical for GPU-based solvers
and one possible explanation is that the smaller cases are near to the optimal
point (from the threshold perspective) while the largest cases are almost able to

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 101

Table 3. Runtime (in seconds) of the three task-parallel variants.

threads Matrix Version Iters Total SpMV Total prec Total PCG R(x∗)

2 A159 CPUomp 88 2.30 29.55 32.86 1.39E-08

GPUall 44.33 47.46

GPUthres 20.46 23.83

A171 CPUomp 97 3.07 39.43 43.87 1.52E-08

GPUall 48.02 52.36

GPUthres 30.62 35.19

A200 CPUomp 107 5.83 71.58 79.98 2.45E-08

GPUall 84.37 92.61

GPUthres 47.73 56.26

A252 CPUomp 131 13.86 175.66 195.67 3.23E-08

GPUall 153.48 173.62

GPUthres 120.19 140.50

4 A159 CPUomp 88 1.30 22.72 24.55 9.96E-09

GPUall 44.82 46.40

GPUthres 15.21 17.15

A171 CPUomp 95 1.58 22.43 24.76 2.20E-08

GPUall 57.84 59.78

GPUthres 17.50 19.87

A200 CPUomp 108 3.13 40.34 45.03 1.06E-08

GPUall 108.37 112.41

GPUthres 33.80 38.60

A252 CPUomp 130 8.25 104.21 116.37 2.16E-08

GPUall 193.19 204.74

GPUthres 90.05 104.60

20

40

60

80

100

120

140

160

180

CPU
GPU

all

GPU
thres

A159 A171 A200 A252 A159 A171 A200 A252
0

20

40

60

80

100

120

140

160

180

200

CPU
GPU

all

GPU
thres

Fig. 4. Execution time (in seconds) of preconditioner application for the three task
parallel variants, using two (left) and four (right) CPU threads. CPU version is the
blue line with crosses. GPUall version is the red line with circles. GPUthres is the black
line with stars. (Color figure online)

102 J.I. Aliaga et al.

Table 4. Runtime (in seconds) of GPUthres adjusting the threshold to compute 1 and
2 levels in the GPU.

threads Matrix GPU1lev GPU2lev GPUall

2 A159 23.83 43.79 44.33

A171 35.19 47.52 48.02

A200 56.26 84.16 84.37

A252 140.50 153.79 153.48

4 A159 17.15 44.54 44.82

A171 19.87 57.21 57.84

A200 38.60 108.70 108.37

A252 104.60 185.72 193.19

compute 2 levels in GPU. This can be noticed in Table 4, were we add a variant
that computes the first 2 levels on the accelerator. As the multilevel factorization
generates only 3 levels, with the third one very small with respect to the other
two, it is not surprising that the runtimes of this version are almost equivalent
to those of GPUall. The table shows how the penalty of computing the second
level in the GPU decreases as the problem dimension grows.

Finally, GPUthres also offers higher performance improvements for the 2-
threads case than for its 4-threads counterpart.

5 Final Remarks and Future Work

In this work we have extended the task-parallel version of ILUPACK so that
leaf tasks can exploit the data-parallelism of the operations that compose the
application of the multilevel preconditioner, i.e. SpMV and the solution of tri-
angular linear systems, along with some minor vector operations. We presented
two different GPU versions, one that computes the entire leafs in the acceler-
ator (GPUall) and an alternative that employs a threshold to determine if a
given algebraic level of the preconditioner presents enough granularity to take
advantage of the GPU (GPUthres). Both variants are executed on a single GPU,
asigning a GPU stream to each independent leaf task.

The experimental evaluation shows that the division of the workload in
smaller tasks makes difficult the extraction of enough data-parallelism to fully
occupy the hardware accelerator, and this results in poor performance for
GPUall. However, GPUthres is able to execute each operation in the most con-
venient device while mantaining a moderate communication cost, outperforming
the original multicore version for all the tested instances.

As part of future work we plan to advance towards the GPU acceleration of
the distributed task-parallel version of ILUPACK. An intermediate step of this
process involves the study of integrating a multi-GPU scenario in the current
task parallel versions. Additionally, we plan to develop a mathematical model
for the GPU-offload threshold, which was determined empirically in the present
work.

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 103

Acknowledgments. The researchers from the Universidad Jaime I were supported by
the CICYT project TIN2014-53495R of The researchers from UdelaR were supported
by PEDECIBA and CAP-UdelaR Grant.

References

1. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Lever-
aging data-parallelism in ILUPACK using graphics processors. In: 2014 IEEE 13th
International Symposium on Parallel and Distributed Computing, pp. 119–126.
IEEE (2014)

2. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization of
multilevel preconditioners constructed from inverse-based ILUs on shared-memory
multiprocessors. Parallel Comput. Archit. Algorithms Appl. 38, 287–294 (2007)

3. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Design,
tuning and evaluation of parallel multilevel ILU preconditioners. In:
Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.)
VECPAR 2008. LNCS, vol. 5336, pp. 314–327. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-92859-1 28

4. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37(3), 183–202 (2011)

5. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28151-8 16

6. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, vol. 43. SIAM,
New Delhi (1994)

7. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30
(2012)

8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach. Newnes, Boston (2012)

9. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publica-
tions, New Delhi (2003)

10. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2009)

11. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques
for the anderson model of localization. SIAM Rev. 50, 91–112 (2008)

http://dx.doi.org/10.1007/978-3-540-92859-1_28
http://dx.doi.org/10.1007/978-3-540-92859-1_28
http://dx.doi.org/10.1007/978-3-642-28151-8_16

	Design of a Task-Parallel Version of ILUPACK for Graphics Processors
	1 Introduction
	2 Overview of ILUPACK
	2.1 Sequential (and Data Parallel) ILUPACK
	2.2 Task Parallel ILUPACK

	3 Proposal
	3.1 All Leafs in GPU, GPUall
	3.2 Threshold Based Version, GPUthres

	4 Numerical Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Final Remarks and Future Work
	References

