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Abstract. This chapter is a presentation of the programming philos-
ophy behind a novel numerical particle method for the simulation of
the interaction of compressible fluids and elastic structures, specifically
designed to run in multiple Graphics Processing Units (GPUs). The code
has been developed using the CUDA C Application Programming Inter-
face (API) for fine-grain parallelism in the GPUs and the Message Pass-
ing Interface library (MPI) for the distribution of threads in the Cen-
tral Processing Units (CPUs) and the communication of shared data
between GPUs. The numerical algorithm does not use smoothing ker-
nels nor weighting functions for the computation of differential operators.
A novel approach is used to compute gradients using averages of radial
finite differences and divergences using Gauss’ theorem by approxima-
tions based on area integrals around local spheres around each particle.
The interactions of the particles inside the fluid are modelled using the
isothermal, compressible Navier-Stokes equations and a simple equation
of state. The elastic material is modelled using inter-particle springs with
damping. Results show the potential of the method for the simulation of
flows in complex geometries.

1 Introduction

The simulation of fluids interacting with elastic structures has a broad number
of applications in engineering, medicine and architecture. Aerodynamic design,
thermodynamic cycles in motors, containment of fluids and blood flow, to name
a few, can be described using the compressible Navier-Stokes equations for the
fluid dynamics, combined with linear elasticity theory for the mechanics of solid
boundaries. The computational tools designed for the numerical integration of
the governing equations have therefore been the focus of a large research effort.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 346–358, 2017.
DOI: 10.1007/978-3-319-57972-6 26



A Particle Method for Fluid-Structure Interaction Simulations 347

The most general problem requires the handling of complex dynamic geometries,
the two way coupling of the forces in the fluid and the solid, and often, the
resolution or approximation of turbulent flows.

In aerodynamic design, early works were focused on the use of finite differ-
ences or finite volume formulations using curvilinear grids [1–4]. This description
can be useful for static boundaries but unpractical for moving or elastic ones.
Mathematically, the grid orientation is an important factor to reduce numerical
errors due to the lack of multidimensionality of the dimensional splitting tech-
nique, producing mesh-dependent solutions. Another partially successful tech-
nique is the use of vortex methods [5–7]. These were successful in describing
the flow around boundaries for simple grids in Cartesian, cylindrical and spher-
ical coordinates, for incompressible flows reaching Reynolds numbers of several
thousands, and providing insight into turbulent flow control with actuators [8].
Nevertheless, the description of more general boundaries was challenged by the
need of accurate interpolations near the complex interphase.

A promising technique to deal with complex geometries is the finite ele-
ment method [9–12]. This technique has been the focus of many works, specially
in blood flow simulations [13]. A clear advantage of this technique is the use
of triangular or tetrahedral elements able to handle any boundary’s geometric
complexity. The mesh can be adaptive and able to follow moving boundaries.
The elasticity of solid boundaries can be coupled to the fluid pressure for com-
pressible or incompressible flows. Many libraries are available for the simulation
of fluid-structure interactions using finite elements [16,17]. But one must keep
in mind that the generation of the grids is not trivial and can be quite time
consuming. Also, the equations are expressed in weak form and solved implicitly
in time, what generates a large non-symmetrical system of linear equations to
be solved using GMRES [14], a solver that is difficult to implement with fine
grain parallelism [15].

Another technique is the use of Smoothed Particle Hydrodynamics (SPH)
[18–22]. In this technique, the equations are discretized following the fluid ele-
ment’s trajectories and derivatives are approximated using the superposition of
interpolation kernels for every particle. Some of the advantages of this technique
are that there is no need to generate grids and that it naturally follows mov-
ing boundaries. Given the purely Lagrangian formulation, the fluid moves with
the boundary velocity right at the interphase. If the domains are compressed or
even the volume vanishes in some regions, like in the case of flow in pistons, the
particles are able to leave the domain entirely and fill newly open spaces. The
streamlines can be sketched using the particles’ trajectories and simple equations
of state can be used to simulate quasi-incompressible flows.

Hybrid techniques have been developed, combining both finite elements and
particle trajectories, using a finite element grid that is advected at the boundary
[23]. In fact, there is no alternative to this description because necessarily the
mesh must follow the boundary. In this case, the generation of the mesh is a
problem to be considered. A full Lagrangian description is out of the question
for the most general case given that in the presence of vorticity, the grids get
highly deformed producing a badly conditioned mass matrix.
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During the last decade, the graphics processing unit (GPU) has surpassed the
performance of the central processing unit (CPU) in floating point operations
per second and local memory transfer velocity [24,25], and the trend is going to
continue. The GPUs double their performance approximately every year while
the CPUs do it every two years [26]. Therefore, the hardware has become an
important factor in the design of fluid flow solvers. They must be designed or
adapted to run entirely inside the GPU, with minimum communications with
the CPU. This is because the velocity of memory transfers from CPU to GPU
is several orders of magnitude slower than the internal memory transfers of the
GPU, which can work entirely with L2-cache shared memory.

Considering all the factors, we have collected new ideas for the simulation
of fluid-structure interactions using several GPUs. We are motivated to do it
because our group has access to Abacus I, a supercomputer with one hundred
Tesla K40 GPUs, providing 1200 GB of RAM and 288 000 cores of 745 MHz. In
this chapter we describe the programming philosophy and the algorithms neces-
sary for the implementation of a novel particle method running entirely inside
a set of GPUs, associated to one another through a corresponding set of CPU
threads using the Message Passing Interface library (MPI), and communicat-
ing by data transfers between the corresponding CPUs using MPI non-blocking
send and receive functions. The particle method is entirely Lagrangian and dif-
ferent from an SPH because it does not use a smoothing particle kernel nor radial
weighting functions. It has some similarities to the Moving Particle Semi-implicit
method (MPS) [27], but in general, the approximations and search of neighbors
are completely new. Its main characteristic is that it computes derivatives using
averaged radial finite differences using approximations of area integrals on adap-
tive spheres around each particle, complemented with the divergence theorem
when necessary. It is explicit in time, not requiring the inversion of a linear
system of equations. It considers compressible fluids, closing the system using
an equation of state for the pressure. The elastic boundary is simulated using
another set of particles kept together with forces approximated by springs and
damps. The two sets of particles are coupled using the forces of the fluid pres-
sure and the velocity of the elastic surface. The results show the potential of the
method to handle complex geometries.

2 Fluid Particles

Consider a Newtonian, compressible fluid with density ρ, pressure P and vis-
cosity μ, kept at a constant temperature T , for simplicity but without loss of
generality, which motion is described by the velocity vector v. The material
derivative D/Dt = ∂/∂t +v · ∇ is the chain rule for the total derivative in time,
describing the variations along the trajectories of the fluid elements given by
dx/dt = v.

The system of equations describing its dynamics are given by the conservation
of mass

Dρ

Dt
= −ρ∇ · v, (1)
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and Newton’s second law

ρ
Dv

Dt
= −∇P + μ∇2v, (2)

closed by an equation of state relating the density and the pressure P = P (ρ, T ).
We consider moving solid boundaries where the fluid velocity is set to the solid
velocity v = vs. The equation of state

P =
ρ

3
(3)

is used for simplicity during this work.

3 Solid Particles

The solid is represented by particles which conserve mass, subject to linearly
elastic, spring like forces and damping. The conservation of mass in the solid is
given by

Dρs
Dt

= −ρs∇ · vs. (4)

Newton’s second law for the forces in the solid is given by

ρs
Dvs

Dt
= fs, (5)

where fs is the sum of the elastic, friction and pressure forces, such that fs =
fe + ff + fp.

4 Discretization

The discretization of the system could be done by seeding particles inside the
fluid domain as desired, keeping them at a minimum distance between each
other, denoted by hmin. We have chosen to seed the boundary with particles,
either by a given boundary mesh, necessary for complex geometries, or using a
level set function. If the boundary is provided by a given mesh, the location of
the particles must be complemented with the surface’s normal vector pointing
towards the fluid domain for every boundary particle. These normal vectors are
going to be used to determine the interior and exterior of the computational
domain by simple weighted dot products with the relative position vector from
the surface. If the boundary is given by a level set function, the boundary is
seeded with particles and the level set is used to know if any position in space
is part of the computational domain. We choose to seed the particles inside
the fluid domain using a virtual Cartesian mesh covering the desired volume
to mesh, eliminating the points that lie outside. Each location of the virtual
Cartesian mesh is tested to be inside of the computational domain, and if so,
stored. Figure 1 shows a cylinder seeded with particles using a Cartesian array
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Fig. 1. Initial particle grid for a cylindrical domain. The particles are seeded using a
Cartesian array and adjusted near the boundary to keep a minimum distance between
particles.

with spacing h and keeping particles at a minimum distance 0.5h next to the
boundary particles.

Once the initial particle positions are given, the fields are initialized for every
particle, giving the densities ρ and ρs, and the velocities v and vs, at time t = 0.

The particle trajectories are solved with second order accuracy in time by
setting

xn+1
i = xn

i +
1
2
(vn

i + vn+1
i )Δt, (6)

where the time is discretized, such that the super-index n denotes the time step
tn = nΔt for n = 0, 1, ..., N . This formula provides a second order, explicit
integration of the trajectories and is sketched in Fig. 2.

We choose to use a purely Lagrangian formulation where particles are never
re-meshed and interpolations are not necessary for advection. This warranties
that the transport is exact along the trajectories of the particles with small errors
due to the trajectory integration. Additionally, we leave the mollifier kernel con-
cept used in SPH and focus only in computing the derivatives on the right hand
side of the equations for the conservation of mass and Newton’s second law. All
the derivatives are computed using averages of radial finite differences, consider-
ing a regular distribution of particles. The approximations will reduce accuracy
when the particle field deforms and the corrections to this approximations are
the focus of future research. Only first line of sight nearest neighbors are con-
sidered in every 26 directions in three dimensions and 8 in two dimensions. The
gradient is computed using a vector average of radial finite differences

∇Pi ≈ D

N

∑

j �=i

Pj − Pi

||xj − xi||
̂(xj − xi), (7)
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Fig. 2. Second order scheme for the integration of trajectories. The velocity is advanced
using the momentum equation and the time-averaged velocity is used to advance the
position of the particles.

where D is the number of dimensions and N is the number of nearest neighbor
particles. The divergence is computed using Gauss’ theorem by

∇ · vi ≈ A

V

∑

j �=i

(vj + vi)
2

· (xj − xi)
||xj − xi|| , (8)

where V = (4/3)πR3 and A = 4πR2/N , are the volume and area of a reference
sphere for the calculation of the divergence. The radius R is considered as the
averaged half distance to the nearest neighbors. Finally, the Laplacian is the
combination of both concepts,

∇2vi ≈ A

V

∑

j �=i

(vj − vi)
||xj − xi|| . (9)

The model for the friction force consists of a damping factor D times the square
of the velocity magnitude,

ff = −Dv2
s v̂. (10)

The elastic forces are modelled using springs to the nearest neighbors

fe,i = −
∑

j �=i

k(||xj − xi|| − Li,j) ̂(xj − xi), (11)

where Li,j is the equilibrium length for the spring bonding particles i and j.
The conservation of mass and Newton’s second law are advanced as ordinary

differential equations over the trajectory of each fluid particle, explicitly in time
with a forward Euler method, after evaluating the spatial operators on the right
hand side.

Particle methods do not have conservation issues due to advection. Only
the inaccurate computation of the sources of compressibility and force can par-
tially affect conservation of the advected quantities. The accurate calculation of
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Fig. 3. Scheme for the radial finite differences approximation of the gradient (7), the
divergence (8) and the Laplacian (9). The radial finite difference approximations are
based on sums of individual difference vectors to the nearest neighbor particles com-
bined with the divergence theorem using a sphere with radius of the average half
distance to the neighbors.

gradients and divergences can be affected by a highly deformed particle field.
Viscous flows have fluid elements that deform smoothly. Anyway, the computa-
tion of individual area weights for each neighbor particle is necessary for accurate
approximations of the differential operators. Its detailed analysis and implemen-
tation are subjects of future research.

5 Data Structures

The data structure is a list of particles for each CPU process, where the solid
particles, which describe also the fluid particles at the boundary, are given at
the beginning of the list, followed by the particles in the bulk of the fluid.

A list of nearest neighbors is constructed in order to compute the differential
operators in the right hand side of the transport equations for the solid and the
fluid. Analogously to Lattice-Boltzmann algorithms, we consider 8 neighboring
particles in two dimensions and 26 in three. An initial list is constructed or
given. The list is updated after a fixed number of time steps during the numeri-
cal integration. The new list is produced following the hypothesis that for every
particle, every new neighbor was in the neighbor list of its former neighbors.
Algorithm 1 is the pseudo-code for the updating of the list of nearest neigh-
bors neighborlist(1 : n, 1 : 26), where n is the total number of particles in the
computational domain. The distance between particles is given by the function
distance(i, j) (line 3 and 11). If any particle lies outside a neighboring radius
h, its index is tagged to be replaced. The list is double-checked to avoid the
repetition of particles (line 14).
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1: oldneighborlist(i,1:26) = neighborlist(i,1:26)
2: do j from 1 to 26
3: k = oldneighborlist(i,j)
4: dr = distance(i,k)
5: if (dr > h) neighborlist(i,k) = -1
6: do j from 1 to 26
7: k = oldneighborlist(i,j)
7: if (neighborlist(i,k) = -1)
8: mindr = 10 h
9: do l from 1 to 26
10: m = oldneighborlist(i,l)
11: do o from 1 to 26
12: p = oldneighborlist(l,o)
13: dr = distance(i,p)
14: if (dr < mindr)
15: inthelist = false
16: do q from 1 to 26
17: if (p = neighborlist(i,q)) inthelist = true
18: if (inthelist = false)
19: neighborlist(i,j) = p
20: mindr = dr

Algorithm 1. Update list of nearest neighbors.

6 The Programming Model

We use the template code presented in [28] but adapted for a list of particles. The
computational domain is geometrically decomposed in a one-dimensional array
of M sub-domains. The Message Passing Interface (MPI) library is used to start
M threads for the same number of CPU cores. Every CPU thread corresponds
to a process to be run in a different GPU. Frequently, each node of the cluster
will have one or two GPUs, therefore it is necessary to distribute the M threads
in different nodes, such that every process is able to pick at least one exclusive
GPU.

Communications between GPUs is achieved loading the necessary GPU data
to the local CPU memory, communicating the CPU threads using MPI unblocked
but synchronized sends and receives, and loading it back to the GPU. In this
implementation, only boundary data is communicated and particles are not
transferred between processes. Future versions may contain the transfer of par-
ticles between GPUs.

Inside the GPU, operations are threaded over the list of particles, as described
in Fig. 4. The list is distributed in a three-dimensional array with power of two
dimensions, further subdivided in blocks to be given to the GPU cores. The list
of threads will be in general larger than the list of particles. Those threads that
do not correspond to a particle perform no work.

The programming model for a single GPU is focused in performing parallel
L2 memory reads and a few global memory writes. The nvcc compiler is capable
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Fig. 4. Scheme of the computational decomposition of the list of particles and its
arrangement as GPU threads in a cube. The GPUs are mastered by CPU threads
using MPI.

of automatically allocating L2 memory reads if we provide read-only arrays. All
numerical operations are done using the registers memory and the results are
written back to write-only arrays in global memory.

7 Results

The algorithm is a newly proposed numerical method and the tests are focused in
proving its correctness without going into deep analysis of order of convergence.
The algorithm has been theoretically designed to be second order for a regular
distribution of neighboring particles.

We use an initial Gaussian perturbation in the density

ρ(r) = 1.0 + 0.01 exp−r2/5, (12)

where r is the distance from the center of the domain with dimensions [15, 15, 15],
in a quiet Newtonian fluid with viscosity μ = 1.

First we prove that our new radial difference formulas are correct by com-
puting the norm of the pressure gradient and the divergence of the velocity field
after a single time step Δt = 0.02. Figure 5 shows the comparison of the dif-
ferential operators for a cylindrical domain filled with 250000 particles and a
Cartesian 643 mesh with finite differences. It shows agreement and even a slight
improvement in the case of the divergence.
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Fig. 5. Comparison of the square of the norm of the pressure gradient (top) and the
divergence of the velocity (bottom), for the radial differences scheme using particles in
a cylindrical domain (left) and finite differences in a cube (right). Both domains are
shown cut in half by a plane normal to the x-axis.

We simulate the acoustic wave resulting from the Gaussian initial condition
in a cylinder filled with 250000 particles. We compare it with a second order
semi-Lagrangian scheme [29] in a 643 cube. Figure 6 shows agreement between
the schemes even though the reflection of the waves is different for the square
domain and the cylinder. Therefore, only early stages of the wave are compared.

Fig. 6. Comparison of the acoustic wave for the newly proposed particle method with
250000 particles and a semi-Lagrangian scheme [29] for a 643 domain. From left to
right we can see the density along the y-axis for times t = 0.2, t = 0.6 and t = 1.2.

We have run the code for one, two and four GPUs Tesla C2070. The results
for a small run consisting of a thousand time steps are presented in Fig. 7. The
runs show strong scalability in the vertical direction and weak scalability in the
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horizontal direction. The weak scalability shows a small penalty due to the com-
munication between GPUs. The objective of running in many GPUs is not the
acceleration of the code, although it is possible to observe significant acceleration
in the case of two GPUs compared to one. Nevertheless, we note that for the case
of four GPUs, the acceleration is much less and extrapolating we can see that
many more GPUs would not achieve significant acceleration. The point is that
runs in several GPUs must be focused in the simulation of very large problems
or with high resolutions. The GPUs are very fast processing units that should
be exploited at maximum with the lowest number of communications possible.
The use of several GPUs must be evaluated using the weak scalability concept
where larger problems are run in the approximately same computational time,
shown in Fig. 7 in the horizontal direction.
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Fig. 7. Weak (horizontal) and strong (vertical) scalability of the domain decomposition
scheme for the list of particles using MPI communication between GPUs. The two black
curves correspond to one- and two-dimensional domain decomposition.

8 Conclusion

We presented a programming model using domain decomposition with message
passing for computations using multiple GPUs adapted to a list of particles.
This particle template code has been filled with a novel numerical method. The
numerical method consists of a particle method for the integration of transport
equations along material trajectories of fluid elements. The fluid elements are
defined by the location of the particles. The equations are solved in time using a
second order mid-point integration scheme for the positions of the particles and
a first order explicit Euler integration for the velocity and density. The pressure
is obtained explicitly using an equation of state. Averages of radial derivatives
combined with the divergence theorem are used for the approximation of the
spatial differential operators at the right hand side of the transport equations.
These differences have been used in different forms in other works but never in the
form presented here. We take the nearest neighbors in the 26 principal Cartesian
directions like in a Lattice-Boltzmann scheme. The approximations have been
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tested to be second order accurate for a regular, Cartesian distribution of par-
ticles, and are expected to loose accuracy as the particle field distorts. Moment
conservation for the area covered by the neighbors around each particle will be
explored to keep the accuracy regular for any configuration of the neighbors.
The list of particles is complemented with a list of nearest neighbors, updated
after a fixed number of time steps with a local search scheme. The results of the
acoustic waves inside a cylinder meshed with a Cartesian array of particles show
the potential of the code to solve problems in complex geometries without the
need of complex mesh generators. For complex geometries, the boundary node
positions and normal vectors pointing to the fluid must be provided.
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