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Abstract. Extracting valuable information from the rapidly growing field of
Big Data faces serious performance constraints, especially in the software-based
database management systems (DBMS). In a query processing system,
hash-based computational primitives such as the hash join and the group-by are
the most time-consuming operations, as they frequently need to access the hash
table on the high-latency off-chip memories and also to traverse whole the table.
Subsequently, the hash collision is an inherent issue related to the hash tables,
which can adversely degrade the overall performance.
In order to alleviate this problem, in this paper, we present a novel pure

hardware-based hash engine, implemented on the FPGA. In order to mitigate the
high memory access latencies and also to faster resolve the hash collisions, we
follow a novel design point. It is based on caching the hash table entries in the
fast on-chip Block-RAMs of FPGA. Faster accesses to the correspondent hash
table entries from the cache can lead to an improved overall performance.
We evaluate the proposed approach by running hash-based table join and

group-by operations of 5 TPC-H benchmark queries. The results show 2.9�–

4.4� speedups over the cache-less FPGA-based baseline.

1 Introduction

In the era of Internet of Things (IOT) and Big Data, fast query processing is a crucial
requirement of the modern DBMS. In an attempt to move the computation closer to the
storage, many previous studies have looked into accelerating database operations in the
hardware platforms. Examples include employing vector architectures [9], ASICs [18],
GPUs [10], or hybrid [25]. Other approaches either used FPGAs statically [3, 8, 15, 17,
26], or leveraged dynamic reconfigurability characteristic of FPGAs to better fit the
requirements of the queries [6, 13]. The industry hasalso invested in products such as
IBM Netezza [2] and Teradata Kickfire [14].

The hash-based operations, i.e. hash join and group-by are the most time-consuming
operations of databases query processing systems. Previous studies have demonstrated
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that these operations account for more than 40% of total execution time while running
queries from the TPC-H benchmark [9].

The hash join operation combines two data tables S and T together with a common
key. The algorithm consists of (i) a build phase to construct a hash table using the rows
of the table S, and (ii) a probe phase, where all keys in the table T are looked into the
hash table to find whole the possible matches. Similarly, the group-by operation groups
the rows of a given table based on common values of the key column, which can also
be implemented using hash tables. The main issue that can degrade the performance of
a hash engine is the hash collision, which is the situation of mapping two distinct keys
into the same hash index. By design and in practice, these cases are inevitable for
database applications and need to be handled appropriately. Among the possible
solutions, software fallback mechanisms [17] or rehashing [7] can cause additional
latencies that reduce the performance. On the other hand, collision resolution in the
hardware implies chaining the hash table entries that can also undermine the hash table
performance, especially under DDR memory latencies.

Due to the scarcity of on-chip BRAM resources that cannot guarantee to locate the
entire hash table, previous FPGA implementations envisioned building the hash table
in the off-chip DDR memory [17, 20]. Alternatively, in this work we propose a hash
table caching technique, exploiting the on-chip BRAMs of FPGAs to mitigate the
memory latencies. Also, our design resolves hash collisions without reverting to
software fallbacks. For the evaluations, we run the hash join and group-by operations
of 5 queries of the TPC-H benchmark suite and demonstrate up to 4.4� performance
speedups, compared to a hardware baseline that does not employ any caching tech-
nique. The hardware baseline is an improved version of Ibex [17]. Despite Ibex that
uses software fallbacks to resolve the hash collisions, in our baseline, we follow a pure
hardware-based pointer chasing method.

In a nutshell, trading off the size and the latency of on/off-chip memories, we (i) can
support large datasets using a hash table located in the off-chip memory, and (ii) avoid
the high memory latencies by utilizing the on-chip BRAMs of FPGAs as the hash table
cache. The contributions of this paper can be summarized as below:

• We propose a hash table caching mechanism that efficiently exploits the on-chip
BRAMs of FPGA to serve some of the hash table inquiries. This method can be
significantly faster than the conventional way to retrieve the hash table entries from
the off-chip memories.

• We investigate the proposed technique for the hash-based operations of query
processing systems, i.e. hash join and group-by. Hash collisions are resolved purely
in the hardware, which taking advantage of the hash table caching method. We
design the proposed method by leveraging Bluespec, a high-level synthesis
(HLS) tool. The design is implemented on a Virtex 7 FPGA development board
(VC709). We achieved up to 4.4� speedup, compared to the hardware baseline.

The rest of the paper is organized as follows: Sect. 2 includes the background
information, as well as an illustration of the hash table caching technique. The proposed
architecture is elaborated in Sect. 3. Section 4 introduces the evaluation methodology.
Section 5 includes discussions the experimental results. In Sect. 6 we review related
work and finally, Sect. 7 concludes the paper.
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2 Background

Conventionally, data can be organized in either structured or unstructured management
systems. Although, the proposed hash table caching technique can be customized in
both the systems, our focus will be on the relational DBMS, as a common type of
structured data management systems.

In an RDBMS, data is organized into tables using a model of vertical columns and
horizontal rows. The rows represent entries in the database and columns define the data
types. Data in the tables are formed as a pair of (key, value), where key points to one of
the columns that play the main role in the query analysis such as sort key, hash join
key, etc. Other columns are merged into the value. In order to access the data into the
tables, query languages such as Scripting Query Language (SQL) have been intro-
duced. In a typical SQL query, several language elements such as SELECT,
GROUPBY, ORDERBY, etc., can exist. These operations can be semantically
mapped to specialized hardware accelerators such as filtering, aggregation, hash join,
sorting, etc. The hash-based operations, i.e. hash join and group-by are considered in
this work because they are the most time-consuming DBMS operations.

2.1 Hash Join Background

One common type of join operation is the equijoin or h-join. It means combining rows
from two or more tables with a common cell. The hash-based join or hash join is the
most common type of table join algorithms.

The objective in the hash join is to reduce the search space using a hash function
over the common cell, or key. It consists of building and probing phases. In the building
phase, the hash table is constructed using the input table (S). In this phase, for each
tuple (ks; vs) a hash index is calculated using a hash function and correspondingly, a
hash table entry is created in that given index of the hash table. In the probe phase, the
hash table is being scanned in the hash index. The corresponding hash index is gen-
erated by the hash function applied on the each input tuple (kT ; vT ) of data table (T). If
any match is found the resulting 3-tuple ðk; vS; vTÞ is output, where k = kS = kT.
Otherwise, it means that the current input tuple does not exist in the hash table and it is
skipped. It is worth noting that as the hash table construction is more costly operation
than the probing of the hash table, the smaller input table is used in the build phase
(|S| < |T|).

2.2 Group-by Background

Group-by is another query processing operation that can be implemented using the
hash tables, as well. It is usually used in conjunction with an aggregation function to
produce the aggregation of the rows in the same group, called group-by aggregation
[24]. For a given table S with rows (kS1; vS1) and (kS2; vS2), the group-by and group-by
aggregation operations will produce tuples with (k; vS1; vS2) and (k; aggrFuncðvS1; vS2Þ)
fields, respectively ðk ¼ kS1 ¼ kS2Þ: The aggregation function can be SUM,
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AVERAGE,MAX, COUNT, etc. It is worth noting that constructing the hash table on
key consists of adding the grouped data into the hash table. Another word, data in the
hash table are already grouped.

2.3 Collision in the Hash-Based Operations Including Hash Join
and Group-by

In practice, in the hash-based query processing operations an ideal hash function to
generate a unique hash index for every input data tuple scarcely exist. Thus hash
collisions inevitably happen, particularly for DBMS applications, and need to be
appropriately handled. In order to resolve this issue, various mechanisms on FPGAs are
proposed. Software fallback mechanisms [17] facilitate the hardware design. However,
it may cause additional latencies due to the transfer time between the FPGA and the
software. Rehashing [7] is another method, which could also cause extra overheads due
to additional rehashing costs. On the other hand, supporting collision management in
the hardware implies chaining the hash table entries. It means that the next address to
be jumped to can only be determined after the previous line is read. Under DDR
latencies it can adversely diminish the overall performance.

2.4 Illustrating the Hash Table Caching

The data/instruction caching is a widely used optimization mechanism to cover the
speed gap between the storage and the processor. This paper is motivated by the fact
that caching can also be employed to improve the performance of the hash-based
operations of the query processing systems. As far as we know, this is the first work to
design a hash join/group-by engine equipped with a caching mechanism.

For convenience, we illustrate the proposed technique using an example in the probe
phase of the hash join operation to show how does this operation can take advantage of
the hash table caching technique? The data tables that include the input dataset for
probing, the hash table, and the contents of the cache are shown in Fig. 1c–e,

Step Cycle Operation Step Cycle Operation 
0 0 lookupHT i0 0 0 lookupC i0 
1 1 lookupHT i1 1 1 lookupC i1, respC i0, missC, 

lookupHT i0 
2 2 lookupHT i2 2 2 lookupC i2, respC i1, hitC, match 

k1 
3 3 lookupHT i0 3 3 lookupC i0, respC i2, missC, 

lookupHT i2 
4 35 respHT i0, match k0 4 4 respC, missC, lookupHT i0 
5 36 respHT i1, match k1 5 31 respHT i0, match k0 
6 37 respHT i2, mismatch k2 6 32 respHT i2, mismatch k2 
7 38 respHT i3, collision k3, 

lookupHT p0 
7 33 respHT i0, collision k3, lookupC p0 

8 69 respHT i0, match k3 8 34 respC i0, hitC, match k3 

)b()a(

Fig. 1. An example hash probe, baseline (a) vs. cache (b). Example dataset (c), the content of
hash table (d) and the cache (e).
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respectively. The hash table and cache are already filled in the build phase. The cache
has the corresponding hash indexes of only k1 and k3.

The dataset that needs to be probed in the hash table is shown in Fig. 1c, with four
keys and their corresponding hash indexes. The hash collision requires scanning a
pointer chain from i0 to p0. As it can be seen in this table, there is a hash collision for
k0 and k3, both having the same hash index i0. There are totally two directly matched
key, one matched key after a collision, and one mismatched key.

In this example, the latency of the cache in the on-chip BRAM and the hash table in
the off-chip DDR are assumed to be 1 and 30 cycles, respectively. The cycle-by-cycle
execution of the cache-less baseline and cache-based hash probe are depicted in
Fig. 1a, and b, respectively. Several terms are used to describe the example clearer:
lookup (to send read request for the hash table –HT or the cache -C), resp (to get
response from the hash table –HT or the cache -C), (mis-)match (to show that an input
key is (mis-)matched from the hash table or from the cache), collision (to show a
detected hash collision), and hit/miss (to show a cache hit/miss).

As described in Fig. 1a, in the baseline execution, all the accesses are served from
the hash table in DDR (lookupHT). The responses arrive 30 cycles later (respHT). In
contrast, as it can be seen in Fig. 1b, in the cache-based version, all the inquiries are
being looked up from the cache, first (lookupC). The successful requests (cache hit-
respC) are being processed in the probe engine, and the unsuccessful (missed) ones are
being forwarded to the hash table (lookupHT). Serving some of the requests from the
cache reduces the total cycles to probe the example dataset from 69 to 34.

In this example, we showed both the cache hit and miss scenarios, to demonstrate
the efficiency of the hit requests against the overhead of missed cache inquiries.
However, in the real datasets other events such as a chain of colliding keys, redundancy
chaining, the irregular latency of DDR, the complexity of the write requests in the build
phase, etc., may appear.

3 The Overall Architecture of the Proposed Engine

The overall layout of the proposed accelerator is shown in Fig. 2. The connection of
FPGA with the host and the off-chip DDR-3 is through the high-speed PCI-3 and
DDR-3 interfaces, respectively. The host initializes DDR-3 with the input data tables.

Fig. 2. The overall layout of the accelerator including Host, FPGA, and DDR-3.
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DDR-3 memory locates the hash table, as well. FPGA is comprised of several com-
ponents: (i) device drivers to manage the off-chip data transfer, (ii) a central controller
to manage the computations and data movements, (iii) the accelerator engine (hash join
and group by), and (iv) finally, the on-chip Block RAMs, which are configured as the
cache of the hash table.

The detailed structure of the accelerator is shown in Fig. 3. Its overall architecture
is comprised of several components: (i) a (Linear Feedback Shift Register) LFSR-based
hash function: It generates the hash index of the input key in a fully pipelined fashion.
The generated hash indexes are used as the index of the corresponding hash table/cache
entries. (ii) The logic of the accelerator, i.e. hash join build, hash join probe, and
group-by: As a part of their functionality, the hash collisions of the colliding keys are
resolved by chained together in a linked list fashion. The similar method is used to
organize the repetitive keys in the hash table. (iii) The hash table in the off-chip DDR-3:
In order to efficiently support pointer chasing in the aforementioned special cases, we
partitioned the hash table into two distinct parts. The first half part of the hash table can
be directly indexed by the hash function in normal cases. The second half part, which is
excluded from the range of the hash function, is used for only the chains of the entries.
This part of the memory is consecutively being accessed. (iv) A cache of the hash table
in the on-chip BRAMs: The entries of the cache are exact copies of some of the hash
table entries. The hash table inquiries will be served from the cache. Only the missed
requests from the cache will be forwarded to the hash table.

In order to support the aforementioned features, each entry of the cache/hash table
has several fields, including:

• valid bit to show the validity of the entry.
• key field to store the input data keys.
• value field to store the value of the input data.
• pointerc that is used to resolve the hash collisions by storing the index of an

allocated hash table entry, following the pointer chaining mechanism.

Fig. 3. The detailed architecture of the proposed engine (hash table caching).
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• pointerr that is used to manage the repetitive keys in the hash table. Similar to the
hash collision, it uses the pointer chaining mechanism. The exception is the
group-by aggregation, where instead of storing key itself, we compute an aggre-
gation of the keys. Thus, there is no need for pointer chasing in this particular case.

• cache tag field to discard false positives in the cache.

Consequently, having any successful inquiries from the cache correspond to skip of
the hash table accesses in the off-chip DDR-3 memory. In addition, similar to Ibex [17],
we use a Content Addressable Memory (CAM) to remove read-after-write hazards.

3.1 Hash Join: Build Phase- Constructing the Hash Table

In order to insert a new (ks; vs) pair into the hash table, first, a hash index of ks is
generated by the hash function. This index points to the corresponding index in the
hash table/cache. We use an LFSR-based hash function to generate pseudo-random
hash indexes. Later on, the content of the corresponding entry of the cache is retrieved.
Due to the retrieved entry, (i) if it is not valid or is an undesirable (false positive) entry,
a cache miss occurs. The false positive situations of the cache can be recognized by
checking the cache tag. In these situations, we forward the same inquiry to the hash
table. Or, (ii) if the cache hits, or we get the corresponding entry from the hash table,
three different cases can occur:

• If the retrieved entry is not valid, a new entry is added to the corresponding index of
both the hash table and the cache.

• If the accessed entry is valid, with the same ks, it needs to allocate a new entry and
appropriately update the pointer fields, to manage repetitive keys in a linked-list
fashion. Accordingly, the hash table and cache are updated.

• If the accessed entry is valid, but with a different ks, a hash collision occurs. Similar
to the case of repetitive keys, a new hash table entry is allocated. Both the new and
old entries are updated in the cache and the hash table, to preserve the linked-list
behavior. Following this chaining method, nested hash collision can be resolved, as
well.

Our engine can deal with an unlimited number of hash collisions/repetitive keys, as
long as the hash table is not full.

3.2 Hash Join: Probe Phase- Scanning the Hash Table

In order to scan the hash table, first, we compute the hash index for the new kT. Later
on, retrieving the corresponding index from the cache, (i) if it is not a valid entry or is
not the desired entry (false positive), thus, a cache miss occurs. Therefore, the same
inquiry is forwarded to the hash table. And, (ii) if the cache hits or the response from
the hash table arrives, three cases can occur:

• If keys do not match and there is no valid collision pointerc field in the retrieved
entry, there is no entry in the hash table which matches with kT.
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• If keys do not match, but there is a valid collision pointerc field in the retrieved
entry, a hash collision occurs. Therefore, we first scan the subsequent hash table
entries, retrieving them from the cache, first. This process may lead to a mismatch,
if and only if no match can be found until the end of the chain. Never the less, at any
point of the chain, it is possible to find a match.

• If keysmatch, their combinationwill produce a junction row. This match can be found
directly, or after a pointer chasing process. Accordingly, all the vs in the chain must
orderly be read to generate the tuples of the junction table, (k, vs, vT) that k = kS = kT.

In the probe phase, the cache is updated by each valid response from the hash table.

3.3 Group-by Aggregation: Constructing a Hash Table to Group Data

Group-by operation intrinsically is similar to the build phase of the hash join operation,
as data in the hash table are already grouped based on the key field. The main difference is
that (i) usually in the SQL queries the group-by operation is accompanied by an
aggregation function, such as SUM, MAX, COUNT, AVERAGE, etc. Consequently,
instead of storing key itself in the hash table, an aggregation of the key needs to be stored,
without any necessity for pointer chasing to manage the repetitive keys. (ii) As the
number of groups is usually quite smaller than the size of the input dataset, there are often
accesses to the same hash table entries. This can significantly take advantage of the hash
table caching technique, as the repetitive accesses can be served from the cache.

In order to perform a group-by operation, similar steps to the hash join build phase
are followed, except the step 2, where the input key is matched with an entry in the hash
table/cache. In this particular case, we perform the aggregation on the value field and
skip allocation a new hash table entry to store the key field.

3.4 Policies of the Cache

Various accessing methods to the cache and its different Read/Write policies can
impact the performance. The cache policies in the proposed technique are as below:

• Cache Contents: The cache contains a number of the recently accessed valid entries
of the hash table. Each cache entry is an exact copy of the corresponding entry in
the hash table.

• Cache Replacement Policy: The hash table in the off-chip DDR memory is sig-
nificantly larger than the cache. Thus, a replacement policy is required to substitute
the new with the old entries of the cache. We use a direct-mapped policy, where all
the valid retrieved entries from the hash table are overwritten into the cache.

• Cache access policy: For all the required hash table entries, first, we look up the
cache. Any cache hit leads to skipping the DDR-3 accesses, but in contrast, the
missed requests need to be forwarded to the hash table. In order to discard false
positives, the cache has an additional field, the cache tag.

• Cache Indexing: We use the Least-Significant Bits (LSB) of the hash table index as
the cache index. The Most-Significant Bits (MSB) are stored as the cache tag field.
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4 Experimental Methodology

We used Xilinx ISE version 14.1 and Bluespec System Verilog compiler [1] in the
development phase. Bluespec is a commonly-used cycle-accurate modern HLS tool,
desired for control-oriented designs such as hash join. Our system was designed to
work at 200 MHz on a VC709 development board with a Virtex-7 FPGA anda 4 GB
DDR-3 memory channel. Our device has about 50 MBit on-chip BRAMs that are
employed as the cache. The PCI-3 controller works at 150 MHz. Thus, the synchro-
nizing FIFOs are exploited to exchange data among different clock domains properly.
We have made all our modules fully parametrizable. We validated the experimental
result by checking with the software (PostgreSQL [22]) runs of the same DBMS
operations. (key, value) pairs are 64 bits, each of which is 32-bits.

4.1 Hardware and Software Comparison Baselines

In the hardware baseline, only DDR-3 RAM is exploited to store the hash table,
without any caching mechanism. Many FPGA implementations follow the similar
design point. For instance, recently Ibex [15] is presented that uses the DDR-3 to locate
the hash table but unlike our baseline, it falls back software for the hash collisions.
Thus, our hardware baseline is efficient, cache-less, and pure hardware FPGA-based
implementation of the corresponding operations, i.e. the hash join and the group-by.

The second comparison case is a state-of-the-art software-based DBMS (Post-
greSQL) that is running in the warm cache setup on a server with 64 GB RAM and a
Xeon E5-2630 CPU. PostgreSQL does not support multi-threading. Thus, we use the
single-thread execution times of the queries for the comparisons. In order to get the
warm execution time, we run PostgreSQL two consecutive times. The second run is
supposed to be from its internal buffers, where data tables are already located into the
system memory. There are no disk I/O transactions in the warm cache mode of the
software runs.

It is worth noting that the execution model in the software baseline is different with
the FPGA-based solutions, including the proposed cache-based method and the hard-
ware baseline. We follow a dataflow execution model in the FPGA-based accelerators,
which allows deep pipelining and data streaming capabilities to achieve the peak
performance. In contrast, PostgreSQL runs on the scalar processor with a control-flow
execution model, which suffers from its conventional implications.

4.2 The Structure of the Benchmarks

In order to evaluate the proposed engine, we run a set of complex queries from the
TPC-H benchmark suite [23]. Specifically, we selected Q03, Q04, Q12, Q13, and Q14,
because they have different table sizes and also different join selectivity (the size of the
output data table divided by Cartesian product of the two input tables). However, as the
given queries are composed of several other operations, such as sorting, aggregation,
etc., we made a sub-query to extract only their hash join and group-by part.
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Furthermore, some of the queries such as Q03 are composed of multiple hash-based
operations. For these cases, we extract different sub-queries for each hash join/group-by
operation, run them separately, and get their distinct execution times. Later on, in order
to compute the total execution time of the given query, we sum up all those separate
parts.

The general format of the generated subqueries is shown in Table 1, separately for
the hash join and the group-by operations. We assumed two data tables S and T with
data tuples (kS, vS) and (kT, vT), respectively. In addition, we used various sizes of data
tables in the experiments, including 1 GB and 10 GB scales. We repeat the query runs
10 times. The reported total execution time of each given query is the average of the
execution times of its various runs.

5 Experimental Results

In this section, we evaluate the proposed cache-based engine for the hash join and
group-by operations. Due to the size of the each entry of the cache and also the size of
the available BRAMs in our device, the cache can cope with about 256K entries. Thus,
in 1 GB scale, we observed that BRAMs could entirely store the corresponding hash
tables without any need for accessing the off-chip DDR memory. Followingly, in 1 GB
scale, we exploited the on-chip BRAMs as the hash table (not as the cache). In contrast,
for 10 GB scale, as the sizes of hash tables are larger than the BRAMs, we follow the
proposed hash table caching technique.

5.1 Analyzing the Hash Table Caching

Table 2 includes the experimental results for 10 GB scale. In this table, table size refers
to the number of the rows (key-value pairs) of the input data tables. The total number of
the collisions is also shown in this table. Another important parameter is the number of
lookups for the cache and for the hash table, as well. The hit ratio (H.R) of the cache
that is an important metric to determine the performance achievement can be computed
as the Eq. 1:

H:R ¼ #cach lookup�#ht lookup
#cache lookup

ð1Þ

For convenience, we describe a sample result of Table 2, probe phase of Q03. For
this particular case, we observed that (i) totally 44.2M cache read requests are issued;

Table 1. The general format of the sub-queries used in the benchmarks.

Hash join Group-by

SELECT vS, vT SELECT SUM(vS)
FROM S, T FROM S
WHERE kS = kT GROUPBY kS

140 B. Salami et al.



32.1M read requests of the original dataset and 12.1M additional requests (37.6% of the
table size) for pointer chasing cases that 8.4M of them are as the result of hash
collisions and the rest 3.7M as the result of repetitive keys. Furthermore, (ii) 33.4% of
cache read requests are successfully served from the cache and the rest are forwarded to
the hash table. Thus, the H.R is 33.4%.

The experimental results show that the H.R is on average 34.75%. It ranges from
7.8% to 100%. More specifically, about the hash join cases, we observed that:

• The average H.R in the build phase of the given queries is 13.7% that is signifi-
cantly less that the total average H.R (34.75%). For all of the studied queries, the
hash join key in the build phase is a primary (no repetitive) key. Thus, the cache is
not efficiently utilized as a consequence of the less data locality in the hash table
accesses, for this case.

• Probe keys of Q12 and Q14 are the primary keys, as well. Thus, we observed less
H.R for these queries compared to others (8.4% vs. 24.8%).

• Input data tables in the probe phase are significantly larger than in the build phase,
on average 30�. Thus, although, the hash table construction in the build phase is
amore expensive operation, we observed that the execution time of the probe phase
is dominant.

Although, the cache misses incur additional overheads, the substantial improve-
ment of the cache hits, in terms of mitigating the latency of the memory, covers its side
effects and leads to better performance compared to the cache-less hardware baseline.

In addition, most of the studied queries, except Q14, are composed of a group-by
aggregation operation. For instance, in 10 GB scale of Q03, 300K tuples are grouped
into about 100K individual groups, or 520K tuples of Q04 are grouped into only 5
groups. The experimental results in Table 2 show that the H.R of the cache for the
queries with a small number of the groups is 100%, which is the consequence of the
small enough hash tables that can be entirely located in the cache. In addition, in the

Table 2. The experimental results of hash table caching, 10 GB scale.

Query Operation Table size (M) #cache_lookup (M) #ht_lookup (M) Collision (M) H.R (%)

Q03 Build 1.4 1.7 1.49 0.3 12.3
Probe 32.1 44.2 29.4 8.4 33.4
Groupby 0.3 0.35 0.05 0.02 85

Q04 Build 0.56 0.69 0.56 0.13 18.8
Probe 37.2 57.1 41.2 13.2 27.8
Groupby 0.52 0.52 *0 0 100

Q12 Build 0.3 0.35 0.3 0.05 14.2
Probe 15 16.2 15 1.2 7.8
Groupby 0.31 0.31 *0 0 100

Q13 Build 1.5 1.8 1.56 0.3 13.3
Probe 14.8 19.5 11.9 2.6 38.9
Groupby 1.5 1.5 *0 0 100

Q14 Build 0.7 0.78 0.7 0.08 10.2
Probe 2 2.2 2 0.2 9
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group-by aggregation operation, each hash table/cache entry points to an individual
group. Thus, repetitive keys that are located in a same group are also served from the
same indexes of the hash table/cache. This situation leads to a high hit ratio of the
cache.

5.2 The Overall Performance Analysis

The total execution time of the studied queries is shown in Fig. 4. It includes the
execution time of (i) the BRAMs-based design, where BRAMs are either used as the
main hash table in 1 GB scale or as the cache in 10 GB scale, (ii) cache-less
FPGA-based hardware baseline, and (iii) the software baseline.

For 1 GB scale we achieved on average 4.6� and 18.9�, and for 10 GB scale the
speedup is on average 3� and 9.7�, comparing proposed hash join engine against
hardware and software baselines, respectively. More specifically, we observed that:

• For 1 GB scale that we could run all the studied benchmarks by exploiting BRAMs
as the hash table, the speedup ranges from 2� to 7.5�, comparing proposed
architecture to the hardware baseline.

• For the cache-based version in 10 GB scale, the speedup ranges from 1.2� (Q14) to
4.4� (Q04). In Q14, the H.R of the cache is 9.6% on average, while it is 45.9% on
average for the other queries. The main reason of having less H.R in Q14 is that it
has no group-by operation, where the cache efficiently works.

Furthermore, comparing the proposed hash join engine to the software baseline, the
achieved throughput improvement is mainly the consequence of the inherent capability
of FPGA to perform dataflow execution in a deep pipelined fashion. As it can be seen,
even baseline hardware version is on average 4� faster than software. However,
additional optimizations in the proposed hash table caching mechanism substantially
increase the speedup. We observed on average 14.3� speed up.

Fig. 4. The overall performance, comparing the proposed engine with a cache-less hardware and
also software baselines for (left) 1 GB and (right) 10 GB scales.
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5.3 The Resource Utilization

The hardware resource usage of the baseline and proposed cache-based engines are
shown in Table 3. We observed that although, the utilization rates of the Look-Up
Table (LUT) and Flip-Flop (FF) are almost similar in both versions, the usage of
BRAMs is significantly different. Entirely 62% of available BRAMs are used as the
cache that can deal with about 256K entries.

6 Related Work

Our design can be seen as a combination of the Ibex engine [17] and the hardware hash
table chaining approach [8] with the main contribution of caching. For joining tables,
hash joins are the most commonly used approach [19]. However, many examples of
other types of table joins exist such as the merge join algorithm [3], the handshake join
[16, 21], etc.

Multithreading the build and probe phase engines have shown to offer direct per-
formance benefits [7, 12]. Multithreading can effectively mitigate the DDR access
latencies, with the overhead of needing more I/O bandwidth and the additional circuit
to manage the concurrent threads. However, this technique can be integrated with the
proposed hash table caching mechanism in this paper to achieve a significant
throughput.

In [3], the authors design an FPGA prototype that can perform a parallel sort-merge
join, making use of a sort tree as a prerequisite. In this work, we implement a hash join
that can be inherently faster, as we do not perform any initial sorting step on the input
data tables.

In Widx [12], an out of order SPARC v9 processor core is powered with a small
core to accelerate the hash join operation with index walkers that walk multiple
buckets, concurrently. This technique improves indexing performance of the TPC-H
queries by 3.1� on average, while saves on average 83% of energy. Widx is similar to
our approach, as it also aims to reduce the overheads of the pointer chasing (walking).
However, Widx is a hardware-software codesign that follows a different approach with
the proposed hash table caching method in this paper, which is entirely deployed in the
hardware.

LINQits [4] accelerates a domain-specific query language called LINQ and is
prototyped on a Zynq processor. It compares queries into hardware accelerator tem-
plates and for the hash join case, it keeps the hash table in a sparse key table. It keeps
the collided hash keys in the Spill Queue. Once reading its current partition is finished,
it re-circulates the content of the Spill Queue (and its partition) until all the elements

Table 3. Hardware resource utilization rates

LUT FF BRAM

Baseline 128581 (1%) 150123 (2%) 12 (1%)
Cache-based 16368 (1.5%) 163854 (2%) 724 (62%)
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have been processed. Our proposed technique is designed not to require any Spill
Queue or rehashing.

Finally, the proposed design could also be used together with the recent research on
key-value stores [5, 11, 20]. Key-value stores are kind of unstructured (non-relational)
databases, where the hash table is their key comprising component. The proposed hash
table caching mechanism can be customized to improve the throughput of the
key-value stores, as well.

7 Conclusions

In this paper, we have demonstrated the design of a novel cache-based query pro-
cessing operations, i.e. hash join and group-by on FPGAs. Our contributions include
hash table caching in the hardware and featuring collision, without reverting any
software fallbacks. We showed the usefulness of the proposed hash table caching
technique to process relevant hash join and group-by kernels in the TPC-H queries,
with a maximum of 4.2X speedup over a pipelined baseline. Our experimental results
show that we are enabled to both (i) use the full capacity of the DDR memory to store
complete hash tables, and by employing a “hash table cache”, (ii) to mitigate the long
and irregular latencies of DDR memories, exploiting the fast BRAM resources of
FPGA, which in turn significantly improves the performance of the hash join and
group-by operations.
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