
123

Carlos Jaime Barrios Hernández
Isidoro Gitler
Jaime Klapp (Eds.)

Third Latin American Conference, CARLA 2016
Mexico City, Mexico, August 29 – September 2, 2016
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 697

Communications
in Computer and Information Science 697

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Carlos Jaime Barrios Hernández • Isidoro Gitler
Jaime Klapp (Eds.)

High Performance
Computing
Third Latin American Conference, CARLA 2016
Mexico City, Mexico, August 29 – September 2, 2016
Revised Selected Papers

123

Editors
Carlos Jaime Barrios Hernández
Universidad Industrial de Santander
Bucaramanga
Colombia

Isidoro Gitler
Centro de Investigación y de Estudios
Avanzados

CINVESTAV-IPN
Ciudad de México
México

Jaime Klapp
Instituto Nacional de Investigaciones
Nucleares

La Marquesa, Estado de México
México

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-57971-9 ISBN 978-3-319-57972-6 (eBook)
DOI 10.1007/978-3-319-57972-6

Library of Congress Control Number: 2017939120

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

High-performance computing (HPC) or supercomputing has become an essential tool
for modern science and technology. In addition to basic science and experimentation,
HPC has become an essential tool for advancing our understanding of nature, for the
analysis of society’s behavior, and for technological advancement.

Today, current research in many branches in science and engineering relies more
and more on supercomputing, allowing us to expand basic research and experimen-
tation. Supercomputing has proven to be equally essential for developing and under-
standing a wide range of advanced science and technology topics that are directly
related to our daily lives. HPC enables the design of models and running computer
simulations of phenomena before passing through an experimental phase, with great
economic savings, but more importantly allowing us to provide results within days or
weeks when months or even years were required in the past.

The Latin American High-Performance Computing Conference, CARLA (http://
www.ccarla.org), is a joint conference of the High-Performance Computing Latin
America Community – HPCLATAM – and the Conferencia Latino Americana de
Computación de Alto Rendimiento – CLCAR. In 2016 both major HPC Latin-American
workshops came together again at CARLA 2016, and were held in the recently created
Abacus Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento (Labo-
ratory for Applied Mathematics and High Performance Computing) of CINVESTAV
that since early 2015 has been hosting one of the largest supercomputers in Latin
America, where scientists and engineers in Mexico and other countries are able to
develop computational projects that require very large HPC facilities. Furthermore, with
the Abacus-CINVESTAV supercomputer, Mexico returned in 2016 to the Top 500 list
of the 500 most powerful supercomputers in the world.

HPCLATAM (http://hpclatam.org) gathers a young but growing community of
scientists and practitioners in the HPC area in Latin America. Past events proved that
the HPC community in the region is steadily growing. HPCLATAM aims to bring
together researchers, developers, and users of HPC to discuss new ideas, experiences,
and problems. The main goal of HPCLATAM is to provide a regional forum fostering
the growth of the HPC community in Latin America through the exchange and dis-
semination of new ideas, techniques, and research in HPC.

The CLCAR (http://www.cenat.ac.cr/) conference has been held since 2007 and is
driven by a group of researchers from universities and research centers in Latin America
that seek to promote a space for discussion of new knowledge and trends in the area.
A further aim is to coordinate initiatives and efforts toward the development of tech-
nologies for HPC that can contribute to solving common problems of social and eco-
nomic relevance to the region. CLCAR is an event for students and scientists and is
dedicated to the areas of HPC, parallel and distributed systems, e-science and its
applications to real-life problems, but especially focused on Latin American researchers.

http://www.ccarla.org
http://www.ccarla.org
http://hpclatam.org
http://www.cenat.ac.cr/

The CARLA 2016 symposium featured invited talks from academia and industry
speakers, with short- and full-paper sessions presenting both mature work and new
ideas in research and industrial applications in HPC.

This book contains the best papers from CARLA 2016, which is organized in three
parts. In Part I the contributions are related to supercomputer infrastructure and
applications, Part II includes works on algorithms and applications, and finally in
Part III you can find interesting papers on HPC applications and simulations applied to
various fields of science and engineering.

The book is aimed at scientists in the fields of computer science, mathematics,
physics, engineering, chemistry, biology and many other fields that have an interest in
HPC, infrastructure, algorithms, and a variety of applications. It is also aimed at senior
and graduate students who are in some way involved in HPC. The material includes
recent advances in HPC and is suitable for both teaching and research.

We thank Estela Hernández Juárez and Adriana Aranda for their valuable
contribution in the production of this book.

March 2017 Carlos Jaime Barrios Hernández
Isidoro Gitler
Jaime Klapp

VI Preface

Acknowledgments

The production of this book was sponsored by the Consejo Nacional de Ciencia y
Tecnología (Conacyt), the Consejo Mexiquense de Ciencia y Tecnología (Comecyt),
the Instituto Nacional de Investigaciones Nucleares (ININ), and the Laboratorio de
Matemática Aplicada y Computo de Alto Rendimiento of the Centro de Investigación y
de Estudios Avanzados of the Instituto Politécnico Nacional through the “ABACUS”
CONACyT grant EDOMEX-2011-C01-165873.

Organization

General Chair

Isidoro Gitler ABACUS: Laboratorio de Matemática Aplicada y
Cómputo de Alto Rendimiento,
CINVESTAV-IPN, México

Co-chairs

Carlos Jaime Barrios
Hernández

Universidad Industrial de Santander, Colombia

Jaime Klapp Instituto Nacional de Investigaciones Nucleares,
México

Gonzalo Hernández USACH & CCTVal, Chile
Salma Jaliffe CUDI, Mexico
Esteban Mocskos Universidad de Buenos Aires/CONICET, Argentina
Phillippe Navaux Universidade Federal do Rio Grande do Sul, Brazil

Technical Program Committee

Tracks Coordinators

Cyber-Infrastructures, Storage, Networking and HPC Data Centers

Moisés Torres Martínez Universidad de Guadalajara, Mexico

Big Data, Data Analytics and Data Visualization

Raúl Ramos Universidad Industrial de Santander, Colombia

Scientific and Industrial Applications

Nicolás Wolovick Universidad Nacional de Córdoba, Argentina

Education and Outreach in HPC and Advanced Computing

Esteban Clua Universidade Federal Fluminense, Brazil

Towards Advanced and Scientific Computing and HPC

Sergio Nesmachnow Universidad de la República, Uruguay

Technical Program Committee Members

Andrés Avila Universidad de la Frontera, Chile
Javier R. Balderrama Inria Rennes, France

Carlos J. Barrios Hernández Universidad Industrial de Santander, Bucaramanga,
Colombia

Lola Bautista Universidad Industrial de Santander, Colombia
Carlos Bederián Universidad Nacional de Córdoba, Argentina
Cristiana Bentes Universidade do Estado do Rio de Janeiro, Brazil
Cristina Boeres Universidade Federal Fluminense, Brazil
Rossana Bonasia ESIA-IPN, Mexico
Francisco Brasileiro Universidade Federal de Campina Grande, Brazil
Carlos Buil Aranda Pontificia Universidad Católica de Chile, Chile
Víctor Calo King Abdullah University of Science and Technology

(KAUST), Saudi Arabia
Néstor Calvo CIMEC, Argentina
Luis Fernando Castillo Universidad de Caldas, Colombia
Marcio Castro Universidade Federal de Santa Catarina, Brazil
Harold Castro Universidad de los Andes, Colombia
Gerson Cavalheiro Universidade Federal de Pelotas, Brazil
Marcia Cera Universidade Federal de Santa Catarina, Brazil
Andrea Charao Universidad Federal Santa María, Brazil
Esteban Clua Universidade Federal Fluminense, Brazil
Daniel Cordeiro Universidade de Sao Paulo, Brazil
Alvaro Coutinho Universidade Federal do Rio de Janeiro, Brazil
Fernando Crespo Universidad Central de Chile, Chile
Marcela Cruchaga Universidad de Santiago de Chile, Chile
Jesús Cruz UNAM, Mexico
Alvaro de la Ossa CENAT Laboratory, San José, Costa Rica
Claudio Delrieux Universidad Nacional del Sur, Argentina
César Díaz Universidad de los Andes, Bogotá, Colombia
César Díaz Instituto Potosino de Investigación en C y T, Mexico
Gilberto Díaz Supercomputación y Calculo Científico, Universidad

Industrial de Santander, Colombia
Bernabé Dorronsoro Universidad de Lille 1, France
Nicolás Erdody Multicore World Conference Organizer, New Zealand
Pablo Ezzatti Universidad de la República, Uruguay
Ricardo Farías Universidade Federal do Rio de Janeiro, Brazil
Verónica Gil Costa Universidad Nacional San Luis, Argentina
Isidoro Gitler ABACUS: Laboratorio de Matemática Aplicada y

Cómputo de Alto Rendimiento,
CINVESTAV-IPN, México

Brice Goglin Inria Bordeaux, France
Antonio Gomes Laboratorio Nacional de Computacional Científica,

Brazil
Jose L. Gordillo Universidad Nacional Autónoma de México, Mexico
Benjamín Hernández Oak Ridge National Laboratory, USA
Gonzalo Hernández USACH & CCTVal, Chile
Tiberio Hernández Universidad de los Andes, Bogotá, Colombia
Salma Jaliffe CUDI Initiative, Mexico

X Organization

Jaime Klapp Instituto Nacional de Investigaciones Nucleares,
México

Alejandro Kolton Centro Atómico de Bariloche, Argentina
Roberto León Universidad Nacional Andrés Bello, Chile
Francisco Luna Universidad Carlos III de Madrid, Spain
Rafael Mayo CIEMAT, Spain
Ricardo Medel Intel Corporation, Argentina
Wagner Meira Jr. Universidade Federal de Minas Gerais, Brazil
Alba Melo Universidade de Brasilia, Brazil
Esteban Meneses Costa Rica Institute of Technology, Costa Rica
Renato Miceli CENAI-CIMATEC, Brazil
Pablo Mininni Universidad de Buenos Aires, Argentina
David Monge Universidad Nacional de Cuyo, Argentina
Sergio Nesmanowch Universidad de la Republica, Uruguay
Luis Nuñez RedCLARA/Universidad Industrial de Santander,

Colombia
Julio Paciello Universidad Nacional de Asunción, Paraguay
Elina Pacini Universidad Nacional de Cuyo, Argentina
Jairo Panetta CPTEC, Brazil
Johnatan Pecero Luxembourg, Researcher, Mexico
Gabriel Pedraza Universidad Industrial de Santander, Bucaramanga,

Colombia
Guilherme Peretti Pezzi University of Turin, Italy
Jorge Pérez EuroNova, Belgium
Carlos Piedrahita Universidad de Antioquia, Colombia
Laercio Pilla Universidade Federal de Santa Catarina, Brazil
Carlos Hernán Prada Rojas STMicroelectronics, France
Javier Príncipe CIMNE/Universidad Politécnica de Catalunya, Spain
Marcela Printista Universidad Nacional de San Luis, Argentina
Juan Manuel Ramírez

Alcaraz
Universidad de Colima, Mexico

Raúl Ramos Pollan Universidad Industrial de Santander, Bucaramanga,
Colombia

Vinod Rebello UFF, Brazil
Olivier Richard LIG Laboratory Grenoble, France
Genghis Ríos Pontificia Universidad Católica del Perú, Peru
Robinson Rivas Universidad Central de Venezuela, Venezuela
Ascanio Rojas Universidad de Los Andes, Venezuela
Isaac Rudomin Barcelona Supercomputing Center, Spain
Alfredo Cristóbal Salas Universidad Veracruzana, Mexico
Afonso Sales Pontificia Universidad Católica do Rio Grande do Sul,

Brazil
Liria Sato USP, Brazil
Lucas Schnorr INRIA MESCAL/CNRS LIG, France
Hermes Senger Universidade Federal de São Carlos, Brazil
Alejandro Soba CNEA-CONICET, Argentina

Organization XI

Luiz Angelo Steffenel Universidad de Reims, France, France
Mario Storti Universidad Nacional del Litoral/CONICET, Argentina
Andrei Tchernykh Centro Investigación Científica y Educación Superior,

Mexico
Fernando Tinetti Universidad Nacional de La Plata, Argentina
Patricia Tissera Universidad de Buenos Aires, IAFE, Argentina
Claudio Torres Universidad Técnica Federico Santa María, Chile
Moises Torres Universidad de Guadalajara, Mexico
Tram Truong Huu National University of Singapore, Singapore
Manuel Ujaldón Universidad de Málaga, Spain
Grabiel Usera Universidad de la República, Uruguay
Carlos A. Varela Rensselaer Polytechnic Institute, USA
Mariano Vázquez Barcelona Supercomputing Center, Spain
José Luis Vázquez-Poletti Universidad Complutense de Madrid, Spain
Pedro Velho Atos, France
Jesús Verduzco Instituto Tecnológico de Colima, Mexico
Nicolás Wolovick Universidad Nacional de Córdoba, Argentina

XII Organization

Contents

HPC Infrastructure and Applications

Efficient P2P Inspired Policy to Distribute Resource Information in Large
Distributed Systems. 3

Paula Verghelet and Esteban Mocskos

Performance Evaluation of Multiple Cloud Data Centers Allocations
for HPC. 18

Eduardo Roloff, Emmanuell Diaz Carreño,
Jimmy K.M. Valverde-Sánchez, Matthias Diener, Matheus da Silva Serpa,
Guillaume Houzeaux, Lucas M. Schnorr, Nicolas Maillard,
Luciano Paschoal Gaspary, and Philippe Navaux

Communication-Aware Affinity Scheduling Heuristics
in Multicore Systems . 33

Diego Regueira, Santiago Iturriaga, and Sergio Nesmachnow

Penalty Scheduling Policy Applying User Estimates and Aging
for Supercomputing Centers . 49

Nestor Rocchetti, Miguel Da Silva, Sergio Nesmachnow,
and Andrei Tchernykh

Accelerating All-Sources BFS Metrics on Multi-core Clusters
for Large-Scale Complex Network Analysis . 61

Alberto Garcia-Robledo, Arturo Diaz-Perez,
and Guillermo Morales-Luna

Exploration of Load Balancing Thresholds to Save Energy
on Iterative Applications . 76

Edson L. Padoin, Laércio L. Pilla, Márcio Castro,
Philippe O.A. Navaux, and Jean-François Méhaut

Parallel Algorithms and Applications

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 91
José I. Aliaga, Ernesto Dufrechou, Pablo Ezzatti,
and Enrique S. Quintana-Ortí

A Taxonomy of Workflow Scheduling Algorithms 104
Fernando Aguilar-Reyes and J. Octavio Gutierrez-Garcia

http://dx.doi.org/10.1007/978-3-319-57972-6_1
http://dx.doi.org/10.1007/978-3-319-57972-6_1
http://dx.doi.org/10.1007/978-3-319-57972-6_2
http://dx.doi.org/10.1007/978-3-319-57972-6_2
http://dx.doi.org/10.1007/978-3-319-57972-6_3
http://dx.doi.org/10.1007/978-3-319-57972-6_3
http://dx.doi.org/10.1007/978-3-319-57972-6_4
http://dx.doi.org/10.1007/978-3-319-57972-6_4
http://dx.doi.org/10.1007/978-3-319-57972-6_5
http://dx.doi.org/10.1007/978-3-319-57972-6_5
http://dx.doi.org/10.1007/978-3-319-57972-6_6
http://dx.doi.org/10.1007/978-3-319-57972-6_6
http://dx.doi.org/10.1007/978-3-319-57972-6_7
http://dx.doi.org/10.1007/978-3-319-57972-6_8

An Efficient Implementation of Boolean Gröbner Basis Computation 116
Rodrigo Alexander Castro Campos, Feliú Davino Sagols Troncoso,
and Francisco Javier Zaragoza Martínez

Accelerating Hash-Based Query Processing Operations on FPGAs
by a Hash Table Caching Technique . 131

Behzad Salami, Oriol Arcas-Abella, Nehir Sonmez, Osman Unsal,
and Adrian Cristal Kestelman

Distributed Big Data Analysis for Mobility Estimation in Intelligent
Transportation Systems . 146

Enzo Fabbiani, Pablo Vidal, Renzo Massobrio, and Sergio Nesmachnow

Evaluation of a Master-Slave Parallel Evolutionary Algorithm Applied
to Artificial Intelligence for Games in the Xeon-Phi Many-Core Platform. . . . 161

Sebastián Rodríguez Leopold, Facundo Parodi, Sergio Nesmachnow,
and Esteban Mocskos

A Software Framework for 2D Mesh Based Simulations in Discrete
Time with Local Interaction . 177

Sergio A. Gélvez C., Gabriel Pedraza, and Carlos J. Barrios H

A GPU Parallel Implementation of the RSA Private Operation 188
Nareli Cruz-Cortés, Eduardo Ochoa-Jiménez, Luis Rivera-Zamarripa,
and Francisco Rodríguez-Henríquez

Reducing the Overhead of Message Logging in Fault-Tolerant
HPC Applications . 204

Esteban Meneses

Dense and Sparse Matrix-Vector Multiplication on Maxwell GPUs
with PyCUDA . 219

Francisco Nurudín Álvarez, José Antonio Ortega-Toro,
and Manuel Ujaldón

HPC Applications and Simulations

Enhancing Energy Production with Exascale HPC Methods 233
Rafael Mayo-García, José J. Camata, José M. Cela, Danilo Costa,
Alvaro L.G.A. Coutinho, Daniel Fernández-Galisteo, Carmen Jiménez,
Vadim Kourdioumov, Marta Mattoso, Thomas Miras, José A. Moríñigo,
Jorge Navarro, Philippe O.A. Navaux, Daniel de Oliveira,
ManuelRodríguez-Pascual, Vítor Silva,Renan Souza, andPatrickValduriez

Three-Dimensional CSEM Modelling on Unstructured Tetrahedral Meshes
Using Edge Finite Elements . 247

Octavio Castillo-Reyes, Josep de la Puente, and José María Cela

XIV Contents

http://dx.doi.org/10.1007/978-3-319-57972-6_9
http://dx.doi.org/10.1007/978-3-319-57972-6_10
http://dx.doi.org/10.1007/978-3-319-57972-6_10
http://dx.doi.org/10.1007/978-3-319-57972-6_11
http://dx.doi.org/10.1007/978-3-319-57972-6_11
http://dx.doi.org/10.1007/978-3-319-57972-6_12
http://dx.doi.org/10.1007/978-3-319-57972-6_12
http://dx.doi.org/10.1007/978-3-319-57972-6_13
http://dx.doi.org/10.1007/978-3-319-57972-6_13
http://dx.doi.org/10.1007/978-3-319-57972-6_14
http://dx.doi.org/10.1007/978-3-319-57972-6_15
http://dx.doi.org/10.1007/978-3-319-57972-6_15
http://dx.doi.org/10.1007/978-3-319-57972-6_16
http://dx.doi.org/10.1007/978-3-319-57972-6_16
http://dx.doi.org/10.1007/978-3-319-57972-6_17
http://dx.doi.org/10.1007/978-3-319-57972-6_18
http://dx.doi.org/10.1007/978-3-319-57972-6_18

A Parallel Evolutionary Approach to the Molecular Docking Problem 257
Daniel Espinosa-Galindo, Jesús A. Fernández-Flores,
Inés A. Almanza-Román, Rosaura Palma-Orozco,
and Jorge L. Rosas-Trigueros

Deep Learning Applied to Deep Brain Stimulation in Parkinson’s Disease . . . 269
Pablo Guillén

Computational Simulation of the Hemodynamic Behavior of a Blood
Vessel Network . 279

Nathan Weinstein, Alejandro Aviles, Isidoro Gitler, and Jaime Klapp

Scaling Properties of Soft Matter in Equilibrium and Under Stationary Flow 289
Armando Gama Goicochea

On Finite Size Effects, Ensemble Choice and Force Influence in Dissipative
Particle Dynamics Simulations . 314

Miguel Ángel Balderas Altamirano, Elías Pérez,
and Armando Gama Goicochea

Ab initio DFT Calculations for Materials in Nuclear Research 329
E. Mayoral, A. Rey, Jaime Klapp, A. Gómez, and M. Mayoral

Super Free Fall of a Liquid Frustum in a Semi-infinite Cone 340
Áyax Torres, Salomón Peralta, Abraham Medina, Jaime Klapp,
and Francisco Higuera

A Particle Method for Fluid-Structure Interaction Simulations
in Multiple GPUs . 346

Julián Becerra-Sagredo, Leonardo Sigalotti, and Jaime Klapp

Scheduling Algorithms for Distributed Cosmic Ray Detection
Using Apache Mesos. 359

Germán Schnyder, Sergio Nesmachnow, Gonzalo Tancredi,
and Andrei Tchernykh

The IMPETUS Project: Using ABACUS for the High Performance Computation
of Radiative Tables for Accretion onto a Galaxy Black Hole 374

José M. Ramírez-Velasquez, Jaime Klapp, Ruslan Gabbasov,
Fidel Cruz, and Leonardo Di G. Sigalotti

Database of CMFGEN Models in a 6-Dimensional Space 387
Janos Zsargó, Celia Rosa Fierro, Jaime Klapp, Anabel Arrieta,
Lorena Arias, and D. John Hillier

Cosmography with the Hubble Rate: The Eis Approach 393
Jaime Klapp, Alejandro Aviles, and Orlando Luongo

Author Index . 407

Contents XV

http://dx.doi.org/10.1007/978-3-319-57972-6_19
http://dx.doi.org/10.1007/978-3-319-57972-6_20
http://dx.doi.org/10.1007/978-3-319-57972-6_21
http://dx.doi.org/10.1007/978-3-319-57972-6_21
http://dx.doi.org/10.1007/978-3-319-57972-6_22
http://dx.doi.org/10.1007/978-3-319-57972-6_23
http://dx.doi.org/10.1007/978-3-319-57972-6_23
http://dx.doi.org/10.1007/978-3-319-57972-6_24
http://dx.doi.org/10.1007/978-3-319-57972-6_25
http://dx.doi.org/10.1007/978-3-319-57972-6_26
http://dx.doi.org/10.1007/978-3-319-57972-6_26
http://dx.doi.org/10.1007/978-3-319-57972-6_28
http://dx.doi.org/10.1007/978-3-319-57972-6_28
http://dx.doi.org/10.1007/978-3-319-57972-6_29
http://dx.doi.org/10.1007/978-3-319-57972-6_30

HPC Infrastructure and Applications

Efficient P2P Inspired Policy to Distribute
Resource Information in Large

Distributed Systems

Paula Verghelet1 and Esteban Mocskos1,2(B)

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina

{pverghelet,emocskos}@dc.uba.ar
2 Centro de Simulación Computacional p/Aplic. Tecnológicas/CSC-CONICET,

Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina

Abstract. The computational infrastructures are becoming larger and
more complex. Their organization and interconnection are acquiring new
dimensions with the increasing adoption of Cloud Technology and the
establishment of Federations of cloud providers.

These large interconnected systems require monitoring at different
levels of the infrastructure: from the availability of hardware resources
to the effective provision of services and verification of terms of the estab-
lished agreements.

Monitoring becomes a fundamental component of any Cloud Service
or Federation, as the up-to-date information about resources in the sys-
tem is extremely important to be used as an input to the scheduler
component. The way in which the different members of such a distrib-
uted system obtain and distribute the resource information is what is
known as Resource Information Distribution Policy.

Moving towards the obtention of a scalable and easy to maintain pol-
icy leads to interaction with the Peer to Peer (P2P) paradigm. Some of
the proposed policies are based on establishing a ranking according to
previous communications between nodes. These policies are known as
learning based methods or Best-Neighbor (BN). However, the use of this
type of policies shows poor performance and limited scalability compared
with defacto Hierarchical or other hybrid policies.

In this work, we introduce pBN which is a fully distributed resource
information policy based on P2P. We analyze some reasons that could
produce the poor performance in standard BN and propose an improve-
ment which shows performance and bandwidth consumption similar to
Hierarchical policy and other hybrid variations. To compare the different
policies, a specific simulation tool is used with different system sizes and
exponential network topology.

Keywords: Distributed systems · Monitoring · Resource distribution
policy

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-57972-6 1

4 P. Verghelet and E. Mocskos

1 Introduction

The computational infrastructures are moving towards a new level of complexity
and computing power in terms of organization and interconnection. Cloud Fed-
erations represent the implementation of the utility computing model that was
once incarnated in the Grid Computing paradigm. Large distributed systems
play a fundamental role in an increasing number of scientific projects [3,33,37]
and virtualization and Internet ubiquity are becoming more and more important.

These large interconnected systems require monitoring at different levels of
the infrastructure: from the availability of hardware resources to the effective
provision of services and verification of terms of the established SLA [19].

In this scenario, monitoring becomes a fundamental component of any Cloud
Service or Federation [9–11,31]. In particular, the up-to-date information about
resources in the system is extremely important as it can be used by the scheduler
to select the target for each job [16,27].

The Resource Information Distribution Policy dictates the way in which
resource information is obtained and distributed. In the Grid architecture
described by Foster et al. [13], the discovery mechanisms are included in the
Resource Layer. In another view of this architecture [23], the state information
of resources is managed by the component named Collective Subsystem. In Cloud
platforms, this service needs to be pervasive, is required by several components
of the Cloud service, cuts across the layers of the Cloud System, and needs to
be established between all the members of any Cloud Federation.

In this work, we focus on the monitoring of resources that represent hardware
or software components. They can be characterized in two main classes [30]:

(i) Static attributes: the type of attributes which show a very slow rate of
change. For example operating system, processor clock frequency, total stor-
age capacity or network bandwidth.

(ii) Dynamic attributes: in this class, we can find the attributes related with
the use of the system which change as the usage evolves, for example free
memory, processor usage, available storage or network usage.

Having a centralized component to manage the resource information presents
several drawbacks [30] (for example, is a single point of failure). Furthermore it
is difficult to be adopted in a Federation of Clouds as all the members of the
Federation should manage their own information and should be able to pro-
vide services independently of the rest of the members. Manually assembling a
static hierarchy has become the defacto implementation in grid information sys-
tems [12]. However, in medium-to-large scale environments, the dynamics of the
resource information and system members cannot be managed using a static hier-
archy [23,34]. This approach has similar drawbacks to the centralized one, such as
the point of failure and poor scaling for large number of users/providers [28,29].
Therefore, it results necessary to design new distributed policies for discovery
and propagation of resource information.

The ideas based on the Peer to Peer (P2P) paradigm could help towards
obtaining scalable solutions [21,34]: (i) very dynamic and heterogeneous

P2P Inspired Policy to Distribute Resource Information 5

environment and (ii) creation of a virtual working environment by collecting
the resources available from a set of distributed, individual entities [29].

Iamnitchi et al. [16,17] proposed a P2P approach for organizing the informa-
tion components in a flat dynamic P2P network. This decentralized approach
envisages that every administrative domain maintains its information services
and makes it available as part of the P2P network. Schedulers may initiate
look-up queries that are forwarded in the P2P network using flooding (a similar
approach to the unstructured P2P network Gnutella [32]).

Other scenarios in which the resource information is central to an efficient
system performance are Volunteer and Mobile Cloud Computing. For exam-
ple, Ghafarian et al. [14] presents a protocol for resource discovery with QoS
restrictions in P2P based volunteer computing systems. Liu et al. [20] focuses
on the integration of mobile computing resources in a cloud environment. They
introduce an energy-efficient method of adaptive resource discovery to solve the
problem of finding how available resources in nearby devices are discovered, it
transforms between centralized and flooding modes to save energy.

The most common resource information distribution policies are:

– Random: Every node chooses randomly another node to query information
from. There is no structure at all. Usually this policy is used as baseline
behavior to be compared with.

– Hierarchical: In this kind of policy, a hierarchy is established beforehand
and the resource information is sent using this fixed structure. In this way,
the nodes at the top of the hierarchy exchange information with the ones
below them. This is the standard actually used by Grids.

– Super Peer: Some nodes are defined as super-peers working like servers for
a subset of nodes and as peers in the network of super-peers. In this way, a
two level structure is defined in which the peers nodes are only allowed to
communicate with a single super-peer and the cluster defined by it.

– Best-Neighbor: Some information about each answer is stored and the next
neighbor to query is selected using the quality of the previous answers. At the
beginning, the node has no information about its neighbors, thus it chooses
randomly. As information is collected, the probability of choosing a neighbor
randomly is inversely proportional to the amount of information stored.

Mastroianni et al. [22] evaluate the performance of these policies and ana-
lyze the pros and cons of each solution, concluding that Super Peer Policy (SP)
presents interesting and competitive results. Cesario et al. [8] study the per-
formance of a framework oriented to execute applications for distributed data
mining combining volunteer computing and P2P architecture. SP policy is used
to discover the available resources obtaining an important performance gain
compared with a standard policy. These policy was also analyzed by Verghelet
and Mocskos [35], who proposed an improvement to its communication protocol.

Meshkova et al. [24] provide a classification for policies according to struc-
tured or unstructured architecture. Structured architectures are further subdi-
vided into centralized (client-server) or decentralized ones. Following this idea,

6 P. Verghelet and E. Mocskos

SP is classified as hybrid (unstructured-structured), Random as an uninformed
search method and BN as an informed search method.

Iamnitchi et al. [16] show the best performance is obtained using Learning
Based policies, while the work by Agrawal et al. [1] presents a distributed pro-
tocol based on the history of previous answers. Hasanzadeh and Meybodi [15]
propose using a distributed learning automata (DLA) based on multi-swarm
discrete particle swarm optimization approach for Grid resource discovery, while
Olaifa et al. [26] follow a similar approach for discovery and scheduling.

Verghelet et al. [36] compare the performance obtained by several policies
including the fully distributed BN policy. The improvements proposed lead this
policy to be competitive against SP. However, they show that there is space for
further improvements to reach the performance of Hierarchical or Centralized
policies.

In this work, we focus on the way each node in the system uses the informa-
tion that is obtained during the communications with its neighbors. We show
that the strategy to select the node to communicate has a strong impact on the
quality of resource information and this could lead to an overall better system
performance and more efficient use of resources. The proposed improvements
to BN leads to a fully distributed policy named pBN which shows performance
similar to Hierarchical and SP, with a similar use of bandwidth (i.e. control
messages).

The rest of the work is organized as follows: in the next section we focus on
some details about the procedures followed to simulate the system, their con-
struction and the type of messages used to interchange resource information. In
Sect. 3 we describe BN and the function used to rank the neighbors based on the
provided information, while Sect. 4 shows the results obtained by the proposed
policy and explains the reasons behind the obtained performance improvements.
The scalability of this policy is the analyzed in Sect. 4.1 comparing it with other
presented policies. Finally, some conclusions are drawn in Sect. 5.

2 Methodology

Grid Matrix is used to analyze the evolution of the resource information in
systems with an increasing number of nodes and different underlying network
topology. Grid Matrix uses SimGrid2 [7] as the simulation engine.

As a simplification, normally the impact of time is discarded in the evaluation
of this kind of systems, hiding the dynamical nature of the system behavior.
Mocskos et al. [25] propose a new set of metrics (Local Information Rate (LIR)
and Global Information Rate (GIR)) that incorporates the notion of time decay
of information in the evaluation of the system performance:

– LIR: captures the amount of information that a particular host has from all
the entire system in a single moment. For the host k, LIRk is:

LIRk =
∑N

h=1 f(ageh, expirationh) · resourceCounth
totalResourceCount

(1)

P2P Inspired Policy to Distribute Resource Information 7

where N is number of hosts in the system, expirationh is the expiration time of
the resources of host h in host k, ageh is the time passed since the information
was obtained from that host, resourceCounth is the amount of resources in
host h and totalResourceCount is the total amount of resources in the whole
system.

– GIR: captures the amount of information that the whole grid knows of itself,
calculated as the mean value of every node’s LIR.

The underlying network topologies used in this work are generated using
a custom exponential network generator. The amount of connections of each
node follows an exponential distribution law, commonly seen in the Internet or
collaborative networks [2,4].

Fig. 1. Resource information interchange: push (publication of available resources)
and poll (request of information). Node A has information about three available
resources (I). It publishes its information sending a push to B (II). A requests resource
information sending a poll to C, it includes its own resources in the message (III). B
merges the received information (IV). C answers the poll request sending its resource
information (V) to A.

To inform the state and availability of resources, two strategies can be used:
push (Proactive) and poll (Reactive) [24]. The protocol related with each type
of message interchanged to inform the state and availability of resources is shown
in Fig. 1. In step I, the node A has information about three resources. When this
node sends a push message to node B at time ti (step II), all the information
about the resources it knows is communicated to the other node, including the
resources belonging to other nodes. At ti + Δt, node B receives the information
(the amount of time depends of the network topology and latency of each link)
and merges the new information in his own database (step IV). The other type of
message starts at step III in Fig. 1(a): node A contacts C to obtain information
using a poll message. In this message, A also packs its resource information to
take additional advantage of sending the request. After receiving the message

8 P. Verghelet and E. Mocskos

(step V), C answers the request with a message containing all the information
it knows about resources in the system.

As SP needs to partition the system in disjoint sets, metis [18] is used to
generate these subsets using one heuristic to minimize the frontier between them.
In each partition, the super-peer is selected minimizing the total distance to the
rest of nodes in the partition. In the work by Verghelet and Mocskos [35] new
variations of SP were presented: N-SP and A2A-SP. N-SP shows good perfor-
mance and a balanced trade-off in the use of network bandwidth. A2A-SP gets
very interesting results, even better than Hierarchical policy, but the cost lies in
an increment of used messages and consumed bandwidth. Finally, a three level
hierarchy is generated for the Hierarchical policy.

3 Best Neighbor Policy

There are three remarkable aspects that impact on the performance of BN:

1. The part of the system that is known or was already contacted by each node.
2. The function used to generate the ranking to select the best neighbor or

neighbors to communicate.
3. The way in which each node gets information from the rest of nodes and

updates its own database (i.e. the way the generated ranking is used).

When using BN, each node goes through two well differentiated stages:

(i) Learning Stage: as the nodes have discovered only a small fraction of the
system, a random selection is used to select the next to communicate.

(ii) Operative Stage: with a populated database using the information received
during previous messages, the best neighbor is selected according to a rank-
ing generated using a scoring function.

During the learning stage, the system operates in similar way to Random pol-
icy. The length of this stage could compromise the performance of the system, as
Random policy presents poor results, specially in medium to large systems [36].
Shortening of this stage was already proposed using a list merging (LM) mecha-
nism [36], but this approach was not directly reflected in an improvement of the
policy performance.

The scoring function that is used during the operative stage is defined as [36]:

fscoring(h) = a · INFO RESh + b · RTTh + c · FAILED RESPh + d · OWN RESh (2)

where INFO RESh is the amount of information about resources that has a neigh-
bor host h, RTTh is the round trip time with h, FAILED RESPh accounts the
amount of communication failures with h and OWN RESh is the amount of local
resources owned by h. The constants a, b, c and d are parameters that can be
used to adjust the relative weight of each component of the scoring function.
Finally, to allow the comparison between different systems, the weighting para-
meters are normalized. This BN variant is named fBN [36] and represents the
base of comparison for the improvements introduced in this work.

P2P Inspired Policy to Distribute Resource Information 9

4 Results

Figure 2 introduces the evolution of system wide GIR for different variations
of fBN policy. The underlying network corresponds to systems with 200 nodes
Fig. 2(a) and 500 nodes in Fig. 2(b) generated following an exponential topology.
The poll message is kept without changes: periodically asks for information to
the neighbor selected using the scoring function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

G
IR

Time (s)

analyzed message cycle
BN & LM
BN, LM & RCM20
Random
Random & LM
BN

(a) 200 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

G
IR

Time (s)

Random
Random & LM
BN

BN & LM
BN, LM & RCM20

(b) 500 nodes

Fig. 2. GIR evolution in systems of (a) 200 and (b) 500 nodes (exponential topology).
The strategy to select the target for poll is based on the BN scoring function in all the
cases. Different strategies for selecting the push target are tested to overcome the poor
performance obtained by BN, but only the repeat control mechanism (RCM) shows a
strong improvement. The gray horizontal bars correspond to the interval in which the
nodes send the message number 10, 30 and 70 (referenced later during the analysis).

The variations corresponds to the push message (a node sends it own infor-
mation to a selected node):

– push Random: the target for pushing its information is selected randomly.
– push Random & LM: similar as before, but the list merging mechanism (LM)

is used. The nodes aggregates all the known information about the rest of the
system in each message shortening the learning stage.

– push BN: the target is selected using the scoring function, each node sends
only the information about its own resources (not the information it knows
about its neighbors).

– push BN & LM: the selection is based on the scoring function, each node sends
all the information about the system (including neighbors), the receiver uses
the list merging mechanism (LM) to shorten the learning stage.

– push BN, LM and RCM20: similar as before, but it enables target repetition
control (RCM) after the first 20 messages. This mechanism consists in avoid-
ing the successive selection of the same node.

The first four variations show a poor performance in both systems. These
results were confirmed running additional simulations over the same system and

10 P. Verghelet and E. Mocskos

Fig. 3. Emergent communities or modularity classes observed at different moments of
the system evolution: 10 (600s), 30 (1800s) and 70 (4200s) message cycles. The first
row corresponds to fBN policy (all the variations present similar behavior) and the
second row shows the effect of using the Repeat Control Mechanism (RCM).

in different systems presenting minimum deviation (data not shown). Selecting
the push target using the scoring function or doing it randomly, using or not the
list merge mechanism present similar poor behavior in terms of global informa-
tion knowledge. As can be seen in the figure, only avoiding the target repetition
leads to an strong improvement in the policy performance, we will next analyze
this situation.

The analysis of the sequence of target selection for each node in the system
shows the establishment of small communities. These small clusters are formed
by only a few nodes that contact always the same best neighbor. Moreover, the
results obtained by the scoring function in those cases show a strong difference
in terms of obtained value for the first node in the ranking compared with the
second one. The difference between the best neighbor and the second in the
ranking enlarges over the duration of the simulation, which explains why the
small clusters persists over the time. Even though, BN selects randomly a target
for communication with a small probability (trying to avoid the establishment of
these small communities), it results insufficient to overcome the obtained position
and the scoring function keeps selecting the same node.

Figure 3(a) to (f) present the emerged communities at three different stages
of a system with 200 nodes. These stages are marked at Fig. 2 as gray hori-
zontal bars and correspond to the sending of messages number 10, 30 and 70

P2P Inspired Policy to Distribute Resource Information 11

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 c

om
m

un
iti

es

Push number (time)

w/o RCM w/ RCM

(a) Communities

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

M
od

ul
ar

ity

Push number (time)

w/o RCM w/ RCM

(b) Modularity

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

N
od

es

Push number (time)

w/o RCM w/ RCM

(c) Nodes per community

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

G
IR

Time (s)

RCM1
RCM5
RCM10
RCM20

(d) RCM performance

Fig. 4. Evolution of a 200 node system focusing on its internal structure when using
RCM: (a) the number of emerged communities, (b) modularity (higher value means
more communities), and (c) number of nodes per community. In (d) the evolution of
GIR is shown while activating RCM at different starting messages.

respectively. In these figures, each point represents a node in the system. An
edge between two points is included if one point selects the other as the commu-
nication target (poll or push). The color depends of its modularity class, which
is computed following the work of Blondel et al. [6] implemented as a module
in Gephi suite [5]. All the points with the same color are in the same modular-
ity class. The edges with the same color correspond to messages interchanged
between nodes belonging to the same community.

Figure 3(a) to (c) are obtained using fBN policy selecting the push target ran-
domly (similar results are obtained with the other variations). On the other hand,
Fig. 3(d) to (f) present the evolution of same system but with RCM active. In
the first row, the communities slightly change during the simulation, some nodes
change from one community to the other, but no strong evidence of change in the
number of total communities can be concluded. This view leads to an almost sta-
ble number of small communities during all the simulated time. The second row
of Fig. 3 presents a different behavior as the system has a similar configuration

12 P. Verghelet and E. Mocskos

at message cycle 10, but this situation strongly changes after 30 message cycles,
where the system moves towards a few number of larger communities. This sce-
nario is also reflected in an intense increment of GIR in Fig. 2(a), this change in
the clusters are reflected in a stable improvement of the policy performance.

Figure 4 seeks to clarify the change produced in the system behavior when
RCM is active focusing on the 200 nodes system (similar results are obtained
with larger systems). In Fig. 4(a), the number of communities is shown during
the evolution of the system using or not RCM. In the first case, after an initial
period in which there is a large number of communities, it stabilizes near 20
communities. The behavior of the number of communities when RCM is active
differs: after this initial period, it quickly falls to near 5.

The modularity of a network shows how well it decomposes into modular
communities. A high modularity value indicates a community structure, namely
the network is compartmentalized into sub-networks. Figure 4(b) presents the
evolution of modularity when RCM20 is active and not. The use of this mecha-
nism after the message number 20 produces a strong decrement in modularity,
which means that the system is less compartmentalized and the information is
more shared.

The amount of nodes per community can be used to confirm the evolution
of the system after the activation of RCM. Figure 4(c) shows that when RCM
is inactive, the system presents a low number of nodes per community (near 10
nodes). While when RCM is active, the size of the communities increases, but
still some small communities can be found, shown by the large deviation. The
Fig. 3(e) and (f) exemplifie this situation as can be seen large communities, but
a low number of small communities subsists.

One aspect to consider is whether the message after which RCM is acti-
vated has an impact on performance. Figure 4(d) clarifies this aspect showing
the evolution of GIR for different starting messages to activate RCM. As can
be observed in the figure, the sooner the activation of RCM, the sooner is the
increment of the GIR. Notwithstanding, once this increment is produced, all the
variations reach the same stable values.

As the main contribution of this work, we introduce pBN. This policy is
based on BN with these special details:

(i) The targets for poll and push messages are selected using the scoring
function introduced in Eq. 2.

(ii) Usage of the list merging mechanism (LM) to reduce the learning stage.
(iii) The use of the repeat control mechanism (RCM) to avoid the establishment

of a large number of small communities.

4.1 Scalability

The efficiency of this policy in terms of used network bandwidth will be treated
in this section. As any control protocol, it is a design goal to minimize the use
of bandwidth.

P2P Inspired Policy to Distribute Resource Information 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

G
IR

 (
av

er
ag

e)

Nodes

Hierarchical (3lvl)
Random

fBN

N1−5%SP (120)
pBN 3000s
pBN 5000s

(a) Scalability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

G
IR

 (
av

er
ag

e)

Nodes

N4−5%SP (120)
N6−5%SP (120)

A2A−5%SP (120)

pBN 3000s
pBN 5000s

(b) Scalability

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 1.9e+06

100 120 140 160 180 200

se
nt

 m
es

sa
ge

s

SP’s poll refresh time (s)

Hierarchical
pBN

Random
fBN

N1−5%SP
N4−5%SP
N6−5%SP

A2A−5%SP

(c) Messages used

Fig. 5. Scalability of different policies for system size from 100 to 1000 nodes with
exponential topology. (a) and (b) compares proposed pBN policy with other previously
introduced policies. The bandwidth consumption is shown in (c) in terms of control
messages sent during 14 h for the same policies.

14 P. Verghelet and E. Mocskos

Figures 5(a) and (b) show mean GIR for different system sizes from 100 to
1000 nodes. In both figures, we compare pBN with other previously proposed
policies.

In Fig. 5(a), pBN is compared with 3-level Hierarchical Policy, Random, SP
(5% of super-peers varying the communication protocol between super-peers),
and fBN. As pBN improves its performance with the time (due to its learning
nature), we show the mean GIR for the initial 3000s and 5000s. Two groups
of policies are clearly identified, one consists of Hierarchical Policy and both
pBN options showing higher and stable GIR while increasing the size of the sys-
tem. The other group is composed of fBN, Random and the N1-5%SP variation
(super-peers selects randomly other super-peers to communicate). In this case,
these policies present poor GIR values, specially for larger systems.

Same pBN policy is included in Fig. 5(b) to be compared with variations of
SP policy. Similarly, pBN presents high GIR values with almost same behavior
of A2A-5%SP clearly surpassing the other SP variations.

From the point of view of information about the system, our proposed pBN
policy shows similar behavior as other policies and presents interesting scalability
in the studied range of system sizes. Notwithstanding this, special care should
be taken with the amount of interchanged messages as it is a critical aspect of
this kind of protocols. Figure 5(c) introduces the number of messages sent during
14 h by the analyzed policies. SP has another key parameter which determines
the behavior of the policy: the frequency of message interchange between super-
peers. As is expected, the amount of messages decreases with the frequency, only
A2A-5% consumes more messages than the rest of policies. The bandwidth usage
by pBN is similar to Hierarchical, Random and fBN.

5 Conclusions

The computational infrastructures are moving towards a new level of complexity,
with cloud Federations representing the implementation of the utility computing
model that was once incarnated in the Grid Computing paradigm.

The interaction with the P2P paradigm tries to reach scalable solutions in
a very dynamic and heterogeneous scenario and having to collect information
about resource state from a set of distributed and individual entities.

In spite of introducing several improvements to the fully distributed BN
policy, it is still not competitive compared with Super Peer Policy (SP). However,
there are still space to push towards a policy comparable to Hierarchical or
Centralized policies in terms of performance.

The evolution of the communication pattern for different variations of BN
policy shows that its poor performance is based on the establishment of small
communities, which produces an isolation of the information interchanged in each
one. With the inclusion of the Repeat Control Mechanism (RCM), we strongly
improve the performance obtained. This BN based policy is named pBN.

The evolution of the systems using this new policy shows that larger com-
munities emerged with some small ones still present, which leads to more infor-
mation interchange. This is confirmed by the number and size of communities.

P2P Inspired Policy to Distribute Resource Information 15

The bandwidth usage is compared with previously presented policies. Our
proposal shows an efficient use of bandwidth, comparable to Hierarchical Pol-
icy and much better than some variations of SP while maintaining remarkable
performance.

The results included in this work, support that pBN could combine the advan-
tages of a fully distributed policy with the efficiency of a manually established
hierarchy.

Acknowledgments. E.M. is researcher at the CONICET. This work was partially
supported by grants from Universidad de Buenos Aires (UBACyT 20020130200096BA),
CONICET (PIP 11220110100379 and PIO 13320150100020CO), and ANPCyT (PICT-
2015-2761 and PICT-2015-0370).

References

1. Agrawal, D., Giles, J., Lee, K.W., Voruganti, K., Filali-Adib, K.: Policy-based vali-
dation of san configuration. In: Proceedings of Fifth IEEE International Workshop
on Policies for Distributed Systems and Networks, POLICY 2004, pp. 77–86, June
2004

2. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web.
Nature 401, 130–131 (1999). http://adsabs.harvard.edu/abs/1999Natur.401.130A

3. Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big
data computing and clouds: trends and future directions. J. Parallel Dis-
trib. Comput. 79–80, 3–15 (2014). http://www.sciencedirect.com/science/article/
pii/S0743731514001452, special Issue on Scalable Systems for Big Data Manage-
ment and Analytics

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Proceedings of AAAI Conference on Weblogs
and Social Media, May 2009. http://www.aaai.org/ocs/index.php/ICWSM/09/
paper/view/154

6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008). http://stacks.iop.org/1742-5468/2008/i=10/a=P10008

7. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for
large-scale distributed experiments. In: 10th IEEE International Conference on
Computer Modeling and Simulation, pp. 126–131. IEEE Computer Society,
Los Alamitos, March 2008

8. Cesario, E., Mastroianni, C., Talia, D.: Distributed volunteer computing for solving
ensemble learning problems. Future Gen. Comput. Syst. (2015, in press). http://
www.sciencedirect.com/science/article/pii/S0167739X15002332

9. Clayman, S., Toffetti, G., Galis, A., Chapman, C.: Monitoring services in a fed-
erated cloud: the RESERVOIR experience. In: Achieving Federated and Self-
Manageable Cloud Infrastructures: Theory and Practice, pp. 242–265. IGI Global,
May 2012

10. Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task
scheduling and resource allocation in cloud computing environment. J. Supercom-
put. 64(3), 835–848 (2013). http://dx.doi.org/10.1007/s11227-011-0625-1

http://adsabs.harvard.edu/abs/1999Natur.401.130A
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://www.sciencedirect.com/science/article/pii/S0167739X15002332
http://www.sciencedirect.com/science/article/pii/S0167739X15002332
http://dx.doi.org/10.1007/s11227-011-0625-1

16 P. Verghelet and E. Mocskos

11. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp.
1–10, November 2008

12. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan
Kaufmann Publishers Inc., San Francisco (2003)

13. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001).
http://portal.acm.org/citation.cfm?id=1080667

14. Ghafarian, T., Deldari, H., Javadi, B., Yaghmaee, M.H., Buyya, R.: Cycloidgrid:
a proximity-aware P2P-based resource discovery architecture in volunteer com-
puting systems. Future Gen. Comput. Syst. 29(6), 1583–1595 (2013). Including
Special sections: High Performance Computing in the Cloud & Resource Discov-
ery Mechanisms for P2P Systems. http://www.sciencedirect.com/science/article/
pii/S0167739X12001665

15. Hasanzadeh, M., Meybodi, M.R.: Distributed optimization grid resource discovery.
J. Supercomput. 71(1), 87–120 (2015)

16. Iamnitchi, A., Foster, I., Nurmi, D.: A peer-to-peer approach to resource discovery
in grid environments. In: Proceedings of the 11th IEEE International Symposium
on High Performance Distributed Computing HPDC-11 (HPDC 2002), p. 419.
IEEE, Edinbourgh, July 2002

17. Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in grid
environments. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management: State of the Art and Future Trends, pp. 413–429. Kluwer Academic
Publishers, Norwell (2004)

18. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

19. Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodŕıguez, M., Mercè,
O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management
with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720
(2013)

20. Liu, W., Nishio, T., Shinkuma, R., Takahashi, T.: Adaptive resource discovery in
mobile cloud computing. Comput. Commun. 50, 119–129 (2014). Green Network-
ing. http://www.sciencedirect.com/science/article/pii/S0140366414000590

21. Mastroianni, C., Talia, D., Verta, O.: A super-peer model for resource discovery
services in large-scale grids. Future Gen. Comput. Syst. 21(8), 1235–1248 (2005).
http://www.sciencedirect.com/science/article/pii/S0167739X05000701

22. Mastroianni, C., Talia, D., Verta, O.: Designing an information system for grids:
comparing hierarchical, decentralized P2P and super-peer models. Parallel Com-
put. 34(10), 593–611 (2008)

23. Mattmann, C., Garcia, J., Krka, I., Popescu, D., Medvidovic, N.: Revisiting the
anatomy and physiology of the grid. J. Grid Comput. 13(1), 19–34 (2015)

24. Meshkova, E., Riihijärvi, J., Petrova, M., Mähönen, P.: A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks. Comput.
Netw. 52(11), 2097–2128 (2008). http://www.sciencedirect.com/science/article/
pii/S138912860800100X

25. Mocskos, E.E., Yabo, P., Turjanski, P.G., Fernandez Slezak, D.: Grid matrix: a grid
simulation tool to focus on the propagation of resource and monitoring information.
Simul.-T. Soc. Mod. Sim. 88(10), 1233–1246 (2012)

http://portal.acm.org/citation.cfm?id=1080667
http://www.sciencedirect.com/science/article/pii/S0167739X12001665
http://www.sciencedirect.com/science/article/pii/S0167739X12001665
http://www.sciencedirect.com/science/article/pii/S0140366414000590
http://www.sciencedirect.com/science/article/pii/S0167739X05000701
http://www.sciencedirect.com/science/article/pii/S138912860800100X
http://www.sciencedirect.com/science/article/pii/S138912860800100X

P2P Inspired Policy to Distribute Resource Information 17

26. Olaifa, M., Mapayi, T., Merwe, R.V.D.: Multi ant LA: an adaptive multi agent
resource discovery for peer to peer grid systems. In: Science and Information Con-
ference (SAI), pp. 447–451, July 2015

27. Pipan, G.: Use of the TRIPOD overlay network for resource discovery. Future
Gen. Comput. Syst. 26(8), 1257–1270 (2010). http://www.sciencedirect.com/
science/article/pii/S0167739X1000018X

28. Plale, B., Jacobs, C., Jensen, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Under-
standing grid resource information management through a synthetic database
benchmark/workload. In: Proceedings of the 2004 IEEE International Symposium
on Cluster Computing and the Grid, CCGRID 2004, pp. 277–284. IEEE Computer
Society, Washington, April 2004

29. Puppin, D., Moncelli, S., Baraglia, R., Tonellotto, N., Silvestri, F.: A grid infor-
mation service based on peer-to-peer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-
Par 2005. LNCS, vol. 3648, pp. 454–464. Springer, Heidelberg (2005). doi:10.1007/
11549468 52

30. Ranjan, R., Harwood, A., Buyya, R.: Peer-to-peer-based resource discovery in
global grids: a tutorial. IEEE Commun. Surv. Tutor. 10(2), 6–33 (2008)

31. Ranjan, R., Zhao, L.: Peer-to-peer service provisioning in cloud computing envi-
ronments. J. Supercomput. 65(1), 154–184 (2013)

32. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceed-
ings of First International Conference on Peer-to-Peer Computing, pp. 99–100,
August 2001

33. Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys.
Commun. 177(1–2), 219–223 (2007)

34. Trunfio, P., Talia, D., Papadakis, C., Fragopoulou, P., Mordacchini, M., Pennanen,
M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids:
models and systems. Future Gen. Comput. Syst. 23(7), 864–878 (2007)

35. Verghelet, P., Mocskos, E.: Improvements to super-peer policy communication
mechanisms. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez, C.J., Silva Dias,
P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 73–86. Springer, Cham (2015). doi:10.
1007/978-3-319-26928-3 6

36. Verghelet, P., Slezak, D.F., Turjanski, P., Mocskos, E.: Using distributed local
information to improve global performance in grids. CLEIej 15(3), 8 (2012).
http://www.clei.cl/cleiej/papers/v15i3p7.pdf

37. Williams, D.N., Drach, R., Ananthakrishnan, R., Foster, I., Fraser, D., Siebenlist,
F., Bernholdt, D., Chen, M., Schwidder, J., Bharathi, S., et al.: The earth system
grid: enabling access to multimodel climate simulation data. Bull. Am. Meteorol.
Soc. 90(2), 195–205 (2009)

http://www.sciencedirect.com/science/article/pii/S0167739X1000018X
http://www.sciencedirect.com/science/article/pii/S0167739X1000018X
http://dx.doi.org/10.1007/11549468_52
http://dx.doi.org/10.1007/11549468_52
http://dx.doi.org/10.1007/978-3-319-26928-3_6
http://dx.doi.org/10.1007/978-3-319-26928-3_6
http://www.clei.cl/cleiej/papers/v15i3p7.pdf

Performance Evaluation of Multiple Cloud Data
Centers Allocations for HPC

Eduardo Roloff1(B), Emmanuell Diaz Carreño1,
Jimmy K.M. Valverde-Sánchez1, Matthias Diener1, Matheus da Silva Serpa1,

Guillaume Houzeaux2, Lucas M. Schnorr1, Nicolas Maillard1,
Luciano Paschoal Gaspary1, and Philippe Navaux1

1 Informatics Institute, Federal University of Rio Grande do Sul - UFRGS,
Porto Alegre, Brazil

{eroloff,edcarreno,jkmvsanchez,mdiener,msserpa,schnorr,nicolas,
paschoal,navaux}@inf.ufrgs.br

2 Department of Computer Applications in Science and Engineering,
Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain

guillaume.houzeaux@bsc.es

Abstract. This paper evaluates the behavior of the Microsoft Azure
G5 cloud instance type over multiple Data Centers. The purpose is to
identify if there are major differences between them and to help the users
choose the best option for their needs. Our results show that there are
differences in the network level for the same instance type in different
locations and inside the same location at different times. The network
performance causes interference in the applications level, as we could
verify in our results.

Keywords: Cloud Computing · HPC · Azure · MPI · NAS

1 Introduction

Cloud Computing offers an interesting alternative for High Performance Com-
puting (HPC) applications, due to the pay-per-use cost model and the elastic-
ity [7] to provide any amount of resources in little time. However, due to the
virtualized environment, there are some aspects of the Cloud that still remain
as a barrier for the large adoption of Cloud Computing by the HPC community.
It is clear that the CPU virtualization is not a problem, because the CPU per-
formance in the Cloud is the same as in a traditional machine. Memory accesses
and disk I/O are in an earlier stage of development to be used in the cloud, but
they do not represent a big issue at this time. The main bottleneck of Cloud
Computing is network performance, a very important aspect for HPC.

In this paper, we provide an extensive evaluation of network performance in
the Microsoft Azure public Cloud. Since MPI is an important standard for HPC
communication [10], we evaluate its performance using three different commu-
nication patterns: Single Transfer, Parallel Transfer and Collective Communi-
cations. We used the same type of virtual machine (VM) instance among four
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-57972-6 2

Performance Evaluation of Cloud Data Centers 19

different Azure Data Centers and used the machines at different times, during
working hours and during the night. The purpose was to verify if the time of
the day of each allocation causes a performance impact in the machines and if
they have different performance levels among different Data Centers. We used
a traditional cluster as a baseline for comparison purposes.

Our results show that the execution during the night has lower performance
than when executed during the day. We also conclude that there is a small
difference in the application performance when compared the execution times
between the different Data Centers.

2 Motivation

The Cloud Computing model offers an interesting alternative as an environment
for HPC applications, due to the pay-per-use cost model and the elasticity of
resources. The public Cloud could provide any amount of resources in little time,
without upfront costs. Theoretically, when the user sends his applications and
data to the cloud, they could be stored anywhere on earth, the user does not
have control over this. Moreover, the major cloud providers give the user the
option on which Data Center location the application and data will be stored.
This is necessary because there are some situations where the user needs to know
and decide where his application is, due to regulations or data confidentiality.

However, the same VM instances could present different performances when
executing in different locations. This could be caused by the different behavior
of the users of the Data Center, more or less load, or even by the Data Center
configuration itself. There is a lack of research that compares the same VM
instances among the same provider.

Our proposal is to provide a comparison among different Data Centers to
verify if they present significant differences when executing the same application
using the same type of VM instance. This is important to help the user that could
execute his application anywhere as well as could help the user with location
restrictions. We intend to help the users to choose the machines and locations
with the best performance among all available in Microsoft Azure.

3 Methodology

This section describes the hardware and software environments as well as the
MPI and NAS benchmarks that were used in our evaluation. The scientific HPC
application used is explained as well.

3.1 Cluster and Cloud Environments

We performed experiments on one traditional cluster system as well as four
Data Center locations of Microsoft Azure using the G5 VM instance. The G5
instance is a VM with 32 cores, composed of a E5-2698v3 CPU running at

20 E. Roloff et al.

Table 1. Configuration of the cluster and cloud environments used in the experiments.

Machine
name

Processor
model

Freq. Cores per
instance

Network Location Price/hour ($)
for all instances

Econome E5-2660 2.2 GHz 16 10 Gbit/s France —

G5 E5-2698 v3 2.3 GHz 32 — 4 DCs 69.52

2.3 GHz with 448 GB of RAM, there is no precise information about the network
interconnection. The traditional cluster is the econome machine from GRID 5000
and is composed of two 8-core processors, the network interconnection is 10 Gbit
Ethernet.

In all environments, we create systems with 128 cores in total to maintain a
comparable baseline. The total number of nodes were four, for the G5 machines,
and 8 for the econome cluster. The locations of Microsoft Azure used were: West
Europe (WEU), West USA (WUS), East USA (EUS) and Southeast Asia (SAS).
To the best of our knowledge, all systems are running without Hyper-Threading.
All environments use Intel processors of recent generations, at least the Sandy-
Bridge family.

Table 1 contains an overview of the machines used in the evaluation. Although
main memory sizes vary between different instance sizes, all amounts were suf-
ficient for our experiments and are therefore not mentioned in the table.

All the tests were executed using two allocations in the cloud to compare the
differences among the day. We allocated the machines and executed the tests
around 2 AM and 2 PM on business days. The cluster was evaluated just once,
because it consists of isolated machines that did not show significant variability
during the day.

3.2 Intel MPI Benchmarks

We use the Intel MPI Benchmark communication tests. This benchmark allows
us to measure the performance of the most important MPI functions. There are
three classes of benchmarks named single transfer, parallel transfer and collective
benchmarks. We have selected the PingPong benchmark of the single transfer
class, this benchmark entails just two process into communication. The Sendrecv
of the parallel transfer class was used, this is based on the MPI Sendrecv func-
tion. For the Sendrecv, each process of a periodic communication chain sends
a message to its right neighbor and receives one from its left neighbor. For the
collective benchmark, the Reduce and AllToAll were used, the first based on the
MPI Reduce function performs a reduction operation on all processes, and the
second based on the MPI AllToAll function which is a data movement opera-
tion, where each process sends data from all to all processes [4]. Each one of the
experiments was performed with different message sizes, 0, 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768 bytes.

Performance Evaluation of Cloud Data Centers 21

3.3 NAS

The NAS Parallel Benchmarks (NPB) are a set of benchmarks developed to
help evaluate the performance of parallel environments. The benchmarks are
derived from computational fluid dynamics (CFD) applications and consist of
nine applications with different needs. They cover all major aspects of parallel
systems. We used the MPI version of NAS.

3.4 Alya

Alya is a simulation code for multi-physics problems, based on a variational
multi-scale finite element method for unstructured meshes. It is used in areas,
such as wind energy, aerospace, oil and gas, biomechanics and biomedical
research, environment and automotive industry, among others. Developed at
Barcelona Supercomputing Center, written in Fortran 90/95 combining MPI and
OpenMP. Parallelization of the work is mainly performed using MPI, the original
mesh is partitioned into sub-meshes that are executed for MPI processes [8,9].

4 Results

We classified the results of our experiments into two parts. The first subsection
has the MPI results, to analyze the network performance. The second subsection
has the applications results, then we could analyze the performance of the NAS
benchmarks and the application Alya.

4.1 MPI Benchmarks

The MPI results are divided into three different groups: Single Transfer, Paral-
lel Transfer, and Collective Communications. The single transfer results shows
the measured performance between two nodes. The parallel transfer shows the
results of all the nodes communicating at the same time. Finally, the collective
communications results show the behavior of MPI collective operations. These
three groups cover the majority of communication patterns used in HPC appli-
cations.

Single Transfer. Single Transfer tests are communication between two differ-
ent processes, all other processes in the cluster wait. We executed the PingPong
test from the Intel MPI benchmarks, running each process in a different machine.
The purpose was to identify the network performance of a point-to-point com-
munication without interference of other communications. We present results for
both Latency and Bandwidth of this test.

Figure 1 shows the latency results of the PingPong test. The line in the lower
part of the Figure show the cluster results, as we can see there is practically no
latency when varying the package size from 0 bytes to 32 KB. In the other hand,
we could conclude that latency in the cloud is less predictable, because there is

22 E. Roloff et al.

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

0

100

200

300

400

500

Package Size (bytes)

T
im

e
(u

S
ec

)
Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 1. Latency results for PingPong benchmark.

no such clear tendency for all clouds. In some cases, when the package size was
increased, the latency in the cloud decreased and we expect the opposite, using
the cluster results as the baseline. Almost all the clouds have a spike when the
package size was changed to 2 KB, this could mean that in the cloud infrastruc-
ture exists some kind of network optimization for smaller packages. Most of the
cloud instances showed the same pattern, with acceptable variability. However
the EUS day, SAS day and WUS night executions exhibited some undesirable
high latency for the 16 KB and 32 KB packages sizes.

Figure 2 shows the bandwidth results for the PingPong test in logarithmic
scale. We could observe that in this case, the cloud instances have the same
pattern with little variation between them. The growth of the bandwidth usage
is following the pattern of the cluster as well. However, the instances were able
to achieve a bandwidth (for package size of 32 KB) of just 140 Mb/sec and the
cluster achieved a bandwidth of 4,248 Mb/sec. This points out the network bot-
tleneck of the cloud compared to physical clusters. Despite performance itself,

Performance Evaluation of Cloud Data Centers 23

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8
10−3

10−2

10−1

100

101

102

103

104

Package Size (bytes)

T
im

e
(u

S
ec

)
Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 2. Bandwidth results for PingPong benchmark.

the user could use the predictable pattern of the cloud network bandwidth to
create an application to take advantage of this characteristic.

Parallel Transfer. Parallel Transfer tests measure the communication between
more than two processes, in our case we used one process per node. We executed
the SendRecv test from the Intel MPI benchmarks. With this test, we are able to
identify the network performance when the network has a much higher utilization
rate than on the Single Transfer test. We show both Latency and Bandwidth
results for SendRecv test.

Figure 3 shows the latency results for the SendRecv test. It is possible to ver-
ify that the cluster latency is slightly different from the PingPong test, because in
this test the latency has a small increase when the package size increases. This
behavior could mean a level of network contention, the reason could be that
this test performs a lot more concurrent communication in the network. On the
other hand, the cloud results are better than in the PingPong test, they showed
less latency and a more predictable behavior, all the cloud instance allocations

24 E. Roloff et al.

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

0

100

200

300

400

500

Package Size (bytes)

T
im

e
(u

S
ec

)
Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 3. Latency results for SendRecv benchmark.

displayed the same pattern. It is interesting to note that all of the cloud alloca-
tions present a spike when the package size is 1 KB, and then all of them return
to the standard pattern. This could be explained for a possible SDN network
configuration. The network is configured to handle a certain number of bytes at
same time, for optimization, and when this number is reached the switches need
to go to the controller to get a new configuration. This took same time, then the
latency increases a little and in the next interaction, with the new configuration,
the latency returns to the normal behavior.

Figure 4 shows the bandwidth results of the SendRecv test in logarithmic
scale. As in the PingPong test, the cloud instances have the same pattern of
increasing the bandwidth when the package size increases. We could observe that
we have a small decrease of the bandwidth when the package reaches 1 KB. This
remarks the explanation of the latency behavior with the same package size. The
bandwidth achieved by the cluster was 3,451 Mb/sec when the cloud allocations
were around 250 Mb/sec for a 32 KB package. Comparing these numbers with
the PingPong test, we could observe that the cluster achieved a lower bandwidth

Performance Evaluation of Cloud Data Centers 25

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

10−2

10−1

100

101

102

103

104

Package Size (bytes)

T
im

e
(u

S
ec

)
Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 4. Bandwidth results for SendRecv benchmark.

in this test and the cloud allocations attained a higher bandwidth. This indicates
that the cloud network scales better than the cluster network when there is more
communication in the network.

Both the predictable latency behavior and the bandwidth increase of the
cloud allocations could benefit the user when configuring his application to be
executed in the cloud.

Collective Communications. The Collective Communications tests are
designed to measure the performance of the MPI collective operations. There
are several collective operations in the MPI standard, due to space restric-
tions we present the results of the Reduce and AlltoAll tests from Intel MPI
Benchmarks.

Figure 5 shows the results of the Reduce test, it measures the performance
of the MPI Reduce operation. The results are displayed in time, showing the
average time of an operation. We could observe that the cluster has a time for
this operation close to zero and the cloud allocations present a higher time. The

26 E. Roloff et al.

0 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Package Size (bytes)

T
im

e
(u

S
ec

)

Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 5. Results for reduce benchmark.

cloud allocations have the same behavior with decreasing the time when the
package size reaches 2 KB. The WUS during the day presented slightly lower
performance then the other instances, but this did not impede the usage of this
Data Center. According to the results we obtained, it is difficult to recommend
using the MPI Reduce function often in applications in the cloud, because the
execution time of the application will be affected.

Figure 6 shows the results of the AlltoAll test, the vertical axis shows the
time to execute the operation. In this test, all the processes send a message
to all other processes and receive a message from all the other processes. The
test was performed varying the package size. The time needed for the cluster to
perform this operation is very short. The cloud allocations are very predictable
and showed a good performance as well. Using a package size from 4 Bytes up to
8 KB, the time for all cloud allocations is around 200 uSec, that is acceptable.
The package size has a key role in this operation.

For package sizes up to 8 KB, both the cluster and the cloud allocations pre-
sented the same behavior, with a constant time. When the package was increased

Performance Evaluation of Cloud Data Centers 27

0 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

0

200

400

600

800

1,000

1,200

Package Size (bytes)

T
im

e
(u

S
ec

)
Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 6. Results for all to all benchmark.

from 8 KB to 16 KB, the time in the cluster was increased 3 times and the cloud
allocations increased the time by 4 times. The reason for this could be the TCP
frame used in the network or some aspect of the MPI implementation. Despite
the reason, it is clear that this operation presents good performance until a
certain package size. If the application uses several MPI AlltoAll operations, it
is necessary that the user measures the performance of this operation in his
network to optimize the application performance by adjusting the package size.

4.2 Applications

We used both NAS benchmarks with the sizes B and C, that represents medium
input sizes, and Alya application to measure the performance in the Cloud allo-
cations against the physical cluster execution.

28 E. Roloff et al.

BT CG DT EP FT IS LU MG SP
0

5

10

15

20

25

30

Benchmark

T
im

e
in

S
ec

o
n
d
s

Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 7. Performance results for NAS class B.

NAS

Figure 7 shows the performance results of NAS-MPI benchmark class B, for mul-
tiple nodes on a cluster and four Microsoft Azure data centers. Cluster was faster
than Azure’s data centers in most cases. The cluster was faster for all the bench-
marks, except for DT and EP. These two benchmarks have little communication
and they are CPU-bound, as the CPU of the cloud instances is faster then in
the cloud.

Comparing the execution during day and night, we did not observe much
variability between these experiments. We can conclude that there is no dif-
ference between executing HPC applications during day or night in the Azure
Cloud. Additionally, we did not observe a huge variation among the four differ-
ent data centers. We could conclude again that a user could use any data center
that he wants, or needs, without significant performance loss.

Figure 8 shows the results for NAS class C. The behavior was practically the
same as in the class B results, without big changes.

The conclusion that we have is that the G5 instances of the Azure Cloud
present an excepted performance degradation according to the size of the

Performance Evaluation of Cloud Data Centers 29

BT CG DT EP FT IS LU MG SP
0

20

40

60

80

100

120

Benchmark

T
im

e
in

S
ec

o
n
d
s

Cluster WEUday WEUnight EUSday EUSnight

SASday SASnight WUSday WUSnight

Fig. 8. Performance results for NAS class C.

problem. Also, we could conclude that the main bottleneck of these instances,
and possibly in the whole provider, is the network interconnection. This is sup-
ported by the network results and the knowledge of the NAS applications. The
applications with little communication, DT and EP, presented better perfor-
mance in the cloud and all the other presented a performance loss in the cloud,
because they all depend on the network performance in different levels.

Alya

Figure 9 illustrates the results of the Alya application among four Azure Data
Centers. Due to the NAS results, we decided to not execute Alya during night
and day, because the differences between them are low. The results present low
variability among the four Azure locations, showing that a real HPC application
with a heterogeneous behavior does not depend of the Data Center configuration.
Compared with the cluster results, the clouds presented 2 times performance loss.
This was expected and it is similar to the NAS performance results.

30 E. Roloff et al.

Alya
0

50

100

150

200

250

300

350

T
im

e
in

S
ec

o
n
d
s

Cluster WEU EUS SAS WUS

Fig. 9. Performance results for Alya

5 Related Work

Marathe et al. and Awad et al. [1,6] compare a virtualized cloud cluster against a
physical cluster. However, the authors do not provide a comprehensive evaluation
of public clouds, because they only used a single Data Center and do not provide
a evaluation of the behavior of the different locations of the same provider. Since
scientists may have the need to execute their applications in their country, due
to legal restrictions, an evaluation of multiple locations is necessary.

The work of He et al. and Iosúp et al. [3,5] provide a comparison between
three public clouds and compare the results against a physical machine. However,
the authors compared aspects of the machines and does not provide a comparison
with focus in HPC needs.

Ekanayake and Fox [2] compared several different applications with a focus on
communication patterns. They observed that the applications with more commu-
nication presented more degradation when executed in the cloud, which echoes
our analysis of the network performance. Our work provides a deeper analysis,
because we explore the possibilities inside the cloud providers Data Centers,
using the same VM among Data Centers and using two different allocations for
each one.

Performance Evaluation of Cloud Data Centers 31

6 Conclusions and Future Work

With our results, we could notice that the network is still the main bottleneck
in the Cloud. We saw that there is little variability between the executions
during day and night in the same Data Center, with slowdowns during the night
execution. Among different Data Centers, we did not observe much variation
between them. Regarding to the real HPC application, Alya, we observed that
the variation is low among the four Data Centers and it performed well on all
of them.

As future work, we intend to compare more aspects of the machines, such
as disk I/O and memory bandwidth, that are important components of HPC
environments.

Acknowledgments. This research received funding from the EU H2020 Programme
and from MCTI/RNP-Brazil under the HPC4E project, grant agreement no. 689772.
Experiments presented in this paper were carried out using the Grid’5000 testbed, sup-
ported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.grid5000.fr).
Additional funding was provided by CAPES and Microsoft.

References

1. Awad, O.M.O., Artoli, A.M.A., Ahmed, A.H.A.: Cloud computing versus in-house
clusters: a comparative study. In: 2014 World Congress on Computer Applications
and Information Systems (WCCAIS), pp. 1–6, January 2014

2. Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud
technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.)
CloudComp 2009. LNICSSTE, vol. 34, pp. 20–38. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12636-9 2

3. He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T.: Case study for running
HPC applications in public clouds. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC 2010, pp. 395–
401. ACM, New York (2010). http://doi.acm.org/10.1145/1851476.1851535

4. Intel MPI Benchmarks: User Guide and Methodology Description (2014)
5. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.:

Performance analysis of cloud computing services for many-tasks scientific com-
puting. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)

6. Marathe, A., Harris, R., Lowenthal, D.K., de Supinski, B.R., Rountree, B.,
Schulz, M., Yuan, X.: A comparative study of high-performance computing on the
cloud. In: Proceedings of the 22nd International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 2013, pp. 239–250. ACM, New York
(2013). http://doi.acm.org/10.1145/2462902.2462919

7. da Rosa Righi, R., Rodrigues, V.F., da Costa, C.A., Galante, G., de Bona, L.C.E.,
Ferreto, T.: Autoelastic: automatic resource elasticity for high performance appli-
cations in the cloud. IEEE Trans. Cloud Comput. 4(1), 6–19 (2016)

https://www.grid5000.fr
http://dx.doi.org/10.1007/978-3-642-12636-9_2
http://doi.acm.org/10.1145/1851476.1851535
http://doi.acm.org/10.1145/2462902.2462919

32 E. Roloff et al.

8. Vázquez, M., Houzeaux, G., Rubio, F., Simarro, C.: Alya multiphysics simula-
tions on Intel’s Xeon Phi accelerators. In: Hernández, G., Barrios Hernández, C.J.,
Dı́az, G., Garćıa Garino, C., Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez,
M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 248–254. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45483-1 18

9. Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Aŕıs, R.,
Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Burness, E.D.,
Cela, J.M., Valero, M.: Alya: multiphysics engineering simulation toward exas-
cale. J. Comput. Sci. 14, 15–27 (2016). The Route to Exascale: Novel
Mathe-matical Methods, Scalable Algorithms and Computational Science Skills.
http://www.sciencedirect.com/science/article/pii/S1877750315300521

10. Zounmevo, J.A., Kimpe, D., Ross, R., Afsahi, A.: Using MPI in high-performance
computing services. In: Proceedings of the 20th European MPI Users’ Group Meet-
ing, EuroMPI 2013, pp. 43–48. ACM, New York (2013). http://doi.acm.org/10.
1145/2488551.2488556

http://dx.doi.org/10.1007/978-3-662-45483-1_18
http://www.sciencedirect.com/science/article/pii/S1877750315300521
http://doi.acm.org/10.1145/2488551.2488556
http://doi.acm.org/10.1145/2488551.2488556

Communication-Aware Affinity Scheduling
Heuristics in Multicore Systems

Diego Regueira, Santiago Iturriaga(B), and Sergio Nesmachnow

Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay
siturria@fing.edu.uy

Abstract. This article presents the application of heuristic algorithms
to solve the affinity scheduling problem in multicore computing systems.
Affinity scheduling is a technique that allows efficient utilization of het-
erogeneous computing systems, by assigning a set of tasks to cores, tak-
ing into account specific efficiency and quality-of-service criteria. The
heuristics proposed in this article are useful methods to solve realis-
tic instances of the communication-aware affinity scheduling problem,
which account for the different speed of communication and data trans-
fer between tasks executing in different cores on a multicore system. The
experimental analysis demonstrates that the proposed heuristics outper-
form the results computed using traditional scheduling techniques up to
12.3% when considering both the communication and synchronization
times between tasks.

Keywords: Scheduling · Affinity · Communications · Multicore ·
NUMA

1 Introduction

The paradigm of heterogeneous computing is based on the simultaneous utiliza-
tion of multiple computing resources with different computing capabilities [3].
Modern multiprocessor and multicore architectures provide support for hetero-
geneous computing. Although multicore processors are composed of a set of
identical processing units (cores), in practice they are a special case of a hetero-
geneous computing system, called Non-Uniform Memory Architecture (NUMA).
In NUMA systems, different cores can complete the same task at different speed
because of the heterogeneous memory access. The main causes for this are the
presence of the processed data in the local cache of the core, or the different
speeds of communication and synchronization operations between tasks that
cooperate to solve a given problem.

A key problem when using heterogeneous computing systems is to find an
appropriate planning (scheduling) strategy for assigning computing resources to
a set of tasks to execute, for example, in a parallel application. The main goal
of the scheduling problem consists in assigning the computing resources in order
to fulfill specific efficiency criteria, usually related to the total execution time of
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 33–48, 2017.
DOI: 10.1007/978-3-319-57972-6 3

34 D. Regueira et al.

the set of tasks, the utilization of resources, or other quality-of-service metrics.
Scheduling problems have been extensively studied in operation research [7], and
the variants related to heterogeneous computing systems have been studied since
the popularization of parallel computing in the mid-1990s [3].

Affinity scheduling [8] is a planning strategy for assigning tasks or light
processes (threads) to specific computing resources in multiprocessor and mul-
ticore systems. The strategy is based on taking advantage of the capabilities of
tasks to execute faster in certain computing resources, due to data locality, cache
utilization, or communications with other tasks. This approach is relevant, con-
sidering that the access to certain type of resources (cache, RAM, I/O ports, etc.)
has different time costs for different computing units, especially for NUMA [14].
In these computing systems, affinity scheduling is useful for reducing the nega-
tive impact of the overheads that appears in parallel computing, mainly due to
task communication and synchronization, dynamic resource management, and
load balancing [16].

Traditional scheduling problems are NP-hard, thus exact resolution tech-
niques are only useful to solve small problem instances (i.e., few tasks, few
resources). Heuristics and metaheuristics [11] are efficient alternatives to com-
pute accurate solutions in reasonable execution times. In this line of work, this
article studies the application of heuristic and metaheuristic methods to solve the
assignment problem related to affinity scheduling in multicore NUMA systems.

We aim to develope an efficient and real-time scheduling tool that allows inte-
grating topological information from both the computational platform and the
applications to execute, in order to provide useful suggestions for task planning
taking advantage of hardware and software affinities. This way, the improved
scheduler will offer an efficient method for executing real-world applications on
modern multicore systems. We propose using the hardware locality (hwloc) tool
[4] to automatically detect the main features of the underlying hardware archi-
tecture, defining the hardware topology and hierarchies. In addition, specific
benchmarks are applied to evaluate the costs (in time) of communications and
synchronizations between different cores in the system. Finally, we propose using
a topological characterization of parallel applications to account for different
communication and synchronization patterns between tasks.

The main contributions of the research reported in this article are: (i) a
description of the scheduling problem with affinities, focused on minimizing the
communication and synchronization times; (ii) the design and implementation of
heuristic and metaheuristic methods for affinity scheduling in multicore systems;
(iii) a topological characterization for parallel applications, in order to study the
efficacy of the proposed scheduling methods over realistic problem classes; and
(iv) the experimental evaluation of the proposed scheduling methods considering
realistic multicore systems and different numbers of tasks.

The article is organized as follows. Next section introduces the affinity
scheduling problem considering communications and synchronizations. Section 3
describes the heuristics and metaheuristics considered in the study and the pro-
posed topological characterization of parallel applications. The implementation

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 35

details of the proposed methods are described in Sect. 4. Section 5 reports the
experimental evaluation of the proposed heuristics over realistic infrastructures
and using real applications. Finally, Sect. 6 presents the conclusions and the main
lines for future work.

2 Formulation of the Affinity Scheduling Problem
in Multicore NUMA Systems

The affinity scheduling problem considers a multicore NUMA system comprised
of a set of processing cores and a parallel application comprised by a set of tasks
to be executed concurrently in the system. Tasks collaborate with each other
using communication and synchronization primitives to cooperatively solve a
given computing intensive problem. The number of cores in the system must be
larger than or equal to the number of tasks, allowing each task to be assigned
to a core and executed without delay. This is a reasonable assumption when
executing both CPU-bounded and memory-bounded tasks in High Performance
Computing scenarios.

The affinity scheduling problem consists in finding the assignment of tasks to
cores that minimizes the time required for all communication and synchroniza-
tion operations between tasks. Formally, the mathematical model of the affinity
scheduling problem considering communications and synchronizations (ASP-CS)
is presented below.

Considering the following elements:

– A multicore system with a set of cores N = {n1, . . . , na}.
– A set of tasks T = {t1, . . . , tb} to be executed on the system.
– A communication function C : T × T → N

+, where C(ti, tj) evaluates the
number of communications between two tasks ti and tj , 1 � i, j � b.

– A synchronization function S : T × T → N
+, where S(ti, tj) evaluates the

number of synchronizations between two tasks ti and tj , 1 � i, j � b.
– A communication cost function CC : N × N → R

+, where CC(nh, nk) is the
time required to communicate tasks executing in cores nh and nk, 1 � h, k � a.

– A synchronization cost function SC : N × N → R
+, where SC(nh, nk) is the

time required to synchronize tasks executing in cores nh and nk, 1 � h, k � a.

The ASP-CS problem proposes finding a scheduling function f : T → N to
assign tasks to cores in the system. Its goal consists in minimizing the total time
demanded for communication and synchronizations between tasks, as given in
Eq. 1, where f(ti) = nh indicates that task ti is assigned to execute on core nh,
1 � i � b and 1 � h � a. The ASP-CS problem follows a non-preemptive model:
each task is considered as an atomic processing unit, which cannot be divided
nor interrupted.

∑

ti∈T

∑

tj∈T

C(ti, tj) × CC(f(ti), f(tj)) + S(ti, tj) × SC(f(ti), f(tj)) (1)

36 D. Regueira et al.

2.1 Related Work

Affinity scheduling has been widely used in shared-memory multiprocessor sys-
tems. In those environments, it is sometimes beneficial to schedule a task on
a certain processor that contains relevant data in its local cache or in a proces-
sor that is able to provide a faster communication with other tasks [14].

Early approaches studied cache-affinity scheduling policies for parallel loops
and heuristics for grouping tasks in NUMA systems [8]. Subramaniam and
Eager [16] proposed two partitioning heuristics to maximize the cache hits. Wang
et al. [18] proposed a heuristic that takes into account a hierarchical affinity orga-
nization to model hierarchical NUMA systems. Two variants of the proposed
heuristic were studied on realistic systems with up to 50 processors.

Torrellas et al. [17] evaluated several affinity strategies using a number of real-
istic applications. The main results showed that cache affinity techniques were
able to reduce the execution times: about 4–6% for scientific computing applica-
tions and up to 8% for applications using frequent synchronizations. Hamidzadeh
and Lilja [5] studied strategies for affinity scheduling of generic tasks, according
to a task-to-processor affinity matrix. Two heuristics based on Branch and Bound
are introduced and evaluated on a test suite including problem instances with
up to 500 tasks and 20 processors. More recently, Sibai [13] proposed a heuristic
for scheduling threads in NUMA-based multicore systems considering affinity for
computations and using thread migration. Six variants of the proposed heuristic
were analyzed over a NUMA system with 16 processors, and the results demon-
strated that the best option is to include the full computation affinity data.

The agent-based strategy by Muneeswari and Shunmuganathan [9] schedules
two types of tasks: critical and non-critical. Critical tasks are scheduled using a
hard affinity policy to minimize cache re-utilization. A Round Robin scheduler
is used for non-critical tasks, which can or cannot have cache affinity. The exper-
imental evaluation indicated that average response time can be reduced around
30% when compared to traditional scheduling algorithms.

Ortiz et al. [12] presented a scheduling heuristic for processing network pack-
ets in multicore systems considering core affinity. The heuristic was evaluated
using realistic communication workloads from both a scientific high performance
computing application using MPI and a web server application. Packet through-
put improved up to 35% for the MPI workload, and up to 100% for the web
server.

Related works show that affinity is key for efficiently scheduling parallel
tasks in modern multicore systems. Most previous works considered cache uti-
lization/reutilization for affinity scheduling. Very diverse results were reported,
with improvements ranging from 4% up to 100% depending on the system and
the applications. However, previous work considered uncharacterized applica-
tions and have not dealt with network communications. The main novel issues
addressed in our work are: (i) we consider the affinity scheduling problem taking
into account network communications between tasks, (ii) we characterize the
most representative types of parallel applications, and (iii) we design simple and
effective heuristics for affinity scheduling. These heuristics are evaluated using
real NUMA systems and a comprehensive analysis of the results is presented.

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 37

3 Heuristics and Metaheuristics for Affinity Scheduling

This section describes the methods applied in the study and the proposed
characterization for parallel applications used in the scheduling problem.

3.1 Heuristics and Metaheuristics Applied in the Study

The heuristics and metaheuristics studied in this article are:

– Round Robin (RR), a classic scheduling heuristic that assigns the computing
resources in circular order, without considering priorities for tasks.

– Greedy heuristic (GH), a constructive method that builds solutions taking
locally optimal decisions (e.g., minimum cost, maximum benefit). In each step,
the component having the lower heuristic cost is included in the solution. The
process is repeated until a valid solution is built.

– Descent Local Search (DLS), a local improvement heuristic from the family
of local search (LS) methods [1]. LS methods try to improve a solution itera-
tively, searching for a better solution in its neighborhood. The neighborhood
is defined via a single transformation of the solution or movement. Regarding
the exploration pattern, DLS methods are classified in: (i) simple descent,
which applies a single step search, choosing the first best solution found in the
neighborhood of the current one; and (ii) steepest descent, which explores all
candidate solutions and selects the best one among them.

– Iterated Local Search (ILS), a metaheuristic that extends LS methods by
including a perturbation operator to escape from local optima. In each iter-
ation, the current solution is perturbed and improved using a LS, until a
stopping criteria is met (see the schema of ILS in Algorithm 1). The accep-
tance criterion is applied to decide if continuing the search from the former
solution or the best one found in the neighborhood of the perturbed solution.

Algorithm 1. Schema of the ILS algorithm.
1: s0 ← GenerateInitialSolution()
2: s∗ ← LocalSearch(s0)
3: repeat
4: s′ ← Perturbation(s∗)
5: s′′ ← LocalSearch(s′)
6: s∗ ← AcceptanceCriterion(s∗,s′′)
7: until stop criterion is met
8: return s∗

3.2 Topological Characterization of Parallel Applications

In this section we introduce a classification for parallel applications, taking into
account communication and synchronization patterns used for collaboration.
This characterization is useful to create synthetic workloads of real-world appli-
cations for evaluating the proposed affinity scheduling methods. Three different
application patterns are proposed: flat topology, application-driven topology, and
hierarchical topology.

38 D. Regueira et al.

Flat Topology. This topology includes all applications following the master-slave
model for parallelization, where a distinguished process (the master) controls a
set of subordinate processes (the slaves). The master sends a set of data to slaves
for processing, then slaves compute and send back the results to the master,
which reduces the results. We consider two types of flat master-slave topologies
for the application characterization: flat without communications between slaves
(Fig. 1a) and flat with communications between slaves (Fig. 1b).

50 5050 50

(a) No communications between slaves.

100 100100 100

80

80

80

(b) Communications between slaves.

Fig. 1. Flat topology

Application-Driven Topology. This topology characterizes workflow-based appli-
cations, where data are distributed and processed by many independent units
(tasks) according to a specific flow. The data partitioning can be either sta-
tic or dynamic, applying different domain-decomposition strategies (e.g., row-
based, column-based, etc.). Communications and synchronizations are defined
according different patterns, e.g. uniform synchronization (Fig. 2a) or level-based
synchronization (Fig. 2b).

150

150

150

(a) Uniform synchronization.

1

1

1

(b) Level-based synchronization.

Fig. 2. Application-driven topology

Hierarchical (Tree) Topology. This topology describes applications with a hier-
archical order defined between tasks. Each task communicates exclusively with
tasks in the nearest levels in the hierarchy. Synchronizations are performed

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 39

between tasks in the same level. The most popular hierarchical topology is the
tree topology. In a tree-based application, the communications are performed
between parent and children and synchronizations are between siblings (Fig. 3a)
or level-based (Fig. 3b).

6 4 4

4 2 2 2 2 2
2

2 2 2

(a) Synchronizations between siblings.

4 4 4

2 2 2 2 2 2
2

2

(b) Level-based synchronization.

Fig. 3. Hierarchical (tree) topology

In this work we evaluate three parallel applications, one for each character-
ized topology: a heat transfer application with a master/slave topology, a generic
workflow application with an application-driven topology, and a quicksort appli-
cation with a hierarchical topology. These applications are presented in detail in
Sect. 5.2.

4 Methodology and Implementation Details

This section describes the methodology applied for building real-work scheduling
scenarios and the implementation details of the proposed schedulers.

4.1 The Procedure for Building Real-World Scheduling Scenarios

A scheduling scenario is described by two main components: (i) the interaction
pattern (communications and synchronizations) for the studied application; and
(ii) the multicore architecture of the system in which the application is executed.
The interaction pattern of an application is defined by its communication matrix
(C) and its synchronization matrix (S). These matrices define the number of
communications and synchronizations that the application performs during its
execution. Likewise, a multicore architecure is described by its communication
cost matrix (CC) and its synchronization cost matrix (SC). These matrices
define the cost (in time units) of executing a communication or a synchronization
operation between two tasks executing in different cores.

Regarding the application patterns, we defined three sets of matrices C and
S, in order to model three different real-world parallel applications, following
the three categories defined in the topological characterization (see Sect. 5.2).
By analyzing the source code of these applications, we estimated the values

40 D. Regueira et al.

in C and S matrices when using different numbers of parallel tasks for each
application.

To characterize a working set of multicore architectures we created a number
of ping-pong benchmark tests. Ping-pong is a point-to-point test which is com-
monly used for measuring the latency of a communication or synchronization
operation. An effective MPI-based ping-pong benchmark suite was applied for
estimating CC and SC matrices. We have used this approach in previous articles
about performance analysis [2] and affinity scheduling [6].

4.2 Solution Encoding

Schedules are represented as vectors with length a, being a the number of cores
available in the multicore architecture, according to the mathematical formula-
tion presented in Sect. 2. In this core-oriented encoding, each position represents
a core and each element represents a task assigned to that core. Figure 4 presents
an example of scheduling for a parallel application using b tasks, executing in
a computer with a cores.

t5

n1

t7

n2

t8

n3

t2

n4

t3

n5

t1

n6

...

...

tb

ni

...

...

...

...

Fig. 4. Core-oriented solution encoding.

4.3 Proposed Schedulers

This section presents the implementation details of the proposed schedulers.

Round Robin. A straightforward implementation was developed for RR, based
on the one presented by Stalling [15].

Greedy Heuristic. Tasks are assigned to cores in order, sorted by their total
number of interactions with other tasks, such that the task with most interactions
is assigned first. Each task is assigned greedily to the core which minimizes the
total interaction cost.

Descent Local Search. A steepest descent search strategy is implemented. The
neighborhood is defined by a swap movement that exchanges the assignments
for two tasks: given a solution s, for two tasks ti and tj , assigned to cores nk and
nl, respectively, a neighboring solution is constructed by assigning s[nk] = tj
and s[nl] = ti.

Iterated Local Search. The same swap movement defined for DLS is applied
to define the neighborhood in the ILS algorithm. The perturbation operator is
defined to modify a predefined number of task-to-processor assignments.

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 41

5 Experimental Analysis

This section describes the experimental evaluation of the proposed heuristics and
metaheuristics for affinity scheduling considering communications and synchro-
nizations. We focus on analyzing both the solution quality (i.e., improvements on
the execution time when using the proposed schedulers) and the computational
efficiency of each method.

5.1 Development and Execution Platform

The proposed heuristics were implemented in C language using MPICH 3 library
for MPI support. The experimental evaluation was performed on a HP ProLiant
DL585 G7 server, AMD Opteron Processor 6272 at 2.10 GHz, 48 GB of RAM,
and the CentOS operating system, from Cluster FING, the High Performance
Computing infrastructure at Universidad de la República, Uruguay [10].

5.2 Problem Instances

The problem instances used for the experimental evaluation include a set of
multicore architectures, three real parallel applications, different values for the
number of tasks in the parallel application, and different input sizes for the
applications. A total number of 240 evaluation instances are used in the exper-
imental evaluation. All evaluation instances and their visual representation can
be downloaded from https://www.fing.edu.uy/inco/grupos/cecal/hpc/PPSH/
data/instances.tar.gz.

Multicore Architectures. Three real multicore architectures from Cluster FING
were selected for the experimental evaluation of the proposed heuristics:

– a1: Multicore server HP ProLiant DL385 G7, having two sockets with two
NUMA nodes each. Each node has six cores and three cache levels. The
server accounts for 24 cores and 28 GB RAM.

– a2: Multicore server HP ProLiant DL385p Gen8, having two sockets with
two NUMA nodes each. Each node has eight cores and three cache levels.
The server accounts for 32 cores and 32 GB RAM.

– a3: Multicore server HP ProLiant DL585 G7, having four sockets with two
NUMA nodes each. Each node contains eight cores and three cache levels.
The server accounts for 64 cores and 64 GB RAM.

Parallel Applications. Three parallel applications were used to evaluate the pro-
posed heuristics for communication aware affinity scheduling. These applica-
tions are representative examples of the three topologies identified in the clas-
sification defined in Sect. 3. Next, we describe each application. Their source
code can be downloaded from https://www.fing.edu.uy/inco/grupos/cecal/hpc/
PPSH/data/source.tar.gz.

https://www.fing.edu.uy/inco/grupos/cecal/hpc/PPSH/data/instances.tar.gz
https://www.fing.edu.uy/inco/grupos/cecal/hpc/PPSH/data/instances.tar.gz
https://www.fing.edu.uy/inco/grupos/cecal/hpc/PPSH/data/source.tar.gz
https://www.fing.edu.uy/inco/grupos/cecal/hpc/PPSH/data/source.tar.gz

42 D. Regueira et al.

– Heat transfer. Describes the evolution of temperature in a bar, solving the
differential equation governing the heat transfer process using a master/slave
parallel model.

– Workflow. Describes a generic workflow application, having a number of tasks
and dependencies between them.

– Quicksort. Sorts a set of integer numbers applying the quicksort strategy.

5.3 Parameter Setting

Next, we present the parameter settings used for the descent local search and
iterated local search. These parameters were configured taking into account the
quality of the computed solutions and the computational efficiency of the sched-
uler. The greedy heuristic and round robin schedulers are not presented in this
section because they do not have any configurable parameters.

Descent Local Search. Two stopping criteria are considered: the search stops
when no better solution is found in the neighbourhood or when a maximum
number of iterations is reached. We defined the maximum number of iterations
as �a

b �, where a is the number of cores in the architecture and b is the number
of tasks in the application.

Iterated Local Search. A fixed-effort stopping criterion is used: the main cycle
stops after performing 10 iterations. As for the perturbation operator, each
task-to-processor assignment is modified with a probability of pm = 1

6 .

5.4 Numerical Results

This subsection reports the numerical results in the experimental analysis of
the proposed schedulers. All the reported results correspond to average values
computed in 40 independent executions performed for each method over each
problem instance. The traditional RR scheduler is used as a reference baseline
for comparing the results computed by each heuristic.

Comparative Analysis. Table 1 reports the improvements in the execution times
when solving the affinity scheduling problem using GH, DLS, and ILS for each
one of the three applications in the benchmark suite over different multicore
architectures (ai) and using different number of tasks (#p). The improvements
are computed regarding the traditional RR scheduler used as a reference baseline.
The best improvements found are marked in bold font.

From the results in Table 1, we conclude that the three evaluated schedulers
are consistently better than the RR scheduler. The average improvements over
RR are of 9.1% for GH, 11.1% for DLS, and 11.3% for ILS. When compar-
ing the proposed heuristics, results show DLS and ILS compute more accurate
schedules than GH for all applications and all architectures. DLS and ILS per-
form approximately with the same scheduling accuracy, and ILS is slightly more

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 43

Table 1. Average improvements of GH, DLS, and ILS over the baseline RR results for
each application and architecture.

Instance Heat transfer Workflow Quicksort

(ai × #p) GH DLS ILS GH DLS ILS GH DLS ILS

a1 × 6 19.3% 19.3% 19.3% 9.3% 13.2% 13.2% 16.4% 16.4% 16.4%

a1 × 12 18.0% 18.4% 18.4% 2.0% 8.0% 9.7% 3.9% 5.5% 5.9%

a1 × 24 6.6% 8.4% 8.4% 8.5% 9.3% 10.0% 3.9% 5.1% 5.4%

a2 × 8 15.1% 19.5% 19.5% 1.5% 6.6% 7.8% 3.9% 7.0% 7.0%

a2 × 16 10.7% 12.4% 12.4% 5.3% 9.0% 10.5% 6.3% 8.1% 8.3%

a2 × 32 4.3% 5.9% 5.9% 8.2% 9.0% 8.9% 5.0% 6.6% 6.6%

a3 × 16 18.8% 18.9% 18.9% 10.4% 14.9% 16.1% 10.3% 10.8% 11.0%

a3 × 32 14.4% 15.2% 15.2% 10.3% 13.6% 13.9% 9.3% 10.3% 10.5%

a3 × 64 5.2% 6.1% 6.1% 11.7% 14.0% 13.2% 6.7% 7.2% 7.4%

accurate than DLS. Both DLS and ILS compute the best results when schedul-
ing the heat transfer application. However, ILS computes slightly more accurate
schedules than DLS for the workflow and quicksort applications, with average
improvements of 0.6% and 1.4% over DLS, respectively.

A graphical comparison of the improvements grouped by application type
is presented in Fig. 5. The reported values correspond to average improvements
considering the three studied architectures. The graphic clearly shows that the
heat transfer application and the workflow application have the largest improve-
ment values, outperforming RR for up to 11.9% and 12.3%, respectively. On the
other hand, the improvements achieved for the quicksort application are lower,
barely reaching 8.4% over the RR scheduler in the best case.

Computational Efficiency. We also studied the computational efficiency of the
proposed methods, taking into account that one of the main goals of the research
is to design online scheduling strategies to be used in real time in current mul-
ticore systems. Table 2 summarizes the average execution times (in miliseconds)
for the proposed affinity scheduling techniques.

The execution times reported in Table 2 shows that all the studied methods
have a very low overhead (below 5 ms, except for ILS on the a3 architecture and
the largest number of tasks). GH is the fastest scheduler. This is because the
iterative nature of DLS and ILS demands larger execution times than a simple
constructive method such as GH. DLS is almost always one order of magnitude
slower than GH, except when addressing the smaller instances for each architec-
ture. Likewise, ILS is always one order of magnitude slower than DLS, making
it two order of magnitude slower than GH in the largest architecture and using
the largest number of tasks.

Figure 6 reports the average improvement achieved by each scheduler for
each architecture, and the running time of the scheduler when computing it

44 D. Regueira et al.

0

2

4

6

8

10

12

14

16

quicksortworkflowheat transfer

12.3%12.3%
11.1%

11.9%11.8%

9.2%

8.4% 8.2%
7.0%

Parallel application

A
ve
ra
ge

im
pr
ov
em

en
t
(%

)
GH DLS ILS

Fig. 5. Average improvements of GH, DLS, and ILS over the RR scheduler.

Table 2. Average execution time of GH, DLS, and ILS for each architecture.

Instance Execution time (×10−1 ms)

(ai × #p) GH DLS ILS

a1 × 6 0.2 0.4 1.4

a1 × 12 0.5 2.0 16.5

a1 × 24 1.2 8.9 77.7

a2 × 8 0.4 0.9 5.0

a2 × 16 0.9 5.1 42.7

a2 × 32 2.5 20.4 179.9

a3 × 16 1.9 8.0 58.4

a3 × 32 5.7 41.3 362.0

a3 × 64 16.3 167.3 1517.7

(x -axis, in logarithmic scale). This trade-off analysis is very useful to determine
the convenience of applying the proposed methods in real process management
systems. The best solutions are on the upper left (as indicated by the blue arrow),
having the best execution time improvements and the lower execution times for
the scheduler.

The results reported in Fig. 6 indicate that DLS is a very competitive sched-
uler, performing approximately with the same scheduling accuracy as ILS, but

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 45

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

0.1 1 10 100

Ex
ec

u
on

m

e
im

pr
ov

. (
%

)

Scheduler execu on me (×102 ms)

GH
DLS
ILS

a1×6

a1×6 a1×6

a1×8

a1×8 a1×8

a1×24
a1×24 a1×24

(a) Architecture a1

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

0.1 1 10 100 1000

Ex
ec

u
on

m

e
im

pr
ov

. (
%

)

Scheduler execu on me (×102 ms)

GH
DLS
ILSa2×16

a2×8 a2×8

a2×8

a2×16

a2×16

a2×32
a2×32 a2×32

(b) Architecture a2

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

0.1 1 10 100 1000 10000

Ex
ec

u
on

m

e
im

pr
ov

. (
%

)

Scheduler execu on me (×102 ms)

GH
DLS
ILS

a3×16

a3×16 a3×16

a3×32
a3×32 a3×32

a3×64
a3×64 a3×64

(c) Architecture a3

Fig. 6. Trade-off between the average improvement of the execution time of all
applications compared to the scheduler execution time for each architecture.

significantly faster. On the one hand, GH is the fastest method (with a signifi-
cantly lower execution time than DLS and ILS), but the accuracy of its computed
schedules is much lower than the ones computed by DLS and ILS, especially when
addressing applications executing in architecture a3. On the other hand, ILS is
always the most accurate scheduler, but significantly slower than GH and DLS.

The comparative analysis allows us to conclude that all the studied sched-
ulers have minimum overhead. In addition, DLS provides an excellent trade-off
between execution time improvement and execution time demanded to run the

46 D. Regueira et al.

scheduling algorithm. For some time-consuming applications, it would be worth
applying ILS, as the additional improvements in execution time over DLS could
impact significantly on the overall wall-clock time.

Comparison Against Lower Bounds. The proposed heuristics are conceived to
execute in real time (online scheduling). Lower bounds for the problem can be
computed by executing the best method (ILS) with a different (unrealistic in
practice) stopping criterion, allowing ILS to execute for a significantly larger
time. Figure 7 summarizes the comparison against lower bounds, which demon-
strate the capabilities of the proposed methods to compute accurate schedules in
very short execution times (dark grey bars indicate the potential improvements).

0

2

4

6

8

10

12

14

16

18

quicksort workflow heat transfer

0.0%0.0%1.2%1.2%1.4%4.0%

1.0%1.2%2.3%

Parallel application

A
ve
ra
ge

im
pr
ov
em

en
t
(%

)

GH DLS ILS LB

Fig. 7. Average improvement gap of GH, DLS, and ILS compared to the Lower Bound
(LB) for each application type.

The results in Fig. 7 suggest that there is still room to improve the execution
time for the quicksort and workflow applications. Schedules computed by DLS
and ILS could be improved between 1.0% and 1.4%. On the other hand, the
results for the heat transfer application demonstrate the high quality of the
proposed schedulers, as they reach results that cannot be improved in 10 min of
execution time (DLS and ILS always compute the lower bound).

6 Conclusions and Future Work

In this article we address the problem of effective scheduling of parallel appli-
cations in multicore systems. We show that the execution time of a parallel
application can be significantly reduced by considering affinities when schedul-
ing the task to execute in the system. To this end, we introduce a simple and
yet effective mathematical formulation for the affinity scheduling problem and

Communication-Aware Affinity Scheduling Heuristics in Multicore Systems 47

a characterization of parallel applications and multicore architectures. Using
these elements, we build a realistic set of instances of the affinity scheduling
problem.

Next, we design and implement three affinity scheduling heuristics, based
on greedy, descent local search, and iterated local search strategies, and taking
into account communication and synchronization patterns for applications. We
evaluated the efficacy and efficiency of the heuristics for solving real problem
instances and compared the results with a classic round robin scheduler.

Results show ILS and DLS are the most accurate schedulers, improving the
average execution time of the applications by 11.3% and 11.1% respectively.
GH is less accurate, improving barely 1.5% in average. However, GH is the
fastest scheduler with an average execution time of 0.3 ms, while DLS requires
an average of 2.8 ms. ILS is the slowest method, with an average of 25.1 ms.

We conclude that affinity scheduling is indeed an effective approach for reduc-
ing the execution time of parallel applications with many communications and
synchronizations. DLS is the best scheduler overall, with an adequate trade-off
between efficacy and efficiency. The main lines for future work are related to
designing new scheduling algorithms, characterizing a larger number of appli-
cations and architectures, and characterizing applications using automatic pro-
filing tools. We also propose to extend our model by considering applications
with dynamic communication and synchronization patterns, and by consider-
ing collective communication and synchronization operations involving multiple
tasks.

References

1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley,
New York (1997)

2. Alaniz, M., Nesmachnow, S., Goglin, B., Iturriaga, S., Gosta, V.G., Printista, M.:
MBSPDiscover: an automatic benchmark for MultiBSP performance analysis.
In: Hernández, G., Barrios Hernández, C.J., Dı́az, G., Garćıa Garino, C.,
Nesmachnow, S., Pérez-Acle, T., Storti, M., Vázquez, M. (eds.) CARLA
2014. CCIS, vol. 485, pp. 158–172. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45483-1 12

3. Eshaghian, M.: Heterogeneous Computing. Artech House, Norwood (1996)
4. Goglin, B.: Managing the topology of heterogeneous cluster nodes with hard-

ware locality (hwloc). In: High Performance Computing and Simulation, pp. 74–81
(2014)

5. Hamidzadeh, B., Lilja, D.: Dynamic scheduling strategies for shared-memory mul-
tiprocessors. In: International Conference on Distributed Computing Systems, pp.
208–215 (1996)

6. Iturriaga, S., Nesmachnow, S.: Evolutionary algorithms for affinity scheduling
heuristics in heterogeneous computing systems. In: XL Latin American Computing
Conference, pp. 1–12 (2014)

7. Leung, J., Kelly, L., Anderson, J.: Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Boca Raton (2004)

http://dx.doi.org/10.1007/978-3-662-45483-1_12
http://dx.doi.org/10.1007/978-3-662-45483-1_12

48 D. Regueira et al.

8. Markatos, E., LeBlanc, T.: Using processor affinity in loop scheduling on shared-
memory multiprocessors. IEEE Trans. Parallel Distrib. Syst. 5(4), 379–400 (1994)

9. Muneeswari, G., Shunmuganathan, K.: Agent based load balancing scheme using
affinity processor scheduling for multicore architectures. WSEAS Trans. Comput.
10(8), 247–258 (2011)

10. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61, 12–15 (2010)

11. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods
for optimisation. Int. J. Metahe. 3(4), 320–347 (2014)

12. Ortiz, A., Ortega, J., Dı́az, A., Prieto, A.: Affinity-based network interfaces for
efficient communication on multicore architectures. J. Comput. Sci. Technol. 28(3),
508–524 (2013)

13. Sibai, F.: Nearest neighbor affinity scheduling in heterogeneous multi-core archi-
tectures. J. Comput. Sci. Technol. 8(3), 144–150 (2008)

14. Squillante, M.: Affinity scheduling. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 11–16. Springer, Heidelberg (2011)

15. Stallings, W.: Operating Systems - Internals and Design Principles. Pitman,
London (2011)

16. Subramaniam, S., Eager, D.L.: Affinity scheduling of unbalanced workloads. In:
ACM/IEEE Conference on Supercomputing, pp. 214–226 (1994)

17. Torrellas, J., Tucker, A., Gupta, A.: Evaluating the performance of cache-affinity
scheduling in shared-memory multiprocessors. J. Parallel Distrib. Comput. 24(2),
139–151 (1995)

18. Wang, Y., Wang, H., Chang, R.: Hierarchical loop scheduling for clustered numa
machines. J. Syst. Softw. 55(1), 33–44 (2000)

Penalty Scheduling Policy Applying User
Estimates and Aging for Supercomputing

Centers

Nestor Rocchetti1(&), Miguel Da Silva1, Sergio Nesmachnow1,
and Andrei Tchernykh2

1 Universidad de la República, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay

{nrocchetti,mdasilva,sergion}@fing.edu.uy
2 CICESE Research Center, Carretera Ensenada-Tijuana 3918,

Zona Playitas, 22860 Ensenada, B.C., Mexico
chernykh@cicese.mx

Abstract. In this article we address the problem of scheduling on realistic high
performance computing facilities using incomplete information about tasks
execution times. We introduce a variation of our previous Penalty Scheduling
Policy, including an aging scheme that increases the priority of jobs over
time. User-provided runtime estimates are applied as in the original Penalty
Scheduling Policy, but a realistic priority schema is proposed to avoid starva-
tion. The experimental evaluation of the proposed scheduler is performed using
real workload logs, and validated using a job scheduler simulator. We study
different realistic workload scenarios to evaluate the performance of the Penalty
Scheduling Policy with aging. The main results suggest that using the proposed
scheduler with the aging scheme, the waiting time of jobs in the high perfor-
mance computing facility is significantly reduced (up to 50% in average).

Keywords: High performance computing � Scheduling � Execution time
estimation � Aging scheme � Penalty scheduling policy

1 Introduction

Job scheduling has become a critical issue in supercomputing. When dealing with large
and complex problems, small differences in scheduling policies can result in great
improvements in resource utilization, performance, and energy consumption [1]. One
of the most popular scheduling policies is first-come, first-served (FCFS), which is
often used in combination with the EASY-Backfilling method [2]. Backfilling systems
rely on job runtime estimates provided by users to accomplish the task planning.

Scheduling strategies based on estimations provided by users are popular. How-
ever, the inaccuracy of user estimates impacts on the general performance of the
system, worsening its overall performance [3]. Some studies in the literature have
proposed strategies to improve runtime estimates to help improve the overall perfor-
mance of High Performance Computing (HPC) systems [4, 5].

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 49–60, 2017.
DOI: 10.1007/978-3-319-57972-6_4

In our previous work [4] we introduced the Penalty Scheduling Policy (PSP) for
supercomputing centers. PSP consists of assigning a priority to a recently submitted
job. This priority is assigned according to the historical accuracy of job runtime esti-
mations from the task owner, computed in a given window of previously completed
jobs. The priority is assigned from a set of five priority groups, in which the priority
goes from 1 to 5. In that previous work, we studied the performance of PSP with
automatically generated workload logs.

In this article, we contribute with a new version of the PSP scheduler proposed on
[4]. We also contributed with an extended analysis of the impact of user runtime
estimates on the system utilization in HPC infrastructures using real parallel workload
data and simulations.

The new version of PSP presented in this article (PSP+AGING) includes a new
approach for defining the intervals of accuracy, and an aging scheme that increases the
priority of jobs over time to prevent starvation. Finally, we report results on the
performance of PSP under scenarios based on workload logs obtained from the Parallel
Workload Archive (PWA) [6] and compared with an experimental evaluation of these
scenarios using a traditional FCFS scheduling policy.

The paper is organized as follows. Next section presents a review of related work
about scheduling using runtime estimates in supercomputing centers. Section 3
describes the proposed PSP+AGING algorithm. Section 4 introduces the workload
analysis and the main features of the problem instances considered in the study. Then,
the experimental evaluation of PSP+AGING over realistic HPC scenarios is presented
in Sect. 5. Finally, Sect. 6 presents the conclusions and formulates the main lines for
future work.

2 Related Work

In this section, we review the related work about analysis of user runtime estimates on
parallel supercomputers, its impact on job scheduling, and proposed job scheduling
techniques.

According to the seminal work by Lee et al., “it is a well-documented fact that
user-provided runtime estimates are inaccurate” [5]. In that article, the authors reviewed
the results of previous studies by Cirne and Berman [1], Ward et al. [7], and Chiang
et al. [8], in which the previous statement was confirmed. Lee et al. conducted an
experiment in which they asked users to estimate their jobs runtime the best they could,
and also asked to rate their confidence in the estimation provided with a number from 1
to 5. After the experiment, the results reported by Lee et al. showed that only slight
improvements are detected on the job runtime estimates, despite users making their best
effort to perform accurate predictions.

Hirales-Carbajal et al. [9] performed an experimental study of scheduling strategies
on grid systems. The authors proposed a scheduling approach considering users run-
time estimations and multiple optimization criteria. An offline version of the scheduling
problem was solved, i.e., considering all information about tasks and resources is
known in advance. The proposed scheduling strategies include the following stages:
(i) labeling jobs according to users runtime estimates; (ii) allocate resources based on

50 N. Rocchetti et al.

optimization criteria; and (iii) prioritize jobs. The experimental analysis was carried out
using a parametric workload generator and the performance of the proposed scheduler
was compared with known single workflow algorithms. The authors considered
machine heterogeneity in realistic grid systems, nevertheless a specific model is
assumed in order to perform the scheduling evaluations in a repeatable and controllable
manner.

Ramírez-Alcaraz et al. [10] showed that user runtime estimates do not help to
improve the performance of schedulers in cluster systems. The authors stated that “…
an appropriate distribution of job processor requirements over the grid has a higher
performance than an allocation of jobs based on user runtime estimates …”. Similar
conclusions, but related to scheduling to optimize energy consumption, were also
found by Iturriaga et al. [15].

In our previous article [4], we introduced the PSP scheduling technique. The main
idea of PSP is to integrate user estimates in order to improve the resource utilization
and reduce the waiting times of jobs. In PSP, we assign a priority to a job according to
the historical accuracy of the runtime estimates of the job owner. In this previous work,
user runtime estimates are employed to build a history-based prediction model that is
later used by the job scheduler. In this way, user runtime estimates were used as kill
times, whereas the predicted time is used to build the schedule. In this previous work,
we also assigned a priority from 1 to 5 according to the historical accuracy. The
prediction model in PSP uses a history window size. For each newly arrived job, the
priority is assigned according to the accuracy of runtime estimates for the owner, which
is computed as the average accuracy considering only the last ten completed jobs. The
history window approach was originally presented in the article by Tsafrir et al. [11],
where authors selected the previous two jobs submitted by the same user. Applying this
strategy, the results of Tsafrir et al. showed that taking into account the more recently
submitted jobs allows computing improved schedules, as these jobs provide more
useful information than older ones.

Regarding the experimental evaluation, in our previous article [4] we created
workloads according to the main characteristics of user estimates and jobs submitted to
the Cluster FING HPC facility at Facultad de Ingeniería, Universidad de la República
[12]. The main results of our previous work showed that using PSP in an environment
where some users improve their job runtime estimates over the time is a promising
approach to reach the important goal of every user experiencing a decrease on the
waiting time of his jobs.

In this article, we improve our previous work by considering a new approach for
defining the intervals of accuracy for users estimations, and an aging scheme that
increases the priority of jobs over time to prevent starvation.

3 The Proposed Penalty Scheduling Policy with Aging

The main idea of the penalty policy applied in PSP is based on affecting the priority of
jobs according to the historical precision of runtime estimates provided by the users on
previous job submissions. The proposal we introduce here extends the method in our
previous work [4], for dealing with low accuracy in user jobs estimates.

Penalty Scheduling Policy Applying User Estimates 51

In our previous work [4], the accuracy of the job runtime estimate by users was

defined as A ¼ trun
treq, where trun is the real runtime of the job, and treq is the time

requested by the user during job submission. The accuracy values are between 0.0 and
1.0, thus, the average accuracy for all submitted jobs is also between these values. The
bigger the average accuracy, the better the user estimates the runtime of his jobs, and
the PSP scheduling method will assign higher priority to new jobs submitted by the
user.

In this article, we propose defining ten levels of accuracy (g1–g10). The levels of
accuracy are defined by the intervals shown in Table 1. The priority is a number
between one and forty-nine, where a higher number means that the job is closer to the
head of the queue of pending jobs. For example, a job whose owner has an accuracy of
0.17 will have an initial priority of 25. We use these levels of accuracy to assign the
initial priority to the submitted jobs. After that, the priority is updated by applying an
aging scheme.

PSP calculates the current accuracy of a user by computing the average accuracy
for an amount of completed jobs per user. Below, we report results on problem
instances in which the accuracy of user at estimating job runtime is calculated for the
last ten jobs that were completed.

We use an aging scheme to increase the priority of the jobs over time. The purpose
of the aging scheme is to prevent the starvation of jobs. The aging scheme is recur-
sively computed by the expression in Eq. 1.

priorityj;iþ 1 ¼ gj þðpriorityj;i � t waitingj;i
t estimatedj

Þ

priorityj;1 ¼ gj

8
<

:
ð1Þ

In Eq. 1, the new value for the priority of a job is calculated based on the priority of
that job in the previous time step. When job j is submitted, the value of the priority in
time step i = 1 is calculated using PSP. The new value of the priority for task j in time

Table 1. Accuracy intervals of estimates and priorities for each tag name.

Tag name Accuracy interval Priority

g1 (0.00,0.05) 1
g2 [0.05,0.10) 10
g3 [0.10,0.15) 20
g4 [0.15,0.20) 25
g5 [0.20,0.30) 30
g6 [0.30,0.40) 35
g7 [0.40,0.52) 40
g8 [0.52,0.64) 43
g9 [0.64,0.78) 46
g10 [0.78,1.00] 49

52 N. Rocchetti et al.

step (i + 1) is priorityj;iþ 1; gj is the level of accuracy of task j; and t waitingj;i
t estimatedj

is the

normalized waiting time for job j in time step i. No further historical information is
used.

Figure 1 presents an example of the application of the aging scheme on four
different jobs that were submitted at the same time. The new priority for each pending
job is calculated at each time step. In this work, we set the time step to 150 s, according
to the analysis explained in the next paragraph.

The graphic in Fig. 1 shows the increment in the priority values for each job over
time. The horizontal axis represents the time in seconds, and the vertical axis represents
the priority [in logarithmic scale]. The priority of small jobs increases faster than the
priority of large jobs. This happens due to the fact that priority is calculated using the
normalized waiting time of jobs. The larger the job (in terms of time requested) the
slower the increment of its priority. In Fig. 1 we compared the increment of jobs
priority over time. With a time step of 150 s job j4 has a priority of 58 after 6750 s. Job
j1 has a priority of 61 after 6750 s. Job j4 waits 18.8% of the requested time before
having higher priority than job j1.

In a 1-h job a 150 s time step is 4.2% of its requested time. This length of time step
does not impact negatively on user experience. It is a reasonable tradeoff between CPU
usage to perform the planning and the length of the jobs in the workloads. Therefore,
we decided to use a time step of 150 s for the rest of the experimental evaluation.

The proposed PSP+AGING scheduling method was coded and included in the
multifactor implementation of SLURM Scheduler Priority Plugin API [14]. The pri-
ority API is used by the SLURM job manager, which is the component that accepts
jobs requests and includes pending jobs in a priority ordered queue.

The priority calculation process is shown in Fig. 2. When a new job arrives, its
initial priority is calculated using the PSP+AGING scheduling method. Every time the

1

10

100

1000

10000

100000

0 1500 3000 4500 6000 7500 9000

Pr
io

rit
y

Time (seconds)

100 hour job, 40 as ini al priority (j1)
10 hour job, 40 as ini al priority (j2)
100 hour job, 1 as ini al priority (j3)
10 hour job, 1 as ini al priority (j4)

Fig. 1. Example of priority functions for four different types of jobs with a time step of 150 s.

Penalty Scheduling Policy Applying User Estimates 53

SLURM priority algorithm is executed, the job priorities are increased according to the
aging scheme proposed. When the priority is high, and the resources are available, the
job will change its state to running and the job and will leave the queue of pending
jobs.

4 Workload Analysis and Problem Instances

We built several problem instances based on real workload traces, to be used in the
experimental evaluation of the proposed scheduler. This section summarizes the main
findings of the workload characterization study, with special focus on job runtime
estimates, and also describes the problem instances generated.

4.1 Workload Analysis

We based our analysis in two workload logs taken from the Parallel Workload Archive
(PWA) [6]. One of the workload logs was taken from the Curie Supercomputer
(Atomic Energy Commission, France) [from February 2011 to October 2012]. The
other workload log was taken from the University of Luxembourg Gaia Cluster [from
February 2011 to October 2012]. Both workload logs were provided by Joseph Emeras
and are publicly available to download at PWA. In addition, the versions used on our
simulations were sanitized according to the procedure described by Feitelson and
Tsafrir [13].

The log from CEA Curie Supercomputer has 312,826 jobs and 582 users. A total
number of 11,808 Intel processors and 288 NVidia GPU cards are available. According
to the information available at PWA, the log from the Gaia Cluster at University of

Fig. 2. Diagram of the process for priority calculation in PSP+AGING.

54 N. Rocchetti et al.

Luxembourg has 51,987 jobs submitted by 84 users and started its operations in 2011.
Regarding both workload logs, we built problem instances using a subset of the total
number of jobs of each log. The problem instances are specific to each supercomputing
infrastructure. In addition, we took into account only jobs that use more than one core.

Table 2 shows the proportion of jobs in the workload logs according to the number
of cores requested for the CEA Curie and the Gaia clusters. In this table, it can be seen
that 60% of the jobs submitted for the CEA Curie cluster requested between 2 and 16
cores. In the case of the Gaia cluster, 87% of the jobs submitted requested 2 and 16
cores.

We computed the initial priority of each submitted job applying the model
described in Sect. 3. Table 3 shows the proportions of jobs for each initial priority
group. It can be seen that the accuracy for 18% of CEA Curie cluster users is between
20% and 30%. In the case of Gaia cluster, the accuracy for 27% of the users is between
0% and 0.05%. The priority values and the accuracy interval associated to each tag
name are shown in Table 1 of Sect. 3.

Table 2. Cores requested proportions for the CEA Curie and the Gaia clusters.

Cores requested Proportion
CEA Curie Gaia

2 to 16 0.60 0.87
17 to 64 0.07 0.11
65 to 256 0.18 0.02
257 to 1024 0.14 0.00
1025 or more 0.01 0.00

Table 3. Job priority groups and its proportions of the CEA Curie and the Gaia clusters.

Tag name Proportion
CEA Curie Gaia

g1 0.14 0.27
g2 0.07 0.08
g3 0.09 0.10
g4 0.10 0.05
g5 0.18 0.15
g6 0.16 0.15
g7 0.11 0.15
g8 0.07 0.00
g9 0.04 0.00
g10 0.04 0.05

Penalty Scheduling Policy Applying User Estimates 55

4.2 Problem Instances

Using the information gathered in the workload analysis, we extracted a set of repre-
sentative jobs from each workload log in order to make the workload instances. We
also created six scenarios to simulate different scheduling policies and user behavior.
The set of jobs and the scenarios were chosen to evaluate the proposed scheduler.

The jobs included in the set of jobs are in the order they appear in the workload log
and they were chosen so that it was possible to stress the simulated infrastructure.
Periods of less intense jobs arriving are also contemplated. The scenarios are charac-
terized by a combination of scheduling policy applied and job runtime estimation
considered.

Three scheduling policies are evaluated: (a) FCFS, (b) PSP without job aging and
(c) PSP+AGING. Two type of job run time estimations are considered: perfect esti-
mations and real user estimations. Table 4 shows the configurations assigned to each
scenario.

We considered scenarios with perfect estimations in order to have best-case situ-
ations for each scheduling policy.

Scenarios 1 and 4 are used as the baseline for the comparison with scenarios 2, 3, 5,
and 6.

According to information in the PWA, in the workload logs of CEA Curie and Gaia
the utilization of the clusters was 29.3% and 47.9%, respectively. Taking into account
the low system utilization, and in order to have a considerable number of jobs in the
pending job queue, we configured a simulated infrastructure for each cluster that has a
subset of the total number of processors available. It was chosen so that jobs are not
necessarily executed as soon as they are submitted.

A total number of 4096 cores comprise the simulated infrastructure for CEA Curie
Supercomputer. It was achieved using 1024 CPUs with 4 cores each. For the Gaia
Cluster the simulated infrastructure contains 1024 cores. It was achieved using 256
CPUs with 4 cores each. No data about memory capacity of each CPU and memory
demand of each job was available when preparing the simulations. Thus, these char-
acteristics are not taken into account in order to run the simulations.

Table 4. Scheduling policy and job estimates accuracy configured for each scenario.

Scenario Scheduling policy Job estimates

1 FCFS Perfect estimates
2 PSP without aging
3 PSP+AGING
4 FCFS Real user estimates
5 PSP without aging
6 PSP+AGING

56 N. Rocchetti et al.

5 Experimental Analysis

In this section we report the experimental analysis of the proposed PSP+AGING
algorithm. We explain the metrics used to perform the comparison between the six
scenarios defined for each workload. Then, we show the characteristics of the com-
putational platform used to run the simulations. We end the section presenting and
comparing the numerical results obtained after the simulations.

The goal of the experimental analysis is to evaluate the efficacy of PSP+AGING.
We achieve this goal by computing the makespan and the average waiting time for all
the scenarios defined in Sect. 4. Then, we compared the results obtained between
scenarios, and also between scenarios of different workloads.

All the simulations were performed in a dual-core machine with 8 GB RAM,
running Ubuntu 14.10. We used the SLURM Simulator to run the simulations for each
workload log. SLURM is free software and can be downloaded from [14]. We installed
the software in Ubuntu OS as it was recommended by the developers of the tool.

Regarding the average waiting time, Table 5 shows the numerical results obtained
after performing the simulations with the CEA Curie workload and the Gaia Cluster. It
is shown the average waiting time in minutes for each scenario (from scenario 1 to 6).
For the CEA Curie workload, in scenario 1 (FCFS with perfect estimates) the average
waiting time is 4,569 min (i.e., 76.15 h), whereas in scenario 6 (PSP+AGING with real
estimates) the average waiting time is 2,336 min (i.e., 38.93 h). The waiting time in
scenario 1 for the CEA Curie workload is 1.956 times higher than in scenario 6. For the
Gaia Cluster we computed similar results: the waiting time between scenario 1 (i.e.,
4,358 min) and scenario 6 (i.e., 2,421 min) is 1.800 times higher than in scenario 6.

Figure 3 shows the Average waiting time for each scheduling policy and each job
runtime estimates model for the CEA Curie supercomputer workload.

According to the results reported in Fig. 3, users of CEA Curie, in the simulated
scenario with a FCFS scheduler and perfect job run time estimates, had a waiting time
1.21 times higher than in the scenario with PSP scheduler and perfect estimates. In the
scenario with real estimates, the waiting time in the scenario with FCFS was 1.75 times
higher than in the scenario with PSP. In the case of the PSP+AGING and real job run
time estimates scenario, the average waiting time is 1.97 times, and 1.57 times lower
than in the scenarios with FCFS scheduler and PSP scheduler respectively.

Figure 4 reports the average waiting times for the Gaia cluster.
The results reported in Fig. 4 are similar to the ones for the Curie supercomputer. In

this sense, the scenario with PSP+AGING and perfect user estimates had an average
waiting time that was 1.80 times and 1.54 times lower than the scenarios with PSP
scheduler and FCFS scheduler respectively.

Table 5. Ratio of waiting time between the six scenarios of both workloads. Average waiting
time of jobs in the simulation, reported in minutes.

Scenario 1 2 3 4 5 6

Average waiting time (minutes) CEA Curie 4,569 3,785 2,617 4,609 3,706 2,336
Average waiting time (minutes) Gaia cluster 4,358 3,716 2,641 5,153 3,354 2,421

Penalty Scheduling Policy Applying User Estimates 57

Results on both workload logs showed the same trend, in the scenarios with
PSP+AGING and real user estimates. Jobs have between 1.5 times and 2.13 times the
waiting time in average than scenarios without both PSP and aging.

Table 6 shows the makespan of the each scenario for the subset of jobs selected and
simulated of the CEA Curie and the Gaia workload logs. The makespan in the case of the
CEA Curie supercomputer varied from 15.33 days in the scenario using FCFS and real
user estimates, and 17.71 days in the scenario with PSP+AGING and real user estimates.
In the case of the Gaia cluster, the makespan varied between 27.62 and 29.08.

For both workloads used in the simulations, the makespan was higher when using
PSP compared to FCFS, and even higher when using PSP+AGING as the scheduling
policy. Moreover, the scenario with lower makespan was the one with the simplest
scheduling policy and the real (and inaccurate) user estimates By using PSP and aging
we achieved lower waiting times. On the other hand, we undertook the makespan of the
workloads.

0

50

100

150

200

250

300

FCFS PSP PSP+AGING

W
ai

ng

m
e

(s
ec

 x
 1

03)

Scheduling policy

Perfect es mates
Real es mates

Fig. 3. Average waiting time for each scheduling policy and each job runtime estimates model
for the CEA Curie supercomputer workload.

0
50

100
150
200
250
300
350

FCFS PSP PSP+AGING

W
ai

ng

m
e

(s
ec

 x
 1

03)

Scheduling policy

Perfect es mates
Real es mates

Fig. 4. Average waiting time for each scheduling policy and each job runtime estimates model
for the Gaia cluster workload.

58 N. Rocchetti et al.

6 Conclusions and Future Work

In this paper, we present the new scheduling strategy PSP+AGING, that is a variation
of the Penalty Scheduling Policy. The new algorithm includes changes in the granu-
larity of accuracy groups and the initial priority of jobs that belong to each group. We
also introduced an aging scheme that increments the priority of the jobs in each
iteration of the scheduler according to the waiting time normalized with respect to the
user estimation of runtime for the job.

We measure the makespan of the workloads to evaluate the benefits of the variation
of PSP and the proposed aging scheme for the overall system performance. We also
measured the average waiting time of jobs for each workload.

We presented an experimental evaluation in a simulated computer system envi-
ronment, developed using the SLURM simulator. However, our strategies can be easily
included in other popular resource management systems such as Maui.

We analyze the PSP+AGING performance of part of two real workload logs with
six scenarios each varying the user runtime estimates and the scheduling policy. The
main results show that introducing job priority according to the accuracy of runtime
estimation and applying an aging scheme, every user experiences a drop on the waiting
time of their jobs. On the other hand, the makespan is not improved.

The lines for future work include extending the experimental analysis with work-
loads containing a larger quantity of jobs. We also plan on running the simulations with
other workloads of the PWA. In this line of work we plan on performing an experi-
mental evaluation on a real environment: the Cluster FING at Facultad de Ingeniería of
Universidad de la República.

Regarding the aging scheme we plan on extending the investigation in order to
propose new algorithms to compute job aging.

References

1. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: IEEE
International Workshop on Workload Characterization, pp. 140–148 (2001)

2. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E., Schwiegelshohn, U.
(eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16505-4_12

Table 6. Total makespan for the simulated scenarios.

Scenario CEA Curie makespan (days) Gaia makespan (days)

1 16.19 27.82
2 15.33 27.62
3 17.19 27.79
4 16.17 27.85
5 17.04 28.03
6 17.71 29.08

Penalty Scheduling Policy Applying User Estimates 59

http://dx.doi.org/10.1007/978-3-642-16505-4_12
http://dx.doi.org/10.1007/978-3-642-16505-4_12

3. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling user runtime estimates. In: Feitelson, D.,
Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834,
pp. 1–35. Springer, Heidelberg (2005). doi:10.1007/11605300_1

4. Rocchetti, N., Iturriaga, S., Nesmachnow, S.: Including accurate user estimates in HPC
schedulers: an empirical analysis. In: XXI Congreso Argentino de Ciencias de la
Computación, pp. 1–10 (2015)

5. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates inherently
inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS,
vol. 3277, pp. 253–263. Springer, Heidelberg (2005). doi:10.1007/11407522_14

6. Feitelson, D.: Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.
Accessed 12 July 2016

7. Ward Jr., W.A., Mahood, C.L., West, J.E.: Scheduling jobs on parallel systems using a
relaxed backfill strategy. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2002. LNCS, vol. 2537, pp. 88–102. Springer, Heidelberg (2002). doi:10.1007/3-540-
36180-4_6

8. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate requested
runtimes on production job scheduling performance. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127. Springer,
Heidelberg (2002). doi:10.1007/3-540-36180-4_7

9. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., González-García, J.L., Röblitz, T.,
Ramírez-Alcaraz, J.M.: Multiple workflow scheduling strategies with user runtime estimates
on a grid. J. Grid Comput. 10, 325–346 (2012)

10. Ramírez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U.,
Quezada-Pina, A., González-García, J.L., Hirales-Carbajal, A.: Job allocation strategies
with user run time estimates for online scheduling in hierarchical grids. J. Grid Comput. 9,
95–116 (2011)

11. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather
than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18, 789–803 (2007)

12. Nesmachnow, S.: Computación Científica de Alto Desempeño en la Facultad de Ingeniería,
Universidad de la República. Rev. Asoc. Ing. Urug. 61(1), 12–15 (2010)

13. Feitelson, D., Tsafrir, D.: Workload sanitation for performance evaluation. In: IEEE
International Symposium on Performance Analysis of Systems and Software, pp. 221–230
(2006)

14. Slurm simulator web page. https://www.bsc.es/marenostrum-support-services/services/
slurm-simulator. Accessed 12 July 2016

15. Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of
energy-aware schedulers for high performance computing systems under uncertainty. In:
Hernández, G., Hernández, C.J.B., Díaz, G., Garino, C.G., Nesmachnow, S., Pérez-Acle, T.,
Storti, M., Vázquez, M. (eds.) CARLA 2014. CCIS, vol. 485, pp. 143–157. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45483-1_11

60 N. Rocchetti et al.

http://dx.doi.org/10.1007/11605300_1
http://dx.doi.org/10.1007/11407522_14
http://www.cs.huji.ac.il/labs/parallel/workload/
http://dx.doi.org/10.1007/3-540-36180-4_6
http://dx.doi.org/10.1007/3-540-36180-4_6
http://dx.doi.org/10.1007/3-540-36180-4_7
https://www.bsc.es/marenostrum-support-services/services/slurm-simulator
https://www.bsc.es/marenostrum-support-services/services/slurm-simulator
http://dx.doi.org/10.1007/978-3-662-45483-1_11

Accelerating All-Sources BFS Metrics
on Multi-core Clusters for Large-Scale

Complex Network Analysis

Alberto Garcia-Robledo1(B), Arturo Diaz-Perez1,
and Guillermo Morales-Luna2

1 Information Technology Laboratory, Cinvestav-Tamaulipas, Cd. Victoria, Mexico
algarcia@tamps.cinvestav.mx

2 Cinvestav-IPN, Mexico City, Mexico

Abstract. All-Sources BFS (AS-BFS) is the main building block in a
variety of complex network metric algorithms, such as the average path
length and the betweenness centrality. However, AS-BFS calculations
involve as many full BFS traversals as the total number of vertices, ren-
dering AS-BFS impractical on commodity systems for real-world graphs
with millions of vertices and links. In this paper we present our experi-
ence with the acceleration of AS-BFS graph metrics on multi-core HPC
clusters by outlining hybrid coarse-grain parallel algorithms for comput-
ing the average path-length, the diameter and the betweenness centrality
of complex networks in a lock-free fashion. We report speedups of up to
171× on a heterogeneous cluster of 12-core Intel Xeon and 32-core AMD
Opteron multi-core nodes; as well as resource utilizations of up to 75%.

Keywords: Network Science · Complex networks · Multi-core HPC
clusters · All-Sources BFS · Complex network metrics · Betweenness
centrality

1 Introduction

Recent years have witnessed the rise of Network Science [5], defined as “the study
of network representations of physical, biological, and social phenomena leading
to predictive models of these phenomena.” Such representations are known as
complex networks. The measurement of complex networks and their applica-
tion in Social Network Analysis, biological network analysis and link analysis
have renewed the interest in classical graph problems like Breadth-First Search
(BFS). A variation of BFS, All-Sources BFS (AS-BFS), appears as a recurrent
building block in the implementation of shortest-path-based metrics such as the
average path length, the graph diameter, and the betweenness centrality [6]. AS-
BFS metrics have been used for the analysis of errors caused by attacks to the
structure of a national airport network, the analysis of the vulnerability of the
Internet, to identify key proteins in protein interaction networks and to reveal
important agents in terrorist social networks.
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 61–75, 2017.
DOI: 10.1007/978-3-319-57972-6 5

62 A. Garcia-Robledo et al.

The calculation of AS-BFS metrics involves as many full BFS traversals as
the total number of vertices, requiring O(nm) time, where n is the number of
vertices and m the number of links of the graph. This makes AS-BFS calcu-
lations unfeasible on commodity systems for large-scale real-world graphs with
millions of vertices and links. We have estimated, for example, that obtaining
a single measurement of the betweenness centrality of a citation network with
3M vertices and 16M links would take 6 months on a high-performance AMD
Opteron processor when exploiting an efficient sequential algorithm. One solu-
tion is to approximate AS-BFS measurements, but this is not always possible.
The betweenness centrality, for example, is hard to estimate, and the quality of
the approximation depends on the selected source vertices [1].

AS-BFS exhibits different levels of parallelism that can be exploited to tackle
large execution times by means of parallel computing. The predominant archi-
tecture in the TOP500 supercomputing index is the HPC cluster: a collection
of complete and independent commercially-available systems connected through
high-speed specialized networks. As of June 2016, the top 10 fastest systems in
the index are HPC clusters powered by general-purpose multi-core processors
such as the Intel Xeon, the AMD Opteron, and the IBM Power BQC. However,
some of the current works that parallelize AS-BFS metrics, like the between-
ness centrality, propose schemes for specialized and not widely-available (some-
times discontinued) multi-threaded architectures, such as the Cray MT-2 and
the Cray XMT [2,8]. Other works only experiment on single-system multi-core
platforms [3,9].

We believe that previously proposed multi-grain parallel algorithms designed
for custom architectures like the Cray XMT are not suitable for modern multi-
core cluster architectures. In this work we present our experience with the exper-
imentation of a hybrid (process- and thread-level) coarse-grain parallel scheme
for accelerating a variety of AS-BFS-based algorithms on HPC clusters of com-
mercial multi-core processors. We span as many tasks as the number of vertices
in the graph, each task consisting of a single full BFS traversal. Tasks are first
distributed among the available computing nodes. Then, in each node, tasks are
further distributed among the node’s cores. All task groups are then executed
in parallel in a lock-free fashion, requiring only an aggregation step at the final
stage. We outline coarse grain parallel algorithms for calculating the average
path length, the diameter and the betweenness centrality metrics. The parallel
implementations are tested in HPC clusters of AMD Opteron and Intel Xeon
processors. We report estimated speedups of up to two orders of magnitude and
resource usage efficiencies of up to 75%.

2 Preliminaries

Let G = (V,E) be a graph or complex network with a vertex set V and an
edge set E. Let n = |V | and m = |E|. Let duv denote the shortest-path-length
between vertices u and v. The diameter D is defined as the length of the longest
shortest-path in G:

AS-BFS on Multi-core Clusters for Complex Network Analysis 63

D = max
u�=v

{duv}. (1)

In their seminal work, Watts and Strogatz [11] found that the majority of
the vertex pairs in complex networks are only a few steps away, in spite of their
elevated number of vertices. This property can be mathematically characterized
by the average shortest-path length L:

L =
1

n(n − 1)

∑

u�=v

duv, (2)

which grows logarithmically with n in a variety of real-world graphs [6]. The
larger the number of shortest-paths in which a vertex participates, the more the
importance of that vertex. It is possible to quantify the importance of a vertex u
in terms of the proportion of shortest-paths that pass through u. This proportion
is known as vertex betweenness centrality BC(u):

BC(u) =
∑

v,w∈V,v �=w

g(u, v, w)
g(v, w)

, (3)

where g(v, w) is the total number of shortest-paths between v and w and
g(u, v, w) is the number of shortest-paths between v and w that pass through u,
for all v, w ∈ V , v �= w.

AS-BFS consists on performing n full BFS traversals, starting each traversal
from a different source vertex. AS-BFS is used to implement these and other
distance-based metrics, given its efficiency on sparse graphs. BFS can be easily
implemented with the help of a queue, and takes only O(n + m) time. AS-
BFS performs n full BFS traversals. Thus, AS-BFS time complexity is O(n(n +
m)) ≈ O(nm). To alleviate large execution times of AS-BFS on large graphs,
any combination of the following levels of parallelism can be exploited:
1. Coarse-grain parallelism. The parallel algorithm spans n concurrent tasks.

Each task consists of a full BFS traversal. All tasks proceed in parallel with
no synchronization operations involved.

2. Medium-grain parallelism. For each BFS frontier1, the parallel algorithm
spans as many tasks as vertices in the frontier. Thus, each task consists of
exploring the neighborhood of a single vertex in the current BFS frontier.
In the presence of common neighbors, synchronization operations might be
required.

3. Fine-grain parallelism. For each BFS frontier in a single-source BFS, the
parallel algorithm spans as many tasks as the edges outgoing from the vertices
in the current frontier. Thus, each task consists of the exploration of a single
edge going out of the current BFS frontier.

The selection of the appropriate parallel granularity depends on the target hard-
ware architecture. Regardless of the level of parallelism, AS-BFS poses challenges
in parallel processing, including dynamic and non-contiguous memory access,
unstructured parallelism, and a low amount of arithmetic operations [10].
1 The BFS frontier keeps the nodes of the recently visited BFS level, being the ith

frontier the set of nodes at (shortest) distance i from the source node.

64 A. Garcia-Robledo et al.

3 Related Work

Bader et al. [2] proposed the first parallel BC algorithm, designed for the IBM p5
570 and the Cray MTA-2 shared-memory architectures. They propose a multi-
grain coarse + fine-grain scheme that parallelizes the BFS computation, as well
as the outer level to saturate the MTA-2 multi-threaded architecture.

The approach in [2] is used in [3] to accelerate the BC, closeness centrality
and D algorithms, among other metrics. Bader and Madduri experimented with
large-scale Protein Interaction Networks on a 8-core Sun UltraSPARC T1 and a
2-core multi-threaded Intel Xeon. Near-to-linear speedups are reported. However
experiments were conducted only on a single multi-threaded CPU at a time. In
[8] it is presented another multi-grain coarse + fine-grain parallel BC algorithm
for the Cray XMT with the Thread-storm processor. Unlike the work in [2], the
new proposed algorithm is performed without locks by considering alternate rep-
resentations for the predecessor multi-sets. However, atomic addition operations
are still required to protect the increments to the path count and the predecessor
multi-set in the fine-grain algorithm.

In [9] it is reported a low-space complexity parallel algorithm that “eliminates
access conflicts to the shared memory cells” by utilizing “an edge-numbering
strategy” and a “triple array data structure recording the shortest path for
eliminating conflicts to access the shared memory.” Experiments were conducted
on the Intel Clovertown and Sun Niagara 1 single-node multi-core systems. In [7]
it is outlined a distributed BC parallel algorithm that exploits parallelism within
the shortest-paths computation through “label-correcting single-source shortest-
path algorithms” while “maintaining low space complexity.” They experiment
on random Erdös-Rényi and synthetic R-MAT graphs on a cluster of 128 nodes.
The architecture of nodes is not provided.

Overall, multi-grain strategies like the one reported in [2] are suitable for
custom architectures like the MTA-2, but the fine-grain parallelization of single-
source BFS’s would incur into high overheads in modern multi-core architectures.
Also, note that the MTA-2 and the IBM System p5 570 are not longer avail-
able in the market, and that the Cray XMT supports a specialized threading
hardware model that is not necessarily compatible with current multi-core CPU
architectures. Besides [7], none of the reviewed works exploit clusters of the
experimented architectures. For the BC it is theoretically possible to perform
the BFS traversals concurrently with no synchronization costs: processing units
compute their own partial sums of the centrality value [3,10], and then all the
sums are aggregated by exploiting an efficient reduction operation [3]. Current
works avoid this level of parallelism since it requires a copy of all data structures
in memory for each thread [9].

Nonetheless, we claim that the coarse-grain parallel AS-BFS is the best-suited
approach for state-of-the-art multi-core clusters that are readily equipped with
enough system memory to handle large-scale complex networks and AS-BFS-
related data structures.

AS-BFS on Multi-core Clusters for Complex Network Analysis 65

Fig. 1. Hybrid coarse-grain parallel algorithm for accelerating aggregable AS-BFS
complex network metrics. η and Ψ are the number of processes and threads per
process, respectively. Vp and Vp,h are the partitions of V mapped to processes and
threads, respectively. Πp and Πp,h are partial measurements calculated by processes
and threads, respectively. Π is the final aggregated complex network metric value.

4 Hybrid Coarse-Grain Parallel AS-BFS Scheme

Let Π be a complex network metric measurement that can be calculated by
aggregating partial AS-BFS measurements over subsets Vi ⊆ V of the vertex
set, i.e. Π = Π1 ⊕ Π2 ⊕ . . . with V = V1 ∪ V2 ∪ . . ., where ⊕ is an aggregation
operator, such as max (∨), sum (+), or vector sum2 (�).

We call such metrics AS-BFS aggregable metrics. Examples include (but
are not limited to): the graph diameter D, the average path-length L, and the
betweenness centrality BC. The calculation of all partial Πi measurements can
be performed concurrently, with no locks or inter-process synchronization oper-
ations. The granularity of the partitioning of the vertex set V = V1, V2.. for par-
allel processing depends on the parallel hardware characteristics. We describe a
general hybrid coarse-grain parallel scheme that exploits the parallelism inherent
to AS-BFS aggregable metrics and that is suitable for modern multi-core clus-
ters, in order to accelerate a series of distance-based metrics on large complex
networks without the need of locks.

Let P be the set of launched processes and η = |P | be the number of such
processes. Let Hp be the set of threads of process p and Ψ = |Hp| be the number
of threads per process. Let B = {β1, β2..βη} be the load distribution vector,

2 Given two sets X = x1, x2, x3.. and Y = y1, y2, y3.., |X| = |Y |, a vector sum is
defined here as X � Y = x1 + y1, x2 + y2, x3 + y3

66 A. Garcia-Robledo et al.

with βi ∈ [0, 1] and
∑η

i=1 βi = 1. The hybrid coarse-grain parallel scheme can
be divided into three steps (Fig. 1):

– Step (1) Vertex partitioning and distribution. First, the parallel scheme dis-
tributes the vertices of the network in a hybrid hierarchy of processes and
threads. At the process level, it distributes the vertices among the processes:
V1, V2..Vη,

⋃
i Vi = V , such that |V1|, |V2|..|Vη| ≈ β1n, β2n..βηn. At the thread

level, for each process p the parallel scheme distributes the vertices Vp among
p’s threads in an evenly fashion: Vp,1, Vp,2..Vp,Ψ ,

⋃
i Vp,i = Vp.

– Step (2) Partial measurements calculation. Once all vertex partitions have
been distributed, all threads of all processes are run in parallel. Each thread
h of process p performs its BFS traversals starting from the sources in its par-
tition Vp,h in a fully lock-free fashion, with no inter-process synchronization
involved. Each thread calculates the partial metric value Πp,h corresponding
to its vertex partition.

– Step (3) Partial measurements aggregation. Once threads have finished their
BFS traversals, their partial metric measurements Πp,h are aggregated at the
thread’s level as follows: Πp = Πp,1 ⊕ Πp,2 ⊕ . . . Πp,Ψ . Then, at the process’s
level, the final metric value is calculated by aggregating the processes partial
values Π = Π1 ⊕ Π2 ⊕ . . . Πη.

The parallel time of the described scheme is O(nm/ηΨ) + O(Q), where O(Q)
is the aggregation time, which can be neglected (no sync costs are involved [2])
if aggregations are trivial or if efficient message-passing reduction operators are
used. From a process perspective, the spatial complexity is O(Ψn+n+m) since
each process only needs to keep a single copy of the whole graph structure3; and
each process’s thread uses its own local BFS data structures to avoid the need for
locks. Assuming that each process runs on its own processing node, the linear-
space requirements become reasonable on high-end modern multi-core systems.

4.1 Parallel Metrics Algorithms

We now describe how to adapt the hybrid coarse-grain parallel scheme for the
calculation of three aggregable AS-BFS complex network metrics: the graph
diameter D, the average path-length L, and the betweenness centrality BC. For
each metric, two algorithms are presented:

– Hybrid coarse-grain parallel algorithm. Includes the three steps exposed
before; and indicates how to aggregate the partial measurements Πp,h at
the thread level and the partial measurements Πp at the process level. To
calculate the values Πp,h, each launched thread runs a per-thread lock-free
algorithm on its assigned vertex partition Vp,h.

– Lock-free thread algorithm. The details of this algorithm depends on the AS-
BFS metric that is being measured. In general, every thread performs BFS
traversals starting from s ∈ Vp,h by using a queue Q. The shortest distance

3 The O(n + m) graph data structure can be shared among all the process’s threads.

AS-BFS on Multi-core Clusters for Complex Network Analysis 67

Fig. 2. Hybrid coarse-grain parallel algorithm for the diameter D

Fig. 3. Hybrid coarse-grain parallel algorithm for the average path-length L

d[w] from s to the current visited node w and the partial measurement Πp,h

are updated as the algorithm traverses the graph. Each thread has its own
copy of partial data structures such as Q, d[1..n] and Πp,h. No locks are
required.

68 A. Garcia-Robledo et al.

Fig. 4. Hybrid coarse-grain parallel algorithm for the betweenness centrality BC

Diameter. Algorithms in Fig. 2 show the hybrid coarse-grain parallel approach
for Π = D. Each thread performs its share of BFS traversals to calculate the
partial diameter Dp,h, which is the longest shortest-path found from any source
in Vp,h. For the thread-level aggregation step, values Dp,h are reduced (max
operation) to obtain Dp = Dp,1 ∨ Dp,2 ∨ ..Dp,Ψ for all p, respectively. Finally,
in the process-level aggregation step, values of Dp are reduced (max operation
again) to obtain the final measurement D = D1 ∨ D2 ∨ ..Dη.

Avg. Path Length. Let γ be the sum of the shortest-path lengths between any
pair of vertices in G, and φ be the number of such paths. L can be calculated
in parallel by computing Π = γ and Π ′ = φ separately, and then obtaining
the ratio L = γ/φ. Algorithms in Fig. 3 show the hybrid coarse-grain parallel
approach for L. All threads perform their shares of BFS traversals in parallel to

AS-BFS on Multi-core Clusters for Complex Network Analysis 69

Table 1. Experimented road, Wikipedia, Internet, and citation complex network
instances. The edge traversals column shows the number of edge traversals needed
to execute an AS-BFS-based metric like D and L. For BC the number of traversals
is twice the value shown in the table, since the Brandes algorithm traverses the BFS
trees twice.

Graph Type n m Edge traversals

roadNet-CA Road 1,965,206 5, 533, 214 2.17 × 1013

WikiTalk Wikipedia 2,394,385 5, 021, 410 2.4 × 1013

as-skitter Internet 1,696,415 11, 095, 298 3.76 × 1013

cit-Patents Citation 3,774,768 16, 518, 948 1.24 × 1014

calculate their partial γp,h and φp,h. In the thread-level aggregation step, values
γp,h and φp,h are reduced (sum operator) to obtain γp = γp,1 + γp,2 + ..γp,Ψ and
φp = φp,1 + φp,2 + ..φp,Ψ for all p, respectively. In the process-level aggregation
step, measurements of γp and φp are reduced (sum operation again) to obtain
γ = γ1 + γ2 + ..γη and φ = φ1 + φ2 + ..φη. The ratio L = γ/φ is then calculated
in the master process to obtain the final graph average path-length.

Avg. Betweenness Centrality. The betweenness centrality vector Π = BC can
be calculated partially by performing BFS traversals from different sets of ver-
tices. Partial vectors can be then summed up to obtain the final vector BC.
Algorithms in Fig. 4 show the hybrid coarse-grain parallel approach for BC. All
threads perform their shares of single-source BFS’s in parallel to calculate the
partial betweenness vectors BCp,h. To this end, each thread runs the Brandes
algorithm [4] for its share Vp,h, which calculates the centrality in two steps: single-
source BFS traversals and backtrack accumulation. Next, in the thread-level
aggregation step, vectors BCp,h are reduced (vector sum operation) to obtain
BCp = BCp,1 � BCp,2 � ..BCp,Ψ for all p. Finally, in the process-level aggrega-
tion step, vectors BCp are reduced (vector sum operation again) to obtain the
final betweenness vector BC = BC1 � BC2 � ..BCη.

5 Experimental Setup

In this section we list the studied real-world complex network instances, present
the specifications of the experimented hardware platforms, offer commentaries
on load balancing across processing nodes, and describe our methodology for
estimating sequential times in order evaluate the performance of the presented
hybrid coarse-grain parallel scheme.

5.1 Graph Instances and Hardware Platforms

We experimented the three metric algorithms on four real-world complex net-
works listed in Table 1. We considered all the connected components of the

70 A. Garcia-Robledo et al.

undirected version of each graph. Note that the diameter of the roadNet-CA
network is up to two orders of magnitude larger than the diameter of the other
graphs.

Experiments were performed on two hardware platform settings:

1. Opteron cluster. Homogeneous multi-core cluster of seven 32-core nodes pow-
ered by AMD Opteron 6274 (Interlagos) CPU’s at 2.2 GHz and 64 GB of
RAM (for a total of seven nodes and 224 cores). The parallel algorithm for
BC on the cit-Patents graph, and the parallel algorithms for D and L on all
complex networks ran on this cluster.

2. Opteron-Xeon cluster. Heterogeneous multi-core cluster of six 32-core nodes
powered by AMD Opteron 6274 CPU’s and 64 GB of RAM + three 12-core
nodes powered by Intel Xeon X5675 CPU’s at 3.06 GHz and 48 GB of RAM
(for a total of nine nodes and 228 cores). The parallel BC algorithm on the
roadNet-CA, WikiTalk and as-skitter graphs ran on this cluster.

5.2 Load Balance and Data Aggregation

For the Opteron cluster we evenly distributed the vertices among the processing
nodes, i.e. bp ∈ B ≈ 	n/η
 for all p, since all nodes had the same computing char-
acteristics. For the Opteron-Xeon cluster we first profiled the performance of the
Opteron nodes and the Xeon nodes, separately, by running a predefined number
of multi-threaded single-source BFS’s. Then, based on the observed times, we
manually tunned the vector B by trial and error until achieving a reasonably
good observable load balance between the Opteron and Xeon nodes in the first
stage of execution.

Reported parallel times do not include the aggregation times at the process-
level since this aggregation is trivial for the diameter and average path-length4.
Although the aggregation step for the betweenness centrality is more involved
and may have a higher impact5, such an impact has a negligible effect on the
overall performance since the bottleneck remains in the AS-BFS step.

5.3 Single-Core Performance Estimation

To measure the benefits of the proposed parallel scheme, we first needed to obtain
the total execution time of sequential implementations. Since AS-BFS sequential
execution times are prohibitively large for the experimented graphs, specially for
the betweenness centrality, we instead estimated these times as follows.

For estimating how long a single sequential BFS takes, we first profiled
the performance of a single thread on an AMD Opteron processor by run-
ning 5,000 single-source BFS’s from random sources. Times that were several
orders of magnitude lower than the mean time were considered as outliers and

4 It only requires the communication of O(η) integers to the master process, with
η = 7 and η = 9 for the Opteron cluster and the Opteron-Xeon cluster, respectively.

5 It requires the communication of O(η) vectors of size O(n) to the master process.

AS-BFS on Multi-core Clusters for Complex Network Analysis 71

Table 2. Statistics on the 5,000 single-thread BFS time measurements (in seconds)
and estimated total AS-BFS time (in days) on an AMD Opteron 6274 processor. Time
μT − 3σT represents the estimated time needed by a single thread to perform a single
BFS traversal, whereas test represents the estimated time needed by a single thread to
complete the AS-BFS traversal and to produce the final metric value.

Metric Graph Min (s) Max (s) μT (s) σT (s) μT − 3σT (s) test (days)

Diameter D roadNet-CA 0.309 0.573 0.500 0.085 0.246 5.606

WikiTalk 0.320 0.660 0.379 0.010 0.348 9.638

as-skitter 0.385 0.641 0.563 0.028 0.479 9.408

cit-Patents 1.879 2.262 1.990 0.056 1.822 79.613

Path-length L roadNet-CA 0.302 0.740 0.534 0.129 0.146 3.313

WikiTalk 0.345 0.607 0.371 0.009 0.344 9.533

as-skitter 0.410 0.796 0.620 0.043 0.491 9.650

cit-Patents 1.897 2.783 2.199 0.118 1.845 80.587

Betweenness BC roadNet-CA 0.039 1.850 1.295 0.215 0.650 14.787

WikiTalk 0.735 1.583 1.111 0.074 0.889 24.625

as-skitter 1.249 3.111 2.030 0.210 1.399 27.468

cit-Patents 0.073 8.876 6.608 0.728 4.423 193.217

as such discarded. Then, given the set of single-thread time measurements T
(in seconds), the estimated total AS-BFS sequential time test was calculated as
test = n(μT −3σT), where μT is the average time and σT is the standard deviation
of T . Three standard deviations were subtracted to avoid overly-pessimistic esti-
mations of the sequential AS-BFS times that could lead to overly-optimistic (e.g.
super-linear) speedup values of the parallel implementations6. Table 2 shows sta-
tistics on the 5,000 single-thread time measurements and the estimated AS-BFS
sequential times. The highest estimated test time corresponds to the sequential
BC algorithm on the cit-Patents graph, which would take 193.217 days (6.4
months), followed by the sequential L and D algorithms on the same graph,
with estimations of 80.587 days (2.68 months) and 79.613 days (2.65 months),
respectively.

6 Experimental Results

Similarly to the Graph500 benchmark, we report raw processing rates measured
in Traversed Edges Per Second (TEPS). Let kw be the degree or number of
neighbors of node w. A BFS traverses all the neighbors of each vertex, this is∑

w∈V kw = 2m edge traversals. Since AS-BFS performs n BFS traversals, the
estimated rate of traversed edges per second for AS-BFS on a single-thread is
given by TEPSest = 2Cnm

test
, while the observed rate of traversed edges per second

by the parallel implementations is given by TEPSpar = 2Cnm
tpar

, where C = 1 for

6 According to the 3-standard deviation rule of thumb, ±μT −3σT accounts for 99.73%
of the time measurements, assuming that T is normally distributed.

72 A. Garcia-Robledo et al.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Observed execution times in days (a, b, c) and traversed edges per second in
GTEPS (d, e, f).

the D and L metrics, C = 2 for the BC metric (BFS traversals and backtrack
accumulation), and tpar is the observed execution parallel time on the multi-core
clusters (in seconds).

Figure 5(a–c) show the parallel execution times tpar in days. All metrics are
of the same computational complexity and showed similar running times. Note,
however, that the performance was dependent on the complex network instance.
Times on the cit-Patents network is several times longer than for the other three
networks for the three complex network metrics. This is caused in part by the
higher number of edges of this graph (16M edges for cit-Patents vs. 5.02, 5.35M
and 11M edges for WikiTalk, roadNet-CA and as-skitter, respectively).

The performance of BFS is strongly influenced by the diameter D of graphs.
However, the diameter did not play an important role in our case: times for
the high-diameter roadNet-CA network were comparable to other complex net-
works with lower diameter. This can be explained by the fact that, unlike fine-
grain parallel BFS implementations, the coarse-grain AS-BFS does not require
the synchronization of the processing units for each BFS frontier. This makes
coarse-grain AS-BFS performance less sensitive to large D. In [2] it is noted that
the execution time is highly dependent on the size of the giant component of

AS-BFS on Multi-core Clusters for Complex Network Analysis 73

(a) (b) (c)

(d) (e) (f)

Fig. 6. Speedups over the single-thread estimated time (a, b, c) and estimated
efficiencies (d, e, f).

real graphs. However, the giant component of the cit-Patents and the as-skitter
graphs accounts for at least 99% of the vertices, yet the observed parallel times
for these graphs were noticeably different despite the fact that their sizes are
comparable.

Figure 5(d–f) show the observed parallel data throughput TEPSpar in
GTEPS (1×109 TEPS). Highest observed GTEPS corresponded to the as-skitter
graph: 6.31, 5.65 and 5.05 GTEPS for D, L and BC, respectively. In contrast,
lowest observed GTEPS corresponded to the cit-Patents graph: 2.48, 2.66 and
0.97 GTEPS for D, L and BC, respectively. Again, the cit-Patents appeared as
the “hardest” graph to process for all evaluated complex network metrics.

Figure 6(a–c) show the speedups of the parallel algorithms over the estimated
throughput of the single-thread performance. The highest observed speedup
corresponded to the parallel BC algorithm on the WikiTalk graph (171.19×),
whereas the lowest one corresponded to the L algorithm on the roadNet-CA
(56.52×). The effect of the large diameter was more noticeable here: the roadNet-
CA caused the lowest speedup for the D and L algorithms, and the second lowest
speedup for the BC algorithm as well. Nonetheless, our parallel implementations

74 A. Garcia-Robledo et al.

showed average speedups7 of 125.01×, 121.58× and 127.27× for D, L and BC,
respectively.

Finally, Fig. 6(d–f) show the resource utilization efficiency. The highest
observed efficiency corresponded to the parallel BC algorithm on the WikiTalk
graph (0.75), whereas the lowest one corresponded to the L algorithm on the
roadNet-CA graph (0.25). Average efficiencies8 were 0.56, 0.54 and 0.56 for D, L
and BC, respectively. Lowest efficiencies can be attributed to insufficient memory
bandwidth when running the algorithms for 32 and 12 threads in each Opteron
and Xeon node, respectively, given that BFS is memory-bounded in large com-
plex networks due to its irregular memory access patterns.

Although the betweenness centrality computation is much more involved9,
observed TEPS, accelerations and efficiencies were comparable to that of simpler
AS-BFS metrics. The presented hybrid parallel scheme should scale well: more
multi-core processing nodes can be added to clusters to obtain improved accel-
erations. Additional nodes with different computing capabilities can be added
as well. The only requirement is to tune the load distribution vector B to bal-
ance the work properly. Additional research is needed to produce an on-line load
balance algorithm to perform this tunning dynamically.

7 Conclusions

We presented hybrid coarse-grain parallel algorithms for evaluating AS-BFS
complex network metrics on clusters of commercially available multi-core nodes.
The approach distributes the BFS traversals hierarchically among the process-
ing nodes and then the process’s threads, run the BFS traversals in parallel in
a lock-free fashion to calculate partial measurements, and aggregates the par-
tial measurements in the final step. Experiments on two multi-core clusters with
Intel Xeon and AMD Opteron multi-core processors showed speedups of up to
171× and an utilization efficiency of up to 75%.

As of future work, the load distribution vector can be tuned algorithmically in
a way that work is distributed as evenly as possible in face of dynamic workload
variations induced, for example, by graphs with unbalanced connected compo-
nents on heterogeneous clusters. The proposed parallel scheme can be extended
to accelerate other AS-BFS aggregable metrics, such as the edge betweenness
centrality, the stress centrality, the closeness centrality, and the central point
dominance. Further study is needed to go deeper into the correlation between
different network properties and the AS-BFS parallel performance to identify
key features of complex networks to help us to improve performance.

The presented parallel AS-BFS scheme will be used to develop a Web
repository of complex network measurements and analysis of compute intensive
graph features on publicly available complex network datasets, by exploiting the
Cinvestav’s ABACUS multi-core cluster architecture.
7 Average of speedups of the four experimented graphs for a given algorithm.
8 Average of efficiencies of the four experimented graphs for a given algorithm.
9 It requires maintaining a BFS stack, a queue and a predecessor list.

AS-BFS on Multi-core Clusters for Complex Network Analysis 75

Acknowledgments. The authors acknowledge to the General Coordination of Infor-
mation and Communications Technologies (CGSTIC) at Cinvestav for providing HPC
resources on the Hybrid Cluster Supercomputer “Xiuhcoatl”, that have contributed to
the research results reported within this document.

References

1. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness
centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.
124–137. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77004-6 10

2. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in
real-world networks. In: Proceedings of 2006 International Conference on Parallel
Processing, August 2006

3. Bader, D.A., Madduri, K.: A graph-theoretic analysis of the human protein-
interaction network using multicore parallel algorithms. Parallel Comput. 34(11),
627–639 (2008)

4. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001)

5. Committee on Network Science for Future Army Applications: Network Science.
National Academies Press, Washington, DC (2005)

6. Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of com-
plex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

7. Edmonds, N., Hoefler, T., Lumsdaine, A.: A space-efficient parallel algorithm for
computing betweenness centrality in distributed memory. In: Proceedings of 2010
International Conference on High Performance Computing, December 2010

8. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarŕıa-Miranda, D.: A
faster parallel algorithm and efficient multithreaded implementations for evalu-
ating betweenness centrality on massive datasets. In: Proceedings of 2009 IEEE
International Parallel and Distributed Processing Symposium, May 2009

9. Tan, G., Tu, D., Sun, N.: A parallel algorithm for computing betweenness centrality.
In: Proceedings of 2009 International Conference on Parallel Processing, September
2009

10. Tu, D., Tan, G.: Characterizing betweenness centrality algorithm on multi-core
architectures. In: Proceedings of 2009 IEEE International Symposium on Parallel
and Distributed Processing with Applications, August 2009

11. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440–442 (1998)

http://dx.doi.org/10.1007/978-3-540-77004-6_10

Exploration of Load Balancing Thresholds
to Save Energy on Iterative Applications

Edson L. Padoin1(B), Laércio L. Pilla2, Márcio Castro2,
Philippe O.A. Navaux3, and Jean-François Méhaut4

1 Department of Exact Sciences and Engineering,
Regional University of Northwest of Rio Grande do Sul (UNIJUI),

Ijúı, RS, Brazil
padoin@unijui.edu.br

2 Department of Informatics and Statistics,
Federal University of Santa Catarina (UFSC),

Florianpolis, SC, Brazil
{laercio.pilla,marcio.castro}@ufsc.br

3 Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS),
Porto Alegre, RS, Brazil
navaux@inf.ufrgs.br

4 Laboratoire d’Informatique de Grenoble (LIG) Grenoble University,
Grenoble, France

jean-francois.mehaut@imag.fr

Abstract. The power consumption of High Performance Computing
systems is an increasing concern as large-scale systems grow in size and,
consequently, consume more energy. In response to this challenge, we
proposed two variants of a new energy-aware load balancer that aim at
reducing the energy consumption of parallel platforms running imbal-
anced scientific applications without degrading their performance. Our
research combines Dynamic Load Balancing with Dynamic Voltage and
Frequency Scaling techniques in order to reduce the clock frequency of
underloaded computing cores which experience some residual imbalance
even after tasks are remapped. This work presents a trade-off evaluation
between runtime, power demand and total energy consumption when
applying these two energy-aware load balancer variants on real-world
applications. In this way, we can define which is the best threshold value
for each application under the total energy consumption, total execution
time or the average power demand focus.

1 Introduction

Several load balancers are able to reduce the total energy consumption of an
application by reducing its total execution time (as energy = time × power).
Load balancers can improve the performance of imbalanced iterative applica-
tions by making a better load distribution among the available processors. How-
ever, they can take suboptimal decisions that result in some load imbalance still

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 76–88, 2017.
DOI: 10.1007/978-3-319-57972-6 6

Exploration of Load Balancing Thresholds to Save Energy 77

remaining after task migrations. This can happen due to characteristics of the
application that prevent a perfectly balanced mapping to be achieved, and due
to limitations of load balancing heuristics, as the problem that they are trying
to solve is NP-Hard [15].

Our proposed algorithms, FG-EnergyLB and CG-EnergyLB [17] try to
reduce the total energy consumption by exploiting residual imbalance left by load
balancing algorithm. The first one, called Fine-Grained Energy Load Balancer
(FG-EnergyLB), is suitable for platforms composed of few tens of cores that
allow per-core Dynamic Voltage and Frequency Scaling (DVFS). The second one,
called Coarse-Grained Energy Load Balancer (CG-EnergyLB) is suitable for
current HPC platforms composed of several multi-core processors that feature
per-chip DVFS. They identify the possibility of reducing the processors clock
to achieve better gains better than other load balancing algorithms that they
employ. In this form, energy improvements are achieved due to the reduction of
average power during the runtime and also by reducing the application execution
time by reducing the number of tasks migrated. The main idea of the EnergyLB
is to exploit the existence of residual imbalances on iterative applications to
adjust the clock frequency of underloaded cores/processors through DVFS.

Nevertheless, the definition of the interval between calls to the load balancer
is decisive to reduce the load balancing overhead. If the load balancer is invoked
in long time periods, the load imbalance may increase too much and result in loss
of performance, which consequently increases the total energy consumption. On
the other hand, if the strategy is performed very frequently, it also may incur
in a reduction of performance, since the load balancing overhead may exceed
its benefits. In this context, aiming to decrease the load balancing overhead,
recent strategies have adopted a threshold value to determine if load balancing
or DVFS must be performed.

In this context, in this paper we focus on a trade-off evaluation between run-
time, power demand, and total energy consumption when using different thresh-
old values in the two variants of our energy-aware load balancer (EnergyLB) on
two imbalanced real-world applications. Our results show that FG-EnergyLB
can achieve energy savings of up to 17.1% with an average of 16.3%, and CG-
EnergyLB of up to 31% with an average of 23% through the reduction of the
average power demand. However, we observed that the total execution time of the
applications may be reduced or increased according to threshold value chosen.

The remaining sections of this paper are organized as follows. Section 2 dis-
cusses related works on DVFS and energy-aware load balancing. Then, Sect. 3
presents the evaluation methodology and the applications used to evaluate
the efficiency of our energy-aware load balancer. Our experimental results are
discussed in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work on Energy Consumption

Different techniques have been proposed to reduce the runtime and power
demand and thus improve the energy efficiency of platforms while running

78 E.L. Padoin et al.

parallel applications. Among them, we highlight in this section DVFS and load
balancing strategies.

Dynamic Voltage and Frequency Scaling (DVFS). Recent studies demon-
strate that an idle host may consume more than half of its peak power [7].
Because of that, DVFS has been used in different contexts as a means to save
energy. Gerards et al. [4] analyze the use of global DVFS in the context of
multi-core processors. They proposed a theoretical method to transform the
problem of finding an optimal clock frequency on global DVFS systems to a sin-
gle core problem by using the amount of parallelism of applications. Their main
goal is to minimize the energy consumption of nontrivial real-time applications.
Spiliopoulos et al. [19] extended the gem5 simulator to support full-system DVFS
modeling. This extended version is then used to study the behavior of different
DVFS governors (interactive, on-demand and performance). They concluded
that the interactive governor is faster than on-demand to adapt to the work-
load changes and thus achieves better performance at about the same energy
consumption. Kin et al. [14] proposed a realistic DVFS performance prediction
method and a practical DVFS control policy (eDVFS) that aims to minimize
total energy consumption in multi-core processors. Their experimental results
show that eDVFS can save a substantial amount of energy compared with Linux
on-demand. Isci et al. [9] proposed to fine-tune the processor’s clock frequency by
using workload characteristics to maintain a chip-level power below a specified
budget without degrading the performance significantly. The proposed approach
can come within 1% of the performance of an ideal oracle, while meeting a given
chip-level power budget.

Energy-Aware Load Balancing. Load balancing is a challenging problem
and has been studied extensively in the past to improve the performance of
parallel applications [11,21]. However, few works have made some efforts to fur-
ther improve the energy consumption. Aupy [1] proposed energy-aware schedul-
ing models to schedule tasks under reliability and makespan constraints. They
designed and evaluated them using simulations with different heuristics based on
the failure probability, the task weights, and the processor speeds. These heuris-
tics aim at minimizing the energy consumption while enforcing reliability and
deadline constraints. Sarood et al. [18] proposed a load balancing strategy that
limits the processors’ temperatures to reduce the energy spent in cooling and
to prevent hot spots. Their results achieved energy savings of up to 63%, with
a timing penalty from 2% to 23%. Goel et al. [5] proposed a model that uses
CPU performance counters and CPU temperature to generate accurate per-core
power estimates in real-time. They showed that the model can be used to guide
scheduling decisions in power-aware resource managers. Hartog et al. [6] studied
the relationship between CPU temperature and energy consumption in clusters
and provided a method of estimating the power consumption of the system. This
method was then used to implement a MapReduce framework that can evaluate
the current status of each node and dynamically react to estimated power usage
without having to rely on readings from expensive power monitoring hardware
affixed to each node in the cluster.

Exploration of Load Balancing Thresholds to Save Energy 79

As opposed to these works, our energy-aware approach performs load bal-
ancing along with DVFS to improve the performance and to reduce the energy
consumption by exploiting residual imbalances of parallel applications [17]. In
addition, we also reduce the cost of task migrations, since we only migrate tasks
between processors when necessary. The performance, power demand and total
energy consumption of our energy-aware load balancers are here analyzed on
a set of real-world application running on top of a real platform without the
need of simulations.

3 Evaluation Methodology

This section describes the methodology used in our trade-off study. We first
present the execution environment, followed by the applications used in our
experiments.

3.1 Experimental Environment

The experiments were conducted on an Altix UV 2000 platform designed by
SGI. The platform is composed of 24 NUMA nodes. Each node has an Intel
Xeon E5-4640 Sandy Bridge-EP x86-64 processor with 8 physical cores running
at 2.40 GHz. There are 14 clock frequency levels available in this processor,
allowing us to vary the clock frequency of the processor from 1.2 GHz up to
2.4 GHz.

Each core of the Intel Xeon E5-4640 has 32 KB instruction and 32 KB data
L1 caches and 256 KB of L2 cache. All the 8 cores share a 20 MB L3 cache.
Each node has 32 GB of DDR3 memory, which is shared with other nodes in
a cc-NUMA fashion through SGI’s proprietary NUMAlink6. Overall, this plat-
form has 192 physical cores and 768 GB DDR3 memory.

The platform runs an unmodified SUSE Linux Enterprise Server operat-
ing system with kernel 3.0.101-0.29 installed. All applications as well as the
Charm++ programming model were compiled with GCC 4.8.2. The Charm++
version used in our experiments was linux64-6.5.1. The results presented in
Sect. 4 are the average of at least 10 runs. The relative error was less than 5%
using a 95% statistical confidence by Student’s t-distribution.

3.2 Applications

To evaluate the trade-off between run time, power demand and total energy
consumption of our proposed variants of EnergyLB, we selected different real-
world applications. They were chosen due to their varied range of communication
patterns and workload characteristics. The description of the applications is
given below:

– Ondes3D is a seismic wave propagation simulator employed to estimate the
damage in future earthquake scenarios [3]. In Ondes3D , seismic waves are

80 E.L. Padoin et al.

modeled as a set of elastodynamics equations. These equations are then solved
by applying a finite difference method. In our experiments, we used a version
recently adapted to Adaptive MPI [8,10] that profits from Charm++’s load
balancing framework [20]. In this version, the application is overdecomposed
into multiple virtual MPI processes per core. Ondes3D presents load irreg-
ularity due to the boundary conditions producing additional work, and load
dynamicity from the simulation of waves spreading through space;

– Lulesh simulates a variety of science and engineering problems requiring
hydrodynamics modeling, which describes the motion of materials relative
to each other when subject to forces. The Livermore Unstructured Lagrange
Explicit Shock Hydrodynamics (LULESH) application was originally devel-
oped as one of the five challenge problems in the DARPA Ubiquitous High
Performance Computing (UHPC) program. Lulesh solves one octant of the
spherical Sedov problem using Lagrange hydrodynamics [2,12,13].

Input Parameters. Table 1 summarizes the characteristics of the applications
and parameters used in our experiments. Different load balancing frequencies
have been chosen for different applications in order to strike a balance between
the benefits of remapping tasks and the overheads of moving tasks and computing
a new task mapping. Deciding the optimal moment to call a load balancer is a
challenging problem [16] and is out of the scope of this paper.

Table 1. Summary of the input parameters of applications.

Application Tasks Iterations LB Frequency

Ondes3D 128 500 20

Lulesh 729 1000 50

3.3 Load Balancers

Charm++ provides a set of load balancing algorithms that can be used to
migrate tasks among processors and to reduce the load imbalance. Thus, to
analyze which is the best threshold value for each application under the total
energy consumption, total execution time or the average power demand focus, we
have selected the GreedyLB load balancer available on Charm++ platform.

4 Experimental Results

This section presents a trade-off between run time, power demand and total
energy consumption achieved by our energy-aware load balancer.

The Intel Xeon E5-4640 processors, available on our experimental platform,
there are 14 clock frequency levels available, which allow us to vary the clock fre-
quency of the processor from 1.2 GHz up to 2.4 GHz. So, we vary the threshold

Exploration of Load Balancing Thresholds to Save Energy 81

(thrld) parameter of the algorithm from 0 up to 5 and execute the applica-
tions, in order to make a trade-off. In the following sections we first evaluate
the results achieved with FG-EnergyLB on applications. Then, we perform
a similar evaluation using the CG-EnergyLB.

4.1 Fine-Grained EnergyLB Evaluation

Aiming to reduce the effects of load imbalance and load balancing overhead to
save energy, this section provides a trade-off between run time, power demand
and total energy consumption when used FG-EnergyLB over real applications
with different threshold values. The application run time depends on several
issues, among them, the number of parallel tasks and their load, the duration
of each timestep, and the selected load balancing strategy. The impact of load
balancing is directly related to the load balancing frequency once load balancing
overhead can overcome the gains achieved with load balancing.

In this way, to FG-EnergyLB, in each call of the load balancer, the algo-
rithm verifies if the weighted load of each processor exceeds or not the threshold,
makes decisions to adjust the frequencies (determining so that the frequency
will be decreased or increased) or invokes other load balancer to migrate tasks.
However, the load balancer generates an overhead and when this cost exceeds
its benefits, the total execution time is increased, i.e., calling load balancing
strategies incurs timing penalties to applications.

Our proposed load balancers take three input parameters in their execution.
The first one, is the load balancer that is used to migrate tasks when the imbal-
ance is high. The second one, is the maximum frequency available by processors
that can be set to a core, and the last one, is a threshold value, used to decide
whether call the load balancer or perform DVFS strategy.

Running the applications with FG-EnergyLB configured with different
threshold values, we obtain different amounts of DVFS performed or load bal-
ancers called, what determines different frequency settings of cores or migration
tasks. In this way, we can analyze which is the best threshold value for each
application under the total energy consumption, total execution time or the
average power demand focus as shown in the Fig. 1.

– Ondes3D Application

Experiments with Ondes3D were performed using 128 tasks, which run for
500 iterations. Total energy spent to run this application without a load bal-
ancer is 550.4 kJoules and its total execution time is 645.8 s. In this way, during
the execution, the average power demand is 35.5 W. These values are taken as
reference in the analysis and represent the noLB value in the Fig. 2(a).

In the tests with FG-EnergyLB, the load balancer is called at every 20
iterations, resulting in a total of 24 calls. Using threshold values equal to 0.5
and 1.0, FG-EnergyLB does not perform DVFS, calling GreedyLB at every
opportunity to migrate tasks. In this context, the average power remains con-
stant around of 35.5 W. However, performing migrations in this application is

82 E.L. Padoin et al.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
el

at
iv

e
to

 n
oL

B

Threshold

2.0%

17.1%

18.0%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(a) Ondes3D .

 0.7

 0.8

 0.9

 1

 1.1

 1.2

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
el

at
iv

e
to

 n
oL

B

Threshold

7.3%

7.7%

15.6%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(b) Lulesh.

Fig. 1. FG-EnergyLB comparison with different threshold value on real applications

very costly, which incurs in an increase of 15.5% in run time and total energy
consumption. This increase is the result of the overhead of migrations undertaken
by GreedyLB.

Using a threshold equal to 1.5, FG-EnergyLB adjusts the clock frequency
through DVFS 18× and only 6× calls the other load balancer to migrate tasks.
In this way, it is able to reduce the average power in 5.7%. Reducing the number
of migrations, the run time suffers a small reduction to 724.38 s, which is still
12.2% longer than with no load balancer, and spends 5.82% more energy.

With the threshold value equal to 2.0, gains in both execution time, power
demand and, consequently energy consumption, are achieved. DVFS was per-
formed 18× during the execution, which reduced the average power in 10.6%,
but the run time was still 8.32% larger than the baseline. Nevertheless, using
this threshold, the total energy consumption is reduced in only 3.15%.

For thresholds from 1.0 up to 2.5, the increase of threshold value also increases
the number of calls of DVFS. For these values, the run time has a reduction near
to linear. The total execution times is reduced from 15% to 2% larger than the
baseline. Similarly, for this threshold range, the average power demand of the
parallel platform is reduced by up to 19%. In this way, both run time and power
demand reductions contribute to reduce the total energy spent.

The greater energy saving for this application is achieved using the threshold
value equal or greater than 2.5. Using these values FG-EnergyLB is able to
reduce in up to 17.1% the total energy consumption in relation to baseline noLB.
These gains are achieved through a reduction in the overhead, which is only
2%, and the average power is reduced in 18%, once that in all calls DVFS was
performed, which resulted in a greater amount of energy saving, as shown in
Fig. 2(a).

– Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 729 processes
mapped in 24 cores. This application spent 100.6 kJoules of energy and takes

Exploration of Load Balancing Thresholds to Save Energy 83

84.7 s when executed without a load balancer. In this execution the average
power demand is 35.1 W. Similar to Ondes3D , these values are taken as baseline
(noLB) in Fig. 2(b)) to examine the threshold variation of the Lulesh applica-
tion.

Load balancing call is configured with a frequency of 50 iterations so, in
this test, our load balancer are called 19 times during the execution. When
thresholds equal to 0.5 and 1.0 were used, FG-EnergyLB did not perform any
time adjustment in clock frequency. So, using these thresholds the average power
is not changed. In addition, in these tests the load balancing overhead increases
the run time and consequently, the total energy consumption in up to 2%.

A greater amount of DVFS is performed when the value of threshold is
increased. For a threshold equal to 1.5, FG-EnergyLB calls DVFS 17×. Thus,
it reduces the run time in up to 1.33%, which also contributes for the reduction
of the total energy spent. FG-EnergyLB achieves a reduction of up to 5.6% in
average power demand. In this way, reducing both, the power demand and run
time, the total of energy spent is reduced in up to 6.91%.

The energy saving further increases when using thresholds equal to 2.0 or
greater. For these values, the run time reduction is greater than the reduction
of the average power demand. In every call of the load balancer, DVFS was
performed, which resulted in reductions of 7.3% in average power demand and
an average performance improvement of 7.74% compared to noLB. In this way,
FG-EnergyLB is able to save energy by up to 15.6% to Lulesh.

For this application, the threshold variation from 1.0 up to 2.0 presented the
more significant reduction in execution time. When these values were used, the
run time was reduced in up to 11%, while the average power demand is reduced
in up to 6%. Similarly to Ondes3D , both run time and power demand reductions
contribute to the reduction of the total energy consumption.

In the tests with threshold values greater than 2.0, a greater amount of DVFS
is performed, resulting in lower average power demands. However, such reduc-
tions cause an equivalent increase in the total execution time, thus maintaining
the energy consumption constant.

In the execution with threshold equal to 5.0, FG-EnergyLB adjusts the
frequency 8×, which resulted in a reduction of the power in 23.36% and reduction
of energy in 21.50%. However, the run time exceeds the baseline by 2.42%.

4.2 Coarse-Grained EnergyLB Evaluation

These scientific applications present a dynamic behavior, as the load of theirs
tasks change through the iterations, which provides a more challenging scenario
for energy aware load balancing. Since all the 192 cores will be used, differ-
ent parameters are used in the evaluation of the CG-EnergyLB, as shown in
Table 2.

– Ondes3D Application

Experiments with CG-EnergyLB over Ondes3D were performed using 1024
tasks mapped on 192 cores, which run 500 iterations each. Total energy spent to

84 E.L. Padoin et al.

Table 2. Summary of the input parameters of real applications.

Application Tasks Iterations LB Frequency

Ondes3D 1024 500 20

Lulesh 5832 1000 50

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R
el

at
iv

e
to

 n
oL

B

Threshold

34%

5%

31%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(a) Ondes3D .

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

noLB 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
R

el
at

iv
e

to
 n

oL
B

Threshold

25%

14%

15%

Total Time (s)
Energy Consumption (KJ)

Average Power (W)

(b) Lulesh.

Fig. 2. CG-EnergyLB comparison with different threshold value on real applications

run this application without load balancer is 263.1 kJoules and its total execution
time is 200.41 s, which represent an average power demand of 54.71 W. These
values are taken as reference (noLB in Fig. 2(a)) in our analysis.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

P
ow

er
 (W

)

Time (s)

(a) Threshold = 1.0.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

P
ow

er
 (W

)

Time (s)

(b) Threshold = 2.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

P
ow

er
 (W

)

Time (s)

(c) Threshold = 5.0.

Fig. 3. Power evaluation to different threshold value on Ondes3D

Figure 3(a) depicts the instantaneous power of the execution when CG-
EnergyLB uses a threshold value equal to 1.0. In this execution any times
DVFS is performed, in all the 24 load balancer calls tasks were migrated by
RefineLB. In this way, during execution the power of all processors is always
high, resulting in an average power of 54.7 W.

Using threshold equal to 2.5 the processors power is differently reduced as
shown in the Fig. 3(b). For this threshold, 17 times DVFS is performed and only
7 calls migrate tasks by RefineLB. This form, the power is reduced in great

Exploration of Load Balancing Thresholds to Save Energy 85

majority of the processors, which result in a total reduction of 16.08%, leaving
the average power in 43.4 W.

A different amount of energy is saved when using threshold equal to 5.0
(Fig. 3(c)). In this execution in all call (24) adjusts in clock were performed,
leaving only one processor using its maximum power. For this threshold value,
the power demand follows the increase of application needs, once the increases
from the second 160 and reduces again from the second 212. This form, in this
test the average power is reduced in 32.39%, resulting in an average of 35.0 W.

For Ondes3D , the least amount of energy spent is achieved using threshold
value equal to 3.0. Using this value CG-EnergyLB is able to reduce in up to
31% the total energy consumption in relation to baseline noLB. This reduction
is achieved through of the reduction of the average power demand in 34%, which
overcome the time overhead of 5%, as shown in the Fig. 2(a).

– Lulesh Application

Lulesh was executed with 1000 iterations in each one of its 5832 processes
mapped in 192 cores. This application spent 840.6 kJoules of energy and takes
688 s when executed without load balancer. Thus, in this execution the average
power demand is 50.9 W. These values are taken as reference (baseline) and
shown in column noLB of the Fig. 2(b)) to examine the threshold variation of
the Lulesh application.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

P
ow

er
 (W

)

Time (s)

(a) Threshold = 0.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

P
ow

er
 (W

)

Time (s)

(b) Threshold = 1.5.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

P
ow

er
 (W

)

Time (s)

(c) Threshold = 5.0.

Fig. 4. Power evaluation to different threshold value on Lulesh

Instantaneous power measured when the application is executed with thresh-
old equal to 0.5 is depicted in the Fig. 4(a). Using this value, in all load balancing
calls (19 times) were migrated tasks through do RefineLB. Similar to Ondes3D
execution, for this threshold all processors running using a high power during
all execution, which result in an average of power of 50.9 W.

On the other hand, using a threshold equal to 2.5, CG-EnergyLB is able to
reduce the power demand to intermediate levels as shown in the Fig. 4(b). With
this threshold, in this execution are performed 4 times DVFS, which reduced
the power of the processors in 12.7%, to 43.4 W.

For threshold equal to 5.0 (Fig. 4(c)) were adjusted 19 times the clock fre-
quency of cores. This way, the power of most of the processors is reduced to

86 E.L. Padoin et al.

minimum levels saving more energy. The total reduction was of 24%, which
reduced the average power demand to 38.7 W.

The threshold variation from 0.5 up to 2.0 present the reduction more sig-
nificant in energy consumption for this application. Differently from Ondes3D ,
when used these threshold values in CG-EnergyLB load balancer, the runtime
increases in up to 14%, while that the average power demand reduces in up to
25%. In this way, the least amount of energy spent for Lulesh, is achieved using
threshold value equal to 2.0. For this value, CG-EnergyLB reduces the total
energy consumption in up to 15% if compared to baseline noLB. This reduc-
tion is achieved through of the reduction of the average power in 25%, which
overcome an overhead of 14%, as shown in the Fig. 2(b).

5 Conclusions

The exponential increase in power consumption related to a linear increase in
the clock frequency and a higher complexity involved in the processors’ design
changed the course of development of new processors. Power consumption has
become a critical aspect to the development of both large and small scale systems.
This concern is now enough to warrant the research on techniques to improve
the energy efficiency of parallel applications running on top of HPC platforms.

In this paper, we focused on analyzing the trade-off between run time, power
demand and total energy consumption of the variants of our energy-aware load
balancer which aim to reduce the energy consumption and power demand of
parallel applications without considerably degrading their overall performance.

Our results demonstrated that FG-EnergyLB can achieve energy savings
of up to 17.1% with an average of 16.3%, and CG-EnergyLB of up to 31%
with an average of 23% on real-world applications through the reduction of the
average power demand. On the other hand, the total execution time happens
to be reduced or increased according to threshold value. In this way, we can
analyze which is the best threshold value for each application under the total
energy consumption, total execution time or the average power demand focus.

This work can be extended in different directions. One possibility would be
to develop a new load balancer that performs load balancing and DVFS at
the same time in each load balancing step. For that, it would be necessary to
create a heuristic that takes into account the cost of task migrations between
cores/processors that operate in different clock frequencies. Another possibility
would be to develop a hierarchical energy-aware load balancer that performs task
migrations between cores of the same processor and only migrate tasks between
processors when needed. In this scheme, only the processors involved in task
migrations would need their clock frequencies to be adjusted, reducing overhead
of performing DVFS on all processors at each load balancing step. Finally, we
also intend to evaluate the benefits of FG-EnergyLB and CG-EnergyLB on
other real-world applications and platforms.

Acknowledgments. This work was supported by CNPq, CAPES, FAPERGS
and FINEP. This research has received funding from the European Community’s

Exploration of Load Balancing Thresholds to Save Energy 87

Seventh Framework Programme (FP7-PEOPLE) under grant agreement num-
ber 295217, funding from the EU H2020 Programme and from MCTI/RNP-Brazil
under the HPC4E Project, grant agreement number 689772 and STIC-AmSud/CAPES
scientific-technological cooperation program under EnergySFE research project grant
99999.007556/2015-02.

References

1. Aupy, G., Benoit, A., Robert, Y.: Energy-aware scheduling under reliability and
makespan constraints. In: Proceedings of International Conference on High Perfor-
mance Computing (HiPC), pp. 1–10. IEEE Computer Society (2012)

2. Dosanjh, S., Barrett, R., Doerfler, D., Hammond, S., Hemmert, K., Heroux, M.,
Lin, P., Pedretti, K., Rodrigues, A., Trucano, T., et al.: Exascale design space
exploration and co-design. Future Gener. Comput. Syst. 30, 46–58 (2014)

3. Dupros, F., Aochi, H., Ducellier, A., Komatitsch, D., Roman, J.: Exploiting inten-
sive multithreading for the efficient simulation of 3d seismic wave propagation. In:
Proceedings of International Conference on Computational Science and Engineer-
ing, pp. 253–260. IEEE, July 2008

4. Gerards, M.E., Hurink, J.L., Holzenspies, P.K., Kuper, J., Smit, G.J.: Analytic
clock frequency selection for global DVFS. In: Proceedings of Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing (PDP),
pp. 512–519 (2014)

5. Goel, B., McKee, S.A., Gioiosa, R., Singh, K., Bhadauria, M., Cesati, M.: Portable,
scalable, per-core power estimation for intelligent resource management. In: Pro-
ceedings of International Green Computing Conference (IGCC), pp. 135–146. IEEE
Computer Society (2010)

6. Hartog, J., Dede, E., Govindaraju, M.: Mapreduce framework energy adap-
tation via temperature awareness. Cluster Comput. 17(1), 111–127 (2013).
http://dx.doi.org/10.1007/s10586-013-0270-y

7. Hosseinimotlagh, S., Khunjush, F., Hosseinimotlagh, S.: A cooperative two-tier
energy-aware scheduling for real-time tasks in computing clouds. In: Proceedings of
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pp. 178–182 (2014)

8. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24644-2 20

9. Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M.: An analysis
of efficient multi-core global power management policies: Maximizing performance
for a given power budget. In: Proceedings of International Symposium on Microar-
chitecture (MICRO), pp. 347–358. IEEE Computer Society, December 2006

10. Kalé, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G.: Programming Petas-
cale Applications with Charm++ and AMPI, pp. 421–441. Chapman & Hall/CRC
Press (2008)

11. Kalé, L.V., Bhandarkar, M., Brunner, R.: Load balancing in parallel molecular
dynamics. In: Ferreira, A., Rolim, J., Simon, H., Teng, S.-H. (eds.) IRREGULAR
1998. LNCS, vol. 1457, pp. 251–261. Springer, Heidelberg (1998). doi:10.1007/
BFb0018544

http://dx.doi.org/10.1007/s10586-013-0270-y
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://dx.doi.org/10.1007/BFb0018544
http://dx.doi.org/10.1007/BFb0018544

88 E.L. Padoin et al.

12. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw, J.,
Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: Lulesh pro-
gramming model and performance ports overview. Technical report LLNL-TR-
608824. http://www.osti.gov/scitech/servlets/purl/1059462

13. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., DeVito, Z.,
Haque, R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.:
Exploring traditional and emerging parallel programming models using a proxy
application. In: Proceedings of 27th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2013), May 2013

14. Kim, S.g., Eom, H., Yeom, H., Min, S.: Energy-centric DVFS controlling method for
multi-core platforms. In: Proceedings of High Performance Computing, Network-
ing, Storage and Analysis (SCC), pp. 685–690. IEEE Computer Society, November
2012

15. Leung, J.Y.T.: Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. Chapman & Hall/CRC, Boca Raton (2004)

16. Menon, H., Jain, N., Zheng, G., Kalé, L.: Automated load balancing invocation
based on application characteristics. In: Proceedings of IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 373–381. IEEE Computer Society
(2012)

17. Padoin, E., Castro, M., Pilla, L., Navaux, P., Mehaut, J.F.: Saving energy by
exploiting residual imbalances on iterative applications. In: Proceedings of 21st
International Conference on High Performance Computing (HiPC), pp. 1–10,
December 2014

18. Sarood, O., Meneses, E., Kalé, L.V.: A ‘cool’ way of improving the reliability of
HPC machines. In: Proceedings of International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), pp. 58:1–58:12. ACM (2013)

19. Spiliopoulos, V., Bagdia, A., Hansson, A., Aldworth, P., Kaxiras, S.: Introducing
DVFS-management in a full-system simulator. In: Proceedings of International
Symposium on Modelling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pp. 535–545. IEEE Computer Society (2013)

20. Tesser, R.K., Pilla, L.L., Dupros, F., Navaux, P.O.A., Mehaut, J.F., Mendes, C.:
Improving the performance of seismic wave simulations with dynamic load balanc-
ing. In: Proceedings of Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 196–203. IEEE Computer Society, Feb-
ruary 2014

21. Zheng, G., Bhatelé, A., Meneses, E., Kalé, L.V.: Periodic hierarchical load balanc-
ing for large supercomputers. Int. J. High Perform. Comput. Appl. 25(4), 371–385
(2011)

http://www.osti.gov/scitech/servlets/purl/1059462

Parallel Algorithms and Applications

Design of a Task-Parallel Version of ILUPACK
for Graphics Processors

José I. Aliaga1, Ernesto Dufrechou2(B), Pablo Ezzatti2,
and Enrique S. Quintana-Ort́ı1

1 Dep. de Ingenieŕıa y Ciencia de la Computación, Universidad Jaime I,
12.701, Castellón, Spain

{aliaga,quintana}@icc.uji.es
2 Instituto de Computación, Universidad de la República,

11.300, Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. In many scientific and engineering applications, the solution
of large sparse systems of equations is one of the most important stages.
For this reason, many libraries have been developed among which ILU-
PACK stands out due to its efficient inverse-based multilevel precondi-
tioner. Several parallel versions of ILUPACK have been proposed in the
past. In particular, two task-parallel versions, for shared and distributed
memory platforms, and a GPU accelerated data-parallel variant have
been developed to solve symmetric positive definite linear systems. In this
work we evaluate the combination of both previously covered approaches.
Specifically, we leverage the computational power of one GPU (associ-
ated with the data-level parallelism) to accelerate each computation of
the multicore (task-parallel) variant of ILUPACK. The performed exper-
imental evaluation shows that our proposal can accelerate the multicore
variant when the leaf tasks of the parallel solver offer an acceptable
dimension.

Keywords: ILUPACK · Graphic processors · Multi-core processors ·
Sparse linear systems · High performance

1 Introduction

In several scientific applications, the solution of large sparse systems of equa-
tions arise as one of the most important stages. Some examples appear in circuit
and device simulations, quantum physics, large-scale eigenvalue computations,
nonlinear sparse equations, and all kind of applications that involve the dis-
cretization of partial differential equations (PDEs) [6].

ILUPACK1 (incomplete LU decomposition PACKage) is a numerical package
that contains highly efficient sparse linear systems solvers, and can handle large-
scale application problems of up to millions of equations. The solvers are based

1 http://ilupack.tu-bs.de.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 91–103, 2017.
DOI: 10.1007/978-3-319-57972-6 7

http://ilupack.tu-bs.de

92 J.I. Aliaga et al.

on Krylov subspace methods [9], preconditioned with an inverse-based multilevel
incomplete LU (ILU) factorization, which keeps a unique control of the growth of
the inverse triangular factors that determines its superior performance in many
cases [7,10,11].

Despite the remarkable mathematical properties of ILUPACK’s precondi-
tioner, it has the disadvantage of a costly computation and application, in com-
parison with more simple ILU preconditioners like ILU0. In [4] and [5] we pro-
posed the exploitation of task-level parallelism in ILUPACK, for shared and
distributed memory platforms, focusing on symmetric positive definite systems
(s.p.d.), by using the preconditioned Conjugate Gradient (PCG) method. More
recently, in [1] we used graphics accelerators to exploit data-level parallelism in
the application of ILUPACK’s preconditioner without altering its mathematical
and numerical semantics, by off-loading the computationally-intensive kernels to
the device.

In this work we evaluate the combination of both previous approaches, i.e.
shared memory and co-processor data parallelism. Specifically, we leverage the
computational power of one GPU (associated with the data-level parallelism)
to accelerate the individual tasks – i.e. the operations that compose the appli-
cation of the multilevel preconditioner – of the multicore (task-parallel) variant
of ILUPACK. The experimental evaluation shows that our proposal is able to
accelerate the multicore variant when the leaf tasks of the parallel solver offer
an acceptable dimension.

The rest of the paper is structured as follows. In Sect. 2 we review the s.p.d.
solver integrated in ILUPACK and we offer a brief study about the application
of both parallel techniques (task and data-level). This is followed by the detailed
description of our proposal in Sect. 3, and the experimental evaluation in Sect. 4.
Finally, Sect. 5 summarizes the main concluding remarks and offers a few lines
of future work.

2 Overview of ILUPACK

Consider the linear system Ax = b, where A ∈ R
n×n is sparse, b ∈ R

n, and
x ∈ R

n the sought-after solution. ILUPACK integrates an “inverse-based app-
roach” into the ILU factorization of matrix A, in order to obtain a multilevel
preconditioner. In this paper, we only consider systems with A s.p.d., on which
PCG [9] is applied. Although each iteration of the PGC also involves a sparse
matrix-vector product (SpMV) and several vector operations, in the remaining
part of this section we mainly focus on the computation and application of the
preconditioner, which are by far the most challenging operations.

2.1 Sequential (and Data Parallel) ILUPACK

Computation of the Preconditioner. This operation of ILUPACK relies
on the Crout variant of the incomplete Cholesky (IC) factorization, yielding
the approximation A ≈ LΣLT , with L ∈ R

n×n sparse lower triangular and

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 93

Σ ∈ R
n×n diagonal. Before the factorization commences, a scaling and a reorder-

ing (defined respectively by P,D ∈ R
n×n) are applied to A in order to improve

the numerical properties as well as reduce the fill-in in L. After these initial
transforms, the factorization operates on Â = PTDADP . At each step of the
Crout variant, the “current” column of Â is initially updated with respect to the
previous columns of the triangular factor L, and the current column of L is then
computed. An estimation of the norm of the inverse of L, with the new column
appended, is obtained next. If this estimation is below a predefined threshold κ,
the new column is accepted into the factor; otherwise the updates are reversed,
and the corresponding row and column of Â are moved to the bottom-right
corner of the matrix. This process is graphically depicted in Fig. 1. Once Â is
completely processed in this manner, the trailing block only contains rejected
pivots, and a partial IC factorization of a permuted matrix is computed:

P̂T ÂP̂ ≡
[

B FT

F C

]
=

[
LB 0
LF I

] [
DB 0
0 Sc

] [
LT
B LT

F

0 I

]
+ E. (1)

Here, ‖L−1
B ‖ � κ and E contains the elements dropped during the IC factoriza-

tion. Restarting the process with A = Sc, we obtain a multilevel approach.

Fig. 1. A step of the Crout variant of the preconditioner computation.

Application of the Preconditioner. The application of the preconditioner
in the PCG algorithm consists in the solution of the linear system z := M−1r,
where M is the preconditioner and r is the current residual. From (1), the pre-
conditioner can be recursively defined, at level l, as

Ml = D−1PP̂

[
LB 0
LF I

] [
DB 0
0 Ml+1

] [
LT
B LT

F

0 I

]
P̂TPTD−1, (2)

where M0 = M . Operating properly on the vectors,

P̂TPTD−1z = ẑ =
[

ẑB
ẑC

]
, P̂TPTDr = r̂ =

[
r̂B
r̂C

]
, (3)

94 J.I. Aliaga et al.

and applying LF = FL−T
B D−1

B (derived from (1)), we can expose the following
computations to be performed at each level of the preconditioner [1]:

Before: r̂ := P̂TPTDr, Solve LBDBLT
BsB = r̂B for sB ,

tB := FsB , yC := r̂B − tB,
Recursive step: Solve Ml+1ẑC = yC for ẑC ,
After: t̂B := FT ẑC , Solve LBDBLT

B ŝB = t̂B for ŝB,

ẑB := sB − ŝB , z := DPP̂ ẑ.

(4)

To conclude this subsection, we emphasize that the data-parallel version of
ILUPACK proceeds exactly in the same manner as the sequential implementa-
tion and, therefore, preserves the semantics of a serial execution.

2.2 Task Parallel ILUPACK

Following, we summarize the main ideas behind the task parallel version of
ILUPACK. A more detailed explanation can be found in [4].

Computation of the Preconditioner. The task parallel version of this pro-
cedure employs Nested Dissection [9] to extract parallelism. To illustrate this,
consider a ND partition, defined by a permutation P̄ ∈ R

n×n, such that

P̄TAP̄ =

⎡
⎣ A00 0 A02

0 A11 A12

A20 A21 A22

⎤
⎦ . (5)

Computing a partial IC factorizations of the two leading blocks, A00 and A11,
yields the following partial approximation of P̄TAP̄

⎡
⎢⎣

L00 0 0
0 L11 0

L20L21 I

⎤
⎥⎦

⎡
⎢⎣

D00 0 0
0 D11 0
0 0 S22

⎤
⎥⎦

⎡
⎢⎣

LT
00 0 LT

20

0 LT
11 LT

21

0 0 I

⎤
⎥⎦ + E01,

where
S22 = A22 − (L20D00L

T
20) − (L21D11L

T
21) + E2, (6)

is the approximate Schur complement. By recursively proceeding in the same
manner with S22, the IC factorization of P̄TAP̄ is eventually completed.

The block structure in (5) allows the permuted matrix to be decoupled into
two submatrices, so that the IC factorizations of the leading block of both sub-
matrices can be processed concurrently, with

A22 = A0
22 + A1

22,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
A00 A02

A20 A0
22

]
=

[
L00 0
L20 I

] [
D00 0
0 S0

22

] [
LT
00 LT

20

0 I

]
+ E0

[
A11 A12

A21 A1
22

]
=

[
L11 0
L21 I

] [
D11 0
0 S1

22

] [
LT
11 LT

21

0 I

]
+ E1,

(7)

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 95

and

S0
22 = A0

22 − (
L20D00L

T
20

)
+ E0

2 ; S1
22 = A1

22 − (
L21D11L

T
21

)
+ E1

2 .

Once the two systems are computed, S22 can be constructed given that

E2 ≈ E0
2 + E1

2 → S22 ≈ S0
22 + S1

22. (8)

To further increase the amount of task-parallelism, one could find a permutation
analogous to P̄ for the two leading blocks following the ND scheme. For example,
a block structure similar to (5) would yield the following decoupled matrices:

⎡
⎢⎢⎢⎢⎢⎣

A00 0 0 0 A04 0 A06
0 A11 0 0 A14 0 A16
0 0 A22 0 0 A25 A26
0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46
0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

⎤
⎥⎥⎥⎥⎥⎦

→

Ā00 =

⎡
⎣
A00 A04 A06

A40
A60

A0
44 A0

46
A0

64 A0
66

⎤
⎦Ā11 =

⎡
⎣
A11 A14 A16

A41
A61

A1
44 A1

46
A1

64 A1
66

⎤
⎦

Ā22 =

⎡
⎣
A22 A25 A26

A52
A62

A2
55 A2

56
A2

65 A2
66

⎤
⎦Ā33 =

⎡
⎣
A33 A35 A36

A53
A63

A3
55 A3

56
A3

65 A3
66

⎤
⎦

(9)

Figure 2 illustrates the dependency tree for the factorization of the diagonal
blocks in (9). The edges of the preconditioner directed acyclic graph (DAG)
define the dependencies between the diagonal blocks (tasks), which dictate the
order in which these blocks of the matrix have to be processed.

Fig. 2. Dependency tree of the diagonal blocks. Task Tj is associated with block Ajj .
The leaf tasks are associated with the subgraphs of the leading block of the ND, while
inner tasks are associated to separators.

Thus, the task-parallel version of ILUPACK partitions the original matrix
into a number of decoupled blocks, and then delivers a partial IC factorization
during the computation of (7), with some differences with respect to the sequen-
tial procedure. The main change is that the computation is restricted to the
leading block, and therefore the rejected pivots are moved to the bottom-right
corner of the leading block; see Fig. 3. Although the recursive definition of the
preconditioner, shown in (2), is still valid in the task-parallel case, some recur-
sion steps are now related to the edges of the corresponding preconditioner DAG,
therefore different DAGs involve distinct recursion steps yielding distinct precon-
ditioners, which nonetheless exhibit close numerical properties to that obtained
with the sequential ILUPACK [4].

96 J.I. Aliaga et al.

Fig. 3. A step of the Crout variant of the parallel preconditioner computations.

Application of the Preconditioner. As the definition of the recursion is
maintained, the operations to apply the preconditioner, in (4), remain valid.
However, to complete the recursion step in the task parallel case, the DAG has
to be crossed two times per solve zk+1 := M−1rk+1 at each iteration of the
PCG: once from bottom to top and a second time from top to bottom (with
dependencies/arrows reversed in the DAG).

3 Proposal

In this section we present our strategy to enable GPU acceleration in the mul-
ticore version of ILUPACK. We analize two different approaches. The first one
entirely off–loads the leaf tasks of the preconditioner application phase to the
GPU, while the second one uses a threshold to use the GPU only when there is
enough work to take advantage of the accelerator.

Our solution is designed for multicore platforms equipped with one GPU,
using different streams to queue work that belongs to different tasks, but the
idea is easily extensible to a multi-GPU context.

3.1 All Leafs in GPU, GPUall

The task-parallel version of ILUPACK is based on a ND, that results in a task
tree where only leaf tasks perform an important amount of work. Inner tasks
correspond to the separator subgraphs in the ND process, and hence have much
less work than their leaf counterparts. For this resason we only consider leaf
tasks from here on.

The leaf tasks are independent from each other and can be executed concur-
rently provided sufficient threads were available. Therefore, we associate each
of these tasks with a different GPU stream. Also, each task has its own data
structure, both in CPU and GPU memory, containing the part of the multilevel
preconditioner relevant to it, together with private CPU and GPU buffers. At the

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 97

beginning of the application, where these buffers are allocated, our GPU-enabled
versions make this memory non-pageable in order to perform asynchronous mem-
ory transferences between the CPU and the GPU.

For the GPUall version of the preconditioner application, the computation
on each node of the DAG is based on the data-parallel version presented in [1].
It proceeds as described in Sect. 2.1, with the difference that, in this case, the
forward and backward substitution are separated and spread upon the levels of
the task-tree. Now, entering or leaving the recursive step in Eq. (2) sometimes
implies moving to a different level in the task tree hierarchy. In these cases, the
residual rk+1 has to be transferred to the GPU at the beginning of the forward
substitution phase, and the intermediate result has to be transfered back to
the CPU buffers before entering the recursive step. This communication can be
broken down into several asynchronous transfers from the device to pinned host
memory, given the nature of the multilevel forward substitution. Furthermore,
it can be overlapped almost entirely with other computations. Once the inner
tasks compute the recursive steps, the backward substitution proceeds from top
to bottom until finally reaching the leaf tasks again, where the zk+1 vector has
to be transferred to the GPU, on which the last steps of the calculation of the
preconditioned residual zk+1 := M−1rk+1 are performed. Upon completion, the
preconditioned residual zk+1 is retrieved back to the CPU, making asynchronous
transfers for each algebraic level of the preconditioner.

The computational cost of the preconditioner application corresponds mostly
to two types of operations, the solution of (LD

1
2) and (D

1
2 LT) linear systems and

SpMVs. The rest of the operations involve vector scalings, reorderings, and sub-
stractions, which have relatively lower cost. We employ the CUSPARSE library
kernels for the first two operations, while the lower cost operations (i.e. a diago-
nal scalings, vector permutations and a vector updates) are performed by ad-hoc
kernels. The optimal block size for this kernels was determined experimentally,
and was set to 512 threads.

This version aims to accelerate the computations involved by the leaf tasks
while keeping a low communication cost, relying on the results obtained for the
GPU acceleration of the serial version, and the streaming capabilities offered by
the new GPU architectures. However, this version has serious drawbacks. The
division of the work in various leaf tasks reduces the size of each independent lin-
ear system, and the multilevel ILU-factorization of the preconditioner produces
levels of even smaller dimension. This can have a strong negative impact on the
performance of massively parallel codes [8], and specifically on the CUSPARSE
library kernels. It should be noted that the amount of data-parallelism available
in the sparse triangular linear systems is severely reduced, leading to a poor
performance of the whole solver. Additionally, the work assigned to the CPU in
this variant is really minor, impeding the concurrent use of both devices.

3.2 Threshold Based Version, GPUthres

In order to deal with the disadvantages of the previous version, we propose a
threshold-based strategy, that computes the algebraic levels in the GPU until

98 J.I. Aliaga et al.

certain granularity, and the remaining levels in the CPU. This aims to produce
two effects. On one hand, allowing the smaller and highly data-dependent levels
to be computed on the CPU while the first levels, of larger dimension and higher
data-parallelism, run on the GPU, implies that each operation is performed in
the most convenient device. On the other hand, this strategy also improves the
concurrent execution of both devices, increasing the overlap of the CPU and
GPU sections of the code.

Regarding data transfer, in this approach the working buffer has to be
brought to the CPU memory at some point of the forward substitution phase,
and it has to be transferred to the GPU before the backward substitution of the
upper triangular system ends. Moreover, these transfers are synchronous with
respect to the current task or GPU stream, since the application of one algebraic
level of the multilevel precondioner cannot commence until the results from the
previous level are available.

In this variant we determine the threshold value experimentally. Our on-going
work aims to identify the best algorithmic threshold from a model capturing the
algorithm’s performance.

4 Numerical Evaluation

In this section we summarize the experiments carried out to evaluate the per-
formance of the proposal. Our primary goal is to assess the use of the GPU
in the task-parallel version of ILUPACK. In order to do so, we compare our
two GPU-accelerated versions with the original task-parallel ILUPACK, which
exploits shared-memory parallelism via the OpenMP interface. All experiments
reported were obtained using IEEE double-precision arithmetic.

4.1 Experimental Setup

The performance evaluation was carried out in a server equipped with an Intel(R)
Xeon(R) CPU E5-2620 v2 of six physical cores, running at 2.10 GHz, with 132 GB
of DDR3 RAM memory. The platform also features a Tesla K40m GPU (of the
Kepler generation) with 2,880 CUDA Cores and 12 GB of GDDR5 RAM.

The CPU code was compiled with the Intel(R) Parallel Studio 2016 (update
3) using the -O3 flag. The GPU compiler and the CUSPARSE Library correspond
to version 6.5 of the CUDA Toolkit.

The benchmark utilized for the test is a s.p.d. case of scalable size derived
from a finite difference discretization of the 3D Laplace problem. We generated
4 instances of different dimension; see Table 1. In the linear systems, the right-
hand side vector b was initialized to A(1, 1, . . . , 1)T , and the preconditioned CG
iteration was started with the initial guess x0 ≡ 0. For the tests, the parameter
that controls the convergence of the iterative process in ILUPACK, restol, was
set to 108. The drop tolerance, and the bound to the condition number of the
inverse factors, which control ILUPACK’s multilevel incomplete factorization
process, where set to 0.01 and 5 respectively.

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 99

Table 1. Matrices employed in the experimental evaluation.

Matrix Dimension n nnz nnz/n

A126 2,000,376 7,953,876 3.98

A159 4,019,679 16,002,873 3.98

A171 5,000,211 19,913,121 3.98

A200 8,000,000 31,880,000 3.99

A252 16,003,008 63,821,520 3.99

4.2 Results

Each test instance was executed with 2 and 4 CPU threads with f = 2 and
f = 4 respectively. The parameter f is related with the construction of the task
tree. The algorithm that forms this tree relies on an heuristic estimation of the
computational cost of each leaf task and divides a leaf into two whenever its
correspondent subgraph has more edges than the number of edges of the whole
graph divided by f . The parameter f is chosen so that, in general, there are
more leaf tasks than processors. In [2,3] the authors recomend choosing a value
between p and 2p, where p is the number of processors.

Table 2 summarizes the structure of the multilevel preconditioner and the
linear systems corresponding to leaf tasks that were generated using the afore-
mentioned parameters. For each one of the tested matrices, the table presents the
number of leaf tasks that resulted from the task tree construction for f = 2 and
f = 4, and next to it shows the average dimension of the algebraic levels of the
corresponding multilevel preconditioner, the average number of nonzeros, and
the average row density of the levels, with their respective standard deviation.
It can be easily observed that a higher value of f results in more leaf tasks of
smaller dimension. Regarding the algebraic levels of the factorization, the table
shows how the average dimension of the involved matrices decreases from one
level to the next. It is important to notice how, in the second algebraic level,
the submatrices already become about one third smaller in dimension, and have
five times more non zero elements on each row. In other words, the subproblems
become dramatically smaller and less sparse with each level of the factorization,
causing that, in this case, only the first algebraic level is attractive for GPU
acceleration.

Table 3 shows the results obtained for the original shared-memory version
and the two GPU-enabled ones for the matrices of the Laplace problem. In the
table, the total runtime of PCG, as well as the time spent on the preconditioner
application stage and the SpMV are presented. The table also shows the number
of iterations taken to converge to the desired residual tolerance, and the final
relative residual error attained, which is calculated as

R(x∗) :=
||b − Ax∗||2

||x∗||2 ,

where x∗ stands for the computed solution.

100 J.I. Aliaga et al.

Table 2. Number of leaf tasks and average structure of each algebraic level of the pre-
conditioner using f = 2 and f = 4. To represent the structure of the levels, the average
dimension, the number of non-zeros and the rate of non-zeros per row is presented,
toghether with the respective standard deviations.

Matrix # th./f # leaves Level Avg. n σ(n) Avg. nnz σ(nnz) nnz
n

σ(nnz
n

)

A159 2 3 0 1,006,831 345,798 6,193,794 2,183,862 6.1 0.1

1 317,362 113,151 9,682,114 3,486,401 30.5 0.2

2 2,875 736 10,099 2,014 3.6 0.6

4 6 0 502,108 159,044 3,116,629 1,005,408 6.2 0.1

1 156,048 50,647 4,685,500 1,537,905 30.0 0.2

2 1,251 437 4,095 1,754 3.2 0.4

A171 2 2 0 1,881,030 16,604 11,421,390 123,868 6.1 0.1

1 598,152 1,384 18,490,583 154,695 30.9 0.2

2 6,304 984 23,444 7,247 3.7 0.6

4 4 0 937,998 6,011 5,764,461 71,397 6.1 0.1

1 294,702 1,310 8,967,985 72,180 30.4 0.2

2 2,845 506 10,885 3,768 3.7 0.7

A200 2 3 0 2,003,212 795,192 12,207,556 4,592,834 6.1 0.1

1 636,895 253,696 19,665,756 8,089,987 30.8 0.4

2 6,466 3,316 23,189 12,912 3.5 0.2

4 7 0 856,365 186,595 5,283,746 1,141,907 6.2 0.1

1 268,523 595,53 8,155,375 1,842,559 30.3 0.2

2 2,449 525 8,552 2,032 3.5 0.4

A252 2 3 0 4,004,955 1,694,044 24,271,087 9,856,575 6.1 0.1

1 1,283,180 543,882 39,965,828 17,408,294 31.0 0.3

2 14,762 7,162 57,168 28,744 3.8 0.1

4 6 0 1,998,470 494,294 12,196,071 3,070,313 6.1 0.1

1 635,612 159,942 19,603,140 4,936,718 30.8 0.1

2 6,523 1,429 23,807 5,758 3.6 0.3

First, it should be noted that there are no significant differences, from the
perspective of accuracy, between the task-parallel CPU variant and the GPU-
enabled ones. Specifically, the three versions reach the same number of iterations
and final relative residual error for each case, see Table 3.

From the perspective of performance it can be observed that, on one hand,
GPUall only outperforms the multi-core version for the largest matrices (A252)
and in the context of 2 CPU threads. This result was expected, as the GPU
requires large volumes of computations to really leverage the device and hide
the overhead due to memory transfer. On the other hand, GPUthres is able
to accelerate the multi-core counterpart for all covered cases, see Fig. 4. This
result reveals the potential benefit that arise from overlapping computations
on both devices. Hence, even in cases where the involved matrices presented
modest dimension, this version outperforms the highly tuned multi-core version.
Additionally, the benefits related with the use of the GPU are similar for all
matrices of each configuration, though the percentage of improvement is a bit
higher for the smaller cases. This behavior is not typical for GPU-based solvers
and one possible explanation is that the smaller cases are near to the optimal
point (from the threshold perspective) while the largest cases are almost able to

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 101

Table 3. Runtime (in seconds) of the three task-parallel variants.

threads Matrix Version Iters Total SpMV Total prec Total PCG R(x∗)

2 A159 CPUomp 88 2.30 29.55 32.86 1.39E-08

GPUall 44.33 47.46

GPUthres 20.46 23.83

A171 CPUomp 97 3.07 39.43 43.87 1.52E-08

GPUall 48.02 52.36

GPUthres 30.62 35.19

A200 CPUomp 107 5.83 71.58 79.98 2.45E-08

GPUall 84.37 92.61

GPUthres 47.73 56.26

A252 CPUomp 131 13.86 175.66 195.67 3.23E-08

GPUall 153.48 173.62

GPUthres 120.19 140.50

4 A159 CPUomp 88 1.30 22.72 24.55 9.96E-09

GPUall 44.82 46.40

GPUthres 15.21 17.15

A171 CPUomp 95 1.58 22.43 24.76 2.20E-08

GPUall 57.84 59.78

GPUthres 17.50 19.87

A200 CPUomp 108 3.13 40.34 45.03 1.06E-08

GPUall 108.37 112.41

GPUthres 33.80 38.60

A252 CPUomp 130 8.25 104.21 116.37 2.16E-08

GPUall 193.19 204.74

GPUthres 90.05 104.60

20

40

60

80

100

120

140

160

180

CPU
GPU

all

GPU
thres

A159 A171 A200 A252 A159 A171 A200 A252
0

20

40

60

80

100

120

140

160

180

200

CPU
GPU

all

GPU
thres

Fig. 4. Execution time (in seconds) of preconditioner application for the three task
parallel variants, using two (left) and four (right) CPU threads. CPU version is the
blue line with crosses. GPUall version is the red line with circles. GPUthres is the black
line with stars. (Color figure online)

102 J.I. Aliaga et al.

Table 4. Runtime (in seconds) of GPUthres adjusting the threshold to compute 1 and
2 levels in the GPU.

threads Matrix GPU1lev GPU2lev GPUall

2 A159 23.83 43.79 44.33

A171 35.19 47.52 48.02

A200 56.26 84.16 84.37

A252 140.50 153.79 153.48

4 A159 17.15 44.54 44.82

A171 19.87 57.21 57.84

A200 38.60 108.70 108.37

A252 104.60 185.72 193.19

compute 2 levels in GPU. This can be noticed in Table 4, were we add a variant
that computes the first 2 levels on the accelerator. As the multilevel factorization
generates only 3 levels, with the third one very small with respect to the other
two, it is not surprising that the runtimes of this version are almost equivalent
to those of GPUall. The table shows how the penalty of computing the second
level in the GPU decreases as the problem dimension grows.

Finally, GPUthres also offers higher performance improvements for the 2-
threads case than for its 4-threads counterpart.

5 Final Remarks and Future Work

In this work we have extended the task-parallel version of ILUPACK so that
leaf tasks can exploit the data-parallelism of the operations that compose the
application of the multilevel preconditioner, i.e. SpMV and the solution of tri-
angular linear systems, along with some minor vector operations. We presented
two different GPU versions, one that computes the entire leafs in the acceler-
ator (GPUall) and an alternative that employs a threshold to determine if a
given algebraic level of the preconditioner presents enough granularity to take
advantage of the GPU (GPUthres). Both variants are executed on a single GPU,
asigning a GPU stream to each independent leaf task.

The experimental evaluation shows that the division of the workload in
smaller tasks makes difficult the extraction of enough data-parallelism to fully
occupy the hardware accelerator, and this results in poor performance for
GPUall. However, GPUthres is able to execute each operation in the most con-
venient device while mantaining a moderate communication cost, outperforming
the original multicore version for all the tested instances.

As part of future work we plan to advance towards the GPU acceleration of
the distributed task-parallel version of ILUPACK. An intermediate step of this
process involves the study of integrating a multi-GPU scenario in the current
task parallel versions. Additionally, we plan to develop a mathematical model
for the GPU-offload threshold, which was determined empirically in the present
work.

Design of a Task-Parallel Version of ILUPACK for Graphics Processors 103

Acknowledgments. The researchers from the Universidad Jaime I were supported by
the CICYT project TIN2014-53495R of The researchers from UdelaR were supported
by PEDECIBA and CAP-UdelaR Grant.

References

1. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Lever-
aging data-parallelism in ILUPACK using graphics processors. In: 2014 IEEE 13th
International Symposium on Parallel and Distributed Computing, pp. 119–126.
IEEE (2014)

2. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization of
multilevel preconditioners constructed from inverse-based ILUs on shared-memory
multiprocessors. Parallel Comput. Archit. Algorithms Appl. 38, 287–294 (2007)

3. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Design,
tuning and evaluation of parallel multilevel ILU preconditioners. In:
Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.)
VECPAR 2008. LNCS, vol. 5336, pp. 314–327. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-92859-1 28

4. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37(3), 183–202 (2011)

5. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28151-8 16

6. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, vol. 43. SIAM,
New Delhi (1994)

7. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30
(2012)

8. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach. Newnes, Boston (2012)

9. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publica-
tions, New Delhi (2003)

10. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2009)

11. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques
for the anderson model of localization. SIAM Rev. 50, 91–112 (2008)

http://dx.doi.org/10.1007/978-3-540-92859-1_28
http://dx.doi.org/10.1007/978-3-540-92859-1_28
http://dx.doi.org/10.1007/978-3-642-28151-8_16

A Taxonomy of Workflow Scheduling Algorithms

Fernando Aguilar-Reyes and J. Octavio Gutierrez-Garcia(B)

Department of Computer Science, ITAM, Ŕıo Hondo 1,
01080 Mexico City, Mexico

faguilarr@comunidad.itam.mx, octavio.gutierrez@itam.mx

Abstract. A workflow is a set of steps or tasks that model the execution
of a process, e.g., protein annotation, invoice generation and composition
of astronomical images. Workflow applications commonly require large
computational resources. Hence, distributed computing approaches (such
as Grid and Cloud computing) emerge as a feasible solution to execute
them. Two important factors for executing workflows in distributed com-
puting platforms are (1) workflow scheduling and (2) resource allocation.
As a consequence, there is a myriad of workflow scheduling algorithms
that map workflow tasks to distributed resources subject to task depen-
dencies, time and budget constraints. In this paper, we present a taxon-
omy of workflow scheduling algorithms, which categorizes the algorithms
into (1) best-effort algorithms (including heuristics, metaheuristics, and
approximation algorithms) and (2) quality-of-service algorithms (includ-
ing budget-constrained, deadline-constrained and algorithms simulta-
neously constrained by deadline and budget). In addition, a workflow
engine simulator was developed to quantitatively compare the perfor-
mance of scheduling algorithms.

Keywords: Workflow scheduling · Distributed computing · Scheduling
algorithms

1 Introduction

Complex computing applications involving massive data or multimedia process-
ing demanding powerful computing resources are increasingly common. For
instance, there are financial institutions that handle millions of transactions,
which are queued for execution during the day, and processed during the night.
The transactional negotiation engine of the Mexican Stock Exchange can man-
age up to 100,000 transactions per second [4]. Another instance is the Large
Hadron Collider of the European Organisation for Nuclear Research, which each
year generates 15 petabytes of data to be analyzed [20].

Workflow applications are commonly constrained by time, budget and
quality-of-service parameters. For this reason, it is of vital importance to schedule
workflow tasks on multiple computing resources.

We define a schedule as a function that maps workflow tasks to computing
resources (services) with appropriate hardware and software specifications to
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 104–115, 2017.
DOI: 10.1007/978-3-319-57972-6 8

A Taxonomy of Workflow Scheduling Algorithms 105

successfully execute the tasks taking into account workflow constraints [24], e.g.,
task ordering constraints. Most of the workflow scheduling approaches focuses on
minimizing makespan (i.e., workflow execution time) by optimizing the schedule.
However, with the emergence of the Cloud computing paradigm, in addition to
minimizing makespan, both deadline-constrained and budget-constrained work-
flow scheduling algorithms have been designed.

Nevertheless, due to the existence of numerous and different workflow man-
agement systems using proprietary workflow specifications, there is no consen-
sus for a common definition of workflow [9]. This lack of consensus causes that
a workflow can be interpreted from multiple perspectives and results in a con-
fusion of what a workflow represents. Therefore, it is necessary to establish a
reference for workflow specification to enable the design of workflow algorithms
with various objectives, such as minimizing makespan or making an efficient use
of a given budget.

The paper is organized as follows: in Sect. 2 we formally define the workflow
scheduling problem. In Sect. 3 we present a taxonomy of workflow scheduling
algorithms. Also, in Sect. 4 we present a quantitative comparison of commonly
used workflow scheduling algorithms by using our workflow engine simulator.
In Sect. 5 we describe other taxonomies and software platforms for executing
workflow applications. Finally, in Sect. 6 we present some concluding remarks.

2 The Scheduling Problem

Scheduling is the process of mapping workflow tasks to computing resources tak-
ing into account ordering constraints of tasks and multiple sets of available com-
puting resources. In this section, we define a fundamental form of the scheduling
problem in order to study its properties.

2.1 The Fundamental Scheduling Problem

Ullman et al. [22] define the fundamental scheduling problem as a composition
of the following elements:

1. A set of tasks J = {J1, J2, . . . , Jn}
2. A partial ordering ≺ over J
3. A cost function U : J �→ Z

+ that maps an execution time to a task in J
4. A set of k computing resources (processors)

In [22], the main goal of the fundamental workflow scheduling problem is to
minimize the makespan denoted by tmax and subject to a partial ordering ≺ by
mapping tasks from J to k computing resources. Also, it is worth mentioning
that all the tasks are assumed to be executed without any errors or interruptions.

Hence, the number of combinations of tasks and possible sets of computing
resources becomes prohibitively large and leads to different makespans. In fact,
Ullman et al. proved that the fundamental scheduling problem belong to the
NP-complete complexity class [22].

106 F. Aguilar-Reyes and J.O. Gutierrez-Garcia

2.2 The Workflow Scheduling Problem

Workflows as Directed-Acyclic Graphs (DAGs). Mair et al. [14] propose
an intermediate workflow representation language based on a DAG structure
in order to parse XML-based definitions of Grid workflow applications. This is
evidence of the usefulness of representing workflows with DAGs.

As we described in Sect. 1, a workflow can be interpreted from multiple per-
spectives. However, by using a DAG as a workflow representation, we can rep-
resent tasks as nodes and ordering constraints as edges. That is the reason why
we make use of DAGs for modeling workflows.

Furthermore, by using the abstract Grid workflow language, it is possible
to model workflows with conditional execution paths using if, while, for and
parallel constructions. With these features, it is possible to represent a wide
variety of workflows. However, in order to study workflows with conditional
execution paths, it is necessary to use branch prediction mechanisms, which are
out of the scope of this paper.

Workflow Scheduling Problem Statement. Using a DAG workflow rep-
resentation, we define the workflow scheduling problem based on Wieckzorek-
Prodan’s definitions [23].

Definition 1. A workflow is a DAG w ∈ W, w = (V, E) with a set of nodes
V representing tasks τ ∈ T and a set of edges representing data transferences
ρ ∈ D.

In the definition stated above, graph edges not only represent data dependencies
between tasks, but they could also represent ordering constraints between work-
flow tasks. Next, we define the computing resources in which workflow tasks are
executed.

Definition 2. A service is a computing entity that can execute a workflow task
τ ∈ T . The set of all available services for executing a workflow is denoted as S.

Thus, we can define scheduling as a mapping function between services and
workflow tasks.

Definition 3. A workflow schedule is a function f : T �→ S that maps ser-
vices to tasks of a workflow w. The set that contains all possible schedules is
denoted as F .

Each possible schedule over a workflow w has an execution cost. Then, a workflow
execution has an associated cost model.

Definition 4. A cost model C = {c1, . . . , cn} is a set of criteria that are used
to represent constraints on workflow execution, e.g., deadlines, budget limita-
tions, among others.

A Taxonomy of Workflow Scheduling Algorithms 107

Definition 5. For each criterion ci ∈ C, there exists a partial cost function
Θi : S �→ R that maps a cost to services, which execute the workflow taking into
account the constraints in ci.

It should be noted that partial cost functions determine task-related costs.

Definition 6. For each criterion ci ∈ C, there is a total cost function Δi :
W × F �→ R, that assigns a workflow w with a schedule f a cost composed by
partial costs related to the resources specified in f for executing the workflow.

Therefore, the main goal of the workflow scheduling problem is to find the sched-
ule f that minimizes the total cost functions Δi, 1 ≤ i ≤ n.

3 Taxonomy of Workflow Scheduling Algorithms

Nowadays, there are numerous workflow scheduling problems. Then, there are
several research efforts aiming at classifying them [21,28] in order to grasp the
basic idea behind the algorithms.

According to Yu et al. [28], workflow scheduling algorithms can be divided
in two groups: (1) best-effort algorithms and (2) quality-of-service algorithms.
The first category includes algorithms that minimize only one criterion, e.g.,
makespan, by making use of all the available resources. The latter category
includes algorithms that look for a schedule that complies with the constraints
specified in a given cost model.

In addition, each group of algorithms has subdivisions. Figure 1 shows the
taxonomy proposed in this work.

Fig. 1. Taxonomy of workflow scheduling algorithms

108 F. Aguilar-Reyes and J.O. Gutierrez-Garcia

3.1 Best Effort Scheduling Algorithms

These algorithms try to minimize a criterion by making their best effort with
the available resources. Usually, best-effort algorithms are designed to minimize
makespan.

In addition, best-effort algorithms can be classified into heuristic algorithms,
metaheuristic algorithms, and approximation algorithms. Heuristic algorithms
exploit knowledge on a specific workflow pattern that may find near-optimal
schedules under certain conditions [28]. Metaheuristic algorithms include algo-
rithms that select or generate heuristics that produce the best schedules using a
search methodology. Approximation algorithms are polynomial-time algorithms
that guarantee a suboptimal solution within an approximation ratio.

Best-Effort Heuristic Algorithms. The best-effort heuristic algorithms can
be divided into the following groups: (a) immediate algorithms (also known as
individual task scheduling algorithms [28]), (b) list-based algorithms, (c) task
clustering and (d) task duplication.

The most well-known immediate algorithm is the myopic algorithm [17]. The
main idea behind the myopic algorithm is to assign tasks to the least loaded
computing resource. List-based algorithms, such as MaxMin, MinMin and Suf-
ferage [13], establish a priority list of tasks, and then, tasks from the priority
list are assigned to a computing resource in order to optimize a criterion. In the
case of task clustering algorithms, e.g., TANH [2], they create 1-element sets
with one task, and then, they optimize the schedule by merging those sets to
reduce costs associated to data transfers between tasks. Finally, task duplication
algorithms (e.g., Hybrid [18] and TANH [2]) duplicate the execution of certain
tasks to reduce communication costs between computing resources.

Best-Effort Metaheuristic Algorithms. In this group, algorithms are clas-
sified according to their search method. There are four types of best-effort meta-
heuristic algorithms, which are as follows: (a) genetic algorithms, (b) Greedy
Randomized Adaptive Search Procedure –GRASP–, (c) simulated annealing and
(d) particle swarm optimization.

Workflow scheduling algorithms based on genetic algorithms simulate the
natural selection process for the selection of the best individual (schedule) that
optimizes a given criterion. In addition, these algorithms use a mutation process
in order to avoid local minima [27]. The GRASP algorithm [3] generates random
schedules and using a greedy approach, it chooses local optimal solutions [3].
Simulated annealing algorithms emulate a crystal formation process, enhancing
the quality of the solution with each iteration [25].

Best-Effort Approximation Algorithms. Approximation algorithms are
poly-nomial-time algorithms that guarantee a suboptimal solution within an
approximation ratio. However, very few approximation algorithms for workflow

A Taxonomy of Workflow Scheduling Algorithms 109

scheduling have been proposed [10]. Furthermore, most of them assume a con-
stant performance of computing resources and are mostly focused on minimizing
makespan, see, for instance [1,7].

3.2 Quality-of-Service Scheduling Algorithms

These algorithms look for schedules that comply with a set of constraints that
represent the quality-of-service requirements that must be fulfilled. Usually, these
requirements involve deadline and/or budget constraints as well as task-level
constraints.

Quality-of-service scheduling algorithms can be divided into budget-
constrained algorithms, deadline-constrained algorithms, and algorithms simul-
taneously constrained by deadline and budget. Budget-constrained algorithms
include algorithms that find schedules that execute workflows staying within a
given budget. Deadline-constrained algorithms include algorithms that look for
schedules that execute workflows meeting a given deadline. Finally, algorithms
simultaneously constrained by deadline and budget include algorithms that look
for schedules that execute workflows meeting both a given deadline and a given
budget simultaneously.

Budget-Constrained Scheduling Algorithms. Budget-constrained schedul-
ing algorithms are divided into: (a) heuristics and (b) metaheuristics.

On the one hand, budget-constrained workflow scheduling algorithms based
on heuristics exploit knowledge about the workflow structure in order to reduce
the search space and find feasible solutions, see for instance the LOSS/GAIN
algorithm [19]. On the other hand, budget-constrained workflow scheduling algo-
rithms based on metaheuristics keep the best feasible solutions, see for instance
the genetic algorithm proposed by Yu et al. [27] whose fitness function favors
schedules that stay within a given budget with low makespans.

Deadline-Constrained Scheduling Algorithms. In a similar manner to
budget-constrained scheduling algorithms, deadline-constrained scheduling algo-
rithms are divided into: (a) heuristics and (b) metaheuristics.

An instance of a deadline-constrained scheduling algorithm based on heuris-
tics is the back-tracking algorithm proposed by Menascé et al. [15]. An instance
of a deadline-constrained scheduling algorithm based on metaheuristics is the
genetic algorithm proposed by Yu and Buyya [27] whose fitness function favors
solutions meeting deadlines and capable of executing workflows with a minimal
budget.

Scheduling Algorithms Simultaneously Constrained by Budget and
Deadline. Whereas the majority of workflow scheduling algorithms are either
deadline-constrained or budget-constrained, there have been also research efforts
focused on executing workflows constrained by budget and deadline simultane-
ously. For instance, Yu et al. [29] propose a deadline distribution algorithm that

110 F. Aguilar-Reyes and J.O. Gutierrez-Garcia

partitions workflow tasks into branches, which are modeled as Markov decision
processes. Then for each partition branch, an optimal policy is computed by
using dynamic programming. In the same vein, Brandic et al. [5] propose a
graphical quality-of-service specification and a service-oriented architecture in
order to execute workflows while meeting both deadline and budget constraints.
Brandic et al. solve the workflow optimization problem using integer program-
ming. Also making use of a mathematical model, namely the multidimensional
multi-choice knapsack problem, Kofler et al. [11] propose a branch and bound
algorithm to optimize workflow execution based on a set of quality-of-service
parameters.

4 Workflow Engine Simulator

In order to provide the scientific community with a platform for studying work-
flow scheduling algorithms on Cloud-computing environments, we built a work-
flow engine simulator that generates synthetic workflows and schedules them
in simulated computing resources. The workflow scheduling algorithms imple-
mented are MaxMin, MinMin and myopic. The simulator was written in Java.

Using the workflow engine simulator, we conducted experiments to compare
the performance of the MaxMin, the MinMin and the myopic algorithm. The
algorithms were evaluated using 50 randomly generated workflows, each with 10
homogeneous tasks and 12 dependencies (i.e., ordering constraints). It should be
noted that the size of the randomly generated workflow instances was sufficient to
show differences on the performance of the evaluated scheduling algorithms. The
algorithms generated schedules for each workflow taking into account 3 resources
with velocity factors of r1 = 7.373924, r2 = 2.540241 and r3 = 4.530177. It
should be noted that the computing powers were calculated using a uniform
random distribution U [1, 10]. It is acknowledged that in order to ease the analysis

Fig. 2. Average makespan for each scheduling algorithm.

A Taxonomy of Workflow Scheduling Algorithms 111

Fig. 3. Makespans attained by the workflow scheduling algorithms.

of results (see Figs. 2, 3, 4 and 5), a relatively small size of workflow instances
and a relatively small number of resources were used.

Figure 2 shows the average makespan attained by the scheduling algorithms.
The error bars in the graph indicate the standard deviation of the makespan.
The results indicate that the MinMin algorithm attained the lowest average
makespan, followed by the MaxMin algorithm and the Myopic algorithm.

112 F. Aguilar-Reyes and J.O. Gutierrez-Garcia

Fig. 4. A randomly generated workflow: workflow 7.

Fig. 5. Detailed schedules for workflow 7 generated by each scheduling algorithm.

A Taxonomy of Workflow Scheduling Algorithms 113

However, the error bars indicate that there is a high variability in the results,
which suggests that no algorithm completely outperforms the remaining two.
In some cases, even the myopic algorithm attained better makespans than the
MaxMin and MinMin algorithms. This fact can be seen in Fig. 3, where the
myopic algorithm attained the best makespan for workflow 7 (Fig. 4).

Figure 5 shows the schedules for workflow 7 produced by each algorithm. The
makespans attained by the Myopic, the MaxMin and the MinMin algorithms
were 4.06, 4.47 and 4.57, respectively.

Figure 5 shows that the myopic algorithm assigned task t0 to the slowest
resource r2, whereas the MaxMin and MinMin algorithms did not assign any
task to resource r2. This can be explained by the fact that MaxMin and MinMin
algorithms computes the Earliest Completion Time ECT (t, r), defined as the
time taken by a resource r to execute a task t. Resource r2 has a very high ECT
becoming an unfeasible option for the MaxMin and the MinMin algorithms.

5 Related Work

The rising emergence of workflow scheduling algorithms resulted in the creation
of comprehensive taxonomies and classifications. For example, Yu et al. [28] pro-
pose a taxonomy of Grid scheduling algorithms in conjunction with a review of
workflow management systems. Yu et al. [28] introduced the idea of classifying
workflow scheduling algorithms according to the objective optimized. Another
taxonomy is proposed in [23], which made an exhaustive classification of workflow
scheduling algorithms using the subject-verb-predicate notation of the resource
description framework. Furthermore, Yu et al. [26] classify workflow manage-
ment systems according to their functionality. Additionally, van Der Aalst et al.
[9] identify workflow patterns based on their structure. Furthermore, there are
taxonomies based on the fundamental scheduling problem, see [16].

6 Conclusion

This paper contributes a taxonomy of workflow scheduling algorithms. In addi-
tion, we discussed the workflow scheduling problem on distributed computing
approaches. We first analyzed the workflow scheduling problem statement based
on the generalized definitions proposed by Wieczorek et al. [23] and the funda-
mental scheduling problem [22]. We extended the taxonomy proposed by Yu et
al. [28] by (1) rethinking the functionality of metaheuristics subject to deadline
and budget constraints and (2) adding additional categories, e.g., approxima-
tion algorithms. Finally, we developed a workflow engine simulator and con-
ducted experiments in order to compare three best-effort workflow scheduling
algorithms. Future work will be centered on surveying workflow management
systems (such as Pegasus [8], WOHA [12], LiSIs [6]) in order to map state-of-
the-art scheduling algorithms on current workflow management systems.

Acknowledgements. This work has been supported by Asociación Mexicana de
Cultura A.C.

114 F. Aguilar-Reyes and J.O. Gutierrez-Garcia

References

1. Agrawal, K., Benoit, A., Magnan, L., Robert, Y.: Scheduling algorithms for linear
workflow optimization. In: 2010 IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

2. Bajaj, R., Agrawal, D.: Improving scheduling of tasks in a heterogeneous environ-
ment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)

3. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task
scheduling strategies for workflow-based applications in grids. In: IEEE Interna-
tional Symposium on Cluster Computing and the Grid, CCGrid 2005, vol. 2, pp.
759–767. IEEE (2005)

4. Bmv, G.: Informe Anual 2012. Technical report, Bolsa Mexicana de Valores (2012)
5. Brandic, I., Pllana, S., Benkner, S.: Amadeus: a holistic service-oriented environ-

ment for grid workflows. In: Fifth International Conference on Grid and Coopera-
tive Computing Workshops, GCCW 2006, pp. 259–266. IEEE (2006)

6. Kannas, C.C., Kalvari, I., Lambrinidis, G., Neophytou, M.C., Savva, G.C.,
Kirmitzoglou, I., Antoniou, Z., Achilleos, K.G., Scherf, D., Pitta, A.C., et al.:
Lisis: an online scientific workflow system for virtual screening. Comb. Chem. High
Throughput Screen. 18(3), 281–295 (2015)

7. Chekuri, C., Bender, M.: An efficient approximation algorithm for minimizing
makespan on uniformly related machines. J. Algorithms 41(2), 212–224 (2001)

8. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.H.,
Vahi, K., Livny, M.: Pegasus: mapping scientific workflows onto the grid. In: Grid
Computing, pp. 11–20. Springer, Heidelberg (2004)

9. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

10. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and
open problems. Technical report (2006)

11. Kofler, K., Haq, I.U., Schikuta, E.: A parallel branch and bound algorithm for
workflow QoS optimization. In: International Conference on Parallel Processing,
ICPP 2009, pp. 478–485. IEEE (2009)

12. Li, S., Hu, S., Wang, S., Su, L., Abdelzaher, T., Gupta, I., Pace, R.: Woha: deadline-
aware map-reduce workflow scheduling framework over hadoop clusters. In: 2014
IEEE 34th International Conference on Distributed Computing Systems (ICDCS),
pp. 93–103. IEEE (2014)

13. Maheswaran, M., Ali, S., Siegal, H., Hensgen, D., Freund, R.F.: Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous computing
systems. In: Proceedings of Eighth Heterogeneous Computing Workshop, (HCW
1999), pp. 30–44. IEEE (1999)

14. Mair, M., Qin, J., Wieczorek, M., Fahringer, T.: Workflow conversion and process-
ing in the ASKALON grid environment. In: 2nd Austrian Grid Symposium, pp.
67–80. Citeseer (2007)

15. Menasce, D.A., Casalicchio, E.: A framework for resource allocation in grid com-
puting. In: MASCOTS, pp. 259–267 (2004)

16. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer Science &
Business Media, Berlin (2012)

17. Ramamritham, K., Stankovic, J.A., Shiah, P.F.: Efficient scheduling algorithms for
real-time multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 1(2), 184–194
(1990)

A Taxonomy of Workflow Scheduling Algorithms 115

18. Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous
systems. In: Proceedings of 18th International Parallel and Distributed Processing
Symposium, p. 111, April 2004

19. Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows
with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research
in GRID Computing, pp. 189–202. Springer, Heidelberg (2007)

20. Shiers, J.: The worldwide LHC computing grid (worldwide LCG). Comput. Phys.
Commun. 177(1), 219–223 (2007)

21. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

22. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

23. Wieczorek, M., Hoheisel, A., Prodan, R.: Taxonomies of the multi-criteria grid
workflow scheduling problem. In: Wieczorek, M., Hoheisel, A., Prodan, R. (eds.)
Grid Middleware and Services, pp. 237–264. Springer, Heidelberg (2008)

24. Wieczorek, M., Hoheisel, A., Prodan, R.: Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Gener. Comput. Syst. 25(3), 237–
256 (2009)

25. Young, L., McGough, S., Newhouse, S., Darlington, J.: Scheduling architecture
and algorithms within the ICENI grid middleware. In: UK e-Science All Hands
Meeting, pp. 5–12. Citeseer (2003)

26. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
ACM Sigmod Rec. 34(3), 44–49 (2005)

27. Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and
budget constraints using genetic algorithms. Sci. Program. 14(3), 217–230 (2006)

28. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in
Distributed Computing Environments, pp. 173–214. Springer, Heidelberg (2008)

29. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow appli-
cations on utility grids. In: 2005 First International Conference on e-Science and
Grid Computing, p. 8. IEEE (2005)

An Efficient Implementation of Boolean Gröbner
Basis Computation

Rodrigo Alexander Castro Campos1(B), Feliú Davino Sagols Troncoso2,
and Francisco Javier Zaragoza Mart́ınez3

1 Posgrado en Optimización, Universidad Autónoma Metropolitana Azcapotzalco,
Mexico City, Mexico

racc@correo.azc.uam.mx
2 Departamento de Matemáticas,

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,
Mexico City, Mexico

fsagols@math.cinvestav.edu.mx
3 Departamento de Sistemas, Universidad Autónoma Metropolitana Azcapotzalco,

Mexico City, Mexico
franz@correo.azc.uam.mx

http://sites.google.com/site/rccuam,

http://www.math.cinvestav.mx/fsagols, http://academicos.azc.uam.mx/franz

Abstract. The computation of boolean Gröbner bases has become an
increasingly popular technique for solving systems of boolean equations
that appear in cryptography. This technique has been used to solve some
cryptosystems for the first time. In this paper, we describe a new concur-
rent algorithm for boolean Gröbner basis computation that is capable of
solving the first HFE challenge. We also discuss implementation details,
including optimal runtime parameters that depend on the CPU archi-
tecture. Our implementation is available as open source software.

Keywords: Gröbner basis · Boolean ideals · Concurrent algorithms

1 Introduction

Gröbner bases are useful tools for solving multivariate, non-linear systems of
equations. The Gröbner basis of a system allows us to efficiently list the set of
all its solutions, but since Gröbner bases can be used to solve SAT problems,
computing them is NP-Hard [23]. However, the algebraic algorithms used for
computing Gröbner bases are sometimes capable of finding and exploiting oth-
erwise hidden structural properties of the given system. Recent improvements in
the implementation of such algorithms have rendered Gröbner bases practical.

While the high-level descriptions of the fastest Gröbner basis algorithms have
been known for more than a decade, there are very few efficient implementations.
For example, we could find only three implementations that claim to solve the
first HFE Challenge of Patarin, a cryptographic system in 80 binary variables
over F2 that is of historical importance as it was first solved using Gröbner bases
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 116–130, 2017.
DOI: 10.1007/978-3-319-57972-6 9

Efficient Boolean Gröbner Basis Computation 117

[16,24]. Worse yet, one of those implementations is not publicly available while
the other two are closed source with one requiring a license fee.

In this paper, we describe a new variant of the F4 algorithm for comput-
ing Gröbner bases that is also capable of solving the first HFE Challenge. It
includes a novel concurrent implementation of the Buchberger criteria for detect-
ing redundant work and an improved handling of pending polynomials. The
strong correlation between the CPU architecture being used and the perfor-
mance of our algorithm under certain runtime parameters is also discussed. The
source code of our implementation is available at https://sites.google.com/site/
rccuam/ together with the set of instances used for benchmarking.

2 Preliminaries

In this section we introduce the necessary concepts to understand what are
boolean Gröbner bases and why are they useful. We then explain how to compute
them using the classic Buchberger algorithm along with the Buchberger criteria
for detecting redundant work.

2.1 Boolean Gröbner Bases

Definition 1. A boolean polynomial is an element of Z2[x1, x2, . . . , xn]/〈x2
1 −

x1, x
2
2 − x2, . . . , x

2
n − xn〉, which is also called the boolean polynomial ring and is

denoted by B(x1, x2, . . . , xn).

The field equations x2
i − xi = 0 imply that xi ∈ {0, 1} and xk

i = xi for k ≥ 1.
Hence the maximum degree of a boolean monomial is bounded above by n.

Definition 2. Let m1,m2,m3 be boolean monomials. A monomial order < is a
total order such that 1 is the minimum element and m1 < m2 ⇒ m1m3 < m2m3

when m2 and m3 are coprime.

Definition 3. Let p be a polynomial and < a fixed monomial order. The leading
monomial of p is denoted by lm(p) and is defined as the greatest monomial of p.

Definition 4. Let P ⊆ B(x1, x2, . . . , xn). The ideal generated by P is defined
as the set I = {p1q1 + · · · + pkqk : pi ∈ P ∧ qi ∈ B(x1, x2, . . . , xn)}. Any set that
generates I is said to be a basis of I.
Definition 5. Let G ⊆ B(x1, x2, . . . , xn) be a basis of I. G is a Gröbner basis
of I if for all p ∈ I, there exists g ∈ G such that lm(g) | lm(p).

A Gröbner basis under the lexicographical order is said to possess the elimination
property: its elements are such that the method of back substitution is applicable
in order to find all the solutions of the system [9]. However, algorithms for
computing Gröbner bases are usually much faster using other monomial orders
[2]. In practice, this is not an issue as there are efficient algorithms for converting
a Gröbner basis in one monomial order to another in a different order [12].

https://sites.google.com/site/rccuam/
https://sites.google.com/site/rccuam/

118 R.A. Castro Campos et al.

2.2 The Buchberger Algorithm

In 1965, Buchberger introduced an alternative characterization of Gröbner bases
which led to the first algorithm for computing them [6]. For correctness in the
boolean case, the field equations must be considered as part of the input system.

Definition 6. Let p, q ∈ B(x1, x2, . . . , xn). We say that p is reducible by q if
lm(q) | lm(p). The reduction of p by q is defined as red(p, q) := p − lm(p)

lm(q) .

Definition 7. Let p ∈ B(x1, x2, . . . , xn) and Q ⊆ B(x1, x2, . . . , xn). The reduc-
tion of p by Q is defined as red(p,Q) := red(red(p, qi), Q \ qi) if it is possible to
choose some qi ∈ Q as a valid reductor and p otherwise.

Definition 8. Let p1, p2 ∈ B(x1, x2, . . . , xn). The s-polynomial of p and q is
defined as sp(p, q) := λ

lm(p)p + λ
lm(q)q where λ = LCM(lm(p), lm(q)).

Definition 9. Let G ⊆ B(x1, x2, . . . , xn) be a basis of I. G is a Gröbner basis
of I if ∀gi, gj ∈ G, red(sp(gi, gj), G) = 0.

The main idea of the Buchberger algorithm is to enlarge G with the nonzero
remainders coming from reductions of s-polynomials, as they belong to the ideal
but do not have a reductor. Buchberger also devised two criteria that predict
whether an s-polynomial will reduce to zero [7]. Reductions to zero do not con-
tribute to G and their computations are best avoided if possible. The first is
called the relatively prime criterion and the second is called the chain criterion.

Theorem 1. Let p1, p2 ∈ G and G ⊆ B(x1, x2, . . . , xn). The polynomial sp(p, q)
will reduce to zero if lm(p1) and lm(p2) are coprime.

Theorem 2. Let p1, p2 ∈ G and G ⊆ B(x1, x2, . . . , xn). The polynomial sp(p, q)
will reduce to zero if ∃g ∈ G : lm(g) | lm(sp(p1, p2)) and red(sp(p1, g), G) =
red(sp(p2, g), G) = 0.

Even though the field equations x2
i − xi = 0 would collapse under the boolean

identity x2
i = xi, the s-polynomials between them and other elements of the basis

must be considered as if no substitutions were applied to the field equations. The
boolean substitution can be applied to the s-polynomial afterwards.

Lemma 1. Let p ∈ B(x1, x2, . . . , xn). The s-polynomial sp(p, x2
i −xi) is boolean

equivalent to xip.

Algorithm 1.
function Buchberger(G ⊆ B(x1, x2, . . . , xn))

Q ← {(pi, pj) : pi, pj ∈ G ∧ i < j}
while Q �= ∅ do

q ← select(Q), Q ← Q \ q
if ¬criterion1(q1, q2) ∧ ¬criterion2(G, q1, q2) then

r ← red(sp(q1, q2), G)

Efficient Boolean Gröbner Basis Computation 119

if r �= 0 then
Q ← Q ∪ {(r, p) : p ∈ G}
G ← G ∪ r

return G

The select subroutine may choose any element of Q, which acts as a queue of
pending polynomial pairs whose s-polynomial needs to be considered.

3 State of the Art

In this section we study the implementation of the Buchberger criteria and we
discuss PolyBori and BooleanGB, popular open source implementations of the
Buchberger algorithm for computing boolean Gröbner bases. Later we introduce
the F4 algorithm, which is based on linear algebra, and the F5 algorithm, which
became the first signature based Gröbner basis algorithm. We end the section
by briefly discussing the first HFE Challenge.

3.1 Implementations of the Buchberger Criteria

The relatively prime criterion can be easily implemented by inspecting the lead-
ing monomials of a polynomial pair. However, the chain criterion needs to deter-
mine whether other related pairs have been already processed. A direct imple-
mentation of the chain criteria requires to mantain a table, indexed by a poly-
nomial pair, which stores whether that pair has been already processed. An
implementation which uses a triangular bit matrix is presented in [25].

Unfortunately, a direct implementation of the chain criteria has another dis-
advantage besides the need to store a table: it may happen that many already
redundant pairs are kept in the queue for too long before being popped and
discarded, wasting memory unnecessarily. In [18], Gebauer and Möller imple-
mented the chain criteria without an extra table, purging the queue on the fly.

Algorithm 2.
function Gebauer-Möller(G,Q ⊆ B(x1, x2, . . . , xn), p ∈ G)

C ← {(p, g) : g ∈ G : g �= p}
for all p, g ∈ C : ¬criterion1(p, g) do

if ∃p, g′ ∈ C : g′ �= g∧LCM(lm(p), lm(g′)) | LCM(lm(p), lm(g)) then
C ← C \ (p, g)

C ← C \ {c ∈ C : criterion1(c1, c2)}
Q ← Q \ {q ∈ Q : lm(p) | LMC(lm(q1), lm(q2))

∧LCM(lm(p), lm(q1)) �= LMC(lm(q1), lm(q2))
∧LMC(lm(p), lm(q2)) �= LMC(lm(q1), lm(q2))}

return Q ∪ C

120 R.A. Castro Campos et al.

3.2 Implementations of the Boolean Buchberger Algorithm

Simplified boolean polynomials are multilinear, i.e. no variable occurs to a power
greater than one. This allows us to use specialized representations for them. In
[21], BooleanGB is presented as an implementation of the boolean Buchberger
algorithm where monomials are represented by word sized bitmaps. Monomial
multiplication is translated into a single native processor instruction and the
same occurs for the monomial divisibility test and monomial division operations.
Boolean polynomials are viewed as sets of monomials, so polynomial addition is
implemented as a symmetric difference. BooleanGB is implemented in C++ and
an interface is available in the free computer algebra system Macaulay2 [19].

A boolean polynomial is also equivalent to a boolean formula written in
algebraic normal form, i.e. products of variables connected by XOR operators.
As such, the corresponding boolean function can be represented in other ways.
In [5], PolyBori is presented as an implementation of the boolean Buchberger
algorithm where polynomial structures are represented by zero-suppresed deci-
sion diagrams. In the worst case, decision diagrams have exponential size in the
number of variables. While the worst case is not common, PolyBori attempts
to further reduce its memory consumption by caching subdiagrams and sharing
them between polynomials. PolyBori is implemented in C++ and an interface
is available in the free computer algebra system SageMath [10].

3.3 The F4 Algorithm and Linear Algebra Strategies

In 1999, Faugère presented the F4 algorithm [13] which is based on two observa-
tions. On the one hand, it is not clear what is the optimal implementation of the
select subroutine in the Buchberger algorithm, so one possibility is to reduce a
(not necessarily proper) subset of the elements of the queue by the current basis
at the same time. On the other hand, polynomial reduction can be simulated
via Gaussian elimination by mapping polynomials into rows and monomials into
columns, with the cells becoming the monomial coefficients appearing in the
polynomials. This allows us to take advantage of the high performance, concur-
rent algorithms and implementations already available in linear algebra.

How to produce the matrix to echelonize is fundamental to the correctness of
F4. Since row addition is equivalent to polynomial addition, this single operation
is equivalent to the polynomial reduction red(p, g) only when g is a divisor of p
and lm(g) = lm(p), as the leftmost nonzero cell of both rows are in the same
column. When lm(g) strictly divides lm(p), there must be a row in the matrix
that is equivalent to a multiple of g. The F4 algorithm checks which leading
monomials are missing and may be needed during reduction. It then generates
one row for each one that may be produced as a multiple of an existing row. Its
main disadvantage is that the generated matrices may be prohibitively large.

Algorithm 3.
function F4(G ⊆ B(x1, x2, . . . , xn))

Q ← {(pi, pj) : pi, pj ∈ G ∧ i < j}

Efficient Boolean Gröbner Basis Computation 121

while Q �= ∅ do
Q′ ← select(Q), Q ← Q \ Q′

S ← {sp(q1, q2) : q ∈ Q′ ∧ ¬criterion1(q1, q2) ∧ ¬criterion2(G, q1, q2)}
M ← preprocess(G,S)
R ← echelonize(M ∪ S}) \ M
for all r ∈ R : r �= 0 do

Q ← Q ∪ {(r, p) : p ∈ G}
G ← G ∪ r

return G

To select which elements are popped from the queue, Faugère suggests to use the
degree truncated strategy which consists in having a degree limit such that all
s-polynomials with smaller or equal degree are selected. The limit is increased
when no s-polynomial can be selected within the current limit. For simplicity,
the degree of an s-polynomial is taken as the degree of its leading monomial, so
monomial orders where degree(m1) > degree(m2) ⇒ m1 > m2 holds are used.

3.4 The F5 Algorithm and Signature Strategies

In 2002, Faugère presented the F5 algorithm which focuses on avoiding reduc-
tions to zero as much as possible [14]. In this algorithm, the polynomials are
annotated with signatures which partially denote how the polynomial was pro-
duced, i.e. if the polynomial came from the input or was produced as a linear
combination of other polynomials. During the execution, the signature of a would
be s-polynomial is examined in order to predict its reduction to zero.

The F5 algorithm is incremental in the sense that it computes the Gröbner
basis of the first k − 1 input polynomials before considering the kth input poly-
nomial. Faugère also proved that F5 avoids all reductions to zero in the case
of homogeneous polynomials. However, it often underperforms in the inhomoge-
neous case [11]. Homogenization of the system is usually considered, but com-
puting the Gröbner basis of the resulting system may be harder. It is an area of
active research how to improve and parallelize signature based algorithms.

3.5 The First HFE Challenge

The Hidden Field Equations or HFE is a cryptosystem introduced by Patarin
[24]. The main idea of HFE is as follows. Let p ∈ F2n [x]. If the maximum degree
of p is bounded by an integer d and d is not very large, it is possible to quickly
find a solution of p since it is univariate. However, it is possible to transform p
into a public system of quadratic polynomials in B(x1, x2, . . . , xn) such that the
original structure of p is hidden and the system appears to be random. Solving
a system of random quadratic boolean equations is NP-Hard [1].

The first HFE challenge was proposed in 1996 and consists on solving a
quadratic boolean system coming from a secret polynomial with parameters
n = 80 and d = 96. It was first solved in 2002 by Faugére’s F5 algorithm,
implemented in the C language and included in the FGb library [15,16]. Magma

122 R.A. Castro Campos et al.

quickly followed, solving it in 2004 with an implementation of the F4 algorithm
which was around three times faster than Faugére’s F5 implementation [26].

It is reported that the MXL3 algorithm can also solve the first HFE challenge
[22]. This algorithm uses linear algebra but does not rely on s-polynomials.
Instead, it refines the XL algorithm which blindly generates multiples of existing
polynomials in an attempt to eventually find a Gröbner basis [8]. Unfortunately,
the implementation of MXL3 is not publicly available and the time and memory
needed for solving the challenge are not disclosed. It is only mentioned that,
despite being slower than Magma 2.15, the matrix generated by MXL3 has fewer
rows than those from FGb and Magma.

4 Contributions

In this section we present the algorithmic and implementation details of our F4
variant. We begin by giving a general overview of our algorithm plus a list of
assumptions that determine crucial implementation decisions. Then we describe
the handling of the s-polynomial queue together with our concurrent implemen-
tation of the Buchberger criteria.

We continue by introducing a high performance compression scheme for read-
only boolean polynomials that greatly reduces the memory consumption of our
algorithm in a wide variety of situations. We end the section by giving thorough
explanation of our concurrent polynomial reduction implementation, which cov-
ers how to tune its runtime parameters for optimal performance depending on
the CPU architecture being used.

4.1 General Overview and Assumptions

As most implementations of the F4 algorithm, our variant uses the degree trun-
cated strategy. We use the graded reverse lexicographical monomial order which
is the most popular choice, but any other graded monomial order also works.
Individual monomials are represented by bitmaps as in BooleanGB. However,
BooleanGB cannot represent monomials in more than W variables where W is
the number of bits in a word. By contrast, our representation uses as many words
as needed to represent the number of variables in the system.

Monomials in a polynomial are represented as positions in the monomial
order. Our implementation can also convert monomials between the bitmap and
the position representations using dynamic programming. However, a position is
represented with only 32 bits for several reasons. Graded monomial orders very
effectively bound the numerical values of the positions of low degree monomials.
Additionally, the degree truncated strategy aims to find a Gröbner basis at the
smallest possible degree, since the size of the matrices increases exponentially as
the degree increases. In fact, in the case of systems with too many variables, a
computation that does not finish at a low degree will be deemed infeasible both
in time and space. Thus, it makes no sense to use too many bits per position, as
32 bits are enough to represent entries in matrix rows with 232 columns.

Efficient Boolean Gröbner Basis Computation 123

4.2 Handling of the S-Polynomial Queue

The degree truncated strategy constrains which s-polynomials are popped from
the queue, but it does not constrain the queue insertions. To reduce the mem-
ory consumption of the queue, efficient implementations like Magma provide
a parameter that statically constrain the degree of the s-polynomials that will
be inserted into the queue [4]. However, for correctness it must be true that a
Gröbner basis can be found at some point of the computation such that all the
excluded s-polynomials would become redundant.

Our implementation can achieve the same goal without the use of an special
parameter and without compromising correctness, although a small amount of
repeated work must be performed. Our approach is to use the dynamic degree
limit used for constraining queue extractions to also constrain queue insertions.
When the degree limit is increased, all current polynomial pairs are concurrently
retested for queue insertion, except that we ignore s-polynomials with degree less
than the new limit, as they should have been processed at a previous limit.

4.3 Concurrent Implementation of the Buchberger Criteria

Although the Gebauer and Möller installation is widely considered the best
implementation of the chain criteria, it presents some issues. On the one hand,
when there exists a pair of pending s-polynomials such that one of them can be
ignored as long as the other is reduced, the algorithm discards one in a sequen-
tial fashion: once discarded, such s-polynomial cannot be a member of another
pair that would otherwise be in the same situation. On the other hand, the algo-
rithm explicitly constructs and temporarily stores polynomial pairs that can be
discarded by the relatively prime criterion, as they may be needed by the chain
criterion for the detection of other redundant s-polynomials.

Our implementation solves both problems. To do this, we assign a unique
increasing index to each polynomial of the basis such that it is possible to induce
a total order between pairs. An s-polynomial will be discarded if two related s-
polynomials appear before it in the total order. A polynomial pair that meets the
relatively prime criterion will come before those that do not. Additionally, this
can be determined on the fly without storing those useless pairs. In the degree
truncated strategy, an extension of a degree based partial order can be used.

Algorithm 4.
function Criterion2(G ⊆ B(x1, x2, . . . , xn), g1, g2 ∈ G)

λ1,2 = LCM(lm(g1), lm(g2))
t1,2 ← (true, degree(λ1,2), sort>(index(g1), index(g2)))
for all g3 ∈ G : lm(g3) | λ1,2 do

λ1,3 = LCM(lm(g1), lm(g3))
λ2,3 = LCM(lm(g2), lm(g3))
t1,3 ← (¬criterion1(g1, g3), degree(λ1,3), sort>(index(g1), index(g3)))
t2,3 ← (¬criterion1(g2, g3), degree(λ2,3), sort>(index(g2), index(g3)))
if t1,2 > t1,3 ∧ t1,2 > t2,3 then return true

return false

124 R.A. Castro Campos et al.

The previous function assumes that G is immutable during the execution of the
algorithm, but does not need to know which other pairs are being concurrently
tested. It also assumes that G is irreducible, but the same approach can be made
to work if this is not true. Our implementation prefers to discard polynomial pairs
with high degrees or, in case of a tie, those involving the newest polynomials.

4.4 Compressed Representation of Immutable Polynomials

A polynomial in the current basis will remain unmodified until a reductor is
found, and when such situation occurs it will be simply replaced by its remainder,
which comes from a recently echelonized matrix. In our implementation, we use
large bitmaps to manage the rows of the matrix that are nonpivotal and will be
modified during echelonization. For polynomials that will not change during the
execution of the algorithm, better representations exists.

If we treat monomials in a polynomial as positions in the monomial order,
a boolean polynomial becomes a sorted sequence of unique integers. In fact,
Faugère suggests to use delta encoding for the compression of such sequences.
In our implementation, we use prefix trees of octets instead. See Fig. 1.

root

01

2B

FFFE

2A

8A

00

F7

A4

1C

93

10

0100

Fig. 1. Example of a prefix tree for a set of seven 24 bit integers (octets in hexadecimal)

In the actual implementation, the stored tree is pointerless. Conceptually, we
traverse the tree in pre-order while dumping its contents into a binary stream. For
each group of nodes sharing a common parent, we store the number of nodes and
then we list their octects, one byte each. By design, a group cannot contain more
than 256 nodes. When a group has 32 nodes or more, we switch its representation
to a bitmap of 256 bits in order to bound its memory consumption. In practice,
we do not explicitly traverse a prefix tree, as we emulate the opposite traversal
directly over the sequence of positions and then we reverse the binary output.
We achieve significant compression ratios over sparse polynomials.

4.5 Concurrent Implementation of the Polynomial Reduction

The polynomial reduction process consumes most of the total execution time. As
such, most algorithmic and implementation decisions become important. Curi-
ously, it is easiest to explain how we achieve concurrency. Using what is called

Efficient Boolean Gröbner Basis Computation 125

structured Gauss-Jordan, the pivotal and nonpivotal rows of the matrix are iden-
tified and the nonpivotal rows are reduced concurrently, one thread each [17].
The reduction of a row stops when no current pivotal row can further reduces
it (itself becoming a new pivotal row) or when it becomes empty. To prevent
data races when several rows try to become pivotal for the same leading column,
atomic compare and swap operations are used.

It is important to mention that our structured Gauss-Jordan and row addi-
tion implementations follow a sparse strategy, which is adequate for sparse matri-
ces but asymptotically slower than specialized algorithms for dense matrices.
Additionally, our implementation leaves the matrix in some echelon form and
not in the reduced echelon form, where pivotal rows are interreduced. This final
reduction is only computed until the Gröbner basis has been found.

The main differentiation aspect of our F4 variant comes from the observation
that the F4 matrices do not need to be completely constructed in one pass. In
fact, it is true in practice that the vast majority of the rows are both pivotal and
monomial multiples of the input polynomials. By precomputing how the pivotal
rows are induced by the polynomials in the basis, it is possible to construct the
pivotal rows on the fly as they become necessary during the echelonization.

The direct application of this idea would be closer to the Buchberger algo-
rithm, but we should mention that the product of a polynomial by a monomial is
not a cheap operation and that, in the case of several independent threads requir-
ing to construct the same pivotal row, it may be subject to become repeated
work. A crude implementation of memorization would solve this problem, but
an adequate solution should not keep the induced rows in memory for too long,
as it would reintroduce the problem of storing the whole matrix.

To minimize the amount of repeated work, we construct the pivotal rows in
parts, reducing the nonpivotal rows by the current active part. More in detail, we
construct the pivotal rows within a certain window of possible leading monomials
(the largest monomials first) and then we perform the echelonization with the
nonpivotal rows included. We then slide the window downwards, repeating the
process for the nonpivotal rows that did not become pivotal or empty within
the previous window. This emulates the echelonization of the whole matrix.

Algorithm 5.
function Reduction(G,Q ⊆ B(x1, x2, . . . , xn), d, w ∈ N)
Assume: ∀q ∈ Q,¬criterion1(q1, q2) ∧ ¬criterion2(G, q1, q2)

S ← {sp(q1, q2) : q ∈ Q}
for i ← (

n
d

)
; i > 0 ; i ← i − min(i, w) do

M ← preprocess[i−min(i,w):i−1](G,S)
S ← echelonize(M ∪ S) \ M

return S

It is easy to see that the echelonization task needs to work on a matrix with
|Q| + w rows where w is chosen as the maximum size of the windows. When
there are too many pending polynomial pairs, it may be a good idea to partition
Q into subsets of at most m elements each, such that the number of rows in the

126 R.A. Castro Campos et al.

matrix becomes m + w. This reduces the memory consumption related to the
construction of the matrix, although we would need to perform the reduction
process until all the subsets are processed.

The choice of w has been found to strongly affect the runtime performance
of the algorithm. Since there is only one active window at the same time, the
implementation allocates the memory for w pivotal rows and reuses it. When
the w rows fit in the L3 cache of the processor, spatial locality takes effect. This
makes sense since the L3 cache, typically the largest cache available in current
processors, is usually shared across all the CPU cores and the cores will need to
constantly read the pivotal rows in a concurrent fashion. In fact, we recommend
that w + c rows fit in the L3 cache where c is the number of cores of the CPU,
since c additional rows will be active during the reduction process.

5 Benchmarks

In this section we present the results of a series of benchmarks. First we will
present how much time does our implementation take to solve the first HFE
challenge under a varying number of cores and different values of the window
size w. Then we will compare our implementation against PolyBori, FGB, and
Magma. The second set of benchmarks also includes some instances coming from
the Unbalanced Oil and Vinegar cryptosystem [20]. Theses instances have the
property that their Gröbner bases are relatively large and of high degree.

5.1 Experimental Behavior of the F4 Variant Implementation

Compared to the sequential Gebauer and Möller implementation, our concurrent
implementation of the chain criterion easily achieves a linear speedup. Unfortu-
nately, the polynomial reduction procedure, which accounts for more than 90%
of the total execution time, is memory bound. After several analysis, we tuned
the window size in order make better use of the L3 cache. We present two tests,
one that measures the performance impact of the L3 cache saturation in function
of the window size, plus another one that measures the impact of the number of
cores under an optimal window size. In both tests, the queue is partitioned into
sets of at most 2048 polynomials each. A set is reduced in a single pass. The
tests were performed on a Intel i7-5820K Haswell processor, which has 15 MB
of L3 cache and 6 physical cores with hyper-threading enabled (for a total of 12
logical cores) running at 3.3 GHz. See Fig. 2.

The optimal window size for the tested hardware is w = 48, which together
with the memory used by the polynomials assigned to each core, will use around
13 MB of the L3 cache. The stack usage and other trivial costs must also be
taken into account. The slow performance that happens for very small windows
is explained as follows. Each time a CPU core finishes the partial reduction of
a polynomial by the current window, another polynomial is assigned to it and
read from main memory. This cost is not amortized for very small windows.
Decreasing the partition size of the queue to allow the set to also fit in the L3

Efficient Boolean Gröbner Basis Computation 127

20 40 60 80 100

2,000

2,500

3,000

Window size (w), 12 cores

T
im

e
in

se
co

n
d
s

0 2 4 6 8 10 12

2,000

4,000

6,000

8,000

Number of cores, w = 48

T
im

e
in

se
co

n
d
s

Fig. 2. Execution times for the first HFE Challenge.

cache does not help, since the number of passes would increase considerably and
the generation of a window also needs to read from main memory.

The Intel Haswell architecture supports the AVX2 instruction set, which
allows us to perform 256 bit vector operations in a single cycle. Our implemen-
tation uses them and thus the calculations are performed really fast once the
data has been loaded. However, doubling the number of logical cores via hyper-
threading does not help if memory is the bottleneck, as many related hardware
resources are shared between logical cores inside the same physical core. For
example, a line buffer must be allocated each time a memory request cannot be
served by the L1 cache, but the hardware only has ten line buffers per physical
core.

5.2 Comparison Against Other Gröbner Basis Implementations

We compare the execution time and memory consumption of our implementation
against PolyBori, FGb, and Magma. The test cases are the first HFE challenge
and the Unbalanced Oil and Vinegar polynomial systems PK15, PK16, PK17,
PK18, and PK19, where the number suffix denotes the number of binary vari-
ables in the system. While we consider BooleanGB to be a great source of inspi-
ration, its implementation as currently available in Macaulay2 is too slow to be
included in the benchmarks, requiring hours of computation even for the smallest
test case. The situation worsens if we use Macaulay2 without the module.

Our implementation along with FGb 1.68 and PolyBori 0.8.3 were tested on
the Intel i7-5820K processor with 8 GB of RAM. However, the unavaibility of
Magma forced us to rely on external reports or to test on unknown hardware
with software limits. For the first HFE Challenge, Magma 2.20 was reported to
run on a Intel Xeon E5-1650 processor [26]. The PK systems were solved on
unknown hardware via the free Magma Calculator, which imposes an execution
limit of 120 s and 380 MB of memory consumption [3]. See Table 1.

Our implementation is very fast and consistently consumes the least amount
of memory. The memory consumption could be further reduced if we partitioned

128 R.A. Castro Campos et al.

Table 1. Benchmarks (* means that the program quickly runs out of memory)

Instance PolyBori FGb Magma (Sparse) Magma (Dense) F4 Variant (Sparse)

PK15 60.69 s 2.40 s 1.5 s 1.3 s 0.8 s

350MB 108MB 64MB 32MB 15MB

PK16 518.09 s 18.1 s 7.2 s 5.7 s 5.3 s

991MB 202MB 256MB 62MB 18MB

PK17 1169.41 s 30.2 s * 20.6 s 15.4 s

2140MB 247MB >380MB 128MB 32MB

PK18 2976.46 s 70.3 s * 37.1 s 41.9 s

4229MB 359MB >380MB 155MB 50MB

PK19 5366.50 s 388.5 s * >120 s 101.2 s

6829MB 856MB >380MB >225MB 122MB

HFE80 * >9000 s 3477.1 s 447.4 s 2002.4 s

>8192MB >8192MB 14029MB 5836MB 5981MB

the queue in smaller sets like Magma does (512 elements per set instead of 2048).
However, the dense variant of Magma is the fastest at the first HFE challenge
by a considerable margin. This is because the HFE system is dense and Magma
uses asymptotically faster algorithms for the dense case, while we always use a
sparse strategy. Magma also reports that its F4 algorithm runs on a single core,
but we do not know if this holds for the whole algorithm or just for the Gröbner
related code surrounding the linear algebra phase. We believe that, aside from
using faster algorithms for dense matrices, Magma’s implementation is L1 and
L2 cache aware. By reworking our polynomial reduction procedure we might
considerably improve our timings, but Magma’s implementation of dense linear
algebra is famous for being one of the fastest available.

6 Conclusions

Understanding the high level descriptions of Gröbner basis algorithms is not
enough to produce a highly efficient implementation. In this paper we have
presented the algorithmic and implementation details of an F4 variant that is
capable of performing Gröbner bases computations that are out of reach for most
other implementations. We hope that these descriptions and explanations, plus
the available source code of our program, are of help for researchers in the area
of Gröbner bases. In a similar way, we also hope that the open source community
and its end users are benefited by the availability of this work.

References

1. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of
solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013)

Efficient Boolean Gröbner Basis Computation 129

2. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexi-
cographic order. Duke Math. J. 55(2), 321–328 (1987)

3. Bosma, W., Cannon, J., Playoust, C.: Magma calculator (2016). http://magma.
maths.usyd.edu.au/calc/

4. Bosma, W., Cannon, J., Playoust, C.: Magma computer algebra documentation
(2016). https://magma.maths.usyd.edu.au/magma/handbook/text/1207

5. Brickenstein, M., Dreyer, A.: PolyBori: a framework for Gröbner basis compu-
tations with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009).
Effective Methods in Algebraic Geometry

6. Buchberger, B.: An Algorithm for Finding the Basis Elements in the Residue Class
Ring Modulo a Zero Dimensional Polynomial Ideal. Ph.D. thesis (2006)

7. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction
of Gröbner-bases. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS,
vol. 72, pp. 3–21. Springer, Heidelberg (1979). doi:10.1007/3-540-09519-5 52

8. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

9. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 3rd edn. Springer, New York (2007)

10. Developers, T.S.: SageMath, the Sage Mathematics Software System (2016).
http://www.sagemath.org

11. Eder, C.: An analysis of inhomogeneous signature-based Gröbner basis computa-
tions. J. Symb. Comput. 59, 21–35 (2013)

12. Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

13. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, NY, USA, pp. 75–83. ACM, New York
(2002)

15. Faugère, J.-C.: FGb: a library for Computing Gröbner bases. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
84–87. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15582-6 17

16. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 3

17. Fayssal, M.: Faugére-Lachartre Parallel Gaussian Elimination for Gröbner Bases
Computations Over Finite Fields. Master’s thesis, Pierre and Marie Curie Univer-
sity (2012)

18. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2–3), 275–286 (1988)

19. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

20. Herrera Garćıa, J.L.J.: Autenticación y Cifrado Basado en Ecuaciones Cuadráticas
de Varias Variables. Ph.D. thesis, Instituto Politécnico Nacional (2015)

21. Hinkelmann, F., Arnold, E.: Fast Gröbner basis computation for boolean polyno-
mials. CoRR (2010)

http://magma.maths.usyd.edu.au/calc/
http://magma.maths.usyd.edu.au/calc/
https://magma.maths.usyd.edu.au/magma/handbook/text/1207
http://dx.doi.org/10.1007/3-540-09519-5_52
http://dx.doi.org/10.1007/3-540-45539-6_27
http://www.sagemath.org
http://dx.doi.org/10.1007/978-3-642-15582-6_17
http://dx.doi.org/10.1007/978-3-540-45146-4_3
http://www.math.uiuc.edu/Macaulay2/

130 R.A. Castro Campos et al.

22. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: an
efficient algorithm for computing Gröbner bases of zero-dimensional ideals. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14423-3 7

23. Nguyen, T.H.: Combinations of Boolean Gröbner Bases and SAT Solvers. Ph.D.
thesis, University of Kaiserslautern (2014)

24. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

25. Roune, B.H., Stillman, M.: Practical Gröbner basis computation. In: Proceedings
of the 37th International Symposium on Symbolic and Algebraic Computation,
ISSAC 2012, NY, USA, pp. 203–210. ACM, New York (2012)

26. Steel, A.: A dense variant of the F4 Gröbner basis algorithm (2013). http://magma.
maths.usyd.edu.au/∼allan/densef4/

http://dx.doi.org/10.1007/978-3-642-14423-3_7
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://magma.maths.usyd.edu.au/~allan/densef4/
http://magma.maths.usyd.edu.au/~allan/densef4/

Accelerating Hash-Based Query Processing
Operations on FPGAs by a Hash

Table Caching Technique

Behzad Salami1,2(&), Oriol Arcas-Abella1, Nehir Sonmez1,
Osman Unsal1, and Adrian Cristal Kestelman1,2,3

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{behzad.salami,oriol.arcas,nehir.sonmez,osman.unsal,

adrian.cristal}@bsc.es
2 Universitat Polytecnica de Catalunya (UPC), Barcelona, Spain

3 IIIA-Artificial Intelligence Research Institute-Spanish National Research
Council, Madrid, Spain

Abstract. Extracting valuable information from the rapidly growing field of
Big Data faces serious performance constraints, especially in the software-based
database management systems (DBMS). In a query processing system,
hash-based computational primitives such as the hash join and the group-by are
the most time-consuming operations, as they frequently need to access the hash
table on the high-latency off-chip memories and also to traverse whole the table.
Subsequently, the hash collision is an inherent issue related to the hash tables,
which can adversely degrade the overall performance.
In order to alleviate this problem, in this paper, we present a novel pure

hardware-based hash engine, implemented on the FPGA. In order to mitigate the
high memory access latencies and also to faster resolve the hash collisions, we
follow a novel design point. It is based on caching the hash table entries in the
fast on-chip Block-RAMs of FPGA. Faster accesses to the correspondent hash
table entries from the cache can lead to an improved overall performance.
We evaluate the proposed approach by running hash-based table join and

group-by operations of 5 TPC-H benchmark queries. The results show 2.9�–

4.4� speedups over the cache-less FPGA-based baseline.

1 Introduction

In the era of Internet of Things (IOT) and Big Data, fast query processing is a crucial
requirement of the modern DBMS. In an attempt to move the computation closer to the
storage, many previous studies have looked into accelerating database operations in the
hardware platforms. Examples include employing vector architectures [9], ASICs [18],
GPUs [10], or hybrid [25]. Other approaches either used FPGAs statically [3, 8, 15, 17,
26], or leveraged dynamic reconfigurability characteristic of FPGAs to better fit the
requirements of the queries [6, 13]. The industry hasalso invested in products such as
IBM Netezza [2] and Teradata Kickfire [14].

The hash-based operations, i.e. hash join and group-by are the most time-consuming
operations of databases query processing systems. Previous studies have demonstrated

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 131–145, 2017.
DOI: 10.1007/978-3-319-57972-6_10

that these operations account for more than 40% of total execution time while running
queries from the TPC-H benchmark [9].

The hash join operation combines two data tables S and T together with a common
key. The algorithm consists of (i) a build phase to construct a hash table using the rows
of the table S, and (ii) a probe phase, where all keys in the table T are looked into the
hash table to find whole the possible matches. Similarly, the group-by operation groups
the rows of a given table based on common values of the key column, which can also
be implemented using hash tables. The main issue that can degrade the performance of
a hash engine is the hash collision, which is the situation of mapping two distinct keys
into the same hash index. By design and in practice, these cases are inevitable for
database applications and need to be handled appropriately. Among the possible
solutions, software fallback mechanisms [17] or rehashing [7] can cause additional
latencies that reduce the performance. On the other hand, collision resolution in the
hardware implies chaining the hash table entries that can also undermine the hash table
performance, especially under DDR memory latencies.

Due to the scarcity of on-chip BRAM resources that cannot guarantee to locate the
entire hash table, previous FPGA implementations envisioned building the hash table
in the off-chip DDR memory [17, 20]. Alternatively, in this work we propose a hash
table caching technique, exploiting the on-chip BRAMs of FPGAs to mitigate the
memory latencies. Also, our design resolves hash collisions without reverting to
software fallbacks. For the evaluations, we run the hash join and group-by operations
of 5 queries of the TPC-H benchmark suite and demonstrate up to 4.4� performance
speedups, compared to a hardware baseline that does not employ any caching tech-
nique. The hardware baseline is an improved version of Ibex [17]. Despite Ibex that
uses software fallbacks to resolve the hash collisions, in our baseline, we follow a pure
hardware-based pointer chasing method.

In a nutshell, trading off the size and the latency of on/off-chip memories, we (i) can
support large datasets using a hash table located in the off-chip memory, and (ii) avoid
the high memory latencies by utilizing the on-chip BRAMs of FPGAs as the hash table
cache. The contributions of this paper can be summarized as below:

• We propose a hash table caching mechanism that efficiently exploits the on-chip
BRAMs of FPGA to serve some of the hash table inquiries. This method can be
significantly faster than the conventional way to retrieve the hash table entries from
the off-chip memories.

• We investigate the proposed technique for the hash-based operations of query
processing systems, i.e. hash join and group-by. Hash collisions are resolved purely
in the hardware, which taking advantage of the hash table caching method. We
design the proposed method by leveraging Bluespec, a high-level synthesis
(HLS) tool. The design is implemented on a Virtex 7 FPGA development board
(VC709). We achieved up to 4.4� speedup, compared to the hardware baseline.

The rest of the paper is organized as follows: Sect. 2 includes the background
information, as well as an illustration of the hash table caching technique. The proposed
architecture is elaborated in Sect. 3. Section 4 introduces the evaluation methodology.
Section 5 includes discussions the experimental results. In Sect. 6 we review related
work and finally, Sect. 7 concludes the paper.

132 B. Salami et al.

2 Background

Conventionally, data can be organized in either structured or unstructured management
systems. Although, the proposed hash table caching technique can be customized in
both the systems, our focus will be on the relational DBMS, as a common type of
structured data management systems.

In an RDBMS, data is organized into tables using a model of vertical columns and
horizontal rows. The rows represent entries in the database and columns define the data
types. Data in the tables are formed as a pair of (key, value), where key points to one of
the columns that play the main role in the query analysis such as sort key, hash join
key, etc. Other columns are merged into the value. In order to access the data into the
tables, query languages such as Scripting Query Language (SQL) have been intro-
duced. In a typical SQL query, several language elements such as SELECT,
GROUPBY, ORDERBY, etc., can exist. These operations can be semantically
mapped to specialized hardware accelerators such as filtering, aggregation, hash join,
sorting, etc. The hash-based operations, i.e. hash join and group-by are considered in
this work because they are the most time-consuming DBMS operations.

2.1 Hash Join Background

One common type of join operation is the equijoin or h-join. It means combining rows
from two or more tables with a common cell. The hash-based join or hash join is the
most common type of table join algorithms.

The objective in the hash join is to reduce the search space using a hash function
over the common cell, or key. It consists of building and probing phases. In the building
phase, the hash table is constructed using the input table (S). In this phase, for each
tuple (ks; vs) a hash index is calculated using a hash function and correspondingly, a
hash table entry is created in that given index of the hash table. In the probe phase, the
hash table is being scanned in the hash index. The corresponding hash index is gen-
erated by the hash function applied on the each input tuple (kT ; vT) of data table (T). If
any match is found the resulting 3-tuple ðk; vS; vTÞ is output, where k = kS = kT.
Otherwise, it means that the current input tuple does not exist in the hash table and it is
skipped. It is worth noting that as the hash table construction is more costly operation
than the probing of the hash table, the smaller input table is used in the build phase
(|S| < |T|).

2.2 Group-by Background

Group-by is another query processing operation that can be implemented using the
hash tables, as well. It is usually used in conjunction with an aggregation function to
produce the aggregation of the rows in the same group, called group-by aggregation
[24]. For a given table S with rows (kS1; vS1) and (kS2; vS2), the group-by and group-by
aggregation operations will produce tuples with (k; vS1; vS2) and (k; aggrFuncðvS1; vS2Þ)
fields, respectively ðk ¼ kS1 ¼ kS2Þ: The aggregation function can be SUM,

Accelerating Hash-Based Query Processing 133

AVERAGE,MAX, COUNT, etc. It is worth noting that constructing the hash table on
key consists of adding the grouped data into the hash table. Another word, data in the
hash table are already grouped.

2.3 Collision in the Hash-Based Operations Including Hash Join
and Group-by

In practice, in the hash-based query processing operations an ideal hash function to
generate a unique hash index for every input data tuple scarcely exist. Thus hash
collisions inevitably happen, particularly for DBMS applications, and need to be
appropriately handled. In order to resolve this issue, various mechanisms on FPGAs are
proposed. Software fallback mechanisms [17] facilitate the hardware design. However,
it may cause additional latencies due to the transfer time between the FPGA and the
software. Rehashing [7] is another method, which could also cause extra overheads due
to additional rehashing costs. On the other hand, supporting collision management in
the hardware implies chaining the hash table entries. It means that the next address to
be jumped to can only be determined after the previous line is read. Under DDR
latencies it can adversely diminish the overall performance.

2.4 Illustrating the Hash Table Caching

The data/instruction caching is a widely used optimization mechanism to cover the
speed gap between the storage and the processor. This paper is motivated by the fact
that caching can also be employed to improve the performance of the hash-based
operations of the query processing systems. As far as we know, this is the first work to
design a hash join/group-by engine equipped with a caching mechanism.

For convenience, we illustrate the proposed technique using an example in the probe
phase of the hash join operation to show how does this operation can take advantage of
the hash table caching technique? The data tables that include the input dataset for
probing, the hash table, and the contents of the cache are shown in Fig. 1c–e,

Step Cycle Operation Step Cycle Operation
0 0 lookupHT i0 0 0 lookupC i0
1 1 lookupHT i1 1 1 lookupC i1, respC i0, missC,

lookupHT i0
2 2 lookupHT i2 2 2 lookupC i2, respC i1, hitC, match

k1
3 3 lookupHT i0 3 3 lookupC i0, respC i2, missC,

lookupHT i2
4 35 respHT i0, match k0 4 4 respC, missC, lookupHT i0
5 36 respHT i1, match k1 5 31 respHT i0, match k0
6 37 respHT i2, mismatch k2 6 32 respHT i2, mismatch k2
7 38 respHT i3, collision k3,

lookupHT p0
7 33 respHT i0, collision k3, lookupC p0

8 69 respHT i0, match k3 8 34 respC i0, hitC, match k3

)b()a(

Fig. 1. An example hash probe, baseline (a) vs. cache (b). Example dataset (c), the content of
hash table (d) and the cache (e).

134 B. Salami et al.

respectively. The hash table and cache are already filled in the build phase. The cache
has the corresponding hash indexes of only k1 and k3.

The dataset that needs to be probed in the hash table is shown in Fig. 1c, with four
keys and their corresponding hash indexes. The hash collision requires scanning a
pointer chain from i0 to p0. As it can be seen in this table, there is a hash collision for
k0 and k3, both having the same hash index i0. There are totally two directly matched
key, one matched key after a collision, and one mismatched key.

In this example, the latency of the cache in the on-chip BRAM and the hash table in
the off-chip DDR are assumed to be 1 and 30 cycles, respectively. The cycle-by-cycle
execution of the cache-less baseline and cache-based hash probe are depicted in
Fig. 1a, and b, respectively. Several terms are used to describe the example clearer:
lookup (to send read request for the hash table –HT or the cache -C), resp (to get
response from the hash table –HT or the cache -C), (mis-)match (to show that an input
key is (mis-)matched from the hash table or from the cache), collision (to show a
detected hash collision), and hit/miss (to show a cache hit/miss).

As described in Fig. 1a, in the baseline execution, all the accesses are served from
the hash table in DDR (lookupHT). The responses arrive 30 cycles later (respHT). In
contrast, as it can be seen in Fig. 1b, in the cache-based version, all the inquiries are
being looked up from the cache, first (lookupC). The successful requests (cache hit-
respC) are being processed in the probe engine, and the unsuccessful (missed) ones are
being forwarded to the hash table (lookupHT). Serving some of the requests from the
cache reduces the total cycles to probe the example dataset from 69 to 34.

In this example, we showed both the cache hit and miss scenarios, to demonstrate
the efficiency of the hit requests against the overhead of missed cache inquiries.
However, in the real datasets other events such as a chain of colliding keys, redundancy
chaining, the irregular latency of DDR, the complexity of the write requests in the build
phase, etc., may appear.

3 The Overall Architecture of the Proposed Engine

The overall layout of the proposed accelerator is shown in Fig. 2. The connection of
FPGA with the host and the off-chip DDR-3 is through the high-speed PCI-3 and
DDR-3 interfaces, respectively. The host initializes DDR-3 with the input data tables.

Fig. 2. The overall layout of the accelerator including Host, FPGA, and DDR-3.

Accelerating Hash-Based Query Processing 135

DDR-3 memory locates the hash table, as well. FPGA is comprised of several com-
ponents: (i) device drivers to manage the off-chip data transfer, (ii) a central controller
to manage the computations and data movements, (iii) the accelerator engine (hash join
and group by), and (iv) finally, the on-chip Block RAMs, which are configured as the
cache of the hash table.

The detailed structure of the accelerator is shown in Fig. 3. Its overall architecture
is comprised of several components: (i) a (Linear Feedback Shift Register) LFSR-based
hash function: It generates the hash index of the input key in a fully pipelined fashion.
The generated hash indexes are used as the index of the corresponding hash table/cache
entries. (ii) The logic of the accelerator, i.e. hash join build, hash join probe, and
group-by: As a part of their functionality, the hash collisions of the colliding keys are
resolved by chained together in a linked list fashion. The similar method is used to
organize the repetitive keys in the hash table. (iii) The hash table in the off-chip DDR-3:
In order to efficiently support pointer chasing in the aforementioned special cases, we
partitioned the hash table into two distinct parts. The first half part of the hash table can
be directly indexed by the hash function in normal cases. The second half part, which is
excluded from the range of the hash function, is used for only the chains of the entries.
This part of the memory is consecutively being accessed. (iv) A cache of the hash table
in the on-chip BRAMs: The entries of the cache are exact copies of some of the hash
table entries. The hash table inquiries will be served from the cache. Only the missed
requests from the cache will be forwarded to the hash table.

In order to support the aforementioned features, each entry of the cache/hash table
has several fields, including:

• valid bit to show the validity of the entry.
• key field to store the input data keys.
• value field to store the value of the input data.
• pointerc that is used to resolve the hash collisions by storing the index of an

allocated hash table entry, following the pointer chaining mechanism.

Fig. 3. The detailed architecture of the proposed engine (hash table caching).

136 B. Salami et al.

• pointerr that is used to manage the repetitive keys in the hash table. Similar to the
hash collision, it uses the pointer chaining mechanism. The exception is the
group-by aggregation, where instead of storing key itself, we compute an aggre-
gation of the keys. Thus, there is no need for pointer chasing in this particular case.

• cache tag field to discard false positives in the cache.

Consequently, having any successful inquiries from the cache correspond to skip of
the hash table accesses in the off-chip DDR-3 memory. In addition, similar to Ibex [17],
we use a Content Addressable Memory (CAM) to remove read-after-write hazards.

3.1 Hash Join: Build Phase- Constructing the Hash Table

In order to insert a new (ks; vs) pair into the hash table, first, a hash index of ks is
generated by the hash function. This index points to the corresponding index in the
hash table/cache. We use an LFSR-based hash function to generate pseudo-random
hash indexes. Later on, the content of the corresponding entry of the cache is retrieved.
Due to the retrieved entry, (i) if it is not valid or is an undesirable (false positive) entry,
a cache miss occurs. The false positive situations of the cache can be recognized by
checking the cache tag. In these situations, we forward the same inquiry to the hash
table. Or, (ii) if the cache hits, or we get the corresponding entry from the hash table,
three different cases can occur:

• If the retrieved entry is not valid, a new entry is added to the corresponding index of
both the hash table and the cache.

• If the accessed entry is valid, with the same ks, it needs to allocate a new entry and
appropriately update the pointer fields, to manage repetitive keys in a linked-list
fashion. Accordingly, the hash table and cache are updated.

• If the accessed entry is valid, but with a different ks, a hash collision occurs. Similar
to the case of repetitive keys, a new hash table entry is allocated. Both the new and
old entries are updated in the cache and the hash table, to preserve the linked-list
behavior. Following this chaining method, nested hash collision can be resolved, as
well.

Our engine can deal with an unlimited number of hash collisions/repetitive keys, as
long as the hash table is not full.

3.2 Hash Join: Probe Phase- Scanning the Hash Table

In order to scan the hash table, first, we compute the hash index for the new kT. Later
on, retrieving the corresponding index from the cache, (i) if it is not a valid entry or is
not the desired entry (false positive), thus, a cache miss occurs. Therefore, the same
inquiry is forwarded to the hash table. And, (ii) if the cache hits or the response from
the hash table arrives, three cases can occur:

• If keys do not match and there is no valid collision pointerc field in the retrieved
entry, there is no entry in the hash table which matches with kT.

Accelerating Hash-Based Query Processing 137

• If keys do not match, but there is a valid collision pointerc field in the retrieved
entry, a hash collision occurs. Therefore, we first scan the subsequent hash table
entries, retrieving them from the cache, first. This process may lead to a mismatch,
if and only if no match can be found until the end of the chain. Never the less, at any
point of the chain, it is possible to find a match.

• If keysmatch, their combinationwill produce a junction row. This match can be found
directly, or after a pointer chasing process. Accordingly, all the vs in the chain must
orderly be read to generate the tuples of the junction table, (k, vs, vT) that k = kS = kT.

In the probe phase, the cache is updated by each valid response from the hash table.

3.3 Group-by Aggregation: Constructing a Hash Table to Group Data

Group-by operation intrinsically is similar to the build phase of the hash join operation,
as data in the hash table are already grouped based on the key field. The main difference is
that (i) usually in the SQL queries the group-by operation is accompanied by an
aggregation function, such as SUM, MAX, COUNT, AVERAGE, etc. Consequently,
instead of storing key itself in the hash table, an aggregation of the key needs to be stored,
without any necessity for pointer chasing to manage the repetitive keys. (ii) As the
number of groups is usually quite smaller than the size of the input dataset, there are often
accesses to the same hash table entries. This can significantly take advantage of the hash
table caching technique, as the repetitive accesses can be served from the cache.

In order to perform a group-by operation, similar steps to the hash join build phase
are followed, except the step 2, where the input key is matched with an entry in the hash
table/cache. In this particular case, we perform the aggregation on the value field and
skip allocation a new hash table entry to store the key field.

3.4 Policies of the Cache

Various accessing methods to the cache and its different Read/Write policies can
impact the performance. The cache policies in the proposed technique are as below:

• Cache Contents: The cache contains a number of the recently accessed valid entries
of the hash table. Each cache entry is an exact copy of the corresponding entry in
the hash table.

• Cache Replacement Policy: The hash table in the off-chip DDR memory is sig-
nificantly larger than the cache. Thus, a replacement policy is required to substitute
the new with the old entries of the cache. We use a direct-mapped policy, where all
the valid retrieved entries from the hash table are overwritten into the cache.

• Cache access policy: For all the required hash table entries, first, we look up the
cache. Any cache hit leads to skipping the DDR-3 accesses, but in contrast, the
missed requests need to be forwarded to the hash table. In order to discard false
positives, the cache has an additional field, the cache tag.

• Cache Indexing: We use the Least-Significant Bits (LSB) of the hash table index as
the cache index. The Most-Significant Bits (MSB) are stored as the cache tag field.

138 B. Salami et al.

4 Experimental Methodology

We used Xilinx ISE version 14.1 and Bluespec System Verilog compiler [1] in the
development phase. Bluespec is a commonly-used cycle-accurate modern HLS tool,
desired for control-oriented designs such as hash join. Our system was designed to
work at 200 MHz on a VC709 development board with a Virtex-7 FPGA anda 4 GB
DDR-3 memory channel. Our device has about 50 MBit on-chip BRAMs that are
employed as the cache. The PCI-3 controller works at 150 MHz. Thus, the synchro-
nizing FIFOs are exploited to exchange data among different clock domains properly.
We have made all our modules fully parametrizable. We validated the experimental
result by checking with the software (PostgreSQL [22]) runs of the same DBMS
operations. (key, value) pairs are 64 bits, each of which is 32-bits.

4.1 Hardware and Software Comparison Baselines

In the hardware baseline, only DDR-3 RAM is exploited to store the hash table,
without any caching mechanism. Many FPGA implementations follow the similar
design point. For instance, recently Ibex [15] is presented that uses the DDR-3 to locate
the hash table but unlike our baseline, it falls back software for the hash collisions.
Thus, our hardware baseline is efficient, cache-less, and pure hardware FPGA-based
implementation of the corresponding operations, i.e. the hash join and the group-by.

The second comparison case is a state-of-the-art software-based DBMS (Post-
greSQL) that is running in the warm cache setup on a server with 64 GB RAM and a
Xeon E5-2630 CPU. PostgreSQL does not support multi-threading. Thus, we use the
single-thread execution times of the queries for the comparisons. In order to get the
warm execution time, we run PostgreSQL two consecutive times. The second run is
supposed to be from its internal buffers, where data tables are already located into the
system memory. There are no disk I/O transactions in the warm cache mode of the
software runs.

It is worth noting that the execution model in the software baseline is different with
the FPGA-based solutions, including the proposed cache-based method and the hard-
ware baseline. We follow a dataflow execution model in the FPGA-based accelerators,
which allows deep pipelining and data streaming capabilities to achieve the peak
performance. In contrast, PostgreSQL runs on the scalar processor with a control-flow
execution model, which suffers from its conventional implications.

4.2 The Structure of the Benchmarks

In order to evaluate the proposed engine, we run a set of complex queries from the
TPC-H benchmark suite [23]. Specifically, we selected Q03, Q04, Q12, Q13, and Q14,
because they have different table sizes and also different join selectivity (the size of the
output data table divided by Cartesian product of the two input tables). However, as the
given queries are composed of several other operations, such as sorting, aggregation,
etc., we made a sub-query to extract only their hash join and group-by part.

Accelerating Hash-Based Query Processing 139

Furthermore, some of the queries such as Q03 are composed of multiple hash-based
operations. For these cases, we extract different sub-queries for each hash join/group-by
operation, run them separately, and get their distinct execution times. Later on, in order
to compute the total execution time of the given query, we sum up all those separate
parts.

The general format of the generated subqueries is shown in Table 1, separately for
the hash join and the group-by operations. We assumed two data tables S and T with
data tuples (kS, vS) and (kT, vT), respectively. In addition, we used various sizes of data
tables in the experiments, including 1 GB and 10 GB scales. We repeat the query runs
10 times. The reported total execution time of each given query is the average of the
execution times of its various runs.

5 Experimental Results

In this section, we evaluate the proposed cache-based engine for the hash join and
group-by operations. Due to the size of the each entry of the cache and also the size of
the available BRAMs in our device, the cache can cope with about 256K entries. Thus,
in 1 GB scale, we observed that BRAMs could entirely store the corresponding hash
tables without any need for accessing the off-chip DDR memory. Followingly, in 1 GB
scale, we exploited the on-chip BRAMs as the hash table (not as the cache). In contrast,
for 10 GB scale, as the sizes of hash tables are larger than the BRAMs, we follow the
proposed hash table caching technique.

5.1 Analyzing the Hash Table Caching

Table 2 includes the experimental results for 10 GB scale. In this table, table size refers
to the number of the rows (key-value pairs) of the input data tables. The total number of
the collisions is also shown in this table. Another important parameter is the number of
lookups for the cache and for the hash table, as well. The hit ratio (H.R) of the cache
that is an important metric to determine the performance achievement can be computed
as the Eq. 1:

H:R ¼ #cach lookup�#ht lookup
#cache lookup

ð1Þ

For convenience, we describe a sample result of Table 2, probe phase of Q03. For
this particular case, we observed that (i) totally 44.2M cache read requests are issued;

Table 1. The general format of the sub-queries used in the benchmarks.

Hash join Group-by

SELECT vS, vT SELECT SUM(vS)
FROM S, T FROM S
WHERE kS = kT GROUPBY kS

140 B. Salami et al.

32.1M read requests of the original dataset and 12.1M additional requests (37.6% of the
table size) for pointer chasing cases that 8.4M of them are as the result of hash
collisions and the rest 3.7M as the result of repetitive keys. Furthermore, (ii) 33.4% of
cache read requests are successfully served from the cache and the rest are forwarded to
the hash table. Thus, the H.R is 33.4%.

The experimental results show that the H.R is on average 34.75%. It ranges from
7.8% to 100%. More specifically, about the hash join cases, we observed that:

• The average H.R in the build phase of the given queries is 13.7% that is signifi-
cantly less that the total average H.R (34.75%). For all of the studied queries, the
hash join key in the build phase is a primary (no repetitive) key. Thus, the cache is
not efficiently utilized as a consequence of the less data locality in the hash table
accesses, for this case.

• Probe keys of Q12 and Q14 are the primary keys, as well. Thus, we observed less
H.R for these queries compared to others (8.4% vs. 24.8%).

• Input data tables in the probe phase are significantly larger than in the build phase,
on average 30�. Thus, although, the hash table construction in the build phase is
amore expensive operation, we observed that the execution time of the probe phase
is dominant.

Although, the cache misses incur additional overheads, the substantial improve-
ment of the cache hits, in terms of mitigating the latency of the memory, covers its side
effects and leads to better performance compared to the cache-less hardware baseline.

In addition, most of the studied queries, except Q14, are composed of a group-by
aggregation operation. For instance, in 10 GB scale of Q03, 300K tuples are grouped
into about 100K individual groups, or 520K tuples of Q04 are grouped into only 5
groups. The experimental results in Table 2 show that the H.R of the cache for the
queries with a small number of the groups is 100%, which is the consequence of the
small enough hash tables that can be entirely located in the cache. In addition, in the

Table 2. The experimental results of hash table caching, 10 GB scale.

Query Operation Table size (M) #cache_lookup (M) #ht_lookup (M) Collision (M) H.R (%)

Q03 Build 1.4 1.7 1.49 0.3 12.3
Probe 32.1 44.2 29.4 8.4 33.4
Groupby 0.3 0.35 0.05 0.02 85

Q04 Build 0.56 0.69 0.56 0.13 18.8
Probe 37.2 57.1 41.2 13.2 27.8
Groupby 0.52 0.52 *0 0 100

Q12 Build 0.3 0.35 0.3 0.05 14.2
Probe 15 16.2 15 1.2 7.8
Groupby 0.31 0.31 *0 0 100

Q13 Build 1.5 1.8 1.56 0.3 13.3
Probe 14.8 19.5 11.9 2.6 38.9
Groupby 1.5 1.5 *0 0 100

Q14 Build 0.7 0.78 0.7 0.08 10.2
Probe 2 2.2 2 0.2 9

Accelerating Hash-Based Query Processing 141

group-by aggregation operation, each hash table/cache entry points to an individual
group. Thus, repetitive keys that are located in a same group are also served from the
same indexes of the hash table/cache. This situation leads to a high hit ratio of the
cache.

5.2 The Overall Performance Analysis

The total execution time of the studied queries is shown in Fig. 4. It includes the
execution time of (i) the BRAMs-based design, where BRAMs are either used as the
main hash table in 1 GB scale or as the cache in 10 GB scale, (ii) cache-less
FPGA-based hardware baseline, and (iii) the software baseline.

For 1 GB scale we achieved on average 4.6� and 18.9�, and for 10 GB scale the
speedup is on average 3� and 9.7�, comparing proposed hash join engine against
hardware and software baselines, respectively. More specifically, we observed that:

• For 1 GB scale that we could run all the studied benchmarks by exploiting BRAMs
as the hash table, the speedup ranges from 2� to 7.5�, comparing proposed
architecture to the hardware baseline.

• For the cache-based version in 10 GB scale, the speedup ranges from 1.2� (Q14) to
4.4� (Q04). In Q14, the H.R of the cache is 9.6% on average, while it is 45.9% on
average for the other queries. The main reason of having less H.R in Q14 is that it
has no group-by operation, where the cache efficiently works.

Furthermore, comparing the proposed hash join engine to the software baseline, the
achieved throughput improvement is mainly the consequence of the inherent capability
of FPGA to perform dataflow execution in a deep pipelined fashion. As it can be seen,
even baseline hardware version is on average 4� faster than software. However,
additional optimizations in the proposed hash table caching mechanism substantially
increase the speedup. We observed on average 14.3� speed up.

Fig. 4. The overall performance, comparing the proposed engine with a cache-less hardware and
also software baselines for (left) 1 GB and (right) 10 GB scales.

142 B. Salami et al.

5.3 The Resource Utilization

The hardware resource usage of the baseline and proposed cache-based engines are
shown in Table 3. We observed that although, the utilization rates of the Look-Up
Table (LUT) and Flip-Flop (FF) are almost similar in both versions, the usage of
BRAMs is significantly different. Entirely 62% of available BRAMs are used as the
cache that can deal with about 256K entries.

6 Related Work

Our design can be seen as a combination of the Ibex engine [17] and the hardware hash
table chaining approach [8] with the main contribution of caching. For joining tables,
hash joins are the most commonly used approach [19]. However, many examples of
other types of table joins exist such as the merge join algorithm [3], the handshake join
[16, 21], etc.

Multithreading the build and probe phase engines have shown to offer direct per-
formance benefits [7, 12]. Multithreading can effectively mitigate the DDR access
latencies, with the overhead of needing more I/O bandwidth and the additional circuit
to manage the concurrent threads. However, this technique can be integrated with the
proposed hash table caching mechanism in this paper to achieve a significant
throughput.

In [3], the authors design an FPGA prototype that can perform a parallel sort-merge
join, making use of a sort tree as a prerequisite. In this work, we implement a hash join
that can be inherently faster, as we do not perform any initial sorting step on the input
data tables.

In Widx [12], an out of order SPARC v9 processor core is powered with a small
core to accelerate the hash join operation with index walkers that walk multiple
buckets, concurrently. This technique improves indexing performance of the TPC-H
queries by 3.1� on average, while saves on average 83% of energy. Widx is similar to
our approach, as it also aims to reduce the overheads of the pointer chasing (walking).
However, Widx is a hardware-software codesign that follows a different approach with
the proposed hash table caching method in this paper, which is entirely deployed in the
hardware.

LINQits [4] accelerates a domain-specific query language called LINQ and is
prototyped on a Zynq processor. It compares queries into hardware accelerator tem-
plates and for the hash join case, it keeps the hash table in a sparse key table. It keeps
the collided hash keys in the Spill Queue. Once reading its current partition is finished,
it re-circulates the content of the Spill Queue (and its partition) until all the elements

Table 3. Hardware resource utilization rates

LUT FF BRAM

Baseline 128581 (1%) 150123 (2%) 12 (1%)
Cache-based 16368 (1.5%) 163854 (2%) 724 (62%)

Accelerating Hash-Based Query Processing 143

have been processed. Our proposed technique is designed not to require any Spill
Queue or rehashing.

Finally, the proposed design could also be used together with the recent research on
key-value stores [5, 11, 20]. Key-value stores are kind of unstructured (non-relational)
databases, where the hash table is their key comprising component. The proposed hash
table caching mechanism can be customized to improve the throughput of the
key-value stores, as well.

7 Conclusions

In this paper, we have demonstrated the design of a novel cache-based query pro-
cessing operations, i.e. hash join and group-by on FPGAs. Our contributions include
hash table caching in the hardware and featuring collision, without reverting any
software fallbacks. We showed the usefulness of the proposed hash table caching
technique to process relevant hash join and group-by kernels in the TPC-H queries,
with a maximum of 4.2X speedup over a pipelined baseline. Our experimental results
show that we are enabled to both (i) use the full capacity of the DDR memory to store
complete hash tables, and by employing a “hash table cache”, (ii) to mitigate the long
and irregular latencies of DDR memories, exploiting the fast BRAM resources of
FPGA, which in turn significantly improves the performance of the hash join and
group-by operations.

Acknowledgments. The research leading to these results has received funding from the
European Union’s Seventh Framework Program (FP7/2007-2013), for Advanced Analytics for
Extremely Large European Databases (AXLE) project under grant agreement number 318633,
and from the Ministry of Economy and Competitiveness of Spain under contract number
TIN2015-65316-p.

References

1. Bluespec, Inc. http://bluespec.com/
2. Netezza. The Netezza FAST engines framework. http://www.monash.com/uploads/netezza-

fpga.pdf
3. Casper, J., Olukotun, K.: Hardware acceleration of database operations. In: Proceedings of

the 2014 ACM/SIGDA International Symposium on Field-programmable Gate Arrays,
pp. 151–160. ACM (2014)

4. Chung, E.S., Davis, J.D., Lee, J.: LINQits: big data on little clients. ACM SIGARCH
Comput. Archit. News 41, 261–272 (2013)

5. De, A., et al.: Minerva: accelerating data analysis in next-generation SSDs. In: 2013 IEEE
21st Annual International Symposium on Field-Programmable Custom Computing Machi-
nes (FCCM), pp. 9–16. IEEE (2013)

6. Dennl, C., Ziener, D., Teich, J.: On-the-fly composition of FPGA-based SQL query
accelerators using a partially reconfigurable module library. In: 2012 IEEE 20th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 45–52. IEEE (2012)

144 B. Salami et al.

http://bluespec.com/
http://www.monash.com/uploads/netezza-fpga.pdf
http://www.monash.com/uploads/netezza-fpga.pdf

7. Halstead, R.J., et al.: FPGA-based multithreading for in-memory hash joins. In: Biennial
Conference of Innovative Data Systems Research (CIDR) (2015)

8. Halstead, R.J., et al.: Accelerating join operation for relational databases with FPGAs.
In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 17–20. IEEE (2013)

9. Hayes, T., et al.: Vector extensions for decision support DBMS acceleration. In: 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 166–176. IEEE
(2012)

10. He, J., Lu, M., He, B.: Revisiting co-processing for hash joins on the coupled CPU-GPU
architecture. Proc. VLDB Endow. 6(10), 889–900 (2013)

11. István, Z., et al.: A flexible hash table design for 10GBPS key-value stores on FPGAs. In:
2013 23rd International Conference on Field Programmable Logic and Applications,
pp. 1–8. IEEE (2013)

12. Kocberber, O., et al.: Meet the walkers: accelerating index traversals for in-memory
databases. In: Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 468–479. ACM (2013)

13. Koch, D., Torresen, J.: FPGASort: a high performance sorting architecture exploiting
run-time reconfiguration on FPGAs for large problem sorting. In: Proceedings of the 19th
ACM/SIGDA International Symposium on Field programmable Gate Arrays, pp. 45–54.
ACM (2011)

14. Krishnamurthy, R., et al.: Methods and systems for generating query plans that are
compatible for execution in hardware. U.S. Patent Application No. 12/168,821, 7 July 2008

15. Mueller, R., Teubner, J., Alonso, G.: Data processing on FPGAs. Proc. VLDB Endow. 2(1),
910–921 (2009)

16. Oge, Y., et al.: An implementation of handshake join on FPGA. In: 2011 Second
International Conference on Networking and Computing (ICNC), pp. 95–104. IEEE (2011)

17. Woods, L., Teubner, J., Alonso, G.: Less watts, more performance: an intelligent storage
engine for data appliances. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 1073–1076. ACM (2013)

18. Wu, L., et al.: Q100: the architecture and design of a database processing unit.
ACM SIGPLAN Not. 49(4), 255–268 (2014)

19. Zeller, H., Gray, J.: An adaptive hash join algorithm for multiuser environments. In: VLDB,
pp. 186–197 (1990)

20. Blott, M., et al.: Achieving 10Gbps line-rate key-value stores with FPGAs. In: Presented as
part of the 5th USENIX Workshop on Hot Topics in Cloud Computing (2013)

21. Roy, P., Teubner, J., Gemulla, R.: Low-latency handshake join. Proc. VLDB Endow. 7(9),
709–720 (2014)

22. Latest version of PostgreSQL 5.3. https://2ndquadrant.com/en/
23. TPC-H benchmark set. http://www.tpc.org/tpch/
24. Hayes, T., et al.: Future vector microprocessor extensions for data aggregations. In:

Proceedings of the 43rd International Symposium on Computer Architecture, pp. 418–430.
IEEE Press (2016)

25. Arcas-Abella, O., et al.: Hardware acceleration for query processing: leveraging FPGAs,
CPUs, and memory. Comput. Sci. Eng. 18(1), 80–87 (2016)

26. Salami, B., Arcas-Abella, O., Sonmez, N.: HATCH: hash table caching in hardware for
efficient relational join on FPGA. In: 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), p. 163. IEEE (2015)

Accelerating Hash-Based Query Processing 145

https://2ndquadrant.com/en/
http://www.tpc.org/tpch/

Distributed Big Data Analysis for Mobility
Estimation in Intelligent Transportation Systems

Enzo Fabbiani1, Pablo Vidal2, Renzo Massobrio1(B), and Sergio Nesmachnow1

1 Universidad de la República, Herrera y Reissig 565, 11300 Montevideo, Uruguay
{enzo.fabbiani,renzom,sergion}@fing.edu.uy

2 CONICET–Universidad Nacional de la Patagonia Austral,
Acceso Norte, Ruta 3, 9011 Caleta Olivia, Argentina

pjvidal@uaco.unpa.edu.ar

Abstract. This article describes the application of distributed comput-
ing techniques for the analysis of big data information from Intelligent
Transportation Systems. Extracting useful mobility information from
large volumes of data is crucial to improve decision-making processes
in smart cities. We study the problem of estimating demand and origin-
destination matrices based on ticket sales and location of buses in the
city. We introduce a framework for mobility analysis in smart cities,
including two algorithms for the efficient processing of large mobility
data from the public transportation in Montevideo, Uruguay. Parallel
versions are proposed for distributed memory (e.g., cluster, grid, cloud)
infrastructures and a cluster implementation is presented. The experi-
mental analysis performed using realistic datasets demonstrate that sig-
nificatively speedup values, up to 16.41, are obtained.

Keywords: Distributed computing · Big data · Mobility analysis ·
Intelligent Transportation Systems

1 Introduction

Nowadays, many complex activities are developed in modern cities, which impose
serious challenges to the mobility of citizens [7]. The main mobility issues in dense
urban areas are related to public transport systems that are not capable of ful-
filling the growing demand for transportation. In order to implement innovative
solutions that address this issue, it is necessary to have access to updated infor-
mation about the mobility of the citizens [2]. In most cities, the information
available from public administrations is scarce and outdated, due to the lack
of financial and human resources assigned to gathering and managing mobil-
ity data. In other cases, data are gathered but are not used for improving the
mobility or optimizing public/vehicular transportation. In this scenario, devel-
oping improved decision-making processes related to urban mobility becomes
mandatory. New smart city technologies are very helpful to offer high quality
solutions for this kind of mobility problems.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 146–160, 2017.
DOI: 10.1007/978-3-319-57972-6 11

Distributed Big Data for Demand Estimation in ITS 147

The paradigm of smart cities proposes taking advantage of information and
communication technologies to improve the quality and efficiency of urban ser-
vices [4]. Intelligent Transportation Systems (ITS) are a key component of smart
cities. ITS are defined as those systems integrating synergistic technologies, com-
putational intelligence, and engineering concepts to develop and improve trans-
portation. They are aimed at providing innovative services for transport and
traffic management, with the main goals of improving transportation safety and
mobility, and also enhancing productivity [18]. ITS allow gathering several data
regarding transportation and mobility in the cities [5]. In big urban areas, they
generate huge volumes of data that can be processed to extract valuable infor-
mation about the mobility of citizens.

This article presents a framework to study mobility in the context of smart
cities. In order to solve mobility and urban transportation optimization problems
it is imperative to understand the mobility patterns of citizens and the demand
distribution for public transport. This information is often represented using
matrices: (i) origin-destination (OD) matrices indicate the amount of people
moving from each point in the city in a given period of time [1]; (ii) demand
matrices, measure the number of bus tickets sold between each location in the
city. These matrices are often built using data from surveys performed in-situ
to passengers and drivers. However, surveys offer only a partial vision of the
mobility patterns in the city, are expensive, and need to be performed regularly
to get updated information. A different approach to build demand and OD
matrices is based on processing real data from ITS, including tickets sold with
and without smart cards, GPS data from buses, etc.

We introduce a specific methodology for generating OD and demand matri-
ces using data from ITS to study mobility in smart cities. Taking into account
the large computing time demanded when dealing with huge volumes of data,
we propose applying distributed computing techniques to speed up the process-
ing. A data-parallel approach is devised to process large datasets on distributed
memory parallel architectures (e.g., cluster, grid, and cloud systems). Two spe-
cific algorithms are presented, based on real data from the ITS in Montevideo,
Uruguay. The proposed approach can easily be extended to any other ITS-related
information and scenarios.

The main contributions of the research reported in this article are: (i) we
introduce a methodology for OD matrix estimation using smart card informa-
tion; (ii) we design and implement specific algorithms for processing big data
using distributed computing techniques; and (iii) we report an experimental
analysis which demonstrates that significant speedup values are obtained, allow-
ing the efficient processing of large datasets.

The article is organized as follows. Section 2 introduces the problem of Big
Data analysis for ITS. The proposal of applying distributed computing tech-
niques to accelerate the processing of large volumes of ITS data is described in
Sect. 3. The experimental evaluation of the proposed algorithms is reported in
Sect. 5. Finally, Sect. 6 presents the conclusions of the research and formulates
the main lines for future work.

148 E. Fabbiani et al.

2 Big Data Analysis for Intelligent Transportation
Systems

This section describes the problem of Big Data analysis for building demand and
origin-destination matrices. A review of related work is also presented.

2.1 Problem Description

The main challenge faced when generating demand and OD matrices using data
from tickets sales is that passengers validate their smart cards when they board
but not when they alight the bus. Therefore, while the origin of each trip is
known with certainty, it is necessary to estimate the destination. Furthermore,
some passengers do not use smart cards to pay for their ticket. Therefore, there
are sale records which do not provide information to be used to track several
trips made by a single passenger. Specific big data processing algorithms must
be designed and implemented for each case.

In this article we focus on generating demand and OD matrices for the city of
Montevideo, Uruguay. The city government in Montevideo introduced in 2010 an
urban mobility plan to redesign and modernize urban transport in the city [9].
Under this plan, the Metropolitan Transport System (Sistema de Transporte
Metropolitano, STM) was created, with the goal of integrating the different com-
ponents of the public transportation system together. One of the first improve-
ments in STM was to include GPS devices on buses and allow passengers to pay
for tickets using a smart card (STM card). Additionally, the complex system of
fares was simplified to allow only two different type of tickets: (i) “one hour”
tickets, allowing up to 1 transfer within an hour of taking the first bus; (ii)
“two hours” tickets, allowing unlimited transfers within 2 h from the moment
the ticket is purchased. However, it is not compulsory to use the STM card to
buy bus tickets. Passengers may pay with cash directly to the driver. In this
case, the ticket is only valid for that trip and no transfers are allowed.

The bus companies that operate in Montevideo are obliged to send bus loca-
tion and ticket sale data daily to the city authorities. The bus network in Mon-
tevideo is quite complex, consisting of 1383 bus lines and 4718 bus stops. In this
article we consider the complete dataset of ticket sales and bus location for 2015,
comprising nearly 200 GB of data. Bus location data contain information about
the position of each bus, sampled every 10 to 30 s. Each location record holds
the following information:

– lineID, the unique bus line identifier;
– tripID, the unique trip identifier for each single trip for a given lineID;
– latitude and longitude,
– vehicle speed ;
– timestamp of the location; and
– stopID, the identifier for the nearest bus stop to the current bus location.

Ticket sales data contain information about sales made with and without
STM cards. Each sale record has the following fields:

Distributed Big Data for Demand Estimation in ITS 149

– tripID, as in location data;
– latitude and longitude,
– stopID, as in location data;
– number of passengers, since it is possible to buy tickets for multiple passengers

at once; and
– timestamp of the sale.

Additionally, tickets payed with STM cards have the following fields: unique
STM card identifier (cardID) which is hashed for privacy purposes, number of
transactions made with that STM card (transactionID), and the last payed trans-
action (payedID). This allows identifying when a passenger transfers between
buses, since transactionID will increment while payedID will remain unchanged.
The number of transfers is equal to transactionID−payedID.

2.2 Related Work

Many articles in the related literature have proposed applying statistical analysis
for estimating OD matrices and computing several other relevant statistics for
ITS. Some approaches applying parallel and distributed computing techniques
have also been proposed recently. A review of the main related works is presented
next.

A detailed literature review on the use of smart cards in ITS was presented
by Pelletier et al. [14]. The review covers the hardware and software needed
for the deployment of smart card payment solutions in urban transportation
systems as well as the privacy and legal issues that arise when dealing with
smart card data. Additionally, the authors identify the main uses for these data,
including: long-term planning, service adjustments and performance indicators
of the transportation systems. Finally, examples of smart card data usage around
the world are reviewed.

Trépanier et al. [20] presented a model to estimate the destination for pas-
sengers boarding buses with smart cards, following a database programming
approach. Two hypotheses are considered, which are commonly used in many
related works: (i) the origin of a new trip is the destination of the previous one;
(ii) at the end of the day users return to the origin of their first trip of the
day. Based on these assumptions, the authors propose a method to follow the
chain of trips of each user in the system. Those trips for which chaining is not
possible (e.g., only one trip in the day for a particular user) are compared with
all other trips of the month for the same user, in order to find similar trips with
known destination. The experimental evaluation was conducted using real infor-
mation from a transit authority in Gatineau, Quebec. Two datasets were used,
with 378,260 trips from July 2003 and 771,239 trips from October 2003. Results
showed that a destination estimation was possible for 66% of the trips. Most
trips where destination could not be estimated take place during off-peak hours,
where more atypical and non-regular trips are performed. Considering only peak
hours, the percentage of trips with their destination estimated improves to about
80%. However, the estimation accuracy could not be assessed due to lack of a
second source of data (e.g., automatic passenger count) for comparison.

150 E. Fabbiani et al.

Wang et al. [21] proposed using a trip-chaining method to infer bus passenger
OD from smart card transactions and Automatic Vehicle Location (AVL) data
from London, United Kingdom. In the studied scenario, authors needed to esti-
mate both origin and destination of trips. Origins are accurately estimated by
searching for the timestamp of each smart card transaction in the AVL records
to determine the bus stop of each trip. To estimate destinations, the authors
used a similar methodology to that presented by Trépanier et al. [20], chaining
trips when possible to infer destinations. Results were compared against passen-
ger survey data from Transport for London, performed every five to seven years
for each bus route and including the number of people boarding and alighting
at each bus stop. The analysis shows that origins can be estimated for more
than 90% of the trips while origin and destinations can be estimated for 57%
of all trips. When compared to the survey data, the difference on the estimated
destinations were below 4%. Finally, two practical applications of the results
are presented. The first one consists of studying the daily load/flow variation to
identify locations along each bus route where passenger load is high, as well as
underutilized route segments. The second application consists of a transfer time
analysis, evaluating the average time that users need to wait for transferring
between buses, based on the alighting stop and the AVL data.

Munizaga and Palma [12] presented a similar approach to estimate OD matri-
ces in the multimodal transportation system of Santiago, Chile, where passengers
can use their smart cards to pay for tickets at metros, buses or bus stations.

Several proposals have applied distributed computing approaches to process
large volumes of traffic data, but few works have dealt with the estimation of
demand or OD matrices.

Pioneering works on this topic applied distributing computing to gather traf-
fic data. Sun [17] proposed a client-server model developed in CORBA for col-
lecting traffic counts in real time, to be used for dynamic origin/destination
demand estimation. The proposed solution included a CORBA client to extract
data from the traffic network, and a CORBA server for storing data in a cen-
tralized repository. All the information is processed to be later used in Dynamic
Traffic Assignment strategies for the traffic network studied, for the estimation
of dynamic OD matrices applying a bi-level optimization framework.

Toole et al. [19] propose combining data from many sources (call records
from mobile phones, census, and surveys) to infer OD matrices. The authors
combine several existing algorithms to generate OD matrices, assign trips to
specific routes, and to compute quality metrics on road usage. Furthermore,
a web application is introduced to give simple visualizations of the computed
information. The authors mention that computations are performed in parallel,
but no parallel model is described and no performance metrics are reported.

Also using mobile phone data, Melleg̊ard [11] proposed a Hadoop imple-
mentation to generate OD matrices while keeping users’ privacy. However, the
experimental analysis is done on synthetic data due to the difficulties on get-
ting real data from mobile operators. Furthermore, no performance metrics are
reported, so the advantages of the Hadoop implementation are not clear.

Distributed Big Data for Demand Estimation in ITS 151

Huang et al. [8] proposed a methodology for offline/online calibration of
Dynamic Traffic Assignment systems via distributed gradient calculations. An
adaptive network decomposition framework is introduced for parallel computa-
tion of traffic network metrics and for parallel simulations, in order to accelerate
the computations. Parallel OD demand estimation is proposed as a line for future
work, in order to deal with large-scale traffic networks with huge number of OD
pairs and sensors.

Our recent work [10] presented a preliminary analysis on using distributed
computing techniques to process GPS data from buses. We introduced a Map-
Reduce approach for processing historical data to study relevant metrics to assess
the quality-of-service of the transportation system in Montevideo, Uruguay. We
used the strategy to compute the average speed of buses and to identify trouble-
some locations, according to the delay and deviation of the times to reach each
bus stop. The parallel implementation scaled properly when processing large
volumes of input data.

In the present article, we extend our preliminary approach [10] to solve a
more complex and computing intensive problem: the estimation of demand and
OD matrices for public transportation. Up to our knowledge, this approach has
not been previously proposed in the related literature.

3 Mobility Estimation from ITS Smart Card Data

This section presents the proposed methodology for estimating demand and
OD matrices taking into account the two kind of transfer trips in Montevideo
(explained in Sect. 2). We introduce two models for estimation: the first one
for one-way transfer trips and the second one for multiple trips. We present a
description of our sequential algorithm for estimating demand and OD matrices.
Finally, the parallel implementation with all its components is described.

3.1 Models for Demand and OD Estimation

The model used for estimating OD matrices is based on reconstructing the trip
sequence for passengers that use a smart card, following a similar approach to
that applied in the related literature [12,20,21]. We assume that each smart
card corresponds to a single passenger, so we use the terms card and user in
an indistinct manner. The proposed approach is based on processing each trip,
retrieving the bus stop where the trip started, and identifying/estimating the
stop where the passenger alighted the bus from the information available.

We identify two different ways of estimating destinations from the data used:
transfer trips and direct trips. The main details for each case are presented next.

Transfer Trips. In a transfer trip, passengers pay for their tickets when board-
ing the first bus by using a smart card identified by its cardID. Later, they
can take one or more buses within the time limits permitted by the ticket, as

152 E. Fabbiani et al.

explained in Sect. 2.1. For each ticket sold, the number of transactions (trans-
actionID) made with that cardID and the last payed transaction (payedID) are
recorded. This allows detecting whether a smart card record corresponds to
a new trip (payedID is equal to transactionID) or to a transfer between buses
(transactionID is higher than payedID). We assume that passengers avoid exces-
sive walking in transfers; we consider that a passenger finishes its first leg at the
nearest bus stop to the bus stop where he boards the second leg, and so on.
The boarding bus stop for the second leg is recorded in the system, thus we
estimate the alighting point from the first bus by looking for the closest bus stop
corresponding to that line.

A transfer example is presented in Fig. 1. At 07:42 the passenger takes bus
number 1 (green line) at bus stop 12. At this point, we have no information about
the destination of the passenger. However, at 08:12 the passenger boards bus
number 2 (blue line) by using a transfer, without paying a new ticket. Therefore,
we can confidently estimate that the passenger alighted from bus number 1 at
bus stop number 1–5 which is the closest bus stop to bus stop 23, where the
passenger does the transfer. We have no information about the destination of
the second trip. This issue is addressed with the direct trip estimation, described
next.

Fig. 1. Demand and OD estimation for transfer and direct trips. (Color figure online)

Distributed Big Data for Demand Estimation in ITS 153

Direct Trips. We consider direct trips as those that have no bus transfers. We
also consider the last leg of a trip with one or more transfers as a direct trip.
In both cases, the difficulty lies in accurately estimating a destination point for
these trips.

To estimate the destination points we consider two assumptions, which are
commonly used in the related literature: (i) passengers start a new trip at a bus
stop which is close to the destination of their previous trip; (ii) at the end of
the day, passengers return to the bus stop where they boarded the first trip on
the same day.

In order to estimate destinations it is necessary to chain the trips made by
each passenger on a single day. A preliminary study performed on the sales
dataset showed that the best option is to consider each day starting at 04:00,
since the lowest number of tickets are sold at that time. This allows considering
passengers with different travel patterns, such as those who commute to work
during the day and those who work at night.

The model for chaining direct trips of a specific passenger works as follows.
We iterate through all the trips done in a 24 h period (from 04:00 to 04:00 on
the following day). For each new trip, we try to estimate the alighting point by
looking for a bus stop located in a predefined range from the boarding bus stop
of the previous trip.

In the example shown in Fig. 1, the passenger takes bus number 3 (red line)
at 18:05, to return home. In order to estimate the destination of this trip, we
look for the closest bus stop of bus number 3 located within a given search radius
from stop number 12, which is the origin of the previous trip. In the example,
stop number 35 is the only stop within that radius, so it is chosen as the alighting
point for the trip. When no bus stop is found on that radius, the procedure is
repeated using a larger radius (two times the original one) to search for bus
stops. If no bus stop is found using the larger radius, the origin of the trip is
recorded, in order to report the number of unassigned destinations.

3.2 Algorithm for Demand and OD Estimation

We propose a specific methodology for reconstructing the trip sequence for pas-
sengers, by estimating the destination points from the information available. The
algorithm for estimating trip destinations is described in the flowchart in Fig. 2.

Three phases are identified in the proposed algorithm, which are relevant for
building the estimated demand and OD matrices:

Pre-processing. The pre-processing phase prepares the data, filtering those
records with incoherent information and classifying records by month per passen-
ger. The algorithm receives as input an unstructured dataset containing raw GPS
positions and ticket sales data. Initially, the algorithm discards those sale records
that have invalid GPS coordinates; which are not processed for the demand and
OD matrices estimation. A sale record has an invalid location when its coor-
dinates are not within the route of the bus corresponding to the sale, with a
tolerance of 50 m.

154 E. Fabbiani et al.

Fig. 2. Flowchart of the algorithm for estimating trip destinations.

Finally, trip records with consistent location information are separated into
different files, according to their cardID and then ordered according to their date
field. This allows processing the trips of each passenger independently.

Core Processing. In this phase the sales data are processed in order to generate
demand and OD matrices. Data are iteratively processed: for each passenger,
trips are analyzed considering 24 h periods starting and finishing at 04.00. First,
the origin of the trip is recorded. In order to estimate the destination, the models
defined in Sect. 3.1 are applied, depending on whether the trip corresponds to a
transfer or to a direct trip. Once the origin and the destination are computed,
the corresponding values are updated in the demand and OD matrices. The
process is repeated until all trip records are processed. In our study, we consider
a distance of 500 m for the search radius used when estimating destination of
direct trips, as described in Sect. 3.1.

Output. After all records are computed the demand and OD matrices are
returned.

Distributed Big Data for Demand Estimation in ITS 155

4 A Parallel Algorithm for Demand and OD Matrices
Estimation

The capability of a traditional sequential algorithm for the estimation of demand
and OD matrices is limited by the computational capacity of a single computing
element (node). High performance computing architectures based on distributed
parallel processing principles can achieve a large computational efficiency as well
as high scalability for solving complex problems [6].

In this section, we present the parallel model for processing a dataset con-
sisting of many trip files and estimating the demand and OD matrices using a
parallel/distributed system.

4.1 Parallel Model

Processing large volumes of data is needed to accurately estimate demand and
OD matrices from ticket sales and bus location information. Initial experiments
on a reduced portion of the dataset suggest that processing only one month of
sales data demands over 18 days of computational time, when using a sequential
algorithm in a regular desktop computer (Core i5 x2, 6 GB of RAM, Ubuntu
14.04). Therefore, we propose to run the estimation algorithms in parallel, mak-
ing use of several computing units. The basic idea of the proposed parallel algo-
rithm is to apply a data-parallel approach, dividing the dataset of sales and
GPS records in chunks, following the Bag-of-Tasks (BoT) paradigm [3]. In our
case, the BoT corresponds to a set of user trip files. Since each set of trip files
are independent, they can be assigned to different compute nodes (slaves) for
processing. Using a master-slave architecture seems appropriate since the slave
processes do not need to share information with each other.

Figure 3 shows the proposed master-slave model for processing trip data.
Initially, the master collects the data to be processed and filters inconsistent
records. Next, the master sends the BoT to each slave in the slave pool in
order to perform the assigned computation task. Then, each slave node runs the
designated estimation procedure. Finally, the master receives the partial results
and store them to join and create the final demand and OD matrices.

Two variants of the proposed algorithm were implemented, one for each of the
two different estimation procedures presented in Sect. 3.1. Both variants follow
the same general approach which is specified in Sect. 4.2.

4.2 Implementation Details

The implemented algorithms were designed using Python 2.7.5. The cross-
platform open-source geographic information system QGIS [16] was used to
manage geographic information corresponding to bus location and bus stops
data.

We applied dispy [15] for creating and distributing parallel tasks among sev-
eral computer nodes. dispy is a Python framework that allows executing parallel

156 E. Fabbiani et al.

Fig. 3. Diagram of the proposed parallel model for demand and OD matrices estima-
tion.

processes, supporting many different distributed computing infrastructures. The
main features of the framework include tasks distribution, load balancing, and
fault recovery. The dispy framework provides an API for the user to define
clusters and schedule jobs to execute on those clusters. Creating a cluster in
dispy consists of packaging computation fragments (code and data) and speci-
fying parameters that control how the computations are executed, such as which
nodes can execute each computation. Figure 4 presents the main methods used
with dispy to create jobs and assign them to slave nodes in order to estimate
demand and OD matrices.

function ’estimationOD’

def estimationOD(tripFile):

#code for estimating origin-destination

return pairsOD

#main

if __name__ == ’__main__’:

modules imported, are not available in job computations

import dispy

cluster = dispy.JobCluster(estimationOD,depends=[settings,

data, visual,...],...more parameters)

jobs = []

#Create tasks related with each trip file

for tripFile in os.listdir(settings.path_to_trip_dataset):

job = cluster.submit(tripFile)

jobs.append(job)

for job in jobs: #Execute jobs into the nodes availables

job()# waits for job to finish and returns results

pairsOD = job.result

for pairs in pairsOD:

#OD matrix is reconstructed with partial results

#stored in variable ’pairsOD’

Fig. 4. dispy script for job creation and distribution.

Distributed Big Data for Demand Estimation in ITS 157

A list of parameters are needed to set a dispy cluster. First of all, the pro-
gram to execute in each node must be indicated (in our case, the O-D matrix
estimation procedure). In addition, the list of nodes available to execute the
jobs, and a list of dependencies needed for computation must be specified (in
our application the only dependency is the availability of the QGIS software).

Once a cluster is created, jobs can be scheduled to execute at a certain node.
dispy will execute the job on an available processor in the defined cluster. When
a submitted job is called, it returns that job’s execution result, waiting until the
job is finished if it has not finished yet. After a job is finished the information
about the pairs origin-destination found is used to build the OD matrices.

Each slave keeps track of the index of the last file or line processed. Therefore,
in case of a system failure it is possible to resume the execution from the last
processed record, without the need of starting the process from the beginning.

In our approach, the master creates a set of BoT where each task corre-
sponds to all the trip records of a single passenger. Then, each BoT is distributed
using dispy across the different slaves to execute the estimation algorithms. It
is important to choose the amount of passengers’ trip records to assign to each
slave in order to optimize the execution time, avoiding costly communications
between the slaves and the master. This parameter is configured in the experi-
mental analysis presented in Sect. 5. Finally, the master node distributes tasks
to slaves on demand, and obtains the results computed by each slave to gather
them to return the final solution.

5 Experimental Analysis

This section describes the experimental analysis performed to assess the effi-
ciency of the parallel algorithms developed. The computational platform used
and the problem instances are detailed. Finally, the computational efficiency
results are reported and commented.

5.1 Computational Platform

The experimental analysis was performed on an AMD Opteron 6172 Magny
Cours processors with 24 cores at 2.26 GHz, 72 GB RAM, with CentOS
Linux 5.2 operating system from Cluster FING, the high performance com-
puting infrastructure at Facultad de Ingenieŕıa, Universidad de la República,
Uruguay [13].

5.2 Problem Instance and Metrics

Problem Instance. For the experimental analysis, the complete dataset corre-
sponding to the ITS in Montevideo for January 2015 was processed, including
ticket sales and bus location data. This dataset holds the mobility information
for over half a million smart cards (corresponding to more than 13 million trips).

158 E. Fabbiani et al.

Computational Efficiency Metrics. In order to evaluate the computational effi-
ciency of the proposed parallel algorithm we evaluate the execution time and the
speedup. If we denote Tm the execution time for an algorithm using m proces-
sors, then the speedup is the ratio between the (larger) execution time on one
processor T1 and the (smaller) execution time on m processors Tm. This ratio
value is presented in Eq. 1

Sm =
T1

Tm
. (1)

5.3 Results and Discussion

In the proposed master-slave parallel model it is necessary to define the size of
the BoT assigned to each slave to compute, in order to have an appropriate load
balance and avoid excessive communication between the slaves and the master.
Several executions were performed varying the size of the BoT as well as the
number of cores used. The experimental results are reported on Table 1. The
number of cores (#cores) and the size of the BoT (#BoT) used in each exper-
iment are indicated. Then, for each combination of these values, the best (i.e.,
minimum), average, and standard deviation of execution time and speedup val-
ues are reported for both direct and transfer trips. Execution times are reported
in minutes and the results correspond to 5 independent executions of the algo-
rithm using each configuration of #cores and #BoT.

Table 1. Execution time results and performance analysis.

#cores #BoT Direct trips Transfer trips

Avg. time ±σ (best) Speedup Avg. time ±σ (best) Speedup

1 1 25920 - 30240 -

16 5000 2092.1 ± 3.4 (2089.6) 12.40 2648.9 ± 3.2 (2645.5) 11.43

16 10000 2372.4 ± 1.8 (2371.1) 10.92 3068.8 ± 3.5 (3063.2) 9.87

24 5000 1582.7 ± 2.4 (1579.4) 16.41 2371.1 ± 2.5 (2368.1) 12.76

24 10000 1858.2 ± 2.1 (1855.9) 13.96 2617.9 ± 3.3 (2614.3) 11.56

The experimental results obtained suggest that the parallel approach is an
appropriate strategy for significantly improving the efficiency of the data process-
ing for demand and O-D matrices estimation. Promising speedup values were
obtained, up to 16.41 for the direct trips processing and using a BoT of 5000
trips and executing in 24 nodes. These results confirm that the proposed mas-
ter/slave parallel model allows improving the execution time of the computa-
tional tasks by taking advantage of multiple computing nodes.

Furthermore, the computational efficiency results indicate that the size of
the BoT (i.e., the amount of passengers’ trip data given to each slave to process
at once) has a significant impact on the overall execution time of the algorithm.

Distributed Big Data for Demand Estimation in ITS 159

Execution times were reduced when using the smallest size for the BoT (5000).
Further experiments should be performed to assess if using a smaller size for
the BoT is still more efficient, and to determine the tradeoff value before the
communications between the slaves and the master become more expensive and
have a negative impact on the execution time.

Using 24 cores and tasks with the trip data corresponding to 5000 passen-
gers, the proposed strategy allows improving in up to 54.4% the efficiency when
compared to using 12 cores and a BoT size of 5000, and up to 57.9% against a
sequential algorithm running on a single computing node. This efficiency allows
processing the full information of GPS and trip data for one year (more than
130 GB) in 33 days, a significant improvement over the 468 days demanded by a
sequential algorithm.

6 Conclusions and Future Work

In this work, we proposed and implemented an efficient estimation method for
obtaining demand and origin-destination matrices from real smartcard data of
bus ticket sales. The proposed procedure demands estimating the alighting stops,
since passengers do not validate the smartcard when getting off the bus. Two
different approaches are proposed depending on whether the trip record corre-
spond to a direct trip or to a bus transfer. For the estimations we considered
similar assumptions to other works in the related literature.

Due to the large volume of data to be processed, we designed and imple-
mented a parallel version of the estimation algorithm, following the master/slave
parallel model. When compared to a sequential algorithm, the proposed parallel
model reduces execution time from 56120 to 3954 min and achieves speed up
values of 16.41 when using 24 cores in the best case.

We identify three main lines of future work: (i) validate the computed demand
and OD matrices using other sources of data, such as surveys; (ii) incorporate
machine learning techniques to infer destinations with high accuracy, for example
by identifying recurrent destinations of a single passenger; (iii) take advantage of
the computed mobility data to address optimization problem that arise in most
modern ITS, such as bus route design, bus stop location, bus timetabling, etc.

References

1. Bell, M.: The estimation of an origin-destination matrix from traffic counts. Transp.
Sci. 17(2), 198–217 (1983)

2. Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M.: The promises of big data and
small data for travel behavior (aka human mobility) analysis. Transp. Res. Part
C: Emerg. Technol. 68, 285–299 (2016)

3. Cirne, W., Brasileiro, F., Sauvé, J., Andrade, N., Paranhos, D., Santos-Neto, E.:
Grid computing for bag of tasks applications. In: Proceedings of the 3rd IFIP
Conference on E-Commerce, E-Business and EGovernment (2003)

4. Deakin, M., Waer, H.: From Intelligent to Smart Cities. Taylor & Francis,
Abingdon-on-Thames (2012)

160 E. Fabbiani et al.

5. Figueiredo, L., Jesus, I., Machado, J.T., Ferreira, J., de Carvalho, J.M.: Towards
the development of intelligent transportation systems. Intell. Transp. Syst. 88,
1206–1211 (2001)

6. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-
allel Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston
(1995)

7. Grava, S.: Urban Transportation Systems. McGraw-Hill Education, New York
(2002)

8. Huang, E., Antoniou, C., Lopes, J., Wen, Y., Ben-Akiva, M.: Accelerated on-
line calibration of dynamic traffic assignment using distributed stochastic gradient
approximation. In: 13th International IEEE Conference on Intelligent Transporta-
tion Systems, pp. 1166–1171 (2010)

9. Intendencia de Montevideo: Plan de movilidad urbana: hacia un sistema de movil-
idad accesible, democrático y eficiente (2010)

10. Massobrio, R., Pias, A., Vázquez, N., Nesmachnow, S.: Map-reduce for processing
GPS data from public transport in Montevideo, Uruguay. In: 2nd Argentinian
Symposium on Big Data (AGRANDA) (2016)

11. Melleg̊ard, E.: Obtaining origin/destination-matrices from cellular network data.
Master’s thesis (2011)

12. Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public trans-
port origin-destination matrix from passive smartcard data from Santiago, Chile.
Transp. Res. Part C: Emerg. Technol. 24, 9–18 (2012)

13. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Rev. Asoc. Ing. Uruguay 61, 12–15 (2010)

14. Pelletier, M.P., Trépanier, M., Morency, C.: Smart card data use in public transit:
a literature review. Transp. Res. Part C: Emerg. Technol. 19(4), 557–568 (2011)

15. Pemmasani, G.: dispy: distributed and parallel computing with/for Python.
http://dispy.sourceforge.net/. Accessed July 2016

16. QGIS Development Team: QGIS Geographic Information System. Open Source
Geospatial Foundation (2009). http://qgis.osgeo.org. Accessed July 2016

17. Sun, C.: Dynamic origin/destination estimation using true section densities. Tech-
nical report. UCB-ITS-PRR-2000-5, University of California, Berkeley

18. Sussman, J.: Perspectives on Intelligent Transportation Systems (ITS). Springer
Science+Business Media, Berlin (2005)

19. Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C.:
The path most traveled: travel demand estimation using big data resources. Transp.
Res. Part C: Emerg. Technol. 58(Part B), 162–177 (2015)

20. Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation
in a transit smart card automated fare collection system. J. Intell. Transp. Syst.
11(1), 1–14 (2007)

21. Wang, W., Attanucci, J., Wilson, N.: Bus passenger origin-destination estimation
and related analyses using automated data collection systems. J. Publ. Transp.
14(4), 131–150 (2011)

http://dispy.sourceforge.net/
http://qgis.osgeo.org

Evaluation of a Master-Slave Parallel
Evolutionary Algorithm Applied to Artificial

Intelligence for Games in the Xeon-Phi
Many-Core Platform

Sebastián Rodŕıguez Leopold1(B), Facundo Parodi1, Sergio Nesmachnow1,
and Esteban Mocskos2,3

1 Universidad de la República, Montevideo, Uruguay
{sebastian.rodriguez.leopold,facundo.parodi,Sergion}@fing.edu.uy

2 Facultad de Ciencias Exactas y Naturales, Departamento de Computación,
Universidad de Buenos Aires, Buenos Aires, Argentina

emocskos@dc.uba.ar
3 Centro de Simulación Computacional para Aplicaciones Tecnológicas,

CSC-CONICET, Buenos Aires, Argentina

Abstract. Evolutionary algorithms are non-deterministic metaheuristic
methods that emulate the evolution of species in nature to solve opti-
mization, search, and learning problems. This article presents a parallel
implementation of evolutionary algorithms on Xeon Phi for developing
an artificial intelligence to play the NES Pinball game. The proposed par-
allel implementation offloads the execution of the fitness function eval-
uation to Xeon Phi. Multiple evolution schemes are studied to get the
most efficient resource utilization. A micro-benchmarking of the Xeon
Phi coprocessor is performed to verify the existing technical documenta-
tion and obtain detail knowledge of its behavior. Finally, a performance
analysis of the proposed parallel evolutionary algorithm is presented,
focusing on the characteristics of the evaluated platform.

Keywords: Evolutionary algorithms · Artificial intelligence · Xeon Phi

1 Introduction

Developing an artificial intelligence (AI) is a complex task that requires
a high computational effort. Automating this process greatly reduces the human
involvement required for its development, but comes with a substantial increase
in computational cost [15]. Efficient resource utilization and a high degree of
parallelism is necessary to obtain good results in a reasonable time.

In this article, we propose employing the Intel Xeon Phi Many Integrated
Core (MIC) architecture for automatic AI generation to play games. Xeon
Phi is a massively parallel platform for executing highly parallel tasks, sup-
porting the native execution of x86 software (recompilation is required due

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 161–176, 2017.
DOI: 10.1007/978-3-319-57972-6 12

162 S. Rodŕıguez Leopold et al.

to a different executable file format). Xeon Phi/MIC architecture is offered
as a ready to go for legacy x86 applications. However, most existing soft-
ware require modifications in order to achieve acceptable performance [4]. We
develop a general framework for parallel Evolutionary Algorithm (EA) in C++,
which is capable of evaluating the solutions on Xeon Phi using offload com-
puting technique. In this article, we describe the framework and its appli-
cation for automating the process of AI generation for games. For solu-
tion evaluation, a game emulator was specifically ported to allow its execu-
tion on Xeon Phi. The framework and emulator source code are available at
https://github.com/Sebarl/Evolutionary-Algorithms-for-NES-Pinball.

A set of micro-benchmarks are performed to understand the behavior of
the Xeon Phi platform and offload mechanism. Furthermore, the emulator per-
formance is analyzed through profiling and several distribution strategies for
individuals are studied to find the best EA configuration, in order to maxi-
mize computational performance. The main contributions of this article are: (i)
a study of the capabilities of the Xeon Phi through micro-benchmarking; (ii)
the design and implementation of a framework for EAs to work with the Xeon
Phi and (iii) porting an existing emulator to the studied architecture.

The article is organized as follows: Sect. 2 explains the architecture and pro-
gramming models of the Xeon Phi, Sect. 3 reviews the related work about both
microbenchmarks for the card and AIs for games. Section 4 reports the results
obtained with different micro-benchmark tests executed on the card, while Sect. 5
describes the main concepts about EAs as background for the case study pro-
posed in Sect. 6. The experimental evaluation is reported in Sect. 7, including
several profiling tests of the proposed parallel EA. Finally, some conclusions and
main lines for future work are drawin in Sect. 8.

2 Xeon Phi Characteristics

This section introduces the main characteristics of the Intel Xeon Phi processor.

Cores. Xeon Phi cores are in-order processors based on the original Pentium
design (P54C architecture), supporting four hardware threads each. Every core
has two pipelines to execute up to two threads in parallel (only one supports
the entire instruction set, including vectorization). Each thread, however, cannot
issue instructions in two consecutive clock cycles [8, pp. 31–32]. The Xeon Phi
lacks many of the present features in current desktop processors: MMX, SSEx
and AVX instruction set extensions as well as out-of-order execution. The branch
predictor design has limited characteristics also.

A wide vectorization unit is present on each core (512-bit wide, twice as much
as AVX 2.0), supporting both float and integer vector operations and fused
multiply-add. Most vector operations take four clock cycles. A mask register
was added to handle specific conditional branching cases and processing data of
different sizes, which could lead to higher successful vectorization rates.

Finally, an Extended Mathematical Unit (EMU) is added to each core, imple-
mented by hardware complex floating point operations based on polynomial

https://github.com/Sebarl/Evolutionary-Algorithms-for-NES-Pinball

A Master-Slave Parallel Evolutionary Algorithm for Games 163

approximations. This facility is available only when working with single-precision
floating numbers.

Cache and RAM Memory. Two 32 KB 8-way associative L1 caches (for data and
instructions) and a 512 KB L2 cache per core are available. L1 cache requests
can be performed in back-to-back cycles, while L2 cache requests not.

All cores share their L2 caches to reduce main memory requests using a
special protocol to steal data from remote L2 cache. This mechanism generates
a copy of the remote content in its own L2 cache. If all threads execute the same
code in perfect synchronization, the effective L2 memory capacity is 512 KB.
However, this capacity depends on the amount of data shared by all cores.

In the legacy Pentium architecture, a cache miss can stall the pipeline. The
Xeon Phi can suspend the current thread, running another thread while waiting
for memory access. Support for streaming store instructions allows writing an
entire cache line without reading it first, adding another opportunity to increase
memory effective bandwidth.

The Xeon-Phi has six memory controllers supporting 12 GDDR5 channels,
providing a maximum theoretical combined bandwidth of 5GT/s (240 GB/s) at
2500 Mhz.

Bus. The bus is a bidirectional ring composed of three sub-rings: (i) Data block
ring (64 bytes wide, used for data transfer), (ii) Address ring (for read/write
commands and memory addresses), (iii) Control ring (acknowledgment pack-
ets). To comply with bandwidth requirements, the last two are duplicated. Ring
access is managed by special controllers (ring stops). The ring connects the cores,
memory controllers, L2 cache controllers and a Tag Directory (TD) divided in
subdirectories (DTDs), used for remote cache access. This configuration is shown
in Fig. 1.

Fig. 1. Xeon Phi architecture: three rings interconnect the cores and support sharing
L2 cache contents using a Tag Directory (TD) structure.

When faced with a L2 cache miss, a core sends a message to the TD to
seek the line in remote L2 caches. If found, the TD responds indicating which

164 S. Rodŕıguez Leopold et al.

core holds it and another message is sent to the corresponding core requesting
the line. This core sends the copy and awaits an acknowledgment. If the data
is not present in any cache, a message is sent to a memory controller to fetch
the data from RAM. As it can be seen, memory access is a complex procedure,
introducing additional overhead compared with conventional multicores.

Execution Environment and Programming Models. Xeon Phi executes a custom
flavor of Linux, ported to the MIC architecture. As the card has no non-volatile
memory, the memory board has to be shared with the operating system and
filesystem, reducing the memory available for applications.

As many standard libraries have been ported to the MIC, the process of port-
ing applications to Xeon Phi is soften. Both C++ and Fortran are supported [8,
p. 10]. However, not all the existing APIs are supported, requiring manual port-
ing in some cases.

There are two main programming models available on Xeon Phi: (i) offload,
which executes a main task on the host that send some work to the card.
The PCIe maximum bus capacity of 8 GB/s [14] may become a bottleneck
in this model, and (ii) native, which executes the application entirely on the
coprocessor.

The offload model is used when specific parallel subroutines are identified,
requiring only localized code changes or adding compiler directives. On the other
hand, adapting an application for native execution requires global changes and
strong redesign focusing on parallel exploitation.

3 Related Work

Fang et al. [4] developed micro-benchmarks to test Xeon Phi, some of which
were used to test our cards in Sect. 4. Furthermore, they compared their results
against published datasheets showing several differences. Fang et al. [5] also pro-
posed a micro-benchmarking methodology for Xeon Phi, developing mechanisms
to mitigate and control potential interfering factors generated by hardware con-
straints, operative system effects, and compiler optimizations.

Some articles have proposed EAs for optimization of game AIs. Hausknecht
et al. [7] presented a survey of neuro-evolution algorithms for learning to play
61 different Atari-2600 games. The proposed strategies outperformed several
planning and temporal-difference algorithms in most games, as well as human
players in three of them. Murphy proposed Learnfun and Playfun [9], a general
approach to optimize NES games. Learnfun infers the game objectives by analyz-
ing a human player recording and Playfun plays the game applying a local search
based on backtracking and a set of possible moves inferred from the recording. It
yielded mixed results, performing remarkable well on multiple NES games while
falling short in others. The author uses a master-slave approach to subdivide the
search.

Up to our knowledge, no previous proposals about parallel models for EAs
using the Xeon Phi architecture have been presented in the related literature.

A Master-Slave Parallel Evolutionary Algorithm for Games 165

We contribute with a first approach using hardware acceleration to improve the
performance of the master-slave model for parallel EAs.

4 Xeon Phi Micro-Benchmarking

This section introduces a study of the specifics of the microarchitecture used by
the Xeon Phi 31S1P. These tests are performed to understand the details of the
target architecture, in order to explain the exhibited behavior of our case study
when executed on the card. We modified the code employed in MIC-Meter [4] to
work with the maximum number of threads in our computing platform (228).
All tests were compiled using the Intel 2015 suite, version 15.0.3 20150407.

4.1 Maximum Achievable Throughput

The coprocessor used in this paper exhibits a theoretical instruction throughput
of 1003.2 GFlops (approximately 1 TFlop) for double-precision numbers.

Fig. 2. Throughput Fig. 3. EMU
performance

Fig. 4. Memory access latency

Figure 2 shows the achieved throughput of two operations and its two-stream
variants. The MAD (fused multiply add) operation obtains twice the performance
of the simple multiplication as the former execute two operations in one cycle.

Using one thread per core generates very poor results (instructions are issued
in alternate cycles), whereas 2 threads doubled the throughput. Furthermore,
using 3 and 4 threads yields considerable improvement, as vector arithmetic
operations have a latency of 4 cycles. For this same reason, the execution of two
independent instruction streams yields better performance than using one when
running less than 4 threads. The theoretical maximum of 1 TFlop is achieved
using 228 threads and MAD operations only, being an artificial result.

4.2 Extended Mathematical Unit

Figure 3 shows the execution times for complex arithmetic functions on different
implementations (clib, intrinsics) and precisions. No visible difference is observed
between both implementations. Double-precision operations show cycle counts

166 S. Rodŕıguez Leopold et al.

between 3.5 and 6.5 times larger than its single-precision counterparts (instead
of just doubling cycle count). This shows a considerable boost when using the
EMU.

4.3 Memory Bandwidth and Access Latency

Maximum theoretical bandwidth is 4012.8 GB/s for read and write operations
to L1 cache memory (70.4 GB/s per core). Testing yielded 31.2 GB/s (read)
and 27.63 GB/s (write) when executing the test in a single core, providing an
aggregated 1778.4 GB/s and 1574.91 GB/s bandwidth between all cores, using a
single-thread test. It could be possible to achieve 3556.8 GB/s and 3149.82 GB/s
for read and write respectively using two threads. Even then, these values do
not reach the theoretical maximum, being 11% and 21.5% below 4012.8 GB/s.

Figure 6 shows the read and write bandwidth for main memory with differ-
ent thread counts. Read operations peak at 166.15 GB/s. Write speed peak is
77.46 GB/s. Both are below the theoretical maximum of 240 GB/s. Write speed
can be improved using streaming stores, though it still is lower than 166 GB/s.

(a) Core distribution (b) Thread distribution

Fig. 5. Ring interconnect performance study Fig. 6. Main memory read and
write bandwidth vs. thread count

Latency of all components in the memory hierarchy is tested by repeated
access to arrays of different size using varying strides. Figure 4 shows the results,
suggesting L1 latency is 2.74 ns (3 cycles), L2 latency is 22 ns (24 cycles) and
main memory latency is 300 ns (300 cycles).

L2 remote access varies around 250 cycles (between 16.7% less than access
to main memory) as presented by Fang et. al [4]. It should be noted that latency
varies considerably depending on the distance between cores.

4.4 Bidirectional Ring Interconnect and Offload Latency

A series of tests were performed measuring the obtained bus bandwidth while
variating both the thread distribution and amount run on the available cores.

As it can be seen in Fig. 5(a), all different distributions obtained similar per-
formance, noting a small slowdown when using 8 threads located closely together.

A Master-Slave Parallel Evolutionary Algorithm for Games 167

This suggests a saturation of the bus, but is negligible (cores are symmetric in
practice). However, Fig. 5(b) shows that, no matter how many, executing threads
in the same core obtains approximately 4.88 GB/s of bandwidth, indicating that
thread contention in a core serializes memory requests.

Code offloading latency was estimated (initialization and tear-down of offload
execution) obtaining an average of 189.4 ms (in 100 independent executions).

5 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are non-deterministic methods that emulate the
evolutionary process of species in nature to solve optimization, search, and other
related problems [2,10]. In the last thirty years, EAs have been successfully applied
to optimization problems underlying many real and complex applications.

An EA (Algorithm 1) is an iterative technique (each iteration is called
a generation) that applies stochastic operators on a pool of individuals (the
population P). Every individual in the population encodes a solution for the
problem. The initial population is generated randomly or by using a specific
heuristic for the problem (line 2). An evaluation function associates a fitness
value to every individual, indicating its suitability to the problem (line 4). The
search is guided by a probabilistic selection-of-the-best technique (for both par-
ents and offspring) to tentative solutions of higher quality (line 5). Iteratively,
solutions are modified by the probabilistic application of variation operators
(line 6) like the recombination of parts from two individuals or random changes
(mutations).

The stopping criterion usually involves a fixed number of generations or exe-
cution time, a quality threshold on the best fitness value, or the detection of
a stagnation situation. Specific policies are used to select the groups of individu-
als to recombine (the selection method) and to determine which new individuals
are inserted in the population in each new generation (the replacement crite-
rion). The EA returns the best solution found in the iterative process.

Algorithm 1. Schema of an Evolutionary Algorithm
1: t ← 0 {generation counter}
2: initialize(P (0))
3: while not stopcriteria do
4: evaluate(P (t))
5: parents ← selection(P (t))
6: offspring ← variation operators(parents)
7: P (t+1) ← replacement(offspring, P (t))
8: t = t + 1
9: end while

10: return best solution ever found

Parallel implementations allow improving the efficiency of EAs. By using
several computing elements, parallel EAs allow reaching high quality results in
a reasonable execution time even for hard-to-solve optimization problems [1].

168 S. Rodŕıguez Leopold et al.

The master-slave model for parallel EAs applies a functional decomposition
approach. The evaluation of the fitness function is the main candidate to perform
in parallel when solving hard optimization problems, since it usually requires
larger computing time than the application of the variation operators. A master-
slave parallel EA is organized in a hierarchic structure: a master process performs
the evolutionary search, while it controls a group of slave processes that evaluate
the fitness function and/or apply the variation operators.

The parallel EA proposed in this article for the pinball game follows a two-
level parallel approach and the master-slave model is used for solution evaluation.
Our main contribution consist of novel implementation to perform the parallel
evaluation of solutions by following a multithreading approach on Xeon Phi.

6 A Master-Slave Parallel EA for Playing Pinball
on Xeon-Phi

This section presents the proposed EA executing on the Xeon Phi, the
implemented framework and the ported emulator.

6.1 Solution Description

The case study pertains the evolution of an artificial intelligence (AI) that
plays the game Pinball for the Nintendo Entertainment System (NES) console.
This has been successfully performed using traditional hardware in our previous
work [13]. Fitness evaluation is expensive as it simulates an entire match, making
it a prime target for execution on the Phi due to its massive parallel architecture.
We model a pinball game with two screens (stages): (i) the upper half of the
playfield (UP stage); and (ii) the lower half (DOWN stage). The most relevant
features of the proposed EA are presented next.

Solution Encoding. The solution is encoded as an array of 23 genes. Each gene
represents one trigger zone or one extra parameter required by the AI. Trigger
zones are defined by the stage it is in (i.e. UP or DOWN), the position of its
center in the screen, its radius, and the action to perform when the ball enters it.
Valid actions for a trigger zone are either move the left, right, or both flippers.
There are 3 extra parameters: the amount of frames to wait with the plunger
compressed before releasing the ball into the playfield, the number of frames the
ball must stay in the same position before assuming it got stuck, and the amount
of frames to stay inactive waiting for the ball to get unstuck. Figures 7 and 8
present an example of a solution encoding.

Fitness Function. The fitness values are computed considering the linear aggre-
gation function f = score + balls × 10000. The values of score and remaining
balls are determined by emulating the game and applying the AI module to
decide the action performed in each frame, using the information encoded in the
individual. As each evaluation is independent, parallelizing the fitness evaluation
is simple using OpenMP.

A Master-Slave Parallel Evolutionary Algorithm for Games 169

Fig. 7. Solution encoding. Fig. 8. Trigger encoding

Population Initialization. The initial population is generated by applying an
ad-hoc randomized method for building AI configurations. Twelve points are
selected (three points for each flipper, in each stage), whose positions are ran-
domly selected to fit in the area reachable by the corresponding flipper. The
remaining eight points are located randomly anywhere on the playable area,
four per each stage. The extra parameters are initialized with a random value
chosen uniformly in the range [0, 150].

Selection and Replacement. We apply the Stochastic Universal Sampling selec-
tion operator, providing balanced tradeoff between selection pressure and diver-
sity [2]. For replacement, we use the traditional (μ, λ) evolution model. In each
generation, elitism is used to keep the best individual in every island.

Recombination. We used an uniform crossover operator that swaps genes in even
positions between two parents to form two offspring.

Mutation. A special mutation operator was developed, taking into account the
structure of each gen: (i) with a probability of 0.5, selecting a trigger zone
(X,Y,Radius) and modify each value applying a Gaussian mutation; (ii) with a
probability of 0.33, modifying the action to perform, using a uniform distribution
to select between the other two options; and (iii) with a probability of 0.167
the stage is switched, applying a bit flip mutation. For the extra parameters,
a standard Gaussian mutation is applied.

Parallel Model. The proposed EA follows a two-level approach: both the evolu-
tion process within every subpopulation and the evaluation of every individual
are executed in parallel. In this article we focus on the main details of the
master-slave model applied for solution evaluation in Xeon Phi.

6.2 Framework Description

The proposed EA framework for Xeon Phi was developed in C++, based on the
design of the Watchmaker [3] framework. This development effort was required
due to the lack of support for the Xeon Phi on existing solutions, the difficulty
of modifying existing implementations to achieve our goals, and support for
offload-enabled code being only for C++ and Fortran. The offload model was
selected to leverage the higher host clock rate and better memory access for the
evolutionary framework, as the framework lacks enough parallelism for the card.

170 S. Rodŕıguez Leopold et al.

The implementation is modular and extensible, supporting multiple para-
digms and configurations. In particular, parallel evaluation of the entire popu-
lation on the card is supported. Both a simple evolution model (simple genetic
algorithm) and a subpopulations model is implemented. Multiple interfaces are
defined to easily specify a problem and the way it must be solved. Moreover,
generic implementations are provided for some of them.

Offload support is provided by a specialized evolutionary engine, imple-
mented as follows: (i) when evaluation is required, the entire population is serial-
ized, appended into a vector; (ii) the population vector is sent to the coprocessor
using offload; (iii) offloaded code divides the individuals between threads using
an OpenMP omp for directive, the results are returned as a new vector; and
(iv) the results are mapped to each individual, resuming evolution.

This serialization/deserialization process adds an overhead to the offload
step. However, the resulting code is much faster than sending each individual
to the card separately (better usage of the PCIe bus and less time spent in
setup/teardown, including processing done by the offload daemon on the card:
coi-daemon), effectively optimizing the process (high performance gains where
perceived after its implementation). Moreover, this greatly reduces the amount
of simultaneous connections to the Xeon Phi to one per concurrent island. Said
connections are limited (usually a low fixed number, less than available cores).

The framework is optimized to reduce its memory consumption and CPU
utilization as much as possible. Pointers are used to simplify crossover, muta-
tion and migration operations. Low level functions are preferred throughout the
framework to reduce computational cost. The amount of existing functions are
reduced to minimize the overhead related to function calls. In particular, function
inlining is preferred. OpenMP is used to parallelize island execution and individ-
ual evaluation. Taking into account the achieved performance by the framework,
NES emulator emerges as the bottleneck.

6.3 NES Emulator Description

Each pinball match is simulated using the open source NES emulator FCEUX [6].
We modified the FCEUX implementation to include the AI module and to port it
to Xeon Phi. In order to achieve acceptable performance most non-essential fea-
tures were removed, stripping the emulator only to the core functions required
to run the simulation (CPU, cartridge, and partial PPU -Picture Processing
Unit- emulation). Compiling the emulator for the card is no minor point, con-
sidering the lack of support from the Intel suite for most basic components of
a typical Linux environment. For example, zlib has not been ported. Attempting
to compile such dependencies was an exercise in futility. The solution was to
depend only on glibc and similar libraries, losing capabilities in the process. In
our case, this downgrade was intentional (to improve performance), but in most
applications this could be unacceptable.

The produced executable is single threaded (as it is running a CPU emulation,
which is sequential in nature, and also not vectorizable due to the dependency on
prior states). Its performance is quite poor for low memory performance shown

A Master-Slave Parallel Evolutionary Algorithm for Games 171

in Sect. 4. To achieve substantial performance gains, a high quantity of parallel
instances is needed.

7 Experimental Evaluation

This section describes the calibration process of the implemented solution and
presents the results. We begin with a profiling of the FCEUX emulator to better
understand its performance on the card. Then we analyze the obtained results
after testing multiple configurations of the algorithm.

7.1 Emulator Performance

This subsection reports a comprehensive study of the inner workings of the
FCEUX emulator, executing both on the coprocessor and on a desktop computer.

Cache Usage and Vectorization. Cache usage was examined using
Valgrind [12] on a desktop computer. The results showed minimal misses in
any cache level, corresponding to the initial load of the emulator and ROM. In
particular, the L1 cache exhibited miss rates of 0% (for instructions) and 0.7%
(for data). We conclude that no useful optimization can be done with respect to
cache efficiency.

Vectorization reports generated by the Intel compiler indicate that several
functions were vectorized successfully. However, the main CPU emulation func-
tion was not vectorized, due both to its complexity and its dependency on state
generated by previous calls. This function dominates computational time (more
than 60%), which is reasonable as the modified emulator does little more than
simulating the CPU. Evidently, this impacts negatively on performance, as most
computations executed cannot use the vectorization unit.

Profiling. We used the VTune profiler on both the coprocessor and a desktop
computer to compare different performance metrics.

Desktop Profiling. We performed a complete performance analysis of the applica-
tion to expose bottlenecks and other standard code problems, which are relevant
for the Xeon Phi implementation, due to the heavy resource limitations.

The profiling results show a large rate of branch misprediction (∼19%). The
impact on the overall performance is important, as the pipeline must be flushed
and populated again with the correct branch. This problem is amplified in the
Xeon Phi architecture, as it includes a weaker branch predictor. Nevertheless,
this result is reasonable considering that a full CPU is being emulated, including
branching, IRQs, and other low level events, through multiple if statements. The
cart (ROM) reading function also showed a high misprediction rate, impacting
performance negatively as it is the second most expensive function (26.2% of
execution time).

172 S. Rodŕıguez Leopold et al.

Instruction starvation is also quite high: the control unit had no instructions
to send to the execution pipeline in 13.6% of the CPU cycles. Most starvation
is probably caused by misprediction: many pipeline flushes combined with an
executable size of 1 MB imply that only a fraction of the code resides on L1
cache and misprediction may require reading instructions from RAM.

Regarding execution stalls, no microinstruction was available to execute 9.1%
of the time. This means that most instruction starvation events were followed
by execution stalls, wasting resources being idle. A portion of this idle time is
spent loading the game ROM file, or the emulator (including external libraries).

In total, 96 million function calls were performed, consuming 4 ms (repre-
senting 0.68% of total execution time). This high volume of calls comes mostly
from repeated calls in the main loop to the CPU emulation function. Taking into
account the low time spent invoking functions against the very high volume of
calls, no substantial optimization can be done to improve this metric.

Only six locking events were found during the application lifetime: five over
the ROM and AI configuration files, and one over an unknown object, probably
a dynamic library. 43µs were spent waiting for lock acquisition. We do not find
any space left for further optimizations. Cache tests reported similar results as
Valgrind, with negligible miss rates.

Other considered metrics include a CPI of 0.7, indicating that every instruc-
tion takes 0.7 clock cycles to execute in average, even when branch misprediction
and pipeline stalls are taken into account. This suggests that the problems found
before are partially overcame by improved efficiency in other areas.

Xeon Phi Profiling. The results obtained in the Xeon Phi profiling support previ-
ous findings relating slow memory access, made evident by a considerably higher
self time of the emulated NES RAM memory read/write functions (negligible on
desktop to a sizable chunk of the total time on the Xeon Phi). Average time to
fulfill cache requests was quite high (around 593.2 cycles for a L1 miss). However,
L1 hit rate was 99.5% evidencing once again very low memory access speeds.
The average value is much worse than the one obtained on the benchmark, sug-
gesting that realistic loads attain lower performances. As the emulator is loaded
from scratch for each simulation, these results fare poorly for FCEUX, as every
load time is extended. Furthermore, as the executable and ROM file are small
(1 MB and less than 50 KB respectively), this aspect cannot be easily further
optimized.

The reported CPI per hardware thread was 3.459, quite high for Xeon Phi.
The process with higher CPI (12.455) is vmlinux, out of our control. Considering
only the other top six most expensive operations (accounting for 95.73% of the
execution time), the CPI is 2.380, closer to the theoretical minimum (2.0).

7.2 Computational Platform

The experimental analysis was performed on DELL PowerEdge R720 servers
with 64 GB of DDR3 RAM and two Intel Xeon E5-2650 processors, each with
8 cores working at 2 GHz and 2 MB of L2 cache. Each server has an Intel Xeon

A Master-Slave Parallel Evolutionary Algorithm for Games 173

Phi 31S1P with 57 cores working at 1.1 GHz, 28.5 MB of L2 cache (512 KB per
core), and 8 GB of GDDR5 RAM. All machines are hosted at Cluster FING,
Universidad de la República, Uruguay [11].

7.3 Methodology for the Experimental Evaluation

In order to find the best work distribution and number of threads, we conducted
a two-stage experimental analysis. In the first stage, four different settings of the
parallel EA were studied, using 200 threads for evaluation: (i) five independent
processes with 40 individuals each, (ii) one process with 200 individuals, (iii)
one process with five subpopulations of 40 individuals each, and (iv) one process
with two subpopulations of 100 individuals each. In the second stage we studied
the number of threads, using the best setting of the previous stage. We analyzed
using 55, 110, 165 and 220 threads.

In all cases, ten independent experiments were performed, accounting for the
stochastic nature of EAs. The EA executed for 100 generations, using a crossover
probability of 0.9 and mutation 0.1. All simulations used a game instance running
for 4000 frames.

7.4 Results

Table 1 reports the execution time results for the configuration tests of the evo-
lutionary pinball AI on Xeon Phi. It presents average elapsed time and average
fitness and their respective standard deviations (σ) for different combinations
of: number of independent EAs executed (#EA), number of subpopulations in
each EA (#SP) and the number of individuals in each subpopulation (PSP).

Table 1. Results of EA configuration tests

#EA #SP PSP Time (minutes) f

Avg σ Avg σ

5 1 40 50.16 3.37 61928 8971.2

1 1 200 51.99 0.50 65186 9444.2

1 5 40 54.71 1.56 65447 7271.8

1 2 100 56.13 1.03 67740 7921.2

According to the results reported in Table 1, the fastest configuration used
five independent evolutionary processes, because no synchronizations are per-
formed. However, it also computed the lowest average fitness values. Using sub-
populations produced a significant time increase, due to synchronization between
them. Taking into account both computational cost and results quality, we opted
for the second configuration using a single population of 200 individuals. This
configuration must wait for all individuals to be evaluated before producing the
next generation. Since not all emulations require the same time, last ones cannot

174 S. Rodŕıguez Leopold et al.

#T
time (minutes)

avg σ

55 181.47 2.18
110 93.63 0.62
165 65.68 0.93
220 50.20 0.31

55 110 165 220

45

65

85

105

125

145

165

185

#Threads

E
x
ec

u
ti

o
n

ti
m

e
(m

)
Fig. 9. Scalability: impact of the amount of threads on execution time.

use all the available computational resources, reducing performance. All config-
urations consume near 80 MB of RAM on the card and 300 MB on the host.

Figure 9 shows the results of the scalability analysis, reporting the average
time spent and standard deviation (σ) when using different number of threads
(#T). The results show a doubling in performance when going from 55 to 110
threads. This is coherent with not being able to execute instructions from each
thread on successive cycles. Using 165 and 220 threads show less improvement,
but still achieve better performance. The best results were obtained with 220
threads (4 threads per core). This is expected, since each thread performs several
memory accesses to load the game from main memory, and thus is desirable to
have other threads available to execute during load operations.

Further details of the experimental analysis and results are reported at the
project website www.fing.edu.uy/inco/grupos/cecal/hpc/GAIA.

8 Conclusions and Future Work

This article presents the design, implementation, and evaluation of a parallel
EA on Xeon Phi. The proposed EA applies a two-level parallel model including
a master-slave approach using an offloading technique. The parallel EA is applied
for the automatic generation of an AI for the NES Pinball game.

We found that existing frameworks were difficult to adapt or cannot work
with offloading code as they were not written in C or Fortran. For this reason,
a new framework was built from scratch, considering performance and offload
support. For solution evaluation, a NES emulator was ported to the MIC archi-
tecture, requiring multiple modifications to perform acceptably on the coproces-
sor. From this experience, we conclude that obtaining a good performance on
the Xeon Phi is far more complex than recompiling code.

A number of issues arose during development. Vectorization could not be
fully used, due to state dependencies for the emulator code. Although memory
requirements are low, Xeon Phi memory performance impacted negatively on the

www.fing.edu.uy/inco/grupos/cecal/hpc/GAIA

A Master-Slave Parallel Evolutionary Algorithm for Games 175

efficiency, consuming a larger execution time than on a desktop computer. More-
over, being a single-threaded application, the emulator showed poor performance
on the Xeon Phi. Profiling suggested that there is little room for improvement
on the emulator. Offload code faced limitations on concurrent offload executions
and setup/teardown time. This problem was solved by grouping solutions.

The presented case study (parallel EA for AI in games) exhibited its best
performance when executing many parallel tasks with low synchronization. The
results indicated that there is a trade-off between total execution time and solu-
tion quality. The scalability analysis demonstrated that using 220 threads yielded
the best performance. Using up to 110 threads shows a doubling in performance,
while further thread count increases produce a smaller boost. This improvement
arises from the availability of a thread to execute when another awaits for reading
operations to conclude, reducing idle time.

The EA framework has an acceptable performance using offload, suggesting
that other Xeon Phi-friendly EA problems may achieve larger speedups.

The main lines of future work include replacing the FCEUX emulator with a
JIT-compiler variant and reducing the need of emulation by employing caching
techniques to avoid evaluating the same individual twice. An asynchronous
master-slave model could exploit individuals that are inserted (and used) faster
than others, providing a different exploration pattern and an improved efficiency.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and
new trends. Int. Trans. Oper. Res. 20, 1–48 (2013)

2. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computa-
tion. Oxford University Press, Oxford (1997)

3. Dyer, D.: Watchmaker Framework for Evolutionary Computation. http://
watchmaker.uncommons.org/. Accessed 08 2016

4. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.: Test-driving Intel
Xeon Phi. In: Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, pp. 137–148. ACM (2014)

5. Fang, Z., Mehta, S., Yew, P.C., Zhai, A., Greensky, J., Beeraka, G., Zang, B.: Mea-
suring microarchitectural details of multi-and many-core memory systems through
microbenchmarking. ACM Trans. Archit. Code Optim. 11(4), 55 (2015)

6. FCEUX Community: The all in one NES/Famicom Emulator, August 2015. http://
www.fceux.com/web/home.html

7. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution app-
roach to general Atari game playing. IEEE Trans. Comput. Intell. AI Games 6(4),
355–366 (2014)

8. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-performance Program-
ming. Newnes, Oxford (2013)

9. Murphy, T.: The first level of super mario bros. is easy with lexicographic orderings
and time travel. In: Proceeding of 7th Annual SIGBOVIK Conference, pp. 112–133
(2013)

10. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods
for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/
http://www.fceux.com/web/home.html
http://www.fceux.com/web/home.html

176 S. Rodŕıguez Leopold et al.

11. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay, no. 61, pp. 12–15 (2010)

12. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation, pp. 89–100 (2007)

13. Parodi, F., Rodŕıguez Leopold, S., Iturriaga, S., Nesmachnow, S.: Optimizing a pin-
ball computer player using evolutionary algorithms. In: XVIII Latin-Iberoamerican
Conference on Operations Research (2016)

14. PCI-SIG: PCI Express Base Specification, Revision 2.1, March 2009
15. Simpson, R.: Evolutionary Artificial Intelligence in Video Games. University of

Minnesota (2012)

A Software Framework for 2D Mesh
Based Simulations in Discrete
Time with Local Interaction

Sergio A. Gélvez C.(B), Gabriel Pedraza, and Carlos J. Barrios H

High Performance and Scientific Computing Centre,
Universidad Industrial de Santander, Bucaramanga, Colombia

sergio.gelvez@correo.uis.edu.co, {gpredraza,cbarrios}@uis.edu.co

Abstract. Some features shared by families of natural phenomena may
be exploited for the process of implementation of software simulation
tools. An analogy of this situation is the experimentation in manufac-
turing, where the products are designed by organisations in a way that
it is possible to exploit commonality in components and process. This
work aims to exploit commonality in some simulation problems in order
to create a software framework allowing the reusing of code to reduce
effort in the implementation. The proposed framework shall include the
core components for the simulation of varied phenomena. The interested
researchers can use parts of the framework and then adapt the remaining
components to their specific simulation problems. After this discussion,
a test case is proposed from previous works related to lava flow simula-
tions showing experimental results. Some guidelines for the design of the
framework are presented, as well as a discussion about them.

Keywords: Modelling · Scientific software frameworks · Components

1 Introduction

Many natural phenomena share some features allowing the classification in fami-
lies. In order to study and analyse those phenomena, researchers develop simula-
tion tools, and in many cases those tools are solving partial differential equations
(PDE) using some numerical method. However, even if those simulation tools
are close conceptually, the software produced by different researchers can be very
different are not easily shared between them due to the use of different program-
ming languages, libraries (targeting different execution flows in the platforms),
the experience of research developing software, etc.

On the other hand, simulation tools solving PDE are computational expen-
sive and the execution platform must be powerful computers (supercomputers)
or high performance computing (HPC) platforms. Nevertheless, developing soft-
ware in a HPC platform is a challenging work, mathematicians or engineers
must not only have skills in mathematics and numerical methods but also in
software development in HPC. In addition, HPC platforms are currently very
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 177–187, 2017.
DOI: 10.1007/978-3-319-57972-6 13

178 S.A. Gélvez C. et al.

heterogeneous (multi-CPU, CPU-GPU, multiGPUs, etc.) and they use different
programming models and technologies like OpenMP, MPI, CUDA, OpenACC,
etc. Weak skills in programming models can produce poor performance simula-
tion tools even if the mathematical model and numerical solution are sound.

The framework proposed in this paper aims to create simulation tools for
the time discrete 2D spatially distributed phenomena targeting two main goals:
(1) reduce development time and (2) produce high quality software. To achieve
those goals, the framework exploits the commonalities of phenomena and uses
a technique known in the software engineering community as Software Product
Families (SPF). A software product family provides a basis of components that
can be reused in different software products sharing the main core functionality
but having some variabilities among them. In a SFP basic components are then
very well known and tested, assuring the quality of the product family. There-
fore, the proposed software framework has a set of high quality components that
treat the complexity of the execution platform, or the numerical method imple-
mentation, allowing the researchers to avoid this complexity, asking them only
for main computation components.

The paper is organized as follows, in the first section, the initially studied
phenomenon is described to identify the key features that define its family. The
second section shows an analysis of variability in the solution. In the next section,
a proposal of software framework for simulation of phenomena in the discussed
family is introduced. Finally, a discussion over the case study implemented using
the framework is shown with its performance evaluation. Finally, conclusions
based in the performance evaluation results and the use of the framework for
the case of study are presented along with the future work.

2 Model Description

This work aims to exploit features that are common to the modelling of several
natural phenomena in order to propose a software framework that allows the
reusing of source code and the streamlining of the design method for simulation
problems arisen from the study of said phenomena. This proposal was inspired
on a Master in Computer Science project concerned with the simulation of lava
flows [5] using Cellular Automata as the spatial foundation and implemented
over hybrid architectures using GPGPU, and thus, we are primarily concerned
with problems that use a 2D feature mesh and discrete time.

An n-dimensional mesh can be defined as the discretisation of a 2D geomet-
ric domain into smaller shapes. The most common type is the squared mesh, in
which a rectangular shape is divided into small squares of uniform size. Many
physical problems can be discretised in squared meshes, at least at great levels
of abstraction. On the other hand, a discrete time model is one that takes mea-
surements or reports values at discrete intervals of time, for instance from ti to
ti+1. Natural phenomena usually exhibit continuous behaviour, but in order to
create and operate the model, abstractions must be made [10].

The base problem, explained in detail in [5], had a 2D mesh composed of
cells of attributes, physical quantities relevant to the simulation process. Also,

A Software Framework for 2D Mesh Based Simulation 179

the model was used in a workflow starting from the reading of mesh data and
other parameters, such as crater positioning and rates of extrusion, lava temper-
ature and so on. The tables show the data fields in every cell (Table 1) and the
parameters read at the start-up of the simulation process (Table 2).

Table 1. Cell data structure.

Data field Name description

Thickness Thickness of the lava layer in the cell

Temperature Average temperature of lava in the cell

Altitude Average altitude of the cell

isVent Indicator of whether a cell contains a crater or not

Yield Value of the Tensile Yield Strength for the cell

Viscosity Value of Viscosity for the cell

Exits Number of lava exits (intermediate step)

InboundV Lava volume introduced to cell in time t

OutboundV Lava volume extracted from cell in time t

InboundQ Heat quantity introduced to dell in time t

Table 2. Parameters read at simulation start-up.

Parameter Value Source

Altitude file { file } File

Crater file { file } File

Extrusion temperature 1500 Command line

Extrusion rate 0.15 Command line

Cell width and height 1 Command line

Max rows 1024 Command line

Max cols 1024 Command line

Crater number 1 Command line

Time steps 3600 Command line

The initial reading, including parameters, is the first stage in a pipeline that
represents the entire simulation process. We have identified the stages that com-
pose the process and we summarise them in Fig. 1.

Those stages have to be completed in sequence to produce a simulation result,
and are also regarded as common to this type of problem. In the literature,
there are certainly examples of diverse phenomena which share the 2D mesh
with local interaction and discrete time range, such as wildfire spreading [13],

180 S.A. Gélvez C. et al.

Fig. 1. Stages of the simulation workflow.

cloud dynamics [11], seismic dynamics [7], fluid dynamics [1], earthquakes [2],
and many more [3,4,6,12].

Our proposal aims to create a structure in which diverse specific simula-
tion problems can fit and thus, save efforts from the scientists involved in the
simulation process.

In the specific case of the lava flow simulation model, the first stage consisted
in the reading of a square matrix from a text file, with fixed maximum columns,
and another file detailing the position of the craters within the matrix. After
that, the initial values of all fields in each cell were calculated and the com-
puting of the mesh for time t1 started. That calculation was conducted using
the methodology from Miyamoto and Sasaki [9]. After that, partial results were
reported, and the next step in time, ti, was calculated. When the process reached
the maximum number of time steps, it stopped. That solution inspired the cre-
ation of a more general process that allowed quicker deployment of solutions for
simulation problems of that type. We needed a path to identify the variability
in the solution and exploit it to create a software framework to simplify the
development process of that type of simulations.

3 Analysis of Variability and Generalisation
of Components

There are several degrees of freedom in terms of variability in the solution
described in the preceding sections, and this work we focused on two: Vari-
ability in sub-processes in each stage and variability of hardware platform in
which the process in general is run. For instance, in the first case, it could have
a different pre-processing stage for each of the simulations that can be run using
this general processes, and the same can be said about each stage. Perhaps, the
simplest case would be just writing different instances of the Result Reporting
stage to export the results to several different visualisation formats.

About the second case, it is possible to have different implementations of
each stage because the use of several platforms are desired. In the case of our
example model, GPGPU are used in the form of NVIDIA CUDA, on one or

A Software Framework for 2D Mesh Based Simulation 181

several GPUs, but we could have used other parallel programming models. This
multiple implementation approach certainly improves the applicability of the
software solution developed.

Fig. 2. Variability of the solution.

The Fig. 2 shows several cases of variability exhibited by the solution. Down
from the stages (in the vertical center of the figure), the variability generated by
the hardware platform is shown. Up from the stages, we can observe variability
due to the different phenomenon simulated. In those cases, the variability gen-
erates alternative implementations of the stages. The selected implementation
for each stage are then assembled in a pipeline creating a whole and particular
implementation of the solution. Also, in a few stages, namely Input reading and
Results reporting, the variability is produced by the existence of several data
formats, and multiple implementation of those stages can be made.

182 S.A. Gélvez C. et al.

4 Proposed Framework

The previously defined stages can be translated in different implementations,
which in turn generate different software components. For a specific simulation,
the interested scientists must provide an implementation of selected components,
and the framework is coupled with those, creating a complete simulation pro-
gram. The amount of work by the scientist is thus reduced, provided that the
problem is of the type compatible with the framework. The components that
can be customised are initially the Input reading, the Result reporting and the
Mesh computing; those are very specific to the phenomena studied and manda-
tory to the process, and also subjected to the most variability of all. A graphical
explanation of the situation is presented on Fig. 3.

Fig. 3. Framework and sample modules.

For the assembly of a particular solution, the modules are assembled at com-
pilation time, and the simulation program emerges complete from the process. In
the first version of the work, the components are created using C syntax, given
the fact that CUDA(c) is used, and CUDA C (the language in which the GPU
instructions are passed) is based on C. The process is summarized in Fig. 4.

Different degrees of freedom in terms of variability to define the scope of the
framework are considered. First, platform variability, addressed to the imple-
mentation of the solution in multi-CPU X86, simple GPU and multi GPU based
architectures. Also, the numerical variability, which is the name used to describe

A Software Framework for 2D Mesh Based Simulation 183

Fig. 4. Development of the solution using the framework.

variability in the mathematical method used to simulate the phenomenon, cellu-
lar automata (used in the model inspiring the work) and finite differences (being
the most popular) being the initial methods to take in consideration. And finally,
algorithm variability, which refers to partitioning and load balance algorithms
specifically. The first comparison is between what can be called a näıve approach
and an algorithm that exploits previously calculated data, to try and reduce the
communications between processing elements.

As mentioned before, the first example constructed using this model of imple-
mentation was the Lava flow model [5]. A discussion about an implementation
will be shown in the next section.

5 Case Study: Lava Flows in a 2D Mesh Using Cellular
Automata

5.1 Automata Definitions

The model is based on the Navier-Stokes equations from fluid dynamics; it also
includes the heat transfer equations. Since a Cellular Automata will be used as
a tool for managing the geometry of the problem, the transition rules must be
defined from the equations applied to a Bingham fluid. The equations are then
discretised, according to Miyamoto and Sasaki [9]. The flux from a cell to one
adjacent to it is:

ΔV =
ρSyh

2
cw

3η

[(
h

hc

)3

− 3
2

(
h

hc

)2

+
1
2

]
Δt (1)

184 S.A. Gélvez C. et al.

where the parameters are:

Sy = Yield strength (Bingham fluid parameter)
η = Viscosity
hc = Critical thickness
w = Cell width
ρ = Density
ΔV = Transferred volume

The critical thickness is the value of thickness in which the force applied by
the gravity to the fluid allows the breaking of the cohesion of the molecules of the
fluid, and thus, the material stops behaving as a solid and start flowing, as a fluid.
This value depends on the viscosity and yield strength. In addition, the model
only loses heat due to radiation. Transmission to the ground and convection are
negligible. Transfer of heat due to flux is taken into account. The full definition of
the automata can be studied more thoroughly in the original work [5].

The cell set is defined as 1024 rows by 1024 columns, each one with the fields
in Table 1 in page 179. The craters are read from the file and put in place at the
start of the simulation.

The computing of the cell values for a time step t are:

– Read altitude data.
– Initialise the values of fields for every cell.
– For each cell, obtain the critical thickness of every adjacent, then determine

which cells transfer material.
– Calculate the value of the flux with Eq. 1.
– Add all fluxes and their corresponding heat transfer.
– Calculate heat loss due to radiation

After all these operations time step t is over and time t + 1 starts. This process
is reapeated for all time steps according to input parameters.

5.2 Hardware Architecture Used

The machine used for the simulation comprises 16 computing nodes. The spec-
ifications of the nodes are summarised in the Table 3. The GPU specifications
are summarised in Table 4.

5.3 Scenarios and Experiment

For the simulations, a set of mapping where used. They are presented in Table 5,
on page 185. A fixed set of parameters was used.

A Software Framework for 2D Mesh Based Simulation 185

Table 3. Test node specifications.

Specification Value

CPU 2 x Intel(R) Xeon(R) CPU E5645 @ 2.40GHz

CPU Cores 6

Threads 2 x Core

Total cores 24

Total memory 107471960 kB (104 Gb)

GPU 8 x NVIDIA Tesla M2075

Table 4. Test node GPU specifications.

Specification Value

GPU NVIDIA Tesla M2075

Cores 448

Memory bandwidth 150 Gb/s

Memory 6 Gb GDDR5

Memory speed 1.55 GHz

Performance (Single precision) 1.03 TFlops

Performance (Double precision) 515 GFlops

Architecture Fermi

Compute capability 2.0

Table 5. Mappings for the testing.

Name Description

cuda 1 GPU

cuda normal multi Multiples GPU (2, 4, 8)

5.4 Analysis of Results

Due to space constrains, all data is available on request to the authors.
The average running time is presented for the three scenarios, along with

others that use pinned zero copy memory in Fig. 5. From the data it can be
concluded that:

– The speedup values are greater than 1 for two mappings.
– Pinned memory is slower for this solution.
– Multi GPU mappings have times with a decreasing trend according to the

number of GPU used, which is positive.

Also, in the original work, we concluded that the main problem with the
performance was the memory transactions [5]. The memory copy was slower
that the computing in all cases according to the data obtained.

186 S.A. Gélvez C. et al.

Fig. 5. Average times.

The framework proposed will allow us to continue testing more quickly and
on different platforms. At the moment only one specific phenomenon was tested,
but the variability over platform was shown.

6 Conclusions

The specific solution implemented has performanced problems arisen from
the characteristics of its memory transactions. It is a problem that must be
researched more profoundly, and an aid to testing in the form of a reproducibil-
ity tool would be very welcome. The framework proposed could help in that
regard.

An exploitable variability was shown, and the first steps in addressing it
have been taken. The structure of the solution is compatible with the process
described in the third chapter. More solution applicable to different phenomena
must be used.

The component based architecture seems adequate to treat this type of prob-
lem. More testing is required, but the results of the first implementation is
promising.

Acknowledgments. Experiments presented in this paper were carried out using the
GridUIS-2 experimental testbed, being developed under the Universidad Industrial de
Santander (SC3UIS) High Performance and Scientific Computing Centre, development
action with support from UIS Vicerrectoria de Investigación y Extension (VIE-UIS)
and several UIS research groups as well as other funding bodies (http://www.sc3.uis.
edu.co).

http://www.sc3.uis.edu.co
http://www.sc3.uis.edu.co

A Software Framework for 2D Mesh Based Simulation 187

References

1. Abarbanel, H., Case, K., Despain, A., Dyson, F., Freedman, M., Max, C.,
Nelson, D., Rothaus, O.: Cellular automata and parallel processing for practical
fluid-dynamics problems, September 1990

2. Akishin, P.G., Altaisky, M.V., Antoniou, I., Budnik, A.D., Ivanov, V.V.: Simu-
lation of earthquakes with cellular automata (1998). http://dx.doi.org/10.1155/
S1026022698000247

3. Avolio, M.V., Di Gregorio, S., Mantovani, F., Pasuto, A., Rongo, R., Silvano, S.,
Spataro, W.: Simulation of the 1992 Tessina landslide by a cellular automata model
and future hazard scenarios. JAG 2(1), 41–50 (2000)

4. D’ambrosia, D., Spataro, W., Iovine, G.: Parallel genetic algorithms for optimising
cellular automata models of natural complex phenomena: an application to debris
flows. Comput. Geosci. 32, 861–875 (2006)

5. Gelvez Cortes, S.A.: Problemas Computacionales Asociados a la Construcción de
Modelos de Simulación Basados en Autómatas Celulares en Paralelo. Caso de Estu-
dio: Evaluación de Amenazas Asociadas a Flujos de Lava Volcánica como Flúıdo
Bingham. Master’s thesis (2015)

6. Ilachinski, A.: Cellular Automata, a Discrete Universe, 1st edn. World Scientific
Publishing Co., Pte. Ltd., Singapore (2001)

7. Leamy, M.J.: Application of cellular automata modeling to seismic elastodynamics.
Int. J. Solids Struct. 45(17), 4835–4849 (2008). http://www.sciencedirect.com/
science/article/pii/S0020768308001832

8. Mazzariol, M., Gennart, B.A., Hersch, R.D.: Dynamic load balancing of paral-
lel cellular automata. In: Proceedings SPIE Conference, Parallel and Distributed
Methods for Image Processing IV 4118, pp. 21–29, July 2000

9. Miyamoto, H., Sasaki, S.: Simulating Lava flows by an improved cellular automata
method. Comput. Geosci. 23, 283–292 (1997)

10. Pearson, R.: Discrete-Time Dynamic Models. Oxford University Press, Oxford
(1999)

11. da Silva, A.R., Gouvêa Jr., M.M.: Cloud dynamics simulation with cellular
automata. In: Proceedings of the 2010 Summer Computer Simulation Conference,
SCSC 2010, pp. 278–283. Society for Computer Simulation International, San Diego
(2010). http://dl.acm.org/citation.cfm?id=1999416.1999451

12. Talia, D.: Parallel cellular algorithms and programs (2006)
13. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A

new algorithm for simulating wildfire spread through cellular automata. ACM
Trans. Model. Comput. Simul. 22(1), 6:1–6:26 (2011). http://doi.acm.org/10.1145/
2043635.2043641

http://dx.doi.org/10.1155/S1026022698000247
http://dx.doi.org/10.1155/S1026022698000247
http://www.sciencedirect.com/science/article/pii/S0020768308001832
http://www.sciencedirect.com/science/article/pii/S0020768308001832
http://dl.acm.org/citation.cfm?id=1999416.1999451
http://doi.acm.org/10.1145/2043635.2043641
http://doi.acm.org/10.1145/2043635.2043641

A GPU Parallel Implementation of the RSA
Private Operation

Nareli Cruz-Cortés1(B), Eduardo Ochoa-Jiménez2, Luis Rivera-Zamarripa1,
and Francisco Rodŕıguez-Henŕıquez2

1 Centro de Investigación en Computación del Instituto Politécnico Nacional,
Mexico City, Mexico

nareli@cic.ipn.mx, lrivera a13@sagitario.cic.ipn.mx
2 Computer Science Department, CINVESTAV, Mexico City, Mexico
jochoa@computacion.cs.cinvestav.mx, francisco@cs.cinvestav.mx

Abstract. The implementation of the RSA private operation tends to
be expensive since its computationally complexity is cubic with respect
to the bit-size of its private key. As a consequence, considerable effort
has been put into optimizing this operation. In this work, we present
a parallel implementation of the RSA private operation using the Sin-
gle Instruction Multiple Thread (SIMT) threading model of Graphics
Processor Unit (GPU) platforms. The underlying modular arithmetic is
performed by means of the Residue Number System (RNS) representa-
tion. By combining these two approaches, we present a GPU software
library that achieves high-speed timings for the RSA private operation
when using 1024-, 2048- and 3072-bit secret keys.

Keywords: RSA · Residue number system · GPUs · CUDA

1 Introduction

In 1977, Rivest, Shamir and Adleman famously presented the RSA algorithm
[14], which is as of today, the most popular crypto-scheme for key exchange
establishment and digital signatures on Internet information security applica-
tions. Moreover, most of the Internet certificates currently in use are verified
using an RSA public key, and a number of certificate authorities only issue RSA
certificates.

For example, RSA is frequently executed in communication protocols such as
the Transport Layer Security (TLS) protocol [5]. Indeed, in a client-server TLS
session, the client may apply the RSA public operation and the server’s public
key to encrypt a secret and then send it to the server. Then, the server decrypts
this information using its own private key and the RSA private key operation.
After that, the client and the server use this shared secret to derive a session
key that can be utilized to perform bulk encryption, message authentication and
other relevant cryptographic operations.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 188–203, 2017.
DOI: 10.1007/978-3-319-57972-6 14

A GPU Parallel Implementation of the RSA Private Operation 189

Until recently, RSA-1024 has been overwhelmingly used to secure Internet
communications. Nevertheless, in [3], the US-based National Institute of Stan-
dards and Technology (NIST) recommended that as early as the year 2010,
cryptographic systems achieving a security level of 80 bits should be deprecated;
from 2010 until 2030 a security level of at least 112 bits should be enforced, and
a minimum of 128-bit security level was recommended from the year 2030 and
beyond. From the current state-of-the-art on integer factorization algorithms, it
is believed that those three security levels can be instrumented via RSA using
secret keys with bit-lengths of 1024, 2048, and 3072 bits, respectively.

Hence, in order to perform an urgently needed migration to higher levels of
security, it would be required to achieve highly-optimized implementations of the
RSA cryptosystem and its associated building blocks, so that the key exchange
operation as well as the signing and signature verification of documents can
be executed at a speed that is able to cope with Internet’s high-volume data
exchange.

Graphic Processing Units are massively parallel processors consisting of hun-
dreds or even thousands of cores. This contrasts with contemporary general-
purpose CPUs, which can only host at most tens of cores. It is then conceivable
that taking advantage of the massively parallel architecture of the GPUs, one
can speed up several computations where high computing power is required.
A chief example of this, is the efficient implementation of cryptographic appli-
cations. Some cryptographic algorithms that have been implemented recently
using GPUs include the Advanced Encryption Standard, RSA and Elliptic Curve
Cryptography to name but just a few.

In this work, a high performance parallel RSA implementation using pri-
vate key lengths of 1024, 2048 and 3072 bits, is presented. We targeted a GPU
GeForce GTX Kepler architecture TITAN card, that executes at a clock speed of
876 MHz. Our library uses the Residue Number System (RNS) arithmetic rep-
resentation, which is especially suited for fine-grained parallel computations.
The experimental results achieved by our library outperform the ones pre-
sented in [17] by 19.3% and by 18.5% for the RSA-1024 and RSA-2048 private
operations, respectively.

The remainder of this paper is organized as follows. In Sect. 2, the math-
ematical and algorithmic definitions used throughout this work are presented.
This includes the RSA main algorithms, the RNS operand representation and
associated arithmetic operations, and a high level overview of the GPU archi-
tecture. In Sect. 3, we present a description of a fine-grained level parallelization
that takes advantage of the Single Instruction Multiple Thread (SIMT) model
for the efficient computation of the RNS integer multiplication, the RNS mod-
ular reduction and the RSA main exponentiation. In Sect. 4, an evaluation of
the performance of our RSA library and its comparison against related works
is presented. Finally, in Sect. 5 we draw some concluding remarks and discuss
future work directions.

190 N. Cruz-Cortés et al.

2 Preliminaries

In this section, a brief overview of the RSA cryptosytem is given in Subsect. 2.1.
Then, the residue number system and related arithmetic operations are described
in Subsect. 2.2. Finally, in Subsect. 2.3 we discuss some relevant properties and
characteristics of the GPU architecture.

2.1 RSA Cryptosystem

RSA is one of the most famous public key cryptosystems suitable for both,
encryption and digital signature. It consists of three main algorithms.

First, the key generation algorithm produces the public and private keys, by
constructing an �-bit modulo N = p · q, where p and q are �/2-bit randomly
chosen prime numbers that should meet some standard security properties. The
public key is the tuple composed by the modulo N and the public exponent
e that is generally chosen as the integer 216 + 1. The private key consist of p,
q, N and the private exponent d = e−1 mod φ(N), where φ(·) represents the
Euler’s totient function, and hence, φ(N) = (p−1) ·(q−1). Except for the public
modulus N , all these parameters must be kept secret.

Depending on the context, the RSA public operation can be used either for
data encryption or signature verification. Similarly, the RSA private operation
can be used for data decryption or for performing the digital signature of a mes-
sage. In the case of a message signature, given the private key and a message
m, the signature s is computed as s = H(m)d mod N , where H(·), is a cryp-
tographic hash function that produces a unique fingerprint of the message m in
the integer range [1, N − 1]. Signature verification consists of checking whether
H(m′) = v, where v is computed as v = se mod N, using the signee’s public key
(N, e), the received signature s, and the received message m′. The RSA secu-
rity guarantees lie in the computationally hardness of the integer factorization
problem.

The Chinese Remainder Theorem. The RSA private operation is the most
costly operation of this cryptosystem, involving a modular exponentiation using
an �-bit private exponent d, with � ≥ 1024. On the other hand, the encryp-
tion/verification RSA public operation is generally considered negligible, since
the public exponent e is generally chosen as 216+1, which is a small 17-bit prime
with Hamming weight two.

Hence, it is important to find ways to perform the modular exponentiation by
the secret exponent d as efficiently as possible. One useful approach for attaining
this aim, is to make use of the Chinese Remainder Theorem, which allows us to
trade an �-bit modular exponentiation by the computation of two �/2-bit modu-
lar independent exponentiations, which can be performed in parallel. Using this
method, the exponentiation s = H(m)d mod N, can be equivalently computed
as,

s = (Iq · (sp − sq) mod p) · q + sq,

A GPU Parallel Implementation of the RSA Private Operation 191

where the parameters sp, sq, and Ip are computed as, sp = H(m)d mod (p−1)

mod p, sq = H(m)d mod (q−1) mod q, and, Iq = q−1 mod p.

2.2 Residue Number System

In most crypto-schemes, the efficiency of the main computations is bounded by
the computationally costs associated to the underlying arithmetic operations,
which directly affect the performance of the high level cryptographic primitives.
For example, when performing the addition of multi-word integers, any output
carry produced at a given word addition, must be sequentially propagated to
the remaining most significant words. Unless specific measures are put in place,
this situation will limit the overall performance of the arithmetic library being
developed.

Mainly due to its parallel-friendly nature, during the last few decades many
researchers have adopted the Residue Number System (RNS), which is particu-
larly useful for performing fast arithmetic over large integers.

The foundations of the RNS approach lie in the Chinese Remainder The-
orem. Its operation can be described as follows. Let us consider the set B =
(p1, p2, . . . , pn), composed of n pairwise co-prime k-bit moduli selected as inte-
gers near to 2k (the reason for this choice will be explained in the next section),
which is called the RNS-basis, where k is normally chosen to have the same value
of the processor’s word-size.

Let us define P =
i=n∏

i=1

pi, and let p be an odd prime such that p < P.

A large integer x, can be represented by the n-tuple X = (x1, x2, . . . , xn), where
each xi is the residue x mod pi, which will be written in the rest of this paper
as, xi = |x|pi

. Provided that the number x is in the range [0, P − 1], the RNS
representation as defined above is unique.

Let x and y be two large multi-word integers with x, y < P, which can be
represented as two RNS operands X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)
using the RNS-basis B, with x, y < P. The RNS addition and multiplication are
performed through addition and multiplication over each component of X and
Y as,

X ⊕ Y = (|x1 + y1|p1 , |x2 + y2|p2 , . . . , |xn + yn|pn
),

X ⊗ Y = (|x1 · y1|p1 , |x2 · y2|p2 , . . . , |xn · yn|pn
).

The RNS number system is particularly interesting because it distributes the
overall arithmetic computation over several small moduli whose size in bits is
frequently chosen to match the word-size of the target platform. In this way, one
can trade the computation of a single arithmetic operation involving two large
operands, by the calculation of n independent smaller modular operations that
use the moduli in the set B, which happens to be independent and needs no
synchronization among them due to the fact that there is no carry propagation
among the n modular operations [1,2].

192 N. Cruz-Cortés et al.

RNS Modular Reduction. In the case of RSA modular exponentiation, all
multiplications must be carried out modulo N. Therefore, after performing an
RNS multiplication, the result obtained must be reduced modulo N . In order
to obtain a valid RNS representation of a multiplication result, which is greater
than P , we use a redundant RNS-basis containing 2n moduli. Furthermore,
to perform an RNS modular reduction, we adopted the method introduced by
Bernstein in [4], as explained by Jeljeli in [10] (see also [9]). We selected this
approach mainly because it allows us to perform the reduction without having
to convert the RNS number to its integer representation. In the following, we
closely follow the description given in [9,10].

Let us assume that one wants to find the reduction of a large integer x modulo
an n-word integer N . Let us also assume that the RNS vector X represents the
integer x using an n−moduli RNS-basis, where each modulo has a bit-length of
k bits, and where k is the GPU’s wordsize. An strategy to perform the modular
reduction of x mod N, can be found from the CRT reconstruction equation given
as,

X =

∣∣∣∣∣

n∑

i=1

γi · Pi

∣∣∣∣∣
P

, where γi �
∣∣xi · P−1

i

∣∣
pi

and Pi � P/pi.

We can write X as,

X =
n∑

i=1

γi · Pi − α · P , with α =

⌊
n∑

i=1

γi

pi

⌋

and, since γi < pi, we have that 0 ≤ α < n. Then, if we assume that α is known,
we can define Z �

∑n
i=1 γi · |Pi|N − |α · P |N , which is congruent to x mod N,

as required. In order to determine the value of α we use the fact that pi ≈ 2k.
Hence, we can approximate γi/pi using only the s most significant bits of γi/2k.
The α approximation is computed using,

α �

⎢⎢⎢⎣
n∑

i=1

⌊ γi

2k−s

⌋

2s
+ Δ

⎥⎥⎥⎦ ,

where s is an integer in the range [1, k] and 0 < Δ < 1 an error correcting
parameter. The modular reduction by N of a vector X = (x1, x2, . . . , xn) as
described above is carried out as shown in Algorithm1.

It must be pointed out that Algorithm1 does not give the exact result of
the operation x mod N, but rather, it produces a multiple of the reduction that
is bounded by n2kN. This situation implies that the cardinality of the RNS
basis B, must be increased from n moduli to 2n moduli, so that the condition,
N · n2kN < (1 − δ)P, holds [9,10].

From the programming point of view, notice also that in the execution of
Algorithm 1, all the modular operations can be evaluated in parallel, except for
the Step 6, where a broadcast operation of all the γj ’s is required.

A GPU Parallel Implementation of the RSA Private Operation 193

Algorithm 1. RNS modular reduction algorithm [10]
Precomputation: // Performed in the CPU

1 RNS vector
∣
∣P−1

j

∣
∣
pj

for j ∈ {1, . . . , n}
2 Table of RNS vectors |Pi|N for i ∈ {1, . . . , n}
3 Table of RNS vectors |α · P |N for α ∈ {1, . . . , n − 1}

Input: RNS vector X, the number of moduli in the RNS-basis (n), the
RNS-basis B, and the parameters k, s and Δ.

Output: RNS vector Z, such that its integer representation z ≡ x mod N .

Computation : // Performed in the GPU

4 for each Thread j do

5 γj ←−
∣
∣
∣xj · ∣∣P−1

j

∣
∣
pj

∣
∣
∣
pj

6 Broadcast of the γj ’s by all the threads
7 for each Thread j do

8 zj ←−
∣
∣
∣
∑n

i=1 γi · ∣∣|Pi|N
∣
∣
pj

∣
∣
∣
pj

9 α ←−
⎢
⎢
⎢
⎣
∑n

i=1

⌊ γi

2k−s

⌋

2s
+ Δ

⎥
⎥
⎥
⎦

10 zj ←−
∣
∣
∣zj − ∣∣|α · P |N

∣
∣
pj

∣
∣
∣
pj

RNS to Integer Form Conversion. As it was mentioned above, it is possible
to convert back an RNS vector to its integer form by using the CRT recovering
formula,

x =

∣∣∣∣∣

n∑

i=1

∣∣xi · P−1
i

∣∣
pi

· Pi

∣∣∣∣∣
P

.

2.3 GPU Architecture

Originally, Graphics Processing Units (GPU) cards were hardware blocks opti-
mized to perform a small set of graphical operations. In 2006, NVIDIA intro-
duced the CUDA architecture, which is a parallel computing platform for GPUs
that defines the threading model, calling function conventions and, memory hier-
archy for CUDA programmers. CUDA applications manage concurrency through
streams, which are a sequence of commands executed in an order fixed by the
programmer. In this work, we used a GPU with the Kepler architecture, which
is briefly explained next.

A Kepler architecture for GPU cards has hundreds if not thousands of
Streaming Multiprocessors (SM) blocks running concurrently. Each SM is com-
posed by 12 groups of 16 cores. The SMs employ the Single Instruction Multiple
Thread (SIMT) programming model, where each core can execute a sequential
thread, but all cores inside of a group execute the same instruction at the same

194 N. Cruz-Cortés et al.

time. Under the SIMT model, the basic computation and resource allocation
unit is a thread, and a program code is executed in groups of 32 concurrent
threads, known as a warp. In a SM, the execution of an integer o single-precision
instruction on an entire warp takes two clock cycles. There is a small cache mem-
ory attached to each SM that is shared among its cores. This cache memory is a
low-latency block of memory having an access latency close to that of the regis-
ters. In a Kepler GPU card, the shared memory has a size of 64 KB, which can
be reconfigured by the programmer. For example, a valid configuration could be
to allocate 48 KB for the software data cache and 16 KB for the hardware data
cache.

The threads are grouped into blocks, which in turn are grouped into a grid.
All threads within a grid execute the same code of a kernel until it completes its
execution. Threads in a block are partitioned into warps whose threads run con-
currently. During the kernel invocation, a programmer can configure the amount
of share memory, the number of threads in a block and the number of blocks in
a grid, among other features [17]. There is however an upper bound on the size
of blocks. In the case of the GPU Kepler architecture, this upper bound is 1024
threads or 32 warps.

The programming model on GPU platforms consists of code sequences called
kernels. Generally, each kernel completes its execution before the execution of
the next one begins. This behavior is accomplished by using an implicit synchro-
nization barrier between any two kernels. On the other hand, since the SMs are
asynchronously executed in parallel, a GPU can simultaneously execute multiple
independent kernels. However, the GPU cards do not support synchronization
mechanisms among SMs. This limitation implies that several classic parallel pro-
gramming techniques cannot be applied for this kind of architectures. Besides,
given the fact that the GPU threads can create other threads, a nested paral-
lelism is supported on GPU cards. Notice however that the threads executed on
a SM can not share results with the threads running on another SM.

3 Implementation

In this section, we first give a brief description of the GPU assembly instructions
used in this work. Then, we present a short overview of the modular arithmetic
implementation aspects that should be taken into account when targeting a
GPU card. Finally, we report several implementation aspects and the optimiza-
tion techniques used to obtain a faster and more efficient parallel RSA modular
exponentiation.

3.1 PTX Assembly Instructions

In order to improve the performance of the RNS arithmetic, we used CUDA
PTX, which provides a stable programming model and instruction set for gen-
eral purpose parallel programming [13]. In particular, the following assembly
instructions are heavily used in our library,

A GPU Parallel Implementation of the RSA Private Operation 195

– addc: This instruction adds two 32/64 bits values taking into account the
carry-in bit and producing a carry-out bit.

– subc: It subtracts one value from another, each one of 32/64 bits, considering
the borrow-in bit and producing a borrow-out bit.

– mul.lo: It multiplies two 32/64 bits values and it returns xi × yi mod 2k,
where xi and yi are both non-negative integers, and k is typically selected to
be the GPU word size.

– mul.hi: It multiplies two 32/64 bits values and it returns xi × yi/2k, where
xi and yi are both non-negative integers.

– mad.(hi,lo).cc: It multiplies two 32/64 bits values, extracts the higher or
lower half of the result, and adds a third 32/64 bits value with carry-out.

The above described instructions helped us to get a better performance,
because we can reduce the number of instructions used in the integer arithmetic,
since some instructions can handle an implicit carry/borrow. In addition, we can
use PTX in order to have more control over arithmetic operations, which allows
us to avoid the so-called thread divergence during the execution of the program
code.1

On the other hand, there exist special data types in CUDA that allow us
to store values bigger than the GPU register sizes. For example, the uint2 data
type is a small 2-element vector that permits to independently store the most
significant half and the least significant half of a 64-bit integer. In this way, we
can achieve an efficient access and a fast computation over the data using PTX
instructions, which are directly executed over registers and shared memory.

3.2 Basic RNS Modular Arithmetic on GPU

As it was mentioned in Subsect. 2.2, the basic operations in RNS are: xi+yi, xi−
yi, xi×yi, as well as the modular reduction by the set of moduli pi. The addition,
subtraction and multiplication operations were performed using the native GPU
assembly instructions, which were described in the previous subsection. Aiming
to perform an efficient modular reduction by pi, we selected pseudo-Mersenne
co-prime numbers to construct the RNS-basis B. Those co-prime numbers have
the form pi = 2k − ci, where ci is a small integer and k is the GPU register
size. Typically, the modular reduction is done through integer division, but this
is unnecessary when dealing with pseudo-Mersenne numbers moduli. Indeed,
for this special class of moduli, the modular reduction can be done efficiently
with a small number of additions and multiplications, by means of the following
procedure. Let ti = xi ◦ yi, where ◦ stands for an addition, a subtraction or a
multiplication operation. Then, one can write ti as,

ti = tiL + 2k × tiH .

1 A thread divergence occurs when the threads do not execute the same instruction at
the same time. Thread divergence is an important limiting factor in the exploitation
of the parallelism of a program and therefore it must be avoided as much as possible.

196 N. Cruz-Cortés et al.

Where, tiL denotes the k least significant bits and tiH the k most significant
bits of ti. Since, 2k ≡ ci mod pi, it follows that ti ≡ tiL + ci × tiH mod pi. So, we
can compute the modular reduction of ti as, |ti|pi

= tiL + ci × tiH . However, one
must take into account that if the resulting ti still is greater than pi, then one
should repeat the previous procedure until ti < pi. In our case, this can provably
be done after no more than two reductions provided that the ci are sufficiently
small.

Given the fact that the basic RNS operations are independent of each other,
one can perform all the computations in parallel as shown in Fig. 1. Hence, the
implementation of basic operations was done launching n concurrent execution
threads, each one of them handling each one of the n co-prime numbers contained
in the RNS-basis.

Block 1

|x1 ◦ y1|p1

Thread 1

|x2 ◦ y2|p2

Thread 2

|xn ◦ yn|pn

Thread n

...

Fig. 1. Parallel implementation of RNS basic modular operations.

B Size Selection. As it has been mentioned, it is necessary to construct a basis
B to work with the operands in the RNS representation. In principle, the size of
B should be 2n, where n is the number of moduli needed to represent an operand.
This would imply that in order to deal with operands of 512, 1024 and 1536 bits
we should construct bases containing 16, 32 and 48, 64-bit coprime moduli,
respectively. However, in order to avoid thread divergence and to better exploit
the inherent parallelism of the GPU platforms, we found experimentally that
better performance results were obtained using bases with a cardinality of 32,
36 and 64 co-prime moduli, for 512-, 1024- and 2048-bit operands, respectively.

3.3 RNS Modular Multiplication on GPU

Let X and Y be two integer numbers represented in RNS as (x1, x2, ..., xn)
and (y1, y2, ..., yn), respectively. To compute the RNS modular multiplication
X ⊗ Y mod N , where N is the module used in the RSA exponentiation, we
need to carry out an RNS integer multiplication, followed by an RNS modular
reduction with respect to the modulus N . On a GPU platform, these operations
can be performed in an efficient manner as described next.

RNS Integer Multiplication. First, we assign to each thread a pair of
operands, which is actually the same strategy used to compute the Step 5 of
Algorithm 1.

A GPU Parallel Implementation of the RSA Private Operation 197

In this way, each warp executes the same instruction, avoiding the computa-
tionally costly divergence among threads. The multiplication is performed in a
redundant way, that is, we launch n blocks, which compute the same RNS mul-
tiplication X ⊗ Y , as shown in Figs. 2(a) and (b). The idea here is to avoid to
perform a costly synchronization phase at each integer multiplication. Moreover,
the data can be broadcasted for being processed in the modular reduction phase
(See Step 6 of Algorithm 1). Further, the threads can access each coordinate of
the operands X and Y in an efficient way. This is due to the feature that each
operand is allocated on contiguous segments of memory. Once that each thread
completes its processing, it stores the result on a register, avoiding the access to
the global memory, which would be expensive. As a general strategy, we strive
for allocating all the operands in the shared memory or registers of the GPU as
much as possible. This strategy further help us to reduce the system’s overall
latency.

RNS Multiplication

Block 1

d1 = |x1 × y1|p1

Thread 1

d2 = |x2 × y2|p2

Thread 2

dn = |xn × yn|pn

Thread n

... . . .

Block n

d1 = |x1 × y1|p1

Thread 1

d2 = |x2 × y2|p2

Thread 2

dn = |xn × yn|pn

Thread n

...

RNS Modular Reduction
Block 1vi = |P−1

i |pi
γ1 = |d1 × v1|p1

Thread 1

γ2 = |d2 × v2|p2

Thread 2

γn = |dn × vn|pn

Thread n

... . . .

Block nvi = |P−1
i |pi

γ1 = |d1 × v1|p1

Thread 1

γ2 = |d2 × v2|p2

Thread 2

γn = |dn × vn|pn

Thread n

...

Block 1Operations to obtain z1

γ1 × ||P1|N |p1

Thread 1

γ2 × ||P2|N |p1

Thread 2

γn × ||Pn|N |p1

Thread n

... . . .

Block nOperations to obtain zn

γ1 × ||P1|N |pn

Thread 1

γ2 × ||P2|N |pn

Thread 2

γn × ||Pn|N |pn

Thread n

...

Block 1Operations to obtain α

γ1/2k−s

2s

Thread 1

γ2/2k−s

2s

Thread 2

γn/2k−s

2s

Thread n

... . . .

Block nOperations to obtain α

γ1/2k−s

2s

Thread 1

γ2/2k−s

2s

Thread 2

γn/2k−s

2s

Thread n

...

Block 1z1

z1 − ||α · P |N |
p1 p1

Thread 1

. . .

Block nzn

zn − ||α · P |N |
pn pn

Thread 1

(a)

(b)

(c)

(d)

(e)

Redundant Computation

Fig. 2. Architecture of the RNS modular multiplication on a GPU platform. For details
on the computation of the RNS modular reduction the reader is referred to Algorithm 1

198 N. Cruz-Cortés et al.

RNS Modular Reduction. When all the threads have completed the X by
Y multiplication, the next step is to perform a modular reduction by N , by
performing the procedure shown in Algorithm1. This algorithm requires the
pre-computation of several values, which are preprocessed in the CPU hosting
the GPU card, and then they are sent from there to the GPU. The first of
such parameters is the vector |P−1

i |pi
with n entries. The next one is the table

|Pi|N , which allows to perform the modular reduction by N , without leaving the
RNS representation. As this table and this vector can be used at any time by
the threads, it was decided to store them in the shared memory region. Finally,
the table containing the values of α · Pi, is required in step 10 of Algorithm1,
in order to obtain a correct modular reduction. This table is mapped to the
texture memory, due to the fact that only some few threads have access to this
data and thus, we estimated that this design decision can help us to obtain a
better memory access performance.

Step 8 of Algorithm 1 is the most computationally intensive task of the reduc-
tion procedure. In step 8, for each modulo pi in the base B, one must perform n
multiplications modulo pi and n−1 additions modulo pi. Therefore, to compute
all operations in parallel one needs n blocks with n threads each, as shown in
Fig. 2(c). By following this strategy, in Step 8 one can perform n RNS modular
multiplications concurrently as desired. Nevertheless, one must wait until all the
threads of each block have completed their execution. Hence, if n > 32, then a
explicit barrier must be placed in order to synchronize the threads of each block.
This will help us to achieve a correct addition of the partial results. This barrier
was implemented using standard CUDA commands.

Once that all the partial results by each block have been processed, we must
add all of them. To this end, one can use a set of 32 threads (a warp), which will
compute the addition of all partial results. These partial results are placed in the
shared memory because its better performance. An approach that implements
the addition of all the partial results efficiently, uses a collaborative strategy as
proposed in [7]. This means that each thread carries out the sum of two partial
results without any overlap among them. Figure 3 shows an example of how
four threads can collaboratively perform this addition operation for an eight-
entry vector. The basic idea is that the additions are performed using a binary
addition tree. This collaborative addition is also used in Step 9 of Algorithm1
in a redundant way, which is illustrated in Fig. 2(d).

Finally, in Step 10 of Algorithm1, only one thread of each block performs
the subtraction and saves the final result of the modular multiplication into
the global memory (see Fig. 2(e)). This helps us to avoid that several threads
compete to write into the same memory address. To improve the performance
of one thread, we used the texture memory, due to its superior efficiency in the
scenario when irregular memory access patterns occur.

3.4 RNS Modular Exponentiation

The specialized literature describes many methods for computing the modular
exponentiation efficiently. The square-and-multiply method is probably the most

A GPU Parallel Implementation of the RSA Private Operation 199

1

2

3

4

5

6

7

8

12

10

8

6

20

16 36

T4

T3

T2

T1

Fig. 3. Example of a binary addition tree performed by four threads on a eight-entry
vector.

intuitive of all of them. However, the expected number of modular multiplications
for an �-bit modular exponentiation is of about 3�

2 multiplications.2 This number
of multiplications can be further reduced by scanning multiple exponent bits
instead of just one exponent bit per iteration. A method that uses this approach
is the fixed-window method, which requires in average 	 �

w
 multiplications and
� − 1 squarings, where w denotes the quantity of bits to be scanned at each
iteration. In our work we used the m-ary method with w = 4, which allows us
to get a better balance between memory usage and performance.3

In a modular exponentiation several modular multiplications of the form X⊗
Y mod N are required. However, the procedure mentioned in the previous section
only performs one single modular multiplication (redundantly). Since in the case
of the exponentiation thousands of modular multiplications are needed, one must
instrument a control in the block execution. Each block helps to compute an
element of the resulting vector and becomes the input for the next iteration.
Therefore, we must have a barrier so that each block of threads waits until all
the threads have completed the processing of their data. Otherwise, the program
will start receiving inconsistent values that will be out of synchrony.

In this work, the barrier mechanism as proposed in [16] was adopted. The
general idea of this barrier is that each block sets a flag within an input vector,
while a block of threads is in charge of verifying that all blocks have set these
input flags. Once that all the processing blocks have set their own input flag,
a different block sets an extra output flag in an output vector. It is only until
then that the system can safely assume that all the blocks have completed their
share of data processing.

The mechanism just described, allows us to perform one single modular expo-
nentiation. However, the use of the CRT technique as described in Sect. 2.1,
requires the computation of two independent modular exponentiations for the
RSA private operation. In order to solve this issue, one can use streams, where

2 Henceforth, we are assuming that the cost of one integer squaring is the same of an
integer multiplication.

3 We stress that the fixed-window method requires the precomputation of up to 2w

values.

200 N. Cruz-Cortés et al.

each stream is in charge of running a different kernel. Processing data in streams
allows the concurrent computation of both exponentiations.

Furthermore, notice that the loading of data from the CPU host to the GPU
card using streams, can be performed in an asynchronously fashion by using
the CUDA native instruction cudaMemcpyAsync. This allows for a concurrent
code execution between the CPU host and the kernel, which yields a better
performance.

4 Results and Comparison

In this section, the latency achieved by our library is reported along with a
performance comparison with other related works. All of our experiments were
performed in the GeForce GTX TITAN GPU card, which runs at 0.88 GHz. The
software platform and programming model used was CUDA 6.5.

4.1 Related Work

Several works that address the efficient computation of the RSA operations over
GPU platforms have been reported recently. All of these works make use of the
Chinese Remainder Theorem trick to speedup the RSA computation.

In 2007, Moss et al. [11] presented one of the first RSA implementations over
GPU platforms, using an NVIDIA 7800-GTX GPU card. The authors imple-
mented a 1024-bit RNS integer multiplication by means of floating-point instruc-
tions. Their implementation shows an excessively large latency. Later in 2008,
Szerwinski and Güneysu [15] reported an RSA implementation using an NVIDIA
8800 GTS GPU card. They used RNS arithmetic over 1024-bit and 2048-bit inte-
gers, and CRT for RSA decryption. The performance of their library achieved a
latency of 144 ms and 849 ms, for RSA-1024 and RSA-2048, respectively. In 2011,
Neves and Araujo [12] presented an RSA-1024 implementation using an NVIDIA
GT200 GPU card, reporting a latency of 70 ms. Their implementation made use
of the Montgomery multiplication and the CRT technique for decryption. In
the same year, Jang et al. [8], proposed a parallel implementation using the
Separated Operand Scanning Montgomery multiplication variant, targeting an
NVIDIA GTX580 GPU card. Their implementation achieved a latency of 3.8 ms
for RSA-1024, and 13.83 ms for RSA-2048 decryption. In 2014, Zheng et al. [18]
reported an RSA implementation over an NVIDIA GTX TITAN GPU, which
used the Montgomery multiplication method and the CRT technique. Their GPU
library achieved a latency of 22.47 ms for RSA-2048. Since the authors exploited
the floating point arithmetic unit of GPU platforms, their code appears to be
more complex than other integer based implementations, and it seems that can-
not be easily implemented in generic GPU platforms. In the same year, Fadhil
and Younis [6] using an Nvidia GeForce GT630M GPU card presented an RSA
implementation, which showed a latency of 2.78 ms for RSA-2014, 9.27 ms for
RSA-2048 and 23.62 ms for RSA-3072.

A GPU Parallel Implementation of the RSA Private Operation 201

Even more recently, Yang et al. [17], reported an RSA implementation based
in the Montgomery multiplier that once again used the CRT technique. The
authors present their results over an NVIDIA GT 750 GPU card. To our knowl-
edge, the library presented in [17], reports the fastest RSA implementation over
a GPU platform before this work, with a latency of 2.6 ms and 6.5 ms for RSA-
1024 and RSA-2048, respectively.

4.2 Comparison

We measured the latency of the RSA private operation for key lengths of 1024,
2048 and 3072 bits, which corresponds to security levels of 80, 112 and 128 bits,
respectively. Table 1 reports the latency achieved by our library for the RSA
private operation implementation, by taking the average of the time required to
perform 3,000 RSA decryptions.

Table 1. RSA private operation latency (in milliseconds) obtained by our library.

RSA bit length Number of threads Latency [ms]

1024 32 × 32 2.1

2048 36 × 36 5.3

3072 64 × 64 9.7

Table 2 shows a comparison of our library against several selected works
reported in the open literature. The speedup that is shown in parenthesis com-
pares each GPU library against our own sequential implementation of the RSA
private operation using only one thread. From the timings reported in Table 2, it
can be seen that our implementations have better latency for RSA-1024, RSA-
2048 and RSA-3072 than the next fastest implementation by an acceleration
factor of 1.23, 1.22 and 5.16, respectively.

Table 2. Performance comparison of several recent GPU libraries implementing the
RSA private operation.

Latency in ms (Speedup)

Work GPU @ GHz RSA-1024 RSA-2048 RSA-3072

Sequential GTX TITAN 0.88 736.5 1857.6 8685.8

Neves et al. [12] GT 200 1.24 70 (10.5) - -

Jang et al. [8] GTX 580 1.54 3.8 (193.8) 13.8 (134.6) -

Zeng et al. [18] GTX TITAN 0.83 - 22.4 (82.9) -

Fadhil et al. [6] GT 750 0.8 2.8 (263.0) 17.2 (108) 50.1 (173.3)

Yang et al. [17] GT 750 0.96 2.6 (283.2) 6.5 (285.7) -

This work GTX TITAN 0.88 2.1 (350.7) 5.3 (350.4) 9.7 (895.4)

202 N. Cruz-Cortés et al.

5 Conclusion

In this paper, we present a parallel modular multiplication using an RNS repre-
sentation of the operands that has been specially tailored for its implementation
on GPU cards. This multiplication was used to implement the RSA private oper-
ation at the security levels recommended by NIST. Our implementation takes
advantage of the GPU characteristics and the SIMT programming model. The
performance of our software was further improved by assembly level program-
ming along with the usage of techniques that avoid divergence during the compu-
tations, prevent the serial execution of the program code and allow the usage of
contiguous segments of memory. The performance achieved by our library yields
faster timings than previous works that implemented the RSA private operation
on GPU platforms using key lengths of 1024, 2048 and 3072 bits.

Nevertheless, the authors of this work also implemented RSA-1024, RSA-2048
and RSA-3072 on a Haswell processor running at 2.6 GHz. As it turns out, our
CPU implementation of the RSA private operation is considerably faster than
the RSA GPU library described here. Hence, we arrive to the same conclusion
mentioned by Yang et al. in [17], i.e., a GPU implementation of RSA can only
be competitive compared with its CPU library counterpart, in those scenarios
where many RSA signature/decryption operations must be performed in batch.
The reason for this is that the massive parallelism available in a GPU card allows
for the concurrent computation of many independent RSA exponentiations
(a situation that would not be possible in a CPU platform).

Considering the characteristics of the latest generation of GPU cards, it is
now possible to use native 64-bit integer arithmetic. Hence, a natural future work
would be to code a GPU library that takes advantage of this new instruction
set. In addition, it is important to design an RSA library that exhibits a first
line of defense against so-called side channel attacks.

References

1. Bajard, J.C., Didier, L.S., Kornerup, P.: An RNS montgomery modu-
lar multiplication algorithm. IEEE Trans. Comput. 47(7), 766–776 (1998).
http://dx.doi.org/10.1109/12.709376

2. Bajard, J., Imbert, L.: A full RNS implementation of RSA. IEEE Trans. Comput.
53(6), 769–774 (2004)

3. Barker, E.: Recommendation for key management, NIST special publication 800–57
part 1 revision 4. Technical report, Gaithersburg, MD, United States, January 2016.
http://nvlpubs.nist.gov/nistpubsSpecialPublications/NIST.Spp.800-57pt1r4.pdf

4. Bernstein, D.J.: Multidigit modular multiplication with the explicit Chinese
remainder theorem. Technical report (1995)

5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2,
RFC 5246. Network Working Group, IETF (2008). https://tools.ietf.org/html/
rfc5246#section-8.1.1

6. Fadhil, H.M., Younis, M.I.: Parallelizing RSA algorithm on multicore CPU and
GPU. Int. J. Comput. Appl. 87(6), 15–22 (2014)

http://dx.doi.org/10.1109/12.709376
http://nvlpubs.nist.gov/nistpubsSpecialPublications/NIST.Spp.800-57pt1r4.pdf
https://tools.ietf.org/html/rfc5246#section-8.1.1
https://tools.ietf.org/html/rfc5246#section-8.1.1

A GPU Parallel Implementation of the RSA Private Operation 203

7. Harris, M.: Optimizing parallel reduction in CUDA. Technical report, nVidia
(2008). http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

8. Jang, K., Han, S., Han, S., Moon, S., Park, K.: SSLShader: cheap SSL acceleration
with commodity processors. In: Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI 2011, pp. 1–14. USENIX
Association, Berkeley (2011)

9. Jeljeli, H.: Accélérateurs logiciels et matériels pour l’algèbre linéaire creuse sur les
corps finis. Ph.D. thesis, Inria Nancy - Grand Est, LORIA - ALGO - Department
of Algorithms, Computation, Image and Geometry, July 2015. https://hal.inria.
fr/tel-01178931

10. Jeljeli, H.: Accelerating iterative SpMV for the discrete logarithm problem using
GPUs. In: Koç, Ç.K., Mesnager, S., Savaş, E. (eds.) WAIFI 2014. LNCS, vol. 9061,
pp. 25–44. Springer, Cham (2015). doi:10.1007/978-3-319-16277-5 2

11. Moss, A., Page, D., Smart, N.P.: Toward acceleration of RSA using 3D graphics
hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol.
4887, pp. 364–383. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9 22

12. Neves, S., Araujo, F.: On the performance of GPU public-key cryptography. In:
2011 IEEE Proceedings of the 22nd International Conference on Application-
Specific Systems, Architectures and Processors, ASAP 2011, Santa Monica, CA,
USA, pp. 133–140 (2011)

13. nVidia: Parallel thread execution ISA v5.0, application guide. Technical report,
September 2016. http://docs.nvidia.com/cuda/pdf/ptx isa 5.0.pdf

14. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

15. Szerwinski, R., Güneysu, T.: Exploiting the power of GPUs for asymmetric cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 6

16. Xiao, S., Feng, W-C.: Inter-block GPU communication via fast barrier synchro-
nization. In: 2010 IEEE Proceedings of the International Symposium on Parallel
Distributed Processing, IPDPS 2010, Atlanta, GA, pp. 1–12 (2010)

17. Yang, Y., Guan, Z., Sun, H., Chen, Z.: Accelerating RSA with fine-grained paral-
lelism using GPU. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp.
454–468. Springer, Cham (2015). doi:10.1007/978-3-319-17533-1 31

18. Zheng, F., Pan, W., Lin, J., Jing, J., Zhao, Y.: Exploiting the floating-point com-
puting power of GPUs for RSA. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K.,
Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 198–215. Springer, Cham (2014).
doi:10.1007/978-3-319-13257-0 12

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://hal.inria.fr/tel-01178931
https://hal.inria.fr/tel-01178931
http://dx.doi.org/10.1007/978-3-319-16277-5_2
http://dx.doi.org/10.1007/978-3-540-77272-9_22
http://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf
http://dx.doi.org/10.1007/978-3-540-85053-3_6
http://dx.doi.org/10.1007/978-3-319-17533-1_31
http://dx.doi.org/10.1007/978-3-319-13257-0_12

Reducing the Overhead of Message Logging
in Fault-Tolerant HPC Applications

Esteban Meneses1,2(B)

1 National Advanced Computing Collaboratory, National High Technology Center,
San Jose, Costa Rica

esteban.meneses@acm.org
2 School of Computing, Costa Rica Institute of Technology, Cartago, Costa Rica

Abstract. With the exascale era within reach, the high performance
computing community is preparing to embrace the challenges associ-
ated with extreme-scale systems. Resilience raises as one of the major
hurdles in making those systems usable for the advance of science and
industry. Message logging is a well-known strategy to provide fault tol-
erance, one that is promising due to its ability to avoid global restart.
However, message-logging protocols may suffer considerable overhead if
implemented for the general case. This paper introduces a new message-
logging protocol that leverages the benefits of a flexible parallel pro-
gramming paradigm. We evaluate the protocol using a particular type of
applications and demonstrate it can keep a low performance penalization
when scaling up to 128,000 cores.

Keywords: Resilience · Fault tolerance · Message logging

1 Introduction

The imminent arrival of extreme-scale supercomputers sometime next decade
will provide scientists and engineers with the right tool to accelerate fundamen-
tal discoveries in the grand challenges of several disciplines. From cosmological
simulations of the origin of the universe to drug design for personalized medicine,
our understanding of nature heavily depends on the ability to efficiently exploit
the massive computational power of those machines. However, with an exascale
machine already in sight, reliability stands out as one of the major obstacles in
reaching a productive supercomputing system [2,10]. Considering the gigantic
number of components that must be assembled into extreme-scale systems, fail-
ure rate will undoubtedly increase. Addressing the resilience challenge is crucial
to the advance of science and industry.

The High Performance Computing (HPC) community has traditionally relied
on rollback-recovery strategies to provide fault tolerance for large-scale simula-
tions. One technique that has recently gained some attention is message logging,
which seems promising given its lower energy consumption in a faulty environ-
ment [9]. Message logging, however, incurs some performance overhead due to
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 204–218, 2017.
DOI: 10.1007/978-3-319-57972-6 15

Reducing the Overhead of Message Logging 205

Determinants
 (84%)

Piggybacking
 (10%)

Logging
 (4%)

Bookkeeping
 (2%)

(a) Contribution of each factor to
message-logging performance penalty.

Block

(b) Communication structure in
LULESH.

Fig. 1. Performance cost of determinants in LULESH. The main source of the per-
formance penalty of message logging with LULESH comes from determinants. The
communication structure of LULESH, however, suggests there is a way to avoid deter-
minants altogether.

the additional mechanisms that ensure a correct recovery. One of those mecha-
nisms is called determinants, which are in charge of storing all information about
non-deterministic events.

Determinants play a major role in the performance penalization of message
logging. Figure 1(a) presents the breakdown of that overhead in an experiment.
Using 1, 024 cores on Stampede supercomputer at Texas Advanced Comput-
ing Center (TACC), and the LULESH benchmark, we examine the four sources
of performance loss for a traditional message-logging protocol. Bookkeeping, a
mechanism to avoid duplicate messages, contribute with little over 2%. Logging,
or storing outgoing messages in main memory, represents about 4%. Piggyback-
ing, or the overhead of adding additional information, contributes with 10%.
Finally, Determinants, or the cost of creating, storing, sending, and acknowl-
edging determinants, is the dominant contributor of performance overhead with
84%. On the other hand, Fig. 1(b) shows why that overhead can be dramati-
cally reduced. The program LULESH comes from a big family of codes collec-
tively referred to as stencils. These programs work on a multidimensional grid
by applying an operation to each element. The usual data partition algorithm
splits the grid into blocks. In Fig. 1(b) we observe a two-dimensional grid and a
block with all its neighbors. As the computation progresses the blocks exchange
the border elements with each neighbor in every iteration before proceeding
to apply the transformation of its own elements of the grid. High-level script
languages provide a mechanism to express this type of computation explicitly,
but more importantly, in a very simple way. Therefore, using that information,
new message-logging protocols may take advantage of simple and deterministic
communication patterns to avoid creating unnecessary determinants.

206 E. Meneses

The focal points of this paper are:

– A description of a particular kind of programs and high level programming
language constructs that exposes the determinism in communication (Sect. 3).

– The design of fast message-logging, a protocol that removes all determinants
in this type of programs (Sect. 4).

– A comparative evaluation between simple causal message-logging and fast
message-logging is offered (Sect. 5).

2 Background

Rollback-recovery is the most popular strategy to build resilient applications in
HPC. In the usual form, called checkpoint/restart, a program starts execution
and periodically stores its global state. If a failure strikes the system (failures are
assumed to be permanent), the application rolls back to the previous checkpoint
and resumes from that point. If messages are also stored, then the failure of one
component only requires the rollback of the tasks running on that component.
Messages can be replayed to the recovering element until it reaches a consistent
state with the rest of the system. Therefore, in most of HPC implementations,
message logging requires checkpoints to be taken at global synchronization points
and messages to be stored at the sender side.

There are several variants of message logging [3], which differ in the way they
handle determinants. Since message logging provides local rollback (i.e. only the
failed tasks must roll back to the previous checkpoint), certain non-deterministic
decisions must be stored to provide a consistent recovery. Determinants repre-
sent those decisions and protocols become piece-wise deterministic. Figure 2(a)
shows an example of a protocol called simple causal message-logging [7]. Assume
an application is composed by several tasks, from A to D. Message reception is,
in general, non deterministic. Therefore, every message reception will generate
a determinant. For instance, message m1 from B to C generates determinant
#m1. That determinant stores the order in which message m1 was received at
C and it will be necessary for recovery as long as other events in the system
causally depend on that. Therefore, determinant #m1 will be piggybacked on
outgoing messages from C until an acknowledgment ai confirms the determinant
has been safely stored somewhere else. The simple causal message logging proto-
col tolerates a single task failure but works in the general case. More advanced
message-logging protocols bank on certain properties of HPC applications to
reduce the number of determinants generated. For instance, a program may
show send determinism [4] if the sequence of send events is always the same for
every valid execution. Such program may use a protocol that avoids creating
some determinants and thus reduces the overhead of the protocol.

In the parallel-objects programming model, an application is decomposed
into objects, also called chares. Objects export a list of entry methods that
other objects may call remotely through messages. Therefore, execution is always
message driven. Each message contains the object recipient and the name of the
method to be invoked, much like Active Messages [11]. The system is represented

Reducing the Overhead of Message Logging 207

Fig. 2. Message logging leverages the overdecomposition property of the parallel-
objects programming model.

by a set of processing entities (PE) interconnected through a fast network that
does not guarantee FIFO ordering. The number of objects usually exceeds the
number of PEs in the system and the environment is said to be overdecomposed.
The ratio between objects and PEs is called virtualization ratio. Since the loca-
tion of an object is irrelevant to the programmer, a smart runtime system may
decide to migrate objects between PEs. Some goals of migration include load
balancing, proactive fault tolerance, and reduction of power consumption. The
parallel-objects model has been implemented into Charm++ [5], a C++ lan-
guage extension. It is precisely overdecomposition what gives parallel objects an
edge on message logging. As shown in Fig. 2(b), if PE B holds 4 objects (rep-
resented by the colored circles), the recovery of PE B (replaced by B′) can be
done concurrently. This is called parallel recovery and entails migrating objects
in the recovering PE to other PEs during recovery.

In this paper we explore a scripting language that makes the control flow
explicit. This is a language extension to Charm++ that provides certain struc-
ture and tame the relative flexibility in which messages can be processed at their
destination in the parallel-objects model. These extra constructs in the language
are referred as SDAG or structured dagger. Using programs written in SDAG, we
aim to reduce the number of determinants generated in the program and reduce
the total execution-time overhead of message-logging.

3 Removing Determinants in Parallel Programs

We assume the underlying machine is formed by a set Σ of PEs. We assume
the network is reliable but does not ensure FIFO ordering in the delivery of
messages between any pair of PEs. The application is decomposed into a set Γ
of objects. We assume there is no shared memory in the program and the only
mechanism to exchange information is via message passing. In particular, the
objects of the application are reactive and execute a method upon the reception
of a message. This asynchronous mechanism provides a message-driven execution
of the program. All message sends are asynchronous, including the contributions
to reductions.

208 E. Meneses

In the parallel-objects model, each message has a type, determined by the
particular method that gets triggered when it is received. Thus, it is possible to
distinguish between two messages based on their type. Furthermore, messages
of the same type can also be differentiated by the particular combination of
sender object and receiver object. Finally, each message may carry a tag (called
reference number in SDAG) that is used to decide whether to process a message
at reception. The tag can be used to further separate two otherwise identical
messages. The combination of type, sender, receiver, and tag is an essential
component of a message-logging infrastructure.

The parallel-objects model is able to express a wide variety of parallel pro-
grams. In particular, it is very well suited for a class of programs named as
stencil codes. These programs are iterative kernels that update elements on a
grid in a very structured way. Partial differential equations (PDEs) are a good
source for this type of codes. Usually, to numerically solve a PDE, a discretized
version of the space is required. The space can thus be represented by a grid or
mesh. Other types of stencil codes are used in image processing, computational
fluid dynamics, and other kinds of scientific simulations. The nature of stencil
codes consists of applying an operation to all the points in the grid until some
convergence criteria is met or after certain number of iterations have been com-
pleted. In a parallel implementation of this type of codes, the whole grid is split
into blocks. Each processing element holds a subset of the blocks. The computa-
tion proceeds by iteratively exchanging some values between neighboring blocks,
applying an operation over the elements in the blocks and following to the next
step. Most of the time, the values exchanged between blocks correspond to the
neighboring elements of each block. The communication is very structured and
does not change during the execution. The name stencil actually comes from the
fixed pattern in which message exchange takes place. A program formulated in
the parallel-objects model is shown in Fig. 3(a).

Two types of objects are shown: Main and Block. The former orchestrates
the execution of the total number of iterations in the program. It initially broad-
casts the message start to all blocks (line 5). The latter represents each block
and handles exchanging messages between all the blocks. Each iteration starts
by sending the ghost elements to the neighbors (line 15). Then, each block must
keep track of how many ghost-element messages it has received. Once the counter
has reached the total number of neighbors, the block proceeds to apply the com-
putation to its elements. At the end of every iteration (line 23), all the set of
blocks contribute to a reduction that returns the control to Main. The cycle
starts again until the total number of iterations is completed. Note that the
reduction after each iteration is inevitable in this model. Since the channels are
not FIFO in delivering the messages, then it is possible for a couple of messages
between neighboring blocks to go out-of-order. Therefore, a synchronization must
be used to avoid such scenario. The reduction effectively separates messages from
consecutive iterations.

The very nature of the parallel-objects model offers a lot of flexibility in
the way the parallel program executes. It does, however, introduce concerns

Reducing the Overhead of Message Logging 209

Fig. 3. Program structure of a two-dimensional stencil code. Each block exchanges the
ghost elements with its neighbors in each step. There is an asynchronous barrier after
each iteration in (a). Its high-level script counterpart in (b) removes the synchronization
reduction after each iteration, and handles message reordering by tagging each message
with an iteration number.

regarding the order in which messages are going to be received. The counter
in Fig. 3(a) reflects the palliative effort in the program to allow concurrency but
avoid erroneous receptions. The same effect can be achieved through a high-level
script language that expresses the control dependencies between certain types
of events. Additionally, this script language must retain the advantages of the
reactive characteristic of objects in the program. To illustrate the way a high-
level description would work with the same example as in Fig. 3(a), we show the
new version of the code in Fig. 3(b).

The high-level script in Fig. 3(b) features various grammatical constructs
that alleviate the issues a programmer faces when writing code in the parallel-
objects model. The main difference between the two versions of the code resides
in the fact that the control mechanism is moved away from the Main object.
The only responsibility of the Main object is to spawn the start of the pro-
gram (line 4). The number of iterations is controlled by the Block objects (line
9). Each iteration will consist in sending the ghost elements to the neighboring
blocks, followed by the reception of messages and the computation code. The
first grammatical construction is the overlap region that allows the execution
of its enclosing statements in any order. If the statements are all the same, it may
be specified as a parameter. For instance, the overlap construct in Fig. 3(b)
(line 11) has neighbors as a parameter, meaning it allows the reception of

210 E. Meneses

the ghostElems messages in any order. This clearly expresses the structure of
the code, that requires the ghost data from all the neighbors before performing
the computation. The second grammatical construct is the when statement that
specifies a message type and a tag (line 12). In the example the message type cor-
responds to the transmission of ghost elements and the tag matches the iteration
number. Using tagging removes the need of a synchronization call after every
iteration, because it separates messages from different iterations with otherwise
equal type, sender and receiver.

The code in Fig. 3(b) makes explicit the messages that must be received
before the computation can take place. It defines the control dependencies in
the program. Given that message receptions are specified in the code, this high-
level description promotes a receiver centric view of the program. However, it
still retains the flexibility of the model by allowing different reception orderings
via the overlap construct. Permitting different sequences of message receptions
may be a source of non-determinism. However, if the behavior of the program
is the same, regardless of the reception order of messages within an overlap
region, then we say the statements in the region commute and any ordering in
the reception of those messages is always correct. Note that different sequences of
message receptions may lead to a different order of message emissions. However,
a different order in the sending of messages is natural in the system model. The
receiver has to ensure that messages are actually processed in the right order.

Expressing more clearly the control and data dependencies in the pro-
gram not only permits eliminating artificial synchronization calls, but effectively
removing determinants. The reason of existence of determinants is to guarantee
a consistent recovery. Therefore, determinants ensure messages are received in
the same order during recovery as they were before the failure. Additionally, the
combination of 〈sender, receiver, ssn〉 is used in discarding duplicate messages.
In the stencil code for the two-dimensional stencil of Fig. 1(b), it is possible to
avoid the generation of determinants if a high-level script is used. Figure 3(b)
shows that a Block would receive the four messages from its neighbors in every
iteration before computing and sending out the messages for the next iteration.
If a block α would be recovering, then the high-level structure of the code would
order all the messages being resent from the other objects. No determinants are
required to guarantee a successful recovery. The other objects should, neverthe-
less, discard duplicate messages.

Using the stencil code as an example, we provide a list of conditions for
the total elimination of determinants in a program expressed in a high-level
language:

1. Unique messages. It should be possible to uniquely identify each mes-
sage. Besides the combination of 〈sender, receiver〉, each messages should
be tagged with a msgID that will tell apart otherwise identical messages.
For instance, the msgID may be a composition of message type and itera-
tion number. That particular combination would make messages unique in
stencil codes.

Reducing the Overhead of Message Logging 211

2. Commutative overlap regions. The statements in overlap regions must
commute.

3. Explicit causal ordering. The program must make explicit the causal order
between two messages.

In addition, if determinants disappear from the message-logging layer, it must
be guaranteed that all internal structures in the runtime system are still correct.
This includes all the data structures for load balancing, checkpointing, collective
communication operations, etc.

4 Fast Message-Logging Protocol

Using the insight from the previous section and the background work of Sect. 2,
we present a new breed of message-logging protocols. We name it fast message-
logging because it focuses on accelerating the three sources of overhead in a
resilience solution: forward path, checkpointing, and recovery. This is brief jus-
tification about why it is fast message-logging:

Fast forward-path. By removing determinants from an execution, it reduces
the slowdown of message-logging. According to Fig. 1(a) determinants are the
main source of overhead, so eliminating them should bring the performance
overhead to a minimum.

Fast checkpoint. It uses local checkpoint to avoid checkpoint-time congestion
in the file system. This reduces the robustness of the system, but just by a
tiny margin, given that most failure in HPC systems only involve a single
node [8].

Fast recovery. It uses parallel recovery to accelerate the recovery of the failed
components.

The fast message-logging protocol only generates message identifiers and does
not create determinants. At send time, the tuple 〈sender, receiver,msgID〉 is
used to label each message. This information will be used to eventually ignore
messages if they are repeated. It relies on the high-level scripting infrastructure
to buffer early messages and to deliver them in a correct order for the program.
This way, there is a clear separation of concerns with respect to the functions
that must be executed during recovery. Figure 4(a) show the way this protocol
achieves a separation of concerns between the layers in the software stack. The
bottom layer stands for the message-logging protocol that is in charge of reacting
to a failure. That layer is in charge of performing two tasks. The first task is
to replay the messages to the failed objects. The second task is to suppress
duplicates during recovery based on the tuple 〈sender, receiver,msgID〉. The
top layer is the high-level language infrastructure that guarantees the consistency
in the state of the failed objects by delivering the messages in the correct order.

We call the type of programs that comply with all the conditions to remove all
the determinants receive deterministic. Even when receives and sends may not be
deterministic, the state of the objects will nevertheless be the same. Figure 4(b)
shows a Venn diagram with the relationships between piece-wise deterministic,
send-deterministic and receive-deterministic programs.

212 E. Meneses

Fig. 4. Fast message-logging protocol. The functionalities of the protocol are split
with the high-level scripting infrastructure. The type of programs that can run with
this protocol overlap send-determinism and require piece-wise determinism.

4.1 Algorithmic Description

The fast message-logging algorithm assigns a message identifier msgID to each
message. There are various sources for this identifier. If the application is send-
deterministic, the protocol may assign a sender sequence number (ssn) to each
message based on the combination 〈sender, receiver〉. If the application is a
receive-deterministic stencil, the msgID can be the concatenation of iteration
and message type. Otherwise, the message type and the tag associated with that
message will form the identifier for the message.

There are a handful of major data structures that keep the protocol correct.
The structure idTable returns the msgID for each message and combination
of 〈sender,msg, receiver〉. For each of the cases explained above, that structure
will return a unique identification for each message. The structure dupTable
determines whether a message is a duplicate or not. Again, depending on the
properties of the application, this structure can be optimized to improve perfor-
mance. The structure msgLog stores all messages sent between the PEs. Finally,
a couple of lists keep track of objects that have been distributed to other PEs
for parallel recovery. If an object α resides in a PE A that crashes, α might
be sent to other PE B for recovery. In that case, we refer to α as an emigrant
from the perspective of A and as an immigrant from the perspective of B. The
sets listImmigrants and listEmigrants store the list of objects in each
category, respectively.

Algorithm 1 presents the main procedures of the fast message-logging proto-
col. Procedures Send and Receive describe the process for sending and receiv-
ing a message, correspondingly. At the sender side, messages must carry the
combination 〈sender, receiver, id〉. All messages are stored in the message log.
The reception of a message includes verifying that the message is not a duplicate.
Once this is ensured, the message is passed to the layers above to be correctly
processed. This may include buffering the message, forwarding the message to
other PE or delivering the message to the application.

Reducing the Overhead of Message Logging 213

Algorithm 1. FastMessageLogging
1: procedure Send(α, msg, β) � Object α sends msg to object β
2: id ← idTable.getID(α, msg, β)
3: msg.id ← id
4: msg.sender ← α
5: msg.receiver ← β
6: msg.incarnation ← IncarnationNumber
7: if α.PE �= β.PE then
8: msgLog.add(msg) � Storing remote message
9: end if
10: NetworkSend(msg)
11: end procedure
12: procedure Receive(α, msg, β) � Object β receives msg from object α
13: num ← msg.incarnation
14: if OldIncarnation(num) then
15: DiscardOld(msg) � Ignoring old message
16: end if
17: flag ← dupTable.getFlag(α, β, msg.id)
18: if flag then
19: DiscardDuplicate(msg) � Ignoring repeated message
20: return
21: end if
22: Process(msg) � Forward to high-level layer
23: end procedure
24: procedure Checkpoint � Called at PE A
25: Send all objects α in listImmigrants
26: Wait for all objects α in listEmigrants
27: ckptMsg ← {}
28: msgLog.clean()
29: for all objects α do
30: ckptMsg.add(α.state)
31: NetworkSend(ckptMsg)
32: end for
33: end procedure
34: procedure Restart(A) � Received at every PE except for A
35: for all objects α in A do
36: Send all messages bound to α in msgLog
37: end for
38: end procedure
39: procedure Recovery � Called at PE A
40: for all objects α in A do
41: Distribute α to a PE in {A1, A2, . . . , AP }
42: Add α to listEmigrants
43: end for
44: end procedure

Fast message-logging relies on globally coordinated synchronized checkpoint.
The programmer uses global synchronization points in the application to trigger
the checkpoint calls. Procedure Checkpoint presents the steps included in the
checkpoint process. First, all immigrant objects are send back to their original
PEs. These objects may have been migrated to a PE for parallel recovery purposes.
Next, a PE waits for all its emigrant objects to arrive. The message log is cleaned
up and a new checkpoint message is built with the state of all the objects. Once
a failure has been detected, the runtime system notifies the rest of the PEs about
the crash of one PE. Let us assume PE A fails. The failure notification activates
Restart in other PEs, which replay the messages in msgLog bound to objects in
PE A. Concurrently, PE A executes Recovery to distribute all its objects to as
many PEs are involved in parallel recovery. The set {A1, A2, . . . , AP } stands for
the set of other P PEs helping the recovery of A.

214 E. Meneses

5 Experimental Results

In order to understand the performance penalization imposed by the fast
message-logging protocol, we examined three stencil codes: Wave2D, Jacobi3D
and LULESH. These programs were implemented in SDAG to decrease execu-
tion time (since barriers between iterations are not needed anymore) and allow
the possibility of removing determinants.

We first examine the effect of virtualization ratio on each program. Recall
from Sect. 2 that virtualization ratio stands for the average number of objects per
PE. For this experiment, each PE is a core. Figure 5 presents the results on 1, 024
cores of Intrepid supercomputer at Argonne National Laboratory (ANL). Each
data point reflects the average of 5 repetitions of the same experiment. Wave2D
in Fig. 5(a) seems to manifest that Wave2D benefits from virtualization. In fact,
the performance of the program stays within a 5% difference up to 32 objects
per core. A similar behavior occurs in Jacobi3D in Fig. 5(b), except in this case
the program is always slightly slowed down by virtualization. Again, the average
iteration time stays within a 10% margin up to 32 objects per core. Finally,
Fig. 5(c) accepts a higher virtualization ratio without a significant performance
degradation. Even 128 objects per core stays within a 3% margin. Having a high
virtualization ratio is beneficial for applications in view of the eminent thermal
variation of future systems. With more objects per core, it is possible to obtain
a better load balance in case some of the PEs have to be slowed down to reduce
their temperature.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 2 4 8 16 32 64 128 256

Ite
ra

tio
n

Ti
m

e
(s

)

Virtualization Ratio

Causal
Fast

Base

(a) Wave2D.

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 1 2 4 8 16 32 64 128 256

Ite
ra

tio
n

Ti
m

e
(s

)

Virtualization Ratio

Causal
Fast

Base

(b) Jacobi3D.

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4

 1 2 4 8 16 32 64 128 256

Ite
ra

tio
n

Ti
m

e
(s

)

Virtualization Ratio

Causal
Fast

Base

(c) LULESH.

Fig. 5. Effect of virtualization ratio on performance. Stencil codes admit a high virtu-
alization ratio without sacrificing a significant portion of its performance.

Using a virtualization ratio of 32 for Wave2D and Jacobi3D and 128 for
LULESH, we ran 5 times each program and compared the results between fast
message-logging and simple causal message-logging. The results are presented in
Fig. 6 and offer the relative performance overhead when compared with the base
Charm++. The figure shows a weak-scale experiment on Intrepid from 1K to
16K cores. For Wave2D, Fig. 6(a) shows that fast message-logging is able to halve
the performance across all the spectrum. Figure 6(b) tells about a more benefi-
cial scenario for the fast protocol with Jacobi3D. The most dramatic difference
appear with LULESH. Figure 6(c) shows the big difference determinants can
make in message-logging. As the program scales the difference between the fast

Reducing the Overhead of Message Logging 215

 0

 2

 4

 6

 8

 10

1K 2K 4K 8K 16K

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
(%

)

Number of Cores

Causal
Fast

(a) Wave2D.

 0
 2
 4
 6
 8

 10
 12
 14

1K 2K 4K 8K 16K

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
(%

)

Number of Cores

Causal
Fast

(b) Jacobi3D.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1K 2K 4K 8K 16K

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
(%

)

Number of Cores

Causal
Fast

(c) LULESH.

Fig. 6. Performance overhead of fast message-logging. It approximately reduces per-
formance overhead to a half when compared with causal message-logging.

 2

 4

 6

 8

 10

 12

2 4 8 16 32

R
ec

ov
er

y
S

pe
ed

up

Number of Cores in Parallel Recovery

(a) Wave2D.

 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16 32

R
ec

ov
er

y
S

pe
ed

up

Number of Cores in Parallel Recovery

(b) Jacobi3D.

 1
 2
 3
 4
 5
 6
 7
 8

2 4 8 16 32

R
ec

ov
er

y
S

pe
ed

up

Number of Cores in Parallel Recovery

(c) LULESH.

Fig. 7. Parallel recovery in fast message-logging. The more cores are used to recover,
the faster the recovery.

and causal variants increases to the point where the overhead of fast message-
logging is around 15% of the overhead of causal.

An important feature of the fast message-logging protocol is it ability to work
in conjunction with parallel recovery. Section 2 introduced parallel recovery. The
more PEs help in recovery, the faster it is expected the failed PE will catch up
with the rest of the system. There are, however, a couple of considerations to
keep in mind. First, the number of PEs helping in recovery cannot exceed the
virtualization ratio. Second, it is possible to have diminishing returns with the
addition of more PEs. This latter effect results stems from the fact that more
PEs involve sending more remote messages and potentially hitting network bot-
tlenecks. Figure 7 shows for the 3 applications the speedup in recovery when the
number of PEs helping ranges from 2 to 32. Wave2D offers the best scenario for
parallel recovery. This is due to its relatively simple communication characteris-
tics. Therefore, spreading the objects to more PEs results in a greater speedup.
Both Jacobi3D and LULESH present moderate speedup levels during recovery.

Figure 8 offers an overall demonstration of the advantages of using fast
message-logging. This scenario corresponds to a large-scale run where the number
of cores varies from 8K to 128K on Intrepid. Additionally, it represents a strong-
scale test, that stresses even more the message-logging protocol. Figure 8(a) shows
the overhead in the forward path can always be kept low. Whereas causal message-
logging has an overhead that goes up to approximately 20%, fast message-logging
has an overhead lower than 4%. Checkpoint time is measured in milliseconds.

216 E. Meneses

 0

 5

 10

 15

 20

 25

8K 16K 32K 64K 128K

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
(%

)

Number of Cores

Causal
Fast

(a) Performance Overhead.

 0
 50

 100
 150
 200
 250
 300
 350
 400

8K 16K 32K 64K 128KC
he

ck
po

in
t T

im
e

(m
ill

is
ec

on
ds

)

Number of Cores

(b) Checkpoint Time.

 5

 10

 15

 20

 25

 30

 35

8K 16K 32K 64K 128K

S
pe

ed
up

Number of Cores

(c) Speedup.

Fig. 8. Large strong-scale experiment with LULESH. Fast message-logging keeps a
low performance overhead, fast checkpoint and fast recovery, compared to check-
point/restart.

Table 1. Average statistics on messages and determinants per iteration.

Program Remote
messages

Generated
determinants

Piggybacked
determinants

Determinants
per message

Wave2D 72.90 144.40 317.59 4.36

Jacobi3D 141.10 214.80 870.78 6.17

LULESH 3181.85 4295.55 32411.52 10.19

Figure 8(b) offers the checkpoint time as the program is scaled. Based on the
runtime-level checkpoint and in-memory checkpoint, the dump of the state of
an application is fast. Finally, the speedup over checkpoint/restart is reported in
Fig. 8(c). For this case, the program runs for two checkpoint periods (for an arbi-
trary checkpoint interval), with a failure injected in the second one. The speedup
reported in the figure corresponds to the total execution time of fast message-
logging versus checkpoint/restart.

Table 1 presents statistics about the number of messages and determinants in
different programs collected on Intrepid with 1,024 cores and with the same con-
figuration as in Fig. 6. The causal message-logging protocol was used to collect
the data. The table shows the number of instances per iteration, averaged across
all cores. LULESH has the highest numbers, because it has a more complex com-
munication graph (neighbors in 3 dimensions) and a higher virtualization ratio
(128 compared to 32). The higher number of messages is proportional to the num-
ber of determinants generated. In Table 1 there are more determinants than mes-
sages, explained by the fact that local messages generate determinants too. The
number of piggybacked determinants also grows as the number of messages. The
ratio of determinants piggybacked over determinants generated provide an idea
on the number of copies each determinant has in the system. Although causal
message-logging only requires one copy of each determinant to be safely stored,
usually several more copies are logged in the system. Finally, the last row in Table 1
reports the average number of determinants piggybacked per message. This quan-
tity directly dictates the performance overhead of causal message-logging. Not
surprisingly, more determinants piggybacked per message implies a higher per-
formance overhead (supported by the results in Fig. 6).

Reducing the Overhead of Message Logging 217

6 Related Work

The seminal work on send determinism [4] provided a clear insight on the
futility of creating determinants for all message receptions. Protocols based on
that property rely on FIFO channels. We removed that assumption to use the
asynchronous execution model of Charm++. However, to tame the excessive
flexibility in the order of message reception, we relied on high level program-
ming language constructs. The send-determinism protocol requires to replay the
causally-dependent messages in a synchronized fashion, which hampers the abil-
ity of message-logging to achieve a faster recovery. By using a reception con-
trol mechanism, fast message-logging is able to receive all messages at once
and completely sort them in a valid program order. The large scale simulator
BigSim [12] used parallel discrete event simulation (PDES) to make predic-
tions on the performance of scientific codes for supercomputers. Since BigSim
is based on POSE (a framework for PDES), it would allow speculative simula-
tion of different threads of events. In that regard, programs that allow only one
possible execution sequence would find a very efficient simulation. In BigSim,
linear order parallel programs are a special kind of codes for which messages are
processed in exactly one order. A scalable replay system was designed based on
an algebraic framework to store partial-order dependencies in message-passing
programs [6]. That framework improves on most replay algorithms, which make
minimal assumptions about the programming model. If some deterministic deci-
sions can be extracted from the programming model, the framework incorporate
them into the number of determinants that must be stored. The management
of determinant of the fast message-logging protocol presented in this paper is a
particular case in that algebraic framework. A new design of the message-logging
layer for Open MPI [1] revealed a vast amount of determinants that are not nec-
essary to guarantee a safe recovery. By interposing a message-logging substrate
between the application and the network layer, this new design is able to create
matchings of events posted by the application and arrival events coming from
the network. Matchings may be deterministic if the expected sender and the
actual sender of the message are the same. Use of wildcards will create non-
deterministic matches. By logging only non-deterministic matches, this design is
able to dramatically reduce the number of determinants.

7 Conclusion and Future Work

This paper examines the major source of performance overhead in traditional
message-logging protocols. By leveraging the infrastructure of a flexible parallel
programming paradigm, a new strategy was proposed. The fast message-logging
protocol addresses the 3 main sources of overhead by removing unnecessary
determinants, checkpointing in memory, and recovering in parallel. The experi-
mental results with typical stencil codes demonstrate the impact of this protocol.
The tests scaled up to 128,000 cores. In the future, we plan to devise new pro-
tocols for particular types of applications where communication patterns are

218 E. Meneses

somehow regular and general-case expensive assumptions can be removed. We
also plan to use message-tagging to implement the protocol in MPI.

Acknowledgments. This work was partially supported by a machine allocation on
the XSEDE under award ASC050039N, and by a machine allocation on Argonne Lead-
ership Computing Facility awarded by the U.S. Department of Energy under contract
DE-AC02-06CH11357.

References

1. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. Concurr. Comput.: Pract. Exp. 22(16), 2196–2211 (2010)

2. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomput. Front. Innov. 1(1), 5–28 (2014)

3. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–
408 (2002)

4. Guermouche, A., Ropars, E., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
checkpointing without domino effect for send-deterministic MPI applications. In:
IPDPS, pp. 989–1000 (2011)

5. Kalé, L., Krishnan, S.: CHARM++: a portable concurrent object oriented system
based on C++. In: Paepcke, A. (ed.) Proceedings of OOPSLA 1993, pp. 91–108.
ACM Press, New York (1993)

6. Lifflander, J., Meneses, E., Menon, H., Miller, P., Krishnamoorthy, S., Kale, L.:
Scalable replay with partial-order dependencies for message-logging fault tolerance.
In: Proceedings of IEEE Cluster 2014, Madrid, Spain, September 2014

7. Meneses, E., Bronevetsky, G., Kale, L.V.: Evaluation of simple causal message
logging for large-scale fault tolerant HPC systems. In: 16th IEEE DPDNS in 25th
IEEE IPDPS, May 2011

8. Meneses, E., Ni, X., Kale, L.V.: A message-logging protocol for multicore systems.
In: Proceedings of the 2nd Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS), Boston, USA, June 2012

9. Meneses, E., Sarood, O., Kale, L.V.: Energy profile of rollback-recovery strategies
in high performance computing. Parallel Comput. 40(9), 536–547 (2014)

10. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S.,
Balaji, P., Belak, J., Bose, P., Cappello, F., Carlson, B., Chien, A.A., Coteus, P.,
DeBardeleben, N., Diniz, P.C., Engelmann, C., Erez, M., Fazzari, S., Geist, A.,
Gupta, R., Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S.,
Munson, T., Schreiber, R., Stearley, J., Hensbergen, E.V.: Addressing failures in
exascale computing. IJHPCA 28(2), 129–173 (2014)

11. von Eicken, T., Culler, D., Goldstein, S., Schauser, K.: Active messages: a mecha-
nism for integrated communication and computation. In: Proceedings of the 19th
International Symposium on Computer Architecture, Gold Coast, Australia, May
1992

12. Zheng, G., Kakulapati, G., Kalé, L.V.: BigSim: a parallel simulator for performance
prediction of extremely large parallel machines. In: 18th International Parallel and
Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, p. 78, April
2004

Dense and Sparse Matrix-Vector Multiplication
on Maxwell GPUs with PyCUDA

Francisco Nurud́ın Álvarez, José Antonio Ortega-Toro, and Manuel Ujaldón(B)

Computer Architecture Department, ESTI Informática, University of Málaga,
Bulevar Louis Pasteur, s/n. Campus Teatinos, 29071 Malaga, Spain

ujaldon@uma.es

Abstract. We present a study on Matrix-Vector Product operations
in the Maxwell GPU generation through the PyCUDA python library.
Through this lens, a broad analysis is performed over different memory
management schemes. We identify the approaches that result in higher
performance in current GPU generations when using dense matrices.
The found guidelines are then applied to the implementation of the
sparse matrix-vector product, covering structured (DIA) and unstruc-
tured (CSR) sparse matrix formats. Our experimental study on different
datasets reveals that there is room for little improvement in the cur-
rent state of the memory hierarchy, and that the expected Pascal GPU
generation will get a major benefit from our techniques.

1 Introduction

Latest developments in scientific computing have taken advantage of new, more
efficient hardware and higher level, easier to work with environments. On the
hardware end, one of the most notable improvements has come from the adop-
tion of GPUs (Graphics Processing Units) as general purpose processors using
SIMD (Single Instruction Multiple Data) parallelism on virtually every area of
science. Fields as diverse as medicine or astrophysics and everything in between
have witnessed enourmous speed-ups in execution time by using those manycore
processors [6].

In terms of environments and platforms, the Python programming language
has established itself as one of the most commonly used for scientific computing.
Its high level of abstraction and rich library ecosystem eases designing complex
systems. Furthermore, the language can easily be interfaced with more perfor-
mant implementations when needed. As such, libraries like NumPy [1] or SciPy
[3] include optimized native implementations with Python module interfaces.

One of the most common APIs for GPU programming is CUDA [4], designed
by NVIDIA for their hardware. Research conducted with CUDA has been
steadily growing since it was first announced, and it is nowadays a robust ecosys-
tem. In Python, we can take advantage of the CUDA API by using the PyCUDA
library [2]. With it, we can harness the power of the GPU from the clear and
powerful high level abstraction of the language.
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 219–229, 2017.
DOI: 10.1007/978-3-319-57972-6 16

220 F. Nurud́ın Álvarez et al.

As scientific computing empowers researchers to produce valuable work, basic
operations have to be adjusted to emerging platforms. One such operation is the
Matrix-Vector product (MV product hereon), with which the M times 1 vector
resulting from the dot product between a M × N matrix and a N × 1 vector
is computed. The MV product is one of the most basic operations in science,
used for example when solving systems of linear equations. Our study will be
tailored to analyze this operation in current GPU hardware, testing whether
older implementation schemes still result in peak performance.

The MV product, and in general any operation related to matrices, can be
studied depending on how dense a matrix is. In case it is primarily populated by
zeros, a different data structure may be used to increase space and time efficiency.
When using a structure of the sort we will be using a sparse matrix. There
exist multiple different sparse matrix formats, some of which exploit diverse
structures and patterns, like only storing diagonals, others are unstructured [10].
Our study on the MV product will cover dense matrices as well as structured
and unstructured sparse matrices.

This paper is organized as follows. Section 2 describes related work. Section 3
outlines the MV product from a CUDA perspective. Section 4 presents a set
of candidate implementations for the MV product together with a discussion
focused on memory management and some performance numbers, allowing us to
derive guidelines on CUDA program design in newer architectures. From these
guidelines we will pivot towards studying the sparse MV product operation in
Sect. 5, showing a set of implementations and linking them to what we have
previously learnt. Using data from real world scientific datasets, Sect. 6 provides
a performance analysis of those implementations, discussing the suitability of
each approach for the sparsity cases. Finally, we will sum up the knowledge
gained with some brief conclusions.

2 Related Work

Linear algebra operations are always a must when proving the suitability of
a hardware platform for scientific computing, with the matrix multiplication
and the MV product as two flagship algorithms. Those early days of the GPUs
were not an exception [5], and soon later, Nvidia developed its own cuSPARSE
library, where those operations were also efficiently implemented using sparse
matrices. The arrival of Maxwell GPU generation has propelled CUDA hard-
ware to a unified memory model that has shortened the gap between CPU and
GPU programming [8], and the next generation of Pascal GPUs will bring 3D
Memory to make this model closer to what actually can be found on chip [9]. We
expect these hardware enhancements to play a decisive role for future scalability
of implementations like the ones performed along our work. In the meantime,
Table 1 outlines the GPU and graphics card used along our experiments.

In 2016, a new competitor of GPUs has also entered the HPC arena. Accel-
erators based on Intel Xeon Phis have gained momentum with the advent of
Knights Landing (KNL) [9], after Knights Corner (KNC), which was somehow

Dense and Sparse Matrix-Vector Multiplication 221

Table 1. Characterization of the GPU hardware used along our experimental analysis.

GPU model GeForce GTX 980 (Maxwell GPU)

Number of cores 2048

Core speed 1126MHz

Peak performance (GFLOPS) 4612

Memory size 4 GB

Memory speed 7000MHz

Memory interface GDDR5

Memory width 256 bits

Memory bandwidth 224GB/s

PCI express (to CPU) 3.0 ×16

disappointing in performance. A recent approach to benefit from those platforms
within our context has been published by Maeda and Takahashi [7], where they
compare KNC versus GPUs in terms of performance even on clusters composed
of multi-sockets and 64 MPI processes. It remains to be seen what the results
would be in KNL, as we also have great expectations for our implementations
when the new GPUs of the Pascal generation be released next year by Nvidia.

3 Matrix-Vector Product in CUDA

As we discussed in the introduction, both matrix multiplication and the MV
product are elementary problems when working on parallel architectures. Devel-
oping a working implementation of either of them is a common way of getting
accustomed to manycore parallelism. However, and because of the nature of both
problems, achieving peak performance requires the programmer to aptly manage
memory.

Codes in multicore environments can be classified as either compute bound or
memory bound. In the case of a compute bound code, performance depends on
the way the actual computation is approached. On the other hand, performance
of a memory bound code depends how data accesses needed for the computation
are managed. Empirical studies have shown that, across scientific computing as
a whole, the majority of codes are memory bound.

The MV product is an eminently memory-bound kernel (that is, a GPU pro-
gram). To perform the computation, for either dense or sparse matrices, a kernel
will only perform a handful of operations per datum. Given this nature, the work
of a CUDA programmer will rest on manually managing data to fully exploit
locality, by appropriately using shared memory. Furthermore, the programmer
will also need to adjust the global memory accesses in a way that takes full
advantage of memory coalescing.

Due to its definition as a problem, the MV product is a good testing ground
to challenge hypotheses. Particularly, it can be seen as a reasonable scenario to

222 F. Nurud́ın Álvarez et al.

study and tackle different memory management approaches. Indeed, this will be
the focus given throughout the rest of this work: to study some long held notions
about memory optimizations in CUDA.

4 Memory Management Schemes

In this section we present a set of approaches towards implementing the dense
MV product. Those approaches will be centered on the effect of different mem-
ory management schemes to work with such a memory bound problem. We first
introduce a distinction on the approaches, depending on whether they focus on
the underlying data structures or memory spaces used to store data, the man-
agement of locality through caching or the communication with global memory.

With that classification in mind, we introduce the following set of approaches:

– Data structure or memory space related
• Using texture memory (K1)
• Using constant memory to store the vector (K2)
• Using restrict annotated memory (K3)

– Locality related
• Performing intro-block sum reductions (K4)

– Global memory communication related
• Using vector data types (K5)

Those approaches were studied both dis jointly and combined where possible.
The experimental results, in terms of performance, were compared to a native
CPU implementation in NumPy and a naive CUDA kernel with shared memory
caching for the data on the vector. Said caching was applied from the first
moment, as it was understood that the vector could be used by several threads
within the block. Without caching, kernel performance was worse than the native
CPU implementation of NumPy Fig. 1. The obtained performance speed-ups,
relative to the basic cache kernel, are shown in Tables 2 and 3.

Approaches shown in K1, K2, K3 and K5 can, in general, be applied to almost
any problem. In Fig. 2 we show a comparison showing the effect of the different
data structure or memory space related approaches.

Table 2. Kernel execution times (in ms) for different matrix sizes with respect to the
basic vector-cached kernel.

Matrix size K1 K2 K3 K4 K5

512 × 4096 0.278 0.257 0.270 0.224 0.159

32768 × 512 0.946 0.895 0.875 0.958 0.467

9600 × 4096 3.094 2.510 2.711 2.191 1.558

8192 × 8192 6.634 5.613 5.785 3.818 3.252

Dense and Sparse Matrix-Vector Multiplication 223

Fig. 1. Comparison between NumPy (middle), a naive kernel with no shared memory
usage (upper) and the basic, vector-cached kernel using shared memory (lower).

Table 3. Kernel speed-up for different matrix sizes with respect to the basic vector-
cached kernel.

Matrix size K1 K2 K3 K4 K5

512 × 4096 0.953 1.031 0.981 1.183 1.667

32768 × 512 1.080 1.142 1.168 1.067 2.188

9600 × 4096 0.996 1.228 1.137 1.407 1.979

8192 × 8192 0.993 1.174 1.139 1.725 2.026

Table 4. Kernel execution times (in ms) for different matrix sizes with respect to the
basic vector-cached kernel on combined approaches.

Matrix size K1, 5 K3, 5 K4, 5 K1, 4, 5 K3, 4, 5

512 × 4096 0.169 0.177 0.127 0.128 0.128

32768 × 512 0.460 0.478 0.566 0.566 0.565

9600 × 4096 1.589 1.803 1.261 1.270 1.264

8192 × 8192 2.915 3.239 2.204 2.203 2.203

From the previous results, we implemented several kernels combining com-
patible different approaches. The results for the combined approaches are shown
in Tables 4 and 5.

It must be noted that in both Tables 4 and 5 we discriminated against app-
roach K2 (using constant memory). This was in order to focus the analysis on
global memory accesses which could be factored into any problem. Constant

224 F. Nurud́ın Álvarez et al.

Fig. 2. Comparison in terms of execution times between the memory-space related
approaches.

Table 5. Kernel speed-up for different matrix sizes with respect to the basic vector-
cached kernel on combined approaches.

Matrix size K1, 5 K3, 5 K4, 5 K1, 4, 5 K3, 4, 5

512 × 4096 1.568 1.497 2.087 2.070 2.070

32768 × 512 2.222 2.138 1.806 1.806 1.809

9600 × 4096 1.940 1.710 2.445 2.428 2.439

8192 × 8192 2.260 2.034 2.989 2.990 2.990

memory usage restricted to data which would fit in the space reserved for it,
which on Maxwell GPUs amounts to up to 64 KB.

From these results we can see that optimizations related to specific memory
spaces, such as K1 and K3, do not affect performance greatly. In particular,
texture memory usage (K1 + K5) increases execution times with respect to
plain vector types (K5), while read-only memory (K3) has a marginal effect.
The comparison between the combinations of K1, K3 and K5 can be seen in
Fig. 3.

Vector data types (K5), in particular when combined with problem specific
optimizations (such as intro-block reductions, K4), produce the best results.
Figure 4 shows the small difference made by applying approaches K1 and K3 to
the combination of K4 and K5.

Dense and Sparse Matrix-Vector Multiplication 225

Fig. 3. Comparison in terms of execution times between the memory-space related
approaches combined with vector types.

Fig. 4. Comparison in terms of execution times with the combined approaches using a
problem-specific optimization, intrablock reductions (K4).

226 F. Nurud́ın Álvarez et al.

From these results we can see that on Maxwell GPUs peak performance
can be achieved by combining vector operations with problem specific caching
approaches. Texture memory usage degrades performance slightly, while constant
memory and restrict -labelled memory produce subtle performance gains.

5 Sparse Matrix-Vector Product

For an implementation of the sparse MV product (SpMV hereon), the first chal-
lenge to address is to find a format for the sparse data which attain the best
performance on the GPU. We have chosen two formats for our experiments:
DIA (diagonal) as representative of structured matrices, where only diagonals
are considered and stored. CSR (Compressed Sparse Row), as general format
for unstructured matrices, where data are stored consecutively as traversed hor-
izontally on a Data vector, followed by a Column vector which stores the column
index for each data, and a Row vector which counts the elements per row in an
accumulative manner. That way, Data and Column are the size of the nonzeros
and Row is the size of the number of rows in the matrix plus one.

For the particular case of these two formats, performance concerns are mostly
related to the way data are uploaded when accessing compressed data.

On DIA sparce matrices, our implementation expects the matrix diagonals to
be stored in column-major order. This benefits data coalescing when accessing
single values of the matrix. CSR matrices, where elements are coupled with their
indexed positions, are directly transferred to the GPU.

In terms of the kernels themselves, we give a high level overview of how
they compute the results. In the case of the SpMV product with DIA matrices,
each thread computes the dot product of a row with the vector. Shared memory
caching is used to manage the offsets of the diagonals. On the CSR kernel, each
separate concurrent processing unit (called a warp) works on a single matrix
row. Shared memory caching is used to both manage the indices of the nonzero
elements and the warp-level reduction.

It must be noted that the implementation of the CSR kernel relies on fixed
warp size, with 32 threads being grouped on Maxwell GPUs. Furthermore, the
kernel works on the assumption that each warp execution remains independent
from each other, though for implementation purposes synchronization barries
have been used. The effect of those in terms of performance has been measured
and does not go beyond factors from 2% to 10% in the execution time depending
on the data input.

Kernel variations using either texture memory or read-only memory labelled
as so with restrict were also developed. Approaches using vector datatypes
to better alleviate global memory accesses can be considered too.

6 Experimental Results

Our implementation was tested against matrices from several scientific domains.
The chosen matrices display several different data layouts, from which we

Dense and Sparse Matrix-Vector Multiplication 227

expected clear differences in terms of suitability to our SpMV implementations.
A quick overview of the matrices is shown in Table 6:

Table 6. Overview of the matrices used along our experimental study.

Name Number of
nonzeros

Average ele-
ments/row

Dimensions Origin

WATT1 11360 6.1 1856 × 1856 Petrol Engineering

MBEACXC 49920 100 496 × 496 Economics

LNSP3937 25407 6.5 3937 × 3737 Fluid Models

BCSSTK13 42943 42 2003 × 2003 Structural Engineering

PSMIGR3 543162 170 3140 × 3140 Inter-Country Migration

SHERMAN 3 20033 4 5005 × 5005 Oil Simulation

MCFE 24382 32 765 × 765 Astrophysics

BCSPWR10 13571 4.1 5300 × 5300 Power Networks

A test batch using the dataset was prepared. The kernel execution times for
each matrix and kernel used, along with the relative performance when using
either texture or read only memory against the basic implementation, are shown
in Tables 7 and 8.

Overall, results using texture memory are disappointing as speeds-ups are
negative on average. We believe texture memory is not as good as it used to be
in previous GPU generations, as Nvidia aims to the new 3D memory in Pascal
GPUs and tries to foster unified memory in the API versus, say, the old school.

On the other hand, benefits using read-only memory are lower than 10% in
most of the cases (but always on the positive territory), and we see encouraging

Table 7. Kernel execution times (in ms) for different SpMV implementations depend-
ing on the sparse format used for representing the sparse matrix. The T suffix stands
for the implementation using texture memory and the R suffix stands for the one using
read-only memory.

Matrix used DIA DIA-T DIA-R CSR CSR-T CSR-R

WATT1 0.053 0.062 0.053 0.058 0.064 0.054

MBEACXC 0.350 0.343 0.345 0.056 0.064 0.054

LNSP3937 0.074 0.081 0.073 0.057 0.068 0.056

BCSSTK13 0.827 0.822 0.826 0.057 0.067 0.054

PSMIGR3 2.016 1.996 2.008 0.104 0.089 0.078

SHERMAN3 0.056 0.063 0.055 0.059 0.070 0.058

MCFE 0.113 0.117 0.112 0.052 0.061 0.051

BCSPWR10 2.594 2.564 2.589 0.059 0.069 0.059

228 F. Nurud́ın Álvarez et al.

Table 8. Kernel speedups for the SpMV kernels when using either texture memory or
read-only memory.

Matrix used DIA-T DIA-R CSR-T CSR-R

WATT1 0.855 1.000 0.906 1.074

MBEACXC 1.020 1.014 0.875 1.037

LNSP3937 0.914 1.014 0.838 1.018

BCSSTK13 1.006 1.001 0.851 1.056

PSMIGR3 1.010 1.004 1.169 1.333

SHERMAN3 0.889 1.018 0.843 1.017

MCFE 0.966 1.009 0.852 1.020

BCSPWR10 1.012 1.002 0.855 1.000

results (33% gains on CSR format) when the sparse matrix is populated with
nonzeros, that is, for the most dense representative of our data set.

In general, there is a trade-off in our study: We focus on sparse matrices
containing a small number of nonzeros, but GPUs are happy with high data vol-
umes. That way, either our sparse matrix is huge or has to be densely populated
for the critical size of our data set to be attained.

7 Conclusions

This paper has analyzed performance of two related memory bound problems,
Matrix Vector product and Sparse Matrix Vector product, on a GPU belonging
to the fourth generation of Nvidia, the Maxwell architecture. In both cases,
approaches relying on either texture, read only or constant memory have resulted
in slim performance benefits and, at times, slightly longer execution times.

SpMV kernels have produced mixed results. In particular, DIA kernels proved
themselves unfit for most matrices. For them to be performant, the structure
must be as tight as possible. This was not the case on most matrices, even when
their overall structure was diagonal-based, because certain unstructured ele-
ments caused the number of diagonals to greatly grow. Performance on the CSR
kernels was stable throughout the dataset, with execution times that outpaced
the MV kernels on sparse matrices. In that regard, results were as expected, and
more encouraging as the matrix is more densely populated with spare

As future work, we plan to run our experiments on Pascal GPUs using unified
memory and Stacked DRAM to quantify the benefits of the new memory, which
will bring a remarkable lift in latency and bandwidth, along with energy savings,
which will be worth to be measured as well.

Acknowledgements. This work was supported by the Junta de Andalućıa of Spain
under Project of Excellence P12-TIC-1741. We also thank Nvidia for hardware dona-
tions under GPU Education Center 2011–2016, GPU Research Center 2012–2016 and
CUDA Fellow 2012–2016 Awards.

Dense and Sparse Matrix-Vector Multiplication 229

References

1. The NumPy library website. http://www.numpy.org
2. The pyCUDA library website. https://developer.nvidia.com/pycuda
3. The SciPy library website. http://www.scipy.org
4. Cuda books. http://developer.nvidia.com/cuda-books, April 2012
5. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. Tech-

nical report, Nvidia Technical report NVR-2008-004, Nvidia Corporation (2008)
6. GPGPU: General-Purpose Computation Using Graphics Hardware (2009). http://

www.gpgpu.org
7. Maeda, H., Takahashi, D.: Parallel sparse matrix-vector multiplication using accel-

erators. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 3–18.
Springer, Cham (2016). doi:10.1007/978-3-319-42108-7 1

8. NVIDIA Corporation: NVIDIA GeForce GTX 980 Whitepaper. Technical report
(2015)

9. Ujaldón, M.: HPC accelerators with 3D memory. In: 19th IEEE International Con-
ference on Computational Science and Engineering (CSE 2016), August 2016

10. Zlatev, Z.: Computational Methods for General Sparse Matrices, vol. 65. Kluwer
Academic Publishers, Holland (1991)

http://www.numpy.org
https://developer.nvidia.com/pycuda
http://www.scipy.org
http://developer.nvidia.com/cuda-books
http://www.gpgpu.org
http://www.gpgpu.org
http://dx.doi.org/10.1007/978-3-319-42108-7_1

HPC Applications and Simulations

Enhancing Energy Production with Exascale
HPC Methods

Rafael Mayo-García1(&), José J. Camata2, José M. Cela3,
Danilo Costa2, Alvaro L.G.A. Coutinho2,

Daniel Fernández-Galisteo1, Carmen Jiménez1,
Vadim Kourdioumov1, Marta Mattoso2, Thomas Miras2,

José A. Moríñigo1, Jorge Navarro1, Philippe O.A. Navaux4,
Daniel de Oliveira5, Manuel Rodríguez-Pascual1, Vítor Silva2,

Renan Souza2, and Patrick Valduriez6

1 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas,
Madrid, Spain

rafael.mayo@ciemat.es
2 COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

3 Barcelona Supercomputing Center-Centro Nacional de Supercomputación,
Barcelona, Spain

4 Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
5 Fluminense Federal University, Niterói, Brazil

6 Zenith Team, Inria and LIRMM, Montpellier, France

Abstract. High Performance Computing (HPC) resources have become the key
actor for achieving more ambitious challenges in many disciplines. In this step
beyond, an explosion on the available parallelism and the use of special purpose
processors are crucial. With such a goal, the HPC4E project applies new
exascale HPC techniques to energy industry simulations, customizing them if
necessary, and going beyond the state-of-the-art in the required HPC exascale
simulations for different energy sources. In this paper, a general overview of
these methods is presented as well as some specific preliminary results.

1 Introduction

New energy sources, if untapped, might become crucial in the mid-term. Intensive
numerical simulations and prototyping are needed to assess their real value and
improve their throughput. The impact of exascale HPC and data intensive algorithms in
the energy industry is well established in the U.S. Department of Energy document
“Synergistic Challenges in Data-Intensive Science and Exascale Computing” [1], for
example.

The High Performance Computing for Energy (HPC4E) project, whose kick-off was
in February, 2016, aims to provide these new exascale HPC and data intensive algo-
rithms to three energy sources: wind energy, biomass, and oil. To do so, several
European and Brazilian institutions are closely working, fostering in this way a col-
laboration that can be extended to other countries in Latin America as the computational

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 233–246, 2017.
DOI: 10.1007/978-3-319-57972-6_17

solutions provided will be useful to many scientific and industrial fields as well as to
other software and middleware developers.

Moreover, the current collaboration embraces both public and private companies
who are leaders in their respective sector. The industrial sector is formed by REPSOL,
Iberdrola Renovables Energía, TOTAL, and PETROBAS. Regarding the public sector,
Brazilian (COPPE/UFRJ, LNCC, ITA, UFRGS, UFPE) and European (BSC-CNS,
INRIA, UNLAC, CIEMAT) institutions belonging to the HPC and the energy fields are
represented.

As previously stated, the main objective of HPC4E is to develop beyond-the-
state-of-the-art high performance simulation tools that can help the energy industry to
respond future energy demands and also to carbon-related environmental issues using
the state-of-the-art HPC systems. This Brazilian-European collaboration also aims at
improving the usage of energy using HPC tools by acting at many levels of the energy
chain for different energy sources:

– Exploitation: In wind energy (respond to demand peaks, output prediction)
– Efficiency: In biomass-derived fuels (develop more efficient and renewable fuels,

reduce green-house gas emissions, reduce hydrocarbon dependency and fuel cost)
– Exploration: In wind energy (resource assessment) and in hydrocarbons (improve

available reserves, explore with less financial and environmental risk).

Another main objective is to improve the cooperation between energy industries,
guaranteeing that the Technology Readiness Levels (TRL) of the particular project
technologies will be very high.

2 A New Architecture for the Exascale Challenge

The project will set up a disruptive exascale computer architecture to study the map-
ping and optimization of the codes proposed for each energy domain on novel archi-
tectures for exascale, as well as developments in the underlying software infrastructure.
In order to properly test this infrastructure, the porting, tuning, and testing efforts of the
different simulations codes will be previously carried out. Specifically, four lines of
action will be pursued.

The selected computing kernels of the codes coming from the energy sector will be
optimized for architectures based on accelerators. The goal will be to optimize the
performance but keeping a high degree of portability. The ratio flops/watt obtained in
each platform will be analyzed. The main target architecture platforms are those based
on Xeon Phi and NVIDIA GPUs, but other platforms based on embedded processors
will be also analyzed. To guarantee the maximum portability of the codes we will use
programing models and tools like openCL, ompSs and BOAST.

The selected kernels will be also ported to architectures based on symmetric
multicore processors with NUMA memory. The goal will be to optimize the perfor-
mance. The main target architectures will be Intel, AMD and SGI, but also new
platforms based on ARM processors will be analyzed. Thus, the key point will be the
load balancing and data placement, taking into account new scheduling algorithms able
to improve locality too.

234 R. Mayo-García et al.

The management of the MPI level parallelism in the codes coming from the energy
sector will be guaranteed for achieving a high scalability of the applications in HPC
clusters with millions of cores: The main topics to be analyzed will be: creation of tools
for migration of running parallel tasks inside clusters; hierarchical MPI structures to
manage coupled multiphysic problems; parallel I/O optimization; design of efficient
check-pointing strategies; and, fault tolerance strategies at MPI level.

Last, performance analysis will be focused on the performance analysis of the
different applications and kernels. The proper environments and tools (Paraver, Triva,
Ocelotl, TAU, etc.) will be deployed to analyze all the parallel levels in the applica-
tions. Inside a computational node roof-line analyses will be done to understand the
bottlenecks of the architectures. At the cluster level, network traffic, I/O traffic and load
balancing will be analyzed to guarantee the application scalability. Also performance
prediction tools will be used to analyze the potential benefits of architecture or algo-
rithm modifications. Different proposal of exascale architectures will be studied for the
selected applications as well.

2.1 Some Results: Integrating Checkpointing Techniques into Slurm

Slurm is a workload manager designed for Linux clusters of all sizes. Among the
plethora of available LRMSs, SLURM is currently one of the most advanced ones, and
the most commonly used by the Top500 supercomputers. Thus, any improvement on
its behavior will deeply impact the HPC community.

DMTCP (Distributed Multi Threaded Checkpointing) transparently checkpoints a
single-host or distributed computation in user-space. It supports the commonly used
OFED API for InfiniBand, as well as its integration with various implementations of
MPI. It is specially suitable to be used in environments with legacy applications, as it
does not oblige to modify their code to include checkpoint directives (as application-
level checkpoint libraries) or to re-compile them (as most other system-level libraries).
Instead, it acts as an additional software layer between the application and the Oper-
ating System, being able to save its status and restore it in the same -or on a different-
computational resource.

Both Slurm and DMTCP are Open Source solutions. This allows examining their
insights and perform enhancement required for this work.

SLURM is designed to be easily extended with third party plugins. In particular, it
already counts with plugins to support checkpoint libraries and perform some basic
operations like checkpoint and restart. The performed work consists on the develop-
ment of a driver serving as a bridge between SLURM and DMTCP APIs. This way,
Slurm scheduling algorithms and user-level commands will be able to transparently
perform these operations.

As the number of cores composing HPC resources grows, applications are being
required to run with an increasing degree of parallelism. However, the Mean Time To
Failures (MTTF) of the hardware components (from coolers to memories or random
issues) does not grow as fast as the number of resources, so the probability of one or
more tasks being affected by a failure increases. In addition, the higher number of tasks
composing a job, the higher computational and economic loss.

Enhancing Energy Production with Exascale HPC Methods 235

Thus, in order to achieve the objectives of this project, it is mandatory to increase
the robustness and fault tolerance of the developed software. With the proposed soft-
ware stack, based on Slurm+DMTCP plus their coupling, any job can be checkpointed
and restarted transparently to the user and the job itself.

3 Algorithms and Solvers for Exascale Computations

Innovative computational algorithms well suited to the numerical simulation of com-
plex phenomena on exascale architectures will be introduced. These refer to numerical
schemes for Partial Differential Equations (PDE), sparse linear solvers, adaptivity, and
data management.

Particularly the first topic is concerned with scalable implementations of high order
schemes for wave propagation models. The second topic will develop and demonstrate
the benefits of generic (i.e. algebraic) parallel solvers for large sparse linear systems of
equations. The third topic addresses mesh and (local) time-step adaptive algorithms in
order to optimize the use of computational resources. The fourth topic focuses on
leveraging techniques to support simulation data management as required by the pre-
and post-processing steps involved in highly complex simulations.

Regarding scalable high order numerical schemes, two families of innovative high
order finite element methods and a family of (standard and mimetic) finite difference
schemes will be considered for both time-domain and frequency domain. These
numerical schemes exhibit a high level of parallelism. In particular, they are well suited
to a mixed coarse grain/fine grain (MIMD/SIMD) parallelization targeting many-core
(Xeon Phi/GPU) systems. First, we will implement and demonstrate the benefits of a
recently designed class of high order multiscale methods. The common core approx-
imation framework is the Multiscale Hybrid-Mixed (MHM) methods combined with
Discontinuous Galerkin (DG) or Stabilized Continuous Galerkin (SCG). For
frequency-domain problems, we will perform the same analysis with the so called
hybridized DG formulations that drastically reduce the number of globally coupled
degrees of freedom. Both types of solvers (i.e. time-domain and frequency-domain) are
linked to the simulation/inversion framework for subsurface imaging proposed in the
geophysics domain.

With respect to scalable sparse linear solvers, the goal is to provide state of the art
parallel solvers for spare linear systems of equations or numerical schemes adopted in
the simulation software associated to the applications coming from the energy field.
Both direct and hybrid direct/iterative solvers will be considered. Regarding the former
solver type, the PaStiX software [2] will be adopted. It is based on a supernodal
approach and has been implemented on top of various runtime systems enabling an
efficient use of heterogeneous manycore platforms. The hybrid iterative/direct strategy
will be made available through the MaPHyS software [3] that implements algebraic
domain decomposition ideas and relies in parallel on parallel sparse direct solvers such
as PaStiX for each subproblem. On top of those two solvers, Krylov subspace methods
are implemented either for the iterative refinement steps of PaStiX or to solve the
reduced Schur complement system in MaPHyS. Finally, the high performance dense
linear algebra kernels on which those solvers are relying will also be part of the project

236 R. Mayo-García et al.

but no specific action is foreseen on it. This software stack will be made available
through a coherent and flexible API where the matrices can be provided by the
application in various formats such as centralized or distributed, assembled or
unassembled.

Optimal numerical schemes for PDEs involve adapting the grids in space and time
to minimize errors in the simulation. The activity on this topic will then be to explore
libraries to support adaptivity such as the libMesh library [4]. libMesh provides a
framework for the numerical simulation of partial differential equations using arbitrary
unstructured discretization on serial and parallel platforms. Adaptive time stepping
controlling strategies will be also studied. The objective here is to demonstrate the
applicability of such strategies to large-scale parallel computations of the simulation of
polydisperse mixtures typically found in the geological processes.

Big Data management and analysis of numerical simulations will be explored by
the use of three systems: SimDB, UpsilonDB and Chiron. The first is being designed to
manage spatial-temporal time series predictive data from numerical simulations, rep-
resented as a multidimensional array. The second system, UpsilonDB, is currently an
early stage prototype aiming at managing the uncertainty on numerical simulation data,
integrated with the probabilistic database system MayBMS. UpsilonDB supports
simulation post-processing analysis. Chiron is a scientific workflow management
system focused on managing scientific dataflow with provenance data support. Chiron
strong support in data analytics at runtime allows for dynamic configuration
fine-tuning, including uncertainty quantification data steering.

4 Atmosphere for Energy

The fundamental knowledge barriers to further progress in wind energy are defined as
scientists’ understanding of atmospheric flows, unsteady aerodynamics and stall, tur-
bine dynamics and stability, and turbine wake flows and related array effects. The use
of computational fluid dynamics (CFD) large-eddy simulation (LES) models to analyze
atmospheric flow in a wind farm capturing turbine wakes and array effects requires
exascale HPC systems.

In this way, microscale atmospheric models are based on CFD solvers adapted to
simulate the Atmospheric Boundary Layer (ABL) in order to approach two funda-
mental wind energy problems: analysis (mainly focused on wind resource assessment
and wind farm design) and forecast (mainly focused on short-term prediction for wind
farm dispatch to the electricity network). The study of both problems will lead to key
aspects concerning microscale modelling simulations, as standalone CFD models or in
connection with mesoscale models, by developing dynamical and statistical down-
scaling strategies. All models, methods and techniques developed for analysis will be
tuned to produce short-term online forecasts of the wind farms output.

The objective is then to have the CFD models ready to exascale systems in order to
overcome the present limitations and increase the accuracy on the evaluation of
technical and economic feasibility of wind farms.

Regarding dynamical downscaling in order to assess wind resource, CFD models
must account for the coupled effects of complex terrain, Coriolis forces, thermal

Enhancing Energy Production with Exascale HPC Methods 237

stability, presence of forests, and wind turbines. Modifications need to be made to the
RANS/LES CFD models including turbulent closures for ABL. The objective is to
characterize the accuracy of the different ABL-CFD models, the numerical stability
(robustness) and the convergence behavior of their HPC implementation.

The statistical downscaling approach will be complementary to the dynamical
downscaling. Statistical downscaling models will be developed using local observa-
tions and large scale circulation and wind fields in the wind farm region.

A compilation of the available data and an evaluation of the quality issues that
might affect the succeeding analyses will be accomplished. For this purpose is nec-
essary to identify an appropriate metrics that account for the deviations in the wind
power production predictions. Transfer functions between wind and wind power should
be determined and serve as reference to translate the wind into wind power estimates
for the rest of analyses.

On the other side, in order to efficiently plug wind farm power production to a
distribution electricity network it is mandatory a forecast of the power production that
allows the network operator to manage the electricity resources. In this sense, wind
power short-term prediction within hourly to daily time scales is of fundamental
importance. The models, methods and techniques developed for wind farm modelling
will be tuned to produce short-term online forecasts of the wind farms output. Efficient
use of HPC resources is critical to have these forecasts online. We will develop a
forecast based on dynamical and statistical downscaling strategies.

4.1 Improving CFD Microscale Models

In order to achieve such an improvement, the following actions will be made:

– For RANS/LES models, study the turbulence closure models for ABL simulations
as an alternative to the existing parametrizations.

– Implementation of a canopy model [5].
– Validate the HPC implementation using experimental data from the New European

Wind Atlas project (ERA-Net).
– Wind farm modelling: Currently, farm models simulate downwind effects of rotors

by extracting axial momentum at the turbines. In this simplistic approach, the rotor
characteristics are incorporated trough velocity-independent drag coefficients
obtained from tunnel experiments. This tasks aims to characterize numerically the
downwind effects of rotors by solving complex turbulent rotating flows.

4.2 Dynamical Downscaling Strategies

Boundary conditions for solving wind flow on microscale domains typically assume
steady and homogeneous over the computational inflow. These limitations can be
overcome by dynamically coupling microscale CFD models with mesoscale simula-
tions, furnishing initial and time-dependent boundary conditions at the computational
boundaries. The following will be made:

238 R. Mayo-García et al.

– Blending between mesoscale (WRF) and CFD computational meshes in order to
have consistent terrain information (topography and roughness) at the computa-
tional margins. The topography will be interpolated in such a way that it will be
coincident with the CFD resolution in the inner zone and coincident with the
mesoscale (WRF) over the boundaries.

– Initial condition and time-dependent CFD boundary conditions consistent with the
mesoscale outputs that will drive the CFD model through boundary conditions.

– Study the use of nudging strategies based on introducing a force term over the
momentum equation in the CFD model close to the boundary in order to enhance
consistency between models near the boundaries.

– Validate the methodologies for different site conditions, onshore and offshore,
considering benchmark validation cases from other projects such as IEA-Task 31
[6] Wakebench and FP7-NEWA [7].

4.3 Some Results: WRF Model Coupled to Large-Eddy Simulations

Model (WRF) is a tool for multiscale atmospheric simulations that can be coupled to
other methods, such as CFDs. In this case, turbulence-resolving Large-Eddy Simula-
tions (LES) have been executed with WRF in real cases with a mesoscale resolution
(grid cell size *10 km). Specifically, 6 different domains have been simulated with a
3D unit-cell composed of 121 � 121 � 95 inner points through nested simulations in
which the mesoscale domains drive the LES domains.

In order to determine how the system computationally evolves, a fixed total
wall-time of 2 h has been set. Thus, the WRF-LES calculi with the WRF MPI-based
3.6.1 version have been executed on an increasing number of processors in order to
determine how much time of an atmospheric phenomenon can be simulated in such a
period of 2 h. As can be seen in Table 1, moving from 8 to 24 processors a linear
behavior is obtained as the total of simulated phenomenon is multiplied by a factor of
3, but the simulation looses this behavior as the number of processors increases even
more, getting a time of simulation multiplied by *6.4 when the number of processors
has been increased by a factor of 12.

This experiment has been performed in a cluster composed of Blade nodes Dual
Xeon quad-core 3.0 GHz (2 GB per core) solutions proposed as part of HPC4E are
needed in order to better achieve a performance capable of exploiting the coming
Exascale supercomputers.

Table 1. WRF-LES computational behavior.

Number of processors 8. 24 48 96
Time of the simulation obtained 00:07:41 00:25:50 00:35:29 00:45:40

Enhancing Energy Production with Exascale HPC Methods 239

5 Biomass for Energy

Another important challenge is to develop a validated, predictive, multi-scale, com-
bustion modeling capability to optimize the design and operation of evolving fuels. The
next exascale HPC systems will be able to run combustion simulations in parameter
regimes relevant to industrial applications using alternative fuels, which is required to
design efficient furnaces, engines, clean burning vehicles and power plants.

Thus, in order to obtain a thorough understanding of the effects of fuel variability
on energy utilization of biomass-derived gaseous fuels, a coupled approach which
covers three distinct areas of development will be employed: generation of chemical
kinetic mechanisms for biomass-derived fuels, integration of the schemes into a CFD
code, and creation of efficient algorithms for data exchange that can run efficiently in
HPC platforms.

The activities include analyzing the physical characteristics of bio-syngas flames,
assessment of performance in practical systems and providing an optimized industrial
guideline for biomass derived gaseous fuel compositions and performance. The
application scenario corresponds to industrial devices of the energy sector: stationary
gas turbines, furnaces and portable combustion devices.

Generation of detailed chemical schemes that reproduce accurately the oxidation of
biomass-derived gaseous fuels will be developed and assessed via detailed chemical
kinetic mechanisms that can predict the oxidation process and species formation with
certain level of accuracy. Several well-established mechanisms (GRI 3.0, San Diego,
Leeds, etc.) will be examined and compared for different fuel compositions and the
accuracy at predicting reference species and radicals will be provided for different
operating conditions. These mechanisms are the starting point for reduction or tabu-
lation techniques.

Also, development of skeleton and reduced chemical schemes for biomass com-
bustion for engine operating conditions will be carried out. The use of detailed
chemical mechanisms imposes an important limitation for practical applications of
turbulent combustion. These mechanisms include slow and fast chemical reactions
involving a large number of species leading to a highly costly numerical problem.
Besides, the effects of turbulence and flow strain also contribute to a complex inter-
action between chemistry and fluid mechanics that has to be accurately reproduced by
CFD codes. In order to reduce the stiffness of the chemical problem, skeleton and
reduced mechanisms will be developed, such that it can be integrated into a multi-
physics code. The reduction technique will be based on flame-generated manifolds
(FGM) and quasy-steady state (QSS) approximation for operating conditions of
interest.

For studying the combustion dynamics of laboratory flames and comparing it with
available data an integration of the chemical schemes developed in the previous points
and the corresponding validation using benchmarking cases will be performed. Several
cases using experimental data of laboratory flames will be investigated and the effects
of fuel variability on the flame dynamics will be investigated.

Regarding industrial applications of biomass fuels in practical systems, numerical
simulation of an industrial engine burning biomass will be carried out. Different

240 R. Mayo-García et al.

operating conditions and fuel compositions will be examined. The activities will be
focused on providing details of the system performance to develop industrial guidelines
for the use of biomass derived gaseous fuels.

Last, applications of biomass-derived gaseous fuel combustion in portable
reformers for hydrogen production will be explored as well. Limitations to the
miniaturization of hydrogen production reformers are linked to the large surface to
volume ratio, which enhances heat losses through the walls. Additional measures, such
as heat recirculation, catalytic combustion, reactant preheating etc., are needed to
sustain their proper operation. The activities will consist in numerical studies of the
stability of combustion in small size reformers, with the objective of improving the
understanding of their operation and determining the stable and more efficient regimes
as a function of the fuel composition. The reduced chemical mechanisms developed in
the aforementioned paragraphs, as well as the use of HPC shall be essential to this large
parametric numerical investigation.

5.1 Some Results: Dynamics of Combustion Regimes in Small Confined
Chambers

A thorough parametric study of the combustion regimes associated to the intrinsic
instabilities of flames in confined chambers is addressed in the context of the small size
reformers. Direct Numerical Simulation (DNS) of a reactive fuel mixture with
Arrhenius kinetics is carried out in a classical configuration known as Hele-Shaw cell
(i.e., two parallel plates separated by a narrow gap). The stability of the solution
depends on:

– The ratio of the thermal to molecular diffusivity of the fuel, through the Lewis
number.

– The thermal expansion, through the heat release parameter.
– The buoyant convection term.
– The heat losses through the walls.

Biomass-derived gaseous fuel combustion in portable reformers suffers for the
same instabilities, depending on the characteristic parameters of the mixture. A com-
plete parametric study requires the use of the HPC techniques proposed above.

6 Geophysics for Energy

The third energy sector is related to oil as an energy source. Huge computational
requirements arise from full wave-form modelling and inversion of seismic and elec-
tromagnetic data. By taking into account the complete physics of waves in the sub-
surface, imaging tools are able to reveal information about the Earth’s interior with
unprecedented quality. Nevertheless, actual wave physics has a high cost in terms of
computational intensity, which can only be matched by using the exascale HPC
systems.

Enhancing Energy Production with Exascale HPC Methods 241

In this sense, the capacity for imaging accurately the Earth’s subsurface, on land
and below the sea floor is a challenging problem that has significant economic
implications in terms of resource management, identification of new energy reservoirs
and storage sites, as well as their monitoring through time. As recoverable deposits of
petroleum become harder to find, the costs of drilling and extraction increase
accordingly. Thus, the oil and gas industry needs more detailed imaging of under-
ground geological structures in order to find the best representation of the subsurface in
terms of which model sticks better to the data recorded during acquisition surveys. This
involves research based on advanced methods combining mathematics, geophysics and
scientific computing. Such multidisciplinary collaboration is essential to the design of
numerical simulation codes capable of delivering the clearest possible picture of the
subsurface.

The data types involved in geophysical imaging are mostly seismic (acoustic or
elastic) and electromagnetic. Modern imaging techniques (RTM, FWI, …) rely on
intensive usage of full 3D physical modeling engines. Hence, in order to attain results
in a reasonable time, these engines must use, as efficiently as possible, the fastest
hardware architectures in a massively parallel way. On top of that, the larger and more
complex the scenarios become, techniques which attain results with low computational
complexity or few degrees of freedom become preferable.

The main goal is, then, to attain the sharpest possible images of the subsurface with
the best possible quantitative content (i.e. parameter estimation, uncertainty analysis) in
the shortest possible time. In addition, in the exascale era, power efficiency is becoming
ever more a crucial factor in establishing the usability of HPC in industrial applications.
The main developments will involve geophysical inversion of elastic and electro-
magnetic waves using high-order structured and unstructured computational grid types.
Test-driven code development will allow us to put a special focus on having detailed
comparisons and benchmarks between all possible approaches in the most realistic
scenarios. Architecture-oriented programming optimizations are expected to play a
crucial role in establishing cost/accuracy/complexity relationships which will help to
delineate the future directions of geophysical imaging in the exascale era.

Specific sub-objectives will be: development and optimization of high-order
finite-element schemes for 3D elastodynamics; development and optimization of
classical extrapolation schemes in 3D; uncertainty estimation of petrophysical quan-
tities; synthetic benchmarking of exascale geophysical problems; and, industry
validation.

6.1 Some Results: Uncertainty Quantification in Seismic Imaging Using
Chiron SWfMS

A computational simulation usually involves the execution of complex programs
chained in a coherent flow. This flow of simulation programs may be modeled as a
scientific workflow [8]. A scientific workflow is an abstraction that allows scientists to
specify a set of activities and a data flow between them [8]. Each activity is associated
to a simulation program, which is responsible for the consumption of a set of input data
and the production of another set of output data. Many of the experiments modeled as

242 R. Mayo-García et al.

scientific workflows have to process a large volume of data, thus requiring the effective
usage of HPC environments allied to parallelization techniques, such as data paral-
lelism or parameter sweep [9]. In order to support the modeling and execution of
scientific workflows in HPC environments, parallel Scientific Workflow Management
Systems (SWfMS) [8] were developed, such as Chiron [10]. To foster the workflow
parallelism, the activities of workflows can be subdivided in smaller tasks, known as
activations [10].

Although these SWfMS execute on large amounts of HPC resources, as the
workflow becomes increasingly complex, they tend to execute for weeks or even
several months depending on the amount of input data and the availability of com-
putational resources. This way, it is fundamental for scientists of any domain to be
aware of the execution status in order to analyze if the current execution complies with
some pre-defined quality and performance criteria. Based on this information steering
[11], scientists may decide if they have to interfere in the execution (also known as
dynamic workflows) or pause the workflow execution to change parameter values or
even change the original workflow specification. These facilities allow scientists to
perform debugging, partial results analysis or to identify failures as early as they
happen as online analysis of scientific workflows. This paper presents a real workflow
modeled for Uncertainty Quantification (UQ) in seismic imaging using Chiron.

Reverse Time Migration (RTM) is a standard algorithm for producing accurate
images of subsurfaces that help to improve the decision process in the Oil and Gas
Industry. However, the use of this algorithm becomes challenging with high dimen-
sional uncertain input due to computational costs. In this context, we present in this
study a workflow using Chiron adapted for Uncertainty Quantification (UQ) in seismic
imaging. Taking advantage of an optimized RTM code previously developed [12], we
consider a framework which allows the uncertainty quantification on the output of a
large scale computation managed by Chiron. This approach is non-intrusive, since we
use the deterministic simulation of our optimized RTM code, and couple dimension
reduction with sparse grid stochastic collocation.

6.1.1 Chiron SWfMS for Managing Provenance in UQ Domain
Chiron [13] is a parallel SWfMS that aims at supporting users to model, execute, and
monitor scientific workflows in cluster environments. With this purpose, Chiron uses
workflow algebra SciWfA [11] to rule all workflow activities and represents consumed
and produced data as relations. This workflow algebra uses a set of operators (Map,
Filter, Reduce, SplitMap, SRQuery, and MRQuery) to be associated with workflow
activities. Workflow activities (i.e., invocation of scientific programs) are considered
operands, while consumed and produced data are also operands.

Therefore, each activity is associated to an operator, which is composed of input
(data consumption) and output (data production) relations. Following this workflow
algebra, Chiron is able to manage the dataflow generation at the physical (i.e., file flow)
and logical (i.e., data element flow) levels from parallel execution of scientific work-
flows, as presented in [14]. Chiron captures and stores provenance and performance
data at runtime on a database. Then, users can run queries in provenance database to
analyze domain-specific data and performance execution data at runtime. Chiron pre-
sents a provenance data model that follows W3C PROV recommendations, known as

Enhancing Energy Production with Exascale HPC Methods 243

PROV-Df [14]. Chiron’s parallel engine distributes activations to the available com-
puting resources using a client-server architecture. Figure 1 presents the architecture
for Chiron’s engine.

To enable the communication between available computing resources, Chiron
employs Message Protocol Interface (MPI) for Java [15] to exchange messages
between those computing resources. To access performance, we coupled the Tuning
and Analysis Utilities (TAU) to Chiron. With this, we can collect and visualize the
usual performance execution data (MPI operations, scientific programs) plus transac-
tions in the provenance database.

6.1.2 Preliminary Results
Considering the application for UQ in seismic imaging, we modeled and executed a
scientific workflow for this domain using Chiron SWfMS (Fig. 2). As an experimental
evaluation, this workflow was executed in the Endeavour cluster, an Intel Linux Cluster
based on 51,000+ cores with Intel Xeon E5-2697v2 (Ivy Bridge) processors and an
Intel Xeon Phi Coprocessor 7110 (MIC Architecture).

Then, as preliminary results, we obtained the workflow elapsed times presented in
Table 2, when we vary the number of cores and the stochastic collocation interpolation
level (consequently, the number of solver invocations or tasks) to evaluate the scala-
bility of this workflow using Chiron. With those results, we observed that the
sequential workflow elapsed time does not increase in the same proportion as we vary
the number of stochastic collocation (SC) points. Further, TAU helped to identify
potential performance bottlenecks associated to the parallel workflow execution. Thus,
we observed that Chiron presents a non-negligible overhead due to the MPI commu-
nication and the query processing using a centralized DBMS. For this reason, we are
improving Chiron to support provenance data management using a decentralized
DBMS or modifying the query execution plan of some provenance transactions.

Fig. 1. Architecture for the Chiron’s engine.

244 R. Mayo-García et al.

7 Conclusions

The HPC4E project is developing new technologies that will allow the proper
exploitation of exascale infrastructures. In this sense, scalability issues and resilience
are some of the most important ones.

The solutions proposed are being applied to the energy sector; specifically, to the
wind energy, combustion and biogas fields. All of them are transversal ones and can be
extrapolated and used by other scientific and technological areas.

Acknowledgments. The research leading to these results has received funding from the
European Union’s Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.
hpc4e.eu), grant agreement no 689772, the Spanish Ministry of Economy and Competitiveness
under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science,
Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on
Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented
experimental results in uncertainty quantification in seismic imaging.

Fig. 2. Scientific workflow for UQ in seismic imaging using Chiron.

Table 2. Experimental results for executing the UQ in seismic imaging workflow.

Number of
nodes

Number of
cores

Interpolation
level

SC
points

Workflow elapsed time
(minutes)

1 16 1 17 47.18
2 32 2 145 305.15
4 64 3 849 1,758.70

Enhancing Energy Production with Exascale HPC Methods 245

http://www.hpc4e.eu
http://www.hpc4e.eu

References

1. Synergistic Challenges in Data-Intensive Science and Exascale Computing, DOE ASCAC
Data Subcommittee Report, March 2013

2. The PaStiX software. http://pastix.gforge.inria.fr
3. The MaPHyS software. http://maphys.gforge.inria.fr
4. The libMesh library. http://libmesh.github.io/
5. Sogachev, A., Kelly, M., Leclerc, M.Y.: Consistent two-equation closure modelling for

atmospheric research: buoyancy and vegetation implementations. Bound.-Layer Meteorol.
145(2), 307–327 (2012)

6. The IEA-Task 31 Wakebench. http://www.ieawind.org/task_31.html
7. The NEWA project. http://euwindatlas.eu/
8. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: an overview of

workflow system features and capabilities. Future Gener. Comput. Syst. 25(5), 528–540
(2009)

9. Walker, E. Guiang, C.: Challenges in executing large parameter sweep studies across widely
distributed computing environments. In: Workshop on Challenges of Large Applications in
Distributed Environments, Monterey, California, USA, pp. 11–18 (2007)

10. Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M.: An algebraic
approach for data-centric scientific workflows. Proc. VLDB Endow. 4, 1328–1339 (2011)

11. Mattoso, M., Dias, J., Ocaña, K.A.C.S., Ogasawara, E., Costa, F., Horta, F., Silva, V., de
Oliveira, D.: Dynamic steering of HPC scientific workflows: a survey. Future Gener.
Comput. Syst. 46, 100–113 (2015)

12. Costa, D.L., Coutinho, A.L., Silva, B.S., Silva, J.J., Borges, L.: A trade-off analysis between
high-order seismic RTM and computational performance tuning. In: 1st Pan-American
Congress on Computational Mechanics, Buenos Aires, Argentina, pp. 955–962 (2015)

13. Ogasawara, E., Dias, J., Silva, V., Chirigati, F., Oliveira, D., Porto, F., Valduriez, P.,
Mattoso, M.: Chiron: a parallel engine for algebraic scientific workflows. Concurr. Comput.
25(16), 2327–2341 (2013)

14. Silva, V., de Oliveira, D., Valduriez, P., Mattoso, M.: Analyzing related raw data files
through dataflows. Concurr. and Comput.: Pract. Exp. 28(8), 2528–2545 (2016)

15. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like message passing
for Java. Concurr.: Pract. Exp. 12(11), 1019–1038 (2000)

246 R. Mayo-García et al.

http://pastix.gforge.inria.fr
http://maphys.gforge.inria.fr
http://libmesh.github.io/
http://www.ieawind.org/task_31.html
http://euwindatlas.eu/

Three-Dimensional CSEM Modelling
on Unstructured Tetrahedral Meshes

Using Edge Finite Elements

Octavio Castillo-Reyes(B), Josep de la Puente, and José Maŕıa Cela

Computer Applications in Science and Engineering, Barcelona Supercomputing
Center, Torre Girona, C/ Jordi Girona, 29, 08034 Barcelona, Spain

{octavio.castillo,josep.delapuente,josem.cela}@bsc.es
http://www.bsc.es

Abstract. The last decade has been a period of rapid growth for elec-
tromagnetic methods (EM) in geophysics, mostly because of their indus-
trial adoption. In particular, the marine controlled-source electromag-
netic method (CSEM) has become an important technique for reducing
ambiguities in data interpretation in hydrocarbon exploration. In order
to be able to predict the EM signature of a given geological structure,
modelling tools provide us with synthetic results which we can then com-
pare to real data. On the other hand and among the modelling methods
for EM based upon 3D unstructured meshes, the Nédélec Edge Finite
Element Method (EFEM) offers a good trade-off between accuracy and
number of degrees of freedom, i.e. size of the problem. Furthermore, its
divergence-free basis is very well suited for solving Maxwell’s equation.
On top of that, we present the numerical formulation and results of
3D CSEM modelling using the Parallel Edge-based Tool for Geophysi-
cal Electromagnetic Modelling (PETGEM) on unstructured tetrahedral
meshes. We validated our experiments against quasi-analytical results in
canonical models.

Keywords: CSEM · Geophysics · Edge Finite Element · High perfor-
mance computing

1 Introduction

The electromagnetic methods (EM) are an established tool in geophysics, finding
application in many areas such as hydrocarbon and mineral exploration, reservoir
monitoring, CO2 storage characterization, geothermal reservoir imaging, water
prospecting, and many others. In particular, the marine Controlled-Source Elec-
tromagnetic Method (CSEM) has become an important technique for reducing
ambiguities in data interpretation in hydrocarbon exploration. In the traditional
configuration, the sub-seafloor structure is explored by emitting low frequency
signals from a high-powered electric dipole source towed close to the seafloor.
By studying the received signal, subsurface structures can be detected at scales
from a few tens of meters to depths of several kilometers [2].
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 247–256, 2017.
DOI: 10.1007/978-3-319-57972-6 18

248 O. Castillo-Reyes et al.

In order to be able to predict the electromagnetic signature of a given geo-
logical body, modelling tools provide us with synthetic results which we can
compare to real data. These tools require a discretisation method in order to
obtain an accurate solution to the physical governing equations. As principal
discretisation techniques arise the Finite Difference Method (FDM) and Finite
Element Method (FEM). In geophysics electromagnetic modelling, the FDM is
still the most widely employed discretisation scheme and one of the most prac-
tical and highly efficient parallel codes was developed in [1]. However, the main
disadvantage of FDM is its incapacity to work with unstructured grids, which
limit its use in scenarios where irregular and complex geology has a significant
influence on measurements, e.g., a model with strong seabed bathymetry where
an imprecise representation could lead to false interpretations.

On the other hand, the FEM supports completely unstructured tetrahedral
meshes as well as local refinement, which enabling the representation of com-
plex structures and thus improving the solution accuracy. Nevertheless, stan-
dard FEM does not correctly take into account all the physical properties of
vector fields. In fact, there are three main problems when nodal-based FEM is
employed to represent vector fields, namely, occurrence of spurious solutions,
inconvenience of imposing boundary conditions at materials interfaces and the
difficulty in treating conducting and dielectric edges and corner [11].

Finally, Edge Finite Element Method (EFEM) is free of all the previously
mentioned shortcomings because of its use of so-called vector basis functions that
assign degrees of freedom (DOFs) to the edges. As a consequence, EFEM meets
inherent requirements in geophysical electromagnetic modelling, namely, offers
unstructured meshing support, has the ability to eliminate spurious solutions
and is claimed to yield accurate results because it’s divergence-free basis is well
suited for solving Maxwell’s equations.

On top of that, we have developed a 3D CSEM tool based upon EFEM for
parallel computational architectures: Parallel Edge-based Tool for Geophysical
Electromagnetic Modelling (PETGEM). To overcome problems related to the
spatial singularity at the source, we have employed a secondary field formula-
tion of Maxwell’s equations in their diffusive form, namely, the electric field is
decomposed into primary and secondary fields. In order to represent complex
geological bodies, we use unstructured tetrahedral meshes as these are the eas-
iest to use for very large domains and because offer a good trade-off between
accuracy and number of degrees of freedom, i.e. size of the problem.

PETGEM is a Python code for the scalable solution of EM on tetrahedral
meshes. It supports parallelism on shared-memory platforms. As result, PET-
GEM allow users to specify edge-based variational forms of H(curl) for the sim-
ulation of electromagnetic fields in real 3D CSEM surveys with high accuracy,
reliability and efficiency.

In this paper we present the numerical formulation and results of 3D CSEM
modelling using PETGEM. It is divided as follows: Sect. 2 describes the numer-
ical formulation of 3D CSEM and its role as exploration tool. Section 3 shortly
describes the theory associated to EFEM for CSEM applications. In Sect. 4 we

3D-CSEM Modelling on Unstructured Tetrahedral Meshes Using EFEM 249

validated our experiments against quasi-analytical results in canonical models.
The last section is dedicated to conclusions and future work.

2 CSEM Problem

Controlled-source Electromagnetic Method (CSEM) is a type of geophysical
strategies to study the subsurface electrical conductivity distribution with an
ample range of applications. CSEM techniques can be divided into two groups
depending on the domain in which collected data is interpreted: time domains
(TDEM) and frequency domains (FDEM). In the case of oil prospecting, marine
CSEM surveys are done predominantly using FDEM [13].

In marine 3D CSEM, also referred as seabed logging [9] or CSEM, a deep-
towed electric dipole transmitter is used to produce a low frequency electro-
magnetic signal (primary field) which interacts with the electrically conductive
Earth and induces eddy currents that become sources of a new electromagnetic
signal (secondary field). The two fields, the primary and the secondary, add up to
a resultant field, which is measured by remote receivers placed on the seabed.
Since the electromagnetic field at low frequencies, for which displacement cur-
rents are negligible, depends mainly on the electric conductivity distribution of
the ground, it is possible to detect thin resistive layers beneath the seabed by
studying the received signal [14]. Operating frequencies of transmitters in CSEM
may range between 0.1 and 10 Hz, and the choice depends on the dimensions of a
model. In most studies, typical frequencies vary from 0.25 to 1 Hz, which means
that for source-receiver offsets of 10–12 km, the penetration depth of the method
can extend to several kilometres below the seabed [10,14].

The main disadvantage of CSEM is its relatively low resolution compared
to seismic imaging. Therefore, CSEM is often used in conjunction with seismic
surveying as the latter helps to constrain the resistivity model. Figure 1 depicts
the CSEM.

Fig. 1. Controlled-Source Electromagnetic Method (CSEM)

250 O. Castillo-Reyes et al.

3D CSEM is nowadays a well-known geophysical prospecting tool in the
offshore environment and a commonplace in industry, examples of that can
be found in [2,6–8,16]. 3D CSEM modelling is typically solved in frequency
domain, which involves the numerical solution of Maxwell’s equations in sta-
tionary regimes for heterogeneous anisotropic electrically conductive domains.
As already mentioned, CSEM surveys generally work with low frequency elec-
tromagnetic fields (∼1 Hz) because the electric conductivity of the geological
structures is much larger than their dielectric permittivity. As a consequence, in
an unbound domain Γ , the electric field can be obtained by solving Maxwell’s
equations in their diffusive form:

∇ × E = iωμ0H, (1)

∇ × H = Js + σ̃E, (2)

where we have omitted the harmonic time dependence e−iωt, where ω is the
angular frequency, μ0 the free space magnetic permeability, Js the distribution
of source current, σ̃E the induced current in the conductive Earth, and σ̃ the
electrical conductivity which is assumed isotropic for simplicity.

In numerical approximations of EM fields there are two main drawbacks. The
first one is the inevitable spatial singularity at the source. The second is the grid
refinement requirements in order to capture the rapid change of the primary
field [3]. In order to mitigate these issues, we used a secondary field approach
where the total electric field E is obtained as:

E = Ep + Es, (3)

σ̃ = σ̃s + Δσ̃, (4)

where subscripts p and s represent a primary field and secondary field respec-
tively. For a general layered Earth model, Ep can be computed semi-analytically
by using Hankel transform filters. Based on this decomposition and following the
work by [15] the equation for Es is:

∇ × ∇ × Es + iωμσ̃Es = −iωμΔσEp, (5)

where the electrical conductivity σ is a function of position that is allowed to
vary in 3D, whereas the vacuum permeability μ is set to the free space value μ0.
We set homogeneous Dirichlet boundary conditions, Es = 0 on ∂Γ . The range
of applicability of this conditions can be determined based on the skin depth of
the electric field [17].

3 Edge Finite Element Method

For the computation of Es, we have implemented the Nédélec EFEM which
uses vector basis functions defined on the edges of the corresponding elements.
This vector basis functions are divergence-free but not curl-free [11]. Thus,

3D-CSEM Modelling on Unstructured Tetrahedral Meshes Using EFEM 251

EFEM naturally ensures tangential continuity and allows normal discontinuity
of Es at material interfaces. In our approach we used unstructured tetrahedral
meshes because of their ability to represent complex geological structures such
as bathymetry or reservoirs, as well as the local refinement capability in order to
improve the solution accuracy. Figure 2 shows the tetrahedral Nédélec elements
(lowest order) together with their node and edge indexing.

Fig. 2. Tetrahedral Nédélec edge element with node/edge indexing.

We assign the tangential component of the secondary electric field to the
edges in the mesh. Therefore, all components of the electric field at a point x
located inside a tetrahedral element e can be obtained as follows:

Ee(x) =
6∑

i=1

Ne
i (x)Ee

i , (6)

where Ne
i are the vector basis functions associated to each edge i and Ee

i their
degrees of freedom. Considering the node and edge indexing in Fig. 2, the vector
basis functions can be expressed as follows:

Ne
i = (λe

i1∇λe
i2 − λe

i2∇λe
i1)�

e
i , (7)

where subscripts i1 and i2 are the first and second nodes linked to the i-th edge,
λe

i are the linear nodal basis functions, and �e
i is the length of the i-th edge of

the element e.
By substituting expression (6) into (5), and using Galerkin’s approach, the

weak form of the original differential equation becomes:

Qi =
∫

Ω

Ni · [∇ × ∇ × Es − iωμσ̃Es + iωμΔσ̃Ep]dV. (8)

The compact discretized form of (8) is obtained after applying the Green’s
theorem:

[Ke
jk + iωσ̃eM

e
jk] · {Esk} = −iωμΔσ̃eR

e
k, (9)

252 O. Castillo-Reyes et al.

where Ke and Me are the elemental stiffness and mass matrices, which can
be calculated either analytically or numerically [11], and Re

k requires numerical
integration. Our formulation does not require to calculate the jacobian matrix
because the construction of elemental matrices is performed in real space. The
interested reader may find a rigorous mathematical development of Ke and Me

in [4,5,11],
In our experiments, the numerical solution of the system of linear equations

was obtained using a quasi-minimum residual (QMR) method without precon-
ditioner.

4 Results

We validated our EFEM formulation and PETGEM solution against the quasi
analytical results of the canonical model by [6]. PETGEM code is developed as
open-source at Computer Applications in Science & Engineering (CASE) of the
Barcelona Supercomputing Center - Centro Nacional de Supercomputación. The
interested reader may find a comprehensive description about PETGEM design
and capabilities in [5].

The model described in [6] consists in four-layers: 1000 m thick seawater (3.3
S/m), 1000 m thick sediments (1 S/m), 100 m thick oil (0.01 S/m) and 1400
m thick sediments (1 S/m). Our computational domain is a [0, 3500]3 m cube.
Figure 3 shows a 3D view of the unstructured tetrahedral mesh for the halfspace
y > 1750, with the color scale representing the electrical conductivity σ for each
layer.

0.84

1.67

2.5

1.000e-02

3.330e+00
sigma

Fig. 3. Unstructured tetrahedral mesh for y > 1750. (Color figure online)

For this model we used a 1 Hz x-directed dipole source as in [4], which is
located at z = 975 m, x = 1750 m and y = 1750 m. The receivers are aligned to
the source position along its orientation, directly above the seafloor (z = 990). In
order to validate the approach, we have prepared a set of hierarchically refined
meshes to verify the convergence of the obtained solution. For all cases, the mesh
has been locally refined around the source region.

3D-CSEM Modelling on Unstructured Tetrahedral Meshes Using EFEM 253

Figure 4 shows a comparison of the x-component of total electric field between
our EFEM solution and the quasi-analytical solution obtained with the WHAM
tool [12]. In Fig. 4 it is easy to see the effect of our imperfect absorbing boundaries
which can be mitigated by enlargening the domain with element sizes increas-
ing logarithmically outwards from the zone of interest. The total electric field
in Fig. 4 was calculated using a mesh with ≈ 12 millions of edges (degrees of
freedom).

Range (km)
0 500 1000 1500 2000 2500 3000 3500

Lo
g

10
(E

x-
fie

ld
 m

ag
ni

tu
de

, V
/m

)

10 -12

10 -10

10 -8

10 -6
PETGEM V1.0
WHAM

Fig. 4. Total electric field comparative for x-component.

1/h
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Lo
g

10
(e

rr
or

)

10 -2

10 -1

10 0

10 1

L1
L2
Linf

Fig. 5. Convergence order in L1, L2 and Linf norm.

Using WHAM as reference solution and excluding those receivers closest to
the boundaries, we have quantified the errors in our resulting electric fields by

254 O. Castillo-Reyes et al.

means of the L1, L2 and Linf for our set of meshes, as plotted in Fig. 5. Degrees
of freedom, mesh spacing and errors for each mesh are depicted in Table 1. We
can observe the expected linear convergence in our scheme for all error norms
and mesh sizes.

Table 1. Summary of results for convergence test.

DOFs h(m) L1 L2 Linf

Mesh 1 6.17 × 104 2.0 × 102 2.8447 × 10−7 2.5059 × 10−7 2.4939 × 10−7

Mesh 2 4.36 × 105 1.0 × 102 1.6652 × 10−7 1.0365 × 10−7 9.0489 × 10−8

Mesh 3 3.43 × 106 5.0 × 101 1.2859 × 10−7 8.9955 × 10−8 7.3234 × 10−8

Mesh 4 1.19 × 107 3.3 × 101 1.5615 × 10−8 8.3129 × 10−8 7.0474 × 10−8

Finally, in Table 2 we include some information about the algorithmic effort
using a QMR solver for all cases.

Table 2. Summary of results for a QMR solver.

Iterations ||r||
Mesh 1 1776 9.9777 × 10−7

Mesh 2 3468 9.9703 × 10−7

Mesh 3 5512 9.7994 × 10−7

Mesh 4 8986 1.8174 × 10−6

4.1 Conclusions

We have studied the feasibility of 3D CSEM modelling on unstructured tetra-
hedral meshes using Nédélec EFEM. The formulation is interesting because of
its low degree of freedom count and natural divergence-free property. We have
employed a secondary field formulation to overcome problems related to the spa-
tial singularity at the source. In our examples, a simple QMR solver was sufficed
to obtain accurate solutions. Our formulation was validated against a canoni-
cal model of an off-shore hydrocarbon reservoir. The PETGEM solution of this
model shows a good agreement with the quasi-analytical results in canonical
models. The numerical results also demonstrate convergence to the reference
solution. Thus, we conclude that our modelling scheme is capable of computing
reliable results for 3D CSEM scenarios. Future work will aim at including other
features such as seafloor bathymetry and anisotropy to the scheme as well as
comparing the behaviour of the PETGEM with other modelling approaches for
CSEM.

3D-CSEM Modelling on Unstructured Tetrahedral Meshes Using EFEM 255

Acknowledgments. Authors of this work has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie-Sklodowska
Curie grant agreement No. 644202.

The research leading to these results has received funding from the European
Union’s Horizon 2020 Programme (2014–2020) and from Brazilian Ministry of Sci-
ence, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the
HPC4E Project (www.hpc4e.eu), grant agreement No. 689772.

Authors gratefully acknowledge the support from the Mexican National Council for
Science and Technology (CONACyT). Numerical tests in this work were performed on
the MareNostrum supercomputer of the Barcelona Supercomputing Center - Centro
Nacional de Supercomputación (www.bsc.es).

References

1. Alumbaugh, D., Newman, G., Prevost, L., Shadid, J.: Three-dimensional wideband
electromagnetic modeling on massively parallel computers. Wiley Online Libr. 1,
1–23 (1996)

2. Boulaenko, M., Hesthammer, J., Vereshagin, A., Gelting, P., Davies, R., Wedberg,
T.: Marine CSEM Technology – The Luva Case. Houston Geological Society (2007)

3. Cai, H., Xiong, B., Han, M., Zhdanov, M.: 3D controlled-source electromagnetic
modeling in anisotropic medium using edge-based finite element method. Comput.
Geosci. 73, 164–176 (2014)

4. Castillo-Reyes, O., de la Puente, J., Puzyrev, V., Cela, J.M.: Edge-based electric
field formulation in 3D CSEM simulations: a parallel approach. In: Proceedings of
the 6th International Conference and Workshop on Computing and Communica-
tion. IEEE (2015)

5. Castillo-Reyes, O., de la Puente, J., Modesto, D., Puzyrev, V., Cela, J.M.: Parallel
tool for numerical approximation of 3D electromagnetic surveys in geophysics.
Computacin y Sistemas, Thematic Issue: Topic Trends Comput. Res. Catalonia
20(1), 29–39 (2016)

6. Constable, S., Weiss, C.: Mapping thin resistors and hydrocarbons with marine
EM methods: insights from 1D modeling. Geophysics 71(2), G43–G51 (2006)

7. Constable, S., Srnka, L.J.: An introduction to marine controlled-source electro-
magnetic methods for hydrocarbon exploration. Geophysics 72(2), WA3–WA12
(2007)

8. Constable, S.: Ten years of marine CSEM for hydrocarbon exploration. Geophysics
75(5), 75A67–75A81 (2010)

9. Eidesmo, T., Ellingsrud, S., MacGregor, L.M., Constable, S., Sinha, M.C.,
Johansen, S.E., Kong, F.N., Westerdahl, H.: Sea bed logging (SBL), a new method
for remote and direct identification of hydrocarbon filled layers in deepwater areas.
First Break: Soc. Exploration Geophysicists 20(3), 144–152 (2002)

10. Hanif, N., Hussain, N., Yahya, N., Daud, H., Yahya, N., Noh, M.: 1D modeling
of controlled-source electromagnetic (CSEM) data using finite element method
for hydrocarbon detection in shallow water. In: Proceedings of the International
MultiConference of Engineers and Computer Scientists (2011)

11. Jianming, J.: The Finite Element Method in Electromagnetics. Wiley, Hoboken
(2002)

12. Key, K.: 1D inversion of multicomponent, multifrequency marine CSEM data:
methodology and synthetic studies for resolving thin resistive layers. Geophysics
74, F9–F20 (2009)

file:www.hpc4e.eu
http://www.conacyt.mx/
file:www.bsc.es

256 O. Castillo-Reyes et al.

13. Key, K.: Marine electromagnetic studies of seafloor resources and tectonics. Surveys
Geophys. 33(1), 135–167 (2012)

14. Koldan, J.: Numerical solution of 3-D electromagnetic problems in exploration
geophysics and its implementation on massively parallel computers. Polytechnic
University of Catalonia (2013)

15. Newman, G., Alumbaugh, D.: Three-dimensional induction logging problems, Part
2: a finite-difference solution. Geophysics 67(2), 484–491 (2002)

16. Orange, A., Key, K., Constable, S.: The feasibility of reservoir monitoring using
time-lapse marine CSEM. Geophysics 74(2), F21–F29 (2009)

17. Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vázquez, M., Cela, J.M.:
A parallel finite-element method for three-dimensional controlled-source electro-
magnetic forward modelling. Geophys. J. Int. (2013). ggt027

A Parallel Evolutionary Approach
to the Molecular Docking Problem

Daniel Espinosa-Galindo, Jesús A. Fernández-Flores, Inés A. Almanza-Román,
Rosaura Palma-Orozco, and Jorge L. Rosas-Trigueros(B)

Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos de la Escuela,
Superior de Cómputo del Instituto Politécnico Nacional,

Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal,
07738 Mexico City, Mexico

jlrosas@ipn.mx

Abstract. The ligand-protein molecular docking is an unsolved problem
in Bioinformatics consisting in determining the way in which two such
molecules bind in nature, depending on their structure and interaction.
The solution of this problem is one of the core aims of Bioinformatics
and the basis for the rational drug design process. Through the use of
evolutionary and parallelization techniques, a new approach is presented,
consisting of a threaded implementation of an island model genetic algo-
rithm. The results show a mixed outcome, with an aided search ver-
sion achieving quick and accurate predictions, while the more ambitious
free search proposal still does not produce acceptable results. Additional
advantages of the software obtained are cross-platform nature, reason-
able performance on average consumer hardware and ease of use.

Keywords: Bioinformatics · Evolutionary Computing · Parallel Com-
puting · Docking

1 Introduction

The molecular docking of drugs to protein structures is a key step in the ratio-
nal approach to drug development. When binding certain small ligands to some
larger biomolecules, great physical changes may occur; the docked conforma-
tion shows a complementarity both chemical and geometrical [1]. The molecular
docking problem is defined as the process of searching ligands that bind to a
protein in a geometrically and energetically acceptable way to both molecules.
It has been formulated as an energy optimization problem through the possible
ligand-protein conformations.

Specialized docking prediction algorithms can be used to face this problem.
Any such algorithm would focus on finding the protein-ligand bound confor-
mation with a minimum of free energy, and do so in a computable time. This
is relevant given the nature of the experiment: the number of possible bound
complexes is usually too large to perform an exhaustive search in a reasonable
amount of time.
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 257–268, 2017.
DOI: 10.1007/978-3-319-57972-6 19

258 D. Espinosa-Galindo et al.

Some of the first molecular docking prediction systems used the Fast Fourier
Transform to achieve an efficient representation of the search space [2]. More
recently, other systems have employed biochemical knowledge of the docking
process to assess the predictions; these systems include representations of the
molecules’ shape and physicochemical information [3].

In present day, molecular docking is usually approached as an optimization
problem. From the molecular structure of two biomolecules, the protein and the
ligand, the most stable bound conformation is to be found. This implies that the
free energy of the docked conformation is a global minimum. Hence, an intuitive
heuristic becomes an option to find the naturally occurring conformation.

On one hand, a scoring function has to selectively discriminate valid from
invalid conformations, based on their total free energy. This function is to be
minimized by an exploratory algorithm, at which point the predicted docking
conformation has been found. Since in nature a protein-ligand pair tends to
always find the same conformation, an ideal exploratory algorithm for this end
would need to robustly obtain the global optimization of the objective function.

The presented work aims to propose a solution to the docking problem from
an approach in which both the protein and the ligand are considered rigid. This
rigidity is, however, not far from some cases that appear in living organisms,
for example, in transport proteins or neurotransmitters [4]. The proposed solu-
tion is a computational tool to predict the ligand to protein molecular docking,
considering certain geometrical and energetical restrictions through the use of
evolutionary and parallelization techniques.

2 Methodology

The proposed docking tool consists in a modular multiplatform system imple-
mented in the Python 2.7 platform. It is distributed as an add-on to the popu-
lar molecular structure visualization program PyMOL [5]. As an auxiliary tool,
the de-facto molecular dynamics simulation package, GROMACS [6], is used
to obtain the energy of the complex in any given conformation. The search for
the solution that provides the minimum energy is then performed by a Genetic
Algorithm (GA) following the Age Layered Population Structure (ALPS) model
[7], which presents a parallel nature and accomodates the requirements of the
problem.

2.1 Docking Problem Representation

The molecular docking problem is commonly seen as an exploratory optimization
problem in a five dimensional real-valued space. Three of the variables correspond
to the translation of one of the molecules with respect to the other, while the
remaining two represent the relative rotation of the molecules with respect to a
reference [8].

The system receives, as a description of the problem, the atomic structures
of the molecules to be docked, along with a topology file required by GROMACS
to compute the free energy.

A Parallel Evolutionary Approach to the Molecular Docking Problem 259

The problem is encoded then as a five-value floating precision array, as
described before. A typical Python installation uses floating precision of 53 bits,
which would give a total of (253)6 ≈ 5.34 · 1095 possible combinations. This high
precision permits to explore practically all of the search space, and makes evident
the impossibility to exhaustively search for the best solution since the amount
of them approaches a googol.

As mentioned earlier, the scoring function to be minimized is derived from
the potential energy in a given proposed state given that the bound conforma-
tion that appears in nature has the minimum energy. The energy is obtained
by generating the atomic structure corresponding to the proposed conforma-
tion to then perform the potential energy calculation through pipe Inter-Process
Communication (IPC) to GROMACS binaries.

2.1.1 Limiting Exploration to Preidentified Cavities
The prediction system was initially developed aiming for a more limited search,
in which a set of previously identified cavities of the protein is given as an input.
The format of the input file is as stablished by external binding site prediction
tool LISE [9]. This version of the system is thoroughly documented in the full
report [10], although the current focus of development is around an autonomous
free search.

2.1.2 Scoring Function Tuning
In some cases, the algorithm tended to return predictions where the molecules
were so far away from each other, there were no unfavorable interactions between
them, thus returning very low potential energy values when the predictions were
obviously not useful. For this reason, a penalty was introduced, which is simply
added to the potential energy. It relates the distance between the molecules as
follows:

penaltypair =
exp(πspair)
scorecavity

, (1)

where spair is the distance between the pair of molecules and scorecavity is the
score assigned to the cavity, which by definition from LISE is of an exponential
order. This penalty is ignored on the free search implementation where there is
no concept of cavities.

2.1.3 Energy Calculations
The energy calculations were performed using the GROMACS molecular dynam-
ics package. This package emulates the physical interactions observed in nature
through Lagrangian Mechanics equations. Given that they all provide just an
approximation, it is important to select a set of parameters and equations appro-
priate to the problem at hand. This is done through the selection of a force field
and the correct description of the molecules’ topology.

During the validation of the project, most of the ligand description files were
obtained from the Automated Topology Builder (ATB) [11], so the default force

260 D. Espinosa-Galindo et al.

field on the system is a modified GROMOS 54A7 as used by ATB. GROMOS
54A7 parameters for the proteins were obtained using GROMACS.

2.2 Optimization Algorithm: ALPS GA

Given the nature of the problem and the importance of finding consistently the
global optimum, an adequate optimization algorithm would need to be robust
and exhaustive, additionally to the implicit concerns for efficiency and correct-
ness. For this reasons the Age Layered Population Structure (ALPS) model was
selected.

ALPS was designed with the goal of reducing premature convergence and has
shown to achieve better, more consistent results than other techniques. It differs
from other Evolutionary Algorithm models in that it segregates the population
into multiple layers using a novel measure of age, and reduces premature conver-
gence by introducing a new group of randomly generated individuals at regular
intervals. This approach can be thought of as combining multiple, independent
search runs that are done sequentially into a single, multi-layered meta-run [7].

The ALPS model contemplates executing a population-based optimization
technique in several semi-independent layers, each with its own population. An
age concept is introduced, describing the number of iterations for which the
information of each solution has been present. Individuals born from recombi-
nation have the age of their older parent, while the ones created randomly start
with age 0; for each iteration that they remain as candidate solutions, their age
increases by 1.

The population is then arranged in islands according to age limits. Each layer
holds solutions up to a certain age in its population and when a solution reaches
the limit, it migrates to the next layer. During the population recombination
phase of each iteration in a layer, the candidate solutions to be combined are
taken from the union of the populations of the current layer and the previous
one.

The genetic algorithm, on the other hand, is a canonical GA. The algorithm
starts from a randomly generated population of individuals which encode a can-
didate solution in an array-like manner. Each iteration begins with the selection
of individuals to be used as parents on the recombination stage. Lastly, the pop-
ulation is replaced from the original parents population and the newly created
one, and used as a starting point for the next generation.

Figure 1 shows the overall sequence of steps of the algorithm. The main inter-
actions with the actual population layers are shown as the non-continuous lines;
dotted for read and dashed for write operations. It is worth noting that in the
first layer, since it has no previous layer to select parents from, the population
ages uniformly and periodically migrates in its entirety during redistribution; at
this point a new fully random one is generated.

The parameters in Table 1 were set empirically as they were found performing
best during testing, since the main focus of the project is currently development
rather than refining. This considering, in the following order, computation time,
diversity across layers and within the population islands, feasibility to be run on

A Parallel Evolutionary Approach to the Molecular Docking Problem 261

Fig. 1. Flowchart of the optimization algorithm.

consumer hardware, previous theoretical calculations, and quality of resulting
predictions. They can be manually reset through a configuration file.

Among the most particular ones is the age limit on the first layer age0max. This
is relevant since, as mentioned previously, when it is reached, the population is
replaced by new randomized individuals and thus implies the rate at which fully
random information is introduced to the algorithm. It is important to keep this
relatively low in order to avoid stagnation when reaching a population with a
locally optimum feature set.

Also, this parameter along with the overall aging distribution scheme
schemeaging gives the actual limits on all the layers. Besides being used by
the ALPS model, these limits influence the selection pressure on each layer,
as detailed in Sect. 2.2.1. The available distribution schemes are: linear, polyno-
mial, exponential and Fibonacci, as proposed in the literature [7]. The number of
layers to be run nlayers can be seen as a derived parameter to be set accordingly
to the desired age bounds and iteration hard limit itermax.

In addition to this ALPS specific parameters, the quality of the results is
heavily dependent on the population size μ, but so is the computation time.
On the other hand, the remaining standard GA parameters, mutation rate,

262 D. Espinosa-Galindo et al.

Table 1. Variable parameters for ALPS GA.

Parameter Description

age0max Age limit for the first layer (layer zero)

μ Number of individuals in each population

ratemutation Rate at which mutations occur in the recombination stage

ratiocrossover Ratio of the members of the population obtained from crossover

schemeaging Age distribution scheme to be used

itermax Iteration hard limit for the algorithm

nlayers Number of ALPS layers to be parallelly executed

ratemutation, and crossover ratio, ratecrossover, tend to have more standard values
for multi-modal, multi-dimensional, global optimization problems like the one at
hand (about 0.15 and 0.8 respectively) [12].

There is a complex interaction between these concepts in the algorithm, and
the probability of finding the global optimum relies on fitting the ALPS specific
parameters along with the population size, according to the search space and
computation time requirements.

2.2.1 Selection
The selection method used is the tournament selection, chosen due to its low
computational complexity and the ease to adjust the selective pressure or elitism
by simply varying the tournament size. A varying pressure is used in each layer
to generate greater variety in the first layers and a more elitist selection as
approaching to the last one.

From the literature [13], once the best possible solution exists in the popula-
tion of a GA with tournament selection, a method for calculating the takeover
time is known. This is the number of iterations needed for the best solution to
take over the entire population, i.e., the population consists solely of clones of
this best individual. The desired takeover time ttakeover is given by

ttakeover =
1

ln ntourn
(ln μ + ln(ln μ)), (2)

where ntourn is the number of individuals to participate in each tournament.
Then, the variable pressure is achieved by proposing a desired takeover time in
function of both the age limit in the layer, agemax, and the overall iteration limit,
itermax, leading to

ttakeover =
itermax

agemax

. (3)

This results in a relaxed, high diversity selection in the lower levels and a
more elitist selection throughout each of the higher layers. Also, the quotient
balances each layer’s requirements with the limit of iterations actually available
to explore the search space.

A Parallel Evolutionary Approach to the Molecular Docking Problem 263

From (2), the required tournament size for each layer is

ntourn = (μ ln μ)t
−1
takeover = (μ ln μ)

agemax
itermax . (4)

2.2.2 Replacement
From the reviewed replacement methods [10], the proposed version, λ + qμ,
was selected. The parameter ratiocrossover is used to define the proportion of
individuals to be taken in an elitist manner from the original population as
q = 1 − ratiocrossover, while the rest are obtained from crossover.

2.2.3 Parallel Implementation
Being an island population model, ALPS has a parallel nature. Each population
layer executes a semi-independent version of a GA with eventual migrations
between layers. In this work, the layers were implemented as threads.

As shown in Fig. 1, there are only two kinds of interaction between popula-
tion layers: when taking the pool of individuals from which selection occurs; and
when redistributing the layer population according to its age limit. To main-
tain consistency, thread synchronization at this points had to be added. This
was achieved through an event-oriented approach, described in pseudocode in
Algorithm 1.

Algorithm 1. Per layer ALPS GA parallel execution
while not StopCondition() do

pool ← thisLayer.population + Copy(prevLayer.population)
3: signal event :: copied

offspring ← Reproduce(pool)
offspring ← Mutate(offspring)

6: Sort(offspring) � calculate and sort individuals according to score
wait event :: copied from nextLayer
wait event :: replaced from prevLayer

9: thisLayer.population ← Elitism(offspring, thisLayer.population)
Redistribute(thisLayer.population)
signal event :: replaced

12: end while

By far, the most computationally costly stage of the algorithm happens at
line 6, since the score of each individual is calculated at each time it is required
during the sorting. The proposed synchronization allows for this step to run fully
in parallel while ensuring the uniform execution of all threads.

2.3 Technical Details

The prevalent Python implementation, CPython comes with a severe limitation
on threaded applications due to its Global Interpreter Lock (GIL). The GIL pre-
vents execution of Python bytecode by several threads at once, since CPython’s

264 D. Espinosa-Galindo et al.

memory management is not thread-safe. I/O operations block and can be effec-
tively parallelized on threaded applications, being the main use of such approach
[14].

The main workaround to exploit muli-core systems with Python consists
in using multiple processes as opposed to threads; using the multiprocessing
module instead of thread. One drawback is that independent processes do not
typically share a state and the information passing between them must happen
through explicit messaging, which can add up to a considerable IPC overhead.

The alternative used in the present work is to use Python to run specialized
and fast extensions or external programs that can be executed in parallel out-
side the Python interpreter. The internal representation of the atomic structures
is handled with the Bioinformatics package Biopython [15], which in turn uses
C/Fortran scientific computing extension NumPy. Also, as mentioned in Sect. 2,
for each GA fitness evaluation, the proposed atomic structure is outputted as
a file for the software GROMACS to perform the energetic analysis. This two
considerations allow for more efficient resource usage in multi-threaded environ-
ments.

On the other hand, interfacing through file system to GROMACS implies a
heavy I/O load and can lead to a storage access bottleneck. This issue is easily
circumvented with the use of a form of in-memory file system, e.g., open source
tmpfs on GNU/Linux or Dataram’s RAMDisk on Windows. Since the prediction
software works on the host platform temporary directory, it would suffice to point
this directory to the in-memory file system, also sparing the storage device of
unnecessary wear.

3 Results

To evaluate the validity of the predictions, the system was tested with a set
of four well studied cases on the aided search implementation. The free search
version was tested only with one of the test cases, “The Geometry of the Reactive
Site and of the Peptide Groups in Trypsin, Trypsinogen and its Complexes with
Inhibitors”, which is available in the Protein Data Bank with the identifier 3PTB
[16]. Both the presented software and an equivalent sequential implementation
were executed in an 8 core desktop PC running Windows 10 Pro with a native
GROMACS installation.

As anticipated, the aided search implementation shows dramatically better
both execution times and results accuracy, with three out of four cases reaching
the expected results within 0.01 RMSD (root mean-square deviation). Further-
more, the tests were ran 10 times to ensure the desired robustness and all of
them outputted very similar results. Results and convergence data are available
in a previous work [10].

The variable parameters for the ALPS GA (listed in Table 1) were set mainly
empirically as shown in Table 2.

Figure 2 shows the evolution of the score of the best individual throughout the
execution of the free search version. This test, under the mentioned conditions,

A Parallel Evolutionary Approach to the Molecular Docking Problem 265

Table 2. Values for the variable parameters in Table 1.

Parameter Value

age0max 3

μ 35

ratemutation 0.1

ratiocrossover 0.8

schemeaging Fibonacci

itermax 200, 25 for aided

nlayers 10, 4 for aided

was executed only once and only for this case. Several other not documented
runs were required to set the parameters to their current values and all had
a tendency to similarly stray from the desired outcome, although in different
directions.

Fig. 2. Convergence plot for the 3PTB test case.

The proposed docking conformation is shown in Fig. 3, along with the one
observed in nature. The backbone of the protein is represented as a wireframe,
while the full atomic structure of the ligand is shown for both conformations.

To gauge the performance gain of a parallel implementation, the presented
system was compared to a sequential implementation of the free search ver-
sion, as described by Table 3. The computation time was almost threefold in the
sequential variant, while only averaging at 8% less CPU usage than the paral-
lel free search. Both resulted, as expected, in similar predictions, although not

266 D. Espinosa-Galindo et al.

Fig. 3. Visualization of the predicted docked conformation (green, left) and the
expected one (orange, right) for the 3PTB test case. (Color figure online)

sufficiently accurate. The aided search version, on the other hand, predicted the
expected conformation using dramatically less time and resources (see Table 2).

Table 3. Performance evaluation of both versions of system against equivalent sequen-
tial implementation.

Metric Aided search Free search Free search (seq.)

Execution time 18m 37 s 3 h 53 m 24 s 11 h 00m 20 s

Average CPU usage 16% 22% 14%

Best score −9124 kJ/mol −9133 kJ/mol −9157 kJ/mol

It is notable that the prediction for this test case did not produce the expected
outcome. Furthermore the scores for the free search show lower values than for
the aided search, despite this last one being much more accurate. This fact
indicates that the scoring function as presented in Sect. 2.1.2 is no longer appro-
priate for the problem when releasing the constraint of exploring a predefined
small cavity.

4 Conclusions

Molecular docking is a key unsolved problem in Bioinformatics with important
applications in modern drug design. The present work incorporates knowledge

A Parallel Evolutionary Approach to the Molecular Docking Problem 267

from diverse disciplines, mainly Evolutionary Computing, Operating Systems,
Parallel Computing, Computer Graphics and Bioinformatics to propose an effi-
cient solution to this well defined problem within Biology.

Results were mixed, with the free search version underperforming. While this
is currently the primary aim of the project, the aided search alternative displays
an effectiveness of 75% accurate predictions. Being an auxiliary system, that
rate of success is quite satisfactory and can be a great aid to assess the viability
of a proposed drug. The software allows for quick assessments when performing
in a drug screening kind of scenario, given that the target protein structure has
to be previously processed by LISE or otherwise analyzed.

Work remains to be done in the objective function, since it currently does
not seem to fully reflect the behavior observed in nature. The introduction of
some local search using Molecular Dynamics simulations is also being considered
to refine the free search process.

Performance on the other hand is better than originally expected, even when
running on modest hardware [10]. Convergence is fast and robust, finding consis-
tently the best considered solution throughout several executions, thanks to the
ample search achieved with the methods presented. The reduction in the execu-
tion time of the parallel variant is within the expected; since the layers do not
start simultaneously, the intuitive expectation of an ideal ten fold performance
gain would not be realistic.

References

1. Teodoro, M.L., Philips, G.N., Kavraki, L.E.: Molecular docking: a problem with
thousands of degrees of freedom. IEEE Int. Conf. Robot. Autom. 8(1), 960–966
(2001)

2. Bajaj, C., Chowdhury, R., Siddavanahalli, V.: F2Dock: fast Fourier protein-protein
docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(1), 45–58 (2011)

3. Geppert, T., Proschak, E., Schneider, G.: Protein-protein docking by shape-
complementarity and property matching. J. Comput. Chem. 31(9), 1919–1928
(2010)

4. Klotz, I.M.: Protein interactions with small molecules. Acc. Chem. Res. 7, 162–168
(1974)

5. PyMOL. http://www.pymol.org/pymol. Accessed 2016
6. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling exascale soft-

ware challenges in molecular dynamics simulations with GROMACS. In: Markidis,
S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 3–27. Springer, Cham (2015).
doi:10.1007/978-3-319-15976-8 1

7. Hornby, G.S.: The age-layered population structure (ALPS) evolutionary algo-
rithm, July 2009

8. Garzon, J.I., Lopz-Blanco, J.R., Pons, C., Kovacs, J., Abagyan, R., Fernandez-
Recio, J., Chancon, P.: FRODOCK: a new approach for fast rotational protein-
protein docking. Struct. Bioinform. 25(19), 2544–2551 (2009)

9. Xie, Z.-R., Hwang, M.-J.: Ligand binding site prediction using ligand interacting
and binding site-enriched protein triangles. Bioinformatics 28, 1579–1585 (2012)

http://www.pymol.org/pymol
http://dx.doi.org/10.1007/978-3-319-15976-8_1

268 D. Espinosa-Galindo et al.

10. Espinosa-Galindo, D., Fernndez-Flores, J., Almanza-Romn, I.A., Rosas-Trigueros,
J.L., Palma-Orozco, R.: Sistema de acoplamiento molecular. Escuela Superior de
Cmputo del Instituto Politcnico Nacional, Ciudad de Mexico, Mexico (2016)

11. An Automated force field Topology Builder (ATB) and repository: version 1.0
12. Baker, J.E.: Genetic algorithms and their applications. In: Proceedings of the First

International Conference on Genetic Algorithms, pp. 101–111 (1985)
13. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in

genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)
14. GlobalInterpreterLock. https://wiki.python.org/moin/GlobalInterpreterLock. Ac-

cessed 10 July 2016
15. Cock, P., Antao, T., Chang, J., Bradman, B., Cox, C., Dalke, A., Friedberg, I.,

Hamelryck, T., Kauff, F., Wilczynski, B., Hoon, M.: Biopython: freely available
Python tools for computational molecular biology and bioinformatics. Bioinfor-
matics 25, 1422–1423 (2009)

16. The Geometry of the Reactive Site and of the Peptide Groups in Trypsin, Trypsino-
gen and its Complexes with Inhibitors. http://www.rcsb.org/pdb/explore/explore.
do?structureId=3ptb. Accessed 14 Oct 2015

https://wiki.python.org/moin/GlobalInterpreterLock
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ptb
http://www.rcsb.org/pdb/explore/explore.do?structureId=3ptb

Deep Learning Applied to Deep Brain
Stimulation in Parkinson’s Disease

Pablo Guillén(&)

Center for Advanced Computing and Data Systems, CACDS,
University of Houston, Houston, TX, USA

pgrondon@uh.edu

Abstract. In order to better model complex real-world data such as biomedical
signals, one approach is to develop pattern recognition techniques and robust
features that capture the relevant information. In this paper, we use deep learning
methods, and in particular multilayer perceptron, to build an algorithm that can
predict subcortical structures of patients with Parkinson’s disease, based on
microelectrode records obtained during deep brain stimulation. We report on
experiments using a data set involving 52 microelectrode records for the
structures: zona incerta, subthalamic nucleus, thalamus nucleus, and substantia
nigra. The results show that the combination of features and deep learning
produces 99.2% precision of detection and classification on the average of the
subcortical structures under study. In conclusion, based on the high precision
obtained in the classification, deep learning could be used to predict subcortical
structure, and mainly the subthalamic nucleus for neurostimulation.

1 Introduction

Human information processing mechanisms (e.g. vision and speech) suggest the need
of deep architectures for extracting complex structure and building internal represen-
tation from rich sensory inputs. For example, human speech production and perception
systems are both equipped with clearly layered hierarchical structures in transforming
information from the waveform level to the linguistic level and vice versa. It is natural
to believe that the state of the art can be advanced in processing these types of media
signals if efficient and effective deep learning algorithms are developed. Biomedical
signals processing systems with deep architectures are composed of many layers of
nonlinear processing stages, where each lower layer’s outputs are fed to its immediate
higher layer as the input. The concept of deep learning originated from artificial neural
network research. Multilayer perceptron with many hidden layers is a good example of
the models with deep architectures [1].

Deep learning techniques have been applied to a wide variety of problems in recent
years [2–7]. In many of these applications, algorithms based on deep learning have
surpassed the previous state-of-art performance. At the heart of all deep learning
algorithms is the domain independent idea of using hierarchical layers of learned
abstraction to efficiently accomplish high-level task. Deep learning allows computa-
tional models that are composed of multiple processing layers to learn representations
of data with multiple levels of abstraction. Deep learning discovers intricate structure in

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 269–278, 2017.
DOI: 10.1007/978-3-319-57972-6_20

large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in
each layer from the representation in the previous layer [1].

Parkinson disease (PD) is thought to affect at least 100 persons in every 100,000.
The cardinal symptoms of tremor, bradykinesia, postural instability, and rigor result
in substantial disability for patients with PD. During the course of the disease, up to
50% of patients will have symptoms refractory to medication and will experience
drug-induced dyskinesias. Over activity of the globus pallidus internus (GPi) and the
subthalamic nucleus (STN) is believed to be part of the pathophysiologic mechanism of
PD. PD is a chronic progressive neurodegenerative disorder affecting multiple brain
circuits leading to motor symptoms such as bradykinesia, rigidity, resting tremor, and
loss of postural reflexes [8]. PD also has non-motor manifestations such as neu-
ropsychiatric symptoms, cognitive abnormalities, autonomic disorders, and sleep [9].

PD is primary related to substantia nigra degeneration and, thus, dopamine insuf-
ficiency. L-DOPA as a precursor of dopamine is the standard medication in PD.
However, disease progression causes L-DOPA therapy efficiency decay (on-off symp-
tom fluctuation), and neurologists often decide to classify patients for DBS (Deep Brain
Stimulation) surgery.

DBS [10] is considered a safe and well-tolerated surgical procedure to alleviate PD
and other movement disorders symptoms along with some psychiatric conditions. Over
the last few decades DBS has been shown to provide remarkable therapeutic effect on
carefully selected patients. DBS improves motor functions and therefore quality of life.
To date, one main target has emerged in PD patients: the subthalamic nucleus.

DBS involves the surgical implantation of electrodes into deep structures of the
brain to modulate brain circuitry in an effort to restore normal physiological function.
DBS has been used effectively for the treatment of movement disorders, including PD,
Essential tremor (ET), and dystonia, as well as for psychiatric disorders such as
obsessive-compulsive disorder (OCD). In addition, DBS may exert its influence via the
correction of aberrant neuronal activity. For example, in the setting of DBS for the
treatment of PD, the loss of dopamine, which is known to be largely responsible for the
pathophysiology of the disease, results in changes in the underlying activity of cells
within the basal ganglia [11].

The exact placement of the stimulator is fundamental for the sensory and motor
effects specific to the subthalamus, since small deviations can affect adjacent structures
and generate side effects [12]. Technological development has allowed a higher display
resolution for the imaging processing of these types of structures [13]. Also, the
development of recording systems for the spontaneous or induced electrical activity of
such structures, allows defining more accurately their position limits, anatomic rela-
tionships with adjacent structures and behavior in relation to the movement or symp-
toms of Parkinsonism components, which turns in a suitable situation in order to safely
establish and characterize the affected area. The risk of errors in the localization of the
surgical target for deep brain electrical stimulation requires the use of some form of
intraoperative neurophysiological monitoring to confirm the correct destination during
surgery. The purpose of the development and implementation of techniques of

270 P. Guillén

classification for the processing microelectrode records (MER) is of great importance
today, as it allows the surgical team to determine the optimal location of the lesion or
DBS [14, 15].

In this paper we build a set of features each of which measure different signal
characteristics, quantify neuronal activity inherent in the subcortical structures, and
allows their localization for greater accuracy during DBS. Next, a machine learning
algorithm for supervised classification based on deep learning is used with the values of
the obtained features, and we show that deep learning can identify and predict with
high precision any of the subcortical structures (4 classes): Thalamus (TAL), zona
incerta (Zi), subthalamic nucleus (STN) and substantia nigra (SNR).

2 Materials and Methods

2.1 Dataset

Intra-operative microelectrode records were acquired in Parkinsonian patients, awake
and unmedicated, subject to deep brain implantation under electrostimulation. Five
Parkinsonian patients (4 males and 1 female) aged between 55 ± 6 years old partici-
pated voluntarily assuming previously signed consent. Microelectrode records were
made using the ISIS MER Inomed system, which is used to obtain an optimal location
of the destination (target) through deep brain stimulation. Visualization of neural data
started 10 mm on the target data. Each 1 mm a new location was created if the distance
between the microelectrode and the destination point was greater than 3 mm. For
distances less than 3 mm, the locations were created every 0.5 mm. Specialists in
neurosurgery and neurophysiology labeled the obtained signals using the MER system.
The acquisition time for each record was 2 s with a sampling frequency of 24 kHz
(24,000 samples per second). In total, the database comprises 52 micro recordings, 13
for each of the subcortical structures: Thalamus nucleus (TAL), Zona Incerta (Zi),
Subthalamic nucleus (STN) and Substantia Nigra (SNR). These surgical procedures
were performed at the Institute of Epilepsy and Parkinson in Pereira, Colombia.

2.2 Features

In the following we present the features to extract the information contained in each of
the MER for the different subcortical structures under study.

Curve Length. This feature is useful to know the stability of the values of a signal. If in
a given interval, the value of this feature is low, it is an indicative that the signal is
stable, otherwise the signal is unstable. Equation (1) defines the calculation of this
feature:

L ¼
XN�1

i¼1

jxiþ 1 � xij ð1Þ

where each xi corresponds to a sample in the dataset X ¼ x1; x2; . . .; xNð Þ.

Deep Learning Applied to Deep Brain Stimulation 271

Threshold. Computation of the threshold is based in the calculation of the deviation of
the data in order to know how scattered they are in given window of size N. Threshold
is calculated as follows:

g ¼ 3
N � 1

ffiXN
i¼1

ðxi � XÞ2
vuut ð2Þ

where X is the mean of the dataset.

Peaks. The number of peaks that a given signal has is determined by:

j ¼ 1
2

XN�2

i¼1

max 0; sgn xiþ 1 � xi½ � � sgn xiþ 2 � xiþ 1½ �j jf g ð3Þ

where

max a; bð Þ ¼
a if a[b
b if a\b

a o b if a ¼ b

8<
:

sgn xð Þ ¼
1 if x[0
0 if x ¼ 0
�1 if x\0

8<
:

Root Mean Square. It is defined as the square root of the mean of the squares of the
values of the signal. The root mean square (also known as quadratic mean) is deter-
mined by:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 x
2
i

N

s
ð4Þ

Average Nonlinear Energy. The average nonlinear energy is computed as:

ANE ¼ 1
N � 2

XN�1

i¼2

ðx2i � xi�1xiþ 1Þ ð5Þ

Zero Crossings. The amount of zero crossings k for a given signal is determined
through the formula:

k ¼ 1
2

XN�1

i¼1

jsgn xiþ 1ð Þ � sgnðxiÞj ð6Þ

272 P. Guillén

2.3 Deep Learning

The concept of deep learning originated from artificial neural network research.
Multilayer perceptron with many hidden layers is a good example of the models with
deep architectures. Unlike the neural networks of the past, modern deep learning has
cracked the code for training stability and generalization and scale on big data. It is
often the algorithm of choice for highest predictive accuracy, as deep learning algo-
rithms performs quite well in a number of diverse problems.

There are several theoretical frameworks for deep learning, and here we summarize
the feedforward architecture used by H20 [16]. Multilayer perceptron (MLP) are
feed-forward neural networks with architecture composed of the input layer, the hidden
layer and the output layer. Each layer is formed from small units known as neurons.
Neurons in the input layer receive the input signals X and distribute them forward to
the rest of the network. In the next layers, each neuron receives a signal, which is a
weighted sum of the outputs of the nodes in the previous layer. Inside each neuron, an
activation function is used to control the input, (Fig. 1 shows an example). Such a
network determines a non-linear mapping from an input vector to the output vector,
parameterized by a set of network weights, which are referred to as the vector of
weights W. The first step in approximating the weight parameters of the model is
finding the appropriate architecture of the MLP, where the architecture is characterized
by the number of hidden units, the type of activation function, as well as the number of
input and output variables. The second step estimates the weight parameters using the
training set. Training estimates the weight vector W to ensure that the output is as close
to the target vector as possible. The structure of a MLP network is shown in Fig. 2.
This basic framework of MLP neural networks can be used to accomplish deep
learning task. Deep learning architectures are models of hierarchical feature extraction,
typically involving multiple levels of nonlinearity.

Fig. 1. The function f represents the nonlinear activation function used throughout the network
and the bias b represents the neuron’s activation threshold.

Deep Learning Applied to Deep Brain Stimulation 273

2.4 Tools

The features described before were implemented in Matlab R2015, and the Library
H20 [16] was used in order to perform the classification through deep learning.

3 Results

As mentioned before when we presented the database, each record was acquired for 2 s
at a sampling frequency of 24 kHz, which leads to each record having 48,000 samples.
If we consider a trajectory of 13 records for each of the subcortical structures: Tha-
lamus nucleus (TAL), Zona Incerta (Zi), Subthalamic nucleus (STN) and Substantia
Nigra (SNR), the final trajectory is made up of 52 records and has a total of 2,496,000
samples. Next, the final trajectory is divided into windows 4992 consecutive samples
and for each of these windows the six features are determined, yielding a total of 500
instances (patterns) by feature. The decomposition described above is presented in
matrix form as follows (Fig. 3):

Fig. 2. Structure of an architecture multilayer perceptron.

Fig. 3. Feature matrix.

274 P. Guillén

Once the feature matrix is assembled, we proceed to label the first 125 instances as
Class 1, which correspond to the Thalamus; the next 125 instances as Class 2, cor-
responding to Zona Incerta; the following 125 instances as Class 3, representing the
Subthalamic nucleus; and finally, the last 125 instances as Class 4, corresponding to the
Substantia Nigra. In our approach, we train a MLP on a set of randomly selected
features, approximately 60%, extracted from the feature matrix, then approximately
20% are used as the validation set, and approximately 20% are used as the testing set.
The purpose of this training is to learn the multilayer architectures by simple stochastic
gradient descent. The backpropagation procedure to compute the gradient of an
objective function with respect to the weights of a multilayer stack of modules is
nothing more than a practical application of the chain rule for derivatives. The key
insight is that the gradient of the objective with respect to the input of a module can be
computed by working backward from the gradient with respect to the output of that
module. The backpropagation equation can be applied repeatedly to propagate gradi-
ents through all modules, starting from the output at the top (where the network
produces its prediction) all the way to the bottom (where the external input is fed) [1].
Multilayer feedforward neural networks consist of many layers of interconnected
neuron units, starting with an input layer to match the feature space, followed by
multiple layers of nonlinearity, and ending with a linear regression or classification
layer to match the output space. The weights linking neurons and biases with other
neurons fully determine the output of the entire network, and finally learning occurs
when these weights are adapted to minimize the error on labeled training data. To go
from one layer to the next, the weighted sum of their inputs from the previous layer
pass the result through a non-linear function. At the present, the most popular
non-linear function is the rectified linear unit (ReLU). Variable epochs correspond to
the numbers of passes over the training data set. Table 1 shows the size of the archi-
tecture multilayer perceptron and parameters used on the experiments to evaluate the
classification.

Tables 2 and 4 show the output report by H20 on train data and validation data,
respectively, and Tables 3 and 5 show their confusion matrices.

We can see that the results in the training set and validation set are consistent with
the architecture and variables used for classification.

Table 1. Parameters of the architecture multilayer perceptron.

Variables Parameters

Input 500
Hidden (32,32,32)
Output 4
Activation function ReLU
Loss function Mean squared error
Epochs 1000000

Deep Learning Applied to Deep Brain Stimulation 275

The testing set is used to predict the variable CLASS, which contains labels for
each class (Class 1, Class 2, Class 3, and Class 4), and a predictive accuracy of 99.2%
for the different classes is obtained.

4 Conclusions

In this paper we investigated the use of deep learning for the classification and pre-
diction of subcortical structures of patients with Parkinson’s disease, based on
microelectrode records (MER), obtained during deep brain stimulation (DBS).

Table 2. Precision reported on train data.

Deep learning
** Reported on train data. **
MSE: 2.19526e-11
R^2: 0.9999

Table 3. Confusion matrix on train data.

Class_2 Class_1 Class_3 Class_4 Error Rate

77.0 0.0 0.0 0.0 0.0 0/77
0.0 77.0 0.0 0.0 0.0 0/77
0.0 0.0 79.0 0.0 0.0 0/79
0.0 0.0 0.0 73.0 0.0 0/73
77.0 77.0 79.0 73.0 0.0 0/306

Table 4. Precision reported on validation data.

Deep learning
** Reported on validation data. **
MSE: 0.0098
R^2: 0.9925

Table 5. Confusion matrix on validation data.

Class_2 Class_1 Class_3 Class_4 Error Rate

23.0 0.0 0.0 0.0 0.0 0/23
0.0 22.0 0.0 0.0 0.0 0/22
1.0 0.0 23.0 0.0 0.0416 1/24
0.0 0.0 0.0 33.0 0.0 0/33
24.0 22.0 23.0 33.0 0.0098 1/102

276 P. Guillén

We proposed six types of input features and a corresponding architecture to pre-
cisely predict subcortical structures. First, we showed that the network can learn sur-
prisingly well. Second, we showed that the network can classify the different
subcortical structures with high efficiency, and finally, a high precision is achieved in
the task of predicting the different classes.

Our experiments indicate that a deep learning approach in combination with input
features, has the potential to capture subcortical structures patterns, which may boost
the classification performance. These investigations could be further improved in future
studies by carrying out more exhaustive searches for the parameters in the architec-
tures. Moreover, the overall performance of these systems could be further improved.

We conclude that deep learning could be used to monitor in real time the location of
subcortical structures, reducing the uncertainty that exists during surgery, and repre-
senting a valuable support tool for neurosurgeons and electrophysiologists during
electrical stimulation and deep brain electrode implantation for the treatment of
parkinsonian patients.

Acknowledgments. This work was funded by Center for Advanced Computing and Data
Systems, CACDS, at the University of Houston, Houston, TX, USA.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
2. Langkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep

learning for time series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)
3. Yu, D., Deng, L.: Deep learning and its applications to signal and information processing.

IEEE Signal Process. Mag. 45–54 (2011)
4. Langkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature

learning. Adv. Artif. Neural Syst. 1–9 (2012)
5. Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16(8), 487–497

(2015)
6. Rubinov, M.: Neural networks in the future of neuroscience research. Nat. Rev. Neurosci. 16

(12), 767 (2015)
7. Yamins, D., DiCarlo, J.J.: Using goal-driven deep learning models to understand sensory

cortex. Nat. Neurosci. 19(3), 356–365 (2016)
8. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg.

Psychiatry 79(4), 368–376 (2008)
9. Chaudhuri, K., Schapira, A.: Non-motor symptoms of Parkinson’s disease: dopaminergic

pathophysiology and treatment. Lancet Neurol. 8(5), 464–474 (2009)
10. Okun, M.: Deep-brain stimulation for Parkinson’s disease. New Engl. J. Med. 367(16),

1529–1538 (2012)
11. Galvan, A., Devergnas, A., Wichmann, T.: Alterations in neuronal activity in basal

ganglia-thalamocortical circuits in the parkinsonian state. Front. Neuroanat. 9(5), 1–21
(2015)

12. Shin-Yuan, C., Sheng-Huang, L., Shinn-Zong, L.: Subthalamic nucleus deep brain
stimulation for Parkinson’s disease – an update review. Tzu Chi Med. J. 17(4), 205–212
(2005)

Deep Learning Applied to Deep Brain Stimulation 277

13. Pollo, C., Vingerhoets, F., Pralong, E., Ghika, J., Maeder, P., Meuli, R., Thiran, J.,
Villemure, J.: Localization of electrodes in the subthalamic nucleus on magnetic resonance
imaging. J. Neurosurg. 106, 36–44 (2007)

14. Guillén, P., Martínez-de-Pisón, F., Sánchez, R., Argaez, M., Velásquez, L.: Characterization
of subcortical structures during deep brain stimulation utilizing support vector machines. In:
33rd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC 2011), Conference Proceedings, Boston, MA, USA (2011)

15. Guillén, P., Barrera, J., Martínez-de-Pisón, F., Argaez, M., Velásquez, L.: Data mining in the
process of localization and classification of subcorticals structures. In: EATIS, Conference
Proceedings, Valencia, España (2012)

16. Aiello, S., Click, C., Roark, H., Rehak, L.: Machine Learning with Python and H20. H20,
Gravesend (2016). Edited by Lanford, J.

278 P. Guillén

Computational Simulation of the Hemodynamic
Behavior of a Blood Vessel Network

Nathan Weinstein1, Alejandro Aviles1,2,3, Isidoro Gitler1,
and Jaime Klapp1,2(B)

1 ABACUS-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados

CINVESTAV-IPN, Carretera México-Toluca Km 38.5, La Marquesa,
52740 Ocoyoacac, Estado de México, Mexico

jaime.klapp@inin.gob.mx
2 Departamento de F́ısica, Instituto Nacional de Investigaciones Nucleares (ININ),

Carretera México-Toluca S/N, La Marquesa, 52750 Ocoyoacac,
Estado de México, Mexico

3 Consejo Nacional de Ciencia y Tecnoloǵıa, Av. Insurgentes Sur 1582,
Ciudad de México, Mexico

Abstract. During development, blood vessel networks adapt to gradual
changes in the oxygen required by surrounding tissue, shear stress, and
mechanical stretch. The possible adaptations include remodeling the ves-
sel network and thickening the walls of blood vessels. However, the treat-
ment of several vascular diseases including cerebral arteriovenous malfor-
mations, arteriosclerosis, aneurysms, and vascular retinal disorders, may
lead to abrupt changes that could produce hemorrhage or other problems.
Modeling the hemodynamic behavior of a blood vessel network may help
assess or even diminish the risks associated with each treatment. In this
work, we briefly describe the radiological studies available to study the
anatomy and hemodynamics of a patient. We then describe the segmenta-
tion, smoothing, healing, skeletonyzation, and meshing processes that are
needed to obtain an initial model for the numerical simulations. Addition-
ally, we state some important concepts about blood rheology and blood
vessel elasticity. Further, we include a system of equations to describe the
interaction between flowing blood and the elastic blood vessels.

1 Introduction

The circulatory system allows the existence of large multicellular organisms, by
actively transporting oxygen, nutrients and the cellular and molecular compo-
nents of the immune system [1]. During development, the vascular network must
adapt to the changing requirements of the body. At least three processes allow
the vascular network to adapt: vasculogenesis, angiogenesis [2] and arteriogenesis
[3]. Vascular network adaptation depends on the coordinated response of several
signaling pathways [4]. Genetic, epigenetic or developmental changes may lead
to vascular disease or oncogenesis. Surgical treatment of several vascular diseases
may lead to abrupt changes which may result in hemorrhage or other problems.
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 279–288, 2017.
DOI: 10.1007/978-3-319-57972-6 21

280 N. Weinstein et al.

Hemodynamic models may help assess and minimize the risks associated
with several vascular diseases and their treatment, including: aneurysms [5],
atherosclerosis [6,7], vascular retinal disorders [8,9] and arteriovenous malfor-
mations [10–12]. Hemodynamic modeling is also helpful in understanding can-
cer treatment [13]. Additionally, studying the interaction between shear stress,
mechanosensors and molecular signaling pathways may enable us to understand
the development of the circulatory system during embriogenesis [14] and during
the aging process [15,16].

Modeling the hemodynamic behavior of a blood vessel network is a complex,
multistep process. In this work, we describe our approach, in particular we aim
to include a careful mathematical description of the topology of the blood vessel
network, blood rheology and blood vessel elasticity.

2 Creating a Model of a Blood Vessel Network

Obtaining a detailed geometrical model of a part of the circulatory system of a
patient, is a complex multistage process that transforms certain relevant medical

Fig. 1. The mesh healing process: (a) Connection or removal of disconnected com-
ponents, (b) Segment of an artery after removing a non manifold, (c) Segment of an
artery with a non-manifold, in this case a cross section with no area, (d) Cross section
of an artery, used as a boundary of the model after flattening, (e) Boundary artery
cross section before flattening, and (f) Cross section of an artery after the meshing
process.

Hemodynamic Behavior of a Blood Vessel Network 281

images into a curated 3D surface or volumetric mesh that can be used as the base
geometry to simulate the hemodynamic behavior of the blood vessel network. In
Fig. 1 we show screen shots of the mesh healing process that we carried out using
the program Blender to process the brain arterial network surface mesh from the
MIDA atlas [17], and in Fig. 2 we show a screen shot of the resulting initial model.
The most common methods used to obtain medical vascular images are: Com-
puted Tomography Angiography (CTA) [18], Magnetic Resonance Angiography
(MRA) [19], and Digital Subtraction Angiography (DSA) [20,21].

Segmentation of medical images requires two main processes: vessel surface
extraction and vessel surface construction. The former involves dividing a vol-
ume containing the vascular network into voxels, and identifying all the vox-
els that conform the blood vessels; while the latter defines a 3D surface that
forms the boundary of the blood vessel network. The VMTK [22], and MITK
[23] publicly available C++ frameworks contain many tools that allow segmen-
tation. Current segmentation techniques produce surface meshes that require
non-manifold removal (Fig. 1b and c), connecting dangling segments (Fig. 1a),
flattening boundary regions (Fig. 1d and e) filling holes, surface smoothening,
skeletonyzation, circle or ellipse fitting, and other time consuming procedures.
Recent advances in automated blood vessel segmentation, may allow in the near

Fig. 2. A screen shot of our model of the brain arteries after processing

282 N. Weinstein et al.

future, the reconstruction of patient-specific vascular networks ready for hemo-
dynamic simulation in a timely manner [24]. Validating the accuracy of the
reconstructed surface is another important challenge for which other techniques
have been developed recently [25].

If the model is going to be used to simulate computationally the hemody-
namic behavior of the blood vessel network using the finite element numeri-
cal integration method, the volume enclosed in the 3D surface mesh needs to
be divided into smaller sub-domains, made up of geometric primitives such
as hexahedra and tetrahedra (Fig. 1f). Unstructured mesh generation is usu-
ally achieved using the Advancing Front technique (AFT), Octree methods, and
Voronoi Delaunay based methods [26]. Meshes composed entirely of hexahedra
usually allow higher efficiency and robustness during a computational hemo-
dynamic simulation, for which some interesting algorithms have been recently
developed [27,28].

3 Simulating the Hemodynamic Behavior of a Blood
Vessel Network

3.1 Blood Rheology

Blood is composed of plasma, red blood cells, leukocytes, and platelets. In order
for blood flow to commence, it is necessary to apply stress surpassing a certain
threshold. This critical stress is referred to as the yield stress of blood, if less
than the yield stress is applied to a blood film, the response will be elastic. The
viscosity of blood is mainly affected by the erythrocyte volume fraction. However,
erythrocyte deformability, leukocyte and platelet count, temperature, glucose
concentration, pH, and other factors also affect blood viscosity. Blood exhibits
shear thinning, in part because erythrocytes are able to form aggregate structures
called rouleaux, which are formed at sufficiently small shear rates. As the shear
rate increases, the rouleaux structures break up into increasingly smaller pieces.
At sufficiently high shear rates, the erythrocytes are fully dispersed [29].

Blood cells cause two interesting effects on capillary blood flow [30]. First,
when blood flows into a capillary from a vessel with a larger diameter, the
average hematocrit of the capillary blood is smaller than that of the blood flowing
through the larger blood vessel. This is referred to as the F̊ahrus effect, and it
strengthens as the diameter of the capillary decreases [31,32].

Blood cells move towards the center of the vessel, leaving plasma at the wall
of the vessel and decreasing the viscosity of blood. The effect strengthens as the
diameter of the tube decreases (only if the vessel diameter is between 10 and
300µm). This is called the F̊ahrus - Lindqvist effect. [29,30].

The Herschel-Bulkley model is a very convenient model to describe blood
because it is possible to include both the yield stress and the shear-thinning
behavior of blood [33,34].

The constitutive equation of the Herschel-Bulkley model is:

τ = τ0 + kγ̇n, (1)

Hemodynamic Behavior of a Blood Vessel Network 283

where τ is the shear stress, γ̇ the shear rate, τ0 the yield stress, k the consistency
index, and n the flow index.

3.2 Blood Vessel Elasticity

Understanding the elasticity of blood vessels is necessary in order to estimate the
risk of blood vessel rupture and hemorrhage in different parts of a blood vessel
network, and to pinpoint the areas where the highest risk exists. Blood vessels
are composed of three main layers separated by two layers of elastic material,
the innermost, tunica intima is a single layer of endothelial cells, the middle
layer, tunica media is a layer of muscle cells that is much thicker in arteries than
it is in veins of a similar diameter, and the outermost layer, tunica externa or
tunica adventitia is a layer of connective tissue which contains elastin and colla-
gen fibers. Blood vessels react to the usual changes in flow and shear stress by
undergoing elastic deformation. Two important characteristics of elastic mate-
rials are the elastic modulus and the elastic limit. The elastic modulus is the
amount of force per unit area needed to cause a certain amount of deforma-
tion. The elastic limit is the stress beyond which permanent deformation of the
material will take place. Furthermore, blood vessels are made of non isotropic
rubber-like materials, the slope of the stress-strain curve increases with stress,
meaning that they become progressively more difficult to stretch, such that the
elastic modulus increases with applied force [35].

4 Blood Fluid-Vessel Wall Interactions

In this section we shall consider regions in which the blood behaves as a fluid.
Under this assumption, its evolution can be described by the continuity and
Euler equations

∂ρ

∂t
(x, t) + ∇i(ρvi) = 0, (2)

ρ
∂vi

∂t
(x, t) + ρ(vj − wj)∇jv

i = ∇jT
ij , (3)

where sum over repeated indexes is implicit. Here ρ is the mass density of the
blood fluid, v its velocity field, and the stress tensor T is composed of two terms:
the isotropic fluid pressure P and the Cauchy stress tensor, for which we use the
constitutive equation

T ij = Pδij + μ
(∇ivj + ∇jvi

)
, (4)

providing the blood fluid with shear, and possibly bulk, viscosity. In Newtonian
fluids one assumes a constant shear viscosity coefficient. The further assumption
of incompressible fluids leads to ∇·v = 0, instead of Eq. (2). The set of Eqs. (2),
(3) and (4) are the well-known Navier-Stokes equations.

We note that the total time derivative in Euler equation further introduces
an arbitrary velocity w. This scheme is essentially a choice of reference frame,

284 N. Weinstein et al.

and is generically referred as an Arbitrary Lagrangian Eulerian (ALE) method.
In situations as the one we are concerned, it is very useful to let w be the velocity
of the blood vessel at the interface, such that the boundary conditions are easily
defined as we shall do below.

Vessel walls are usually modeled as elastic materials with linear response.
Several options exist in the literature, here we follow an approach similar to
the one developed in [36,37]. In Fig. 3 we show the geometry of a small section
of the vessel network. We consider local cylindrical coordinates along the main
axis ẑ of the vessel. When the vessel is relaxed, the radius at fixed z and angle
θ coordinates is denoted by R0. This radius is deformed to R as the evolution
takes place. We are interested in an equation for the deformation

η(z, θ, t) ≡ R(z, θ, t) − R0(z, θ). (5)

Since R0 depends on the vessel configuration only, it is an input for the problem
and does not enter into the equations as a dynamical variable. The thickness of
the vessel h0 is neglected, such that we are considering it as a two dimensional
surface with unit normal vector n̂(z, θ, t). As described above, we demand its
velocity to be

w =
∂η

∂t
R̂. (6)

The fluid exerts a force per unit area upon the vessel given by T · n̂, and
possibly additional external forces. Then, for a wave-like behavior, the simplest
choice is

∂2η

∂t2
(z, θ, t) + b

∂η

∂t
+ cη = H, (7)

where b and c are positive constants linked to the elastic properties of the vessel,
as the Young’s and elasticity moduli. The first derivative should appear because
of the observational fact that given a small deformation to the vessel, the system
is relaxed to its original configuration after a short time period, thus b acts as
a damping restoring coefficient. Actually, this elastic relaxation time is small
compared to the evolution characteristic time of the system, thus the coefficient
b should be large enough. If we decide to simply neglect all other terms depending
on η we obtain the standard equations of a linear elastic media.

The term H is the total force per unit mass along the R̂ direction, and it is
composed by the stress and pressure forces exerted by the blood and the external
pressure force, such that the balance gives

H =
1
ρv

[∇j(P − Pext) + μ∇i(∇ivj + ∇jvi)
]
n̂j , (8)

where ρv is the mass density of the vessel wall. Since there is also a tension along
the z direction, we have to add constitutive dynamic terms to Eq. (7). This
is easily done by considering a second order derivative along z. Furthermore,
we should note that the angular symmetry considered so far leads to numeri-
cal instabilities—for example, a localized small deformation is instantaneously
reflected along a whole constant z ring. Thus, our final equation is

Hemodynamic Behavior of a Blood Vessel Network 285

∂2η

∂t2
(z, θ, t) − az

∂2η

∂z2
− aθ

∂

∂θ

(
∂η

∂θ
+ cθη

)
+ b

∂η

∂t
+ cη = H, (9)

where the coefficients are also aθ, cθ and az are linked to the viscoelasticity
properties of the vessel blood.

The equations for the whole system are (2), (3), (4), (8), and (9) subjected to
appropriate boundary conditions given below. Note that the interaction among
the vessel and the blood is given by the force H only, although it appears in
the equations also through w because of the choice of the reference frame in the
ALE formalism.

4.1 Boundary Conditions

We use Dirichlet boundary conditions for the ΓW region (See Fig. 3) by putting
v = w. This means that at the interface of the fluid with the structure, the
velocity of the fluid relative to the velocity of the structure at each point is zero.
We also use Dirichlet for Γ in by defining which is the input velocity. This cannot
be obtained for the problem itself, one should use it as an input or include in
the model the entire circulatory system.

For the region Γ out we use Neumann boundary conditions. Specifically, we
set T · n = 0, with n the unit normal vector to the boundary. This means that
the force over a particle at the boundary due to stresses in the output direction
is zero. It is a reasonable assumption because (1) the viscous forces only act
perpendicular to the motion; and (2) the pressure in the immediate left part
of the boundary is equal to the pressure on the immediate right part of the
boundary, which should be the case because the boundary Γ out is fictitious.

Fig. 3. Section of a blood vessel: Ω is the interior and it is the region in which the
fluid flows, ΓW is where the area in contact with the elastic blood vessel and it is a
piece of the boundary of Ω, the thickness of the blood vessel is h0. The other pieces
are the boundaries Γ in and Γ out, which are fictitious and chosen only for numerical
purposes. It is important to note that η is the deformation vector of the structure, and
it depends on the spatial and time coordinates.

286 N. Weinstein et al.

5 Conclusion

Simulating the hemodynamic and elastic behavior of a patient-specific model of
a vascular network is a multidisciplinary task. One of the greatest challenges is
to build a model and analyze it sufficiently fast to help vascular surgeons. Having
an initial, general model of a human circulatory network that can be adapted
to represent a patient-specific vascular network and developing the right high
performance computing tools is an important part of the solution. However, vas-
cular networks are biological systems that change continuously and allow the
circulatory system to adapt to changing demands. Formation of new blood ves-
sels (vasculogenesis), capillary network remodeling (angiogenesis) and increasing
the diameter of blood vessels (arteriogenesis) are the main biological processes
that allow blood vessel networks to adapt. The molecular regulatory network
involved in the control of vascular adaptation interacts with shear stress and cir-
cumferential stress through several different mechanoreceptors. Understanding
vascular remodeling will allow us to simulate not only what happens during a
vascular surgery but also during the recovery process until hopefully homeostasis
is reached. This is especially important when treating congenital diseases such
as arteriovenous malformations [38].

Acknowledgements. This work was supported by ABACUS, CONACyT grant
EDOMEX-2011-C01-165873. The numerical simulations for this work were performed
in the Abacus I supercomputer.

References

1. Monahan-Earley, R., Dvorak, A., Aird, W.: Evolutionary origins of the blood vas-
cular system and endothelium. J. Thromb. Haemost. 11(s1), 46–66 (2013)

2. Kässmeyer, S., Plendl, J., Custodis, P., Bahramsoltani, M.: New insights in vas-
cular development: vasculogenesis and endothelial progenitor cells. Anat. Histol.
Embryol. 38(1), 1–11 (2009)

3. Chillo, O., Kleinert, E.C., Lautz, T., Lasch, M., Pagel, J.-I., Heun, Y., Troidl, K.,
Fischer, S., Caballero-Martinez, A., Mauer, A., et al.: Perivascular mast cells govern
shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep.
16(8), 2197–2207 (2016)

4. Simons, M., Gordon, E., Claesson-Welsh, L.: Mechanisms and regulation of
endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17(10), 611–625
(2016)

5. Voß, S., Glaßer, S., Hoffmann, T., Beuing, O., Weigand, S., Jachau, K., Preim, B.,
Thévenin, D., Janiga, G., Berg, P.: Fluid-structure simulations of a ruptured
intracranial aneurysm: constant versus patient-specific wall thickness. Comput.
Math. Methods Med. 2016, 1–8 (2016). Article ID 9854539

6. Brown, A.J., Teng, Z., Evans, P.C., Gillard, J.H., Samady, H., Bennett, M.R.: Role
of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev.
Cardiol. 13(4), 210–220 (2016)

7. Morbiducci, U., Kok, A.M., Kwak, B.R., Stone, P.H., Steinman, D.A.,
Wentzel, J.J., et al.: Atherosclerosis at arterial bifurcations: evidence for the role
of haemodynamics and geometry. Thromb. Haemost. 115(3), 484–492 (2016)

Hemodynamic Behavior of a Blood Vessel Network 287

8. Gelfand, B.D., Ambati, J.: A revised hemodynamic theory of age-related macular
degeneration. Trends Mol. Med. 22(8), 656–670 (2016)

9. Causin, P., Guidoboni, G., Malgaroli, F., Sacco, R., Harris, A.: Blood flow mechan-
ics and oxygen transport and delivery in the retinal microcirculation: multiscale
mathematical modeling and numerical simulation. Biomech. Model. Mechanobiol.
15(3), 525–542 (2016)

10. White, A., Smith, F.: Computational modelling of the embolization process for the
treatment of arteriovenous malformations (AVMs). Math. Comput. Model. 57(5),
1312–1324 (2013)

11. Busch, K.J., Kiat, H., Stephen, M., Simons, M., Avolio, A., Morgan, M.K.: Cerebral
hemodynamics and the role of transcranial doppler applications in the assessment
and management of cerebral arteriovenous malformations. J. Clin. Neurosci. 30,
24–30 (2016)

12. Golovin, S., Khe, A., Gadylshina, K.: Hydraulic model of cerebral arteriovenous
malformations. J. Fluid Mech. 797, 110–129 (2016)

13. Penta, R., Ambrosi, D., Quarteroni, A.: Multiscale homogenization for fluid and
drug transport in vascularized malignant tissues. Math. Models Methods Appl.
Sci. 25(01), 79–108 (2015)

14. Chen, Q., Jiang, L., Li, C., Hu, D., Bu, J.-W., Cai, D., Du, J.-L.: Haemodynamics-
driven developmental pruning of brain vasculature in zebrafish. PLoS Biol. 10(8),
e1001374 (2012)

15. Humphrey, J.D., Harrison, D.G., Figueroa, C.A., Lacolley, P., Laurent, S.: Central
artery stiffness in hypertension and aging a problem with cause and consequence.
Circ. Res. 118(3), 379–381 (2016)

16. Yu, H., Huang, G.P., Yang, Z., Liang, F., Ludwig, B.: The influence of normal and
early vascular aging on hemodynamic characteristics in cardio-and cerebrovascular
systems. J. Biomech. Eng. 138(6), 061002 (2016)

17. Iacono, M.I., Neufeld, E., Akinnagbe, E., Bower, K., Wolf, J., Oikonomidis, I.V.,
Sharma, D., Lloyd, B., Wilm, B.J., Wyss, M., et al.: MIDA: a multimodal imaging-
based detailed anatomical model of the human head and neck. PLoS ONE 10(4),
e0124126 (2015)

18. Fujiwara, H., Momoshima, S., Akiyama, T., Kuribayashi, S.: Whole-brain CT
digital subtraction angiography of cerebral dural arteriovenous fistula using 320-
detector row CT. Neuroradiology 55(7), 837–843 (2013)

19. Wright, S.N., Kochunov, P., Mut, F., Bergamino, M., Brown, K.M.,
Mazziotta, J.C., Toga, A.W., Cebral, J.R., Ascoli, G.A.: Digital reconstruction
and morphometric analysis of human brain arterial vasculature from magnetic res-
onance angiography. Neuroimage 82, 170–181 (2013)

20. Davis, B., Oberstar, E., Royalty, K., Schafer, S., Strother, C., Mistretta, C.: Vol-
umetric limiting spatial resolution analysis of four dimensional digital subtraction
angiography (4D-DSA). In: SPIE Medical Imaging, pp. 94121B–94121B. Interna-
tional Society for Optics and Photonics (2015)

21. Lescher, S., Gehrisch, S., Klein, S., Berkefeld, J.: Time-resolved 3D rotational
angiography: display of detailed neurovascular anatomy in patients with intracra-
nial vascular malformations. J. NeuroInterv. Surg., 1–8 (2016). neurintsurg–2016

22. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.:
An image-based modeling framework for patient-specific computational hemody-
namics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008)

288 N. Weinstein et al.

23. Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D.,
Fangerau, M., Baumhauer, M., Maier-Hein, L., et al.: The medical imaging inter-
action toolkit: challenges and advances. Int. J. Comput. Assist. Radiol. Surg. 8(4),
607–620 (2013)

24. Hsu, C.-Y., Schneller, B., Alaraj, A., Flannery, M., Zhou, X.J., Linninger, A.:
Automatic recognition of subject-specific cerebrovascular trees. Magn. Reson. Med.
77, 398–410 (2016)

25. Klepaczko, A., Szczypiński, P., Deistung, A., Reichenbach, J.R., Materka, A.: Sim-
ulation of MR angiography imaging for validation of cerebral arteries segmentation
algorithms. Comput. Methods Programs Biomed. 137, 293–309 (2016)

26. Du, Q., Wang, D.: Tetrahedral mesh generation and optimization based on cen-
troidal voronoi tessellations. Int. J. Numer. Methods Eng. 56(9), 1355–1373 (2003)

27. Li, Y., Liu, Y., Xu, W., Wang, W., Guo, B.: All-hex meshing using singularity-
restricted field. ACM Trans. Graph. (TOG) 31(6), 177 (2012)

28. Hu, K., Zhang, Y.J.: Centroidal voronoi tessellation based polycube construction
for adaptive all-hexahedral mesh generation. Comput. Methods Appl. Mech. Eng.
305, 405–421 (2016)

29. Fedosov, D.A., Noguchi, H., Gompper, G.: Multiscale modeling of blood flow: from
single cells to blood rheology. Biomech. Model. Mechanobiol. 13(2), 239–258 (2014)

30. Rai, V., Rathore, D.S.: Analysis of viscosity of non-newtonian flow in blood vessels.
Int. J. Res. Comput. Eng. Electron. 3(6), 1–6 (2015)

31. Barbee, J.H., Cokelet, G.R.: The fahraeus effect. Microvasc. Res. 3(1), 6–16 (1971)
32. Albrecht, K., Gaehtgens, P., Pries, A., Heuser, M.: The fahraeus effect in narrow

capillaries (id 3.3 to 11.0 μm). Microvasc. Res. 18(1), 33–47 (1979)
33. Sankar, D., Hemalatha, K.: Pulsatile flow of Herschel-Bulkley fluid through

catheterized arteries-a mathematical model. Appl. Math. Model. 31(8), 1497–1517
(2007)

34. Priyadharshini, S., Ponalagusamy, R.: Biorheological model on flow of herschel-
bulkley fluid through a tapered arterial stenosis with dilatation. Appl. Bionics
Biomech. 2015, 1–12 (2015). Article ID 406195

35. Zheng, X., Ren, J.: Effects of the three-dimensional residual stresses on the mechan-
ical properties of arterial walls. J. Theor. Biol. 393, 118–126 (2016)

36. Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N.,
Quarteroni, A.: Fluid-structure interaction simulation of aortic blood flow. Com-
put. Fluids 43(1), 46–57 (2011)

37. Tricerri, P., Dedè, L., Deparis, S., Quarteroni, A., Robertson, A.M., Sequeira, A.:
Fluid-structure interaction simulations of cerebral arteries modeled by isotropic
and anisotropic constitutive laws. Comput. Mech. 55(3), 479–498 (2015)

38. Buell, T.J., Ding, D., Starke, R.M., Crowley, R.W., Liu, K.C.: Embolization-
induced angiogenesis in cerebral arteriovenous malformations. J. Clin. Neurosci.
21(11), 1866–1871 (2014)

Scaling Properties of Soft Matter
in Equilibrium and Under Stationary Flow

Armando Gama Goicochea(&)

División de Ingeniería Química y Bioquímica, Tecnológico de Estudios
Superiores de Ecatepec, Av. Tecnológico s/n, 55210 Ecatepec

Estado de México, Mexico
agama@alumni.stanford.edu

Abstract. A brief review is presented of the scaling of complex fluids, polymers
and polyelectrolytes in solution and in confined geometry, in thermodynamical,
structural and rheology properties using equilibrium and non-equilibrium dissi-
pative particle dynamics simulations. All simulations were carried out on high
performance computational facilities using parallelized algorithms, solved on
computers using both central and graphical processing units. The scaling
approach is shown to be a unifying axis around which general trends and basic
knowledge can be gained, illustrated through a series of case studies.

Keywords: Scaling � Polymers � Polyelectrolytes � Radius of gyration �
Couette flow � Viscosity � Friction coefficient

1 Introduction

Scaling is one of the most cherished concepts in physics and its applications to soft
matter have been as successful as in other areas of physics. At the heart of it is the idea
that if a system is self-similar and it is not under the influence of long range interac-
tions, then it should display properties whose general behavior is invariant under scale
transformations. A superb account of it is de Gennes’s treatise [1], where he uses
simple concepts to arrive at profound and general scaling laws for polymers under
various circumstances. This could be accomplished in part because of the advanced
state of the experimental efforts to understand the nature of complex fluids. Searching
for scaling is important also from a practical perspective, because quantitative pre-
dictions can be made about systems of vastly different chemical composition.

A few decades ago, there were also fundamental theoretical developments, such as
the renormalization group [2] and fractal geometry [3], which led to a robust under-
standing of scaling, particularly in physics. At the time Ref. [1] was written, molecular
simulation was still a novel tool and there were only a few works focused on testing
scaling laws. The advent of modern computers, with fast processors, efficient archi-
tecture and optimum algorithms have made of molecular simulation an indispensable
research tool, one that has become commonplace both in academia and in the pro-
ductive sector [4].

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 289–313, 2017.
DOI: 10.1007/978-3-319-57972-6_22

When testing scaling laws using molecular simulation, one faces the challenge of
reducing finite size effects that could potentially mask the underlying scaling phe-
nomena. Doing so means performing numerical simulations on systems of increasing
size, such that the phenomenon under study can be traced over considerable changes of
scale, which in turn requires longer simulation time. If one uses atomistically detailed
models [5], this task quickly becomes prohibitive or impractical due to the relatively
long range of basic interaction models such as the Lennard-Jones potential. Since all
simulations are of finite size, one must cut the range of the interactions using some
criterion, which may lead to artifacts unless large systems are considered [5].

In addition to the so-called long range corrections employed when the interactions
are long-ranged [5], there is also a systematic approach that helps simulate large
systems using moderately sized simulation boxes. Such approach, generally termed
“coarse-grained” models [6], typically consists of integrating out some degrees of
freedom, yielding effective interactions that can be thought of as potentials of mean
force rather than basic interactions. What one loses in atomic-scale detail is gained in
mesoscopic-scale information and in savings in computational time. Among the most
successful and popular coarse-grained methods is the one known as dissipative particle
dynamics [7] (DPD), introduced originally to study the rheology of colloidal suspen-
sions. Once its statistical mechanics foundations were correctly laid out [8], the
potential and versatility of DPD was quickly recognized and it became widely applied
to model systems as diverse a proteins [9], surfactants and polymers in solution [10],
biological membranes [11], paints [12] and even to phenomena such as thrombosis
[13]. The DPD model is now well known among practitioners of numerical simulation;
there are various reviews available that detail its foundations and some of its most
successful applications [14–16]. Therefore, for the sake of brevity, only what is per-
tinent shall be presented here; the reader is referred to the cited reviews for additional
details.

In this work revisit some of the recent work carried out by our group on scaling
properties of soft matter systems such as polymers in solution and under confinement,
polymer brushes and polyelectrolytes in equilibrium and under stationary flow, using
DPD. In Sect. 2 the essentials of the DPD model are presented briefly, followed in
Sect. 3 by the scaling of the interfacial tension in mixtures of organic liquids and water.
Section 4 is devoted to the scaling of polyelectrolytes under different solvent condi-
tions, while Sect. 5 focuses on various scaling features of polymer brushes. Results on
the scaling of polymer brushes under flow can be found in Sect. 6. In Sect. 7 the
scaling of polymers in two dimensions are revisited. The conclusions are laid out in
Sect. 8. Emphasis is placed on the discussion of physical ideas; for simulation details
and additional information the reader is referred to the original articles.

2 Models and Methods

The DPD model is based on the integration of the internal degrees of freedom of groups
of atoms used to construct the DPD particles or beads whose motion is solved through
the integration of Newton’s second law of motion, following an algorithm that is

290 A. Gama Goicochea

essentially the same as the one used in atomistic simulations [5]. The conservative
interaction between DPD particles is a linearly decaying, short range force:

FC
ij ¼ aij 1� rij

� �
r̂ij rij � rc

0 rij [rc

�
; ð1Þ

where aij is a strength of the interaction, which determines the thermodynamics of the
system, and rC is the cutoff distance that sets the length scale of the interactions. Notice
that the force remains finite even when the centers of mass of two interacting particles
overlap, meaning that DPD particles can in principle occupy the same space at the same
time. However, this does not occur in practice because the interaction strength aij is at
least 25 kBT=rC or larger, therefore there is a very large energy cost involved in the full
overlap of DPD particles. This was not originally recognized when electrostatic
interactions were introduced into the DPD model [17], as it was believed that the soft
nature of the DPD beads containing charges would lead to the formation of ionic pairs
of infinite electrostatic energy, which is of course unphysical. In Sect. 4 I show this is
not really a problem, and point charges can in fact be used in DPD leading to correct
and artifact-free conclusions.

The short range nature of the force in Eq. (1) is the key to the mesoscopic reach of
DPD and its capability of produce simulations with observation times of the order of
tens of microseconds, setting it at least three orders of magnitude apart from its all –
atom counterparts [4]. It is also the reason why one can do away with long range
corrections and why finite size effects in DPD are minimal [18]. Yet, what is perhaps
more advantageous is the DPD thermostat: the local viscosity of the fluid is modeled as
a dissipative force, whose energy dissipation is invested into local Brownian motion,
modeled by a random force. As is customary when these types of forces are present,
one must make sure that the fluctuation-dissipation theorem is obeyed; doing so in
DPD leads to a relation between the strengths of the dissipative (c) and random (r)
forces given by kBT ¼ r2

2c ; which sets up the thermostat [8]. All forces are pairwise

additive, leading to global momentum conservation. The conservative FC
� �

, dissipative
FD
� �

, and random FR
� �

forces acting between any two particles i and j, placed a
distance rij apart must be integrated in finite time steps to yield the momenta and
positions of all particles:

_pi ¼
X

j6¼i
FC
ij þ

X
j6¼i

FD
ij þ

X
j6¼i

FR
ij : ð2Þ

All forces between particles i and j are zero beyond a finite cutoff radius rc, which is
usually also chosen as rc � 1: The natural probability distribution function of the DPD
model is found to be that of the canonical ensemble [8], where N (the total particle
number), V, and T are kept constant, although it is equally possible to solve the system
using a Monte Carlo algorithm [4] under various ensembles of interest [18–20].
Polymer chains can be constructed following the Murat-Grest bead-spring linear chain
model [21], while surfaces can either be introduced using effective force fields [19, 22]
or by freezing layers of particles [23]. The chemical composition of the DPD particles
is incorporated into the value chosen for the conservative interaction strength, aij, see

Scaling Properties of Soft Matter in Equilibrium 291

Eq. (1), usually obtained from the Flory-Huggins solution theory [24]. Full details and
several applications of DPD can be consulted in recently published reviews [14–16].

3 Interfacial Tension Scaling

The pioneering work of Widom and collaborators [25, 26] established that the inter-
facial tension between two liquids at finite temperature, r Tð Þ; could be expressed as

r Tð Þ ¼ r0 1� T
TC

� �l

; ð3Þ

where TC is the critical temperature at which the interface becomes unstable, r0 is a
system-dependent constant, and l is the scaling exponent, whose currently accepted
value is l ¼ 1:26 [27]. On the other hand, the correlation length of the phases, n,
ignoring logarithm corrections, can be written as

n Tð Þ ¼ n0 1� T
TC

� ��m

; ð4Þ

where n0 is also system depending and m is the scaling exponent. Its value for the
three – dimensional Ising model is m ¼ 0:63 [28]. The energy of the liquid mixture,
kBT ; can be expressed as the product of the interfacial tension times the area defined by
the correlation length, which is generalized in d dimensions as nd�1; mathematically,
kBT � r Tð Þnd�1. As the system approaches its critical point kBT ! kBTC, which must
be temperature-independent; combining then Eqs. (3) and (4) yields the following
hyperscaling relationship between the scaling exponents in those equations [26]:

l ¼ d � 1ð Þm: ð5Þ

To test Eq. (5) one must first device a model to introduce the temperature depen-
dence into the DPD framework. The first work to accomplish that is due to Mayoral
and Gama Goicochea [29], where temperature changes are introduced through the
temperature dependence of the conservative interaction strength, aij, see Eq. (1). The
dependence of aij on temperature is in turn obtained from the dependence of the
Flory-Huggins parameter on temperature by means of the solubility parameters.
Equation (5) was tested in 3D for mixtures of organic solvents (dodecane, benzene and
hexanol) and water using this procedure, at several temperatures [30]. The results for
the interfacial tension as a function of reduced temperature are shown in Fig. 1, along
with the best fit to the scaling function given by Eq. (3). First, it is reassuring to find
that the predictions of the DPD simulations for the interfacial tension collapse on a
single curve despite the different chemical composition of the systems, i.e., there is
scaling. Secondly, the scaling exponent obtained from the simulations is l ¼ 1:2;
which is close to the universality accepted value for 3D liquids, l ¼ 1:26:

The natural correlation length in these mixtures can be defined as the thickness of
the interface between the immiscible liquids, and by tracing its change with varying

292 A. Gama Goicochea

temperature one can compare to the predictions of Eq. (4) [30]. Figure 2 displays the
evolution of the correlation length at different temperatures, for the particular case of
the mixture of hexanol (red data) and water (blue data). The correlation length is found
to grow with increasing temperature, as expected; in fact, it should be infinite when the
system reaches the critical temperature, as usual for several critical properties.

Fig. 1. Normalized interfacial tension as a function of reduced temperature for three mixtures of
organic solvents with water. The solid line represents the best fit to Eq. (3), with l ¼ 1:2. The
value of r0 is 81.8 for dodecane/water, 71.9 for benzene/water and 57.3 for hexanol/water.
Adapted from Ref. [30].

Fig. 2. Concentration profiles of the water/hexanol interface at three different temperatures. The
thickness of the interface, labelled as n in the panels shown in the figure, is defined as the
correlation length of the system, see Eq. (4). Adapted from Ref. [30]. (Color figure online)

Scaling Properties of Soft Matter in Equilibrium 293

Following the same procedure for the mixtures water-benzene and water-dodecane
leads to reasonable collapse of all data on a single curve, as seen in Fig. 3. The solid
line in Fig. 3 is the fit to Eq. (4), with m ¼ 0:63; in agreement with the value expected
for the 3D Ising model [28]. The average value for m found from the data shown in
Fig. 3 is m ¼ 0:67; hence l ¼ 2n ¼ 1:34: The prediction from Eq. (5) for d = 3 is
l ¼ 2n ¼ 1:26 for the Ising model in 3D, therefore our simulations confirm Widom’s
hyperscaling relation, Eq. (5), at least for d = 3.

It is important to ask why the interfacial tension of 3D liquids modeled with DPD
appears to belong to the 3D Ising universality class [28]. A simple argument can be
provided to supply such an interpretation. The Ising model can be equally applied to
spin up/spin down sites (its original purpose) as to occupied/empty sites, or equally
well to (site occupied by liquid 1)/(site occupied by liquid 2) systems, see illustration in
Fig. 4. This is precisely what occurs at the interface between immiscible liquids, as
shown by the region where n is defined in Fig. 2. In addition to DPD, this equivalence
is expected to hold for other interaction models, as long as they are short-ranged, so
that next-nearest neighbor interactions can be neglected.

Fig. 3. Correlation length in mixtures of organic solvents with water, as a function of reduced
temperature. The solid line is the best fit to Eq. (4), with critical exponent m ¼ 0:63; see text for
details. Adapted from Ref. [30].

294 A. Gama Goicochea

4 Scaling of the Radius of Gyration of Polyelectrolytes

Early work by Flory and others [1] led to the conclusion that the characteristic length of
a polymer in solution, its radius of gyration Rg, obeys a scaling law in terms of its
polymerization degree, N. Such scaling law is given by

Rg ¼ Nv; ð6Þ

where m is the scaling exponent. Flory arrived at the conclusion that m ¼ 3= dþ 2ð Þ
using insightful yet simple arguments [1]; this relation is found to hold reasonably well
in experiments and simulations, except for d = 3, where renormalization group cal-
culations yield the universally accepted value m ¼ 0:588 [31]. Following de Gennes’s
analogy between polymer statistics and critical phenomena [1], an equivalence can be
expressed between the proximity of temperature to the critical point (see Eq. (4)), in
critical phenomena, and the polymerization degree of large polymers, see Eq. (6):

N� 1= 1� T=TCj j: ð7Þ

If such analogy holds for the relation between the interfacial tension scaling exponent
l, see Eq. (3), and the scaling exponent of a polymer’s radius of gyration m, see
Eq. (6), then Eq. (5) in two dimensions (2D) reads simply l ¼ m. Now, if the corre-
lation length of a mixture of immiscible liquids in 2D follows Ising’s universality class
in 2D, where m = 1 [28], then l ¼ 1. If, on the other hand, m obeys the scaling expected
for the gyration radius of polymers in solution under good – solvent conditions, then

Fig. 4. An illustrative interpretation of the reason why the interfacial tension between liquids
predicted by DPD belongs to the 3D Ising universality class. Adapted from the Table of Contents
graphic of Ref. [30].

Scaling Properties of Soft Matter in Equilibrium 295

m ¼ 3=4; and applying Widom’s hyperscaling relation, Eq. (5), one should find that
l ¼ 3=4 also. Research is under way to test these scaling relations and find out which
limit applies.

The two leading arguments usually provided to understand scaling properties in
polymers are, on the one hand, the self-similar structure of polymers on different scales,
and on the other, the absence of long range interactions. The latter is not fulfilled in
polyelectrolytes, which are electrically charged polymers. However, experiments [32]
and theories [33] have determined that, under special circumstances polyelectrolytes do
show scaling characteristics. To help understand recent experiments such as those
performed on DNA molecules under changing ionic concentration [34], our group has
performed extensive DPD simulations of polyelectrolytes, searching for scaling
properties.

Electrostatics in DPD was introduced first in [17] following a simple idea: let every
charged particle carry a spatially decaying distribution of charge so that when such
distribution is integrated over volume one obtains the full charge carried by the DPD
particle. This charge-distribution method was employed to predict the changes in the
radius of gyration of a single polyelectrolyte immersed in a theta solvent (all
non-electrostatic interactions are equal) while increasing the ionic strength [35]; the
results are presented in Fig. 5. For both polyelectrolytes, the short (a) and larger one
(b), there appears a minimum in the radius of gyration as the ionic strength is increased,
with the minimum being dependent upon N. It is however noteworthy that re-expansion
of the polyelectrolyte is found when the ionic strength is increased beyond that where
the minimum Rg is obtained, regardless the polymerization degree. This phenomenon,
which has been observed in experiments [36] and is confirmed by simulations that use
interactions different from those used by DPD [37] has been interpreted as being due
to charge inversion clouds around the charged monomers on the polyelectrolyte
chain [35].

Solvent quality is found to play a major role in determining the radius of gyration of
polyelectrolytes. Although most simulations and analytic theories are developed for
good-solvent conditions under the assumption that is the experimentally relevant case,
this assumption is increasingly challenged in several industrial application [38].
Therefore, simulations of the relatively short polyelectrolyte (N = 32) were performed
for the three solvent conditions to determine its gyration radius at increasing ionic
strength; the results can be found in Fig. 6. To change solvent quality one needs only
modify the strength of the maximum conservative DPD force, see Eq. (1) and the
legend in Fig. 6. As expected, the radius of gyration of the polyelectrolyte dissolved in
a poor solvent is considerable smaller than in any other case, see black triangles in
Fig. 6. The influence of electrostatics is not enough to overcome the short range
interactions and full re-expansion of the polyelectrolyte after it has collapse is not
observed. By contrast, theta- and good-solvent conditions (circles and squares in
Fig. 6, respectively) lead to essentially the same radius of gyration. One important
difference is that the contraction–re-expansion phenomenon found in theta-solvent is
less pronounced when the polyelectrolyte is under good-solvent conditions, since by its
very definition, it is the solvent that leads to the largest possible polyelectrolyte con-
figuration. The reader is referred to [35] for further details and discussion.

296 A. Gama Goicochea

Performing a series of simulations for increasing polymerization degree, it is pos-
sible to extract the exponent m defined in Eq. (6), if such scaling exists for polyelec-
trolytes. What is found is that in fact such scaling does exist and the value of the scaling
exponent can be larger than it is for neutral polymers [1]. Before attempting to under-
stand why scaling behavior is obtained when long range interactions are present, let us
first consider a somewhat alternative approach to incorporate electrostatics to the DPD
model. As announced in Sect. 2, here I briefly review very recent work [39] on the use of
point charges (rather than charge distributions) in conjunction with Ewald sums, and its
application to the prediction of the scaling exponent m for polyelectrolytes. Let us first
recall, see Eq. (1), that DPD particles are “soft”, thus they can overlap completely. Since

0.00 0.05 0.10 0.15 0.20 0.25 0.30
110

111

112

113

114

R g
2

CS

N = 32

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
300

310

320

330

340

350

360

R g
2

Cs

N = 64

(b)

Fig. 5. Radius of gyration for a polyelectrolyte immersed in a theta solvent as a function of the
salt (NaCl) concentration of valence (4:1) for (a) polymerization degree N = 32, and (b) for
N = 64. Axes are shown in reduced DPD units; lines are only guides for the eye. Adapted from
Ref. [35].

Scaling Properties of Soft Matter in Equilibrium 297

the electrostatic interaction blows up when the particles overlap, Groot [17] envisaged a
way to prevent this from happening. He argued that using distributions of charge, with
an appropriately modified force interaction when particle overlapping began to occur,
was sufficient to avoid such artifact. Using distributions of charge means that one must
provide a mean to solve Poisson’s equation for those distributions, which cannot be
accomplished exactly, and some ansatz must be used to calculate the full electrostatic
interactions and forces. Although this research program is useful and leads to correct
results, it suffers from its need to resort to interpolating formulas to solve Poisson’s
equations. Our approach [39] begins with the realization that DPD particles are only
really soft for the smallest coarse-graining degree, i.e., the grouping of one solvent
molecule per DPD particle, which is not as useful as larger coarse-graining degrees to
model soft matter at the mesoscopic level. Since increasing the coarse-graining degree is
tantamount to “hardening” the DPD particles, which in turn makes full particle overlap
improbable, it is then unnecessary to use charge distributions and point charges can
instead be used. For these one can use the full machinery of the Ewald sums, without
relying on electrostatic potential energy ansatz [5].

To see how good the point-charge approach can be in DPD, Fig. 7 shows a diagram
displaying the percentage of ionic pairs formed when the coarse-graining degree (Nm)
and point charge strength are increased. The “hardening” of the DPD particle increases
if Nm is increased, while increasing the charge requires also of harder DPD particles to
avoid the formation of artificial ionic pairs.

Fig. 6. Radius of gyration for the polyelectrolyte with N = 32 as a function of ionic strength,
under conditions of different solvent quality. The latter is modified through the conservative DPD
interaction strength, see Eq. (1), as indicated in the legend. All quantities are reported in reduced
DPD units. Adapted from [35].

298 A. Gama Goicochea

Using point charges and following a procedure similar to that described in the
discussion of Fig. 6, long simulations were carried out for polyelectrolytes of
increasing polymerization degree under theta- and good-solvent conditions. The results
are shown in Fig. 8, where only the value of the scaling exponent m is reported, for
brevity. However, the reader is made aware that each point in Fig. 8 represents a series
of simulations for a polyelectrolyte chain of increasing polymerization degree, so that a
Rg vs N curve could be generated and the scaling exponent extracted from a linear fit
(in a log-log plot). Therefore the need to perform large simulations in relatively short
times led us to implement our code so that it could be executed in fast graphical
processing units (GPU). The scaling exponent is reported in Fig. 8 as a function of the
salt content. The dashed line is the expected value of the scaling exponent for
three-dimensional neutral polymers in good solvent, namely m ¼ 0:588 [31], while the
dot – dashed line is Flory’s prediction, m ¼ 0:6 [1]. For theta – solvent conditions in
3D one expects m ¼ 0:5 for neutral polymers, which is not obtained for polyelec-
trolytes, as Fig. 8 clearly shows. The scaling for polyelectrolytes in theta solvent is
close to the scaling expected for neutral polymers under good-solvent conditions, while
polyelectrolytes in good solvent scale like ideal neutral polymers. This can be inter-
preted as thinking that electrostatic interactions modify solvent quality as well as
neutral ones do. That the scaling exponent is larger for polyelectrolytes than for
polymers may perhaps be expected also, since electrostatic repulsion between neigh-
boring charged monomers along the polyelectrolyte chain would lead to a more
stretched out configuration. What might not be obvious is why scaling is obtained
despite the presence of electrostatics, as Fig. 8 shows. Once polyelectrolytes are
introduced, even at zero ionic strength, counter ions must also be added to the system,
to keep it globally neutral. Those counter ions tend to group around charged monomers
in the polyelectrolyte, screening the charges in it and effectively reducing the range of
the electrostatic interaction. Then, the same arguments used for scaling in neutral

Fig. 7. Three-dimensional diagram for point charges in DPD, illustrating the formation of ionic
pairs, as a function of the coarse-graining degree Nm and the value of the point charge q. All
simulations were run on GPU’s. Adapted from [39].

Scaling Properties of Soft Matter in Equilibrium 299

polymers can be recalled. This is admittedly an overly simplified view, one that does
not take into account important aspects such as the change in the persistence length
with charge, Kuhn’s length, Manning’s condensation, and the solvent’s permittivity
change with charges [40]. Although important for a full understanding of polyelec-
trolytes in solution, those aspects are not as fundamental in yielding scaling charac-
teristics as the shortening of the interaction length, while preserving self-similarity on
different scales. The rest of this chapter is devoted to results for neutral systems.

5 Scaling Properties of Polymer Brushes in Equilibrium

When polymer chains are grafted on a surface and the grafting sites are closer to each
other than the radius of gyration of the polymers in solution, they form arrangements
that resemble brushes. They are known to display some scaling properties that depend
on parameters such as grafting density, polymerization degree, and of course solvent
quality. They are also important from a technological point of view, since polymer
brushes can be very effective as colloidal dispersion stabilizers when used as coats on
colloidal particles, such as in paints [12]. Polymer brushes also constitute excellent
lubricating tools, able to reduce friction between brush-coated surfaces by three-orders
of magnitude [42]. Since those works are well known [43], I shall focus here on a less
known but increasingly important type of polymer brushes: biological polymer bru-
shes. One particular example that draws our attention is the case of biological brushes

0.0 0.4 0.8 1.2 1.6 2.0

0.58

0.59

0.60

0.61

ν

M

 good solvent
 theta solvent

Fig. 8. The scaling exponent of the radius of gyration as a function of polymerization degree, m,
see Eq. (6) obtained for a polyelectrolyte chain of increasing size, as a function of increasing
ionic strength (M). The dashed and dot – dashed lines are included as reference to the currently
accepted value for neutral polymers in good solvent in 3D (n = 0.588) and Flory’s prediction. All
simulations were performed on GPU cards, using the SIMES code [41]. Adapted from [39].

300 A. Gama Goicochea

on the surface of healthy and cancerous human cervix epithelial cells. Various types of
physical probes have been able to detect linear protuberances in the form of brushes
covering the surfaces of cells [44]. Those brushes are complex entities, described as
microvilli, microridges and cilia, thought to be made of filaments of acting. Experi-
ments using atomic force microscopy (AFM) detected different mechanical response
between the surface of cancerous and healthy cells [45], with those differences being
attributed to the brushes.

Using DPD simulations, most of those results have been interpreted and are now
understood [46]. In particular, the force exerted by the mesoscopic tip of an AFM on
the surface of healthy epithelial cervical cells covered with biological brushes has been
correctly predicted, as shown in Fig. 9. Notice also that both experiments and
numerical predictions are found to be in agreement with the polymer brush scaling law
proposed by Alexander and de Gennes, which can be written as

F�F0e
�2ph=L; ð8Þ

when 0:2� h=L� 0:9; see [47]. In Eq. (8) F0 is a constant expressed in terms of the
thermal energy, the radius of curvature of the AFM tip, and the brushes grafting density
[45]. The force decays linearly on a semi-log scale, with slope proportional to the
reduced brush thickness (h/L), as Fig. 9 illustrates. The physical arguments that lead to
the scaling predicted by Eq. (9) can be stated as follows: as the brush is compressed,
the local osmotic pressure is increased. This contribution must compete with the
attractive elastic energy stored in the polymer chains, leading to the scaling law in
Eq. (8) [1]. This accuracy of DPD simulations in capturing scaling behavior in polymer
brushes is not accidental as it has been found to be successful in other applications, see
for example [22]. Additional examples are displayed in Fig. 10.

Fig. 9. Force applied by an AFM probe to the surface of normal cervical epithelial cells covered
by biological brushes as predicted by DPD simulations [46] (a), and determined experimentally
[45], (b). The solid line is the best fit to the Alexander-de Gennes’s brush scaling law, see text for
details. The x-axis was normalized by the average size of the unperturbed brushes. Adapted from
the supplementary information of Ref. [46].

Scaling Properties of Soft Matter in Equilibrium 301

The results of DPD simulations presented in Fig. 10 (solid symbols) along with
their fit to the Alexander-de Gennes scaling law (dashed lines) correspond to a model
cancerous epithelial cell covered by brushes of three different lengths and grafting
densities [46]. The model was constructed following experimental findings on that type
of cell, which showed that cancerous cervical epithelial cells were covered by a thick
small brush, coexisting with less dense, medium sized chains; the micrographs also
displayed a rare, much less dense and much larger third brush [45]. Fitting the surface
force to a three-brush Alexander-de Gennes scaling force, given by

F
R
=

kBT
r2c

� �
¼ A1e

� x�x0ð Þ=L1 þA2e
� x�x0ð Þ=L2 þA3e

� x�x0ð Þ=L3 þB ð9Þ

yields the dashed lines shown in Fig. 10. Obviously, the predictions are in excellent
agreement with the scaling and with the experimental trends. In Eq. (9) the lengths of
the three different brushes are labelled Li, x0 is the complete three-length brush max-
imum compression, and Ai and B are adjustable constants [46]. The values of all these

4 6 8 10 12

10-1

100

101

Soft solid brush
Stiff solid brush(F

/R
)/

(k
BT
/r c

2)

h/rc
Fig. 10. Force applied by a mesoscopic sized tip of an AFM per its radius of curvature, as a
function of the distance between the surface of cancerous epithelial cervical cells and the AFM’s
tip, obtained from DPD simulations [46]. Solid triangles correspond to brushes made up of chains
where each monomer is joined to its neighbors by soft springs. Solid circles correspond to
brushes with stiff springs; chains’ heads in both soft and stiff brushes are fixed on the surface of
the cell, thereby their label as “solid”. Dashed lines are the fits to the Alexander-de Gennes
scaling adapted to a three-length brush, as found in experiments [45], see text for details. Adapted
from the supplementary information of Ref. [46].

302 A. Gama Goicochea

parameters obtained from regression analysis are also in excellent agreement with the
model parameters used in the simulations; for full details the reader is referred to [46].

It is satisfying to find that physical models such as the DPD model and its ther-
mostat are successful in reproducing complex phenomena occurring in many-body
systems, such as those representing biological brushes. The fundamental reasons
behind this success are found in the DPD model interactions, which despite the fact
they are short range, they still lead to a non-vanishing second virial coefficient [24].
This sets the DPD model ahead of mean-field theories, where chain-chain interactions
and even solvent interactions are neglected. There are weak but finite DPD interactions
between chains in brushes, an aspect that several popular scaling theories neglect [48],
one that is fundamental in capturing many-body collective phenomena, as typically
required for scaling laws to work.

6 Scaling Properties of Polymer Brushes Under Flow

Scaling laws of dynamical properties of polymer brushes have been developed, some of
which are briefly discussed in this section, particularly with focus on brushes under
stationary, Couette flow [49]. Important technological applications demand funda-
mental knowledge of the properties of polymer brushes under flow, such as those
where brushes are used as friction reducing agents [50]. Basic research in this direction
has helped the plastic industry design better and more efficient schemes for the pro-
duction of plastic bags, for example, so that users can separate the sheets of their plastic
bags more easily when they go grocery shopping [51]. No less important is the basic
understanding of the mechanisms that give rise to scaling trends even when polymer
brushes are subjected to flow. In what follows I show some results our group has
obtained regarding the scaling of dynamical properties of polymer brushes, with focus
on two measurable quantities: viscosity of a fluid composed of polymer brushes under
flow, and the friction coefficient between those opposite brushes and the solvent.

The setup of the simulations reported in this section is as follows. Polymer chains
are grafted by one of their ends to parallel surfaces placed at the ends of the simulation
box in the z-direction, see Fig. 11. Those ends, represented by blue beads in Fig. 11,
are subjected to an external force that makes them move to the right (top surface in
Fig. 11) with constant velocity v0, while the beads grafted to the bottom surface move
to the left with constant velocity – v0. This setup leads to a linear velocity gradient for
all particles confined within the pore of width D shown in Fig. 11; this type of sta-
tionary flow is known as Couette flow [49]. The shear rate in this situation is defined as
_c ¼ 2v0=D; which is constant since the velocity of the grafted beads and the spacing
between the surfaces are constant. The viscosity can then be expressed as follows:

r ¼ g _c; ð10Þ

where r ¼ Fxh i=A is the shear stress on the sample, given by the mean force on the
particles along the x direction divided by the transversal area of the surfaces, see
Fig. 11.

Scaling Properties of Soft Matter in Equilibrium 303

The coefficient of friction can also be obtained from the simulation setup shown in
Fig. 11, as the ratio of the average force along the x direction to the average force along
the z direction, i.e. perpendicularly to the wall, as given by

l ¼ Fxh i= Fzh i: ð11Þ

Non Newtonian fluids, and polymer fluids usually belong to this category, are those
with viscosities that depend on the applied shear rate, as given by Eq. (10). Shear
thinning behavior is found in many polymer liquids, namely their viscosity is reduced
when shear rate is increased. There is a critical shear rate, _c�, below which the fluid
behaves as a Newtonian fluid. For values larger than _c� shear thinning behavior sets in.
In fact, it is possible to define a universal dimensionless number, the so-called Weis-
senberg number [52], We; given by We ¼ _c= _c� so that We� 1 signals non Newtonian
behavior.

Figure 12 shows the results of several DPD simulations, performed on brushes of
different polymerization degree, subjected to increasing flow under theta-solvent con-
ditions. The idea behind those simulations was to determine if characteristics such as
increasing polymer length eventually lead to size-free physical trends. Let us first focus

Fig. 11. Snapshot of the simulation cell used to model polymer brushes under stationary flow.
Blue beads represent the ends of the brushes grafted on the surfaces (not shown), which are
moved by an external force so that they move at constant speed v0 to the right (upper surface) or
to the left (lower surface). The rest of the polymer chains are shown in ochre beads; the solvent
particles are not shown for simplicity. (Color figure online)

304 A. Gama Goicochea

on panel (a) in Fig. 12, where the dynamic viscosity of brushes—at the same grafting
density for all cases reported in Fig. 12—is shown as a function of increasing Weis-
senberg number, We. Predictions of simulations of polymer brushes in theta-solvent

Fig. 12. DPD non-equilibrium simulations of polymer brushes. (a) Reduced dynamical
viscosity as a function of the Weissemberg number (We) for polymer brushes of three different
lengths, as indicated by the legend. The solid line represents the fit to the scaling model proposed
by Galuschko et al. [52]. (b) Reduced friction coefficient between brushes of increasing
polymerization degree as a function of We. Notice scaling behavior is captured for both
properties when We > 1, as indicated by the solid lines. Adapted from [54].

Scaling Properties of Soft Matter in Equilibrium 305

conditions under increasing shear flow rate show that scaling behavior is obtained for
the viscosity of polymer brushes regardless the polymerization degree, where the scaling
exponent is found to be equal to f ¼ �0:31 on a log-log scale, see Fig, 12(a).

The reduced coefficient of friction for the same polymer brushes as those reported in
Fig. 12(a) is shown in Fig. 12(b), as a function of We. Once again, scaling trends
independent of the polymerization degree are obtained once We� 1; with the scaling
exponent being j ¼ 0:69: Remarkably, universal curves are obtained for all polymer-
ization degrees modeled [52], and a relationship can be established between the scaling
exponents of the viscosity and the friction coefficient, yielding the equation (see [52])

j� f ¼ 1; ð12Þ

where j ¼ 0:69 and f ¼ �0:31 for polymers under theta-solvent conditions [54].
Simulations carried out by other groups using different model interactions for polymers
under good solvent conditions yield values for these scaling exponents given by j ¼
0:57; and f ¼ �0:43 [52], which are clearly different from those obtained for brushes
in theta solvent. However, it is most remarkable that Eq. (12) is equally fulfilled,
regardless the solvent quality. Scaling behavior is obtained for polymer brushes under
strong confinement ðD 	 RgÞ and Couette flow (We
 1) because chains are strongly
stretched along the shear direction, giving rise to a situation where flow plays the role
of an external field whose role is mostly brush alignment [52]. Therefore, for large
N and under strong flow and confinement, polymers appear again to be self-similar and
scaling ensues. Under those conditions, the brushes whose scaling is reported in
Fig. 12 behave like polymer melts, for which the scaling exponent m, see Eq. (6), is
m ¼ 0:5. Then, it can be shown [52] that l=l0 ¼ Fx _cð Þh i= Fx _c�ð Þh i ¼ N=N�0:5, and that
N�We6=13 which combined yield l=l0 ¼ We9=13 ¼ Wej, or j � 0:69; using Eq. (12)
one gets f ¼ �0:31, in excellent agreement with the results shown in Fig. 12 [54].

Before leaving this section I comment briefly on the scaling of polymer brushes
under flow when there are also free chains of the same type of polymers that make up
the brushes. This is not only of academic interest but it is also important in plastic sheet
production, where polymers are injected into the plastic matrix (which later will
constitute the plastic sheet) so that they migrate to the surfaces of the matrix during the
extrusion process. As the plastic cools, more and more polymer chains migrate,
forming brushes, thereby reducing friction between sheets and energy consumption.
However, some chains get desorbed and get trapped between opposite sheets, creating
a complex confined fluid, one that includes free polymer chains, polymer brushes, and
solvent particles. The question then arises as to whether those free chains help reduce
the coefficient of friction (COF) or not. Figure 13 illustrates the process just described,
where the COF and the viscosity are reported also. Notice that in this case the variable
is not the shear rate but the polymer chains’ grafting density, C [55]. The results shown
in the center of Fig. 13 have been found to be in excellent agreement with experiments
performed in both academia and in the private sector [56], but since the focus of this
chapter is on scaling properties, I invite the interested reader to review Ref. [55], and
references therein.

In Fig. 14, I show the average force along the direction perpendicular to the sur-
faces on which polymer chains are grafted, as a function of their grafting density under

306 A. Gama Goicochea

Fig. 13. Schematics of the polymer chains migration (green molecules) to the surfaces of the
plastic matrix (orange colored sheets), where they form brushes as the plastic cools. Some chains
are desorbed and form free aggregates, interacting with the brushes and the solvent (red
particles). Couette flow is applied and the COF (black squares) and viscosity (red circles) are
calculated at increasing brush grafting density (C). Adapted from the Table of Contents Graphic
of Ref. [55]. (Color figure online)

Fig. 14. Average force along the direction perpendicular to the confinement of polymer brushes
(red squares), and brushes plus free chains (blue circles) as a function of polymer grafting
density, under constant Couette flow, obtained using DPD simulations. The dashed line is the fit
to the Alexander-de Gennes (AdG) [47] and Kreer-Balko (KB) [53] scaling laws, see Eqs. (13)
and (15), respectively. Adapted from [55]. (Color figure online)

Scaling Properties of Soft Matter in Equilibrium 307

theta solvent conditions. Notice the scale on both axes is logarithmic. The squares are
results of DPD simulations where only brushes are subjected to constant Couette flow;
the circles correspond to DPD simulations of brushes and free polymer chains under
flow. It is tempting to apply the Alexander-de Gennes (AdG) scaling law to this case,
even though it was not derived for brushes under flow. For the present purposes, let us
write the AdG law as follows:

Fzh i ¼ AkBTf a;D;Nð ÞCy; ð13Þ

y ¼ 3m
3m� 1

: ð14Þ

In Eq. (13) A is the surfaces’ transversal area, and f is a function that depends on the
polymer’s monomer size, a, the distance between surfaces, D, and the polymerization
degree, but it does not depend on C; therefore it is not shown here, for simplicity. The
exponent y depends on the familiar exponent m. For theta-solvent polymers, m ¼ 0:5
and y ¼ 3. Another scaling theory, proposed recently, is that of Kreer and Balko’s
(KB) [53], which predicts that

Fzh i ¼ AkBTg a;D;Nð ÞCy0 ; ð15Þ

y0 ¼ 2þ 5m
3 3m� 1ð Þ : ð16Þ

The function g in Eq. (15) depends on the same variables as function f in Eq. (13),
although they are different functions. However, their explicit form is not relevant to the
present discussion. What is important is to note that y and y′ are both equal to 3 for
m ¼ 0:5, even though they are based on different assumptions. The dashed line in
Fig. 14 is the fit to a function �C3, which indicates that there is scaling for these
systems, and that the presence of free chains does not change the scaling properties of
the compression force of polymer brushes in a theta solvent.

The fact that Eqs. (13) and (15) lead to the same scaling exponent means that
chain-chain interaction and brush interdigitation (allowed by KB but not by AdG) are
not the principal factors that give rise to scaling, under theta conditions. Other aspects
define the scaling for these systems, such as the compression (D) and the polymer-
ization degree. The fact that both systems (only brushes and brushes plus free chains)
are under flow does not affect the scaling either. The physical reason is to be found in
the fact that D does not change. Differences in scaling behavior between equilibrium
and non-equilibrium simulations of polymer brushes are expected to occur for the force
along the x direction, but that is beyond the scope of the present work.

308 A. Gama Goicochea

7 Scaling in Lower Dimensions

Lastly, I present some results for scaling of polymers in two dimensions (2D), with
particular emphasis on the scaling of their disjoining or solvation pressure P [57].
When fluids are confined, the component of the pressure tensor along the direction
normal to the confinement (PN) is in general different from other components; in
particular, it is different from the unconfined, bulk pressure (PB). Such difference is
precisely P; it is important because it can be used as a means to gauge colloidal
stability since P is proportional to the free energy difference between the bulk and
confined systems, see for example [58]. It can be measured using a surface force
apparatus, or with AFM [47]. In systems with varying concentration of a given com-
ponent, the disjoining pressure should be proportional to the osmotic pressure p. The
latter was shown a long time ago [59] to obey the following scaling relation:

p� c
md

md�1; ð17Þ

where c is the monomer concentration, d the spatial dimension, and m the scaling
exponent of the Flory radius. Given the fact that p and P are related, one should expect
that the latter obeys a scaling law as well.

Fig. 15. Grand Canonical Monte Carlo simulations of polymer confined on quasi 2D space
using the DPD interaction model. The y axis is the disjoining pressure and the x axis represents
the polymers’ monomer concentration. The symbols represent data for chains of various
polymerization degrees, as indicated by the legend. The solid line is the fit to Eq. (18) with
m2d ¼ 4=7; see text for details. Both axes are reported in reduced DPD units. The cartoon in the
upper left corner shows the simulation setup; red beads are solvent particles and blue beads are
monomers that make up the chains. Adapted from [60]. (Color figure online)

Scaling Properties of Soft Matter in Equilibrium 309

For polymer chains under strong confinement along the z direction, see schematic
representation in the inset in Fig. 15, the chains are effectively restricted to move on a
quasi-2D plane. Following arguments similar to those used by des Cloiseaux to obtain
Eq. (17) [59], but with the most important difference that the separation between sur-
faces, h, remains small but finite, the author and Pérez showed in [60] that P scales as

P
kBT

� c2m2d= 2m2d�1ð Þ; ð18Þ

where m2d represents the value of the ubiquitous Flory’s scaling exponent m in 2D (see
Eq. (6)), whose value depends not only on d but also on solvent quality. The scaling of
P proposed in Ref. [60] and shown in Eq. (18), the first ever reported for the disjoining
pressure, was tested with DPD simulations of a fixed number of polymer chains under
increasing confinement (reducing h, see diagram in Fig. 15). By reducing the spacing
between the surfaces, the volume is reduced and monomer concentration, c, can be
increased. This renders the simulation of several polymer concentrations unnecessary,
since with a fixed number of chains one can sweep over several monomer concen-
tration values.

When the distance between the surfaces is reduced, the fluid confined may not be in
the same state of thermodynamic equilibrium, unless the chemical potential between it
and the surrounding fluid is kept constant. This restriction means that simulations of
confined fluids must be performed in the Grand Canonical ensemble, where in addition
to volume and temperature, the chemical potential must also be kept constant [61].
Failure to do so may lead to vastly different predictions between constant-density
simulations and constant chemical potential simulations, see [62]. Figure 15 shows the
results of Monte Carlo simulations in the Grand Canonical ensemble for a fluid con-
taining polymer chains and solvent particles, interacting through DPD forces [19],
under theta-solvent conditions. Only solvent particles are exchanged between the
confined fluid and the virtual reservoir.

The different symbols in Fig. 15 correspond to chains for different polymerization
degree, ranging from N = 28 up to N = 128; once again it is quite remarkable to find all
data collapse into a single curve, signaling that scaling occurs. The solid line in Fig. 15
corresponds to the best fit to the function P� c8; comparing this exponent with the one
predicted by Eq. (18) yields m2d ¼ 4=7. This is precisely the same value predicted by
other scaling theories for two-dimensional polymers under theta-solvent conditions [63,
64]. Simulations performed for quasi-2D chains under good solvent conditions (not
reported here for brevity) of the disjoining pressure for polymers of various poly-
merization degrees yield the commonly accepted value, m2d ¼ 3=4 [1]. Therefore, the
scaling law predicted by Gama Goicochea and Pérez in [60], Eq. (18), is very robust.
For more discussion about the implications of this scaling, as well as full for details of
its derivation and of the simulations whose results are shown in Fig. 15, see Ref. [60].
For fractal scaling of cluster aggregation, see for example Ref. [65].

310 A. Gama Goicochea

8 Conclusions

The physicist Thomas A. Witten once wrote “Why should a physicist be interested in
polymers? They do not hold the key to vast resources of energy like atomic nuclei. They
do not defy intuition with ultrasmall dissipation like superconductors and superfluids.
They do not reveal subtle new nonabelian symmetries as do subatomic particles. Nor
do they hold secrets about the origin or fate of the universe” [66]. This is indeed true,
yet as Witten himself goes on to argue in [66], polymers constitute a most important
field of study, for polymer liquids display properties that can be understood using
powerful analogies with critical phenomena; they have motivated the development of
sophisticated experimental techniques; they are commonplace in modern society, and if
that was not enough, even biological matter can be thought of and understood as
polymer liquids.

The study of polymers fluids, and soft condensed matter in general, has benefited in
recent decades from numerical simulations, which are ever faster, adaptable to model
systems of ever increasing complexity and, with costs of powerful processors
becoming more competitive, accessible to a wider number of scientists worldwide.
Here I have focused on reviewing the modeling of scaling properties of soft matter
systems using in particular the technique known as dissipative particle dynamics,
carried out by our group. However, all scaling properties reported here are independent
of the technique used; some have been obtained by other groups using different models
or measured in various experiments. The fact that the same scaling exponents are found
in chemically different compounds, using vastly different techniques is gratifying for
those using such techniques, and it is also a beautiful example of the unifying concept
of scaling in physics.

Acknowledgments. The author wishes to thank his collaborators, with whom most of the results
reported here were obtained, in particular: F. Alarcón, S. J. Alas Guardado, M. A. Balderas
Altamirano, J. Barroso – Flores, R. Catarino Centeno, J. S. Hernández Fragoso, J. D. Hernández
Velázquez, J. Klapp, R. López – Esparza, R. López – Rendón, E. Mayoral, S. Mejía – Rosales, C.
Pastorino, R. Patiño Herrera, E. Pérez, G. Pérez – Hernández, Z. Quiñones, E. Rivera – Paz, K.
A. Terrón – Mejía, J. Vallejo and M. A. Waldo. Educational discussions with E. Blokhuis and I.
Sokolov are also gratefully acknowledged. For computational resources the author is indebted to
ABACUS, where some calculations were run; to the high performance cluster Yoltla at UAM –

Iztapalapa; to Universidad de Sonora for access to the Ocotillo cluster at their High Performance
Computational Area; to the CNS supercomputing facilities at IPICyT, to the Olinka cluster at
UAEM, and to the Laboratorio Nacional de Caracterización de Propiedades Fisicoquímicas y
Estructura Molecular Supercómputo Universidad de Guanajuato. For technical support at the
IFUASLP, J. Limón is also acknowledged. This work was supported in part by project
Proinnova – CONACYT, through grant 231810.

References

1. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, New York
(1979)

Scaling Properties of Soft Matter in Equilibrium 311

2. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press,
Cambridge (1997)

3. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1983)
4. Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, San Diego

(2002)
5. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New

York (1989)
6. Brini, E., Algaer, E.A., Ganguly, P., Li, C., Rodríguez-Ropero, F., van der Vegt, N.F.A.:

Soft Matter 9, 2108 (2013)
7. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Europhys. Lett. 19, 155 (1992)
8. Español, P., Warren, P.: Europhys. Lett. 30, 191 (1995)
9. Vishniakov, A., Talanga, D.S., Neimark, A.V.: J. Phys. Chem. Lett. 21, 3081 (2012)
10. Groot, R.D.: Langmuir 16, 7493 (2000)
11. Groot, R.D., Rabone, K.L.: Biophys. J. 81, 725 (2001)
12. Gama Goicochea, A.: Competitive adsorption of surfactants and polymers on colloids by

means of mesoscopic simulations. In: Klapp, J., Medina, A. (eds.) Experimental and
Computational Fluid Mechanics. Environmental Science and Engineering, pp. 147–155.
Springer, Cham (2014). doi:10.1007/978-3-319-00116-6_10

13. Filipovic, N., Kojic, M., Tsuda, A.: Philos. Trans. A Math. Phys. Eng. Sci. 366, 3265 (2008)
14. Murtola, T., Bunker, A., Vattulainen, I., Deserno, M., Karttunen, M.: Phys. Chem. Chem.

Phys. 11, 1869–1892 (2009)
15. Pastorino, C., Gama Goicochea, A.: Dissipative particle dynamics: a method to simulate soft

matter systems in equilibrium and under flow. In: Klapp, J., Ruíz Chavarría, G., Medina
Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and
Experimental Fluid Mechanics. Environmental Science and Engineering, pp. 51–79.
Springer, Cham (2015). doi:10.1007/978-3-319-11487-3_3

16. Moeendarbary, E., Ng, T.Y., Zangeneh, M.: Int. J. Appl. Mech. 02, 161 (2010)
17. Groot, R.D.: J. Chem. Phys. 118, 11265–11277 (2003)
18. Velázquez, M.E., Gama Goicochea, A., González-Melchor, M., Neria, M., Alejandre, J.:

J. Chem. Phys. 124, 084104 (2006)
19. Gama Goicochea, A.: Langmuir 23, 11656 (2007)
20. Willemsen, S.M., Vlugt, T.J.H., Hoefsloot, H.C.J., Smit, B.: J. Comp. Phys. 147, 507 (1998)
21. Murat, M., Grest, G.S.: Phys. Rev. Lett. 1989, 63 (1074)
22. Gama Goicochea, A., Alarcón, F.: J. Chem. Phys. 134, 014703 (2011)
23. Goujon, F., Malfreyt, P., Tildesley, D.J.: Soft Matter 6, 3472 (2010)
24. Groot, R.D., Warren, P.B.: J. Chem. Phys. 107, 4423 (1997)
25. Widom, B.: J. Chem. Phys. 43, 3892–3897 (1965)
26. Widom, B.: In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena.

Academic, New York (1972)
27. Binder, K.: Monte Carlo calculation of the surface tension for two- and three-dimensional

lattice-gas models. Phys. Rev. A 25, 1699–1709 (1982)
28. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Westview

Press, New York (1992)
29. Mayoral, E., Gama Goicochea, A.: J. Chem. Phys. 138, 094703 (2013)
30. Mayoral, E., Gama Goicochea, A.: Soft Matter 10, 9054 (2014)
31. Le Guillou, J.C., Zinn-Justin, J.: Phys. Rev. B 21, 3976–3998 (1980)
32. Konop, A.J., Colby, R.H.: Macromolecules 32, 2803 (1999)
33. Dobrynin, A.V., Colby, R.H., Rubinstein, M.: Macromolecules 28, 1859 (1995)
34. Sim, A.Y.L., Lipfert, J., Herschlag, D., Doniach, S.: Phys. Rev. E 86, 021901-1 (2012)

312 A. Gama Goicochea

http://dx.doi.org/10.1007/978-3-319-00116-6_10
http://dx.doi.org/10.1007/978-3-319-11487-3_3

35. Alarcón, F., Pérez-Hernández, G., Pérez, E., Gama Goicochea, A.: Eur. Biophys. J. 42, 661
(2013)

36. Wong, G.C.L., Pollack, L.: Ann. Rev. Phys. Chem. 61, 171 (2010)
37. Hsiao, P.-Y., Luijten, E.: Phys. Rev. Lett. 97, 148301 (2006)
38. Gama Goicochea, A., Briseño, M.: J. Coat. Technol. Res. 9, 279 (2012). doi:10.1007/

s11998-011-9364-8
39. Terrón-Mejía, K.A., López-Rendón, R., Gama Goicochea, A.: J. Phys. Condens. Matter 28,

425101 (2016). http://dx.doi.org/10.1088/0953-8984/28/42/425101
40. Stigter, D.: Biophys. J. 69, 380 (1995)
41. Visit: http://www.simes.uaemex-labs.org.mx/
42. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Nature 370, 634 (1994)
43. Advincula, R., Brittain, W.J., Caster, K.C., Rühe, J. (eds.): Polymer Brushes. Wiley-VCH,

Weinheim (2004)
44. Wang, X., Shah, A.A., Campbell, R.B., Wang, K.-T.: Appl. Phys. Lett. 97, 263703 (2010)
45. Iyer, S., Gaikwad, R.M., Subba-Rao, V., Woodworth, C.D., Sokolov, I.: Nature Nanotech. 4,

389 (2009)
46. Gama Goicochea, A., Alas Guardado, S.J.: Sci. Rep. 5, 13218 (2015). doi:10.1038/

srep13218
47. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, San Diego

(2011)
48. Milner, S.T., Witten, T.A., Cates, M.E.: Europhys. Lett. 5, 413 (1988)
49. Macosko, C.W.: Rheology Principles, Measurements, and Applications. Wiley-VCH,

Weinheim (1994)
50. Shuler, C.A., Janorkar, A.V., Hirt, D.E.: Polym. Eng. Sci. 44, 2247 (2004)
51. Allen, C.M., Drauglis, E.: Wear 14, 363 (1969)
52. Galuschko, A., Spirin, L., Kreer, T., Johner, A., Pastorino, C., Wittmer, J., Baschnagel, J.:

Langmuir 26, 6418 (2010)
53. Kreer, T., Balko, S.M.: ACS Macro Lett. 2, 944 (2013)
54. Gama Goicochea, A., Mayoral, E., Klapp, J., Pastorino, C.: Soft Matter 10, 166 (2014)
55. Gama Goicochea, A., López-Esparza, R., Balderas Altamirano, M.A., Rivera-Paz, E.,

Waldo, M.A., Pérez, E.: J. Mol. Liq. 219, 368–376 (2016)
56. Rivera, E., Quiñones, Z., Waldo, M.A.: Private communication
57. Derjaguin, B.V.: Theory of Stability of Colloids and Thin Films. Plenum Publishing

Corporation, New York (1979)
58. van Dongen, P.G.J., Ernst, M.H.: Phys. Rev. A 32, 670 (1985)
59. des Cloizeaux, J.: J. Phys. (Paris) 36, 281 (1975)
60. Gama Goicochea, A., Pérez, E.: Macromol. Chem. Phys. 216, 1076 (2015). doi:10.1002/

macp.201400623
61. Huang, K.: Statistical Mechanics. Wiley, New York (1987)
62. Balderas Altamirano, M.A., Gama Goicochea, A.: Polymer 52, 3846 (2011). doi:10.1016/

jpolymer.2011.06.015
63. Duplantier, B., Saleur, H.: Phys. Rev. Lett. 59, 539 (1987)
64. Kremer, K., Lyklema, J.W.: Phys. Rev. Lett. 54, 267 (1985)
65. Kolb, M.: Phys. Rev. Lett. 53, 1653 (1984)
66. Witten, T.A.: Polymer solutions: a geometric introduction. In: Daoud, M., Williams, C.E.

(eds.) Soft Matter Physics, pp. 261–288. Springer, Heidelberg (1999)

Scaling Properties of Soft Matter in Equilibrium 313

http://dx.doi.org/10.1007/s11998-011-9364-8
http://dx.doi.org/10.1007/s11998-011-9364-8
http://dx.doi.org/10.1088/0953-8984/28/42/425101
http://www.simes.uaemex-labs.org.mx/
http://dx.doi.org/10.1038/srep13218
http://dx.doi.org/10.1038/srep13218
http://dx.doi.org/10.1002/macp.201400623
http://dx.doi.org/10.1002/macp.201400623
http://dx.doi.org/10.1016/jpolymer.2011.06.015
http://dx.doi.org/10.1016/jpolymer.2011.06.015

On Finite Size Effects, Ensemble Choice
and Force Influence in Dissipative Particle

Dynamics Simulations

Miguel Ángel Balderas Altamirano1,2, Elías Pérez1,
and Armando Gama Goicochea1,2(&)

1 Instituto de Física, Universidad Autónoma de San Luis Potosí,
Avenida Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico

agama@alumni.stanford.edu
2 División de Ingeniería Química y Bioquímica, Tecnológico de Estudios

Superiores de Ecatepec, Av. Tecnológico S/N, 55210 Ecatepec,
Estado de México, Mexico

Abstract. The influence of finite size effects, choice of statistical ensemble and
contribution of the forces in numerical simulations using the dissipative particle
dynamics (DPD) model are revisited here. Finite size effects in stress anisotropy,
interfacial tension and dynamic viscosity are computed and found to be minimal
with respect to other models. Additionally, the choice of ensemble is found to be
of fundamental importance for the accurate calculation of properties such as the
solvation pressure, especially for relatively small systems. Lastly, the contri-
bution of the random, dissipative and conservative forces that make up the DPD
model in the prediction of properties of simple liquids such as the pressure is
studied as well. Some tricks of the trade are provided, which may be useful for
those carrying out high-performance numerical simulations using the DPD
model.

Keywords: DPD � Finite size effects � Surface tension � Solvation pressure �
Viscosity � Conservative � Dissipative � Random forces

1 Introduction

Molecular Dynamics (MD) simulation is now a popular multidisciplinary research tool
in science, which consists essentially of solving Newton’s second law of motion for
fluids made up of many particles using computers in discret time steps to calculate
properties of interest. Some systems can be easily modeled as a pure homogeneous
fluid, but some others require the modeling of complex interactions competing with one
another, as is the case in biological systems with many molecules interacting in
solution such as proteins, viruses or molecular chaperones [1–3]. Computer evolution
in recent years has already brought many opportunities for the modeling not only of toy
models but also of useful realistic problems. It must be borne in mind though that all
simulations are necessarily subject to a number of choices, such as the size of the cell
and the time step, model interactions, and thermodynamic conditions under which the

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 314–328, 2017.
DOI: 10.1007/978-3-319-57972-6_23

simulations are performed. Therefore, some guidelines must be followed to make those
choices judiciously [1].

Choosing a box size depends on finding a compromise between the smallest size
that requires the least time to complete the calculations, and the largest number of
particles one can calculate to capture realistic behavior found in experiments. Another
issue is time; some proteins need at least a few seconds to unfold; nowadays MD can
simulate 100 ns with little effort, but much work is still required to go beyond that. To
tackle these problems of scale, some techniques have been proposed that can increase
the size or the observation time of the simulations. One of those techniques is known as
Dissipative Particle Dynamics (DPD) [2], which is very similar in its essence to MD,
namely solving the forces acting in many particle systems to obtain their momenta and
positions. The difference between them comes from the choice of the model forces and
of the thermostat. While MD requires usually of conservative forces only, DPD adds a
dissipation force and a randomly fluctuating force to its structure, given respectively by

FD
ij ¼ �cxD rijð Þ r̂ij:vij

� �
r̂ij; ð1Þ

FR
ij ¼ rxR rijð Þeijr̂ij; ð2Þ

where rij ¼ ri � rj; rij ¼ rij
�� ��; r̂ij ¼ rij=rij ; rij, is the relative position vector between

particles i and j, r is the noise amplitude, c is the viscous force amplitude and vij ¼
vi � vj is the relative velocity between the particles, with eij ¼ eji being random
numbers with Gaussian distribution between 0 and 1, and unit variance. The weight
functions xD and xR are related as follows:

xD rij
� � ¼ xR rij

� �� �2
: ð3Þ

The spatial dependence of the weight function can be freely chosen, as long as Eq. (3)

is fulfilled; for computational convenience only, xR ¼ 1� rij
rC

� �
. The constants in

Eqs. (1) and (2) must obey the fluctuation–dissipation theorem, which yields [3]:

kBT ¼ r
2c

2
; ð4Þ

where kB is Boltzmann’s constant and T the absolute temperature. When one chooses a
value for those two constants the temperature is immediately set, thereby defining a
built-in thermostat.

MD simulations usually resort to using the Lennard–Jones potential to model van
der Waals type forces, complemented with the Coulomb equation for electrostatics to
account correctly for the interactions of atoms and molecules. DPD on the other hand
incorporates a repulsive (FC

ij) conservative, linearly decaying force, see Eq. (5) below,
which comes with some advantages: being a short range force, it makes its calculation
between pairs of particles more efficiently performed by computers because the force
changes little with distance and dies off beyond a cutoff distance. Secondly, the

On Finite Size Effects 315

particles are represented by beads without internal structure, where the strength of the
force between beads is obtained from the grouping of several atoms or even molecules
of the fluid, through a coarse-graining procedure based on the chemical nature of the
beads [4]. The conservative force is given by

FC
ij ¼ aij 1� rij

rC

	

; ð5Þ

aij is the interaction parameter between DPD particles i and j; rC is the cutoff radius,
beyond which all interactions become equal to zero. It is because of the choice of force
law given by Eq. (5) that DPD is amesoscopic simulation technique. There are, of course,
capabilities that one may need for applications and which DPD does not possess; one of
those is that the repulsive nature of the forces leads to the absence of the so-called van der
Waals loop in the pressure–volume phase diagram, hence liquid–gas transitions cannot be
modeled with DPD. Also, the presence of the dissipative force yields simulations that
cannot be performed at constant energy, which is necessary for the simulation of heat
transport. However, both of those disadvantages have been circumvented [5, 6], at the
cost of decreasing the computational efficiency and simplicity of the method. For more
details about the DPD methodology and applications see, for example, Refs. [7–10].

In this brief review we summarize recent results on the effects of the finite size of
the simulation box on the prediction of properties such as the stress tensor anisotropy,
interfacial tension, dynamic viscosity and disjoining pressure, under various statistical
ensembles. Also, we discuss the role of the dissipative, random and conservative forces
in the calculation of the pressure of simple fluids, as well as their dependence on the
size of the time step and of the size of the simulation box.

2 Finite Size Effects in Equilibrium and Dynamic Properties

A very popular application of MD is for the prediction of interfacial and surface
tension. To accomplish that one needs to calculate the components of the pressure
tensor; if the interface between the fluids is perpendicular to the z axis the interfacial
tension is obtained as:

c ¼ Lz Pzzh i � 1
2

Pxxh iþ Pyy
� �� � �

; ð6Þ

where Pxxh i, Pyy
� �

and Pzzh i are the diagonal components of the pressure tensor,
averaged over time or over an ensemble. If one models a homogeneous liquid with
periodic boundary conditions in all directions, where no interfaces are expected to
appear, the quantity defined by Eq. (6) can no longer be called an “interfacial” tension;
it is only a measure of the stress anisotropy. To test the influence of finite size on the
interfacial tension, Gama Goicochea and co-workers carried out simulations of a
mixture of two immiscible model liquids as a function of the size of the simulation box
using the standard DPD model, and using the Monte Carlo (MC) method under the
NPzzT ensemble [11]. In this ensemble the component of the pressure tensor which is

316 M.Á. Balderas Altamirano et al.

perpendicular to the interface separating the liquids (Pzz) remains constant, in addition
to N and T. The comparison between both methods is shown in Fig. 1; asterisks on
quantities indicate they are expressed in reduced DPD units.

As seen in Fig. 1, the choice of ensemble is very important when seeking to keep
finite size effects to a minimum in the prediction of interfacial tension with DPD. Using
standard DPD, that is, a dynamics that solves the equation of motion for the forces in
Eqs. (1), (2) and (5) in the canonical ensemble (NVT) leads to strong dependence of c *

on box size. This is to be contrasted with the choice of MC in the NPzzT ensemble,
where c * remains almost constant even for the smallest boxes. The difference between
the c * predictions at the smallest and largest boxes amounts to less than two percent,
while the time required to carry out the simulations at those two sizes differ by about
eighty percent! For this application, it turns out that NPzzT is a better ensemble to
simulate the interfacial tension than NVT because it is the one that more closely
resembles the experimental conditions under which the interfacial tension is measured.
Full details on this calculation of the interfacial tension between two simple liquids can
be found in Ref. [11], where the stress tensor anisotropy for a pure liquid with periodic
boundary conditions was also calculated; it is shown in Fig. 2.

The stress anisotropy shown in Fig. 2 should be exactly equal to zero for a single
liquid with no interfaces, as occurs for simulation boxes with periodic boundary
conditions. However, numerical simulations as well as experiments are subject to finite
size restrictions, which may introduce artifacts that shadow the value of the property in

4 5 6 7 8 9 10 11
3.4

3.5

3.6

3.7

3.8

3.9

4.0
γ*

Lx*

 NVT
NPzzT

Fig. 1. Interfacial tension results for a mixture of two DPD fluids, obtained from simulations
carried out in the NVT (filled triangles) and NPzzT (open circles) ensembles. The error bar sizes,
shown in the figure, are of the order of the size of the symbols. Except for the choice of ensemble,
both series of simulations have identical interaction parameters. The lines are only guides to the
eye. All quantities are reported in reduced DPD units. Adapted from Ref. [11].

On Finite Size Effects 317

the thermodynamic limit. Although the values of c* are small for both sets of data,
those obtained with the NPzzT ensemble are closer to zero than those for the NVT
ensemble. Also, as the box size is increased the stress anisotropy becomes closer to
zero for both ensembles, meaning that finite size effects are negligible, as expected.

An attractive conservative force can be added to the original DPD interactions,
leading to a method that can predict liquid–vapor transitions [12]. Such term arises
from the calculation of the local average density around each particle, giving rise to a
conservative force that can be expressed as

FC
ij ¼ aijw

C rij
� �

êij þ bij qi þ qj
� �

wq rij
� �

êij; ð7Þ

where the first term is the usual repulsive interaction, see Eq. (5), and the second is the
attractive contribution. The average local density around particle i is �ql ¼P

j6¼i wqðrij;RdÞ; bij is the strength of the attractive force, and wq is a weight function
given by

wq rij;Rd
� � ¼ 15 1� rij=Rd

� �2
2pR3

d

; ð8Þ

where Rd is the range of the weight function wq rij;Rd
� �

. The addition of the second
term in Eq. (7) leads to a total conservative interaction that changes considerably with

4 5 6 7 8 9 10 11

-0.04

-0.02

0.00

0.02

0.04

Lx*

NVT
NPzzT

γ*

Fig. 2. Stress anisotropy results for a pure, monomeric DPD model liquid in a simulation box
with periodic boundary conditions using the NVT (filled triangles) and NPzzT (open circles)
ensembles, as a function of box size. For a one phase system such as this c* is expected to be zero
(solid horizontal line) because there is no interface. Axes are in reduced DPD units. Adapted
from Ref. [11].

318 M.Á. Balderas Altamirano et al.

relative inter particle distance; this in turn produces oscillations in the pressure tensor
components, as seen in Fig. 3.

The systems whose stress anisotropy are shown in Fig. 3 are pure, monomeric
liquids with periodic boundary conditions at two values of the particle number, hence
c* should be equal to zero. Yet one sees strong oscillations for both cases, at very small
boxes, being larger for the largest number of particles (open pentagons in Fig. 3). Two
salient features in Fig. 3 demand comments: first, for boxes which are still relatively
small, e.g. Lx* = 5, finite size effects in c* are minimal and are once again negligible
for moderately sized boxes. Therefore, even with the inclusion of an attractive term to
the original conservative DPD term finite size effects are much smaller than those found
in other interaction models. The origin of this feature can be traced back to the fact that
the forces, even that in Eq. (7) are short ranged. Secondly, one should note that the
oscillations in Fig. 3, which come of course from oscillations in the components of the
pressure tensor, have the same period for both systems. They originate from the basic
interactions of the model and appear in all structural and thermodynamic properties of
the fluid, such as in the radial distribution function and density profile, with the same
period. This exponentially decaying oscillatory behavior is found in three-dimensional
fluids interacting through short range potentials at high density, as predicted by the
Fisher–Widom conjecture [12, 13]. Full simulation details can be found in [11].

Let us now proceed to review the influence of finite size effects in non-equilibrium
properties, particularly in the dynamic viscosity. To do so the following system was set
up [14]: polymer chains were grafted at high density on parallel surfaces on the faces of

3 4 5 6 7 8 9 10
-10
-8
-6
-4
-2
0
2
4
6
8

γ*

Lx*

N= 3000
N= 6000

Fig. 3. Stress anisotropy for a one component DPD fluid with attractive and repulsive
interactions as a function of box side length, Lx*. Results are shown for N = 3000 (filled
triangles) and for N = 6000 (open pentagons); for both the density is q* = 3. Lines are guides to
the eyes. Both axes are represented in reduced DPD units. Adapted from [11].

On Finite Size Effects 319

the simulation cell perpendicular to the z axis; the solvent monomers were added
explicitly also. To establish stationary Couette flow, a constant velocity was imprinted
to the “heads” of the polymer chains grafted on the surface and an equal in magnitude
but opposite in direction velocity was added to the grafted heads on the opposite
surface. This setup forms a constant velocity gradient for the particles confined by the
pore defined by the surfaces, along the z axis, which allows one to calculate the
viscosity g as follows [15]:

g ¼ Fx _cð Þh i=A
_c

: ð9Þ

In Eq. (9) _c is the shear rate, which is given as _c ¼ 2v=D, where v is the constant
velocity applied to the grafted polymer heads, and D is the distance between the
surfaces, which is constant as well. The square area of each surface is A and Fx _cð Þh i is
the mean force along the direction of the flow (x) that the particles on the surfaces
experience, averaged over time for all particles. Figure 4 shows the dependence of the
viscosity on the size of the simulation cell [14]. The difference between the value of the
viscosity predicted for the smallest box and the largest one amounts to less than

0 10 20 30 40 50 60 70 80
1.48

1.49

1.50

1.51

1.52

η*

Lx*

η*

Fig. 4. Finite size effect in the viscosity, g*, of polymer brushes on parallel walls. The symbol
L�x represents the size of the simulation box in the x direction, which is equal to that in the
y direction, L�y . In all cases, L�z ¼ 7, the shear rate is _c = 0.28, and the grafting density is
C* = 0.30. All quantities are reported in reduced DPD units. The line is only a guide to the eye.
Adapted from [14].

320 M.Á. Balderas Altamirano et al.

0.5 percent only, showing once again that finite size effects are negligible in DPD even
in the calculation of non–equilibrium properties. For additional discussion and com-
putational details the reader is referred to [14].

3 Influence of the Statistical Ensemble Choice in the Prediction
of Pressure of Confined Fluids

Confined complex fluids are important for various reasons, among which is the need to
understand how the internal structure of the confined fluid depends on its basic
interactions and on the characteristics of the confinement. Additionally, from an
industrially relevant point of view, many nanotechnology applications of confined
fluids such as in the design of new stimuli–responsive materials and in the fabrication
of plastic sheets require detailed knowledge of properties such as the stability of fluids
confined by surfaces. One key property of fluids under reduced symmetry conditions is
the so called “disjoining” or solvation pressure P, defined as [16]

P zð Þ ¼ PZZ zð Þ � PB½ �; ð10Þ

where Pzz is the component of the pressure tensor along the z axis, assuming that the
confining walls are placed on the xy plane, and PB is the bulk pressure of the fluid, i.e.,
its pressure when it is not confined by the surfaces. If the fluid is not confined all
diagonal components of the pressure tensor are equal to the bulk pressure and P ¼ 0.
Therefore, the disjoining pressure is a useful gauge of the stability of the confined fluid
because if P[0 the walls are kept apart and stability ensues. If, however, P\ 0 this
signals attraction between the surfaces and the fluid becomes unstable.

The calculation of equilibrium properties of fluids under confinement usually
requires the implementation of the Grand Canonical (GC) ensemble, where the
chemical potential must be kept constant, in addition to the volume and the tempera-
ture. This is necessary to ensure that the confined fluid is in chemical and thermal
equilibrium with the virtual bulk fluid that surrounds the former fluid, and the mech-
anism used to reach equilibrium is through the exchange of particles between confined
and bulk fluids. Implementing the GC ensemble requires performing averages over
spatial configurations rather than averages over time, which in turn means one must
carry out Monte Carlo simulations [17] instead of MD simulations. Implementing the
DPD model interaction in the Grand Canonical Monte Carlo (GCMC) algorithm [18]
allows one to test the influence of ensemble choice in the predicted value of P for DPD
fluids.

Figure 5 shows the comparison between the predictions of P under the canonical
ensemble (NVT) and under the GC ensemble for a simple monomeric fluid confined by
structureless walls as a function of the simulation box size. The difference between
those two approaches is striking at small to medium box sizes, becoming negligible
only for the largest boxes. Moreover, the ergodic theorem states that the value of a
property in equilibrium obtained from averages over time (as in NVT) must be the
same as the value of it obtained from averages over configurations (as in GCMC) [20].
This is clearly not the case here, except for the largest boxes, as Fig. 5 shows. It should

On Finite Size Effects 321

be stated at the outset that this is not a shortcoming of the DPD model, since similar
results have been obtained for other models [21]. The reason for the discrepancy of
predictions between those two ensembles lies in the fact that the NVT ensemble does
not allow for the density fluctuations that the fluid undergoes when it is compressed,
which bring also pressure fluctuations, while the GC ensemble does. That is why the
pressure grows as the fluid is compressed under NVT conditions in Fig. 5, while
fluctuations appear when pressure is calculated using the GCMC method [19].
Experiments on fluids under confinement using the surface force apparatus or atomic
force microscopy confirm the predictions under the GC ensemble [22].

There is of course a caveat: by their very construction, GCMC simulations are
considerably more computationally intensive than MD simulations, regardless the
interaction model [17], which in practical terms means that more computer time is
required to predict properties in equilibrium with GC simulations. To try to get the best
of both worlds, Balderas Altamirano and Gama Goicochea proposed a simple method
to improve the speed of simulations of confined fluids without losing accuracy [19]. It
consists of performing GCMC simulations at high confinement, keeping track of the
average particle number; when that average is almost constant; which typically occurs
after a few simulation blocks have been completed, the GCMC simulations are

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Π
(L
z*

)

Lz*

GCMC
NVT

Fig. 5. Comparison of the solvation or disjoining pressure of a pure monomeric confined fluid
as a function of box size obtained at fixed chemical potential (GCMC, filled triangles), and a
fixed density (NVT, empty pentagons). The interaction parameters, density and temperature are
the same for both systems. Both axes are represented in reduced DPD units. Adapted from [19].

322 M.Á. Balderas Altamirano et al.

stopped. Then, that average particle number is inserted into the faster, NVT dynamics
simulations, which are run until equilibrium is reached at a fraction of the computa-
tional cost [19]. The results, shown in Fig. 6, demonstrate that this simple method
works very well, since the faster DPD simulations carried out under the canonical
ensemble (NVT, empty pentagons in Fig. 6) reproduce the predictions of the disjoining
pressure obtained from GCMC simulations (solid triangles in Fig. 6). The NVT data
follow closely those from GCMC even for the smallest boxes, capturing the oscillation
amplitudes and periods. For full details and additional applications, see [19].

4 Influence of the Conservative, Dissipative and Random
DPD Forces on the Virial of Simple Fluids

In this section we review the influence that factors such as the size of the time step used
in the integration of the equation of motion, simulation box size and strength of
dissipation and Brownian motion have on the DPD force contributions to the virial
calculation in simple liquids [23]. The focus is on the calculation of the virial only,

0 2 4 8 10 12 14

-10
-8
-6
-4
-2
0
2
4
6

Π
(L
z*
)

Lz*

GCMC
NVT

6

Fig. 6. Comparison of the disjoining pressure of a confined monomeric liquid obtained at
constant chemical potential (filled triangles; see GCMC curve in Fig. 5) with that obtained using
standard DPD (NVT, empty pentagons) after having chosen the density of the latter to match the
average density obtained at the same box volume from GCMC simulations. The scales on both
axes are reported in reduced DPD units. Adapted from [19].

On Finite Size Effects 323

because it is a popular method used to calculate the pressure in numerical simulations
[24], as follows:

P ¼ qkBT þ 1
3V

X
j[i

~Fij �~rij
D E

; ð11Þ

where P is the pressure of the homogeneous fluid, q its density and the brackets
represent average over time. The contribution of each DPD force is calculated sepa-
rately to study the influence of the above mentioned factors to the virial. Let us start
with the influence of the time step while keeping the size of cell fixed; Fig. 7(a) shows
the effect that increasing the time step has on the random force contribution to the
virial, as a function of the simulation time, where N is the number of times the equation
of motion is solved numerically. Clearly, the random force contribution is very small,
and quickly becomes negligible, independently of the choice of time step. This occurs
because the random force is basically white noise. The dissipative force contributes
very little to the virial also, as Fig. 7(b) shows, but in this case it requires longer
simulation time, specially if the time step is very small, see the blue line in Fig. 7(b),

Fig. 7. The virial contribution of (a) the random, (b) dissipative and (c) conservative forces for a
DPD simple fluid as a function of time, for three choices of the integration time step. For the
conservative force the interaction constant was chosen as aij = 78.3. The fluid is made up of 3000
identical particles in a cubic box with volume V = 10 � 10 � 10. All axes are shown in reduced
DPD units. N is the number of times the dynamics is solved. Adapted from [23].

324 M.Á. Balderas Altamirano et al.

where more than twenty thousand integrations of Newton’s second law are needed for
this artifact to become zero. It can be shown [23] that if the dissipative force is coupled
to a random force, as occurs in the DPD model, the contribution of the former to the
pressure – and to all equilibrium properties of the fluid – becomes zero, given a long
enough period of time. The question is how long is long enough, but luckily if a
relatively large time step is used, e.g. Δt = 0.01 the contribution of the dissipative force
to the virial is zero almost immediately after the simulation has begun. When equi-
librium is reached, only the conservative force should contribute to the virial, and this is
indeed confirmed by Fig. 7(c).

Another variable of interest is the size of the simulation cell, whose influence on the
virial is broken down into the three contributions shown in Fig. 8. In all cases the time
step was set at Δt = 0.01, the box is cubic and the fluid density is fixed to 3, as in
previous cases. Except for the small fluctuations that appear in the random force
contribution to the virial in Fig. 8(a), what can be concluded from the results shown in
Fig. 8 is that the size of the simulation box does not affect the contribution of the DPD
forces to the virial as the simulation time evolves. This is expected because of the short
range nature of the DPD forces and because the virial contributions are traced as
functions of time.

Fig. 8. Effect of the size of the simulations box in the virial contribution of the (a) random,
(b) dissipative and (c) conservative forces for a DPD fluid as a function of time, for four values of
the volume of the cubic box with the side length L*. The conservative force constant is
aij. = 78.3. The fluid density is kept equal to q� ¼ 3 and the integration time step is chosen as
Dt ¼ 0:01 in all cases. All quantities are shown in reduced DPD units. Adapted from [23].

On Finite Size Effects 325

As a last case study we explore the dependence of the virial on the simulation time
for four different values of the constants defining the strength of the dissipative and
random forces in DPD, namely c and r in Eqs. (1) and (2), respectively. For this part of
the work, the volume of the cell, as the density and the time step are fixed in all
simulations [23]. Increasing these constants makes the fluid more viscous and the DPD
thermostat comes into play to invest that increase into more Brownian motion.

As Fig. 9 shows, the more viscous the DPD fluid becomes, the less important the
non conservative interactions are with respect to their contributions to the virial as the
numerical simulation evolves in time. Even for the least viscous fluid (blue line in
Fig. 9), the dissipative and random forces contributions to the virial are very small and
the pressure can be accurately obtained from the conservative force contribution only.
Moreover, the simulation running time required to remove artifacts contributing to the
pressure from the dissipative and random forces is of the order of 3 � 104 except for
the least viscous fluid, which is only of academic interest. As Fig. 9(c) shows, for long
enough simulations only the conservative force is important in the calculation of the

Fig. 9. Effect of varying the strength of the random (r) and dissipative (c) forces in the
contribution to the virial of the (a) random, (b) dissipative and (c) conservative forces for a
monomeric DPD fluid as functions of time. In all cases the temperature is T* = 1, the
conservative force constant is aij = 78.3, and the fluid density is kept equal to q* = 3, while the
integration time step was chosen as Δt = 0.001 in all cases. All quantities are reported in reduced
units; adapted from [23].

326 M.Á. Balderas Altamirano et al.

pressure through the virial, except for the least viscous fluid. The same trends are
expected to hold for other thermodynamic and structural properties in equilibrium.

5 Conclusions

No technique is without shortcomings and DPD is no exception, but in this contribution
we have focused on reporting some tricks of the trade that practitioners of numerical
simulations might find useful, especially when it comes to trying to optimize com-
putational efforts. By judiciously choosing parameters and scales, users of DPD can
benefit from the fact that its mesoscopic reach and the simplicity of its interactions can
be helpful tools to derive novel information on soft matter systems.

Acknowledgments. MABA thanks PRODEP DSA/103.5/15/3894 and CA – Ingeniería de
Procesos Químicos y Ambientales. MABA and AGG thank the Centro Nacional de Super-
computo (IPICYT) and the High Performance Computation Area of the Universidad de Sonora,
for allocation of computer time; J Limón (IF UASLP) is acknowledged for technical support.
AGG would like to thank JD Hernández Velázquez, J. Klapp, E. Mayoral and C. Pastorino for
important discussions.

References

1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)
2. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena

with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)
3. Español, P., Warren, P.: Statistical Mechanics of Dissipative Particle Dynamics. Europhys.

Lett. 30, 191–196 (1995)
4. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: bridging the gap between

atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)
5. Dinsmore, A.D., Warren, P.B., Poon, C.K., Yodh, A.G.: Fluid Solid transition on walls in

binary hard sphere mixtures. Europhys. Lett. 40, 337–342 (1997)
6. Mackie, A., Bonet Avalos, J., Navas, V.: Dissipative Particle Dynamics with energy

conservation: Modeling of heat flow. Europhys. Lett. 40, 337–342 (1999)
7. Pastorino, C., Gama Goicochea, A.: Dissipative particle dynamics: a method to simulate soft

matter systems in equilibrium and under flow. In: Klapp, J., Ruíz Chavarría, G., Medina
Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and
Experimental Fluid Mechanics. ESE, pp. 51–79. Springer, Cham (2015). doi:10.1007/978-3-
319-11487-3_3

8. Moeendarbary, E., Ng, T.Y., Zangeneh, M.: Dissipative Particle Dynamics: Introduction,
methodology and complex flui applications - a review. Int. J. App. Mech. 1, 737–763 (2009)

9. Lu, Z.Y., Wang, Y.L.: An introduction to Dissipative Particle Dynamics. Methods Mol.
Biol. 924, 617–633 (2013)

10. Fuchslin, R.M., Fellermann, H., Ericksson, A., Ziock, H.J.: Coarse graining and scaling in
Dissipative Particle Dynamics. J. Chem. Phys. 130(214102), 1–8 (2009)

11. Velázquez, M.E., Gama Goicochea, A., Gonzalez Melchor, M., Neria, M., Alejandre, J.:
Finite Size effects in dissipative particle dynamics simulations. J. Chem. Phys. 124, 084104
(2006)

On Finite Size Effects 327

http://dx.doi.org/10.1007/978-3-319-11487-3_3
http://dx.doi.org/10.1007/978-3-319-11487-3_3

12. Warren, P.B.: Vapor liquid coexistence in many body Dissipative Particle Dynamics. Phys.
Rev. E 68, 066702 (2003)

13. Fischer, M.E., Widom, B.: Decay of Correlations in Linear Systems. J. Chem. Phys. 50,
3756–3772 (1969)

14. Gama Goicochea, A., Mayoral, E., Klapp, J., Pastorino, C.: Nanotribology of biopolymer
brushes in aqueous solution using dissipative particle dynamics simulations: an application
to PEG covered liposomes in a theta solvent. Soft Matter 10, 166 (2014)

15. Makosco, C.: Rheology principles, measurements and applications. VCH J. Phys. Chem.
Lett. 7, 1836–1844 (1994)

16. Derjaguin, B.V., Churaev, N.V.: In Fluid International Phenomena. Wiley, New York
(1986)

17. Frenkel, D., Simt, B.: Understanding Molecular Simulation. Academic Press, UK (2016)
18. Gama Goicochea, A.: Adsorption and Disjoining Pressure Isotherms of Confined Polymers

using Dissipative Particle Dynamics. Langmuir 23, 11656–11663 (2007)
19. Balderas Altamirano, M.A., Gama Goicochea, A.: Comparison of mesoscopic solvation

pressure at constant density and constant chemical potential. Polymer 52, 3846 (2011)
20. McQuarrie DA, Statistical Mechanics (Harper & Row, New York)
21. Xiao, C., Rowlison, J.S.: The solvation pressure in a system of fixed density. Mol. Phys. 73,

937 (1991)
22. Israelachvilli, J.N.: Molecular and Surfaces Forces. Academic Press, Netherlands (2011)
23. Gama Goicochea, A., Balderas Altamirano, M.A., Hernández, J.D., Pérez, E.: The role of the

dissipative and random forces in the calculation of the pressure of simple fluids with
dissipative particle dynamics. Comput. Phys. Commun. 188, 76–81 (2015)

24. Goldstein, H.: Classical Mechanics. Addison Wesley, Nueva York (1980)

328 M.Á. Balderas Altamirano et al.

Ab initio DFT Calculations for Materials
in Nuclear Research

E. Mayoral1(&), A. Rey2, Jaime Klapp1,3, A. Gómez1,
and M. Mayoral4

1 Instituto Nacional de Investigaciones Nucleares (ININ),
Carretera México-Toluca S/N, La Marquesa, 52750 Ocoyoacac,

Edo de Mexico, Mexico
{estela.mayoral,jaime.klapp,

armando.gomez}@inin.gob.mx
2 Department of Chemical Engineering, McGill University,

Montreal, QC H3A 2B2, Canada
alejandro.rey@mcgill.ca

3 Abacus-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, CINVESTAV-IPN,

Carretera México-Toluca Km 38.5, La Marquesa, 52740 Ocoyoacac,
Estado de México, Mexico

4 MTrip, 1117 Sainte-Catherine West 601, Montreal, QC H3B 1H9, Canada

Abstract. Currently, high performance computing is a very important tool in
material science. The study of materials at the microscopic level for obtaining
macroscopic properties from the behavior at atomic level is a big challenge,
even more when a large number of atoms are involved in the analysis. One of
the most important open source codes capable of performing ab initio density
functional theory (DFT) calculations with many hundreds of atoms at low
computational cost is the SIESTA code. This code is able to perform
self-consistent electronic structure simulations based on DFT for very complex
materials. The performance of this code is tested in this work by applying it to
the study of typical core structural materials used in nuclear reactors such as Zr
and Zircaloy-2. These materials are commonly used for the cladding of the fuel
rods used in Light Water Reactors (LWR) and CANDU reactors. First-principles
calculations for Zr, Zircalloy-2 and modified structures of them were performed
with microstructural defects in order to analyze material damage. Adsorption
energy of I2 on Zr (0 0 0 1) surfaces as a function of the distance is also
presented. Results showed how this kind of simulations can be carried out for
large systems at a relatively cheap computational cost.

1 Introduction

Nowadays, the need to have alternative options to produce clean and sustainable energy
is one of the problems of paramount importance at the global level. Nuclear energy is
one of the main alternatives for obtaining clean energy on a large scale. This power
source guarantees electricity supply and reduces pollutant emissions by producing
electricity on a constant basis with stable and predictable prices. Currently, operating

© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 329–339, 2017.
DOI: 10.1007/978-3-319-57972-6_24

nuclear reactors provide about 11.5 percent of the world’s electricity. In a nuclear
reactor the fuel is located in the core where the nuclear fission reactions occur. The
materials used in the core are called “core structural materials”. One of the options in
order to improve the competence of the existing nuclear power plants is the increase in
the burn-up of the nuclear fuel (a measure of how much energy is extracted from the
fuel and it is related directly to the time that the fuel is in the reactor core). In order to
increase the efficient use of the fuel, it is desired that the fuel remains inside the reactor
as much time as possible (several years or fuel cycles), i.e., to be subject to high
burn-up. This strategy leads to lower fuel costs, fuel storage expenses as well as the
amount of waste for final disposal. Nevertheless, higher burn-ups jeopardize the
materials performance of reactor fuels, reactor components and reactor vessels due to
the high loads affecting the fuel (pressure, temperature, radiation, etc.). The core
structural materials in a nuclear reactor are those used to contain the fuel in rods, to
keep together the fuel assemblies as well as the materials to build the control rods, core
monitoring instruments and their support structures. These structural materials must
preserve their functionality to maintain the integrity of the fuel, rods and fuel assem-
blies, preventing the release of radioactive materials from the fuel to the coolant and in
the worst case to the environment. Aiming to increase the efficient operation of nuclear
reactors (to operate with higher burn-ups), new improved materials-able to resist
radiation and withstand irradiation conditions and extreme temperatures and pressures
are required. Therefore, the design of new materials with adequate characteristics to
support the operating conditions involved in nuclear processes is one of the main
challenges in the design of new nuclear technologies.

Zirconium is the most widely used material for the fuel cladding and gathering
structure in nuclear reactors because of its low neutron capture cross-section. Other
important properties are good corrosive and mechanical properties that have led to its
use preferably over stainless steels. Even though the high purity in zirconium produces
very good resistance to corrosion in water, the use of alloys is required to enhance the
resistance to high temperatures. The main alloying elements used are tin, nickel, iron
and chromium because they have very low neutron absorption. Zircaloy-2 is a
Zirconium-based alloy containing 1.2–1.7% Sn, 0.07–0.20% Fe, 0.05–0.15% Cr and
0.03–0.04% Ni and is employed as the cladding for Light Water (LWR) and CANDU
reactors fuel rods, as well as for other reactor uses such as the pressure tubes in
CANDU reactors.

On the other hand, it is well known that numerical simulation and computational
materials science are nowadays an important complement in the comprehensive study
and design of new materials (Wimmer et al. 2010). These kinds of tools are very
significant, especially when hazardous materials or processes are involved as in the
case of nuclear research area. For these applications, it is important to avoid as much as
possible the use of radioactive sources. Reducing experimental essays in order to
decrease high-level waste and the exposition to hazardous material is mandatory; the
possibility of designing new materials and predicting their properties in nuclear
research in a safer manner and at low cost is a challenge, thus, numerical modeling
seems to be a promissory option. Specifically, simulation and modeling applied to the
study of radiation damage make available novel fundamental insights into the
microstructural evolutions that go on for the small period of time related to the

330 E. Mayoral et al.

radiation damage cascades. Additionally, not only is the understanding at atomic scale
fundamental in the design of new materials in the nuclear area, but also allows the
prediction of properties in a quantitative way. Mechanical, thermal, electrical, optical,
magnetic and chemical properties are some of the main characteristics that need to be
known in order to have real applications in engineering and to solve technological
problems in an effective way.

Ab initio DFT calculations have become a very popular technique to study the
behavior of molecules and condensed materials at a microscopic scale. However, one
of the main limitations in this kind of studies is the high computational cost needed to
deal with big systems, so new methodologies must be developed in this area. An
alternative is the use of high performance computational resources and the optimization
of codes running in different platforms (CPUs and GPUs). The SIESTA code (Spanish
Initiative for Electronic Simulations with Thousand of Atoms) is one of the most
important open source codes capable of performing ab initio DFT calculations with
many hundreds of atoms at low computational cost (Ordejon et al. 1996; Soler et al.
2002). The SIESTA code is able to perform self-consistent electronic structure simu-
lations based on DFT for very complex materials. Using this code (available at http://
www.uam.es/siesta) a large number of atoms have been studied using modest com-
putational resources. This approach has been capable of suggesting the effect of
impurities, defects and composition in different properties of solid materials and alloys.
It has been applied in different systems like surfaces, nano-materials, ceramics, alloys,
amorphous semiconductors, biological molecules among others (Sánchez-Portal et al.
2004).

In this work the performance of this code is applied to the study of typical core
structural materials used in nuclear reactors. First-principles calculations for Zr,
Zircalloy-2 and modified structures of them with microstructural defects were per-
formed in order to analyze material damage. The adsorption energy of I2 on Zr (0 0 0 1)
surface as a function of the distance is also presented.

2 Schrodinger by Schrödinger

Considering the size and complexity of the materials that are analyzed, all simulations
were performed using the SIESTA code, which is based in linear-scaling, or O(N)
methods that scales the computing time and memory linearly with the increase of the
number of atoms N, in contrast with the standard approaches that scale proportionally
to the cube of the number of atoms in the system. This allows to obtain very accurate
ab initio simulations of systems with a considerable size at a relative low computational
cost (Bowler and Miyazaki 2012). Among quantum mechanical methods the most
reliable and also the most computationally demanding are the fully self-consistent
density functional theory methods (DFT). The use of these methods requires solving
the Schrodinger equation and the determination of the self-consistent Hamiltonian,
which usually requires a large amount of computing resources. The method inside the
SIESTA code (Soler et al. 2002) allows the use of self-consistent DFT to simulate big

Ab initio DFT Calculations 331

http://www.uam.es/siesta
http://www.uam.es/siesta

systems (thousands of atoms) in O(N) iterations. The DFT methodology used is based
in a flexible linear combination of atomic orbitals (LCAO) basis set and multiple-Z plus
polarization basis which allows the use of minimal basis sets, fast calculations and a
combination of ad-hoc set of parameters depending on the needed accuracy and the
available computing resources. The Born-Oppenheimer approximation is used as core
approximation as well as the treatment of exchange and correlation terms and the use of
pseudopotentials. The introduction of norm-conserving pseudopotentials is useful to
allow the expansion of the pseudo-charge density on a uniform spatial grid. SIESTA
reads them as semilocal and after that, semilocal form is transformed to non-local form
as is proposed by Kleinman and Bylander (Kleinman and Bylander 1982). Double-Z
plus polarization basis set is used as the standard basis because it usually balances
convergence and reasonable computational cost. It makes the combination of
multiple-Z polarization basis sets and semicore states a good technique in the case of
alkali and some transition metals. The total Energy is calculated using Kohn-Sham
approximation (Kohn and Sham 1965). The program is a totally self-consistent
implementation of DFT and uses Kohn-Sham approach to calculate the electronic
structures of molecules and condensed phases simultaneously with the total energy and
derivatives of atomic positions, which are related to the total energy for the opti-
mization of crystal structures.

In this work the basis sets chosen were numerical double zeta plus polarization,
with this we consider the possibility that the atom orbital could be polarized by the
molecular interactions (Hu et al. 2013). The exchange correlation function of
Perdew-Burke-Ernserh (Perdew J.P. et al. 1997), and the Troulier-Martins pseudopo-
tentials for all atoms in the system (Troullier and Martins 1991) are also used.

3 Results

3.1 Adsorption of I2 on Zr Surfaces

Comprehension of the microscopic factors that produce fracture in core structural
materials such as Zirconium alloys is of fundamental importance in the design and
study of materials for nuclear power plants. An important process is the one known as
Pellet-Clad Interaction (PCI), which can occur through power transients in nuclear
plants. In PCI it is supposed that the main responsible in the detriment of the Zr
structure is the iodine produced during the fission process which induces stress cor-
rosion cracking (SCC).

The mechanism involved in SCC includes dissociation, adsorption and diffusion of
I2 in contact with the Zr structures. In this section, the adsorption process using
ab initio DFT calculations is explored with the SIESTA code and the methodology
described in the previous section.

The hcc Zr structure is modeled using 78 atoms in a cell. The surface corresponds
with the (0 0 0 1). The initial structure was relaxed and the total energy calculated
obtaining ET[Zr] = −8359.93672 eV. Figure 1 shows the relaxed structure for the
system studied.

332 E. Mayoral et al.

The adsorption process was modelled considering one I2 molecule attached at the
Zr (0001) surface. This study requires that the I2 be able to relax to its most favourable
arrangement and then the bond distances connecting the Iodine with the Zirconium
surface contracted and stretched to model the process of bond rupture and creation. To
do this, in the simulation the position of the I and the Zr atoms which are attached each
other are fixed whereas the rest of the atoms are allowed to relax.

The adsorption energy Eads of I2 þZr ! I - Zr - I was obtained using the
expression

Eads ¼ E I=Zr½ � þE Zr½ � þ nE½I2�
2n

; ð1Þ

where E[I/Zr] is the energy of the I-Zr-I system, E[Zr] = −8359.9367 eV is the energy
of the pure Zirconium structure and E[I2] = −2346.43186 eV is the energy of I2 gas
phase molecule calculated in this work. n is the number of I2 molecules in the system.
The results for different reaction coordinates are shown in Table 1. The computed
adsorption energy is Eads = 610 kJ/mol in good agreement with previous results
reported in literature (Wimmer et al. 2010) indicating strong chemical affinity of iodine
and Zirconium.

In Table 1 and Fig. 2, x is the reaction coordinate and is related to the height of the
center of mass of the I-I atoms; x = 1 refers to the adsorbed iodine atoms at a height of
4.5509 Å and x = 0 corresponds to the undissociated I2 molecule at a height of 12.1711
Å; x > 1 corresponds with the diffusion of the I in the Zr structure.

Fig. 1. hcc Zirconium relaxed structure.

Table 1. Total energy for the I-Zr-I system E[I/Zr], relative reaction coordinate and adsorption
energy Eads calculated for different distances D.

D [Å] E[I/Zr] [kJ/mol] Reaction Coordinate (x) Eads [kJ/mol]

1.64045 −10687.8184 1.38194444 −554.2801
4.55092 −10693.7056 1 −610.8922
8.99601 −10698.8260 0.41666667 −363.8731
12.17107 −10702.8313 0 −170.6443

Ab initio DFT Calculations 333

3.2 Microstructural Defects: Vacancies in Zr Structures

Micro-structural defects are the responsible of the changes in material properties for
materials exposed to radiation. The simplest natural defects are the vacancies. In
nuclear damage, these defects occur when an atom in a material is hit by a high
energetic particle and knocked it out of its lattice site. This initial knock-on atom and
the recoiling particle produce further collisions with new atoms causing the displace-
ment of other atoms or distortions. All these distortions produce changes in the
mechanical properties. In this section the ab initio calculations results are presented for
the energies of the vacancies defects. Formation energies of defects in Zr structures
were calculated using the total energies of perfect and defected supercells. ab initio
calculations of the total energies are performed using the SIESTA atomic-orbitals
within GGA. The electronic configuration for Zr is [Kr]4d25s2, the core electrons were
replaced by Troullier-Martins pseudopotentials; valence electrons were described by a
double- polarized DZP basis set with cutoff radii of 3.04 a.u. for the 5s and 2.65 a.u. for

-700

-600

-500

-400

-300

-200

-100

0
0 0.5 1 1.5

Reaction Coordinate
Ea

ds
[k

J/
m

ol
]

Fig. 2. Computed energy profile of the dissociation of an I2 molecule on a Zr (0001) surface and
final structures.

334 E. Mayoral et al.

the 4d orbitals. Six structures with different number of vacancies V = 1, 2, 3, 4, 10 and
20 were studied. The cells contained 78 Zr atoms for the perfect structure minus the
removed vacancy atom in each case. The total energies of the cells for each system
were optimized for the atomic positions until all forces were lower than 0.005 eV/Å.
Every one of the Zr atoms except for the corner atoms of the supercell were permitted
to locate their lowest energy position. Relaxed structures are shown in Fig. 3.

The vacancy formation energies Ev can be obtained by the cohesive energies of the
initial E1

coh and final system E2
coh and is defined as:

Ev � N � 1ð Þ � ðE1
coh � E2

cohÞ: ð2Þ

It is assumed that the total potential energy, E1, in the perfect Zr crystal has reached
the cohesive state and also E2 in the vacancy-formed structure after the relaxation, then

E1 ¼
XN

i
Ei � N � E1

coh; ð3Þ

E2 ¼
XN�1

i
Ei � ðN � 1Þ � E2

coh ð4Þ

Ev � E2 � N � 1
N

� E1; ð5Þ

where N is the number of atoms in the simulation box (Verite et al. 2013). It is
important to point out that Ev is not just the difference between E1 and E2. Both
energies were calculated for supercells of identical size. The results are shown in
Table 2 and Fig. 4.

Fig. 3. Relaxed structures for Zirconium with vacancies (V = 1, 2, 3, 4, 10 and 20).

Ab initio DFT Calculations 335

As it can be seen, the total energies of a supercell are on the order of 104 eV and the
formation energy is just a few eV. For this reason calculations of formation energies are
hard to converge and high performance computing is required. The Ev obtained for Zr
was Ev = 1.9940 eV, which it is in good agreement with the experimental evidence
from positron annihilation spectroscopy which leads to Hexp

f � 1:5 eV (Verite et al.
2007).

Table 2. Total energies obtained for Zr structures with vacancies V = 1, 2 3, 4, 5, 10 and 20.

V E(eV)

0 −8359.93672
1 −8254.75205
2 −8147.10783
3 −8040.74528
4 −7933.69248
10 −7285.39938
20 −6200.15237

0 5 10 15 20

-8500

-8000

-7500

-7000

-6500

-6000

E(
eV

)

V

E vs V

Fig. 4. Total energies obtained for Zr structures as a function of the vacancies V = 1, 2 3, 4, 5,
10 and 20.

336 E. Mayoral et al.

3.3 Impurities and Alloys

Zirconium is one of the most used materials in core nuclear reactors due to its low
neutron capture cross-section, good mechanical properties and its resistance to corro-
sion. Even so, to improve the resistance to elevated temperatures the use of alloys is
necessary. The most important alloying elements used are Sn, Ni, Fe and Cr due to its
low neutron absorption. Zircaloy-2 is a Zirconium-based alloy containing 1.2–1.7% Sn,
0.07–0.20% Fe, 0.05–0.15% Cr, and 0.03–0.04% Ni. Because the stoichiometric
quantities of these atoms are small, its inclusion in a Zirconium structure for ab initio
calculations implies the use of many atoms. In this part of the work structures with 250
atoms including n atoms of Sn (nSn = 1, 2, 3, 10) and 250-nSn atoms of Zirconium were
built. Total energies for each system were calculated performing ab initio calculations.
The electronic configuration for Zr is [Kr]4d25s2 and for Sn is [Kr] 4d10 5s2 5p2 the
core electrons were replaced by Troullier-Martins pseudopotentials and valence elec-
trons were described by a double-polarized DZP basis set. The cutoff radii of Zr were
3.04 a.u. for the 5s and 2.65 a.u. for the 4d orbitals. For the Sn the cutoff radii used
were 2.4 a.u. for 5s and 2.46 a.u. for 5p orbitals. The total energies of the systems were
optimized for the atomic positions until all forces were smaller than 0.005 eV/Å. Every
one of the Zr atoms but the corner atoms of the supercell were permitted to locate their
lowest energy position. Relaxed structures are shown in Fig. 5. Even though differ-
ences in energy are obtained, a more exhaustive comprehension involving different
configurations and bigger systems is necessary in order to understand the effect of the
presence of Sn (Table 3).

Fig. 5. Relaxed structures for ZrxSny alloys structures.

Table 3. Total energies calculated for ZrxSny alloys structures.

ZrxSny Total energy (eV)

Zr250Sn0 −26584.31579
Zr249Sn1 −26585.98849
Zr247Sn3 −26589.57301
Zr240Sn10 −26601.46296

Ab initio DFT Calculations 337

4 Conclusions

In this work, it was shown with some examples, the necessity of the use of high
performance computing (HPC) in nuclear material science because of the combination
of the required high accuracy and the large number of atoms to study this kind of
systems makes the calculations very demanding. The use of the SIESTA code applied
in the study of typical core structural materials used in nuclear reactors such as Zr,
ZrxSny alloys, and modified structures with microstructural defects was presented.
Results showed how this kind of simulations can be carried out for large systems at a
relatively cheap computational cost. Nevertheless, for more advanced studies such as
the design of materials needed for fourth-generation nuclear technology and upcoming
fusion reactors that must hold up operating conditions, with temperatures in the range
of 500–1000°C and exposure damage of * 30–100 dpa more computational resources
will be necessary. Numerical modeling simulations using HPC are necessary to reduce
exposure to radioactive material, supporting the analysis, optimization, control, good
operation, and innovation of materials for the design of new nuclear technologies.

Acknowledgements. This work was partially supported by ABACUS, CONACyT grant
EDOMEX-2011-C01-165873. The calculations for this paper were performed in the
Cinvestav-Abacus supercomputer.

References

Bowler, D., Miyazaki, T.: Methods in electronic structure calculations. Rep. Prog. Phys. 75,
036503 (2012)

Hu, H., Reven, L., Rey, A.D.: Ab initio study of 6-mercapto-hexane SAMs: effect of Au surface
defects on the monolayer assembly. Mol. Simul. 39(4), 292–298 (2013)

Kleinman, L., Bylander, D.M.: Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48,
1425 (1982)

Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects.
Phys. Rev. 140, A1133 (1965)

Ordejon, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional calculations for
very large systems. Phys. Rev. B 53, R10441(R) (1996)

Perdew, J.P., Burke, K., Ernserhof, M.: Generalized gradient approximation made simple. Phys.
Rev. Lett. 77, 3865 (1997). Erratum Phys. Rev. Lett. 78, 1396

Sánchez-Portal, D., Ordejón, P., Canadell, E.: Computing the properties of materials from first
principles with SIESTA. In: Kaltsoyannis, N., McGrady, J.E. (eds.) Principles and
Applications of Density Functional Theory in Inorganic Chemistry II. Structure and Bonding,
vol. 113, pp. 103–170. Springer, Heidelberg (2004)

Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.:
The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14,
2745–2779 (2002)

Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B.
43, 1993 (1991)

338 E. Mayoral et al.

Verite, G., Domain, C., Fu, C., Gasca, P., Legris, A., Willaime, F.: Self-interstitial defects in
hexagonal close packed metals revisited: evidence for low-symmetry configurations in Ti, Zr,
and Hf. Phys. Rev. B 87, 134108 (2013)

Verite, G., Willaime, F., Fu, C.: Anisotropy of the vacancy migration in Ti, Zr and Hf hexagonal
close-packed metals from first principles. Solid State Phenom. 129, 75–81 (2007)

Wimmer, E., Najafabadi, R., Young Jr., G.A., Ballard, J.D., Angeliu, T.M., Vollmer, J.,
Chambers, J.J., Niimi, H., Shaw, J.B., Freeman, C., Christesen, M., Wolf, W., Saxe, P.: Ab
initio calculations for industrial materials engineering: successes and challenges. J. Phys.:
Condens. Matter 22, 384215 (2010)

Ab initio DFT Calculations 339

Super Free Fall of a Liquid Frustum
in a Semi-infinite Cone

Áyax Torres1(B), Salomón Peralta1, Abraham Medina1, Jaime Klapp2,3,
and Francisco Higuera4

1 SEPI ESIME Azcapotzalco, Instituto Politécnico Nacional,
Av. de las Granjas 682, Col. Santa Catarina, Azcapotzalco,

02250 Mexico City, Mexico
higherintellect@hotmail.com, peraltasalomon@hotmail.com,

abraham medina ovando@hotmail.com
2 Departamento de F́ısica, Instituto Nacional de Investigaciones Nucleares,

Ocoyoacac, Estado de México, Mexico
jaime.klapp@hotmail.com

3 ABACUS-Centro de Matemáticas Aplicadas y Cómputo de Alto Rendimiento,
CINVESTAV-IPN, La Marquesa, 52740 Ocoyoacac, Estado de México, Mexico

4 Escuela Técnica Superior de Ingenieros Aeronáuticos,
Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain

Abstract. In this paper we have analyzed theoretically the super free
fall of a near inviscid mass of liquid, which fills partially a small section
of a very long vertical conical pipe. Through the use of a one-dimensional
inviscid model, we describe the simultaneous and pecular motion of the
two interphases of the liquid.

Keywords: Flow in quasi-one-dimensional system · Flows in pipes and
nozzles · Navier-stokes equations

1 Introduction

Recently, it has been shown that the upper free surface of a liquid column fill-
ing a cylindrical pipe of short length, but increasing radius, reaches super free
fall [1–3]. In fact, it was demonstrated that when a liquid column, in a slowly
expanding conical pipe is suddenly released from the rest, by opening abruptly
its bottom exit and all liquid is exhausted from the tube, the upper free surface
reaches initially a super gravitational acceleration, then the acceleration becomes
sub-gravitational, and finally it turns back to terminate at exactly gravitational
acceleration as required [2]. In the case of pipes with a sudden expansion (inter-
connected pipes at different radii) the upper free surface can achieve persistent
accelerations several times larger than the gravity acceleration g, and the accel-
eration is larger for smaller levels of filling in the upper pipe [3]. All the previous
rich dynamics in confined systems contrast with those where an initially con-
fined mass of liquid is suddenly released to the ambient due to the explosion

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 340–345, 2017.
DOI: 10.1007/978-3-319-57972-6 25

Super Free Fall of a Liquid Frustum 341

of a water-filled rubber-balloon [4]. Thus, such a mass of liquid falls initially,
and thereafter, it disintegrates into smaller droplets. Incidentally, the super free
fall in liquids also recalls the purely-mechanical problem of the super free fall of
the tip of chains falling under the gravity action in two main configurations: a
vertically hanging chain released from rest and an horizontally folded chain [5].
In this work we analyze theoretically, based on a slender slope approximation,
the problem of the super free fall of a specific volume of low viscosity liquid
contained in a conical pipe of very large length which is supposed to be released
from the rest at any part of it. Since the mass of liquid never leaves the pipe,
we conceptualize such configuration as a liquid slice in a semi infinite cone. This
simple system allows us to predict the dynamic behavior of both upper and lower
free interfaces, during the overall history of the flow (while the liquid slice does
not desintegrates due to their extreme thinness). In the last part of this commu-
nication we discuss the realization of a qualitative experiment to visualize the
dynamic evolution of the liquid slice. Finally, we give the main conclusions.

Fig. 1. Scheme of an idealized semi-infinite cone. The liquid frustum is bounded by
H1(0) and H2(0).

2 Theory

Ideally, a semi-infinite conical pipe model has an infinite length and consequently,
in any part of this pipe and under this configuration the radius is always increas-
ing downwards along the flow direction. Here, we consider a finite volume of qui-
escent liquid confined at any part of the semi-infinite vertical cone by conforming
a conical frustum (i.e., a cone initially sliced by two horizontal parallel planes),
both interfaces of the frustum are opened to the atmosphere at z = H2(0) and
z = H1(0), respectively. Subindex (0) indicates initial positions. A scheme of the
problem can be seen in Fig. 1. These two distances are taken in reference to the
apex of the cone. This quasi-unidirectional model of motion of a liquid volume

342 Á. Torres et al.

contained in a semi-infinite tube obeys the mass and momentum conservation
equations.

1
z2

∂

∂z
(z2u) = 0, (1)

ρ

(
∂u

∂t
+ u

∂u

∂z

)
=

∂P

∂z
+ ρg, (2)

where z is the vertical distance measured downward from the apex of the cone,
t is the time, u and P are the velocity and pressure of the liquid, ρ is the
density of the liquid, g is the gravitational constant, and viscous effects have
been neglected. Let H1(t) and H2(t) denote the position of the lower and upper
surfaces at anytime during the movement. Then u = dH1/dt, P = Pa at z = H1,
and u = dH2/dt, P = Pa at z = H2,

u = 0 , H1 = H1(0) , H2 = H2(0) at t = 0, (3)

where Pa is the pressure outside the liquid and surface tensions have been
neglected.

Equation (1) can be immediately integrated to give

u =
dH1

dt

H2
1

z2
=

dH2

dt

H2
2

z2
. (4)

From the second equality, after using the initial condition (3), we obtain

H3
1 − H3

2 = H3
1(0) − H3

2(0), (5)

which expresses the condition of conservation of the liquid volume.
Carrying equation (4) into the momentum equation (2), integrating the

resulting equation from z = H1 to z = H2 and using the boundary conditions
(3) for the pressure, we find, after some algebra

d2H2

dt2
=

H1

h2
g +

1
2

(
dH2

dt

)2 (
1

H1
+

H2

H2
1

+
H2

2

H2
1

− 3
H2

)
, (6)

which is obtained by integrating (2) between z = H2 to a generic value of z.
Introducing the dimensionless variables

ξ =
H2

H1(0) − H2(0)
, η =

H1

H1(0) − H2(0)
, τ = t

√
g

H1(0) − H2(0)
. (7)

Equations (5) and (6) take the dimensionless form:

η3 − ξ3 = 1 + 3ξ0 (1 − ξ0) , (8)

d2ξ

dτ2
=

η

ξ
+

1
2

(
dξ

dτ

)2 (
1
η

+
ξ

η2
+

ξ2

η3
− 3

ξ

)
. (9)

with
ξ = ξ0 ,

dξ

dτ
= 0 at z = 0. (10)

Super Free Fall of a Liquid Frustum 343

Now this final solution depends on the single dimensionless parameter

ξ0 =
H2(0)

H1(0) − H2(0)
. (11)

3 Numerical Procedure

To obtain a numerical solution, after eliminating η by using Eq. (8), the resulting
nonlinear second order equation (9) can be simply broken in a set of two stiff
ordinary differential equations which will be numerically integrated by using
Gill’s method [7]. This method was developed from the general theory given by
Kutta [8] and was chosen for this work because it is capable to reach fourth-order
accuracy with the use of minimum storage registers. As mentioned in Blum [8]
the two advantages of implementing Gill’s method are: first, it only requires
3n + B storage registers whereas the standard Runge-Kutta method requires
4n+B, where n refers to the number of coupled first-order differential equations
and B is a constant; second, under Gill’s method scheme the computation can
be arranged and the rounding errors can be reduced significantly.

The celebrated subroutine introduced by White [6] was rewritten into a con-
venient from under the Fortran�95 standard, and the resulting project was com-
piled with the Absoft Pro Fortran�16.0.2 which is suitable to handle the proper

irrational constants of Gill’s method e.g., A =
√

1
2 = 1.7071067811865475244

with an explicit length declaration.
In order to estimate the development of the interphase acceleration we have

chosen the next ΔH value at τ = 0: ξ(0) = 0.2 and η(0) = 1.2. Those initial
conditions were measured from the apex to every single interface conforming the
height of the liquid frustum.

Fig. 2. Spatial evolution of both non-dimensional upper and lower free surfaces at
initial conditions of filling ξ0 = 0.2 and η0 = 1.2.

344 Á. Torres et al.

Fig. 3. Evolution of both upper and lower free interfaces ξ̇ and η̇ as a function of time.

As seen in Fig. 2 each free interface presents a similar behavior when this
liquid column is suddenly released from the rest; it is apparent that the distance
between interfaces decreases until a minimum distance is reached. According to
Figs. 3 and 4 it is possible to conclude that at the beginning of the movement
the upper free surface ξ starts to move faster than η and at later stages of the
movement, both surfaces ξ and η will reach the pure free fall acceleration.

Fig. 4. Evolution of both, upper and lower interface acceleration as a function of time
at initial conditions of filling ξ0 = 0.2 and η0 = 1.2.

Super Free Fall of a Liquid Frustum 345

4 Conclusions

The theoretical model based on the slender slope theory presented here, predicts
the behavior of the free interfaces that conform a liquid frustum, which ideally
lies in any part of a semi infinite cone and its suddenly released from the rest.
The method used for the numerical computations reported here was originally
designed in order to use efficiently every single storage space of the memory unit
of the machine.

Acknowledgments. This work has been partially supported by the Instituto
Politécnico Nacional (México), through projects SIP 20121347 and SIP 20120286, and
by the Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT) under the project
CONACyT-EDOMEX-2011-C01-165873. The calculations for this work were per-
formed in the Abacus I supercomputer.

References

1. Villaermaux, E., Pomeau, Y.: Super free fall. J. Fluid Mech. 642, 147 (2010)
2. Torres, A., Medina, A., Higuera, F.J., Weidman, P.D.: On super free fall. J. Fluid

Mech. 642, 147–157 (2013)
3. Treviño, C., Peralta, S., Torres, A., Medina, A.: Super free fall of an inviscid liquid

through interconnected vertical pipes. Europhys. Lett. 112(1) (2015). Article no.
14002

4. Vollmer, M., Mollman, K.-P.: Is there a maximum size of water drops in nature?
Phys. Teach. 51(7), 400–402 (2013)

5. Virga, E.G.: Chain paradoxes. Proc. R. Soc. Lond. 471 (2015). Article no. 20140657
6. White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (2006)
7. Gill, S.: A process for the step-by-step integration of differential equations in an

automatic digital computing machine. Math. Proc. Camb. Philos. Soc. 47, 96–108
(1951). Cambridge University Press

8. Blum, E.K.: A modification of the Runge-Kutta Fourth Order Method. http://www.
ams.org

http://www.ams.org
http://www.ams.org

A Particle Method for Fluid-Structure
Interaction Simulations in Multiple GPUs

Julián Becerra-Sagredo1(B), Leonardo Sigalotti2, and Jaime Klapp1,3

1 ABACUS-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados

CINVESTAV-IPN, Carretera México-Toluca Km 38.5, La Marquesa,
52740 Ocoyoacac, Estado de México, Mexico

juliansagredo@gmail.com
2 Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Campus

Azcapotzalco, Avenida San Pablo Xalpa 180, Azcapotzalco,

Reynosa Tamaulipas, 02200 D.F., Mexico, Mexico
3 Departamento de F́ısica, Instituto Nacional de Investigaciones Nucleares,

La Marquesa Ocoyoacac s/n, 52740 Ocoyoacac, Estado de México, Mexico

Abstract. This chapter is a presentation of the programming philos-
ophy behind a novel numerical particle method for the simulation of
the interaction of compressible fluids and elastic structures, specifically
designed to run in multiple Graphics Processing Units (GPUs). The code
has been developed using the CUDA C Application Programming Inter-
face (API) for fine-grain parallelism in the GPUs and the Message Pass-
ing Interface library (MPI) for the distribution of threads in the Cen-
tral Processing Units (CPUs) and the communication of shared data
between GPUs. The numerical algorithm does not use smoothing ker-
nels nor weighting functions for the computation of differential operators.
A novel approach is used to compute gradients using averages of radial
finite differences and divergences using Gauss’ theorem by approxima-
tions based on area integrals around local spheres around each particle.
The interactions of the particles inside the fluid are modelled using the
isothermal, compressible Navier-Stokes equations and a simple equation
of state. The elastic material is modelled using inter-particle springs with
damping. Results show the potential of the method for the simulation of
flows in complex geometries.

1 Introduction

The simulation of fluids interacting with elastic structures has a broad number
of applications in engineering, medicine and architecture. Aerodynamic design,
thermodynamic cycles in motors, containment of fluids and blood flow, to name
a few, can be described using the compressible Navier-Stokes equations for the
fluid dynamics, combined with linear elasticity theory for the mechanics of solid
boundaries. The computational tools designed for the numerical integration of
the governing equations have therefore been the focus of a large research effort.

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 346–358, 2017.
DOI: 10.1007/978-3-319-57972-6 26

A Particle Method for Fluid-Structure Interaction Simulations 347

The most general problem requires the handling of complex dynamic geometries,
the two way coupling of the forces in the fluid and the solid, and often, the
resolution or approximation of turbulent flows.

In aerodynamic design, early works were focused on the use of finite differ-
ences or finite volume formulations using curvilinear grids [1–4]. This description
can be useful for static boundaries but unpractical for moving or elastic ones.
Mathematically, the grid orientation is an important factor to reduce numerical
errors due to the lack of multidimensionality of the dimensional splitting tech-
nique, producing mesh-dependent solutions. Another partially successful tech-
nique is the use of vortex methods [5–7]. These were successful in describing
the flow around boundaries for simple grids in Cartesian, cylindrical and spher-
ical coordinates, for incompressible flows reaching Reynolds numbers of several
thousands, and providing insight into turbulent flow control with actuators [8].
Nevertheless, the description of more general boundaries was challenged by the
need of accurate interpolations near the complex interphase.

A promising technique to deal with complex geometries is the finite ele-
ment method [9–12]. This technique has been the focus of many works, specially
in blood flow simulations [13]. A clear advantage of this technique is the use
of triangular or tetrahedral elements able to handle any boundary’s geometric
complexity. The mesh can be adaptive and able to follow moving boundaries.
The elasticity of solid boundaries can be coupled to the fluid pressure for com-
pressible or incompressible flows. Many libraries are available for the simulation
of fluid-structure interactions using finite elements [16,17]. But one must keep
in mind that the generation of the grids is not trivial and can be quite time
consuming. Also, the equations are expressed in weak form and solved implicitly
in time, what generates a large non-symmetrical system of linear equations to
be solved using GMRES [14], a solver that is difficult to implement with fine
grain parallelism [15].

Another technique is the use of Smoothed Particle Hydrodynamics (SPH)
[18–22]. In this technique, the equations are discretized following the fluid ele-
ment’s trajectories and derivatives are approximated using the superposition of
interpolation kernels for every particle. Some of the advantages of this technique
are that there is no need to generate grids and that it naturally follows mov-
ing boundaries. Given the purely Lagrangian formulation, the fluid moves with
the boundary velocity right at the interphase. If the domains are compressed or
even the volume vanishes in some regions, like in the case of flow in pistons, the
particles are able to leave the domain entirely and fill newly open spaces. The
streamlines can be sketched using the particles’ trajectories and simple equations
of state can be used to simulate quasi-incompressible flows.

Hybrid techniques have been developed, combining both finite elements and
particle trajectories, using a finite element grid that is advected at the boundary
[23]. In fact, there is no alternative to this description because necessarily the
mesh must follow the boundary. In this case, the generation of the mesh is a
problem to be considered. A full Lagrangian description is out of the question
for the most general case given that in the presence of vorticity, the grids get
highly deformed producing a badly conditioned mass matrix.

348 J. Becerra-Sagredo et al.

During the last decade, the graphics processing unit (GPU) has surpassed the
performance of the central processing unit (CPU) in floating point operations
per second and local memory transfer velocity [24,25], and the trend is going to
continue. The GPUs double their performance approximately every year while
the CPUs do it every two years [26]. Therefore, the hardware has become an
important factor in the design of fluid flow solvers. They must be designed or
adapted to run entirely inside the GPU, with minimum communications with
the CPU. This is because the velocity of memory transfers from CPU to GPU
is several orders of magnitude slower than the internal memory transfers of the
GPU, which can work entirely with L2-cache shared memory.

Considering all the factors, we have collected new ideas for the simulation
of fluid-structure interactions using several GPUs. We are motivated to do it
because our group has access to Abacus I, a supercomputer with one hundred
Tesla K40 GPUs, providing 1200 GB of RAM and 288 000 cores of 745 MHz. In
this chapter we describe the programming philosophy and the algorithms neces-
sary for the implementation of a novel particle method running entirely inside
a set of GPUs, associated to one another through a corresponding set of CPU
threads using the Message Passing Interface library (MPI), and communicat-
ing by data transfers between the corresponding CPUs using MPI non-blocking
send and receive functions. The particle method is entirely Lagrangian and dif-
ferent from an SPH because it does not use a smoothing particle kernel nor radial
weighting functions. It has some similarities to the Moving Particle Semi-implicit
method (MPS) [27], but in general, the approximations and search of neighbors
are completely new. Its main characteristic is that it computes derivatives using
averaged radial finite differences using approximations of area integrals on adap-
tive spheres around each particle, complemented with the divergence theorem
when necessary. It is explicit in time, not requiring the inversion of a linear
system of equations. It considers compressible fluids, closing the system using
an equation of state for the pressure. The elastic boundary is simulated using
another set of particles kept together with forces approximated by springs and
damps. The two sets of particles are coupled using the forces of the fluid pres-
sure and the velocity of the elastic surface. The results show the potential of the
method to handle complex geometries.

2 Fluid Particles

Consider a Newtonian, compressible fluid with density ρ, pressure P and vis-
cosity μ, kept at a constant temperature T , for simplicity but without loss of
generality, which motion is described by the velocity vector v. The material
derivative D/Dt = ∂/∂t +v · ∇ is the chain rule for the total derivative in time,
describing the variations along the trajectories of the fluid elements given by
dx/dt = v.

The system of equations describing its dynamics are given by the conservation
of mass

Dρ

Dt
= −ρ∇ · v, (1)

A Particle Method for Fluid-Structure Interaction Simulations 349

and Newton’s second law

ρ
Dv

Dt
= −∇P + μ∇2v, (2)

closed by an equation of state relating the density and the pressure P = P (ρ, T).
We consider moving solid boundaries where the fluid velocity is set to the solid
velocity v = vs. The equation of state

P =
ρ

3
(3)

is used for simplicity during this work.

3 Solid Particles

The solid is represented by particles which conserve mass, subject to linearly
elastic, spring like forces and damping. The conservation of mass in the solid is
given by

Dρs
Dt

= −ρs∇ · vs. (4)

Newton’s second law for the forces in the solid is given by

ρs
Dvs

Dt
= fs, (5)

where fs is the sum of the elastic, friction and pressure forces, such that fs =
fe + ff + fp.

4 Discretization

The discretization of the system could be done by seeding particles inside the
fluid domain as desired, keeping them at a minimum distance between each
other, denoted by hmin. We have chosen to seed the boundary with particles,
either by a given boundary mesh, necessary for complex geometries, or using a
level set function. If the boundary is provided by a given mesh, the location of
the particles must be complemented with the surface’s normal vector pointing
towards the fluid domain for every boundary particle. These normal vectors are
going to be used to determine the interior and exterior of the computational
domain by simple weighted dot products with the relative position vector from
the surface. If the boundary is given by a level set function, the boundary is
seeded with particles and the level set is used to know if any position in space
is part of the computational domain. We choose to seed the particles inside
the fluid domain using a virtual Cartesian mesh covering the desired volume
to mesh, eliminating the points that lie outside. Each location of the virtual
Cartesian mesh is tested to be inside of the computational domain, and if so,
stored. Figure 1 shows a cylinder seeded with particles using a Cartesian array

350 J. Becerra-Sagredo et al.

Fig. 1. Initial particle grid for a cylindrical domain. The particles are seeded using a
Cartesian array and adjusted near the boundary to keep a minimum distance between
particles.

with spacing h and keeping particles at a minimum distance 0.5h next to the
boundary particles.

Once the initial particle positions are given, the fields are initialized for every
particle, giving the densities ρ and ρs, and the velocities v and vs, at time t = 0.

The particle trajectories are solved with second order accuracy in time by
setting

xn+1
i = xn

i +
1
2
(vn

i + vn+1
i)Δt, (6)

where the time is discretized, such that the super-index n denotes the time step
tn = nΔt for n = 0, 1, ..., N . This formula provides a second order, explicit
integration of the trajectories and is sketched in Fig. 2.

We choose to use a purely Lagrangian formulation where particles are never
re-meshed and interpolations are not necessary for advection. This warranties
that the transport is exact along the trajectories of the particles with small errors
due to the trajectory integration. Additionally, we leave the mollifier kernel con-
cept used in SPH and focus only in computing the derivatives on the right hand
side of the equations for the conservation of mass and Newton’s second law. All
the derivatives are computed using averages of radial finite differences, consider-
ing a regular distribution of particles. The approximations will reduce accuracy
when the particle field deforms and the corrections to this approximations are
the focus of future research. Only first line of sight nearest neighbors are con-
sidered in every 26 directions in three dimensions and 8 in two dimensions. The
gradient is computed using a vector average of radial finite differences

∇Pi ≈ D

N

∑

j �=i

Pj − Pi

||xj − xi||
̂(xj − xi), (7)

A Particle Method for Fluid-Structure Interaction Simulations 351

vn+1
i

vn
i

1
2
(vn

i + vn+1
i)

xn
i

xn+1
i

Fig. 2. Second order scheme for the integration of trajectories. The velocity is advanced
using the momentum equation and the time-averaged velocity is used to advance the
position of the particles.

where D is the number of dimensions and N is the number of nearest neighbor
particles. The divergence is computed using Gauss’ theorem by

∇ · vi ≈ A

V

∑

j �=i

(vj + vi)
2

· (xj − xi)
||xj − xi|| , (8)

where V = (4/3)πR3 and A = 4πR2/N , are the volume and area of a reference
sphere for the calculation of the divergence. The radius R is considered as the
averaged half distance to the nearest neighbors. Finally, the Laplacian is the
combination of both concepts,

∇2vi ≈ A

V

∑

j �=i

(vj − vi)
||xj − xi|| . (9)

The model for the friction force consists of a damping factor D times the square
of the velocity magnitude,

ff = −Dv2
s v̂. (10)

The elastic forces are modelled using springs to the nearest neighbors

fe,i = −
∑

j �=i

k(||xj − xi|| − Li,j) ̂(xj − xi), (11)

where Li,j is the equilibrium length for the spring bonding particles i and j.
The conservation of mass and Newton’s second law are advanced as ordinary

differential equations over the trajectory of each fluid particle, explicitly in time
with a forward Euler method, after evaluating the spatial operators on the right
hand side.

Particle methods do not have conservation issues due to advection. Only
the inaccurate computation of the sources of compressibility and force can par-
tially affect conservation of the advected quantities. The accurate calculation of

352 J. Becerra-Sagredo et al.

Fig. 3. Scheme for the radial finite differences approximation of the gradient (7), the
divergence (8) and the Laplacian (9). The radial finite difference approximations are
based on sums of individual difference vectors to the nearest neighbor particles com-
bined with the divergence theorem using a sphere with radius of the average half
distance to the neighbors.

gradients and divergences can be affected by a highly deformed particle field.
Viscous flows have fluid elements that deform smoothly. Anyway, the computa-
tion of individual area weights for each neighbor particle is necessary for accurate
approximations of the differential operators. Its detailed analysis and implemen-
tation are subjects of future research.

5 Data Structures

The data structure is a list of particles for each CPU process, where the solid
particles, which describe also the fluid particles at the boundary, are given at
the beginning of the list, followed by the particles in the bulk of the fluid.

A list of nearest neighbors is constructed in order to compute the differential
operators in the right hand side of the transport equations for the solid and the
fluid. Analogously to Lattice-Boltzmann algorithms, we consider 8 neighboring
particles in two dimensions and 26 in three. An initial list is constructed or
given. The list is updated after a fixed number of time steps during the numeri-
cal integration. The new list is produced following the hypothesis that for every
particle, every new neighbor was in the neighbor list of its former neighbors.
Algorithm 1 is the pseudo-code for the updating of the list of nearest neigh-
bors neighborlist(1 : n, 1 : 26), where n is the total number of particles in the
computational domain. The distance between particles is given by the function
distance(i, j) (line 3 and 11). If any particle lies outside a neighboring radius
h, its index is tagged to be replaced. The list is double-checked to avoid the
repetition of particles (line 14).

A Particle Method for Fluid-Structure Interaction Simulations 353

1: oldneighborlist(i,1:26) = neighborlist(i,1:26)
2: do j from 1 to 26
3: k = oldneighborlist(i,j)
4: dr = distance(i,k)
5: if (dr > h) neighborlist(i,k) = -1
6: do j from 1 to 26
7: k = oldneighborlist(i,j)
7: if (neighborlist(i,k) = -1)
8: mindr = 10 h
9: do l from 1 to 26
10: m = oldneighborlist(i,l)
11: do o from 1 to 26
12: p = oldneighborlist(l,o)
13: dr = distance(i,p)
14: if (dr < mindr)
15: inthelist = false
16: do q from 1 to 26
17: if (p = neighborlist(i,q)) inthelist = true
18: if (inthelist = false)
19: neighborlist(i,j) = p
20: mindr = dr

Algorithm 1. Update list of nearest neighbors.

6 The Programming Model

We use the template code presented in [28] but adapted for a list of particles. The
computational domain is geometrically decomposed in a one-dimensional array
of M sub-domains. The Message Passing Interface (MPI) library is used to start
M threads for the same number of CPU cores. Every CPU thread corresponds
to a process to be run in a different GPU. Frequently, each node of the cluster
will have one or two GPUs, therefore it is necessary to distribute the M threads
in different nodes, such that every process is able to pick at least one exclusive
GPU.

Communications between GPUs is achieved loading the necessary GPU data
to the local CPU memory, communicating the CPU threads using MPI unblocked
but synchronized sends and receives, and loading it back to the GPU. In this
implementation, only boundary data is communicated and particles are not
transferred between processes. Future versions may contain the transfer of par-
ticles between GPUs.

Inside the GPU, operations are threaded over the list of particles, as described
in Fig. 4. The list is distributed in a three-dimensional array with power of two
dimensions, further subdivided in blocks to be given to the GPU cores. The list
of threads will be in general larger than the list of particles. Those threads that
do not correspond to a particle perform no work.

The programming model for a single GPU is focused in performing parallel
L2 memory reads and a few global memory writes. The nvcc compiler is capable

354 J. Becerra-Sagredo et al.

Fig. 4. Scheme of the computational decomposition of the list of particles and its
arrangement as GPU threads in a cube. The GPUs are mastered by CPU threads
using MPI.

of automatically allocating L2 memory reads if we provide read-only arrays. All
numerical operations are done using the registers memory and the results are
written back to write-only arrays in global memory.

7 Results

The algorithm is a newly proposed numerical method and the tests are focused in
proving its correctness without going into deep analysis of order of convergence.
The algorithm has been theoretically designed to be second order for a regular
distribution of neighboring particles.

We use an initial Gaussian perturbation in the density

ρ(r) = 1.0 + 0.01 exp−r2/5, (12)

where r is the distance from the center of the domain with dimensions [15, 15, 15],
in a quiet Newtonian fluid with viscosity μ = 1.

First we prove that our new radial difference formulas are correct by com-
puting the norm of the pressure gradient and the divergence of the velocity field
after a single time step Δt = 0.02. Figure 5 shows the comparison of the dif-
ferential operators for a cylindrical domain filled with 250000 particles and a
Cartesian 643 mesh with finite differences. It shows agreement and even a slight
improvement in the case of the divergence.

A Particle Method for Fluid-Structure Interaction Simulations 355

Fig. 5. Comparison of the square of the norm of the pressure gradient (top) and the
divergence of the velocity (bottom), for the radial differences scheme using particles in
a cylindrical domain (left) and finite differences in a cube (right). Both domains are
shown cut in half by a plane normal to the x-axis.

We simulate the acoustic wave resulting from the Gaussian initial condition
in a cylinder filled with 250000 particles. We compare it with a second order
semi-Lagrangian scheme [29] in a 643 cube. Figure 6 shows agreement between
the schemes even though the reflection of the waves is different for the square
domain and the cylinder. Therefore, only early stages of the wave are compared.

Fig. 6. Comparison of the acoustic wave for the newly proposed particle method with
250000 particles and a semi-Lagrangian scheme [29] for a 643 domain. From left to
right we can see the density along the y-axis for times t = 0.2, t = 0.6 and t = 1.2.

We have run the code for one, two and four GPUs Tesla C2070. The results
for a small run consisting of a thousand time steps are presented in Fig. 7. The
runs show strong scalability in the vertical direction and weak scalability in the

356 J. Becerra-Sagredo et al.

horizontal direction. The weak scalability shows a small penalty due to the com-
munication between GPUs. The objective of running in many GPUs is not the
acceleration of the code, although it is possible to observe significant acceleration
in the case of two GPUs compared to one. Nevertheless, we note that for the case
of four GPUs, the acceleration is much less and extrapolating we can see that
many more GPUs would not achieve significant acceleration. The point is that
runs in several GPUs must be focused in the simulation of very large problems
or with high resolutions. The GPUs are very fast processing units that should
be exploited at maximum with the lowest number of communications possible.
The use of several GPUs must be evaluated using the weak scalability concept
where larger problems are run in the approximately same computational time,
shown in Fig. 7 in the horizontal direction.

0 1 2 3 4 5 6 7 8 9
x 10 6

0

5

10

15

20

25

number of particles

tim
e

[s
] 4 GPUs

2 GPUs1 GPU

Fig. 7. Weak (horizontal) and strong (vertical) scalability of the domain decomposition
scheme for the list of particles using MPI communication between GPUs. The two black
curves correspond to one- and two-dimensional domain decomposition.

8 Conclusion

We presented a programming model using domain decomposition with message
passing for computations using multiple GPUs adapted to a list of particles.
This particle template code has been filled with a novel numerical method. The
numerical method consists of a particle method for the integration of transport
equations along material trajectories of fluid elements. The fluid elements are
defined by the location of the particles. The equations are solved in time using a
second order mid-point integration scheme for the positions of the particles and
a first order explicit Euler integration for the velocity and density. The pressure
is obtained explicitly using an equation of state. Averages of radial derivatives
combined with the divergence theorem are used for the approximation of the
spatial differential operators at the right hand side of the transport equations.
These differences have been used in different forms in other works but never in the
form presented here. We take the nearest neighbors in the 26 principal Cartesian
directions like in a Lattice-Boltzmann scheme. The approximations have been

A Particle Method for Fluid-Structure Interaction Simulations 357

tested to be second order accurate for a regular, Cartesian distribution of par-
ticles, and are expected to loose accuracy as the particle field distorts. Moment
conservation for the area covered by the neighbors around each particle will be
explored to keep the accuracy regular for any configuration of the neighbors.
The list of particles is complemented with a list of nearest neighbors, updated
after a fixed number of time steps with a local search scheme. The results of the
acoustic waves inside a cylinder meshed with a Cartesian array of particles show
the potential of the code to solve problems in complex geometries without the
need of complex mesh generators. For complex geometries, the boundary node
positions and normal vectors pointing to the fluid must be provided.

Acknowledgements. This work was partially supported by ABACUS, CONACyT
grant EDOMEX-2011-C01-165873. The calculations for this work have been performed
in the Abacus I supercomputer.

References

1. Steger, J.L.: On application of body conforming curvilinear grids for finite differ-
ence solution of external flow. Appl. Math. Comput. 10–11, 295–316 (1982)

2. Karki, K.C., Patankar, S.V.: Calculation procedure for viscous incompressible flows
in complex geometries. Numer. Heat Transfer 14(3), 295–307 (1988)

3. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge (2002)

4. Bijl, H., Wesseling, P.: A unified method for computing incompressible and com-
pressible flows in boundary-fitted coordinates. J. Comput. Phys. 141(2), 153–173
(1998)

5. Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335
(1980)

6. Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice.
Cambridge University Press, Cambridge (2000)

7. Ploumhans, P., Winckelmans, G.S., Salmon, J.K., Leonard, A., Warren, M.S.: Vor-
tex methods for direct numerical simulation of three-dimensional Bluff body flows:
application to the sphere at Re = 300, 500 and 1000. J. Comput. Phys. 178(2),
427–463 (2002)

8. Koumoutsakos, P.: Active control of vortex-wall interactions. Phys. Fluids 9(12),
3808–3816 (1997)

9. Strang, G., Fix, G.: An Analysis of the Finite Element Method. SIAM, Wesley-
Cambridge Press, Philadelphia (1973)

10. Kuzmin, D., Hämäläinen, J.: Finite Element Methods for Computational Fluid
Dynamics: A Practical Guide. Computational Science & Engineering. SIAM,
Philadelphia (2014)

11. Löner, R., Morgan, K., Peraire, J., Zienkiewicz, O.C.: The free-lagrange method.
In: Fritts, M.J., Crowley, W.P., Trease, H. (eds.) Recent developments in FEM-
CFD. Lecture Notes in Physics, pp. 236–254. Springer, Heidelberg (2005)

12. Schweitzer, M.A.: Generalizations of the finite element method. Cent. Eur. J. Math.
10(1), 3–24 (2012)

13. Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow
in arteries. Comput. Methods Appl. Mech. Eng. 158(1), 155–196 (1998)

358 J. Becerra-Sagredo et al.

14. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869
(1986)

15. Ziane Khodja, L., Couturier, R., Glersch, A., Bahi, J.M.: Parallel sparse linear
solver with GMRES method using minimization techniques of communications for
GPU clusters. J. Supercomput. 69(1), 200–224 (2014)

16. Whiting, C.H., Jansen, K.E.: A stabilized finite element method for the incom-
pressible Navier-Stokes equations using a hierarchical basis. Int. J. Numer. Meth-
ods Fluids 35(1), 93–116 (2001)

17. Quarteroni, A.: Numerical Models for Differential Problems. Springer, Heidelberg
(2009)

18. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astrophys. 30,
543–574 (1992)

19. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–
1760 (2005)

20. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid-structure interac-
tion by SPH. Comput. Struct. 85(11), 879–890 (2007)

21. Sigalotti, L.D.G., Klapp, J., Rendon, O., Vargas, C.A., Peña-Polo, F.: On the kernel
and particle consistency in smoothed particle hydrodynamics. J. Appl. Numer.
Math. 108, 242–255 (2016)

22. Sigalotti, L.D.G., Rendon, O., Klapp, J., Vargas, C.A., y Campos, K.: A new
insight into the consistency of Smoothed Particle Hydrodynamics. arXiv:1644200
[physics.com-ph] 21 August 2016

23. Donea, J., Huerta, A.: Finite Element Flow Problems. Wiley, Hoboken (2003)
24. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010)
25. Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: GPUs and the

future of parallel computing. IEEE Micro 31(5), 7–17 (2011)
26. NVIDIA CUDA C Programming Guide, version 7.5, Nvidia (2015)
27. Koshizuka, S., Oka, Y.: Moving particle semi-implicit method for fragmentation of

incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)
28. Becerra-Sagredo, J., Mandujano, F., Málaga, C., Klapp, J., Teresa, I.: A tem-

plate for scalable continuum dynamic simulations in multiple GPUs. In: Gitler, I.,
Klapp, J. (eds.) ISUM 2015. CCIS, vol. 595, pp. 473–484. Springer, Cham (2016).
doi:10.1007/978-3-319-32243-8 33

29. Becerra-Sagredo, J.T., Málaga, C., Mandujano, F.: Moments preserving and
high-resolution semi-Lagrangian advection scheme. SIAM J. Sci. Comput. 38(4),
A2141–A2161 (2016)

http://arxiv.org/abs/1644200
http://dx.doi.org/10.1007/978-3-319-32243-8_33

Scheduling Algorithms for Distributed Cosmic
Ray Detection Using Apache Mesos

Germán Schnyder1(B), Sergio Nesmachnow1, Gonzalo Tancredi1,
and Andrei Tchernykh2

1 Universidad de la República, Montevideo, Uruguay
{german.schnyder,sergion}@fing.edu.uy, gonzalo@fisica.edu.uy

2 CICESE Research Center, Ensenada, Baja California, Mexico
chernykh@cicese.mx

Abstract. This article presents two scheduling algorithms applied to
the processing of astronomical images to detect cosmic rays on distrib-
uted memory high performance computing systems. We extend our pre-
vious article that proposed a parallel approach to improve processing
times on image analysis using the Image Reduction and Analysis Facility
IRAF software and the Docker project over Apache Mesos. By default,
Mesos introduces a simple list scheduling algorithm where the first avail-
able task is assigned to the first available processor. On this paper we
propose two alternatives for reordering the tasks allocation in order to
improve the computational efficiency. The main results show that it is
possible to reduce the makespan getting a speedup =4.31 by adjusting
how jobs are assigned and using Uniform processors.

Keywords: Image processing · Distributed memory · Containers ·
Mesos · Scheduling

1 Introduction

Hubble Space Telescope (HST) is not only an astronomical observatory but also
an excellent cosmic ray detector. Because HST is above the Earth’s atmosphere
and therefore not protected against low-energy cosmic rays, and crosses the Van
Allen radiation belts, HST is an unique particle detector. Since cosmic ray flux
is affected by the strength of the magnetic field, detectors of HST detectors sam-
ple different conditions of the magnetic field, which can be used to compare to
magnetic field strength, gamma ray flux and other geophysical data measured by
the geomagnetic observatories. HST dark frames (or just darks) are suitable for
cosmic ray studies because they are acquired with closed shutters so only cosmic
ray events are recorded. HST results will complement that of the existing cosmic
rays detectors on ground and space. Launch of the HST predate geomagnetic
satellites by more than a decade; its 26 years of low altitude cosmic-ray detection
provide high-resolution observations of the geomagnetic field. We propose [1] to
analyze the full darks dataset to calculate the flux of cosmic rays above Earth’s
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 359–373, 2017.
DOI: 10.1007/978-3-319-57972-6 27

360 G. Schnyder et al.

surface and estimate variations in the external magnetic field, thereby comple-
menting geophysical observatory measurements. By combining HST results with
measurements of solar activity, cosmic ray flux on Earth’s surface, and geomag-
netic data, our analysis will contribute to understating external magnetic field
variations.

A two-phases workflow is needed to process the images: first, extracting the
noise from the images; and second, processing the noise to understand if there
are connected components that can be understood as cosmic rays impacts. For
the first phase, there is a widely used scientific package named IRAF (Image
Reduction and Facility [2]). IRAF includes several utilities for manipulating
images in the open standard digital file format Flexible Image Transport System
(FITS). For the second phase, several algorithms have been proposed to detect
every stroke in the dark and determine if it is a cosmic ray or some anomaly (e.g.
a damaged pixel). This step is basically about finding connected components on
the image and estimating the cosmic ray inner energy. In addition, this step also
determines the exact point of impact based on the instruments logs, regarding
the telescope position.

In our previous article [3], we proposed an approach for improving the perfor-
mance of image analysis on distributed memory High Performance Computing
systems through Apache Mesos. In this work, we extend our approach to consider
two scheduling algorithms for tasks-to-resource assignment in order to further
improve the performance.

Originally, the scheduling of jobs and resources was not analyzed in [3],
because the focus of our previous research was to design and implement a parallel
approach to distribute the work with the main goal of obtaining the best horizon-
tal scaling possible. Apache Mesos [4] is a resource scheduler that uses internal
algorithms for assigning tasks to processing machines based on user specified
conditions and the available resources in the computational infrastructure. In
our previous proposal, tasks became available from the beginning, and so do the
processes used to image processing, resulting in a straightforward workflow. In
this work, we propose some tweaks to improve the performance, based on a job
scheduling logic and not specifically focusing on horizontal scaling. An evolu-
tion from the Mesos default scheduling strategy, to a combination of Longest
Processing Time (LPT) and Shortest Processing Time (SPT) scheduling algo-
rithms demonstrates that the total makespan can be minimized on favor of a
faster processing pipeline.

The article is organized as follows. Next section describes the problem and
our previous approach for image processing. Section 3 presents a review of related
works on scheduling jobs over virtualized environments. The proposed methods
and scheduling algorithms are described in Sect. 4. After that, Sect. 5 presents
the experimental evaluation of the proposed scheduling algorithms and reports
the efficiency results. Finally, Sect. 6 presents the conclusions and formulates the
main lines for future work.

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 361

2 Problem Description

The problem of detecting cosmic rays from HST images is complex and requires
a lot of computing effort, especially taking into account that a large dataset
of historical images (from the early 1990s) is available. Thus, applying a par-
allel model either on data or instructions domain is required to complete the
processing in reasonable execution times. In this work, we follow a data-parallel
approach for distributed memory system using containers, which is described in
detail in our previous work [3]. All the images are supposed to be available at
the same time on an external database. The processing is performed by a set of
worker processes running as Docker containers, managed by Apache Mesos.

The execution environment includes a node executing Marathon [5].
Marathon is a framework for container orchestration and it is a part of the
Apache Mesos ecosystem. Marathon is responsible of instantiating the contain-
ers, as described on a job configuration file. Each container can be seen as an
independent processing node, where every node follows the same logic of obtain-
ing a new image from the repository and processing it. In order to perform this
task, each container uses Zookeeper [6] for synchronization: each process must
know in advance which images are available to determine which image it should
process.

Figure 1 presents a diagram of the proposed architecture. The dotted line
indicates what is running inside the Mesos managed environment (i.e. Marathon,
containers and Zookeeper); DockerHub (https://hub.docker.com/) is a publicly
accessible cloud registry where docker images are stored (for its later retrieval
by Marathon); the images repository is where the FITS files reside (a filesystem
reachable from the containers); and the output files are the results from the
cosmic rays analysis.

Fig. 1. Architecture for the parallel/distributed processing of HST images to detect
cosmic rays using containers.

https://hub.docker.com/

362 G. Schnyder et al.

In order to achieve the goal of obtaining the best horizontal scaling (or, in
other words, to perform faster as the number of processing nodes grow in a linear
ratio), a solution applying virtualization is proposed. The worker code is packed
and distributed through as a Docker container. Docker enables virtualization of
an operating system in a lightweight container. As a consequence, Marathon can
instantiate as many workers as needed on the execution environment, and the
only limitation is given by the physical resources available. Taking into account
this last consideration, the system can scale horizontally as much as needed for
processing very large datasets (in the case of HST images, more than 10 TB of
image data are available, from images taken since the Hubble started operating
in 1990).

3 Related Work

This section reviews some relevant and recent related works about improving
jobs scheduling in distributed computing systems and virtualized environments
using containers.

On the last years, as MapReduce became popular on cloud computing, many
researchers started focusing on how to apply Hadoop for image processing (see
for example the articles by Golpayegani and Halem [7], or Ali and Kumar [8]).
Particularly on the present work, the focus will be over the already established
architecture and the objective is to improve the tasks assignment strategies.

Job scheduling has been widely analyzed and developed through the last 40
years. The literature about scheduling algorithms is very large, but in this work
we focus on studying simple algorithms that can be integrated easily on Mesos
and provide improved execution times. Specifically, we consider the classical
algorithms proposed by Adam et al. [9], who studied how to schedule parallel
processors to minimize makespan assuming partially ordered tasks. This is not
the case on this work, as we work with non-related tasks, but it shows a first app-
roach on comparing execution algorithms that is relevant for our work. Almost
at the same time, Coffman and Sethi [10] presented LPT and SPT algorithms
applied to job scheduling. Their work is tightly related to the research we pro-
pose here, and some of the results presented by Coffman et al. are applied in
this article. Based on the already known O(n log n) algorithm for the execution
time for a system with identical processors, from Graham [11]) Coffman et al.
demonstrated the efficacy of several heuristics to optimize the mean flow time
or the total makespan, separately. Closer in time, Kovács [12] showed how to
properly assign jobs to a setup where one processor is faster than the others.
His work is also close to our proposal, but the main difference is related to the
proportion between fast and slow processors. Finally, Oyetunji [13] defined and
used several metrics to analyze performance on scheduling strategies that are
useful to explain the algorithms proposed in our article.

Related to Map-Reduce applications for astronomical data processing, Wiley
et al. [14] showed how to adapt image co-addition to the MapReduce frame-
work. Image co-addition is a technique that has the objective of getting a high

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 363

quality image as output, consuming lower resolution images as input. They
realized several experiments combining Hadoop and SQL with the result of
processing 100.000 images (the equivalent to 300 million pixels) in 3 min. Finally,
Singh et al. [15] developed a custom version of MapReduce on python to process
astronomical datasets. Their work developed parallel processing recipes for mul-
ticore machines for astronomical data processing. These recipes are intended to
be used by astronomers with PyIRAF/IRAF knowledge. They compared three
different approaches for parallelizing the execution (Pool/Map, Process/Queue
and Parallel Python) with the result of Process/Queue being the faster one.
This approach involves two FIFO queues (for input of parameters and output of
results) that work as pipelines to connect the nodes. This approach is similar to
the one we apply in our work, because it does not block the pipeline in anyway,
and enables the horizontal scaling based on the number of workers.

Our work combines distributed computing (using data parallelism) and job
scheduling algorithms applied to a cosmic ray detection. This approach enables
future researchers to focus on data analysis taking advantage of results presented
here.

4 Scheduling Algorithms for Cosmic Ray Detection
Using Mesos

This section presents the two algorithms proposed for minimizing total execution
time of the image processing tasks.

4.1 Architecture for the Parallel Execution

The diagram of the proposed architecture for the parallel execution of the IRAF
image processing in our original work [3] was already presented in Fig. 1.

Regarding the scheduling considerations, in our previous work Marathon
instantiates the containers as described in the configuration file, and it responsi-
bility is just to keep them running. It does not decide how the tasks are assigned
to the workers. Then, by default, tasks are assigned on a non-ordered basis. The
first processor that becomes available will get the first image on the list. This can
be thought as a straightforward list scheduling algorithm, where no precondition
apply neither on the process or the images.

4.2 Scheduling Model

Considering the architecture described in Fig. 2, an improved job scheduling
strategy can be devised. The workers have equal ready times, and the wait time
for getting tasks assigned is zero (since all the images are available from the
beginning).

Given the previous considerations, the scheduling problem can be defined
according to the following guidelines:

364 G. Schnyder et al.

– Which is the best method for tasks-to-processor assignment in order to mini-
mize the total finishing time when processing a given set of images?

– Is it possible to maximize the throughput of the computational infrastructure
used for the processing?

The problem also must take into account that: all tasks are independent,
and no precedence requirements are defined; there is no need for preemption;
every task runs on a separate worker and job priorities are not considered; all
the processors used by workers are identical (or uniform, if needed, as it will be
shown on Sect. 4.5).

The mathematical model for the scheduling problem considers the following
elements:

– A set of processors P = {p1, . . . , pm}.
– A set of tasks (images to process) T = {t1, . . . , tn}.
– A speed function s : P → N+, where s(pj) gives the computing capacity of

processor pj .
– A weight function w : T → N+, where w(ti) gives the computing cost needed

to process task ti.

The objective of the scheduling problem is to find a function f : T → P that
assigns tasks to processors minimizing wi/sj where f(ti) = pj .

According to the classification by Graham et al. [16], the resulting scheduling
problem can be classified as of type P || Cmax.

4.3 Scheduling Strategies

Scheduling problems within type P || Cmax are proved to be NP-complete [10].
However, the problem complexity can be relaxed imposing some constraints, for
example assigning priorities. Thus, the order in which the tasks will be assigned
can be determined by either priorities or worker processing speed.

If each image is paired with a priority number, a well-known list scheduling
algorithm can be applied to obtain a performance bound below 2 − 1/m (being
m the number of processors). Particularly, using LPT, the mean performance
bound is 4

3 − 1
3×m [11]. Specifically for this work, the image size works as a

priority indicator: the bigger the image size, the bigger the priority.

4.4 LPT-CRD Scheduling Algorithm

The traditional LPT algorithm consists on sorting the tasks (images) in increas-
ing size order and workers (processors) according to their processing power.
Under this task ordering logic, tasks with larger processing times are guaranteed
to start first, and they are executed by workers running on the fastest proces-
sors. We propose an adapted LPT-CRD algorithm, which is the version used for
assigning images to workers following the LPT principle.

The pseudocode for the adapted LPT-CRD algorithm applied to cosmic ray
detection on astronomical images is shown in Algorithm1.

The schema for ordering workers (CPUs) and tasks (images) in the LPT-CRD
algorithm is graphically presented in the diagram on Fig. 2.

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 365

Algorithm 1. Adapted LPT-CRD algorithm for P || Cmax.
begin

Order tasks {t1, ..., tn}, such that w(t1) ≥ ... ≥ w(tn)
for i ← 1 to m do

ci := 0
/* proc. pi are assumed to be idle from time ci=0 on */

end
j := 1
repeat

ck := min {ci}
Assign task tj to processor pk at time ck
/* the first non-assigned task from the list is scheduled on

the first processor that becomes free */

ck := ck + w(tj)
j := j + 1

until j = n; /* all tasks have been scheduled */

end

4.5 Combined CRD Scheduling Algorithm

In Marathon, the processor speed of each worker can be adjusted to a custom
value on the task definition. This procedure allows applying a different approach
for scheduling, suitable for the paradigm of heterogeneous computing [17]. By
adjusting the speed to a different value, the processor speed of each worker can
be modified, for maintaining a set of uniform workers. By definition, processors
are uniform if every job that executes on a processor of computing capacity s
for t time units completes s×t units of execution. Assuming this scenario, the
main focus is to minimize the mean flowtime for the tasks.

Fig. 2. In LPT-CRD, workers and images are sorted in increasing speed/size order

366 G. Schnyder et al.

The flowtime is defined as the sum of the finishing times of all tasks (see
a formal definition in Sect. 5.2), and the mean flowtime is the average flowtime
value when considering the number of tasks in execution in a batch. This new
version of the scheduling problem is within the class Q || ∑

Cj . Horowitz and
Sahn [18] demonstrated that for the case of minimizing mean flowtime on a sys-
tem with m processors it is possible to implement an algorithm whose complexity
is O(n logmn).

Algorithm 2 presents the pseudocode of the proposed solution (combined
CRD algorithm, CCRD) to solve the problem of maximizing throughput when
processing astronomical images for cosmic ray detection. The main idea in CCRD
consists in combining the scheduling strategies proposed by the LPT and SPT
heuristics.

Algorithm 2. Combined CRD algorithm for Q || ∑
Cj .

begin
Order tasks {t1, ..., tn}, such that w(t1) ≥ ... ≥ w(tn)
for i ← 1 to m do

ci := 0
/* proc. qi are assumed to be idle from time ci=0 */

end
j := 1
l := n
repeat

ck := min {ci}
if qk is a fast processor then

Assign task tj to processor qk at time ck
j := j + 1

else
Assign task tn−j to processor qk at time ck
l := l - 1

end
/* the first or the last non-assigned task from the list is

scheduled on the first processor that becomes free,

depending on its type */

ck := ck + w(tj)

until l = j; /* all tasks have been scheduled */

end

In CCRD, both workers and images are sorted in increasing order of
power/size. At any moment where an idle worker is ready to process, the CCRD
algorithm assigns an available image to it. If the worker is running on a fast
processor, the algorithm selects the biggest image available. However, if the
worker is running on a slow processor, the algorithm selects the smallest image
available. Since the images are already sorted by size, this assignment is per-
formed at O(1).

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 367

Fig. 3. Proposed schema for minimizing mean flowtime using CCRD algorithm

Figure 3 describes the proposed schema for the CCRD scheduling algorithm.
A worker is defined as “slow” if its processing power is 60% of available process-
ing power, and “fast” if it is 100%. Mesos determines the available processing
power based on the underlying infrastructure and the Marathon tasks require-
ments. These values are arbitrary, the percentage defining a slow processor can
be anyone below 100%, actually. The maximum must be 100% though, because
the code to execute is not parallel at instruction level and running it on more
than one processor has no positive impact on performance.

Finding the optimum ratio between the values for fast and slow processors
speed, in terms of makespan and mean flowtime minimization, is an interesting
theoretical issue, which we propose as the focus for a future line of work. This
further analysis should also consider studying the optimum number of nodes of
each type. In this article, for the sake of simplicity, we establish as of five of each
type, making a total of 10 workers, which provides a realistic description of a
parallel system in the studied architecture.

The details about how to indicate Marathon to instantiate both the slow and
fast processors are presented in the codes shown in Figs. 4 and 5, respectively.
In addition to processing speed, the configuration file must also include the
instance count (i.e., in the setup used in this work, five slow processors and five
fast processors) and the memory resources to be used. Both type of workers are
configured with enough memory to guarantee that every image can be manip-
ulated and the analysis can be performed without any memory issues. Finally,
there are several other settings that are required by Marathon (e.g., container
URL at Dockerhub, environment variables, etc.). We do not report the details
here because these settings are not directly related to the scheduling problem.

368 G. Schnyder et al.

{
” id ” : ” s low worker ” ,
” cpus” : 0 . 6 , //CPU percentage to be r e s e rved
”mem” : 512 .0 , //RAM to be re s e rved
” i n s t an c e s ” : 5 //number o f nodes to i n s t a n t i a t e

}

Fig. 4. Sample code of a Marathon task definition for slow processors (as those using
60% of CPU)

{
” id ” : ” f a s t wo rke r ” ,
” cpus” : 1 . 0 , //CPU percentage to be r e s e rved
”mem” : 512 .0 , //RAM to be re s e rved
” i n s t an c e s ” : 5 //number o f nodes to i n s t a n t i a t e

}

Fig. 5. Sample code of a Marathon task definition for fast processors (as those using
100% of CPU)

5 Experimental Evaluation

This section presents the experimental evaluation of the proposed scheduling
algorithms compared to the original efficiency results [3].

5.1 Computational Platform

The experimental evaluation was executed using the same machine configuration,
even when considering different configurations for the Marathon jobs in the
proposed scheduling algorithms. The CPU processing power was capped to the
same maximum value (equivalent to 8 processors). The host computer used to
perform the tests is a c4.4xlarge instance from the EC2 Amazon Web Services
(AWS) cloud, with 16 cores running Ubuntu 14.04, Intel Xeon E5-2666 v3 at
2.90 GHz, with a disk of 200 GB and 30 GB of memory.

5.2 Metrics

Performance Metrics. The standard speedup and computational efficiency met-
rics are used for the comparison between the sequential model and the parallel
execution based on containers running in Mesos. In this context, the speedup
is defined as the ratio between the total processing time between the sequential
execution time (T1) and the parallel execution time (TN) when using a specific
number of N computing elements, as defined by Eq. 1 below. The efficiency is
the normalized value of the speedup, according to the number of computing
elements used, as defined by Eq. 2.

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 369

SN = T1
TN

, (1) EN = SN

N . (2)

Finally, an acceleration metric is reported, to evaluate the relative improve-
ment (in execution time) obtained when comparing a two algorithms as
defined by

accelerationAB =
executiontime(AlgorithmA)
executiontime(AlgorithmB)

(3)

Scheduling Evaluation. When considering the time spent to execute all tasks
within a job, the most usual metrics to optimize are the makespan and the
flowtime [19]. The makespan is a relevant objective to evaluate the resource
utilization; it is defined as the time spent from the moment when the first task
begins execution to the moment when the last task is completed. The flowtime
evaluates the sum of the tasks finishing times, and it is important from the
point-of-view of the users, since it reflects the response time of a computational
system for a set of submitted tasks [20].

5.3 Scheduling Improvements Results

Table 1 reports the total makespan when evaluating the computing times for
the three schedulers proposed (the default scheduler in Mesos [3], LPT-CRD for
identical processors with ordering, and combined CRD for uniform processors
with ordering). The table also reports the values of the acceleration, speedup,
and computational efficiency metrics. The analysis is performed using different
number of images in a job (100, 500, and 1000 images), following the Bag-of-
Tasks (BoT) paradigm for distributed computing [21]. In our case, the BoT cor-
responds to a set of images. Since images are independent, they can be assigned
to different workers for processing, according to the BoT model.

The results in Table 1 show that both LPT-CRD and Combined CRD algo-
rithms performed better than the default scheduling strategy. Also, differences
become more significant as the image dataset grows. For instance, on the 100
images dataset the speedups are 2.83 and 3.41 (for LPT-CRD and CCRD respec-
tively), but goes up to 4.17 and 4.31 when the dataset size is ten times bigger.
Its noticeable a minor speedup on the 500 images dataset, but this value is still
better than the execution time provided by the default scheduling algorithm in
Mesos. In addition, the acceleration achieved is reported as a measurement of
performance improvement. On this regard, the proposed algorithms also per-
formed better than the default scheduling, and increasing as the datasize grows,
showing a good scalability behavior. The proposed scheduling strategies allows
executing faster the processing.

Table 2 reports the total flowtime when evaluating the computing times for
the three schedulers proposed, and also the computational metrics evaluated.

370 G. Schnyder et al.

Table 1. Makespan results and computational efficiency analysis for the proposed
scheduling algorithms over different datasets, according to the BoT model.

images Execution time (s) Acceleration Speedup Efficiency

Default Improved

LPT-CRD algorithm

100 346 644 0.54 2.83 0.28

500 2382 1705 1.40 1.69 0.17

1000 5180 3438 1.51 4.17 0.42

Combined CRD algorithm

100 346 533 0.65 3.41 0.34

500 2382 1710 1.39 1.69 0.17

1000 5180 3326 1.56 4.31 0.43

Table 2. Flowtime results and computational efficiency analysis for the proposed
scheduling algorithms over different datasets, according to the BoT model.

images Execution time (s) Acceleration Speedup Efficiency

Default Improved

LPT-CRD algorithm

100 186.26 327.44 0.57 2.83 0.28

500 996.83 864.52 1.15 1.69 0.17

1000 2127.65 1739.53 1.22 4.17 0.42

Combined CRD algorithm

100 186.26 242.67 0.77 3.41 0.34

500 996.83 850.20 1.17 1.69 0.17

1000 2127.65 1708.33 1.25 4.31 0.43

Similarly to the makespan evaluation, results in Table 2 indicate that the
proposed algorithms computed significantly improved results when considering
the mean flowtime as optimization metric. For both scheduling algorithms, the
acceleration increased as the images datasets became bigger. As reported in
the results, the acceleration grew slower than the makespan acceleration. This
behavior could be analyzed on a future line of work, answering why makespan
acceleration grows faster than flowtime acceleration. Since the reported acceler-
ation grows as the images dataset size increases, it can be concluded that both
strategies performed better than the default scheduling in terms of flowtime.

Figure 6 graphically summarizes the main results of the computational effi-
ciency analysis for LPT-CRD and Combined CRD on different image datasets
when compared with the default Mesos scheduling algorithm.

Figure 6 indicates that both algorithms performed faster than the default
scheduling strategy for all the tested datasets. The graphics show that there

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 371

are slight differences between LPT-CRD and CCRD, and the speedup increases
as the dataset size increases. Regarding acceleration, Fig. 6 illustrates how it
increased over the image dataset size, but slowing its pace. Further tests should
be run to generalize this behavior for bigger image datasets as the ones proposed
to analyze in the project “Geophysics using Hubble Space Telescope”.

From the obtained results, we conclude that the scheduling improvements are
convenient to process the full set of images (10 TB) available from HST. Either
LPT-CRD or CCRD execute much faster than the original version. A processing
that would eventually take months could be computed in days or even hours,
depending on the behavior of the speedup on the dataset size.

100 500 1,000
0

1

2

3

4

Dataset size

S
p
ee

d
u
p

LPT-CRD

Combined CRD

100 500 1,000

0.6

0.8

1

1.2

1.4

1.6

Dataset size

A
cc

el
er

a
ti
o
n

LPT-CRD CCRD

Fig. 6. Computational efficiency analysis for LPT-CRD and Combined CRD on dif-
ferent image datasets

6 Conclusions and Future Work

In this work, we improve an existent distributing computing architecture using
Apache Mesos and Docker for processing images within the project “Geophysics
using Hubble Space Telescope”. We proposed using adapted LPT and SPT algo-
rithms, combined with different processors, for scheduling. According to the met-
rics used for performance evaluation (makespan and mean flowtime), the pro-
posed schedulers improved over the traditional one in Mesos. The main results
indicate that the total makespan can be reduced up to 35% (acceleration 1.56),
and the mean flowtime can be reduced 20% (acceleration 1.25) when using five
fast workers, five slow workers and a dataset of 1000 images.

The main contribution of this article is that including some adjustments
on the algorithms for job scheduling, an Apache Mesos based architecture can
perform better regarding makespan and flowspan metrics. This performance
improvement contributes to reducing times in astronomical images processing
tasks.

The main lines of current and future work are related to exploring the utiliza-
tion of different CPU speeds according to the heterogeneous computing model,

372 G. Schnyder et al.

for example having different levels of speed and generalizing the results of the
present work from two levels (slow and fast) to many levels. Finding the opti-
mum ratio between slow and fast processing speeds, and the best configuration
in terms of how many workers of each type obtains minimizes the total makespan
is another line for further improving the proposed scheduling algorithms.

References

1. Tancredi, G., Cromwell, G., Deustua, S., Gonzalez, G., Nesmachnow, S., Schnyder,
G.: Geophysics using Hubble Space Telescope. Hubble Space Telescope Cycle 24
approved proposal (2016)

2. NOAO: IRAF Project Home Page, July 2016. http://iraf.noao.edu/
3. Schnyder, G., Nesmachnow, S.: Improving the performance of cosmic ray detec-

tion using Apache Mesos. In: International Supercomputing Conference in México
(2016)

4. The Apache Software Foundation: Mesos, July 2016. http://mesos.apache.org/
5. Mesosphere Inc.: Marathon: a cluster-wide init and control system for services in

cgroups or Docker containers, July 2016. https://mesosphere.github.io/marathon/
6. The Apache Software Foundation: Apache ZooKeeper, July 2016. http://

zookeeper.apache.org/
7. Golpayegani, N., Halem, M.: Cloud computing for satellite data processing on high

end compute clusters. In: International Conference on Cloud Computing (2009)
8. Ali, M., Kumar, J.: Implementation of image processing system using handover

technique with map reduce based on big data in the cloud environment. Int. Arab
J. Inf. Technol. 13(2), 326–331 (2016)

9. Adam, T.L., Chandy, K.M., Dickson, J.R.: A comparison of list schedules for par-
allel processing systems. Commun. ACM 17(12), 685–690 (1974)

10. Coffman, E.G., Sethi, R.: Algorithms minimizing mean flow time: schedule-length
properties. Acta Informatica 6(1), 1–14 (1976)

11. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

12. Kovács, A.: Tighter approximation bounds for LPT scheduling in two special cases.
J. Discret. Algorithms 7(3), 327–340 (2009)

13. Oyetunji, E.O.: Some common performance measures in scheduling problems:
review article. Res. J. Appl. Sci. Eng. Technol. 1(2), 6–9 (2009)

14. Wiley, K., Connolly, A., Gardner, J., Krughoff, S., Balazinska, M., Howe, B., Kwon,
Y., Bu, Y.: Astronomy in the cloud: using MapReduce for image co-addition. Publ.
Astron. Soc. Pac. 123(901), 366–380 (2011)

15. Singh, N., Browne, L.M., Butler, R.: Parallel astronomical data processing with
Python: recipes for multicore machines. Astron. Comput. 2, 1–10 (2013)

16. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization, approximation in
deterministic sequencing, scheduling: a survey. Ann. Discret. Math. 5, 287–326
(1979)

17. Eshaghian, M.: Heterogeneous Computing. Artech House, Norwood (1996)
18. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-

tical processors. J. ACM 23(2), 317–327 (1976)
19. Nesmachnow, S.: Parallel multiobjective evolutionary algorithms for batch schedul-

ing in heterogeneous computing and grid systems. Comput. Optim. Appl. 55(2),
515–544 (2013)

http://iraf.noao.edu/
http://mesos.apache.org/
https://mesosphere.github.io/marathon/
http://zookeeper.apache.org/
http://zookeeper.apache.org/

Scheduling for Distributed Cosmic Ray Detection Using Apache Mesos 373

20. Leung, J., Kelly, L., Anderson, J.: Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press Inc., Boca Raton (2004)

21. Cirne, W., Brasileiro, F., Sauvé, J., Andrade, N., Paranhos, D., Santos-Neto, E.:
Grid computing for bag of tasks applications. In: Proceedings of 3rd IFIP Confer-
ence on E-Commerce, E-Business and E-Government (2003)

The IMPETUS Project: Using ABACUS for the
High Performance Computation of Radiative
Tables for Accretion onto a Galaxy Black Hole

José M. Ramı́rez-Velasquez1,2(B), Jaime Klapp2,3, Ruslan Gabbasov4,
Fidel Cruz5, and Leonardo Di G. Sigalotti1,5

1 Centro de F́ısica, Instituto Venezolano de Investigaciones Cient́ıficas (IVIC),
Apartado Postal 20632, Caracas 1020A, Venezuela

josem.ramirez@gmail.com
2 ABACUS-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados

CINVESTAV-IPN, Carretera México-Toluca Km 38.5, La Marquesa, 52740
Ocoyoacac, Estado de México, Mexico

jaime.klapp@hotmail.com
3 Departamento de F́ısica, Instituto Nacional de Investigaciones Nucleares (ININ),

Carretera México-Toluca Km. 36.5, La Marquesa,
52750 Ocoyoacac, Estado de México, Mexico

ruslan.gabb@gmail.com
4 Instituto de Ciencias Básicas e Ingenieŕıas, Universidad Autónoma del Estado de
Hidalgo (UAEH), Ciudad Universitaria, Carretera Pachuca-Tulancingo km. 4.5 S/N,

Colonia Carboneras, 42184 Mineral de la Reforma, Hidalgo, Mexico
fidelcru@gmail.com

5 Área de F́ısica de Procesos Irreversibles, Departamento de Ciencias Básicas,
Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 180,

02200 Mexico City, Mexico
leonardo.sigalotti@gmail.com,

http://www.abacus.cinvestav.mx/impetus

Abstract. We present the intensive calculations of digital tables for the
radiative terms that appear in the energy and momentum equations used
to simulate the accretion onto supermassive black holes (SMBHs) at the
centers of galaxies. Cooling and heating rates are presented, calculated
with a Spectral Energy Distribution constructed from: an accretion disk
plus an X-ray power-law and an accretion disk plus a Corona. The elec-
tronic structures of atoms, the photoionization cross-sections, and the
recombination rates are treated in great detail. With the recent discov-
ery of outflows originating at sub-parsec scales, these tables may provide
a useful tool for modeling gas accretion processes onto a SMBH.

Keywords: Accretion · Supermassive black hole · Galaxies: feedback ·
Evolution galaxy formation · Observational black hole

c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 374–386, 2017.
DOI: 10.1007/978-3-319-57972-6 28

The Impetus Project 375

1 Introduction

Nowadays it is believed that at the centers of all active galaxies (AGNs) reside a
compact, super-massive object (supermassive black hole, SMBHs) that empowers
its immediate surrounding with radiative energy. This radiation and its temporal
evolution have been the subject of studies from radio to γ-rays, allowing in
parallel the exploration of systems that involve compact objects, e.g., supernova
remnants, X-ray binary stars, accretion onto SMBHs, and also their impact on
the large-scale structure of the Universe, unprecedentedly.

The radiative energy transfer component, and the related astrophysical
processes, are computed by the balance between heating (H) and cooling (C)
agents. Sometimes these rates are computed using analytical prescriptions in
order to save computational costs. However, improvements in computational
facilities and numerical algorithms have allowed to substitute this strategy by
detailed photoionization computations that are in principle limitation-free over
a wide range of physical conditions.

Specifically, advanced codes like cloudy [12] and xstar [16], permit the
computation of non-equilibrium thermodynamics, including their ionization, mo-
lecular states, level populations, and kinetic temperatures from low densities up
to ∼1015 cm−3, and temperatures from the cosmic microwave background (CMB)
scale upto 1010 K. We recall that the electronic structure of atoms, the photoion-
ization cross-sections, the recombination rates, and the grains and molecules are
treated in detail by these codes.

Some of the major processes like for example: (i) photoionization/
recombination, (ii) collisional ionization/3-body recombination to all levels, and
(iii) collisional and radiative processes between atomic levels, are included in
cloudy, so we expect to be taken into account the main spectral features in IR
(infrared), UV (ultraviolet) and X-rays, and therefore objects in local thermody-
namic equilibrium (LTE) are modeled self-consistently [11]. Inner-shell processes
are also considered, including the radiative one [11]. On the other hand, ana-
lytical formulas for the heating and cooling rates have been widely used. For
instance, previous work on accretion onto SMBHs in the centers of galaxies
(active galactic nuclei, AGNs) by [26–28], and [4] have made use of [6] analytical
formulas for the heating and cooling rates, which are limited to temperatures in
the range 104 � T � 108 K and ionization parameters (ξ = L/[nHr2]) in the
interval 1 � log(ξ) � 5.

In this chapter, we develop a methodology and present tabulated values that
account for highly detailed photoionization calculations together with the under-
lying microphysics to provide a platform for use in existing radiation hydro-
dynamics codes based either on Smoothed Particle Hydrodynamics (SPH) or
Eulerian methods. Using the Cinvestav-abacus supercomputing facilities, we
have run a very extensive grid of photoionization models using the most up-
to-date version of cloudy (v 13.03), which allows us to pre-visualize physical
conditions for a wide range of distances, from four Schwarzschild radii (≈4rSch)
to r � 34, 000rSch (rSch = 2GMBH

c2), densities (10−2 � nH � 109 cm−3), and
temperatures (102 � T � 109 K) around SMBHs in AGNs.

376 J.M. Ramı́rez-Velasquez et al.

Active galaxies may be playing a key role in the regulation of the growth of
their SMBHs [3,9,14,31]. In cosmology, and specifically in the standard model
(i.e., Λ-Cold Dark Matter), the interplay between inflows and outflows are com-
ponents that may be establishing the possible relationship between the grow
of the SMBHs and the bulk kinematics properties of their host galaxies [13,19].
Theoretical and observational pieces of information are supporting such scenario.
The equations of gravitohydrodynamics put theoretical constrains [7,18,23,24]
on observations, where a lack of spatial resolution from kpc to pc is present. This
is why a prescribed sub-grid is employed to solve this lack of resolution. Having
X-ray luminosities high enough to overcome the gravitational escape velocities,
combined with continuum and spectral lines opacities, outflows produced at sub-
parsec scales are observed. This is why the calculations of the present tables pro-
vide a tool to solve the problem of accretion onto SMBHs in the center of galaxies
at sub-parsec scales. In addition, two Spectral Energy Distributions (SEDs) and
three ways of breaking up the luminosity between the disk and the X-ray com-
ponents are presented. On average, these runs take about 200 min using ≈4000
cores (≈13.3k CPU hours) of the Cinvestav-abacus supercomputer.

Examples of hydrodynamics codes using cloudy as their radiative modules
can be found in evolution of HII regions, photoevaporation of the circumstellar
disks, and cosmological minihaloes. Reference [32] invokes an SPH-based mag-
netohydrodynamics (MHD) code with cloudy for the simulation of the photo-
evaporation of the hot-Jupiter atmospheres. Moreover, [22] and [25] combine a
finite-volume MHD code with cloudy to simulate planetary nebulae.

The symbols appearing through the manuscript have the standard meaning:
G ≡ Newtonian gravitational constant, c ≡ speed of light, me ≡ electron mass,
MBH ≡ black hole mass, h ≡ Planck’s constant, σT ≡ Thompson scattering
cross-section, and T ≡ temperature.

2 The Geometrically Thin, Optically Thick Disk Used
in the SEDs

An accretion disk with dissipation D(r) has a luminosity

Ldisk = 2π

∫ ∞

riD

D(r)rdr =
1
2

ηGMBHṀ

riD
, (1)

which is half of the accretion luminosity La = ηṀac
2. For an optically thick disk

Ldisk radiates as a blackbody, its temperature Tbb(r) as a function of distance is
given by

σSBT 4
bb =

1
2
D(r), (2)

where σSB is the Stefan-Boltzmann constant and the factor 1
2 enters because

only one side of the disk is considered. Using the form of D(r) for a viscous
accretion disk, we have that

The Impetus Project 377

Tbb(r) = TiD

(
r

riD

)−3/4 [
1 −

(riD
r

)1/2
]1/4

, (3)

where

TiD =

(
3ηGMBHṀ

8πr3iDσSB

)1/4

. (4)

In our SEDs we use MBH = 108 M�, Ṁa = 1.6 M� yr−1, and riD = 3rSch
(≈rISCO for a non-rotating SMBH). Hence, in the inner ring of the disk
Tbb(riD) = 1.35 × 105 K, while in the outer part, i.e., for roD = 10rSch, the
temperature would be Tbb(roD) = 4.50 × 104 K. In Fig. 1 we show the initial
system we are proposing to solve.

Fig. 1. Spatial domain and characteristic quantities of the system under study. BH is
the position of the SMBH at the origin. Distances are properly scaled by the Schwarz-
schild rSch. The inner and outer SS disk radii are denoted riD and roD. Every SPH
particle will be active if it is inside the domain given by ri and ro. Precomputed
physical quantities as cooling, heating rates and radiative accelerations, are given to a
particle located at point p, at a distance r from the SMBH.

3 Parameters and Computed Ionic Fractions

We have included the following elements: H, He, C, N, O, Ne, Na, Mg, Al,
Si, S, Ar, Ca, and Fe. The abundances have been taken from [15] and we have

378 J.M. Ramı́rez-Velasquez et al.

neglected the effects of grains and molecules. Our grid of cloudy’s models for the
calculation of the heating and cooling rates and the radiative acceleration uses
the following physical parameters with their respective resolution: θ = 0 . . . π/2
with Δθ = π/10; log10(nH) = −2 . . . 9 [cm−3] with Δ log10(nH) = 0.1; log10(r) =
14 . . . 18 [cm] (≈3.4 × [1 − 104] rSch) with Δ log10(r) = 1; and log10(T) = 2 . . . 9
[K] with Δ log10(T) = 0.1.

In order to look inside the cooling/heating tables we use a conventional bisec-
tion method, where for each SPH particle (or Eulerian cell) with coordinates
(ri, θi, φi) and density ρi, the functions C(ρi, Ti) and H(ρi, Ti) are linearly inter-
polated within the temperature interval Tmin ≤ Ti ≤ Tmax (cloudy cell: abstract
non-thermal equilibrium multidimensional unit, see Fig. 2). [12] discuss in great
detail the numerical algorithm and the atomic databases used by cloudy. Here
we shall only describe the calculation of the level populations and refer the
interested reader to [12] (and references therein) for technical details.

Fig. 2. Abstract non-thermal equilibrium multidimensional unit cell (cloudy cell),
which is able to return pre-computed physical conditions, that is, H, C, grad

Cont, g
rad
Grav,

grad
Elec, g

rad
Line, and grad

Total for given values of the hydrogen number density nH , tempera-
ture T , distance to the source r, and incident angle θ.

Radiative and collisional processes contribute to the evolution of the level
populations such that

dbn

dt
=

dbn

dt

∣∣∣∣
rad

+
dbn

dt

∣∣∣∣
col

, (5)

where bn is the departure coefficient given by

bn =
nn

P ∗
nnenion

, (6)

The Impetus Project 379

nn is the actual population of the level, ne and nion are, respectively, the electron
and ion number density, and P ∗

n is the LTE relative population density for level
n defined as

P ∗
n =

n∗
n

P ∗
nnenion

=
gn

gegion

(
m∗

n

mion

h2

2πmekT

)3/2

exp
(χn

kT

)
. (7)

Here gn = 2n2 is the hydrogenic statistical weight of level n, n∗
n is the LTE

population of level n, ge = 2 is the electron statistical weight, gion is the ion
statistical weight, which is equal to 1 or 2 for H- or He-like species, respectively,
and χn is the ionization potential of level n. The other symbols are: the electron
mass, me, the Planck constant, h, and the temperature, T .

The collisional term in Eq. (5) can be written as

dbn

dt

∣∣∣∣
col

=
∑

l

blCnl +
∑

u

P ∗
u

P ∗
n

buCun

−bn

[∑
l

Cnl +
∑

u

P ∗
u

P ∗
n

Cun + Cnk(1 − b−1
n)

]
,

(8)

where the summations are taken over the upper and lower levels and the Cij

are the collisional rates in units of s−1. The first, second, and third terms of the
above equation are, respectively, the collisional excitation from the lower levels
to level n, the collisional de-excitation to level n from higher levels, and the term
for destruction processes. The collisional ionization rate, Cnk, is multiplied by a
factor that takes into account the effects of collisional ionization and three-body
recombination.

The radiative contribution term in Eq. (5) can be written as

dbn

dt

∣∣∣∣
rad

=
∑

l

P ∗
l

P ∗
n

blAnl
gn

gl
ηnlγnl +

∑
u

P ∗
u

P ∗
n

bu(Aunβun + Aunηunγun)+

αrad + αind

P ∗
n

− bn ×
[∑

l

(Anlβnl + Anlηnlγnl) +
∑

u

Aun
gu

gn
ηunγun + Γn

]
,

(9)

where Aij is the transition probability, ηij ≡ Jν(ij)/(2hν3
ij/c2) is the continuum

occupation number of the transition ij, with Jν(ij) being the mean intensity
of the ionizing continuum at the line frequency ν. The first of the two escape
probabilities, β, is a two-side function, which takes into account line scattering
and escape

380 J.M. Ramı́rez-Velasquez et al.

β(τ, T) =
β(τ) + β(T − τ)

2
, (10)

where τ is the optical depth of the point in question and T is the total optical
depth. The escape probability, γij(τ), accounts for the fraction of the primary
continuum penetrating up to τ and inducing transitions between level i and j.

The photoionization rate, Γn, from level n that appears in Eq. (9) is given
by

Γn = 4π

∫ ∞

ν0

Jν

hν
σ(ν)dν, (11)

and the induced recombination rate (cm3 s−1) is defined as

αind,n = P ∗
n4π

∫ ∞

ν0

Jν

hν
σ(ν) exp

(
− hν

kT

)
dν. (12)

Spontaneous radiative recombination rates, αrad, are calculated as in [2] and [1].
In summary, we have added terms which correspond to induced upward tran-

sitions from lower levels, spontaneous and induced downward transitions from
higher levels, spontaneous and induced capture from the continuum to the level,
and destruction of the level by radiative transitions and photoionization. The
ionic emission data is taken from CHIANTI [8] and was recently revised by [17].

4 The Tables

The tables are available to the public at the following link: www.abacus.
cinvestav.mx/impetus. They are plain ASCII files (my1Part OUT.txt) stored
in the directories simul i j/, where the index i corresponds to a value of the
number density (nH) and j corresponds to a value of the incident angle θ. For
example, the sub-directory simul 1 1/ contains the ASCII text, with 12 columns
(to be explained below), of the first density (i ≡ 1, nH = 10−2 cm−3) and first
angle (j ≡ 1, θ = 0) in our grid. Moreover, in directory simul 101 6/, one can
find the calculations for nH = 108 cm−3 and θ = π/2.

Each main directory is provided with an ASCII file nH SED1 mod 11.txt,
where it is easy to see the values of i and j corresponding to a given density and
angle. Inside this file we can find:

1. Column1: Index i.
2. Column2: Index j.
3. Column3: Number density log10(nH) [in cm−3].
4. Column4: Incident angle θ [in radians].
5. Column5: Initial radius log10(r) [in cm].
6. Column6: Final radius log10(r) [in cm].

We now describe in more detail the content of the ASCII file
my1Part OUT.txt. There are twelve (12) columns inside:

www.abacus.cinvestav.mx/impetus
www.abacus.cinvestav.mx/impetus

The Impetus Project 381

Temperature [K]

C
oo

lin
g,

 H
ea

tin
g

[e
rg

 c
m

−3
s− 1

]

104 105 106 107 108

10−13

10−10

10−7

log10(ξ)=0.90

Analytic
PhotoIonization

−5
0

5
10

Temperature [K]

A
na

ly
tic

/P
ho

to
Io

ni
za

tio
n

104 105 106 107 108

Fig. 3. Comparison between Blondin’s analytical formulas (solid lines) and the detailed
photoionization calculations (squares). The upper panel shows the cooling (blue) and
heating (red) rates as a function of temperature. The same SED has been used for
both models (a bremsstrahlung with TX = 1.16 × 107 K). A luminosity L = fXLEdd

with fX = 0.5 and a number density nH = 107 cm−3 were used for these plots. The
ionization parameter ξ was calculated for a distance of 3.2 pc from the source. The
lower panel shows the analytic/photoionization ratio. (Color figure online)

1. Column1: Incident angle θ [in radians].
2. Column2: Number density log10(nH) [in cm−3].
3. Column3: Distance from the BH log10(r) [in cm].
4. Column4: Temperature log10(T) [in K].
5. Column5: Total cooling rate log10(C) [in erg cm−3s−1].
6. Column6: Total heating rate log10(H) [in erg cm−3s−1].

382 J.M. Ramı́rez-Velasquez et al.

Temperature [K]

C
oo

lin
g,

 H
ea

tin
g

[e
rg

 c
m

−3
s− 1

]

104 105 106 107 108

10−13

10−10

10−7

log10(ξ)=1.90

Analytic
PhotoIonization

−5
0

5
10

15

Temperature [K]

A
na

ly
tic

/P
ho

to
Io

ni
za

tio
n

104 105 106 107 108

Fig. 4. Comparison between Blondin’s analytical formulas (solid lines) and the detailed
photoionization calculations (squares). The upper panel shows the cooling (blue) and
heating (red) rates as a function of temperature. The same SED has been used for
both models (a bremsstrahlung with TX = 1.16 × 107 K). A luminosity L = fXLEdd

with fX = 0.5 and a number density nH = 107 cm−3 were used for these plots. The
ionization parameter ξ was calculated for a distance of 1 pc from the source. The lower
panel shows the analytic/photoionization ratio. (Color figure online)

7. Column7: Acceleration due to continuum grad
Cont [in cm s−2].

8. Column8: Acceleration due to gravity grad
Grav [in cm s−2].

9. Column9: Total acceleration outwards grad
Total [in cm s−2].

10. Column10: Acceleration due to electron scattering grad
Elec [in cm s−2].

11. Column11: Acceleration due to spectral lines grad
Line [in cm s−2].

12. Column12: Force multiplier Mt [dimensionless].

The Impetus Project 383

Two versions of the tables are made available: a short version and a full
one. The short version contains only the my1Part OUT.txt file, the illuminating
SED at r = 1014 cm (the my1contFile OUT 14 file), and the ionic fractions at
r = 1016 cm (the my1Part OUT frac.txt file). On average, the short version
of the Tables (e.g. SED1, fdisk = 0.95 and fX = 0.05) occupies ∼47 MB. The
full version contains the full output (my1Part OUT.out) from cloudy, which
is useful to explore features related to the calculations in deeper detail. Each
uncompressed directory has, on average, a size of ∼32 GB. Multiplying by six
this size leads to ∼200 GB for the full version of the tables. A summary of the
short and full versions and their location can be found in Table 1.

Table 1. Short and full(a) versions of the table files

Calc File name Size (MB)

i New DB SED1 1 short.gz 47

ii New DB SED1 2 short.gz 47

iii New DB SED1 3 short.gz 47

iv New DB SED2 1 short.gz 47

v New DB SED2 2 short.gz 47

vi New DB SED2 3 short.gz 47

The main webpage of the project is: http://www.
abacus.cinvestav.mx/impetus.
(a) The full version of the tables can be accessed
by request to the corresponding author.

5 Discussion and Concluding Remarks

How the contributions of several physical mechanisms (in addition to Doppler
effects and cooling by expansion), impact the rates, are displayed in Fig. 3. Low-
ionization species are important to low-to-intermediate temperatures. The Unre-
solved Transition Array (UTA, [5,21] and also see [30] for an observational point
of view), is among the main heating (also cooling) agents contributing to the
rates (≈20%). Highly ionized species of iron Fe+17 − Fe+24 and H− and He-
like ions of O+7−O+8,C+4−C+5 become relevant in the range 104 � T � 106

K. At log10(ξ) ∼ 0.90 photoionization heating due to O+7 contributes close
≈20%. Closer to the SMBH (see Fig. 4), at log10(ξ) ∼ 1.90, heating by Compton
processes dominate the range 6.3 × 106 � T � 3.2 × 109 K. The inclusion of the
Sobolev optical depth in our calculations, made the equilibrium temperature
cooler at high temperatures, compared with cooling rates where these effects are
not taken into account.

Reference [4] discusses in detail three-dimensional SPH simulations of accre-
tion onto a SMBH, using the heating and cooling rates proposed by [6,20]. Some

http://www.abacus.cinvestav.mx/impetus
http://www.abacus.cinvestav.mx/impetus

384 J.M. Ramı́rez-Velasquez et al.

of their runs take longer to reach a steady state compared to the Bondi accretion.
When analyzing radiative properties in the T − ξ plane, the authors find many
particles following the equilibrium temperature (L = 0) and discuss where and
when artificial viscosity play a dominant role over radiative heating.

From the observational point of view, having available tabulated values of
heating and cooling rates and radiative accelerations at sub-parsec scales, may
be important for our understanding of several types of astrophysical flows. For
instance, high-energy features [10,33], observed throughout the signature of
∼1000 km s−1 molecules and ∼0.2c highly ionized gas outflows [29], may indi-
cate locations of ∼900 rSch. In luminous quasars [34], again, spectral features of
∼6 keV, are clear evidence of Fe xxv and Fe xxvi in the flows, which could be
located at ∼1015–1016 cm, for another application of these tables. It is therefore
clear that a quantitative analysis of the heating and cooling agents operating in
these kinds of astrophysical environments are key aspects to the understanding
of the radiation hydrodynamical processes governing the accretion onto SMBHs.
We have provided the files my1Part OUT.het and my1Part OUT.col as part of
the tables, where the default ≈10 agents are given by cloudy. The interested
reader may request the modified 100 agent files to the corresponding author.
A strict comparison between theoretical models and simulations is beyond the
scope of the tables presented here. At present, such simulations are under prepa-
ration.

Acknowledgments. impetus is a collaboration project between the abacus-Centro
de Matemáticas Aplicadas y Cómputo de Alto Rendimiento of Cinvestav-IPN, the
Centro de F́ısica of the Instituto Venezolano de Investigaciones Cient́ıficas (IVIC), and
the Área de F́ısica de Procesos Irreversibles of the Departamento de Ciencias Básicas
of the Universidad Autónoma Metropolitana–Azcapotzalco (UAM-A) aimed at the
SPH modeling of astrophysical flows. The project is supported by abacus under grant
EDOMEX-2011-C01-165873, by IVIC under the project 2013000259, and by UAM-A
through internal funds. JMRV thanks the hospitality, support, and computing facilities
of abacus, where this work was done.

References

1. Badnell, N.R.: Dielectronic recombination of Fe 3pq ions: a key ingredient for
describing X-ray absorption in active galactic nuclei. ApJ 651, L73–L76 (2006)

2. Badnell, N.R., O’Mullane, M.G., Summers, H.P., Altun, Z., Bautista, M.A.,
Colgan, J., Gorczyca, T.W., Mitnik, D.M., Pindzola, M.S., Zatsarinny, O.: Dielec-
tronic recombination data for dynamic finite-density plasmas. I. Goals and method-
ology. A&A 406, 1151–1165 (2003)

3. Barai, P.: Large-scale impact of the cosmological population of expanding radio
galaxies. ApJ 682, L17–L20 (2008)

4. Barai, P., Proga, D., Nagamine, K.: Smoothed particle hydrodynamics simulations
of black hole accretion: a step to model black hole feedback in galaxies. MNRAS
418, 591–611 (2011)

5. Behar, E., Sako, M., Kahn, S.M.: Soft X-ray absorption by Fe0+ to Fe15+ in active
galactic nuclei. ApJ 563, 497–504 (2001)

The Impetus Project 385

6. Blondin, J.M.: The shadow wind in high-mass X-ray binaries. ApJ 435, 756–766
(1994)

7. Ciotti, L., Ostriker, J.P.: Cooling flows and quasars. II. Detailed models of
feedback-modulated accretion flows. ApJ 551, 131–152 (2001)

8. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: Chianti -
an atomic database for emission lines. A&AS 125, 149–173 (1997)

9. Fabian, A.C.: The obscured growth of massive black holes. MNRAS 308, L39–L43
(1999)

10. Faucher-Giguère, C.-A., Quataert, E.: The physics of galactic winds driven by
active galactic nuclei. MNRAS 425, 605–622 (2012)

11. Ferland, G.J., Korista, K.T., Verner, D.A., Ferguson, J.W., Kingdon, J.B.,
Verner, E.M.: CLOUDY 90: numerical simulation of plasmas and their spectra.
PASP 110, 761–778 (1998)

12. Ferland, G.J., Porter, R.L., van Hoof, P.A.M., Williams, R.J.R., Abel, N.P., Lykins,
M.L., Shaw, G., Henney, W.J., Stancil, P.C.: The 2013 release of cloudy. Rev. Mex.
Astron. Astrofis. 49, 137–163 (2013)

13. Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V.,
Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J.,
Pinkney, J., Richstone, D., Tremaine, S.: A relationship between nuclear black
hole mass and galaxy velocity dispersion. ApJ 539, L13–L16 (2000)

14. Germain, J., Barai, P., Martel, H.: Anisotropic active galactic nucleus outflows and
enrichment of the intergalactic mediumI. I. Metal distribution. ApJ 704, 1002–1020
(2009)

15. Grevesse, N., Asplund, M., Sauval, A.J., Scott, P.: The chemical composition of
the sun. Astrophys. Space Sci. 328, 179–183 (2010)

16. Kallman, T., Bautista, M.: Photoionization and high-density gas. ApJS 133, 221–
253 (2001)

17. Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E.: CHIANTI-an
atomic database for emission lines. XII. Version 7 of the database. ApJ 744, 99
(2012)

18. Li, Y., Hernquist, L., Robertson, B., Cox, T.J., Hopkins, P.F., Springel, V., Gao, L.,
Di Matteo, T., Zentner, A.R., Jenkins, A., Yoshida, N.: Formation of z∼6 quasars
from hierarchical galaxy mergers. ApJ 665, 187–208 (2007)

19. Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A.,
Faber, S.M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., Lauer, T.: The
demography of massive dark objects in galaxy centers. AJ 115, 2285–2305 (1998)

20. Mościbrodzka, M., Proga, D.: Thermal and dynamical properties of gas accreting
onto a supermassive black hole in an active galactic nucleus. ApJ 767, 156 (2013)

21. Netzer, H.: The iron unresolved transition array in active galactic nuclei. ApJ 604,
551–555 (2004)

22. Niederwanger, F., Öttl, S., Kimeswenger, S., Kissmann, R., Reitberger, K.: 3D
radiative transfer models of planetary nebulae with CRONOS and CLOUDY. In:
Asymmetrical Planetary Nebulae VI Conference, p. 67, April 2014

23. Novak, G.S., Ostriker, J.P., Ciotti, L.: Feedback from central black holes in elliptical
galaxies: two-dimensional models compared to one-dimensional models. ApJ 737,
26 (2011)

24. Ostriker, J.P., Choi, E., Ciotti, L., Novak, G.S., Proga, D.: Momentum driving:
which physical processes dominate active galactic nucleus feedback? ApJ 722,
642–652 (2010)

25. Öttl, S., Kimeswenger, S., Zijlstra, A.A.: Ionization structure of multiple-shell plan-
etary nebulae. I. NGC 2438. A&A 565, 87 (2014)

386 J.M. Ramı́rez-Velasquez et al.

26. Proga, D.: Dynamics of accretion flows irradiated by a quasar. ApJ 661, 693–702
(2007)

27. Proga, D., Kallman, T.R.: Dynamics of line-driven disk winds in active galactic
nuclei. II. Effects of disk radiation. ApJ 616, 688–695 (2004)

28. Proga, D., Stone, J.M., Kallman, T.R.: Dynamics of Line-driven disk winds in
active galactic nuclei. ApJ 543, 686–696 (2000)

29. Ramı́rez, J.M.: Physical and kinematical properties of the X-ray absorber in the
broad absorption line quasar APM 08279+5255. A&A 489, 57–68 (2008)

30. Ramı́rez, J.M., Komossa, S., Burwitz, V., Mathur, S.: Chandra LETGS spec-
troscopy of the quasar MR 2251-178 and its warm absorber. ApJ 681, 965–981
(2008)

31. Salpeter, E.E.: Accretion of interstellar matter by massive objects. ApJ 140, 796–
800 (1964)

32. Salz, M., Banerjee, R., Mignone, A., Schneider, P.C., Czesla, S., Schmitt, J.H.M.M.:
TPCI the PLUTO-CLOUDY Interface. A versatile coupled photoionization hydro-
dynamics code. A&A 576, 21 (2015)

33. Tombesi, F., Meléndez, M., Veilleux, S., Reeves, J.N., González-Alfonso, E.,
Reynolds, C.S.: Wind from the black-hole accretion disk driving a molecular out-
flow in an active galaxy. Nature 519, 436–438 (2015)

34. Vignali, C., Iwasawa, K., Comastri, A., Gilli, R., Lanzuisi, G., Ranalli, P.,
Cappelluti, N., Mainieri, V., Georgantopoulos, I., Carrera, F.J., Fritz, J., Brusa,
M., Brandt, W.N., Bauer, F.E., Fiore, F., Tombesi, F.: The XMM deep survey in
the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z∼1.6. ArXiv
e-prints, September 2015

Database of CMFGEN Models
in a 6-Dimensional Space

Janos Zsargó1, Celia Rosa Fierro2(B), Jaime Klapp2,3, Anabel Arrieta4,
Lorena Arias4, and D. John Hillier5

1 Escuela Superior de F́ısica y Matemáticas, Instituto Politécnico Nacional,
Av. Instituto Politécnico Nacional S/N, Edificio 9, 07738 Mexico City, Mexico

jzsargo@esfm.ipn.mx
2 ABACUS-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados
CINVESTAV-IPN, Carretera México-Toluca Km 38.5, La Marquesa, Ocoyoacac,

Estado de México 52740, Mexico
celia.fierro.estrellas@gmail.com

3 Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca Km.
36.5, 52750 Ocoyoacac, Estado de México, Mexico

4 Universidad Iberoamericana, Prolongación Paseo de la Reforma 880,
01219 Mexico City, Mexico

5 Departament of Physics and Astronomy and Pittsburgh Particle Physics,
Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh,

3941 Ohara Street, Pittsburgh, PA 15260, USA

Abstract. We present a database of 25,000 atmospheric models (which
is to grow to a grand total of 75000 models by the conclusion of the
project) with stellar masses between 9 and 120M�, covering the region
of the OB main sequence and W-R stars in the H–R diagram. The mod-
els were calculated using the ABACUS I supercomputer and the stellar
atmosphere code CMFGEN. The parameter space has 6 dimensions: sur-
face temperature of the star, also called the effective temperature (Teff),
luminosity (L), metallicity (Z), and three stellar wind parameters, the
exponent (β) of the wind velocity law, the terminal velocity (V∞), and
the volume filling factor (Fcl). For each model, we also calculate synthetic
spectra in the UV (900–2,000 Å), optical (3,500–7,000 Å), and near IR
(10,000–30,000 Å) ranges. For comparison with observations, the syn-
thetic spectra were rotationally broaden using ROTIN3, by covering the
range between 10 and 350 km s−1 with steps of 10 km s−1, resulting a
library of 1,575,000 synthetic spectra.

1 Introduction

Stellar atmospheric models are valuable tools for improving our understand-
ing of stellar, galactic, and cosmic evolution. Comparisons of observational data
with synthetic spectra allow us to learn more about the chemical composition
and the physical conditions in the atmospheres and winds of stars. However,
the numeric codes that are able to compute the atomic populations assum-
ing nonlocal thermodynamic equilibrium (NLTE) and incorporate the effects
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 387–392, 2017.
DOI: 10.1007/978-3-319-57972-6 29

388 J. Zsargó et al.

of the line-blanketing, e.g., TLUSTY (Hubeny and Lanz 1995), FASTWIND
(Santolaya-Rey et al. 1997; Puls et al. 2005), and CMFGEN (Hillier and Miller
1998), are very microprocessor-time consuming and require a large amount of
memory to run. Furthermore, these computational requirements strongly depend
on the initial conditions that are utilized at the beginning of the simulations.

One can alleviate these problems by creating a grid of pre-calculated models
to provide suitable initial conditions for future modeling. Such grids also allow
the rapid and crude analysis of a large number of stars. Unfortunately, the nec-
essary number of models in the grid increases exponentially with the number of
input parameters that are taken into account; therefore, only supercomputers
allow the production of realistic grids in reasonable time.

In the course of this project, we generate a mega-grid of atmospheric mod-
els by using the program CMFGEN on the supercomputer ABACUS-I of the
ABACUS Centre for Applied Mathematics and High Performance Computing
of CINVESTAV, México. The grid covers a six-dimensional space with different
values of the main parameters of the star, wind and chemical composition.

2 CMFGEN

CMFGEN (Hillier 2013; Hillier and Miller 1998) is a sophisticated and widely-
used non-LTE stellar atmosphere code. It models the full spectrum and has been
used successfully to model O & B stars, W-R stars, luminous blue variables, and
even supernova. The code determines the temperature, ionization structure, and
level populations for all elements in the stellar atmosphere and wind. It solves
the spherical radiative transfer equation in the co-moving frame in conjunction
with the statistical equilibrium equations and radiative equilibrium equation.
The hydrostatic structure can be computed below the sonic point; allowing the
simultaneous treatment of spectral lines formed in the atmosphere, the stellar
wind, and in the transition region between the two. Such features make it partic-
ularly well suited to the study of massive OB stars with winds. However, there is
a price for such sophistication, a CMFGEN simulation takes anywhere between
24 and 36 hours of microprocessor time to finish.

For atomic models, CMFGEN utilizes the concept of “super levels”, by which
levels of similar energies are grouped together and treated as a single level in
the statistical equilibrium equations (see Hillier and Miller 1998 and references
therein). The stellar models in this project include 28 explicit ions of the different
elements as function of their Teff . Table 1 summarizes the levels and super levels
included in the models. The atomic data references are given in Herald and
Bianchi (2004).

To model the stellar wind, CMFGEN requires values for the mass loss rate
(Ṁ), terminal velocity (V∞), β parameter, and the volume filling factor of the
wind (Fcl). The profile of the wind speed is modeled by a beta-type law (Castor
et al. 1975)

v(r) = v∞

(
1 − r

R∗

)β

. (1)

Database of CMFGEN Models in a 6-Dimensional Space 389

Table 1. Super levels/levels for the different ionization stages included in the models.

Element I II III IV V VI VII VIII

H 20/30 1/1 · · · · · · · · · · · · · · · · · ·
He 45/69 22/30 1/1 · · · · · · · · · · · · · · ·
C · · · 40/92 51/84 59/64 1/1 · · · · · · · · ·
N · · · 45/85 41/82 44/76 41/49 1/1 · · · · · ·
O · · · 54/123 88/170 38/78 32/56 25/31 1/1 · · ·
Si · · · · · · 33/33 22/33 1/1 · · · · · · · · ·
P · · · · · · · · · 30/90 16/62 1/1 · · · · · ·
S · · · · · · 24/44 51/142 31/98 28/58 1/1 · · ·
Fe · · · · · · 104/1433 74/540 50/220 44/433 29/153 1/1

The β parameter controls how the stellar wind is accelerated to reach the ter-
minal velocity (see Fig. 1), while the volume filling factor Fcl is used to introduce
the effects of optically thin clumping in the wind (see Sundqvist et al. (2014)
and references therein).

Fig. 1. Examples of beta-type velocity laws.

2.1 Synthetic Spectra

The auxiliary program CMF FLUX of the CMFGEN package (Hillier 2013) com-
putes the synthetic observed spectrum in the observer’s frame which is one of

390 J. Zsargó et al.

the most important output of our models. To simulate the effects of rotation on
the spectral lines, the synthetic spectra are also rotationally broadened using
the program ROTIN3 which is part of the TLUSTY package (Hubeny and Lanz
1995).

For each model in the grid, we calculate the normalized spectra in the UV
(900–3,500 Å), optical (3,500–7,000 Å), and IR (7,000–40,000 Å) range; then,
we apply rotation by sampling the range between 10 and 350 km s−1 with steps
of 10 km s−1. This process results a library with a total of 1,575,000 synthetic
spectra.

3 The Model Grid

The main parameters of a model atmosphere are the luminosity (L) and the
effective temperature (Teff) whose values allow to place the star in the H–R
diagram. In order to constrain appropriately the input parameters, we use the
evolutionary tracks of Ekström et al. (2012) calculated with solar metallicity
(Z=0.014) at the zero age of the main sequence (ZAMS). For any track, each
point corresponds to a star with specific values of Teff , luminosity (L) and stellar
mass (M). We calculated several models along each track with the approximate
steps of 2,500 K in Teff , while the stellar radius and log g were calculated to get
the L and M corresponding to the track.

The elements included in our models are H, He, C, N, O, Si, P, S, and Fe.
The values of H, He, C, N, and O were taken from the Tables of Ekström et al.
(2012). For consistency, we assumed the solar metallicity reported by Asplund
et al. (2009) for the Si, P, S, and Fe in all models.

The grid is organized as a hypercube data in dimensions which correspond to
Teff , L, β, Fcl, Z, and V∞. The plane generated by Teffand L is the H-R diagram
(Fig. 2, Top); the values of these variables are restricted by evolutionary tracks.
The third dimension is the β parameter of the stellar wind for which we use
the values of β = 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.3 (Fig. 2, Bottom left). Models with
different values of Teff , L and β populate a data cube. Each value of Fcl =
0.05, 0.30, 0.60, 1.0 generates a similar cube, which they are aligned one after
another in a fourth dimensional space. We have two values of metallicity, solar
and solar enhanced by rotation. This 5-dimensional arrangement generates a
plane populated with data cubes (Fig. 2, Bottom right). Finally, for V∞ we use
two values, a low (V∞ = 1.3Vesc) and a high (V∞ = 2.1Vesc) velocity model, where
the escape velocity (Vesc) has the usual meaning. The result is a 6-dimensional
arrangement.

This arrangement only populates regions of the H-R diagram where nature
form stars, and does not produce non-physical models. If needed, we can inter-
polate between models to achieve better fits to the observed spectra.

4 Summary

We present a mega grid of,“soon to be” 75,000 stellar atmospheric models cal-
culated with the CMFGEN package. These models cover the region of the HR

Database of CMFGEN Models in a 6-Dimensional Space 391

Fig. 2. Organization of the grid as a 5-dimensional hypercube. Top: Teff -Luminosity
planes with different values of β parameter. Bottom Left: Data cube with the models
contained in the six planes. Bottom Right: Plane formed by cubes similar to that shown
on the left, the dimensions of these are different values of the volume filling factor with
two different metallicities.

diagram populated by OB main sequence and W-R stars with masses between
9 and 120 M�. The grid provides UV, visual, and IR spectra for each model.

We use Teffand luminosity values that correspond to the evolutionary traces
of Ekström et al. (2012); furthermore, we sample seven values of β, five values

392 J. Zsargó et al.

of the clumping factor and two different metallicities and terminal velocities.
This generates a 6-dimensional hypercube of stellar atmospheric models which
we intend to release to the general astronomical community as a free tool for
analyzing OB stars.

Acknowledgments. All models and their synthetic spectra were calculated by the
cluster Abacus I. The authors express their acknowledgement for the resources, exper-
tise and the assistance provided by “ABACUS” Centre of Applied Mathematics and
High Performance Computing ABACUS-CINVESTAV, CONACyT-EDOMEX-2011-
C01-165873 Project. J. Zsargo acknowledges CONACyT CB-2011-01 No. 168632 grant
for support.

References

Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: ARA&A 47, 481 (2009)
Castor, J.I., Abbott, D.C., Klein, R.I.: ApJ 195, 157 (1975)
Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., et al.: A&A 537, 146 (2012)
Herald, J.E., Bianchi, L.: ApJ 609, 378 (2004)
Hillier, D.J., Miller, D.: ApJ 496, 407 (1998)
Hillier, D. J., CMFGEN Manual (2013)
Hubeny, I., Lanz, T.: ApJ 439, 875 (1995)
Puls, J., Urbaneja, M.A., Venero, R., et al.: A&A 435, 669 (2005)
Santolaya-Rey, A.E., Puls, J., Herrero, A.: A&A 323, 488 (1997)
Sundqvist, J.O., Puls, J., Owocki, S.P.: A&A 568, A59 (2014)

Cosmography with the Hubble Rate: The Eis
Approach

Jaime Klapp1,2(B), Alejandro Aviles1,2,3, and Orlando Luongo4,5,6,7

1 Departamento de F́ısica, Instituto Nacional de Investigaciones Nucleares (ININ),
Carretera México-Toluca S/N, La Marquesa, 52750 Ocoyoacac,

Estado de México, Mexico
jaime.klapp@inin.gob.mx

2 ABACUS-Laboratorio de Matemática Aplicada y Cómputo de Alto Rendimiento,
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados

CINVESTAV-IPN, Carretera México-Toluca Km 38.5, La Marquesa,
Ocoyoacac, Estado de México 52740, Mexico
3 Consejo Nacional de Ciencia y Tecnoloǵıa,

Av. Insurgentes Sur 1582, Ciudad de México, Mexico
4 Department of Mathematics and Applied Mathematics, University of Cape Town,

Rondebosch 7701, Cape Town, South Africa
5 Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town,

Rondebosch 7701, Cape Town, South Africa
6 Dipartimento di Fisica, Università di Napoli “Federico II”,

Via Cinthia, 80126 Napoli, Italy
7 Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, 80126 Napoli, Italy

Abstract. The statefinder parameters characterize the expansion his-
tory of the Universe in a model independent way. The standard method
to estimate them is named Standard Cosmography (SC). In this paper
we show how these estimations turn out to be highly biased and the
standard deviations of their probability distributions very large. The Eis
method was tailored to minimize these drawbacks. Here, with the aid
of mock supernovae catalogs, we show how our new method works, and
that it surpasses the performance of SC for both the bias and dispersion
of the estimated statefinders.

1 Introduction

Currently, the most accepted paradigm to describe the evolution of the Uni-
verse since very early times is the Lambda Cold Dark Matter (ΛCDM) model.
It relies mainly on the premises that the Einstein’s field equations are valid,
and that the Universe is highly homogeneous and isotropic when averaging over
very large scales (about above 150 Mpc). It also assumes the Standard Model
of particle physics, thus the energy-matter content includes baryons, photons,
and neutrinos. Nevertheless, to accurately explain several different astronomical
and cosmological observations the model adds two ingredients of unknown fun-
damental description which comprises about 96% of the whole energy content:
the cosmological constant driving the accelerated expansion of the universe; and
c© Springer International Publishing AG 2017
C.J. Barrios Hernández et al. (Eds.): CARLA 2016, CCIS 697, pp. 393–405, 2017.
DOI: 10.1007/978-3-319-57972-6 30

394 J. Klapp et al.

the cold dark matter, which is responsible of the clustering of matter due to its
gravitational self-attraction and very small negligible velocity dispersion, and for
which the Jeans length scale is zero.

Although the cosmological constant suffers from the magnitude and cosmic
coincidence problems [1–3], it is well motivated as the minimal modification to
the theory of General Relativity consistent with the principle of general covari-
ance. Actually, any other extension introduces additional degrees of freedom,
either to the metric or as new scalar or vector fields. In this sense, the nature
of the dark matter is perhaps more intriguing: today observations are consistent
with several particle physics models, and are not able to tell if the dark matter
is really cold. The success of the ΛCDM is remarkable in the early universe (see,
for example, Figs. 1 and 3 in [4]), but it is still not very well tested in the late
times, where there is large room for an evolving dark energy and several behav-
iors for the dark matter. Other possibilities are the existence of a unified fluid
for the whole dark sector [5–7], or that the laws of gravity are different at large
scales [8–10].

It is for these reasons that parameters that encapsulate different aspects of
cosmology without calling any specific model are very useful. Among several
treatments, cosmography-on the background, or simply cosmography, attempts
to reconstruct the expansion history of the Universe in a model independent
way. To do so, it introduces a set of parameters called statefinders, which char-
acterize the expansion rate of the Universe. In other words, the main objective
of cosmography is to reconstruct the Hubble diagram as model independent as
possible. Cosmography is a “top-down” approach to cosmology that deduces its
kinematics directly from observations; in contrast to a “bottom-up” approach,
that assumes the dynamics of a given model from the very beginning [11].

To measure the statefinders parameters, several frameworks have been con-
sidered: fits with Standard Cosmography (SC) [12–14], expansions on different
functions of redshift z [15,16], Padé rational approximants [17–19], Gaussian
process cosmography [11,20], and principal component analysis [21,22], among
others. However, beyond the estimation of the first statefinder parameter, q0,
none of these approaches turn out to be totally satisfactory.

In this work we show how the estimated statefinders in SC are biased and have
very large standard deviations non-tolerable for current and future observations.
We also show a model proposed by us in [23] which considerably reduces the
bias and the dispersion of the estimations. The rest of the paper is organized
as follows: in Sect. 2 we review the basics aspects of cosmography; in Sect. 3 we
introduce the Eis method for cosmography; in Sect. 4 we show the performed
numerical analysis; finally, we present our conclusions in Sect. 5.

2 Cosmography as a Tool for Studying the Universe’s
Background Evolution

The isotropy and homogeneous condition restricts the spacetime to have con-
stant space 3-dimensional Ricci curvature, thus the metric should take the

Cosmography with the Hubble Rate: The Eis Approach 395

Friedmann-Robertson-Walker (FRW) form1 [24]

ds2 = gμνdxμdxν = −dt2 + a(t)γijdxidxj . (1)

The γ tensor is the metric of the three dimensional space-like foliations, and it
can take only three forms: euclidean, hyperbolic, or spherical. In the following we
will assume it euclidean, since it is preferred by observations; see, for example [4].
Therefore, the only metric freedom is the scale factor a(t). It encodes the cosmic
background evolution in such a way that two points that are separated by a phys-
ical distance �i at some time ti, will be separated by a distance �(t) = a(t)�i/a(ti)
at a time t. This property also implies that its normalization is irrelevant, by
convention it is set equal to 1 nowadays, a(t0) = 1 (hereafter a subindex “0”
denotes present time quantities). The time-like geodesics of the FRW metric
are the curves with spatial coordinates xi fixed, and their proper time coincides
with the coordinate time t. These geodesics correspond to observers that see the
isotropic and homogeneous Universe; that is, the free-fall observers are comoving
with the background expansion.

Einstein’s equations lead to the Friedmann and continuity equations,

H2 =
8πG

3

∑

i

ρi (2)

and

ρ̇i + 3H(1 + wi)ρi = 0, (3)

respectively. Here, H(t) ≡ ȧ/a is the Hubble factor, the subindex i labels the
different matter-energy components, ρi refers to their energy densities, and wi

the equations of state parameters, such that the pressures are given by Pi =
wiρi. For incoherent relativistic components wr = 1/3, for cold dark matter
and baryons wm = 0, while for dark energy wΛ � −1 (being exactly −1 for a
cosmological constant). If we further define the density abundance parameters
Ωi = 8πGρi0/3H2

0 , Friedmann and continuity equations lead to

H2 = H2
0

(
Ωma−3 + ΩΛG(a)

)1/2
, (4)

where the function G(a) gives the evolution of dark energy,

G(a) = exp
[
−3

∫ 1

a

1 + wΛ(a′)
a′ da′

]
. (5)

Note that G(a) goes to 1 as a goes to 1, and that G(a) = 1 in the case of a
cosmological constant. By evaluating Eq. (4) at the present time, it follows that
Ωm + ΩΛ = 1. Since we are concerned in studying late times, we have included no
radiation contributions into the Friedmann equation, which become negligible.
1 Greek letters denote space time coordinates, while Latin letters refer only to space
coordinates. Summation over repeated indices is implicit.

396 J. Klapp et al.

Relativistic components should be considering for the early Universe, when a �
1. Furthermore, the effects of baryons and dark matter are degenerated in the
background evolution: they enter the equations through the combination Ωb +
Ωdm = Ωm.

In this work we are interested in comparing the expansion history of the Uni-
verse against supernovae type Ia observations. The fittings should be performed
by comparing against the distance modulus

μ(z) = 5 log
(

dL(z)
Mpc

)
+ 25, (6)

which is the quantity inferred by observations [25]. Here z = 1/a − 1 is the cos-
mological redshift, such that at present time z0 = 0. For a flat FRW spacetime,
the luminosity distance dL can be written as

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
. (7)

For example, using the Joint Light-curve Analysis (JLA) supernovae compila-
tion, in [26] it is found that the content of matter is Ωm = 0.295 ± 0.034, by
assuming the ΛCDM model.

Cosmography considers the fewest number of assumptions as possible. Its basic
premise is that the background cosmology is well described by a FRW universe,
at least at very large scales. Lying on this assumption, an expansion of the scale
factor a(t) in Taylor series about an arbitrary cosmic time t∗ is provided:

a(t) =
∞∑

n=0

1
n!

dna(t)
dtn

∣∣∣
t=t∗

Δtn = a∗
∞∑

n=0

1
n!

1
a∗Hn∗

dna(t)
dtn

∣∣∣
t=t∗

(H∗Δt)n, (8)

where a∗ = a(t∗), H∗ = H(t∗), and Δt ≡ t − t∗. From this expansion we define
the hierarchy of statefinders, the first three of them are given by

q(t) ≡ − 1
aH2

d2a

dt2
, j(t) ≡ 1

aH3

d3a

dt3
, s(t) ≡ 1

aH4

d4a

dt4
. (9)

These definitions are the most used in the literature, but slightly differ from
the originals in [13]. In this work we concentrate only in the statefinders at the
present time, that is in q0, j0, and s0. Cosmography including up to 5 statefinders
parameters has been studied in [16].

Relations between the statefinders and the parameters of a given cosmological
model may be obtained in principle. For example, for the wCDM model, which
is a dark energy model with constant wΛ, it is found

q0,wCDM =
1
2

+
3
2
wΛ(1 − Ωm),

j0,wCDM = 1 +
9
2
wΛ(1 + wΛ)(1 − Ωm), (10)

s0,wCDM = −7
2

− 81
4

wΛ(1 − Ωm) − 9
4
w2

Λ(16 − 19Ωm + 3Ω2
m)

−27
4

w3
Λ(3 − 4Ωm + Ω2

m).

Cosmography with the Hubble Rate: The Eis Approach 397

For wΛ = −1 we obtain j0 = 1 and that s0 can be written as a function of q0
only. Thus, one statefinder and the Hubble factor are sufficient to characterize
the expansion history at late times in the ΛCDM model.

Thereafter, in the case of the SC method, we expand the luminosity distance
in terms of the statefinder parameters in a Taylor series as

d̃L(SC)(z; q0, j0, s0, . . .) = z +
1
2
(1 − q0)z2 +

1
6
(−1 + q0 + 3q20 − j0)z3

+
1
24

(
2 + 5j0 − 2q0 + 10j0q0 − 15q20 − 15q30 + s0

)
z4 + · · · , (11)

where a tilde means that we have factorized a constant factor H2
0 , such that

dL = d̃L/H2
0 . By using Eqs. (6) and (11), we may compare against the observed

modulus distance data, finding the best fits and probability distributions of the
statefinder parameters.

3 The Eis Method

As we shall see in Sect. 4, the statefinders parameters turn out to be highly
biased estimated by SC. Therefore in [23] we have proposed three methods that
improve the estimation of parameters. Here we are interested in the Eis method;
it expands directly the Hubble function in Taylor series about redshift z = 0,

E(z) ≡ H(z)
H0

=
∑

i

1
i!

Eiz
i, (12)

with Ei = H(i)(z)/H0|z=0. Relations between these eis parameters and the
statefinders q0, j0 and s0 are giving by

E0 = 1,

E1 = 1 + q0,

E2 = −q20 + j0, (13)
E3 = 3q20 + 3q30 − j0(4q0 + 3) − s0.

Thereafter, we use the expansion (12) directly into the luminosity distance
expression (7). That is, we define

d̃
(n)
L (z) ≡ (1 + z)

∫ z

0

(
n∑

i=0

1
i!

Eiz
′i
)−1

dz′. (14)

At low redshifts not all of the powers in the E(z) expansion are important. Thus,
in order to speed up the numerical computations, we estimate the eis parameters
in a hierarchical way by splitting Eq. (14) in redshift bins as

d̃L(z;E1, E2, E3) =

⎧
⎪⎨

⎪⎩

d̃
(1)
L (z) z < zlow

d̃
(2)
L (z) zlow < z < zmid

d̃
(3)
L (z) zmid < z < zhigh.

(15)

398 J. Klapp et al.

For z > zhigh we expand in Taylor series the integrand of d̃
(3)
L (zk) up to z3 and

analytically perform the integration. This last step is recommended, otherwise
the tails of the probability distributions become very noisy.

That is, for a single supernova at redshift zk in a given catalog, we use d̃
(1)
L (zk)

if zk < zlow, d̃
(2)
L (zk) if zlow < zk < zmid, and d̃

(3)
L (zk) if zmid < zk < zhigh,

and numerically integrate Eq. (15). Our preliminar numerics hinted us that a
good choice for the redshift cuts is zlow = 0.05, zmid = 0.4, and zhigh = 0.9
The numerical outcomes of this particular binning does not significatively differ
from those obtained by a direct application of Eq. (14), but the speeding-up in
computational time is about a factor of 2.5. We refer to the method of Eq. (15)
as the Eis method.

4 Numerical Analysis

We build simulated catalogs of supernovae Ia to test the performance of the Eis
and SC methods. On each of these simulations we take 740 data distributed
with the same redshifts and Gaussian errors of the observed peak magnitudes
(∼ 0.12) as in the JLA compilation [26]. This catalog has a large amount of low
redshift supernovae providing a good inference of E1, acting as a leverage for
a better estimation of the rest of eis parameters, and it does not go too far in
redshift as the Union2.1 compilation does [27], where expansions on redshift z
about z = 0 may not converge [15].

By modifying the publicly available code CosmoMC [28], we are able to
draw the likelihood and posterior probability distributions for the statefinder
parameters.2 Our approach relies on a Monte Carlo Markov Chain (MCMC)
Metropolis-Hastings algorithm [29,30] in order to find the best fits and confidence
intervals of the eis parameters distributions. For each mock, and for each model,
we run 8 Markov chains and the convergence is assumed when the Gelman-Rubin
parameter R [31] falls below the threshold 1.01. Finally, from the eis estimations,
we derive the statistics for the statefinders.

4.1 The Simulated Data

The simulated data set consists in 100 mock catalogs in which each one of the
740 supernovae is obtained from fiducial ΛCDM models with the abundance
parameters Ωm’s realizations of a Gaussian distributed variable with mean
0.30 and standard deviation of 0.034. Further, we fix the Hubble constant to
H0 = 70 km/s/Mpc. This is irrelevant because supernovae data alone cannot
estimate the Hubble constant. Therefore, in the numerical analysis we internally
marginalize the combination 5 ln(c/H0) + Mb as described in [32]. That is, in a
single catalog, for each supernova at redshift zk we give the modulus distance a
value μk = μ(zk;Ωm k ∈ N (0.30, 0.034)). We choose the redshifts zk to take the
same values as in the JLA compilation, spanning a range z ∈ (0.01, 1.3).
2 The module to CosmoMC we use is available at https://github.com/alejandroaviles/
EisCosmography.

https://github.com/alejandroaviles/EisCosmography
https://github.com/alejandroaviles/EisCosmography

Cosmography with the Hubble Rate: The Eis Approach 399

One may assume that the underlying, true, cosmology of the dispersed simu-
lated data sets is the same for all of them, and given by Ωm = 0.3; see, e.g. [33].
Nevertheless, this approach is not very accurate because the true cosmology is
actually unknown for each catalog. Thus, in order to analyze how good the fits
are, we must compare against ΛCDM fittings to the same simulations. These
fits lead to the average value 〈Ω̂m〉 = 0.307, a dispersion σΩ̂m

= 0.036, and the
average of the standard deviations 〈σΩm

〉 = 0.012, for the 100 mocks.
In Fig. 1 we show the 68% and 96% confidence regions of the derived statefind-

ers for a single one of our simulated catalogs, both for the SC (red) and the Eis
(blue) methods, revealing that the dispersions are smaller for Eis, most notably
for the parameter s0. In Fig. 2 we show the q0-s0 2D joint posterior. The solid
black line is the graph of the function s0 = −2 − 3q0, this corresponds to the
allowed region in ΛCDM, and may be derived by setting wΛ = −1 in Eq. (10).
We notice that SC does not follow this degeneracy, while Eis does it properly,
even inside its 0.68 confidence region.

Complementing Fig. 1, in Table 1 we show the 1-dimensional marginalized
posterior intervals for the same simulated data. The average statistics of the
standard deviations and mean posterior of the 100 simulated catalogs, for both
cosmography methods, are shown in Table 2.

We conclude that the Eis method improves the standard deviations of the
statefinders estimations from those obtained by using SC.

4.2 Bias on the Estimators

We adopt the relation

bθ ≡ θ̂ − θtrue (16)

as the definition of the bias of an estimator θ̂, where θtrue is the true value of the
parameter θ. For the estimated θ̂ we use the mean value of the posterior distri-
bution obtained from the MCMC analysis. As explained above, we do not know
the true values of the parameters, but since we have constructed the simulated
data from a fiducial ΛCDM model, we shall assume that the ΛCDM provides
unbiased estimations for them. That is, we use θtrue = θ̂ΛCDM.

The bias does not provide a complete information of how well θ̂ estimates
θ. For this reason, it is convenient to use complementary statistics. Thus, we
consider the risk statistic [34,35]

risk(θ) =
√

σ2
θ + b2θ, (17)

which penalize the bias with the standard deviation. Furthermore, for the whole
set of parameters, following [34,36], we compute the bias statistics

Δχ2 = bTFb, (18)

which roughly quantifies the slip from the χ2-statistics due to bias. Here F is
the reduced Fisher matrix for the estimated parameters and b = (bE1 , bE2 , bE3)
is the bias vector for eis parameters.

400 J. Klapp et al.

0 8 16 24

s0

−2

0

2

4

j 0

−1.00 −0.75 −0.50 −0.25

q0

0

8

16

24

s 0

−2 0 2 4

j0

Fig. 1. Triangle plots for the estimated statefinder parameters using Eis (blue) and
Standard Cosmography methods (red). Figure taken from [23]. (Color figure online)

A smaller Δχ2 does not imply a smaller bias, this can be noted for the case
of one single parameter, for which Δχ2 = b2θ/σ2

θ . Therefore, we additionally
compute the figure of merit (FoM), that we define as

FoM =
4π

3
1√

detF
. (19)

Because of the numerical factor 4π/3, the FoM coincides with the volume of the
3-dimensional ellipsoid defined by the covariance matrix.

We perform the four statistics for each simulated catalog. In Table 2 we show
the average values of the bias and risk for the statefinder parameters. It can be
noted that in these 1-parameter bias tests, Eis performs better than SC.

For the whole 3-dimensional bias statistics, the average values over the 100
simulated catalogs for Δχ2 and FoM are

SC: 〈Δχ2〉 = 0.806, FoM = 0.1226.

Eis: 〈Δχ2〉 = 2.121, FoM = 0.0108. (20)

Cosmography with the Hubble Rate: The Eis Approach 401

−0.7 −0.6 −0.5 −0.4

q0

−4

−2

0

2

s 0

Standard Cosmography
Eis

Fig. 2. Zoom of the q0-s0 contour plot of Fig. 1. We also show the region allowed by
the flat ΛCDM model (solid line) and the ΛCDM confidence intervals (horizontal and
vertical shadows). Figure taken from [23].

For ν = 3 parameters, the 1σ contour is Δχ2 ≤ 3.53 [36], thus for both methods,
on the average, the true value is well inside this region, but we note SC is able to
do it because the volume of its error ellipsoid, or FoM, is very large in comparison
with Eis.

From this statistical analysis we conclude that SC is highly biased, and this is
reduced considerably by the Eis method. In [23] we performed further statistics
with catalogs based on fiducial CPL dark energy models [37,38] to show that
this holds beyond ΛCDM.

Table 1. Marginalized 1 estimations for one of our simulated catalog. We show the
means of the posterior distributions and the 0.95 confidence intervals. A complete table
for the 100 catalogs, as well as one for the eis parameters, can be found in https://
github.com/alejandroaviles/EisCosmography. Table modified from [23].

Method q0 j0 s0 Δχ2 FoM

Eis −0.567+0.150
−0.173 0.960+0.906

−0.773 −0.318+1.134
−0.727 0.923 0.0107

SC −0.568+0.240
−0.241 1.161+2.155

−2.086 2.147+9.443
−6.395 0.920 0.1201

ΛCDM −0.562+0.033
−0.033 1 −0.313+0.098

−0.098 – –

https://github.com/alejandroaviles/EisCosmography
https://github.com/alejandroaviles/EisCosmography

402 J. Klapp et al.

Table 2. Averaged statistics for the 100 simulated catalogs. We show, from up to
bottom, the mean of the estimations, the mean of the standard deviations, the standard
deviations of the estimations, the bias, and the risk. Table modified from [23].

Statistic Eis SC

〈q̂0〉 −0.542 −0.543

〈σq0〉 0.082 0.124

σq̂0 0.060 0.057

〈bq0〉 −0.003 −0.004

〈risk(q0)〉 0.082 0.125

〈ĵ0〉 0.938 1.144

〈σj0〉 0.439 1.095

σĵ0
0.074 0.063

〈bj0〉 −0.062 0.144

〈risk(j0)〉 0.450 1.106

〈ŝ0〉 −0.432 1.985

〈σs0〉 0.590 4.424

σŝ0 0.361 0.545

〈bs0〉 −0.050 2.367

〈risk(s0)〉 0.628 5.018

5 Conclusions

In this work we have emphasized the importance of constraining the kinematics
of the Universe through the use of model independent procedures, which do not
a priori assume the validity of a particular cosmological model. This is the case
of cosmography.

With the use of simulated supernova Type Ia catalogs we showed that the
statefinder parameters are not accurately estimated by SC. We estimated the
bias for cosmologies close to the cosmological concordance model showing that
these are very large, making standard cosmography useless for future cosmolog-
ical observations. To overcome this problem, we showed a new method, recently
proposed by us in [23], which consists on directly perform the analysis with the
expansion of the Hubble function; furthermore, we estimated their derivatives
in a hierarchical manner, in which the order of the expansion depends on the
redshift of a single data. This procedure speeds-up the computations by a factor
of 2.5 in average. This is mainly due to the convergence of MCMC chains, which
is attained within a less number of steps. We showed how this new method per-
forms better than the standard approach both in the dispersion and the bias of
the estimations.

We made publicly-available a module to the code CosmoMC that perform
the MCMC numerical analysis for the cosmographic methods of this work at

Cosmography with the Hubble Rate: The Eis Approach 403

https://github.com/alejandroaviles/EisCosmography. There, we also uploaded
all the simulated data as well as further tables and statistical files.

The case of fitting theoretical models by using the statefinders has attracted
attention recently, it has been argued that the impossibility for the statefinders
to constrain general models poses questions about its usefulness [33,39,40]. We
differ from this point of of view: suppose we have a theoretical model M(Ψ ;αi)
with Ψ denoting the fields of the model and αi its free parameters. For M
to be a well defined model, each realization of the parameters, subjected to
initial conditions, should give a unique Hubble diagram; and given that, it is as
simple as taking derivatives to find the statefinders in that model. Thereafter,
one can make comparisons to the measured statefinders, and accept or reject
the realization αi; clearly, one can restart the procedure with a new realization
of the parameters, although at this point it may be a better idea to fit directly
to the data. That is, to fit a general class of models, say e.g. the whole class
of f(R) theories, using the statefinders is not always possible at least some
extra assumptions are considered [41]. Although doable, the main objective of
cosmography is not to constrain theoretical models; instead, it is to reconstruct
the Hubble diagram as model independent as possible.

Acknowledgements. This work was partially supported by ABACUS, CONACyT
grant EDOMEX-2011-C01-165873. The numerical calculations in this paper made use
of the ABACUS-I supercomputing of the Centro de Matemáticas Aplicadas y Cómputo
de Alto Rendimiento, CINVESTAV-ABACUS.

References

1. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)
2. Bianchi, E., Rovelli, C.: Why all these prejudices against a constant? (2010)
3. Martin, J.: Everything you always wanted to know about the cosmological constant

problem (but were afraid to ask). C.R. Phys. 13, 566–665 (2012)
4. Ade, P.A.R., et al.: Planck results-XIII. Cosmological parameters (2015)
5. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated

expansion and dark energy matter unification. Phys. Rev. D66, 043507 (2002)
6. Aviles, A., Cervantes-Cota, J.L.: Dark degeneracy and interacting cosmic compo-

nents. Phys. Rev. D84, 083515 (2011). [Erratum: Phys. Rev. D84, 089905 (2011)]
7. Aviles, A., Cruz, N., Klapp, J., Luongo, O.: Emerging the dark sector from ther-

modynamics of cosmological systems with constant pressure. Gen. Relet. Gravit.
47(5), 63 (2015)

8. Capozziello, S.: Curvature quintessence. Int. J. Mod. Phys. D11, 483–492 (2002)
9. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed - up due

to new gravitational physics? Phys. Rev. D70, 043528 (2004)
10. Dvali, G.R., Gabadadze, G., Porrati, M.: 4-D gravity on a brane in 5-D Minkowski

space. Phys. Lett. B485, 208–214 (2000)
11. Shafieloo, A., Kim, A.G., Linder, E.V.: Gaussian process cosmography. Phys. Rev.

D85, 123530 (2012)
12. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the Gen-

eral Theory of Relativity. Wiley, New York (1972)

https://github.com/alejandroaviles/EisCosmography

404 J. Klapp et al.

13. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: Statefinder: a new geometrical
diagnostic of dark energy. JETP Lett. 77, 201–206 (2003). [Pisma Zh. Eksp. Teor.
Fiz. 77, 249 (2003)]

14. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Exploring the expanding uni-
verse and dark energy using the statefinder diagnostic. Mon. Not. Roy. Astron.
Soc. 344, 1057 (2003)

15. Cattoen, C., Visser, M.: The Hubble series: convergence properties and redshift
variables. Class. Quantum Gravity 24, 5985–5998 (2007)

16. Aviles, A., Gruber, C., Luongo, O., Quevedo, H.: Cosmography and constraints on
the equation of state of the universe in various parametrizations. Phys. Rev. D86,
123516 (2012)

17. Gruber, C., Luongo, O.: Cosmographic analysis of the equation of state of the
universe through Padé approximations. Phys. Rev. D89, 103506 (2014)

18. Aviles, A., Bravetti, A., Capozziello, S., Luongo, O.: Precision cosmology with
Padé rational approximations: theoretical predictions versus observational limits.
Phys. Rev. D90, 043531 (2014)

19. Zhou, Y.-N., Liu, D.-Z., Zou, X.-B., Wei, H.: New generalizations of cosmography
inspired by the Padé approximant. Eur. Phys. J. C 76(5), 281 (2016)

20. Nair, R., Jhingan, S., Jain, D.: Exploring scalar field dynamics with Gaussian
processes. JCAP 1401, 005 (2014)

21. Qin, H.-F., Li, X.-B., Wan, H.-Y., Zhang, T.-J.: Reconstructing equation of state
of dark energy with principal component analysis (2015)

22. Feng, C.-J., Li, X.-Z.: Probing the expansion history of the universe by model-
independent reconstruction from supernovae and gamma-ray burst measurements.
Astrophys. J. 821, 30 (2016)

23. Aviles, A., Klapp, J., Luongo, O.: Toward unbiased estimations of the statefinder
parameters. arXiv:1606.09195

24. Wald, R.M.: General Relativity. Chicago Univ. Press, Chicago (1984)
25. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod.

Phys. D15, 1753–1936 (2006)
26. Betoule, M., et al.: Improved cosmological constraints from a joint analysis of the

SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014)
27. Suzuki, N., et al.: The Hubble space telescope cluster supernova survey: V. Improv-

ing the dark energy constraints above z > 1 and building an early-type-hosted
supernova sample. Astrophys. J. 746, 85 (2012)

28. Lewis, A., Bridle, S.: Cosmological parameters from CMB and other data: a Monte
Carlo approach. Phys. Rev. D66, 103511 (2002)

29. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–
1092 (1953)

30. Hastings, W.: Monte Carlo samping methods using Markov chains and their appli-
cations. Biometrika 57, 97–109 (1970)

31. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple
sequences. Stat. Sci. 7, 457–472 (1992)

32. Goliath, M., Amanullah, R., Astier, P., Goobar, A., Pain, R.: Supernovae and the
nature of the dark energy. Astron. Astrophys. 380, 6–18 (2001)

33. Busti, V.C., de la Cruz-Dombriz, A., Dunsby, P.K., Sáez-Gómez, D.: Is cosmogra-
phy a useful tool for testing cosmology? Phys. Rev. D92, 123512 (2015)

34. Kendall, M., Stuart, A., Ord, J.: Advanced Theory of Statistics. Oxford University
Press, New York (1987)

http://arxiv.org/abs/1606.09195

Cosmography with the Hubble Rate: The Eis Approach 405

35. Linder, E.V.: Like vs. like: strategy and improvements in supernova cosmology
systematics. Phys. Rev. D79, 023509 (2009)

36. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press,
New York (1992)

37. Chevallier, M., Polarski, D.: Accelerating universes with scaling dark matter. Int.
J. Mod. Phys. D10, 213–224 (2001)

38. Linder, E.V.: Exploring the expansion history of the universe. Phys. Rev. Lett. 90,
091301 (2003)

39. de la Cruz-Dombriz, A.: Limitations of cosmography in extended theories of gravity.
In: 11th International Workshop on the Dark Side of the Universe (DSU 2015),
14–18 December 2015, Kyoto, Japan (2016)

40. Saez-Gomez, D.: Testing the concordance model in cosmology with model- inde-
pendent methods: some issues (2016)

41. Aviles, A., Bravetti, A., Capozziello, S., Luongo, O.: Updated constraints on f(R)
gravity from cosmography. Phys. Rev. D87(4), 044012 (2013)

Author Index

Aguilar-Reyes, Fernando 104
Aliaga, José I. 91
Almanza-Román, Inés A. 257
Arcas-Abella, Oriol 131
Arias, Lorena 387
Arrieta, Anabel 387
Aviles, Alejandro 279, 393

Balderas Altamirano, Miguel Ángel 314
Barrios H, Carlos J. 177
Becerra-Sagredo, Julián 346

Camata, José J. 233
Castillo-Reyes, Octavio 247
Castro Campos, Rodrigo Alexander 116
Castro, Márcio 76
Cela, José María 233, 247
Costa, Danilo 233
Coutinho, Alvaro L.G.A. 233
Cruz, Fidel 374
Cruz-Cortés, Nareli 188

da Silva Serpa, Matheus 18
Da Silva, Miguel 49
de la Puente, Josep 247
de Oliveira, Daniel 233
Diaz Carreño, Emmanuell 18
Diaz-Perez, Arturo 61
Diener, Matthias 18
Dufrechou, Ernesto 91

Espinosa-Galindo, Daniel 257
Ezzatti, Pablo 91

Fabbiani, Enzo 146
Fernández-Flores, Jesús A. 257
Fernández-Galisteo, Daniel 233
Fierro, Celia Rosa 387

Gabbasov, Ruslan 374
Gama Goicochea, Armando 289, 314
Garcia-Robledo, Alberto 61
Gaspary, Luciano Paschoal 18

Gélvez C., Sergio A. 177
Gitler, Isidoro 279
Gómez, A. 329
Guillén, Pablo 269
Gutierrez-Garcia, J. Octavio 104

Higuera, Francisco 340
Houzeaux, Guillaume 18

Iturriaga, Santiago 33

Jiménez, Carmen 233
John Hillier, D. 387

Kestelman, Adrian Cristal 131
Klapp, Jaime 279, 329, 340, 346, 374, 387,

393
Kourdioumov, Vadim 233

Luongo, Orlando 393

Maillard, Nicolas 18
Massobrio, Renzo 146
Mattoso, Marta 233
Mayo-García, Rafael 233
Mayoral, E. 329
Mayoral, M. 329
Medina, Abraham 340
Méhaut, Jean-François 76
Meneses, Esteban 204
Miras, Thomas 233
Mocskos, Esteban 3, 161
Morales-Luna, Guillermo 61
Moríñigo, José A. 233

Navarro, Jorge 233
Navaux, Philippe O.A. 18, 76, 233
Nesmachnow, Sergio 33, 49, 146, 161, 359
Nurudín Álvarez, Francisco 219

Ochoa-Jiménez, Eduardo 188
Ortega-Toro, José Antonio 219

Padoin, Edson L. 76
Palma-Orozco, Rosaura 257
Parodi, Facundo 161
Pedraza, Gabriel 177
Peralta, Salomón 340
Pérez, Elías 314
Pilla, Laércio L. 76

Quintana-Ortí, Enrique S. 91

Ramírez-Velasquez, José M. 374
Regueira, Diego 33
Rey, A. 329
Rivera-Zamarripa, Luis 188
Rocchetti, Nestor 49
Rodríguez-Henríquez, Francisco 188
Rodríguez Leopold, Sebastián 161
Rodríguez-Pascual, Manuel 233
Roloff, Eduardo 18
Rosas-Trigueros, Jorge L. 257

Sagols Troncoso, Feliú Davino 116
Salami, Behzad 131
Schnorr, Lucas M. 18

Schnyder, Germán 359
Sigalotti, Leonardo Di G. 346, 374
Silva, Vítor 233
Sonmez, Nehir 131
Souza, Renan 233

Tancredi, Gonzalo 359
Tchernykh, Andrei 49, 359
Torres, Áyax 340

Ujaldón, Manuel 219
Unsal, Osman 131

Valduriez, Patrick 233
Valverde-Sánchez, Jimmy K.M. 18
Verghelet, Paula 3
Vidal, Pablo 146

Weinstein, Nathan 279

Zaragoza Martínez, Francisco Javier 116
Zsargó, Janos 387

408 Author Index

	Preface
	Acknowledgments
	Organization
	Contents
	HPC Infrastructure and Applications
	Efficient P2P Inspired Policy to Distribute Resource Information in Large Distributed Systems
	1 Introduction
	2 Methodology
	3 Best Neighbor Policy
	4 Results
	4.1 Scalability

	5 Conclusions
	References

	Performance Evaluation of Multiple Cloud Data Centers Allocations for HPC
	1 Introduction
	2 Motivation
	3 Methodology
	3.1 Cluster and Cloud Environments
	3.2 Intel MPI Benchmarks
	3.3 NAS
	3.4 Alya

	4 Results
	4.1 MPI Benchmarks
	4.2 Applications

	5 Related Work
	6 Conclusions and Future Work
	References

	Communication-Aware Affinity Scheduling Heuristics in Multicore Systems
	1 Introduction
	2 Formulation of the Affinity Scheduling Problem in Multicore NUMA Systems
	2.1 Related Work

	3 Heuristics and Metaheuristics for Affinity Scheduling
	3.1 Heuristics and Metaheuristics Applied in the Study
	3.2 Topological Characterization of Parallel Applications

	4 Methodology and Implementation Details
	4.1 The Procedure for Building Real-World Scheduling Scenarios
	4.2 Solution Encoding
	4.3 Proposed Schedulers

	5 Experimental Analysis
	5.1 Development and Execution Platform
	5.2 Problem Instances
	5.3 Parameter Setting
	5.4 Numerical Results

	6 Conclusions and Future Work
	References

	Penalty Scheduling Policy Applying User Estimates and Aging for Supercomputing Centers
	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Penalty Scheduling Policy with Aging
	4 Workload Analysis and Problem Instances
	4.1 Workload Analysis
	4.2 Problem Instances

	5 Experimental Analysis
	6 Conclusions and Future Work
	References

	Accelerating All-Sources BFS Metrics on Multi-core Clusters for Large-Scale Complex Network Analysis
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Hybrid Coarse-Grain Parallel AS-BFS Scheme
	4.1 Parallel Metrics Algorithms

	5 Experimental Setup
	5.1 Graph Instances and Hardware Platforms
	5.2 Load Balance and Data Aggregation
	5.3 Single-Core Performance Estimation

	6 Experimental Results
	7 Conclusions
	References

	Exploration of Load Balancing Thresholds to Save Energy on Iterative Applications
	1 Introduction
	2 Related Work on Energy Consumption
	3 Evaluation Methodology
	3.1 Experimental Environment
	3.2 Applications
	3.3 Load Balancers

	4 Experimental Results
	4.1 Fine-Grained EnergyLB Evaluation
	4.2 Coarse-Grained EnergyLB Evaluation

	5 Conclusions
	References

	Parallel Algorithms and Applications
	Design of a Task-Parallel Version of ILUPACK for Graphics Processors
	1 Introduction
	2 Overview of ILUPACK
	2.1 Sequential (and Data Parallel) ILUPACK
	2.2 Task Parallel ILUPACK

	3 Proposal
	3.1 All Leafs in GPU, GPUall
	3.2 Threshold Based Version, GPUthres

	4 Numerical Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Final Remarks and Future Work
	References

	A Taxonomy of Workflow Scheduling Algorithms
	1 Introduction
	2 The Scheduling Problem
	2.1 The Fundamental Scheduling Problem
	2.2 The Workflow Scheduling Problem

	3 Taxonomy of Workflow Scheduling Algorithms
	3.1 Best Effort Scheduling Algorithms
	3.2 Quality-of-Service Scheduling Algorithms

	4 Workflow Engine Simulator
	5 Related Work
	6 Conclusion
	References

	An Efficient Implementation of Boolean Gröbner Basis Computation
	1 Introduction
	2 Preliminaries
	2.1 Boolean Gröbner Bases
	2.2 The Buchberger Algorithm

	3 State of the Art
	3.1 Implementations of the Buchberger Criteria
	3.2 Implementations of the Boolean Buchberger Algorithm
	3.3 The F4 Algorithm and Linear Algebra Strategies
	3.4 The F5 Algorithm and Signature Strategies
	3.5 The First HFE Challenge

	4 Contributions
	4.1 General Overview and Assumptions
	4.2 Handling of the S-Polynomial Queue
	4.3 Concurrent Implementation of the Buchberger Criteria
	4.4 Compressed Representation of Immutable Polynomials
	4.5 Concurrent Implementation of the Polynomial Reduction

	5 Benchmarks
	5.1 Experimental Behavior of the F4 Variant Implementation
	5.2 Comparison Against Other Gröbner Basis Implementations

	6 Conclusions
	References

	Accelerating Hash-Based Query Processing Operations on FPGAs by a Hash Table Caching Technique
	Abstract
	1 Introduction
	2 Background
	2.1 Hash Join Background
	2.2 Group-by Background
	2.3 Collision in the Hash-Based Operations Including Hash Join and Group-by
	2.4 Illustrating the Hash Table Caching

	3 The Overall Architecture of the Proposed Engine
	3.1 Hash Join: Build Phase- Constructing the Hash Table
	3.2 Hash Join: Probe Phase- Scanning the Hash Table
	3.3 Group-by Aggregation: Constructing a Hash Table to Group Data
	3.4 Policies of the Cache

	4 Experimental Methodology
	4.1 Hardware and Software Comparison Baselines
	4.2 The Structure of the Benchmarks

	5 Experimental Results
	5.1 Analyzing the Hash Table Caching
	5.2 The Overall Performance Analysis
	5.3 The Resource Utilization

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

	Distributed Big Data Analysis for Mobility Estimation in Intelligent Transportation Systems
	1 Introduction
	2 Big Data Analysis for Intelligent Transportation Systems
	2.1 Problem Description
	2.2 Related Work

	3 Mobility Estimation from ITS Smart Card Data
	3.1 Models for Demand and OD Estimation
	3.2 Algorithm for Demand and OD Estimation

	4 A Parallel Algorithm for Demand and OD Matrices Estimation
	4.1 Parallel Model
	4.2 Implementation Details

	5 Experimental Analysis
	5.1 Computational Platform
	5.2 Problem Instance and Metrics
	5.3 Results and Discussion

	6 Conclusions and Future Work
	References

	Evaluation of a Master-Slave Parallel Evolutionary Algorithm Applied to Artificial Intelligence for Games in the Xeon-Phi Many-Core Platform
	1 Introduction
	2 Xeon Phi Characteristics
	3 Related Work
	4 Xeon Phi Micro-Benchmarking
	4.1 Maximum Achievable Throughput
	4.2 Extended Mathematical Unit
	4.3 Memory Bandwidth and Access Latency
	4.4 Bidirectional Ring Interconnect and Offload Latency

	5 Evolutionary Algorithms
	6 A Master-Slave Parallel EA for Playing Pinball on Xeon-Phi
	6.1 Solution Description
	6.2 Framework Description
	6.3 NES Emulator Description

	7 Experimental Evaluation
	7.1 Emulator Performance
	7.2 Computational Platform
	7.3 Methodology for the Experimental Evaluation
	7.4 Results

	8 Conclusions and Future Work
	References

	A Software Framework for 2D Mesh Based Simulations in Discrete Time with Local Interaction
	1 Introduction
	2 Model Description
	3 Analysis of Variability and Generalisation of Components
	4 Proposed Framework
	5 Case Study: Lava Flows in a 2D Mesh Using Cellular Automata
	5.1 Automata Definitions
	5.2 Hardware Architecture Used
	5.3 Scenarios and Experiment
	5.4 Analysis of Results

	6 Conclusions
	References

	A GPU Parallel Implementation of the RSA Private Operation
	1 Introduction
	2 Preliminaries
	2.1 RSA Cryptosystem
	2.2 Residue Number System
	2.3 GPU Architecture

	3 Implementation
	3.1 PTX Assembly Instructions
	3.2 Basic RNS Modular Arithmetic on GPU
	3.3 RNS Modular Multiplication on GPU
	3.4 RNS Modular Exponentiation

	4 Results and Comparison
	4.1 Related Work
	4.2 Comparison

	5 Conclusion
	References

	Reducing the Overhead of Message Logging in Fault-Tolerant HPC Applications
	1 Introduction
	2 Background
	3 Removing Determinants in Parallel Programs
	4 Fast Message-Logging Protocol
	4.1 Algorithmic Description

	5 Experimental Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Dense and Sparse Matrix-Vector Multiplication on Maxwell GPUs with PyCUDA
	1 Introduction
	2 Related Work
	3 Matrix-Vector Product in CUDA
	4 Memory Management Schemes
	5 Sparse Matrix-Vector Product
	6 Experimental Results
	7 Conclusions
	References

	HPC Applications and Simulations
	Enhancing Energy Production with Exascale HPC Methods
	Abstract
	1 Introduction
	2 A New Architecture for the Exascale Challenge
	2.1 Some Results: Integrating Checkpointing Techniques into Slurm

	3 Algorithms and Solvers for Exascale Computations
	4 Atmosphere for Energy
	4.1 Improving CFD Microscale Models
	4.2 Dynamical Downscaling Strategies
	4.3 Some Results: WRF Model Coupled to Large-Eddy Simulations

	5 Biomass for Energy
	5.1 Some Results: Dynamics of Combustion Regimes in Small Confined Chambers

	6 Geophysics for Energy
	6.1 Some Results: Uncertainty Quantification in Seismic Imaging Using Chiron SWfMS
	6.1.1 Chiron SWfMS for Managing Provenance in UQ Domain
	6.1.2 Preliminary Results

	7 Conclusions
	Acknowledgments
	References

	Three-Dimensional CSEM Modelling on Unstructured Tetrahedral Meshes Using Edge Finite Elements
	1 Introduction
	2 CSEM Problem
	3 Edge Finite Element Method
	4 Results
	4.1 Conclusions

	References

	A Parallel Evolutionary Approach to the Molecular Docking Problem
	1 Introduction
	2 Methodology
	2.1 Docking Problem Representation
	2.2 Optimization Algorithm: ALPS GA
	2.3 Technical Details

	3 Results
	4 Conclusions
	References

	Deep Learning Applied to Deep Brain Stimulation in Parkinson’s Disease
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Features
	2.3 Deep Learning
	2.4 Tools

	3 Results
	4 Conclusions
	Acknowledgments
	References

	Computational Simulation of the Hemodynamic Behavior of a Blood Vessel Network
	1 Introduction
	2 Creating a Model of a Blood Vessel Network
	3 Simulating the Hemodynamic Behavior of a Blood Vessel Network
	3.1 Blood Rheology
	3.2 Blood Vessel Elasticity

	4 Blood Fluid-Vessel Wall Interactions
	4.1 Boundary Conditions

	5 Conclusion
	References

	Scaling Properties of Soft Matter in Equilibrium and Under Stationary Flow
	Abstract
	1 Introduction
	2 Models and Methods
	3 Interfacial Tension Scaling
	4 Scaling of the Radius of Gyration of Polyelectrolytes
	5 Scaling Properties of Polymer Brushes in Equilibrium
	6 Scaling Properties of Polymer Brushes Under Flow
	7 Scaling in Lower Dimensions
	8 Conclusions
	Acknowledgments
	References

	On Finite Size Effects, Ensemble Choice and Force Influence in Dissipative Particle Dynamics Simulations
	Abstract
	1 Introduction
	2 Finite Size Effects in Equilibrium and Dynamic Properties
	3 Influence of the Statistical Ensemble Choice in the Prediction of Pressure of Confined Fluids
	4 Influence of the Conservative, Dissipative and Random DPD Forces on the Virial of Simple Fluids
	5 Conclusions
	Acknowledgments
	References

	Ab initio DFT Calculations for Materials in Nuclear Research
	Abstract
	1 Introduction
	2 Schrodinger by Schrödinger
	3 Results
	3.1 Adsorption of I2 on Zr Surfaces
	3.2 Microstructural Defects: Vacancies in Zr Structures
	3.3 Impurities and Alloys

	4 Conclusions
	Acknowledgements
	References

	Super Free Fall of a Liquid Frustum in a Semi-infinite Cone
	1 Introduction
	2 Theory
	3 Numerical Procedure
	4 Conclusions
	References

	A Particle Method for Fluid-Structure Interaction Simulations in Multiple GPUs
	1 Introduction
	2 Fluid Particles
	3 Solid Particles
	4 Discretization
	5 Data Structures
	6 The Programming Model
	7 Results
	8 Conclusion
	References

	Scheduling Algorithms for Distributed Cosmic Ray Detection Using Apache Mesos
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Scheduling Algorithms for Cosmic Ray Detection Using Mesos
	4.1 Architecture for the Parallel Execution
	4.2 Scheduling Model
	4.3 Scheduling Strategies
	4.4 LPT-CRD Scheduling Algorithm
	4.5 Combined CRD Scheduling Algorithm

	5 Experimental Evaluation
	5.1 Computational Platform
	5.2 Metrics
	5.3 Scheduling Improvements Results

	6 Conclusions and Future Work
	References

	The IMPETUS Project: Using ABACUS for the High Performance Computation of Radiative Tables for Accretion onto a Galaxy Black Hole
	1 Introduction
	2 The Geometrically Thin, Optically Thick Disk Used in the SEDs
	3 Parameters and Computed Ionic Fractions
	4 The Tables
	5 Discussion and Concluding Remarks
	References

	Database of CMFGEN Models in a 6-Dimensional Space
	1 Introduction
	2 CMFGEN
	2.1 Synthetic Spectra

	3 The Model Grid
	4 Summary
	References

	Cosmography with the Hubble Rate: The Eis Approach
	1 Introduction
	2 Cosmography as a Tool for Studying the Universe's Background Evolution
	3 The Eis Method
	4 Numerical Analysis
	4.1 The Simulated Data
	4.2 Bias on the Estimators

	5 Conclusions
	References

	Author Index

