
Clustering-Based Online Player Modeling

Jason M. Bindewald, Gilbert L. Peterson(B), and Michael E. Miller

Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
gilbert.peterson@afit.edu

Abstract. Being able to imitate individual players in a game can ben-
efit game development by providing a means to create a variety of
autonomous agents and aid understanding of which aspects of game
states influence game-play. This paper presents a clustering and locally
weighted regression method for modeling and imitating individual play-
ers. The algorithm first learns a generic player cluster model that is
updated online to capture an individual’s game-play tendencies. The
models can then be used to play the game or for analysis to identify how
different players react to separate aspects of game states. The method is
demonstrated on a tablet-based trajectory generation game called Space
Navigator.

1 Introduction

Automating game-play in a human-like manner is one goal in intelligent gaming
research, with applications such as a gaming version of the Turing Test [14] and
human-like game avatars [6]. When we move from playing a game generically
to playing like a specific individual, the dynamics of the problem change [10].
In complex dynamic environments, it can be difficult to differentiate individ-
ual players, because the insights exploited in imitating ‘human-like’ game-play
can become less useful in imitating the idiosyncrasies that differentiate specific
individuals’ game-play. By learning how to imitate individual player behaviors,
we can model more believable opponents [6] and understand what demarcates
individual players, which allows a game designer to build robust game personal-
ization [18].

The Space Navigator environment provides a test-bed for player modeling
in routing tasks, and allows us to see how different game states affect disparate
individuals’ performance of a routing task. The routing task is a sub-task of
several more complex task environments, such as real-time strategy games or
air traffic control tasks. Since there is only one action a player needs to take:

M.E. Miller—The views expressed in this document are those of the author and do
not reflect the official policy or position of the United States Air Force, the United
States Department of Defense, or the United States Government. This work was
supported in part through the Air Force Office of Scientific Research, Computational
Cognition & Robust Decision Making Program (FA9550), James Lawton Program
Manager.
The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing AG (outside the US) 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 86–100, 2017.
DOI: 10.1007/978-3-319-57969-6 7



Clustering-Based Online Player Modeling 87

draw a trajectory, it is easy for players to understand. However, Space Navigator,
with its built in dynamism, is complex enough that it is not simple to generate
a single ‘best input’ to any given game state. The dynamism also means that
replaying an individual’s past play is not possible.

Specifically, we use individual player modeling to enable a trajectory genera-
tor that acts in response to game states in a manner that is similar to what a spe-
cific individual would have done in the same situation. Individualized response
generation enables better automated agents within games that can imitate indi-
vidual players for reasons such as creating “stand-in” opponents or honing strat-
egy changes by competing against oneself. In addition, the player models can be
used by designers to identify where the better players place emphasis and how
they play, which can be used to balance gameplay or create meaningful tutorials.

This paper contributes a player modeling paradigm that enables an automated
agent to perform response actions in a game that are similar to those that an indi-
vidual player would have performed. The paradigm is broken into three steps: (1)
a cluster-based generic player model is created offline, (2) individual player models
hone the generic model online as players interact with the game, and (3) responses
to game situations utilize the individual player models to imitate the responses
players would have given in similar situations. The resulting player models can
point game designers toward the areas of a game state that affect individual behav-
ior in a routing task in more or less significant ways.

The remainder of the paper proceeds as follows. Section 2 reviews related
work. Section 3 introduces the Space Navigator trajectory routing game. Section 4
presents the online individual player modeling paradigm and the model is then
applied to the environment in Sect. 5. Section 6 gives experimental results show-
ing the individual player modeling system’s improvements over a generic modeling
method for creating trajectories similar to individual users. Section 7 summarizes
the findings presented and proposes potential future work.

2 RelatedWork

Player models can be grouped across four independent facets [15]: domain, pur-
pose, scope, and source. The domain of a player model is either game actions or
human reactions. Purpose describes the end for which the player model is imple-
mented: generative player models aim to generate actual data in the environ-
ment in place of a human or computer player, while descriptive player models
aim to convey information about a player to a human. Scope describes the level of
player(s) the model represents: individual (one), class (a group of more than one),
universal (all), and hypothetical (other). The source of a player model can be one
of four categories: induced - objective measures of actions in a game; interpreted
- subjective mappings of actions to a pre-defined category; analytic - theoretical
mappings based on the game’s design; and synthetic - based on non-measurable
influence outside game context. As an example classification, the player model cre-
ated in [16] for race track generation models individual player tendencies and pref-
erences (Individual), objectively measures actions in the game (Induced), creates



88 J.M. Bindewald et al.

tracks in the actual environment (Generative), and arises from game-play data
(Game Action). The player model created here furthers this work by updating
the player model online.

One specific area of related work in player modeling involves player decision
modeling. Player decision modeling [8] aims to reproduce the decisions that play-
ers make in an environment or game. These models don’t necessarily care why a
given decision was made as long as the decisions can be closely reproduced. Uti-
lizing player decision modeling, procedural personas [7,11] create simple agents
that can act as play testers. By capturing the manner in which a given player or
set of players makes decisions when faced with specific game states, the personas
can help with low-level design decisions.

Past work has used Case-Based Reasoning (CBR) [5] and Learning from
Demonstration (LfD) [1] to translate insights gained through player modeling
into responses within an environment. The nearest neighbor principle, maintain-
ing that instances of a problem that are a shorter distance apart more closely
resemble each other than do instances that are a further distance apart, is used to
find relevant past experiences in LfD tasks such as a robot intercepting a ball [1],
CBR tasks such as a RoboCup soccer-playing agent [5], or tasks integrating both
LfD and CBR such as in real time strategy games [13]. When searching through
large databases of past experiences approximate nearest neighbors searches, such
as Fast Library for Approximate Nearest Neighbors (FLANN [12]), have proven
useful in approximating nearest neighbor searches while maintaining lower order
computation times in large search spaces.

3 Application Environment

Space Navigator [2,3] is a tablet computer game similar to Flight Control [4] and
Contrails [9]. Figure 1 shows a screen capture from the game and identifies several
key objects within the game. Spaceships appear at set intervals from the screen
edges. The player directs each spaceship to its destination planet (designated by
similar color) by drawing a line on the game screen using his or her finger. Points
accumulate when a ship encounters its destination planet or bonuses that ran-
domly appear throughout the play area. Points decrement when spaceships col-
lide and when a spaceship traverses one of several “no-fly zones” (NFZs) that move
throughout the play area at a set time interval. The game ends after five minutes.

4 Methodology

The player modeling paradigm shown in Fig. 2 begins with a cluster-based generic
player model created offline (area 1). The generic player model is updated online to
adapt to changing player habits and quickly differentiate between players (area 2).
Then the online player modeler creates responses to game states that are similar
to those that an individual player would have given in response to similar states
(area 3).



Clustering-Based Online Player Modeling 89

Fig. 1. A Space Navigator screen capture highlighting important game objects. (Color
figure online)

Fig. 2. An online updating individual player modeling paradigm.

State and Response Clustering. Clustering reduces the state-response pairs
into a set of representative clusters, dramatically reducing the representation size
of a player model. Ward agglomerative clustering [17] provides a baseline for the
player modeling method and was proven effective for clustering in trajectory cre-
ation game environments in [3,9]. The clustering implemented here takes each
game-play instance, containing a state and its associated response, and assigns
it to both a state cluster and a response cluster. The number of clusters is a choice
left to the practitioner, accounting for the specific environment and resource con-
straints. A state-response instance mapping from a given state cluster to a given



90 J.M. Bindewald et al.

response cluster demonstrates a proclivity for a player to react with a class of
maneuver in a specific type of game situation. By determining the frequency of
mappings, common situational responses and outlier actions emerge.

Cluster Outlier Pruning. If a state has only been seen in one instance by
one player, that state is unlikely to provide much benefit in predicting future
responses. After state and response clustering, clusters with outlier responses are
removed first by removing all instances assigned to the least populated response
clusters. The cutoff threshold for determining which instances to remove could
be either a minimum response cluster size or a percentage of response clusters to
remove. For example, due to the distribution of cluster sizes in the Space Navi-
gator database we removed instances falling in the bottom 25% of all response
clusters according to cluster size (setting a cutoff threshold relies on knowledge
of the environment and underlying dataset distribution, and is an area for future
work).

Similarly, a response given by only one player in one instance is unlikely to
reoccur in future player responses. Outlier state clusters are removed in two ways.
First, instances that fall in the bottom 25% of all state clusters according to clus-
ter size are removed, eliminating response clusters that are rare overall. However,
removing states not seen by many different players is also important. Pruning
also removes instances falling into a state cluster encountered by a minimal subset
of players, eliminating response clusters reached by an extremely small subset of
players.

The resulting player model, Px,y is the (x = the number of state clusters) × (y
= the number of response clusters) matrix of likelihoods that a given state cluster
maps to a given trajectory cluster, such that pi,j represents the likelihood that
state si maps to response ri. This model is created across all game-play instances
after cluster pruning is complete. This generic player model, created off-line, forms
the baseline for individual player model creation.

4.1 Individual Player Models

For online individual player modeling, the generic player model is updated as an
individual plays the game (shaded area 2 of Fig. 2). Over time, the updates shape a
player model of an individual player’s game-play tendencies. The individual player
update trains quickly by weighting learning according to state-response cluster
scores.

Algorithm 1 is the online algorithm for learning individual player models.
The algorithm begins with the generic player model P. Once a player submits
a response in the game environment, the current game state and the response are
given as inputs. The algorithm finds the closest state (Sclose) and response (Rclose)
clusters, and the player model is updated at the intersection of Sclose and Rclose

by δclose. Then the player model is normalized across all the R values for Sclose so
that the values sum to 1.

There are certain states that provide more information than others. Weight-
ing the increment values for a given state-trajectory pair aids quick learning of



Clustering-Based Online Player Modeling 91

Algorithm 1. Individual player model online update algorithm.
1: inputs: P = x × y generic player model; 〈sin, rin〉 = a state-response pair; M =

{〈S1, R1〉 , 〈S1, R2〉 , · · · , 〈Sx, Ry〉}, all cluster mappings
2: Sclose = the closest state cluster to state sin

3: δclose = q · (δcp + δcmv + δpma), Sclose’s update increment weight
4: Rclose = the closest response cluster to response rin

5: p (Sclose, Rclose) = p (Sclose, Rclose) + δclose

6: for p (Sclose, i) where i = 1 → y do
7: p (Sclose, i) = p (Sclose, i) / (1 + δclose)
8: end for

player idiosyncrasies. Traits gleaned from the clustered data help determine which
state clusters should create larger learning increments, and which states provide
minimal information beyond the generic player model. Three traits comprise the
update increment, δ. As shown in Algorithm1, Line 3 these include: cluster pop-
ulation, cluster mapping variance, and previous modeling utility.

Cluster Population: When attempting to learn game-play habits quickly,
knowing the expected responses of a player to common game states is impor-
tant. Weighting δ according to the size of a state cluster in comparison to that of
the other state clusters across the entire game-play dataset emphasizes increased
learning from common states for an individual player model. States that fall into
larger clusters can provide better information for quickly learning to differenti-
ate individual player game-play. To calculate the cluster population trait, all state
cluster sizes are calculated and any state cluster with a population above a selected
population threshold is given a cluster population trait weight of δcp = 1 and all
other state clusters receive a weight of δcp = 0.

Cluster Mapping Variance: When mapping state clusters to response clusters,
some state clusters will consistently map to a specific response cluster across all
players. Other state clusters will consistently map to several response clusters
across all players. Very little about a player’s game-play tendencies is learned from
these two types of state clusters. However, state clusters that map to relatively few
clusters per player (intra-player cluster variance), while still varying largely across
all players (inter-player cluster variance) can help quickly differentiate players.
The state cluster mapping variance ratio is the total number of response clusters
to which a state cluster maps across all players divided by the number of response
clusters to which the average player maps, essentially the ratio of inter-player clus-
ter variance to the intra-player cluster variance. The cluster mapping variance
trait weight, δcmv, is set according to a cluster variance ratio threshold. All state
clusters with a variance ratio above the threshold receive a weight of δcmv = 1 and
all others receive a weight of δcmv = 0.

Previous Modeling Utility: The last trait involves running Algorithm1 on the
existing game-play data. Running the individual player update model on previ-
ous game-play data provides insight into how the model works in the actual game
environment. First, Algorithm1 runs with δ = 1 for all state clusters, training
the player model on some subset of a player’s game-play data (training set). Then



92 J.M. Bindewald et al.

it iterates through the remaining game-play instances (test set) and generates a
response to each presented state, using both the individual player model and the
generic player model. This iteration includes each individual player in the game-
play dataset. For each test set state, the response most similar to the player’s
actual response is determined. Each time the individual player model is closer than
the generic player model to the actual player response, tally a ‘win’ for the given
state cluster and a ‘loss’ otherwise. The ratio of wins to losses for each state cluster
makes up the previous modeling utility trait. The previous modeling utility trait
weight, δpma, is set according to a previous modeling utility threshold. All state
clusters with a previous modeling utility above the threshold receive a weight of
δpma = 1 and all others receive a weight of δpma = 0.

Calculating δ: When Algorithm 1 runs, δ is set to the sum of all trait weights
for the given state cluster multiplied by some value q which is an experimental
update increment set by the player. Line 3 shows how δ is calculated as a sum of
the previously discussed trait weights.

4.2 Generate Response

Since response generation is environment specific, this section demonstrates the
response generation section shown in area 3 of Fig. 2 for a trajectory generation
task. The resulting trajectory generator creates trajectories that imitate a specific
player’s game-play, using the cluster weights in P from either a generic or learned
player model.

The trajectory response generation algorithm takes as input: the number of
trajectories to weight and combine for each response (k), the number of state and
trajectory clusters (x and y respectively), the re-sampled trajectory size (μ), a
new state (snew), a player model (P), and the set of all state-trajectory cluster
mappings (M). Line 2 begins by creating an empty trajectory of length μ which
will hold the trajectory generator’s response to snew. Line 3 then finds the state
cluster (Sclose) to which snew maps. Pclose, created in Line 4, contains a set of
likelihoods. Pclose holds the likelihoods of the k most likely trajectory clusters to
which state cluster Sclose maps.

The loop at Line 5 then builds the trajectory response to snew. Humans tend
to think in terms of ‘full maneuvers’ when generating trajectories–specifically for
very quick trajectory generation tasks such as trajectory creation games [9]–rather
than creating trajectories one point at a time. Therefore, the Space Navigator
trajectory response generator creates full maneuver trajectories. Line 7 finds the
instance assigned to both state cluster Sclose and trajectory cluster Ti with the
state closest to snew. The response to this state is then weighted according to
the likelihoods in P. The loop in Line 9, then combines the k trajectories using
a weighted average for each of the μ points of the trajectory. The weighted aver-
age trajectory points are normalized across the k weights used for the trajectory
combination in Line 13 and returned as the response to state snew according to
the player model P.



Clustering-Based Online Player Modeling 93

Algorithm 2. Trajectory response generation algorithm.
1: inputs: k = the number of trajectories to combine; x = the number of state clus-

ters; y = the number of trajectory clusters; μ = the re-sampled trajectory
size; snew = a state we have not seen before; P = an x × y player model;
M = {〈S1, T1〉 , 〈S1, T2〉 , · · · , 〈Sx, Ty〉}, all state-trajectory cluster mappings

2: initialize: tnew (μ) ← an empty trajectory of μ points
3: Sclose = the closest state cluster to state snew

4: Pclose = max
k

[
PSclose,(z|∀z∈1,...,y)

]

5: for each Pclose,i ∈ Pclose do
6: Ti = the trajectory cluster associated with Pclose,i

7: sclose,i ← state closest to snew in 〈Sclose, Ti〉
8: tclose,i ← the response trajectory to sclose,i

9: for ν = 1 → μ do
10: tnew (ν) = tnew (ν) + tclose,i (ν) · Pclose,i

11: end for
12: end for

13: return tnew = tnew/
k∑

i=1

Pclose,i

5 Environment Considerations

This section demonstrates how the player modeling paradigm can be applied to
generating trajectory responses in Space Navigator. First, an initial data capture
experiment is outlined. Then, solutions are presented to two environment specific
challenges: developing a state representation and comparing disparate trajecto-
ries.

5.1 Initial Data Capture Experiment

An initial experiment captured a corpus of game-play data for further compari-
son and benchmarking of human game-play [3]. Data was collected from 32 par-
ticipants playing 16 five-minute instances of Space Navigator. The instances rep-
resented four difficulty combinations, with two specific settings changing: (1) the
number of NFZs and (2) the rate at which new ships appear. The environment
captures data associated with the game state when the player draws a trajec-
tory, including: time stamp, current score, ship spawn rate, NFZ move rate, bonus
spawn interval, bonus info (number, location, and lifespan of each), NFZ info
(number, location, and lifespan of each), other ship info (number, ship ID number,
location, orientation, trajectory points, and lifespan of each), destination planet
location, selected ship info (current ship’s location, ship ID number, orientation,
lifespan, and time to draw the trajectory), and selected ship’s trajectory points.
The final collected dataset consists of 63,030 instances.

5.2 State Representation

Space Navigator states are dynamic both in number and location of objects. The
resulting infinite number of configurations makes individual state identification



94 J.M. Bindewald et al.

difficult. To reduce feature vector size, the state representation contains only the
elements of a state that directly affect a player’s score (other ships, bonuses, and
NFZs) scaled to a uniform size, along with a feature indicating the relative length
of the spaceship’s original distance from its destination. Algorithm3 describes the
state-space feature vector creation process.

Algorithm 3. State-space feature vector creation algorithm.
1: input: L = the straight-line trajectory from spaceship to destination planet.
2: initialize: η ∈ [0.0 · · · 1.0) = weighting variable; s = empty array (length 19);

zoneCount = 1
3: Translate all objects equally s.t. the selected spaceship is located at the origin.
4: Rotate all objects in state-space s.t. L lies along the X-axis.
5: Scale state-space s.t. L lies along the line segment from (0, 0) to (1, 0).
6: for each object type ϑ ∈ (OtherShip, Bonus, NFZ) do
7: for each zone z = 1 → 6 do
8: zoneCount = zoneCount + 1
9: for each object o of type ϑ in zone z do

10: do = the shortest distance of o from L
11: wo = e−(η·do)

2
� Gaussian weight function

12: s [zoneCount] = s [zoneCount] + wo

13: end for
14: end for
15: end for
16: s [19] = the non-transformed straight-line trajectory length
17: return s, normalized between [0, 1]

The algorithm first transforms the state-space features against a straight-line
trajectory frame in Line 1. Lines 3–5 transform the state-space along the straight-
line trajectory such that disparate trajectories can be compared in the state-space.
The loop at Line 6 accounts for different element types and the loop at Line 7
divides the state-space into six zones as shown in Fig. 3. This effectively divides the
state-space into left and right regions, each with three zones with relation to the
spaceship’s straight-line path: behind the spaceship, along the path, and beyond
the destination.

To compare disparate numbers of objects, the loop beginning in Line 9 uses a
weighting method similar to that used in [5], collecting a weight score (s) for each
object within the zone. This weight score is calculated using a Gaussian weight-
ing function based on the minimum distance an object is from the straight-line
trajectory. Figure 3 shows the transformation of the state into a feature vector
using Algorithm 3. The state-space is transformed in relation to the straight-line
trajectory, and a value is assigned to each “entity type + zone” pair accordingly.
For example, Zone 1 has a bonus value of 0.11 and other ship and NFZ values of
0.00, since it only contains one bonus. Lastly, the straight-line trajectory distance
is captured. This accounts for the different tactics used when ships are at differ-
ent distances from their destination. The resulting state representation values are
normalized between zero and one.



Clustering-Based Online Player Modeling 95

Fig. 3. The six zones surrounding the straight line trajectory in a Space Navigator state
representation and the state representation calculated with Algorithm 3.

5.3 Trajectory Comparison

Trajectory generation requires a method to compare disparate trajectories. Tra-
jectory re-sampling addresses the fact that trajectories generated within Space
Navigator vary in composition, containing differing numbers of points and point
locations. Re-sampling begins by keeping the same start and end points, and iter-
ates until the re-sampled trajectory is filled. The process first finds the propor-
tional relative position (pm) of a point. The proportional relative position indi-
cates where the i-th point would have fallen in the original trajectory and may
fall somewhere between two points. The proportional distance (dm) that pm falls
from the previous point in the old trajectory (p0) is the relative distance that the
i-th re-sampled point falls from the previous point. To compare trajectories, the
target number of points is set to 50 (approximately the mean trajectory length in
the initial data capture) for re-sampling all the trajectories.

Re-sampling has two advantages: the re-sampling process remains the same for
both trajectories that are too long and too short and maintains the distribution
of points along the trajectory. A long or short distance between two consecutive
points, remains in the re-sampled trajectory. This ensures that trajectories drawn
quickly or slowly maintain those sampling characteristics despite the fact that the
draw rate influences the number of points in the trajectory. Since feature vector
creation geometrically transforms a state, the trajectories generated in response
to the state are transformed in the same manner, ensuring the state-space and
trajectory response are positioned in the same state space.

To ensure the trajectories generated in Space Navigator are similar to those
of an individual player, a distance measure captures the objective elements of
trajectory similarity. The Euclidean trajectory distance treats every trajectory
of i (x, y) points, as a 2i-dimensional point in Euclidean space where each x
and each y value in the trajectory represents a dimension. The distance between
two trajectories is the simple Euclidean distance between the two 2i-dimensional
point representations of the trajectories. A 35-participant human-subject study
confirmed that Euclidean trajectory distance not only distinguished between



96 J.M. Bindewald et al.

trajectories computationally, but also according to human conceptions of trajec-
tory similarity.

6 Experiment and Results

This section describes testing of the online individual player modeling trajec-
tory generator and presents insights gained from the experiment. The results
show that, with a limited amount of training data, the individual player mod-
eling trajectory generator is able to create trajectories more similar to those of
a given player than a generic player-modeling trajectory generator. Additionally,
the results show the model provides insights for a better understanding of what
separates different players’ game-play via comparison to the generic player model.

6.1 Experiment Settings

The experiment compares trajectories created with the generic player model, the
individual player model, and a generator that always draws a straight line between
the spaceship and its destination planet. The first five games are set aside as a
training dataset and the next eleven games as a testing dataset. Five training
games (equivalent to 25 min of play) was chosen as a benchmark for learning an
individual player model to force the system to quickly pull insights that would
manifest in later game-play. For each of 32 players, the individual player model is
trained on the five-game training dataset using Algorithm1 with the trait score
weights. Next, each state in the given player’s testing set is presented to all three
trajectory generators and the difference between the generated and actual tra-
jectories recorded. Experimental values for the individual player model are set as
follows: update increment (q) = 0.01, cluster population threshold = 240, clus-
ter mapping variance threshold = 17.0, and previous modeling utility threshold
= 3.0.

The three learning thresholds specific to Space Navigator are: (1) state cluster
population threshold = 240 (set at a value of one standard deviation over the mean
cluster size), forty of 500 state clusters received a cluster population weight of
δcp = 1; (2) cluster mapping variance ratio threshold = 17, with 461 of 500 state
clusters receiving a cluster variance weight of δcmv = 1; and (3) previous modeling
utility threshold = 3, with 442 of 500 clusters receiving a previous modeling utility
score of δpma = 1.

To account for the indistinguishability of shorter trajectories, results were
removed for state-trajectory pairs with straight-line trajectory length less than
approximately 3.5 cm on tablets with 29.5 cm screens used for experiments. This
distance was chosen as it represents the trajectory length at which an accuracy
one standard deviation below the mean was reached.

6.2 Individual Player Modeling Results

Testing of the game-play databases shows that the trajectories generated using the
individual player model significantly improved individual player imitation results



Clustering-Based Online Player Modeling 97

Fig. 4. Euclidean trajectory distance between generated trajectories and actual trajec-
tory responses.

when compared to those generated by the generic player model and the straight
line trajectory generator. Table 1 and Fig. 4 show results comparing trajectories
generated using each database with the actual trajectory provided by the player,
showing the mean Euclidean trajectory distance and standard error of the mean
across all 32 players and instances.

Table 1. Mean and standard error of the Euclidean trajectory distances (in
SpaceNavigator environment meters).

Database Mean dist Std err

Individual player model 1.8640 ±0.0063

Straight line generator 1.8781 ±0.0069

Generic player model 1.8784 ±0.0063

The individual player model generator provides an improvement over the other
models. The mean Euclidean trajectory distance of 1.8640 provides a statistically
significant improvement over the straight line and generic player models, as stan-
dard error across all instances from all 32 players does not overlap with the latter
two player models. The similar player model improves the generic databases accu-
racy by learning more from a selected subset of presented states to ensure that the
player model more accurately generates similar trajectories.



98 J.M. Bindewald et al.

6.3 Individual Player Model Insight Generation

The changes in player model learning value for each element of a state represen-
tation show which aspects of the state influence game-play. This enables a better
understanding of what distinguishes individual game-play within the game envi-
ronment.

Table 2 shows the results of a Pearson’s linear correlation between the mean
learning value change of each state cluster across all 32 players and the state rep-
resentation values of the associated state cluster centroids. The results show that
there is a statistically significant negative correlation between the mean learning
value changes and all of the zones, but some changes are much larger than others.
The overall negative correlation arises among object/zone pairs intuitively: high
object/zone pair scores imply a large or close presence of a given object type, con-
straining the possible trajectories. There is more differentiability of player actions
when more freedom of trajectory movement is available.

Table 2. Correlation of each state representation value with the mean change in asso-
ciated state cluster learning values in player models

Zone Pearson’s r p-value Pearson’s r p-value Pearson’s r p-value

Other Ships Bonuses NFZs

1 −0.1227 0.0060 −0.1569 0.0004 −0.1002 0.0251

2 −0.3911 0.0000 −0.3552 0.0000 −0.2749 0.0000

3 −0.1616 0.0003 −0.2212 0.0000 −0.1184 0.0080

4 −0.1465 0.0010 −0.1662 0.0002 −0.1159 0.0095

5 −0.4244 0.0000 −0.3693 0.0000 −0.2398 0.0000

6 −0.1903 0.0000 −0.2056 0.0000 −0.1040 0.0200

Dist −0.6434 0.0000

With the ship-to-planet distance feature, longer distances correlate to smaller
learning value changes among player models, with the strongest correlation of all
features: r of−0.6434 and p-value <0.0001. Possible explanations for this behavior
include: (1) players are more constrained over long distances, (2) as distances get
longer, the variance in the way an individual player draws trajectories in similar
situations increases, (3) shorter distances capture consistent tendencies that carry
along to distinguish individual game-play over time.

Another aspect that Table 2 shows is the importance of the middle zones in
comparison to the ‘before’ and ‘after’ zones. Figure 5 illustrates this point graph-
ically. The r values show that the middle two zones provide a larger influence
on the amount of change in the learning values. For example, in Fig. 5a the r
values for zones two and five are more than double those of any other zone.
This idea is somewhat intuitive as this is the area that the ship will traverse,
providing the most likely cause for interaction with objects of any given type.



Clustering-Based Online Player Modeling 99

The results also provide insight into the relative value that players place on certain
types of objects. For example, determining the correlation coefficients of different
Object/Zone Pairs can show that No Fly Zones in the middle two zones provide
a significantly smaller influence on learning value changes than other ships do in
the same zones.

Fig. 5. Graphical representation of the correlation coefficient for each Object
Type/Zone score with the mean change in learning values in player models.

Three examples of how player modeling insights can be used in game applica-
tions involve training, game design, and player automation. Player models can be
used to find places where specific users who are doing really well properly value
certain actions over others. Proper valuations can then be communicated to play-
ers during training within the environment. Another example is that, we can use
the player modeling insights to design point structures to more closely align with
the way players perceive the value of different object types. Lastly, modeling a
specific player enables the designer to incorporate an automated player to play
like a specific expert or current user within the game.

7 Conclusions and FutureWork

The online individual player modeling paradigm presented in this paper is able to
generate trajectories similar to those of a specific Space Navigator player. The sys-
tem is able to operate online without needing to perform time-consuming offline
calculations to update individual player models. Additionally, the gains in individ-
ual player imitation are found in a relatively small number of games (five games,
totaling 25 min). The player models developed to imitate players also allow for
a better understanding of what traits of a given state provide understanding of
player differences which occur for different states.

This work provides opportunities for several areas of future work. Further
studies will research the effects of using the trajectory generator to act as an
automated aid for players interacting with the Space Navigator game. Addition-
ally, further analysis of the player modeling methods could yield further insights
into how much differentiation of individual players can be gained over different
amounts of time. Moreover, imitating individual players could provide helpful
insights in determining how experts play Space Navigator to aid in experiments
to learn how to improve player training.



100 J.M. Bindewald et al.

References

1. Argall, B., Browning, B., Veloso, M.: Learning by demonstration with critique from
a human teacher. In: Proceedings of the ACM/IEEE International Conference on
Human-Robot Interaction, pp. 57–64. ACM (2007)

2. Bindewald, J.M., Miller, M.E., Peterson, G.L.: A function-to-task process model for
adaptive automation system design. Int. J. Hum. Comput. Stud. 72(12), 822–834
(2014)

3. Bindewald, J.M., Peterson, G.L., Miller, M.E.: Trajectory generation with player
modeling. In: Barbosa, D., Milios, E. (eds.) CANADIAN AI 2015. LNCS (LNAI),
vol. 9091, pp. 42–49. Springer, Cham (2015). doi:10.1007/978-3-319-18356-5 4

4. Firemint Party Ltd.: Flight control, December 2011. https://itunes.apple.com/us/
app/flight-control/id306220440?mt=8

5. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating
robocup players. In: FLAIRS Conference, pp. 251–256 (2008)

6. Gamez, D., Fountas, Z., Fidjeland, A.K.: A neurally controlled computer game
avatar with human like behavior. IEEE Trans. Comput. Intell. AI Games 5(1), 1–14
(2013)

7. Holmg̊ard, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Evolving personas for
player decision modeling. In: 2014 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 1–8. IEEE (2014)

8. Holmg̊ard, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Generative agents for
player decision modeling in games. Foundations of Digital Games (2014)

9. Huang, V., Huang, H., Thatipamala, S., Tomlin, C.J.: Contrails: crowd-sourced
learning of human models in an aircraft landing game. In: Proceedings of the AIAA
GNC Conference (2013)

10. Kemmerling, M., Ackermann, N., Preuss, M.: Making Diplomacy bots individual.
In: Hingston, P. (ed.) Believable Bots, pp. 265–288. Springer, Heidelberg (2012)

11. Liapis, A., Holmg̊ard, C., Yannakakis, G.N., Togelius, J.: Procedural personas as
critics for dungeon generation. In: Mora, A.M., Squillero, G. (eds.) EvoApplica-
tions 2015. LNCS, vol. 9028, pp. 331–343. Springer, Cham (2015). doi:10.1007/
978-3-319-16549-3 27

12. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. VISAPP (1), 2 (2009)

13. Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A
survey of real-time strategy game AI research and competition in StarCraft. Com-
put. Intell. AI Games 5(4), 293–311 (2013)

14. Schrum, J., Karpov, I.V., Miikkulainen, R.: Human-like combat behaviour via mul-
tiobjective neuroevolution. In: Hingston, P. (ed.) Believable Bots, pp. 119–150.
Springer, Heidelberg (2012)

15. Smith, A.M., Lewis, C., Hullet, K., Sullivan, A.: An inclusive view of player mod-
eling. In: The 6th International Conference on Foundations of Digital Games, pp.
301–303. ACM (2011)

16. Togelius, J., De Nardi, R., Lucas, S.M.: Making racing fun through player modeling
and track evolution. In: Proceedings Optimizing Player Satisfaction in Computer
and Physical Games, p. 61 (2006)

17. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat.
Assoc. 58(301), 236–244 (1963)

18. Yu, H., Riedl, M.O.: Personalized interactive narratives via sequential recommen-
dation of plot points. IEEE Trans. Comput. Intell. AI Games 6(2), 174–187 (2014)

http://dx.doi.org/10.1007/978-3-319-18356-5_4
https://itunes.apple.com/us/app/flight-control/id306220440?mt=8
https://itunes.apple.com/us/app/flight-control/id306220440?mt=8
http://dx.doi.org/10.1007/978-3-319-16549-3_27
http://dx.doi.org/10.1007/978-3-319-16549-3_27

	Clustering-Based Online Player Modeling
	1 Introduction
	2 Related Work
	3 Application Environment
	4 Methodology
	4.1 Individual Player Models
	4.2 Generate Response

	5 Environment Considerations
	5.1 Initial Data Capture Experiment
	5.2 State Representation
	5.3 Trajectory Comparison

	6 Experiment and Results
	6.1 Experiment Settings
	6.2 Individual Player Modeling Results
	6.3 Individual Player Model Insight Generation

	7 Conclusions and Future Work
	References


