
A General Approach of Game Description
Decomposition for General Game Playing

Aline Hufschmitt(B), Jean-Noël Vittaut, and Jean Méhat

LIASD - University of Paris 8, Saint-Denis, France
{alinehuf,jnv,jm}@ai.univ-paris8.fr

http://www.ai.univ-paris8.fr

Abstract. We present a general approach for the decomposition of
games described in the Game Description Language (GDL). In the field
of General Game Playing , the exploration of games described in GDL
can be significantly sped up by the decomposition of the problem in
sub-problems analyzed separately. Our program can decompose game
descriptions with any number of players while addressing the problem of
joint moves. This approach is used to identify perfectly separable sub-
games but can also decompose serial games composed of two subgames
and games with compound moves while avoiding, unlike previous works,
to rely on syntactic elements that can be eliminated by simply rewriting
the GDL rules. We tested our program on 40 games, compound or not,
and we can decompose 32 of them successfully in less than 5 s.

1 Introduction

Despite incentives from Genesereth and Björnsson [3] to encourage the develop-
ment of GGP players able to discern structure of compound games and therefore
to dramatically decrease search cost, not much research exists in this area.

Cox et al. [2] prove conditions under which a global game represents mul-
tiple, simultaneous independent sub-games, but the practical implementation
of a GGP player using decomposition presents two major issues: the first is to
detect and decompose a compound game, the second is to combine local subgame
solutions into a global one.

Cerexhe et al. [1] provide a systematic approach for single player games
to solve this second difficulty which they refer to as the composition problem.
However, identifying and decomposing games is not within the scope of their
paper.

Günther et al. [5,6] propose a decomposition approach for single player games
by building a dependency graph between fluents and actions: the connected
parts of the graph represent the different subgames. Potential preconditions,
positive and negative effects between fluents and actions are used to build this
dependency graph while action-independent fluents are isolated in a separate
subgame to prevent them from blocking the decomposition.

Zhao et al. [10,11] propose a similar approach for multiplayer games using
partially instantiated fluent and action terms. Serial games and games with
compound actions are handled separately.
c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 165–177, 2017.
DOI: 10.1007/978-3-319-57969-6 12



166 A. Hufschmitt et al.

These approaches present different shortcoming we will details below such as
a heavy reliance on certain syntactic structures in game descriptions.

We propose a more general approach to decompose games with any number
of players while addressing the problem of joint moves, compound moves and
serial games without relying on syntactic elements that can be eliminated by
simply rewriting the GDL rules. The result of our decomposition can be used to
solve the game by an approach like the one of Cerexhe et al. [1]; it is a non-trivial
problem outside the scope of this paper.

We begin (Sect. 2) with a brief introduction of the Game Description Lan-
guage and the different types of compound games that can be found on the
different online servers and that our approach can decompose. Then we present
the different aspects of our method to handle these different types of games
(Sect. 3). We present results on 40 games, compound or not (Sect. 4). Finally, we
conclude and present future work (Sect. 5).

2 Preliminaries

We present here some details about the Game Description Language and the
different types of compound games that our approach can decompose.

2.1 The Game Description Language

We assume familiarity of the reader with the General Game Playing [4] as well as
with the Game Description Language (GDL) [7]. A GDL game description takes
the form of a set of assertions and of logical rules which conclusion describes: the
transition to the next position (next predicate); the legality of actions (legal);
the game termination (terminal); and the score (goal). The rules are expressed
in terms of actions (does) and fluents (true) describing the game state.

Rule premises can also include auxiliary predicates, specific to the game
description itself, which truth is defined by rules also using true and does
premises. In the rest of this article, we will refer to auxiliary predicates, exclu-
sively defined in terms of fluents (true) (does never appear in their premises),
which have an important role in our decomposition approach (Sects. 3.3, 3.5).

2.2 Types of Compound Games

Among games available on the different General Game Playing servers (http://
games.ggp.org) different types of compound games can be identified. The types
we distinguish represent specific issues for the decomposition and are not directly
related to the formal classification proposed by (Cerexhe et al. [1]).

For example, Parallel games like Dual Connect 4 or Double Tictactoe
Dengji are composed of two subgames played in parallel that can be synchro-
nous or asynchronous, but this difference has no influence on the decomposition
approach to use. Decomposing these games does not present any particular dif-
ficulty.

http://games.ggp.org
http://games.ggp.org


A General Approach of Game Description Decomposition 167

However, in some synchronous parallel games like Asteroids Parallel each
player’s action is a compound moves corresponding to two simultaneous
actions played in each subgames. These create a strong connection between sub-
games and represent a specific difficulty for decomposition.

Serial Games like Blocker Serial are composed of two sequential subgames
i.e. the second starts when the first is completed. As the two games are linked
together, identifying the boundary between them is a specific issue for decom-
position.

Multiple Games like Multiple Buttons And Lights are composed of sev-
eral subgames, only one of them being involved in the score calculation or the
game termination. The other subgames only increase the size of the game tree
to explore. Identifying those useless subgames allows to avoid unnecessary cal-
culations. Note that in the game Incredible, contemplate actions are detected as
noop actions by our decomposition program and does not constitute a useless
subgame.

Games using a Stepper to ensure finite games like Eight Puzzle may be
considered as compound games (synchronous). In these games, different descrip-
tions of a position can vary only by the value of the stepper (step counter). To
allow a programmed player to exploit these near-perfect transpositions, it is nec-
essary to operate a game decomposition to separate the stepper from the game
itself. This stepper is then an action independent subgame.

Some Impartial Games, like Nim starting with several piles of objects,
may also be considered as compounds games (asynchronous) as they can be
decomposed in several subgames, one for each pile, each of them being an impar-
tial game [10]. Identifying that these subgames are impartial, subsequently allows
to use known techniques for the resolution of the global game.

3 Method

Our approach is based on Günther’s idea [5] and consists in using a dependency
graph between actions and fluents, and then to identify the connected parts of
the graph representing the subgames. As nothing in the GDL specification pro-
hibits the use of completely instantiated rules or prevents that fluents or actions
be reduced to simple atoms, we identify relations between totally instantiated
fluents f and actions a and rely neither on their predicates names nor their
arguments.

For the analysis of these relations, we use the following definitions:

Definition 1. Let F be the set of all the instantiated fluents f appearing in
true(f) or ¬true(f).

Definition 2. R being the set of all the roles r and O the set of all options o
of these roles, let A ⊂ R × O be the set of all the instantiated player actions
a = (r, o).
Or is the set of all the possible options of role r.

Definition 3. Let C be the set of all the possible conjunctions of atoms of the
form true(f), ¬true(f), does(r, o) or ¬does(r, o).



168 A. Hufschmitt et al.

3.1 Grounding and Creation of a Logic Circuit

To instantiate completely the rules (grounding), we carry out a fast instantiation
using Prolog with tabling [9] and use these instantiated rules to build a logic
circuit similar to a propnet [8]. Conclusions of legal, next, goal or teminal rules
are the outputs of the circuit and only depends on fluents (true) and actions
(does) at the inputs.

It is possible, according to the GDL specifications, to produce a description
with fully developed rules using no auxiliary predicate at all. However, these
predicates, like column1, diagonal2 or game1over in Tictactoe, may be neces-
sary for some specific stages of our process of decomposition (Sects. 3.3, 3.5). To
ensure that these auxiliary predicates will be available even when not specified in
the GDL description, we proceed to a factorization of the conjunctions, disjunc-
tions and use De Morgan’s laws to reduce the number of negations in the circuit.
As a perfect factorization is an NP-hard problem, our program uses a greedy
approach where the first common factor is used. Factorization and application
of De Morgan’s laws are iterated until the circuit reaches a minimum size.

We identify the needed auxiliary predicates as these are represented by inter-
nal logic gates of the circuit, depending only on input fluents and representing
important expressions in the logic of the game i.e. these expressions are used
several times, several logic gates use their outputs.

After the factorization, the GDL description is a set of formulas under dis-
junctive normal form of which atoms are fluents, actions, and auxiliary predi-
cates. In the following we say that these formulas are under DNF form.

Other stages of the decomposition process need a description of the game
under canonical form. By recursively replacing auxiliary predicates by their
expression we obtain a new set of formulas in disjunctive normal form describing
the same game where all the auxiliary predicates have been eliminated. In the
following we say that these formulas are under DNFD form.

3.2 Building a Dependency Graph

To build our dependency graph and to identify the different subgames, we start
with a set of vertices which are the fully instantiated actions and fluents. We
then identify different relations between these fluents and actions that we define
below. For each of these relations we add an edge between the involved actions
and fluents vertices. These relations correspond to preconditions or effects of the
actions.

Unfortunately, GDL does not explicitly describe action effects unlike STRIPS
or PDDL languages used for planning domains. A fluent being false by default,
an action present in a next rule can have an effect or not. For example, let
us consider the legal actions does(r, a), does(r, b) and does(r, c), in the rule
next(f):− ¬true(f) ∧ (does(r, a) ∨ does(r, b)). a and b have an effect if the rule
means “The cell will contain a pawn if r does one of the 2 actions moving a
pawn in it” and c has an effect if it means “the boat will sink if r does anything
else than action c (bailing)”. A similar example can be found for any next rule



A General Approach of Game Description Decomposition 169

with an action (in a negation or not) and regardless of the value of the fluent f
and its presence or not in the rule premises.

It is thus possible to produce GDL descriptions in which the actions present
in a next rule body belong to another subgame than the fluent in the rule head.
We can only address this using heuristics similar to those of Günther [6].

They propose to consider that an action a has a negative effect on a fluent f if
this action does not keep the fluent true i.e. if next(f) does not contain true(f)∧
does(a) in its premises. However in a game like Double Tictactoe, there is no
rule like this to indicates that actions of a subgame do not change the value of
the other subgame fluents. Consequently, fluents of a subgame can be considered
as negative effects of the second subgame actions and the decomposition fails.

In our approach we use slightly different heuristics which work well for exist-
ing composed games to find potential effects of actions:

Definition 4. The fluent f is a potential negative effect of the action a =
(r, o) if next(f) under DNFD has a clause where ¬does(r, o) appears.

The fluent f is a potential positive effect of the action a = (r, o) if next(f)
under DNFD has a clause containing the does(r, o) literal and not containing the
true(f) literal.

In case of joint moves from several players, it is necessary to identify if the
action of each player is responsible of the observed effect on the rule conclusion
to avoid linking unrelated action with the conclusion.

To solve this problem Zhao et al. [11] propose to compare the arguments
used in a next rule head with the ones used in the moves (does). For example,
in the following rule from Blocker Serial, we can see that the action from crosser
is the only one that is likely to affect the conclusion:

next(cell2(XC,YC, crosser)) :− distinctcell(XC,YC,XB, Y B)
∧ does(crosser,mark2(XC,YC)) ∧ does(blocker,mark2(XB,Y B)).

However, GDL specification allows to use completely instantiated rules and
simple atoms to represent fluents and moves. For example, we can replace the
previous rule by some instantiated rules:

next(f) :− does(crosser, o1) ∧ does(blocker, o2).
next(f) :− does(crosser, o1) ∧ does(blocker, o3).

...

With fluents like f and moves like does(r, o), their approach is no longer able to
deal with joint moves.

To identify which action has an effect without relying on syntactic elements,
we compare, for each player, the different actions used in conjunction with the
same fluents and actions of other players in the clauses of each next rule.

Suppose that next(f) ← Cf is in DNFD. Let us consider a specific option
o′ for player r′. We consider the set E(o′) of the different options of the role r
when r′ choose the o′ option:



170 A. Hufschmitt et al.

E(o′) = { o ∈ Or | ∃c ∈ Cf ,∃b ∈ C,

c = does(r, o) ∧ does(r′, o′) ∧ b }
We define E(o) the same way by exchanging the role of (r, o) with (r′, o′).
If all the options of the r are present in conjunction with the same action of

r′: these options have probably no effect i.e. the result is the same regardless of
the option chosen. On the contrary, if a single option of r is present, it is probably
responsible for the observed effect. We then use the following heuristics:

Definition 5. The action a = (r, o) ∈ A is potentially responsible for an
effect on f if:

– card(E(o′)) = 1, or
– E(o′) � Or and card(E(o)) �= 1

For example, in the game BlockerSerial, the term next(cell1(2, 3, crosser))
is true if blocker choose any option but mark1(2, 3) and crosser choose the
mark1(2, 3) option. All the options of blocker are not represented but, as crosser
has a single possible option, its action is considered responsible for the effect
while actions of blocker are not linked to the cell1(2, 3, crosser) fluent.

Even if this approach sometimes put aside actions related to the conclusion,
we did not observe any over-decomposition. At least one of the actions is indeed
related to the conclusion and edges between fluents and actions added in the
dependency graph to represent preconditions relations are redundant with those
added for effect relations.

Therefore a fluent is a potential effect of an action if this action has a
potential positive or negative effect on this fluent and if this action is potentially
responsible for this effect in presence of joint moves. From the potential effect
of actions we can deduce fluents that are action-independent, such as step or
control fluents, and actions that are fluent-independent such as noop actions:

Definition 6. A fluent f is action-independent if it is not the potential effect
of any action a. An action a is fluent-independent if no fluent f is the poten-
tial effect of this action.

Then we can identify fluents that are potential preconditions of an action in the
same subgame and create a link in the graph between them:

Definition 7. The fluent f is a potential precondition in the same sub-
game of the action a = (r, o) if:

– a is not fluent-independent, and
– f is not action-independent, and
– one of the two following conditions holds:

• legal(r, o) under DNFD has a clause where true(f) or ¬true(f) appears,
or

• it exist f ′ which is a potential effect of a, such that next(f ′) under DNFD
has a clause containing does(r, o) ∧ true(f) or does(r, o) ∧ ¬true(f).

An action-independent fluent can be present in the premises of all legal rules,
it is then a precondition of all actions but belongs to another subgame which is
action-independent.



A General Approach of Game Description Decomposition 171

3.3 Subgoal-Predicates to Fix Over-Decomposition

Edges between actions and fluent vertices corresponding to preconditions or
effects of these actions may not be sufficient to connect all the elements of a
subgame. For instance, in a subgame like Tictactoe, an action has an effect on
a cell and the state of this cell is a precondition to this action. However, no link
exists through actions between fluents describing different cells.

In the game Double Tictactoe given as an example by Zhao et al. [11] the
auxiliary predicates line1/1 or line2/1 are present in the premises of some legal
rules. All the fluents in the premises of these predicates are then preconditions
of the corresponding actions and create a link between the cells of each sub-
game. However, in games like Tictactoe Parallel, Connect4 or Rainbow no such
predicate is present in the legal rules and an over-decomposition occurs.

The logic link between elements of a subgame is in the goal to reach and
this goal is usually a condition for the termination of the global game. We
need to distinguish an auxiliary predicate corresponding to a subgoal in one
subgame from one corresponding to different subgoals from different subgames
because the second one can prevent the decomposition. To address this prob-
lem of over-decomposition we use the following heuristic to identify potential
subgoal-predicates corresponding to only one subgame:

Definition 8. Let g be the maximum possible score of r. An auxiliary predicate
b is a potential subgoal-predicate if:

– terminal depends on the logical value of b, and
– goal(r, g) under DNF has a clause where b appears.

or

– All the roles play in different subgames, and
– goal(r, g) under DNF has a clause where b appears, and for all roles r′ �= r,

goal(r′, g′) under DNF has no clause where b appears.

In games like Dual Rainbow or Dual Hamilton, subgoal-predicates appear
only in the premises of goal rules. Since these games are composed of single
player subgames, an auxiliary predicate present in the goal rule of a single player
involves only this player and therefore only one subgame.

The first part of the definition holds in the games where the victory in one
of the subgames terminates the game as it is generally the case in compound
games. Otherwise, the subgames may be connected by the use of a misidentified
subgoal-predicate.

Once a subgoal-predicate is identified, we add edges in our dependency graph
between fluents that appear in a same clause in its formulas under DNFD.

3.4 Compound Moves and Meta-Action Sets

A compound move is composed of two or more actions related to different sub-
games. For example, the compound move legal(ship,do(clockcounter)) in the



172 A. Hufschmitt et al.

game Asteroid Parallel corresponds to a clockwise move in a first subgame
and a counterclockwise move in a second subgame. Such an action creates a
link between the different subgames and can interfere with the decomposition
process.

To detect compound moves, Zhao et al. [11] use the same app-
roach as that applied to the problem of joints move. For example, in
the following rule from Tictactoe Parallel we can see that only the
first two arguments of the action have an effect on the rule conclusion:
next(cell1(X1,Y1, o)) :− does(oplayer,mark(X1,Y1,X2, Y 2)). Once again,
the rule has just to be rewritten to defeat detection: next(f) :− does(oplayer, o).

In games with compound moves, the set of all actions is a combination of the
sets of all actions of each subgame. Then in a game composed of two subgames,
for each action in the first subgame, there is N compound moves corresponding
to this action combined to the N possible actions in the second subgame. To
identify the different parts of compound moves, we distribute actions into meta-
action sets. An action can belong to one or several meta-action sets which depend
only on a role r, a fluent f ∈ F and two clauses c ∈ C and c′ ∈ C.

Definition 9. An action a = (r, o) belongs to the meta-action set
P (r, f, c, c′) if:

– f is a potential effect of a, and
– next(f) under DNFD has a clause (does(r, o) ∧ c), and
– if c′ is empty, legal(r, o) must always be true, or if c′ is not empty, it contains

only action-dependent literals and appears in at least one clause of legal(r, o)
under DNFD.

Therefore a meta-action set is a group of actions with an identical effect on
a fluent of a particular subgame, the same preconditions in the corresponding
next rule and at least one precondition in common in their legal rules.

For example, in the game Blocks World Parallel we can find the meta-
action set {does(robot, do(stackstack,a,b, ∗, ∗)), does(robot, do(stackunstack,
a,b, ∗, ∗))}1 corresponding to the action stack(a, b) in the first subgame.
These actions have an effect in common on true(on1(a, b)), same preconditions
{true(table 1(a)), true(clear1(b)), true(clear1(a))} in the next(on1(a, b)) clauses
and are always legal.

In a game with compound actions, each action is placed in M meta-action
sets corresponding to M effects. If a game contains no compound action but some
actions with an identical effect in the same situation, these actions are grouped
in the same meta-action set. And finally, if all actions in a game have a different
effect, each one constitutes a meta-action singleton. The use of meta-action sets
is then compatible with all games.

In our dependency graph, we then encapsulate all actions into meta-action
sets to avoid compound actions from connecting different subgames. The links

1 The * represents different possible values, the whole meta-action set contains 12
compound moves.



A General Approach of Game Description Decomposition 173

between actions and fluents are replaced by links between action sets and fluents
i.e. in the dependency graph, edges are added between a meta-action set and its
effect f and preconditions f ′ ∈ c ∪ c′.

3.5 Serial Games

In serial games an auxiliary predicate describing the terminal situation of the
first subgame determines the legality of all actions of the second subgame. Con-
sequently, it creates links between first subgame fluents and second subgame
actions. We must detect it and avoid these links to separate both subgames.

Zhao [10] uses a separate special detection: the desired auxiliary predicate
must be false to authorize the first subgame actions and true to authorize the
second ones, like game1over in Tictactoe Serial :

legal(PLAY ER,mark1(X,Y )) :− ¬game1over ∧ ... .

legal(PLAY ER,mark2(X,Y )) :− game1over ∧ ... .

with game1over depending on line1(x) ∨ line1(o) ∨ ¬open1. However, someone
can defeat this approach by simply rewriting the first subgame legal rules with
a different precondition: legal(PLAY ER,mark1(X,Y )) :− ongoing1∧ ... . with
ongoing1 depending on ¬line1(x) ∧ ¬line1(o) ∧ open1.

To generalize the approach of Zhao [10], we consider that a pivot between two
serial subgames is composed of two auxiliary predicates that can be the negation
of each other or two completely different predicates. We use our circuit repre-
senting the game to test the influence of each auxiliary predicate detected during
the circuit creation on the actions legality and look for a couple of predicates
that parts the fluent-dependent actions in two groups.

If such a couple of auxiliary predicates is found, then it is a pivot and the
latter predicates are directly used as action preconditions instead of the fluents
included in them. In our dependency graph, fluents of the first subgame are then
encapsulated in these auxiliary predicates to ensure that they will not connect
the different subgames with direct links to actions (meta-action sets) of the
second subgame. This approach works for existing games that are limited to two
serial subgames.

Unfortunately, we cannot generalize this approach and identify a pivot in
case of more than two serial subgames without risking an over-decomposition of
games with movable parts. In a pivot, each auxiliary predicate is necessary to
allow the legality of some actions and may prevent the legality of other actions.
If a third subgame is present, its actions are not affected by both auxiliary
predicates. In a game with movable pawns, an auxiliary predicate may be used
to describe the state of a cell; this predicate may allow the legality of some moves
from this cell, prevent some moves to this cell and does not concern other moves
of the game, consequently it may be confused with a part of a pivot. Therefore, if
we try to identify pivots for more than two serial subgames with a generalization
of this approach, a game with movable pawn may be over-decomposed, each cell
being a small serial subgame leading to the next ones.



174 A. Hufschmitt et al.

3.6 Multiple Games and Useless Subgames

Some subgames are involved in the calculation of the score or can cause the end
of the game when some position is reached. A subgame may also be played to
allow another subgame to start in the case of serial subgames.

Definition 10. Let VS be the set of vertices of a connected part of the depen-
dency graph representing a subgame S. S is considered useful if:

– S is played before another subgame in a serial game and is necessary to start
it, or

– it exists f ∈ F ∩VS such that terminal depends on the logical value of true(f),
or

– it exists f ∈ F ∩VS such that goal(r, g) depends on the logical value of true(f).

In multiple games, all the subgames that are not identified as useful can
be ignored and remain unexplored. However, a useless action (noop) can be
sometime strategically useful to avoid a zugzwang in another subgame. Actions
of these subgames can then be flagged as noop actions, be considered equivalently
useless, and only one of them need to be explored (if legal) for each position of
the game.

4 Experiments

We evaluated our decomposition program on a panel of 40 descriptions of games,
compound or not, from the servers of Dresden, Stanford and Tiltyard. We took
all the available compound games except for the redundant ones. We added
the original version of games commonly used as subgames and a representative
panel of games with different characteristics (movable parts, steppers, asymme-
try, impartiality) and complexity. The experiments were run on one core of an
Intel Core i7 2,7 GHz with 8Go of 1600 MHz DDR3.

For each game, we measured the mean time necessary for each stage of the
decomposition on a set of 100 decomposition tests. To limit the duration of
the experiments, a decomposition test was aborted after 60 min. The longest
stages of the decomposition are grounding the rules, factorizing the circuit and
calculating completely developed disjunctive normal forms (DNFD). The column
5 of Table 1 indicates the total time needed to decompose each game and shows
that the DNFD calculation can be very time consuming.

We try to compute DNF without developing the auxiliary predicates identi-
fied during the circuit construction. As we can see it in column 6, the time saved
is really significant and allows the successful decomposition of 32 games among
40 in less than 5 s. The major part of the total time necessary for the decompo-
sition using DNF corresponds to the rules grounding and circuit factorization.

Unfortunately, the use of partially developed DNF presents a shortcoming: if
a rule containing variables is already instantiated in the original GDL description
of a game and if some of these instances only are expressed in terms of auxil-
iary predicates, actions may occur in conjunction with different but equivalent



A General Approach of Game Description Decomposition 175

premises: a group of fluents or an equivalent auxiliary predicate. The factoriza-
tion of the circuit should restore auxiliary predicates in all rules instances but as
we use a greedy approach (Sect. 3.1), it is not guaranteed. Therefore, meta-action
sets detection may be hindered. Nevertheless, this case is sufficiently specific to
successfully use the auxiliary predicates in DNF, in most cases.

For Hex and Blocker Parallel, the time required to compute the grounded
rules, the factorization and the DNFs still remains too large. The factorization
does not allow to sufficiently reduce the complexity of Hex and, in Blocker Paral-
lel, the presence of compound actions combined with joint moves for both players
brings a large number of combinations.

Note that LeJoueur of Jean Noël Vittaut, which won the 2015 Tiltyard Open,
is on average 8.5 times faster to ground and factorize the three most complex
games (Breakthrough, Hex and Blocker Parallel). This indicates the potential
scope for improving these steps.

Table 1 also shows the total number of subgames discovered for each of the
40 games and among them, the ones that are action-dependent and action-
independent. The figures in parenthesis indicate the number of discovered sub-
games considered as useless.

Games at the top of the table are composed of only one action-dependent sub-
game and sometimes a stepper detected as a useful action-independent subgame.
The useless action-independent subgame detected for games like Breakthrough
or Sheep and Wolf corresponds to the control fluents which indicate the active
player in an alternate moves game and does not represent a playable game per
se.

Useless subgames in multiple games are correctly identified. We remark that
for Multiple Tictactoe, the number of useless subgames is particularly large
because these subgames have been over-decomposed as no auxiliary predicate
creates a link between their cells.

For the game of Nim, our program has detected an action-independent sub-
game not involved in the end of the game (it is not a stepper) while it is the
only subgame useful for the calculation of the score: this is an important clue
indicating that this game is impartial.

Except for the special case of Chomp, all the detected subgames are the
expected ones and correspond to what would have been obtained by a manual
decomposition. Chomp is an example of a game on which the heuristics used
for the action effects detection do not work properly. Other actions than eating
the poisoned chocolate square have only implicit negative effects which are not
detected. These actions are considered as noop actions and would be evaluated
as equivalent during the game: this could not allow the player to prevent the
fatal outcome. Fortunately, such a wrong detection of the action effects is visible
in the resulting dependency graph as a huge proportion of fluents and actions are
isolated vertices. So we can prevent this error from affecting the game solving.



176 A. Hufschmitt et al.

Table 1. Result of the decomposition for a panel of 40 games descriptions from the
servers of Dresden (D), Stanford (S) and Tiltyard (T) with comments on subgames
(SG) found.

5 Conclusion and Future Work

In this paper we presented a general approach for the decomposition of games
described in the Game Description Language (GDL). Our program decomposes
descriptions of games, compound or not, with any number of players while



A General Approach of Game Description Decomposition 177

addressing the problem of joint moves. It decomposes parallel games, games
with compound moves and serial games composed of two subgames. It also iden-
tifies steppers, useless subgames in multiple games, and unlike previous works,
without relying on syntactic elements that can be eliminated by simply rewriting
GDL rules. We tested our program on 40 games, compound or not, and have
decomposed 32 of them with success in less than 5 s which is a time compatible
with GGP competition setups.

Using Meta-action sets is an efficient way to the problem raised by compound
moves (Sect. 3.4). However, it requires the completely developed disjunctive nor-
mal form of the next rules which is computationally expensive. We are seeking
another approach to avoid this need or to minimize its computation time. Beside
this, we plan to eliminate the ad-hoc heuristics used to identify action effects
(Sect. 3.2) and to avoid over-decomposition (Sect. 3.3). We will also address the
problem of the decomposition of more than two sequential subgames.

Finally, using these decomposed games to solve the composition problem for
any games with any number of players remains an open problem.

References

1. Cerexhe, T., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution
to the (de-)composition problem in general game playing. In: Proceedings of the
European Conference on Artificial Intelligence (ECAI), pp. 195–200. IOS Press
(2014)

2. Cox, E., Schkufza, E., Madsen, R., Genesereth, M.: Factoring general games using
propositional automata. In: Proceedings of the IJCAI-09 Workshop on General
Game Playing (GIGA 2009), pp. 13–20 (2009)

3. Genesereth, M., Björnsson, Y.: The international general game playing competi-
tion. AI Mag. 34(2), 107–111 (2013)

4. Genesereth, M.R., Love, N., Pell, B.: General game playing: overview of the AAAI
competition. AI Mag. 26(2), 62–72 (2005)

5. Günther, M.: Decomposition of Single Player Games. Master’s thesis, TU-Dresden,
Germany (2007)

6. Günther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceedings
of the IJCAI-09 Workshop on General Game Playing (GIGA 2009), pp. 27–33
(2009)

7. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical report LG-2006-01,
Stanford University, March 2008

8. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata:
representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang,
M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89378-3 6

9. Vittaut, J., Méhat, J.: Fast instantiation of GGP game descriptions using prolog
with tabling. In: ECAI 2014, pp. 1121–1122 (2014)

10. Zhao, D.: Decomposition of Multi-Player Games. Master’s thesis, TU-Dresden,
Germany (2009)

11. Zhao, D., Schiffel, S., Thielscher, M.: Decomposition of multi-player games. In:
Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 475–484.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-10439-8 48

http://dx.doi.org/10.1007/978-3-540-89378-3_6
http://dx.doi.org/10.1007/978-3-642-10439-8_48

	A General Approach of Game Description Decomposition for General Game Playing
	1 Introduction
	2 Preliminaries
	2.1 The Game Description Language
	2.2 Types of Compound Games

	3 Method
	3.1 Grounding and Creation of a Logic Circuit
	3.2 Building a Dependency Graph
	3.3 Subgoal-Predicates to Fix Over-Decomposition
	3.4 Compound Moves and Meta-Action Sets
	3.5 Serial Games
	3.6 Multiple Games and Useless Subgames

	4 Experiments
	5 Conclusion and Future Work
	References


