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Preface

These joint proceedings contain the papers of the Computer Games Workshop (CGW
2016) and the General Intelligence in Game-Playing Agents (GIGA 2016) Workshop,
which were both held in New York, USA. These workshops took place on July 9 and
10, 2016, respectively, in conjunction with the 25th International Conference on
Artificial Intelligence (IJCAI 2016). These two workshops reflect the large interest in
artificial intelligence (AI) research for games.

The Computer and Games Workshop series is an international forum for researchers
interested in all aspects of AI and computer game playing. Earlier workshops took
place in Montpellier, France (2012), Beijing, China (2013), Prague, Czech Republic
(2014), and Buenos Aires, Argentina (2015). For the fifth edition of the Computer
Games Workshop, 17 submissions were received in 2016. Each paper was sent to three
reviewers. In the end, 11 papers were accepted for presentation at the workshop, of
which nine made it into these proceedings. The published papers cover a wide range of
topics related to computer games. They collectively discuss five abstract games:
Breakthrough, Go, Hex, SameGame, and Werewolf. Additionally, one paper deals with
optimization problems such as bus regulations and weak Schur numbers, and two
papers are on video games.

The GIGA workshop series has been established to become the major forum for
discussing, presenting, and promoting research on general game playing (GGP). It aims
at building intelligent software agents that can, given the rules of any game, auto-
matically learn a strategy for playing that game at an expert level without any human
intervention. The workshop intends to bring together researchers from subfields of AI
to discuss how best to address the challenges and further advance the state of the art of
general game-playing systems and generic AI. Following the inaugural GIGA Work-
shop at IJCAI 2009 in Pasadena (USA), follow-up events took place at IJCAI 2011 in
Barcelona (Spain), IJCAI 2013 in Beijing (China), and IJCAI 2015 in Buenos Aires
(Argentina). This fifth workshop on General Intelligence in Game-Playing Agents
received eight submissions. Each paper was sent to three reviewers. All papers were
accepted for presentation at the workshop, but in the end three were accepted for these
proceedings. The accepted papers focus on general techniques for automated reasoning
about new games and cover the topics of propositional networks, ground instantiations
of game rules, and decomposition of game descriptions.

In all, 48% of the submitted papers for both workshops were selected for these
proceedings. Here we provide a brief outline of the 12 contributions, in the order in
which they appear in the proceedings. They are divided into two parts: the first nine
belong to the Computer Games Workshop and the last three to the GIGA Workshop.



Computer Games Workshop

“NeuroHex: A Deep Q-learning Hex Agent,” a joint effort by Kenny Young, Gautham
Vasan, and Ryan Hayward, considers deep Q-learning for the game of Hex. After
supervised initializing, self-play is used to train NeuroHex, an 11-layer convolutional
neural network that plays Hex on the 13 � 13 board. Hex is the classic two-player
alternate-turn stone placement game played on a rhombus of hexagonal cells in which
the winner is the one who connects their two opposing sides. Despite the large action
and state space, their system trains a Q-network capable of strong play with no search.
After two weeks of Q-learning, NeuroHex achieves win rates of 20.4% as first player
and 2.1% as second player against a one-second/move version of MoHex, the current
ICGA Olympiad Hex champion. The data suggest further improvement might be
possible with more training time.

“Deep or Wide? Learning Policy and Value Neural Networks for Combinatorial
Games,” by Stefan Edelkamp, raises the question on the availability, the limits, and the
possibilities of deep neural networks for other combinatorial games than Go. As a step
toward this direction, a value network for Tic-Tac-Toe was trained, providing perfect
winning information obtained by retrograde analysis. Next, a policy network was
trained for the SameGame, a challenging combinatorial puzzle. Here, the interplay of
deep learning with nested rollout policy adaptation (NRPA) is discussed, a randomized
algorithm for optimizing the outcome of single-player games. In both cases the
observation is that ordinary feed-forward neural networks can perform better than
convolutional ones both in accuracy and efficiency.

“Integrating Factorization Ranked Features in MCTS: An Experimental Study”
authored by Chenjun Xiao and Martin Müller investigates the problem of integrating
feature knowledge learned by the factorization Bradley–Terry model in Monte Carlo
tree search (MCTS). The open source Go program Fuego is used as the test platform.
Experimental results show that the FBT knowledge is useful in improving the per-
formance of Fuego.

“Nested Rollout Policy Adaptation with Selective Policies,” by Tristan Cazenave,
discusses nested rollout policy adaptation (NRPA). It is a Monte Carlo search algo-
rithm that has found record-breaking solutions for puzzles and optimization problems.
It learns a playout policy online that dynamically adapts the playouts to the problem at
hand using more selectivity in the playouts. The idea is applied to three different
domains: Bus regulation, SameGame, and weak Schur numbers. For each of these
problems, selective policies improve NRPA.

“A Rollout-Based Search Algorithm Unifying MCTS and Alpha-Beta” by Hendrik
Baier integrates MCTS and minimax tightly into one rollout-based hybrid search
algorithm, MCTS-ab. The hybrid is able to execute two types of rollouts: MCTS
rollouts and alpha-beta rollouts. During the search, all nodes accumulate both MCTS
value estimates as well as alpha-beta value bounds. The two types of information are
combined in a given tree node whenever alpha-beta completes a deepening iteration
rooted in that node by increasing the MCTS value estimates for the best move found by
alpha-beta. A single parameter, the probability of executing MCTS rollouts vs.
alpha-beta rollouts, makes it possible for the hybrid to subsume both MCTS as well as
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alpha-beta search as extreme cases, while allowing for a spectrum of new search
algorithms in between. Preliminary results in the game of Breakthrough show that the
proposed hybrid outperforms its special cases of alpha-beta and MCTS.

“Learning from the Memory of Atari 2600,” written by Jakub Sygnowski and
Henryk Michalewski, describes the training of neural networks to play the games
Bowling, Breakout, and Seaquest using information stored in the memory of a video
game console Atari 2600. Four models of neural networks are considered that differ in
size and architecture: two networks that use only information contained in the RAM
and two mixed networks that use both information in the RAM and information from
the screen. In all games the RAM agents are on a par with the benchmark screen-only
agent. In the case of Seaquest, the trained RAM-only agents behave even better than
the benchmark agent. Mixing screen and RAM does not lead to an improved perfor-
mance compared with screen-only and RAM-only agents.

“Clustering-Based Online Player Modeling,” a joint collaboration by Jason M.
Bindewald, Gilbert L. Peterson, and Michael E. Miller, presents a clustering and locally
weighted regression method for modeling and imitating individual players. The algo-
rithm first learns a generic player cluster model that is updated online to capture an
individual’s game-play tendencies. The models can then be used to play the game or
for analysis to identify how different players react to separate aspects of game states.
The method is demonstrated on a tablet-based trajectory generation game called Space
Navigator.

“AI Wolf Contest — Development of Game AI using Collective Intelligence,” a
joint effort by Fujio Toriumi, Hirotaka Osawa, Michimasa Inaba, Daisuke Katagami,
Kosuke Shinoda, and Hitoshi Matsubara, introduces a platform to develop a
game-playing AI for a Werewolf competition. First, the paper discusses the essential
factors in Werewolf with reference to other studies. Next, a platform for an AI game
competition is developed that uses simplified rules to support the development of AIs
that can play Werewolf. The paper reports the process and analysis of the results of the
competition.

“Semantic Classification of Utterances in a Language-Driven Game,” written by
Kellen Gillespie, Michael W. Floyd, Matthew Molineaux, Swaroop S. Vattam, and
David W. Aha, describes a goal reasoning agent architecture that allows an agent to
classify natural language utterances, hypothesize about humans’ actions, and recognize
their plans and goals. The paper focuses on one module of the architecture, the natural
language classifier, and demonstrates its use in a multiplayer tabletop social deception
game, One Night Ultimate Werewolf. The results indicate that the system can obtain
reasonable performance even when the utterances are unstructured, deceptive, or
ambiguous.

Preface VII



GIGA Workshop

“Optimizing Propositional Networks” authored by Chiara F. Sironi and Mark H.M.
Winands analyzes the performance of a Propositional Network (PropNet)-based rea-
soner for interpreting the game rules, written in the Game Description Language
(GDL). The paper evaluates four different optimizations for the PropNet structure that
can help further increase its reasoning speed in terms of visited game states per second.

“Grounding GDL Game Descriptions” by Stephan Schiffel discusses grounding
game descriptions using a state-of-the art answer set programming system as a viable
alternative to the GDL specific approach implemented in the GGP-Base framework.
The presented system is able to handle more games and is typically faster despite the
overhead of transforming GDL into a different format and starting and communicating
with a separate process. Furthermore, this grounding of a game description is
well-founded theoretically by the transformation into answer set programs. It allows
one to optimize the descriptions further without changing their semantics.

“A General Approach of Game Description Decomposition for General Game
Playing,” a joint effort by Aline Hufschmitt, Jean-Noël Vittaut, and Jean Méhat, pre-
sents a general approach for the decomposition of games described in GDL. In the field
of general game playing, the exploration of games described in GDL can be signifi-
cantly sped up by the decomposition of the problem in subproblems analyzed sepa-
rately. The discussed program can decompose game descriptions with any number of
players while addressing the problem of joint moves. This approach is used to identify
perfectly separable subgames but can also decompose serial games composed of two
subgames and games with compound moves while avoiding reliance on syntactic
elements that can be eliminated by simply rewriting the GDL rules. The program has
been tested on 40 games, compound or not. It decomposes 32 of them successfully in
less than five seconds.

These proceedings would not have been produced without the help of many persons.
In particular, we would like to mention the authors and reviewers for their
help. Moreover, the organizers of IJCAI 2016 contributed substantially by bringing the
researchers together.

January 2017 Tristan Cazenave
Mark H.M. Winands

Stefan Edelkamp
Stephan Schiffel

Michael Thielscher
Julian Togelius
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NeuroHex: A Deep Q-learning Hex Agent

Kenny Young(B), Gautham Vasan, and Ryan Hayward

Department of Computing Science, University of Alberta, Edmonton, Canada
kjyoung@ualberta.ca

Abstract. DeepMind’s recent spectacular success in using deep con-
volutional neural nets and machine learning to build superhuman level
agents—e.g. for Atari games via deep Q-learning and for the game of Go
via other deep Reinforcement Learning methods—raises many questions,
including to what extent these methods will succeed in other domains.
In this paper we consider DQL for the game of Hex: after supervised ini-
tializing, we use self-play to train NeuroHex, an 11-layer convolutional
neural network that plays Hex on the 13× 13 board. Hex is the classic
two-player alternate-turn stone placement game played on a rhombus
of hexagonal cells in which the winner is whomever connects their two
opposing sides. Despite the large action and state space, our system
trains a Q-network capable of strong play with no search. After two
weeks of Q-learning, NeuroHex achieves respective win-rates of 20.4%
as first player and 2.1% as second player against a 1-s/move version of
MoHex, the current ICGA Olympiad Hex champion. Our data suggests
further improvement might be possible with more training time.

1 Motivation, Introduction, Background

1.1 Motivation

DeepMind’s recent spectacular success in using deep convolutional neural nets
and machine learning to build superhuman level agents—e.g. for Atari games via
deep Q-learning and for the game of Go via other deep Reinforcement Learning
methods—raises many questions, including to what extent these methods will
succeed in other domains. Motivated by this success, we explore whether DQL
can work to build a strong network for the game of Hex.

1.2 The Game of Hex

Hex is the classic two-player connection game played on an n × n rhombus of
hexagonal cells. Each player is assigned two opposite sides of the board and a set
of colored stones; in alternating turns, each player puts one of their stones on an
empty cell; the winner is whomever joins their two sides with a contiguous chain
of their stones. Draws are not possible (at most one player can have a winning
chain, and if the game ends with the board full, then exactly one player will
have such a chain), and for each n × n board there exists a winning strategy for

c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-57969-6 1



4 K. Young et al.

the 1st player [7]. Solving—finding the win/loss value—arbitrary Hex positions
is P-Space complete [11].

Despite its simple rules, Hex has deep tactics and strategy. Hex has served as
a test bed for algorithms in artificial intelligence since Shannon and E.F. Moore
built a resistance network to play the game [12]. Computers have solved all 9× 9
1-move openings and two 10× 10 1-move openings, and 11× 11 and 13× 13 Hex
are games of the International Computer Games Association’s annual Computer
Olympiad [8].

In this paper we consider Hex on the 13× 13 board (Fig. 1).

(a) A Hex game in progress. Black
wants to join top and bottom, White
wants to join left and right.

(b) A finished Hex game. Black wins.

Fig. 1. The game of Hex.

1.3 Related Work

The two works that inspire this paper are [10,13], both from Google DeepMind.
[10] introduces Deep Q-learning with Experience Replay. Q-learning is a rein-

forcement learning (RL) algorithm that learns a mapping from states to action
values by backing up action value estimates from subsequent states to improve
those in previous states. In Deep Q-learning the mapping from states to action
values is learned by a Deep Neural network. Experience replay extends standard
Q-learning by storing agent experiences in a memory buffer and sampling from
these experiences every time-step to perform updates. This algorithm achieved
superhuman performance on several classic Atari games using only raw visual
input.

[13] introduces AlphaGo, a Go playing program that combines Monte Carlo
tree search with convolutional neural networks: one guides the search (policy
network), another evaluates position quality (value network). Deep reinforce-
ment learning (RL) is used to train both the value and policy networks, which
each take a representation of the gamestate as input. The policy network out-
puts a probability distribution over available moves indicating the likelihood of
choosing each move. The value network outputs a single scalar value estimating
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V (S) = P (win|S)−P (loss|S), the expected win probability minus the expected
loss probability for the current boardstate S. Before applying RL, AlphaGo’s net-
work training begins with supervised mentoring: the policy network is trained
to replicate moves from a database of human games. Then the policy network
is trained by playing full games against past versions of their network, followed
by increasing the probability of moves played by the winner and decreasing the
probability of moves played by the loser. Finally the value network is trained
by playing full games from various positions using the trained policy network,
and performing a gradient descent update based on the observed game outcome.
Temporal difference (TD) methods—which update value estimates for previous
states based on the systems own evaluation of subsequent states, rather than
waiting for the true outcome—are not used.

An early example of applying RL with a neural network to games is TD-
gammon [15]. There a network trained with TD methods to approximate state
values achieved superhuman play. Recent advances in deep learning have opened
the doors to apply such methods to more games.

1.4 Overview of this Work

In this work we explore the application of Deep Q-learning with Experience
Replay, introduced in [10], to Hex. There are several challenges involved in
applying this method, so successful with Atari, to Hex. One challenge is that
there are fewer available actions in Atari than in Hex (e.g. there are 169 possible
initial moves in 13 × 13 Hex). Since Q-learning performs a maximization over all
available actions, this large number might cause the noise in estimation to over-
whelm the useful signal, resulting in catastrophic maximization bias. However in
our work we found the use of a convolutional neural network—which by design
learns features that generalize over spatial location—achieved good results.

Another challenge is that the reward signal in Hex occurs only at the end of a
game, so (with respect to move actions) is infrequent, meaning that most updates
are based only on network evaluations without immediate win/loss feedback.
The question is whether the learning process will allow this end-of-game reward
information to propagate back to the middle and early game. To address this
challenge, we use supervised mentoring, training the network first to replicate
the action values produced by a heuristic over a database of positions. Such
training is faster than RL, and allows the middle and early game updates to be
meaningful at the start of Q-learning, without having to rely on end-of-game
reward propagating back from the endgame. As with AlphaGo [13], we apply
this heuristic only to initialize the network: the reward in our Q-learning is based
only on the outcome of the game being played.

The main advantage of using a TD method such as Q-learning over training
based only on final game outcomes, as was done with AlphaGo, is data efficiency.
Making use of subsequent evaluations by our network allows the system to deter-
mine which specific actions are better or worse than expected based on previous
training by observing where there is a sudden rise or fall in evaluation. A system
that uses only the final outcome can only know that the set of moves made by
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the winner should be encouraged and those made by the loser discouraged, even
though many of the individual moves made by the winner may be bad and many
of the individual moves made by the loser may be good. We believe this differ-
ence is part of what allows us to obtain promising results using less computing
power than AlphaGo.

1.5 Reinforcement Learning

Reinforcement learning is a process that learns from actions that lead to a goal.
An agent learns from the environment and makes decisions. Everything that the
agent can interact with is called the environment. The agent and environment
interact continually: the agent selecting actions and the environment responding
to those actions and presenting new situations to the agent. The environment
also reports rewards: numerical/scalar values that the agent tries to maximize
over time. A complete specification of an environment defines a task, which is
one instance of the reinforcement learning problem (Fig. 2).

Fig. 2. The agent-environment interaction in reinforcement learning.

The agent and environment interact at each discrete time step (t = 0, 1, 2,
3...). At each time step the agent receives some representation of the environ-
ment’s state, st ε S, where S is the set of possible states, and on that basis
selects an action, at ε At, where At is the set of actions available in state st.
One time step later, in part as a consequence of its action, the agent receives a
numerical reward, rt+1 ε R, and finds itself in a new state st+1.

The purpose or goal of the agent is formalized in terms of a special reward
signal passing from the environment to the agent. At each time step, the reward
is a scalar, rt ε R. Informally, the agent’s goal is to maximize the total amount of
reward it receives. This means maximizing not immediate reward, but cumulative
reward in the long run. The field of reinforcement learning is primarily the study
of methods for tackling this challenge.

A RL agent chooses actions according to a policy π(a|s) which is a probability
distribution over all possible actions for the current state. The policy may be
deterministic or stochastic. For a given policy we define the value of a state vπ(S)
as the expectation value of cumulative reward from state S if we follow π.
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vπ(S) = Eπ(
∞∑

t=1

γt−1rt|s0 = S)

where γ is a discount factor indicating how much more to credit immediate
reward than long term reward; this is generally necessary to ensure reward is
finite if the agent-environment interaction continues indefinitely, however it may
be omitted if the interaction ends in bounded time, for example in a game of Hex.
For a given problem we define the optimal policy π∗ (not necessarily unique)
as that which produces the highest value in every state. We then denote this
highest achievable value as v∗(S). Note that neither vπ(S) or v∗(S) are tractable
to compute in general, however it is the task of a wide variety of RL algorithms
to estimate them from the agent’s experience.

Similarly we can define for any policy the action value of each state action
pair qπ(S,A) which, analogous to vπ(S), is defined as the expectation value of
cumulative reward from state S if we take action A and follow π after that.
Similarly we can define q∗(S,A) as qπ∗(S,A). Notice that choosing the action
with the highest q∗(S,A) in each state is equivalent to following the optimal
policy π∗.

See [14] for excellent coverage of these topics and many others pertaining to RL.

1.6 Deep Q-learning

Q-learning is based on the following recursive expression, called a Bellman equa-
tion for q∗(S,A).

q∗(st, at) = E(rt+1 + γmax
a

q∗(st+1, a)|st, at)

Note that this expression can be derived from the definition of q∗(st, at).
From this expression we formulate an update rule which allows us to iteratively
update an estimate of q∗(S,A), typically written Q∗(S,A) or simply Q(S,A)
from the agent’s stream of experience as follows:

Q(st, at)
α← rt+1 + γmax

a
Q(st+1, a)

where in the tabular case (all state action pairs estimated independently)
“ α←” would represent moving the left-hand-side value toward the right-hand-
side value by some step size α fraction of the total difference, in the function
approximation case (for example using a neural network) we use it to represent
a gradient descent step on the left value decreasing (for example) the squared
difference between them. Since a maximization is required, if the network for
Q were formulated as a map directly from state-action pairs to values, it would
be necessary to perform one pass through the network for each action in each
timestep. Because this would be terribly inefficient (particularly in the case of
Hex which has up to 169 possible actions) and also because action values for a
given state are highly correlated, we instead follow [10] and use a network that
outputs values for all actions in one pass.
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Note that since we take the maximum over the actions in each state, it is
not necessary to actually follow the optimal policy to learn the optimal action
values, though we do need to have some probability to take each action in the
optimal policy. If the overlap with the policy followed and the optimal policy is
greater we will generally learn faster. Usually the policy used is called epsilon-
greedy which takes the action with the highest current Q(st, at) estimate most
of the time but chooses an action at random some fraction of the time. This
method of exploration is far from ideal and improving on it is an interesting
area of research in modern RL.

Having learned an approximation of the optimal action values, at test time we
can simply pick the highest estimated action value in each state, and hopefully
in doing so follow a policy that is in some sense close to optimal.

2 Method

2.1 Problem Structure

We use the convention that a win is worth a reward of +1 and a loss is worth
−1. All moves that do not end the game are worth 0. We are in the episodic case,
meaning that we wish to maximize our total reward over an episode (i.e. we want
to win and not lose), hence we use no discounting (γ = 1). Note that the ground
truth q∗(S,A) value is either 1 or −1 for every possible state-action pair (the
game is deterministic and no draws are possible, hence assuming perfect play one
player is certain to lose and the other is certain to win). The network’s estimated
q∗(S,A) value Q(S)[A] then has the interpretation of subjective probability that
a particular move is a win, minus the subjective probability that it is a loss
(roughly speaking Q(S)[A] = P (win|S,A) − P (loss|S,A)). We seek to predict
the true value of q∗(S,A) as accurately as possible over the states encountered
in ordinary play, and in doing so we hope to achieve strong play at test time
by following the policy which takes action argmax

a
Q(s)[a], i.e. the move with

highest estimated win probability, in each state.

2.2 State Representation

The state of the Hex board is encoded as a 3 dimensional array with 2 spa-
tial dimensions and 6 channels as follows: white stone present; black stone
present; white stone group connected to left edge; white stone group connected to
right edge; black stone group connected to top edge; black stone group connected
to bottom edge.

In addition to the 13× 13 Hex board, the input includes 2 cells of padding
on each side which are connected to the corresponding edge by default and
belong to the player who is trying to connect to that edge. This padding serves
a dual purpose of telling the network where the edges are located and allowing
both 3× 3 and 5× 5 filters to be placed directly on the board edge without
going out of bounds. We note that AlphaGo used a far more feature rich input
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representation including a good deal of tactical information specific to the game
of Go. Augmenting our input representation with additional information of this
kind for Hex could be an interesting area of future investigation. Our input
format is visualized in Fig. 3.

Fig. 3. A visualization of the board representation fed to NeuroHex. O is white, @ is
black, red is north or east edge connected depending on the color of the associated
stone, similarly green is south or west edge connected. Note that though the board is
actually 13× 13 the input size is 17× 17 to include 2 layers of padding to represent the
board edge and allow placement of 5× 5 filters along it. Cells in the corners marked
with # are uniquely colored both white and black from the perspective of the network.
(Color figure online)

2.3 Model

We use the Theano library [4,6] to build and train our network. Our network
architecture is inspired by that used by Google DeepMind for AlphaGo’s policy
network [13]. Our network consists of 10 convolutional layers followed by one
fully connected output layer. The AlphaGo architecture was fully convolutional,
with no fully connected layers at all in their policy network, although the final
layer uses a 1 × 1 convolution. We however decided to employ one fully connected
layer, as we suspect that this architecture will work better for a game in which a
global property (i.e., in Hex, have you connected your two sides?) matters more
than the sum of many local properties (i.e., in Go, which local battles have you
won?). For future work, it would of interest to explore the effect of the final fully
connected layer in our architecture (Fig. 4).

Filters used are hexagonal rather than square to better capture the different
notion of locality in the game of Hex. Hexagonal filters were produced sim-
ply by zeroing out appropriate elements of standard square filters and applying
Theano’s standard convolution operation (see Fig. 5). Each convolutional layer
has a total of 128 filters which consist of a mixture of diameter 3 and diameter 5
hexagons, all outputs use stride 1 and are 0 padded up to the size of the original
input. The output of each convolutional layer is simply the concatenation of the
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Fig. 4. Diagram showing our network layout: D3 indicates number of diameter 3 filters,
D5 indicates number of diameter 5 filters in the layers shown.

padded diameter 5 and diameter 3 outputs. All activation function are Rectified
Linear Units (ReLU) with the exception of the output which uses 1 − 2σ(x) (a
sigmoid function) in order to obtain the correct range of possible action values.
The output of the network is a vector of action values corresponding to each of
the board locations. Unplayable moves (occupied cells) are still evaluated by the
network but simply ignored where relevant since they are trivially pruned.

Fig. 5. Creating hexagonal filters from square filters: smaller dots are effectively ignored
by fixing their weight to zero.

2.4 Position Database

While it would be possible to train the network purely by Q-learning from self-
play starting from the empty board every game, we instead generated a database
of starting positions from 10,000 games played by a noisy version of a strong
Hex playing program based on alpha-beta search called Wolve [2]. To generate
this database each game was started with a random move and each subsequent
move was chosen by a softmax over Wolve’s move evaluations to add additional
variability. These positions were used for two separate purposes. First they were
used in mentoring (supervised learning to provide a reasonable initialization of
the network before Q-learning) which is described in the section below. Second to
randomly draw a starting position for each episode of self-play by the network.
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This second usage was meant to ensure that the network experiences a wide
variety of plausible game positions during training, without going through the
potentially arduous process of finding this variety by random exploration. In the
future it could be interesting to see how important these two things are to the
success of the algorithm.

2.5 Mentoring

Before beginning Q-learning, the network was trained to replicate (by stochastic
gradient descent on the mean squared error) the action values produced by a
variant of a common Hex heuristic based on electrical resistance [1], over the
position database discussed in the previous section. The idea of the heuristic
is to place a voltage drop across the two edges a player is trying to connect,
then take the players own cells to be perfect conductors, opponent cells to be
perfect insulators, and empty cells to be finite resistors. The usual version of
the heuristic then computes a score (an arbitrary positive real number with no
statistical interpretation) of the position as the ratio of current traveling across
the board for each player. Because we wanted instead to generate heuristic action
values between −1 and 1 for each move, it was necessary to modify this heuristic.
We did this by computing estimates of the current across the board C ′

1(a) and
C ′

2(a) for the player to move and their opponent respectively following the player
to move playing into cell a (the true value could have been used by playing each
move and recomputing the current, but we use a simple estimate based on the
current through each cell to save time). The action value of a cell was then taken
to be:

Q(a) =

{
1 − C ′

2(a)/C ′
1(a), if C ′

1(a) > C ′
2(a)

C ′
1(a)/C ′

2(a) − 1, if C ′
2(a) > C ′

1(a)

In any case the details here are not terrible important and similar results could
have likely been obtained with a simpler heuristic. The important thing is that
the heuristic supervised pre-training gives the network some rough initial notion
that the goal of the game is to connect the two sides. This serves the primary
purpose of skipping the potentially very long period of training time where most
updates are meaningless since the reward signal is only available at the end of an
episode and every other update is mostly just backing up randomly initialized
weights. It also presumably gives the network an initial set of filters which have
some value in reasoning about the game. Note that the final trained network is
much stronger than this initialization heuristic.

2.6 Q-learning Algorithm

We use Deep Q-learning with experience replay in a manner similar to Google
DeepMind’s Atari learning program [10]. Experience replay means that instead
of simply performing one update at a time based on the last experience, we save
a large set of the most recent experiences (in our case 100,000), and perform a
random batch update (batch size 64) drawn from that set. This has a number
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of benefits including better data efficiency, since each experience is sampled
many times and each update uses many experiences; and less correlation among
sequential updates. We use RMSProp [16] as our gradient descent method.

One notable difference between our method and [10] is in the computation of
the target value for each Q-update. Since in the Atari environment they have an
agent interacting with an environment (an Atari game) rather than an adversary
they use the update rule Q(st, at)

α← rt+1+γmax
a

Q(st+1, a), where again we use
α← to indicate the network output on the left is moved toward the target on the
right by a gradient descent update to reduce the squared difference. Here γ is a
discount factor between 0 and 1 indicating how much we care about immediate
reward vs. long-term reward.

In our case the agent interacts with an adversary who chooses the action
taken in every second state, we use the following gradient descent update rule:
Q(st, at)

α← rt+1 − max
a

Q(st+1, a). Note that we take the value to always be
given from the perspective of the player to move. Thus the given update rule
corresponds to stepping the value of the chosen move toward the negation of the
value of the opponents next state (plus a reward, nonzero in this case only if the
action ends the game). This update rule works because with the way our reward
is defined the game is zero-sum, thus the value of a state to our opponent must
be precisely the negation of the value of that state to us. Also in our case we
are not concerned with how many moves it takes to win and we suspect using a
discount factor would only serve to muddy the reward signal so we set γ = 1.

Our network is trained only to play as white, to play as black we simply
transform the state into an equivalent one with white to play by transposing
the board and swapping the role of the colors. We did it this way so that the
network would have less to learn and could make better use of its capacity.
An alternative scheme like outputting moves for both white and black in each
state seems wasteful as playing as either color is functionally the same (ignoring
conventional choices of who plays first). It is however an interesting question
whether training the network to pick moves for each color could provide some
useful regularization.

Our Q-learning algorithm is shown in Algorithm1. Note that we include
some forms of data augmentation in the form of randomly flipping initial states
to ones that are game theoretically equivalent by symmetry, as well as randomly
choosing who is to move first for the initial state (irrespective of the true player
to move for a given position). The latter augmentation will result in some sig-
nificantly imbalanced positions since each move can be crucial in Hex and losing
a move will generally be devastating. However since our player is starting off
with very little knowledge of the game, having these imbalanced positions where
one player has the opportunity to exploit serious weakness presumably allows
the network to make early progress in identifying simple strategies. A form of
curriculum learning where these easier positions are trained on first followed by
more balanced positions later could be useful, but we did not investigate this
here. We also flip the state resulting from each move to an equivalent state with
50% probability, a form of game specific regularization to capture a symmetry
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of the game and help smooth out any orientation specific noise generated in
training.

initialize replay memory M , Q-network Q, and state set D
for desired number of games do

s = position drawn from D
randomly choose who moves first
randomly flip s with 50% probability
while game is not over do

a = epsilon greedy policy(s, Q)
snext = s.play(a)
if game is over then

r=1
else

r=0
end
randomly flip snext with 50% probability
M .add entry((s,a,r,snext))
(st,at,rt+1,st+1) = M .sample batch()
targett = rt+1 −max

a
Q(st+1)[a]

Perform gradient descent step on Q to reduce (Q(st)[at] − targett)
2

s = s.play(a)
end

end
Algorithm 1: Our Deep Q-learning algorithm for Hex. epsilon greedy
policy(s, Q) picks the action with the highest Q value in s 90% of the
time and 10% of the time takes a random action to facilitate exploration.
M .sample batch() randomly draws a mini-batch from the replay memory. Note
that in two places we flip states (rotate the board 180◦) at random to capture
the symmetry of the game and mitigate any orientation bias in the starting
positions.

3 Results

To measure the effectiveness of our approach, we measure NeuroHex’s playing
strength, rate of learning, and stability of learning. Our results are summarized
in Figs. 6, 9, and 10, respectively.

Figure 9 shows the average magnitude of maximal action value output by the
network. Figure 10 shows the average cost for each Q-update performed during
training as a function of episode number. Both of these are internal measures,
indicating the reasonable convergence and stability of the training procedure;
they do not however say anything about the success of the process in terms of
actually producing a strong player. After an initial period of rapid improvement,
visible in each plot, learning appears to become slower. Interestingly the cost plot
seems to show a step-wise pattern, with repeated plateaus followed by sudden
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first move MoHex sec/move NeuroHex black NeuroHex white

unrestricted 1 .20 .02

all 169 openings 1 .11 .05

all 169 openings 3 .09 .02

all 169 openings 9 .07 .01

all 169 openings 30 .00 .00

Fig. 6. NeuroHex vs. MoHex win rates. Black is 1st-player. The unrestricted win-rates
are over 1000 games, the others are over 169 games.

drops. This is likely indicative of the effect of random exploration, the network
converges to a set of evaluations that are locally stable, until it manages to
stumble upon, through random moves or simple the right sequence of random
batch updates, some key feature that allows it to make further improvement.
Training of the final network discussed here proceeded for around 60,000 episodes
on a GTX 970 requiring a wall clock time of roughly 2 weeks. Note that there is
no clear indication in the included plots that further improvement is not possible,
it is simply a matter of limited time and diminishing returns.

We evaluate NeuroHex by testing against the Monte-Carlo tree search player
MoHex [3,9], currently the world’s strongest hexbot. See Fig. 6. Four sample
games are shown in Figs. 7 and 8. On board sizes up to at least 13 × 13 there
is a significant first-player advantage. To mitigate this, games are commonly
played with a “swap rule” whereby after the first player moves the second player
can elect either to swap places with the first player by taking that move and
color or to continue play normally. Here, we mitigate this first-player advantage
by running two kinds of tournaments: in one, in each game the first move is
unrestricted; in the other, we have rounds of 169 games, where the 169 first
moves cover all the moves of the board. As expected, the all-openings win-
rates lie between the unrestricted 1st-player and 2nd-player win-rates. To test
how win-rate varies with MoHex move search time, we ran the all-openings
experiment with 1 s, 3 s, 9 s, 30 s times.
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Fig. 7. Example wins for NeuroHex over MoHex.
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Fig. 8. Example wins for MoHex over NeuroHex.

Fig. 9. Running mean (over 200 episodes) of the magnitude (absolute value) of the
value (max over all action values from that position) for positions encountered in
training. For each position, its ground truth value is either −1 or 1, so this graph
indicates the network’s confidence in its evaluation of positions that it encounters in
training.

MoHex is a highly optimized C++ program. Also, in addition to Monte Carlo
tree search, it uses many theorems for move pruning and early win detection. So
the fact that NeuroHex, with no search, achieves a non-zero success rate against
MoHex, even when MoHex plays first, is remarkable.

By comparison, AlphaGo tested their policy network against the strong Go
program Pachi [5] and achieved an 85% win-rate. In this test Pachi was allowed
100,000 simulations, which is comparable to MoHex given 30 s, against which we
won no games. This comparison holds limited meaning since the smaller board—
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Fig. 10. Running mean (over 200 episodes) of average cost of updates in Algorithm 1:
squared difference between current Q-value and target (max Q-value of next position).
So this graph indicates the rate at which the network is learning.

and aggressive move pruning which is possible in Hex, unlike in Go—enhances
the utility of each simulation. Nonetheless it is fair to say NeuroHex has not yet
reached a comparable level to the AlphaGo policy network. It remains to be seen
how much improvement is possible with further training, and to what extend
our learned Q-value network can be used to improve a search based player.

4 Discussion and Conclusion

The DeepMind authors showed that Deep RL based on final outcomes can be
used to build a superhuman Gobot; we have shown that Q-learning can be
used to build a strong Hexbot. Go and Hex have many similarities—two-player
alternate turn game on a planar board in which connectivity is a key feature—
and we expect that our methods will apply to Go and many other similar games.

Before our work we wondered whether the large action spaces that arise in
Hex would result in the temporal difference updates of Q-learning being over-
whelmed by noise. We also wondered whether the assignment of correct credit
for actions would be feasible in light of the paucity of rewards among the large
number of states. But the win-rate of NeuroHex against the expert-level player
MoHex after training only two weeks suggests that the generalization ability
of convolutional neural networks together with the use of supervised mentor-
ing is sufficient to overcome these challenges. One property of Hex that might
have contributed to the success of our methods is that—unlike Go—it is an all-
or-nothing game. In particular, Hex has a “sudden death” property: in many
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positions, for most moves, it is easy to learn that those moves lose. In such posi-
tions it is comparatively easy task for the network to learn to distinguish the
few good moves from the many bad ones.

In light of supervised mentoring one could ask to what extent our training
is using the reward signal at all, versus simply back-propagating the heuristic
initialization values. We would like to address this question in the future, for
example by testing the procedure without supervised mentoring, although this
might not be important from the perspective of building a working system. If
the heuristic is good then many of the values should already be close to the true
value they would eventually converge to in Q-learning. Assuming, as is often the
case, that heuristic values near the endgame are better than those near the start,
we will be able to perform meaningful backups without directly using the reward
signal. To the extent the heuristic is incorrect it will eventually be washed out
by the reward signal—the true outcome of the game—although this may take a
long time.

We suspect that our network would show further improvement with further
training, although we have no idea to what extent. We also suspect that incorpo-
rating our network into a player such as MoHex, for example to bias the initial
tree search, would strengthen the player.

5 Future Work

Throughout the paper we have touched on possible directions for further
research. Here are some possibilities: augment the input space with tactical or
strategic features (e.g. in Hex, virtual connections, dead cells and capture pat-
terns); build a search based player using the trained network, or incorporate it
into an existing search player (e.g. MoHex); determine the effectiveness of using
an actor-critic method to train a policy network alongside the Q network to test
the limits of the learning process; find the limits of our approach by training for
a longer period of time; determine whether it is necessary to draw initial posi-
tions from a state database, or to initialize with supervised learning; investigate
how using a fully convolutional neural network compares to the network with
one fully connected layer we used.
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Abstract. The success in learning how to play Go at a professional level
is based on training a deep neural network on a wider selection of human
expert games and raises the question on the availability, the limits, and
the possibilities of this technique for other combinatorial games, espe-
cially when there is a lack of access to a larger body of additional expert
knowledge.

As a step towards this direction, we trained a value network for Tic-
TacToe, providing perfect winning information obtained by retrograde
analysis. Next, we trained a policy network for the SameGame, a chal-
lenging combinatorial puzzle. Here, we discuss the interplay of deep
learning with nested rollout policy adaptation (NRPA), a randomized
algorithm for optimizing the outcome of single-player games.

In both cases we observed that ordinary feed-forward neural networks
can perform better than convolutional ones both in accuracy and effi-
ciency.

1 Introduction

Deep Learning1 is an area of AI research, which has been introduced with the
objective of moving the field closer to its roots: the creation of human-like intel-
ligence. One of its core data structures is a convolutional neural network (CNN).
As in conventional NNs, CNNs are trained with reinforcement learning (back-
propagation and stochastic gradient decent). The major advance in learning
larger NNs are growing resources in computational power, especially in graphics
processing units (GPUs) found on the computer’s graphics card.

Prototypical applications for deep learning are Computer Vision, but also
Language Understanding. In Game Playing, deep learning has made its way to
play real-time strategy games by just looking at the screen and score data [6].
More formally the aim of this reinforcement technique is to learn a policy net-
work, which outputs a probability distribution of the next move to play. Alterna-
tively, in a value network, learning is used to predict the game-theoretical value
in a single network output node, i.e., its expected outcome assuming perfect
play.

1 http://deeplearning.net.

c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-57969-6 2
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As a sign of industrial relevance, Google bought the deep learning specialist
DeepMind. DeepMind’s AlphaGo2 is a Go game playing program that applies a
combination of neural network learning and Monte Carlo tree search. In March
2016, it won 4:1 against Lee Sedol in a match; proving itself to be the first
computer program to ever beat a professional human player in Go [9]. This
achievement is widely considered a landmark result in AI, previously estimated to
become true only in the far future. The program AlphaGo was trained both with
games played by humans and with ones played by earlier versions of AlphaGo. It
is amazing that deep learning of thousands of expert games (in matters of days
of GPU computation time) made the program understand the strategic concepts
and tactics of Go.

AlphaGo learned to match the moves of expert players from recorded histori-
cal games. Once it had reached a certain degree of proficiency, it was trained fur-
ther by playing games against other instances of itself. The input was a random
permutation of expert game positions, made available in a number of Boolean
input matrices of size 19× 19 (some for the occupation and the colors that play,
some for further features like liberty). The output was 19 × 19 matrix as a pre-
dictor for the next move. The convolutional neural network (CNN) that was
trained was a policy network.

Cazenave [3] could reproduce AlphaGo’s results by training a deep neural
network for the same set of expert games on a GPU-lifted PC infrastructure. The
minimized error evaluation was comparable to the one obtained and reported
by DeepMind [9]. The accuracy of finding the correct expert move was 55.56%,
while AlphaGohad success rate of 57.0%.

Collocated to a human top tournament (79th Tata Steels) for the Google
Alpha Chess Classics in Wijk an Zee 20173 an entire tournament was set, where
Alpha-Go-inspired chess engines will try playing close to the humans from whose
games they has been trained, e.g., Anderssen, Pillsbury, Tarrasch, Capablanca,
Tal, Smyslov, Fischer, some of which have not played against each other in real
live.

Following Rojas [7], a neural network is graph representation of a function
with input variables in R

l and output variables in R
k. The internal working is

described through an activation function and a threshold applied at each network
node. The input vector is a number of l features (e.g., in board game the board
itself is often included in the feature vector). In a value network we have k = 1,
while in policy networks we get a probability distribution for the successor set.
Learning is the process of computing weights to the network edges to find a close
approximation of the true network function via the (incremental) change of the
weights through labeled input/output sample pairs. In multi-layer feed-forward
neural networks (MLNN) there are input and output, as well as fully connected
intermediate hidden layers, while for CNNs the input layers are more loosely
connected through a number of planes.

2 https://deepmind.com/alpha-go.html.
3 See de.chessbase.com/post/google-alpha-chess-classic.

https://deepmind.com/alpha-go.html
http://de.chessbase.com/post/google-alpha-chess-classic
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The rest of the paper is structured as follows. First we introduce the concept
learning of games and take TicTacToe as a first case study. We explain the steps
taken to a trained neural network that can be used as an evaluation function to
play the game. By the small problem size, this part of the paper has a tutorial
character to guide the reader through the practical steps needed to construct a
neural network game player. Nonetheless, the learning results are interesting, in
the sense that the CNNs had problems to match the efficiency of MLNNs. Next,
we turn to the SameGame, a single-agent maximization problem. We provide
a state-of-the art NRPA player implementation of the game to compute the
training sets for the neural network. Results of training CNNs and MLNNs are
shown and discussed.

2 Case Study: TicTacToe

We exemplify the learning setup in TicTacToe (Fig. 1), where we construct and
train a value network. The game is a classic puzzle that results in a draw in
optimal play4.

X _ X 1 0 1 1 0 1 0 0 0

_ O _ -> 0 1 0 0 0 0 0 1 0

O _ X 1 0 1 0 0 1 1 0 0

Fig. 1. A TicTacToe position won for the X player, and its representation in form of
input planes.

We used the prominent tensor and optimization framework torch7, which
provides an interactive interface for the programming language LUA5. Tensors
featured by the programming framework are numerical matrices of (potentially)
high dimension. It already offers the support for optimizers like stochastic gra-
dient decent, as well as neural network designs and training. For fast execution
of tensor operations, torch7 supports the export of computation to the graphic
card (GPU) in CUDA6, a GPU programming framework that is semantically
close to and finally links to C. The changes to the LUA code are minimal.

2.1 Automated Generation of Games

We kicked off with generating all 5478 valid TicTacToe positions, and determined
their true game value by applying retrograde analysis, a known technique for con-
structing strong solutions to games. The according code is shown in Fig. 2. All
classified TicTacToe positions are stored in comma separated value (CSV) files.
4 This has lead movies like war games to use it as an example of a game that consumes

unlimited compute power to solve.
5 http://torch.ch/, the Linux installation is simple if the firewall does not block Githup

access.
6 https://developer.nvidia.com/cuda-zone.

http://torch.ch/
https://developer.nvidia.com/cuda-zone
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retrograde()
change = 1
while (change)

change = 0
for each c = 1 .. 5478

if (solved[c] == UNSOLVED)
unpack(c)
succs = successors(moves)
if (moveX())

onesuccwon = 0;
allsuccslost = 1
for each i = 1 .. succs

apply(moves[i],’X’)
onesuccwon |=

(solved[pack()] == WON)
allsuccslost &= (

solved[pack()] == LOST)
apply(moves[i],’_’)

if (succs & onesuccwon)
solved[c] = WON; change = 1

if (succs && allsuccslost)
solved[c] = LOST; change = 1

else
onesucclost = 0;
allsuccswon = 1
for each i = 1 .. succs

apply(moves[i],’O’)
onesucclost |=

(solved[pack()] == LOST)
allsuccswon &=

(solved[pack()] == WON)
apply(moves[i],’_’)

if (succs && onesucclost)
solved[c] = LOST;
change = 1

if (succs && allsuccswon)
solved[c] = WON;
change = 1

for each c = 1 .. 5478
if (solved[c] == UNSOLVED)

solved[c] = DRAW

Fig. 2. Finding the winning sets in TicTacToe.

In one network output file the values for the value network are kept (for a pol-
icy network a suitable policy has to be used). In the other network input file, we
recorded the according 5478 intermediate game positions. For each position, we
took three 3×3 Boolean planes to represent the different, boards, one for the free
cells, one for the X player and one for the O player.

2.2 Defining the Network

Next, we produced the input and output files for the neural network to be trained
and tested. As shown in Fig. 3 we used torch7 for the compilation of entries from
the CSV input to the required binary format.

The NN consists of layers that are either fully connected (MLNN) or convo-
luted (CNN). The according LUA code is shown in Figs. 4 and 5. For CNNs it
consists of a particular layered structure, which is interconnected through the
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local Planes = 3
local csvFile = io.open(’ttt-input.csv’,’r’)
local input = torch.Tensor(5478,nPlanes,3,3)
local nb = 0
local currentnb = 0
for line in csvFile:lines(’*l’) do

nb = nb + 1
currentnb = currentnb + 1
local l = line:split(’,’)
local plane = 1
local x = 1
local y = 1
for key, val in ipairs(l) do

input[currentnb][plane][x][y] = val
y = y + 1
if y == 4 then

y = 1
x = x + 1

end
if x == 4 then

x = 1
plane = plane + 1

end
end
if currentnb == 5478 then

currentnb = 0
nameInputFile = ’ttt-input.dat’
torch.save (nameInputFile, input)

end
if nb == 5478 then

break
end

end
csvFile:close()

Fig. 3. Converting TicTacToe CSV to a tensor file.

require ’nn’
local net = nn.Sequential ()
net:add (nn.Reshape(27))
net:add (nn.Linear(27,512))
net:add (nn.Tanh())
net:add (nn.Linear(512,1))
local nbExamples = 5478
local input = torch.load (’ttt-input.dat’)
local output = torch.load (’ttt-output.dat’)
dataset = {};
function dataset:size() return nbExamples end
for j = 1, dataset:size() do

dataset[j] = {input[j], output[j]};
end
criterion = nn.MSECriterion()
trainer = nn.StochasticGradient(net,criterion)
trainer.maxIteration = 1500
trainer.learningRate = 0.00005
trainer:train(dataset)

Fig. 4. Learning TicTacToe with an MLNN.
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require ’nn’
local nPlanesInput = 3
local net = nn.Sequential ()
local nplanes = 25
net:add (nn.SpatialConvolution

(nPlanesInput, nplanes, 3, 3, 1, 1, 0, 0))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution

(nplanes, nplanes, 2, 2, 1, 1, 1, 1))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution

(nplanes, nplanes, 2, 2, 1, 1, 1, 1))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution

(nplanes, 1, 3, 3, 1, 1, 1, 1))
net:add (nn.ReLU ())
print(net)
net:add (nn.Reshape(1*3*3))
net:add (nn.Linear(9,1))
local nbExamples = 5478
local input = torch.load (’ttt-input.dat’)
local output = torch.load (’ttt-output.dat’)
dataset = {};
function dataset:size() return nbExamples end
for j = 1, dataset:size() do

dataset[j] = {input[j], output[j]};
end
criterion = nn.MSECriterion()
trainer = nn.StochasticGradient(net,criterion)
trainer.maxIteration = 1500
trainer.learningRate = 0.00005
trainer:train(dataset)

Fig. 5. Learning to play TicTacToe with a CNN.

definition of planes in form of tensors. The hidden units were automatically gen-
erated by the tensor dimensions. This was done though defining sub-matrices of
certain sizes and some padding added to the border of the planes. After having
the input planes TI represented as tensors and the output planes represented
as tensors TO (in our case a singular value) there are k − 2 spatial convolutions
connected by the tensors TI = T1, . . . , Tk = TO. The information on the size of
sub-matrices used and on the padding to the matrix was used as follows. All pos-
sible sub-matrices of a matrix for a plane (possibly extended with the padding)
on both sides of the input are generated. The sub-matrices are fully connected
and the matrices themselves.

2.3 Training the Network

Deep learning in CNNs is very similar to learning in classical NNs. The main
exception is an imposed particular network structure and the computational
power to train even larger networks to a small error. For global optimization,
usually stochastic gradient decent is used [1].

Figures 4 and 5 also show the LUA code for training the network. We exper-
imented with an alternative formulation for the optimization process, but while
other NN experts insist on batched learning to be more effective, for us it did
not made much of a difference.
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Fig. 6. Learning results in TicTacToe displaying the training error for the full set with
multi-layer neural nets (MLNN) and convolutional neural nets (CNN).

Figure 6 shows the effect of learning different NNs design given the precom-
puted classification of all valid TicTacToe positions. We see that larger networks
(number of hidden units - HU, number of intermediate planes - PL) yield better
learning. Moreover, CNNs tend to have the smaller number of learning epochs
CNNs compared to MLNNs. However, each optimization step in a CNN is consid-
erably slower than in a MLNN7. While learning MLNNs yields a rather smooth
monotone decreasing curve the learning in a CNN has more irregularities. More-
over, CNNs tend to saturate. Worse, we observe that after reaching some sweet
spot CNNs can even deviate back to very bad solutions.

2.4 Using the Network

A trained value network can be used as an estimator of game positions (usually
called evaluation function) and integrated in other game playing programs. As
TicTacToe is a known draw we are more interested in the average value accuracy
in training vs. test data.

The following small test shows that the network has learned the value of
the game for which we chose 0 for a won game, 50 for draw, and 100 for a lost
game. The value network it can be used as an evaluation function and, thus,
immediately leads to playing engines. In fact, by fixing the class ranges to 25
and 75, we could use the trained net as an optimal predictor of the true winning
classes.

7 All experiments are executed one core of an Intel R© CoreTM i5-2520M CPU @
2.50 GHz × 4. The computer has 8 GB of RAM but all invocations of the algo-
rithm to any problem instance used less than 1 GB of main memory. Moreover,
we had the following software infrastructure. Torch7 with LUA, Operating system:
Ubuntu 14.04 LTS, Linux kernel: 3.13.0-74-generic.
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3 Case Study: SameGame

The SameGame is an exciting interactive game for humans and for computers
played on an n × n (usually, n = 15 and k = 5) board with k colored tiles.
Tiles can be removed, if they form a connected group of l > 1 elements. The
score of a move is (l − 2)2 points. If a group of tiles is removed, others fall
down. If a column becomes empty, others move to the left, so that all non-empty
columns are aligned. Total clearance yields an additional bonus of 1,000 points.
The objective is to maximize the score.

Successor generation and evaluation has to find the tiles that have the same
color. Figure 9 shows a simplified implementation for generating the successors.
We used an explicit stack for building moves. Termination is checked by looking
into each of the 4 directions for a tile of the same color.

3.1 Randomized State-Space Search

As the access to high-quality expert games in many domains is limited, the
research question addressed in this paper is how to apply (deep) learning in
state-space search without the input of human knowledge, where state-space
search is a general term for the exploration of problem domains to search a
solution that optimizes a given cost function [4]. State spaces are generated if
the problem are intrinsically hard, which is often the case in games, due to
the inherent combinatorial structure. The enumeration of state spaces, however,
often suffers from the state-explosion problem, which states that the sizes of the
spaces are exponential in the number of state variables (Fig. 7).

Randomized algorithms often show performance advantages to deterministic
algorithms, as in the randomized test for primality [10,11]. In Roshambo, random
strategies are superior to deterministic ones. Randomization often turns out to
be conceptually simple and, frequently, successful in large state-spaces to find the
needle in-the-haystack. For example, most successful SAT solvers like Lingeling8

rely on randomized search (Fig. 8).
In the domain of single-agent combinatorial games, nested rollout policy

adaptation (NRPA) is a randomized optimization algorithm that has found
new records for several problems [8]. Besides its excellent results in games, it

Predicted Value True Value

95.6280 100
-3.1490 0
50.8897 50
0.6506 0

...
...

Fig. 7. Accuracy of value neural network for TicTacToe.

8 http://fmv.jku.at/lingeling, with parallel implementations Plingeling & Treengeling.

http://fmv.jku.at/lingeling
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Fig. 8. Initial and final position in the SameGame.

legalMoves(m[])
succs = 0;
visited.clear()
if (!moreThanOneMove (tabu))

tabu = blank;
for each i = 1 .. n^2-1

if (color[i] != blank)
if (visited[i] == 0)

buildMove (i, m[succs]);
succs += |m[succs].tiles| > 1

return succs

play (move)
move.sort()
for each i = 0 .. |move.tiles|-1

remove(move.locations[i])
column = 0
for each i = 0 .. n-1

if (color[n*(n-1) + column] == blank)
removeColumn (column);

else
column++;

currentScore += (|move.tiles|-2)^2
+ 1000 * color[n*(n-1)] == blank)

rollout[length++] = move

Fig. 9. Generating the successors and executing a move in the SameGame.

has been effective in the applications, for example in IT logistics for solving
constrained routing problems, or in computational biology for computing and
optimizing multiple sequence alignments. NRPA belongs to the wider class of so-
called Monte Carlo tree search (MCTS) algorithms, where Monte Carlo stands
as an alias for random program execution. The main concept of MCTS is the
playout (or rollout) of positions, with results in turn change the likelihood of the
generation of successors in subsequent trials. Other prominent members in this
class are upper confidence bounds applied to trees (UCT) [5] (that was applied to
in AlphaGo), and nested monte-carlo tree search (NMCTS) that has been used
successfully for combinatorial single-agent games with large branching factor [2].
What makes NRPA different to UCT and NMCTS is the concept of training a
policy through a mapping of encoded moves to probabilities (in NMCTS the
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Nrpa(level)
Solution best
if (level == 0)

best.score = playout(global)
best.rollout = rollout

else
best.score = Init
backup[level] = global
for(i=0..iteration)

Solution r = Nrpa(level - 1)
if (better(r.score,best.score))

best = r
adapt(r.score,r.rollout,backup[level])

global = backup[level]
return best

Fig. 10. Nested rollout policy adaptation.

policy is hidden in the recursive structure of the program’s decision-making,
while in UCT the policy is represented partitioning in the nodes of the top tree
that is stored).

NRPA was introduced in the context of generating a new world record in
Morpion Solitaire. While the algorithm is general and applies to many other
domains, we keep the notation close to games and will talk about boards, roll-
outs, moves. The recursive search procedure is shown in Fig. 10. It requires a
proper initialization value Init and comparison function Better, depending on
whether a maximization or a minimization problem being solved. Different to
UCT and NMCS, in NRPA every playout starts from an empty board. Two
main parameters trade exploitation vs. exploration: the number of levels and
the branching factor iteration of successors in the recursion tree. There is a
training parameter α, usually kept at α = 1. Successor selection refers to prob-
abilities for each move are computed and recorded in a distribution vector. We
implement playout and adapt based on domain-depending successor generation
and move encoding rules, functions terminal, legalMoves, code. The function
code maps the move to an integer that addresses the value in the policy table.
As it is called only during a playout it has access to all other information of the
state that is produced. This way code realizes a mapping of state and move to a
floating-point value.

The implementation for policy adaptation in Fig. 12 records the codes and
the length of the playout in the successor selection Select (Fig. 11). This leads
to the implementation of the generic Playout function (Fig. 13): each time a

Select(board, moves, pol)
for each i .. moves.size

c = board.code(moves[i]);
probaMove[i] = exp(pol[c]);
bestCode[0][board.length][i] = c;

return probaMove

Fig. 11. A fitness selection module.
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Adapt(length, level, p)
for each i = 0 .. length

backup[level][bestCode[level][i]] =
bestCode[level][i] + ALPHA

z = 0
for each j = 0 .. |bestCode[level][i]|

z += exp(pol[bestCode[level][i][j]])
for each j = 0 .. |bestCode[level][i]|

p’[level][bestCode[level][i][j]] -=
ALPHA * exp(p[bestCode[level][i][j])/z

Fig. 12. An implementation of policy adaptation.

Playout(pol)
Board b
while(1)

if (board.terminal())
score = board.score ()
scoreBestRollout[0] = score
lengthBestRollout[0] = board.length
for each k = 0 .. board.length

bestRollout[0][k] = board.rollout[k]
if (Better(score,bestScore))

bestScore = score
bestBoard = board

return score
moves = board.legalMoves(moves)
nbMovesBestRollout[0][board.length] =

moves.size
probaMove = Select(board,moves,pol)
sum = probaMove[0]
for each i = 1 .. |provaMove|

sum += probaMove[i]
r = rand(0,sum)
j = 0
s = probaMove[0]
while (s < r)

s += probaMove[++j]
bestCode[0][board.length] =

bestCode[0][board.length][j]
board.play(moves[j])

Fig. 13. The generic playout function.

new problem instance in form of an initial board is created. With Select the
procedure calls the fitness evaluation.

3.2 Generating the Training Data

As a first step we generate input data for training the CNN using our Monte
Carlo tree search solver. We used the benchmark set of 20 problem instances9

with board sizes n = 15. Each tile has one of 5 colors.
We ran a level-3 iteration-100 NRPA search 30 times. To compare with we

also ran one NRPA(4,100) for each problem. All individual games were recorded,
merged and subsequently split into 33972 partial states, one after each move, The

9 http://www.js-games.de/eng/games/samegame.

http://www.js-games.de/eng/games/samegame
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partial state were stored into an input file. For each partial state the move exe-
cuted was stored into another file. The 33972 partial states were chosen randomly
to avoid a bias in training the network.

3.3 Defining the Network

To specify a policy network for the SameGame the set of input planes were
defined as follows. For each of the 5 colors plus 1 for the blank, we defined an

Table 1. Parameter finding for deep learning in the SameGame using 1000 of 33972
randomly chosen training examples, minimizing the MSE in stochastic gradient decent
according to different learning rates λ.

λ = 0.0005 λ = 0.005 λ = 0.05 λ = 0.5 λ = 0.2

0.1429 0.1548 0.1437 0.2084 0.1567

0.1409 0.1418 0.1414 0.2088 0.1537

0.1404 0.1409 0.1398 0.2088 0.1533

0.1400 0.1408 0.1392 0.2088 0.1531

0.1395 0.1408 0.1388 0.2088 0.1527

0.1391 0.1407 0.1384 0.2088 0.1523

0.1387 0.1407 0.1382 0.2088 0.1521

0.1384 0.1406 0.1380 0.2088 0.1519

0.1382 0.1406 0.1378 0.2088 0.1517

0.1380 0.1406 0.1376 0.2088 0.1515

0.1378 0.1405 0.1375 0.2088 0.1515

0.1376 0.1405 0.1374 0.2088 0.1501

0.1374 0.1405 0.1373 0.2088 0.1457

0.1372 0.1404 0.1371 0.2088 0.1423

0.1370 0.1404 0.1349 0.2088 0.1434

0.1368 0.1404 0.1320 0.2088 0.1416

0.1366 0.1403 0.1291 0.2088 0.1373

0.1365 0.1403 0.1327 0.2088 0.1359

0.1363 0.1403 0.1324 0.2088 0.1353

0.1362 0.1402 0.1325 0.2088 0.1348

0.1361 0.1402 0.1323 0.2088 0.1338

0.1360 0.1402 0.1323 0.2088 0.1333

0.1359 0.1401 0.1322 0.2088 0.1344

0.1358 0.1401 0.1322 0.2088 0.1346

0.1357 0.1401 0.1321 0.2088 0.1352

...
...

...
...

...
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Fig. 14. Learning results in the SameGame displaying the change of the network error
on the full training set of 33972 game positions for multi-layer neural nets (MLNN)
and convolutional neural nets (CNN).

indicator matrix of size 15 × 15 for the board, denoting if a tile is present in a
cell or not. This amounts to 6 planes of size 225, so that we had 1350 binary
input features to the neural network. The output tensor file refers to one binary
plane of size 15×15 representing a board, with the matrix entries denote the cells
affected by the move. What was learned in this policy network is the distribution
values on where to click.

3.4 Training the Network

Table 1 shows the effect of varying the learning parameter for the learning process
on a fraction of all training examples. In Fig. 14 we see the effect of learning
different neural networks given the precomputed randomly perturbed set of all
SameGame training positions. The learning rate was 0.1–0.2 and the first 50–500
iterations of the optimization process are plotted. Again, it seemingly looks like
that MLNNs can perform better in comparison with convolutional structures.
Moreover the convergence was much faster, the largest MLNN took about 5 h
and the smallest about 1.5 h, while the CNN took about 2 days of computational
time on our CPU.

3.5 Using the Network

To validate our solution, we compared the MLNN network output after 1000
learning epochs (having an error of 0.0430463278) with the real output. In the
visualization of Fig. 15 we used the threshold of 0.2 for a bit being set.

We see that more time is needed to reduce the error to a value in which can
be used for playing well.

The subsequent integration of the neural network into the randomized NRPA
engine, however, is simple, as we only need to change the initialization or rollout
functions. There are three main implementation options.
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– The distribution information is used as an initial policy matrix prior to the
search.

– The NN recommendation and the learned policy are alternated by flipping a
coin with probability p.

– The distribution of successors computed by the policy are merged with the
NN recommended ones. If pi and p′

i are the two probabilities for choosing the
i-th of r successors, then the new probability is pi · p′

i/
∑r

k=1 pk · p′
k.

real output
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

predicted output
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 15. Validation of learning result.

4 Conclusion

This paper explains the working of (deep) learning for training value and policy
(neural) networks, to reflect its usage in game playing programs. In both of
our case studies, we excluded human expert knowledge and used accurate and
approximate computer exploration results instead.

Deep learning for TicTacToe is like shooting large bullets on too small ani-
mals, especially given that we have computed exact information on the game
theoretical value for all reachable states beforehand. Nonetheless, we see the
results of the learning process as being insightful. We were able to train the net-
work to eventually learn the exact winning information in TicTacToe, and likely
due to better separation, the wider the hidden layer(s), the better the learning.

Next, we turned to the SameGame, for which we applied a fast randomized
solver. We used it to generate a series of good games (30 for each of the considered
20 instances). We obtained better learning curve with shallow MLNNs, which
also lead to a drastic performance gain (about 20–30 fold speedup) compared to
our CNN designs.

The sparser form of convolutions are often reported to perform better than
ordinary multi-layerd neural networks that have fully connected hidden layers.
The sparser interconnection between the network levels is balanced by a deeper
network. To some extend our results can be interpreted in the sense that good
neural learning does not always has to be deep, but sometimes wide and shallow.
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Abstract. Recently, Factorization Bradley-Terry (FBT) model is intro-
duced for fast move prediction in the game of Go. It has been shown
that FBT outperforms the state-of-the-art fast move prediction system
of Latent Factor Ranking (LFR). In this paper, we investigate the prob-
lem of integrating feature knowledge learned by FBT model in Monte
Carlo Tree Search. We use the open source Go program Fuego as the
test platform. Experimental results show that the FBT knowledge is
useful in improving the performance of Fuego.

1 Introduction

The idea of Monte Carlo Tree Search (MCTS) [2] is to online construct a search
tree of game states evaluated by fast Monte Carlo simulations. However in games
with large state space, accurate value estimation by simple simulation cannot
be easily guaranteed given limited search time. The inaccurate estimation can
mislead the growth of the search tree and can severely limit the strength of the
program. Thereby, it is reasonable to incorporate the domain knowledge of the
game to serve as heuristic information that benefits the search.

In Computer Go [10] research, knowledge is usually represented by features,
such as shape patterns and tactical features. A move prediction system applies
machine learning techniques to acquire the feature knowledge from professional
game records or self played games. Selective search algorithm can then focus on
the most promising moves evaluated by such system [1]. For example, [3] proposes
Minorization-Maximization (MM) to learn feature knowledge offline and uses it
to improve random simulation. [7] considers feature knowledge as a prior to initial
statistical values when a new state is added to the search tree. AlphaGo [12]
incorporates supervised learned Deep Convolutional Neural Networks (DCNN)
as part of in-tree policy for move selection, and further improve the network with
reinforcement learning from games of self-play to get a powerful value estimation
function. The integrated system becomes the first program to ever beat the
world’s top Go player.

Recently, [15] introduces Factorization Bradley-Terry (FBT) model to learn
feature knowledge which became the state-of-the-art fast move prediction algo-
rithm. The major innovation of FBT model is to consider the interaction between
different features as part of a probability-based framework, which can be consid-
ered as a combination of two leading approaches: MM [3] and LFR [14]. However,
c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 34–43, 2017.
DOI: 10.1007/978-3-319-57969-6 3
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it is still not clear whether the feature knowledge learned by this model is useful
to improve the strength of the MCTS framework. We investigate this problem
in this paper by integrating FBT based knowledge in the open source program
Fuego [5].

The remaining of this paper is organized as follows: Sect. 2 describes the
idea of FBT model for move prediction in Go. Section 3 discusses how to inte-
grate FBT based knowledge within MCTS framework. Section 4 describes the
feature knowledge and move selection scheme in current Fuego and provides the
experimental results. Section 5 gives a conclusion of this work and discusses the
possible future work.

2 Factorization Bradley-Terry Model for Move Prediction
Problem

We briefly describe how FBT model works for move prediction problem in the
game of Go. In most popular high-speed move prediction systems, each move
is represented as a combination of a group of features. Weights for each feature
are learned from expert game records by supervised learning algorithms, and an
evaluation function based on the weights is defined to rank moves.

Specifically, let S be the set of possible Go positions, Γ (s) be the set of legal
moves in a specific position s ∈ S, and F be the set of features which are used
to describe moves in a given game state. Each move is represented by its set of
active features G ⊆ F . The training set D consists of cases Dj , with each case
representing the possible move choices in one game position sj , and the expert
move is specified as G∗

j .

Dj = { Gi
j | for i = 1, . . . , |Γ (sj)|}

Most high-speed move prediction systems usually differ from the method of
predicting G∗

j from Dj as well as the model of the strength of G. In MM [3], the
strength of a group G is approximated by the sum of weights of all features within
the group. Prediction of G∗

j is formulated as a competition among all possible
groups. A simple probabilistic model named Generalized Bradley-Terry model
[8] defines the probability of each feature group winning a competition. While in
another efficient move prediction algorithm called Latent Factor Ranking (LFR)
[14], the strength of a group is modelled using a Factorization Machine (FM),
which also takes pairwise interactions between features into account besides the
sum of all features’ weights. Prediction of G∗

j is simply formulated as a binary
classification problem, with G∗

j in one class and all other groups in the other.
LFR outperforms MM in terms of move prediction accuracy. But the evalua-
tion function LFR produces does not provide a probability distribution over all
possible moves, which makes it much harder to combine with other kinds of
knowledge.

FBT model takes advantage of both MM and LFR: it considers the interac-
tion between features within a group, and produce the evaluation function in a
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probability-based framework. In FBT, the strength of a group G ⊆ F is defined
in a same way as in LFR

EG =
∑

f∈G
wf +

1
2

∑

f∈G

∑

g∈G,g �=f

〈vf , vg〉

where wf ∈ R is the (estimated) strength, and vf ∈ R
k is the factorized inter-

action vector, of a feature f ∈ F . The interaction strength between two features
f and g is modeled as 〈vf , vg〉 =

∑k
i=1 vf,i ·vg,i, where k is the pre-defined dimen-

sion of the factorization. In Computer Go, setting k = 5 and k = 10 are most
popular [14]. Richer feature sets might require larger k for best performance.
With the definition of EG , FBT then applies the Generalized Bradley-Terry
model for each test case Dj ,

P (Dj) =
exp(EG∗

j
)

∑|Γ (sj)|
i=1 exp(EGi

j
)

Suitable parameters in FBT are estimated by maximizing the likelihood of
the training data, using a Stochastic Gradient Decent (SGD) algorithm. [15] also
provides two techniques to accelerate the training process: an efficient incremen-
tal implementation of gradient update, and an unbiased approximate gradient
estimator. Details of these two techniques as well as the induction of parameter
update formula can be found in [15].

3 Integrating FBT Knowledge in MCTS

As suggested before, a move prediction system can provide useful initial rec-
ommendations of which moves are likely to be the best. Selective search with
proper exploration scheme, such as MCTS, can further improve upon these rec-
ommendations with online simulation information. One favorable property of
FBT model is to produce a probability based evaluation. Intuitively, it is a
probability distribution of which move is going to be selected by a human expert
under a game state. Therefore, it seems very straightforward to incorporate FBT
knowledge as part of exploration, since we should explore more on moves which
are most favored by human experts.

We apply a variant of PUCT [11] formula which is used in AlphaGo [12]
to integrate FBT knowledge in MCTS. The idea of this formula is to explore
moves according to a value that is proportional to the predicted probability but
decays with repeated visits as in original UCT style [9]. When a new game state
s is added to the search tree, we call a pre-trained FBT model to get a predic-
tion PFBT (s, a), which assigns an exploration bonus EFBT (s, a) for each move
a ∈ Γ (s). In order to keep sufficient exploration, we set a lower cut thresh-
old λFBT , where for all a ∈ Γ (s) if PFBT (s, a) < λFBT then simply let
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EFBT (s, a) = λFBT , otherwise EFBT (s, a) = PFBT (s, a). At state s during
in-tree move selection, the algorithm will select the move

a = argmaxa′(Q(s, a′) + cpuctEFBT (s, a′)

√
lg(N(s))

1 + N(s, a′)
) (1)

where Q(s, a) is the accumulated move value estimated by online simulation,
cpuct is an exploration constant, N(s, a) is the number of visit time of move a in
s, and N(s) =

∑
i N(s, i).

4 Experiments

We use the open source program Fuego [5] as our experiment platform to test if
FBT knowledge is helpful for improving MCTS. We first introduce the feature
knowledge in current Fuego system, then introduce the training settlement for
the FBT model and the setup for the experiment, and finally present the results.

4.1 Feature Knowledge for Move Selection in Fuego

Prior Feature Knowledge. The latest Fuego (SVN version 2017) applies fea-
ture knowledge to initialize statistical information when a new state is added to
the search tree. A set of features trained with LFR [14] is used where interaction
dimension is set at k = 10. Since the evaluation LFR produces is a real value
indicating the strength of the move without any probability based interpreta-
tion, Fuego designed a well-tuned formula to transfer the output value to the
prior knowledge for initialization. It adopts a similar method as suggested in [7],
where the prior knowledge contains two parts: Nprior(s, a) and Qprior(s, a). This
indicates that MCTS would perform Nprior(s, a) simulations to achieve an esti-
mate of Qprior(s, a) accuracy. Let VLFR(s, a) be the evaluation of move a ∈ Γ (s),
Vlargest and Vsmallest be the largest and smallest evaluated value respectively.
Fuego uses the following formula to assign Nprior(s, a) and Qprior(s, a),

Nprior(s, a) =

{
cLFR∗|Γ (s)|

SA ∗ VLFR(s, a) if VLFR(s, a) ≥ 0
− cLFR∗|Γ (s)|

SA ∗ VLFR(s, a) if VLFR(s, a) < 0
(2)

Qprior(s, a) =

{
0.5 ∗ (1 + VLFR(s, a)/Vlargest) if VLFR(s, a) ≥ 0
0.5 ∗ (1 − VLFR(s, a)/Vsmallest) if VLFR(s, a) < 0

(3)

where SA =
∑

i |VLFR(s, i)| is the sum of absolute value of each move’s evalu-
ation. When a new game state is added to the search tree, Fuego will call the
method showed above to initialize the state’s statistical information by setting
N(s, a) ← Nprior(s, a) and Q(s, a) ← Qprior(s,a).
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Fig. 1. Distribution of patterns with different size harvested at least 10 times in
different game phases.

Greenpeep Knowledge. Another kind of knowledge Fuego also has as part
of in-tree move selection policy is called Greenpeep Knowledge. It uses a pre-
defined table to get a probability based knowledge Pg(s, a) about each move
a ∈ Γs. Then the knowledge is added as a bias for move selection according to
the PUCT formula [11]. The reason why Fuego does not use LFR knowledge
to replace Greenpeep knowledge might be that LFR cannot produce probability
based evaluation. Details can be found in the Fuego source code base [4].

Move Selection in Fuego. In summary, Fuego adopts the following formula
to select moves during in-tree search,

a = argmaxa′(Q(s, a′) − cg√
Pg(s, a′)

×
√

N(s, a′)
N(s, a′) + 5

) (4)

where cg is a parameter controlling the scale of the Greenpeep knowledge.
Q(s, a′) is initialized according to Eqs. (2) and (3), and further improved with
Monte Carlo simulation and Rapid Action Value Estimation (RAVE). Note that
formula (4) does not have the UCB style exploration term, since the exploration
constant is set to zero in Fuego. The only exploration comes from RAVE. Com-
paring formula (4) with (1), we could consider the FBT knowledge PFBT (s, a)
as a replacement of the Greenpeep knowledge Pg(s, a), but with a different way
to be added as a bias and different decay function.
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Fig. 2. Experimental results: FBT-FuegoNoLFR vs FuegoNoLFR.

4.2 Training Settlement for FBT Model

We train a FBT model with interaction dimension k = 5 using 10000 mas-
ter games download from the public domain at https://badukmovies.com/pro
games. The prediction accuracy of this model is 38.26%. The parameters of the
training algorithm including learning rate and regularization parameters are set
at the same as described in [15]. We also apply the same stopping criteria that
the training process is stopped and the best performing weight set is returned if
the prediction accuracy on a validation set does not increase for three iterations.

The simple features used in this work are listed below. Most features are
the same as suggested in [15]. We only use large pattern as the shape pattern
for this experiment. All patterns are harvested as in [13,14]. Figure 1 shows the
distribution of harvested largest matches for the different pattern sizes in each
game phase. The implementation of the tactical features is part of the Fuego
program [5], details can be found in the Fuego code base [4]. Note that current
Fuego includes the same set of tactical features. But it uses small shape patterns
instead of large patterns for feature knowledge evaluation.

– Pass
– Capture, Extension, Self-atari, Atari Tactical features similar to [3].
– Line and Position (edge distance perpendicular to Line) ranges from

1 to 10.
– Distance to previous move feature values are 2,. . . , 16, ≥17. The distance

is measured by d(δx, δy) = |δx| + |δy| + max{|δx|, |δy|}.
– Distance to second-last move uses the same metric as previous move. The

distance can be 0.

https://badukmovies.com/pro_games
https://badukmovies.com/pro_games
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Fig. 3. Experimental results: FBT-Fuego vs Fuego.

– Fuego Playout Policy. These features correspond to the rules in the playout
policy used in Fuego. Most are simple tactics related to stones with a low
number of liberties and 3× 3 patterns.

– Side Extension. The distance to the closest stones along the sides of the
board.

– Corner Opening Move. Standard opening moves.
– CFG Distance. The distance when contracting all stones in a block to a

single node in a graph [6].
– Shape Patterns. Circular patterns with sizes from 2 to 14. All shape pat-

terns are invariant to rotation, translation and mirroring.

4.3 Setup

Experiments are performed on a 2.4 GHz Intel Xeon CPU with 64 GB memory.
We use the latest Fuego (SVN revision 2017) in the experiment. We call Fuego
without LFR prior knowledge as FuegoNoLFR, Fuego applying formula (1) to
select moves in-tree as FBT-Fuego, and Fuego without LFR but using formula
(1) as FBT-FuegoNoLFR. The lower cut threshold for FBT knowledge is set to
λFBT = 0.001. All other parameters are default as in the original settings of
Fuego.

4.4 Experimental Results

We first compare FBT-FuegoNoLFR with FuegoNoLFR. This experiment is
designed to show the strength of FBT knowledge without any influence from
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Table 1. Running time comparison (specified in seconds) with different simulations
for per move.

Program name 100 1000 3000 6000 10000

FBT-FuegoNoLFR 11.8 192.4 704.1 1014.5 1394.9

FuegoNoLFR 5.1 55.7 148.7 225.2 354.4

FBT-Fuego 23.4 241.1 734.1 912.6 1417.5

Fuego 10.8 168.3 564.2 778.6 1161.2

other kinds of knowledge. We test the performance of FBT-FuegoNoLFR against
FuegoNoLFR with different exploration constants cpuct. After initial experi-
ments, the range explored was cpuct ∈ {2, 2.3, 2.5, 2.7, 3}. In order to investigate
if the FBT knowledge is scaling with the number of simulations per move, Nsim

was tested by setting Nsim ∈ {100, 1000, 3000, 6000, 10000}. Figure 2 shows the
win rate of FBT-FuegoNoLFR against FuegoNoLFR. All data points are aver-
aged over 1000 games. The results show that adding FBT knowledge can dra-
matically improve the performance of Fuego over the baseline without feature
knowledge as prior. FBT-FuegoNoLFR scales well with more simulations per
move. With cpucb = 2 and 10000 simulations per move FBT-FuegoNoLFR can
beat FuegoNoLFR with 81% winning rate.

We then compare FBT-Fuego with full Fuego, in order to investigate if the
FBT knowledge is comparable with current feature knowledge in Fuego and able
to improve the performance in general. In this case, cpuct is tuned over a different
range, cpuct ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. Nsim ∈ {100, 1000, 3000, 6000, 10000},
and all data points are averaged over 1000 games as before. Results are presented
in Fig. 3. FBT-Fuego has worse performance in most settings of cpuct. But it can
be made to work after careful tuning. As suggested in Fig. 3, under the setting
where cpucb = 0.1, FBT-Fuego scales well with the number of simulations per
move, and achieves 62% winning rate against Fuego with 10000 simulations per
move. One possible reason is that the FBT knowledge is not quite comparable
with the LFR knowledge. The moves these two methods favour might be different
in some situations, which makes it very hard to tune a well-tuned system when
adding another knowledge term.

Finally, we show the running time of our methods with different simula-
tions per move in Table 1. FBT-FuegoNoLFR spends much more time than Fue-
goNoLFR, since FuegoNoLFR only uses Greenpeep knowledge for exploration
and thus does not need to compute any feature knowledge. FBT-FuegoNoLFR
spends a little less time than FBT-Fuego, since it does not use feature knowl-
edge to initialize prior knowledge. The speed of FBT-Fuego is a little worse than
Fuego. The time difference is spent on computing large patterns, while Fuego
only uses small shape patterns.



42 C. Xiao and M. Müller

5 Conclusion and Future Work

In this paper, we introduce how to integrate the state-of-the-art fast move pre-
diction algorithm FBT in MCTS. We use the open source program Fuego as
our test platform. Experimental results show that FBT knowledge is useful to
improve the performance of Fuego, without too much sacrifice in efficiency.

Future work includes: 1. try to discover a method to transform FBT knowl-
edge as prior knowledge for initialization. 2. try to apply the FBT knowledge for
improving fast roll-out policy, which has been shown as a very important part
in the state-of-the-art Go program AlphaGo [12].
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Abstract. Monte Carlo Tree Search (MCTS) is a general search algo-
rithm that has improved the state of the art for multiple games and
optimization problems. Nested Rollout Policy Adaptation (NRPA) is an
MCTS variant that has found record-breaking solutions for puzzles and
optimization problems. It learns a playout policy online that dynami-
cally adapts the playouts to the problem at hand. We propose to enhance
NRPA using more selectivity in the playouts. The idea is applied to three
different problems: Bus regulation, SameGame and Weak Schur numbers.
We improve on standard NRPA for all three problems.

1 Introduction

Monte Carlo Tree Search (MCTS) is a state-of-the-art search algorithm that has
greatly improved the level of play in games such as Go [12,13] and Hex [22]. The
principle underlying MCTS is to play random games and to use the statistics on
the moves played during the games so as to find the best moves [25].

MCTS can also be applied to problems other than games [6]. Examples
of non-games applications are Security, Mixed Integer Programming, Traveling
Salesman Problem, Physics Simulations, Function Approximation, Constraint
Problems, Mathematical Expressions, Planning and Scheduling.

Some MCTS algorithms have been tailored to puzzles and optimization prob-
lems. For example Nested Monte Carlo Search (NMCS) [7] gives good results for
multiple optimization problems. NRPA is an improvement of NMCS that learns
a playout policy online [28].

In this paper we improve NRPA adding selectivity in the playouts. We pro-
pose to modify the standard playout policy used by NRPA in order to avoid bad
moves during playouts.

The paper is organized in three remaining sections. Section 2 presents related
works, Sect. 3 details selective policies for different problems and Sect. 4 gives
experimental results.

2 Related Work

NMCS is an algorithm that improves Monte Carlo search with Monte Carlo
search. It has different levels of nested playouts and an important feature of the
c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 44–56, 2017.
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algorithm is that it records the best sequence of moves at each search level. The
algorithm was initially applied to puzzles such as Morpion Solitaire, SameGame
and Sudoku.

A further application of NMCS is the Snake-In-The-Box problem [23]. NMCS
has beaten world records for this problem that has application in coding theory.
The goal of the problem is to find the longest possible path in a high dimensional
hypercube so that nodes in the path never have more than two neighboring nodes
also in the path.

Bruno Bouzy improved NMCS by using playout policies. For example for the
Pancake problem [4] he uses domain specific playout policies so as to beat world
records with an improved NMCS. Another variation on NMCS is Monte-Carlo
Fork Search [2] that branches deep in the playouts. It was successfully applied
to complex cooperative pathfinding problems.

The Weak Schur problem [19] is a problem where informed playout policies
can give much better results than standard policies when used with NMCS [3].
Policy learning has been successfully used for the Traveling Salesman with Time
Windows (TSPTW) in combination with NMCS [27].

An effective combination of nested levels of search and of policy learning has
been proposed with the NRPA algorithm [28]. NRPA holds world records for
Morpion Solitaire and crosswords puzzles. NRPA is given in Algorithm 3. The
principle is to learn weights for the possible actions so as to bias the playouts. The
playout algorithm is given in Algorithm 1. It performs Gibbs sampling, choosing
the actions with a probability proportional to the exponential of their weights.
The weights of the actions are updated at each step of the algorithm so as to
favor moves of the best sequence found so far at each level. The principle of the
adaptation is to add 1.0 to the action of the best sequence and to decrease the
weight of the other possible actions by an amount proportional to the exponential
of their weight. The adaptation algorithm is given in Algorithm 2.

Playout policy adaptation has also been used for games such as Go [20] or
various other games with success [8].

NRPA works by biasing the probability of an action by looking up a weight
associated to the action. An alternative is to make the bias a function of the
current state and the proposed action [26]. An improvement of standard NRPA
is to combine it with beam search yielding Beam NRPA [11].

Stefan Edelkamp and co-workers have applied the NRPA algorithm to mul-
tiple problems. They have optimized the algorithm for the TSPTW problem
[10,14]. Other applications deal with 3D packing with object orientation [16],
the physical traveling salesman problem [17], the multiple sequence alignment
problem [18], logistics [15] or cryptography [21].

3 Selective Policies

The principle underlying selective policies is to modify the legal moves so that
moves that are unlikely to be good are pruned during playouts.
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Algorithm 1. The playout algorithm
playout (state, policy)
sequence ← []
while true do

if state is terminal then
return (score (state), sequence)

end if
z ← 0.0
for m in possible moves for state do

z ← z + exp (k × policy [code(m)])
end for
choose a move with probability proportional to exp(k×policy[code(move)])

z

state ← play (state, move)
sequence ← sequence + move

end while

Algorithm 2. The adapt algorithm
adapt (policy, sequence)
polp ← policy
state ← root
for move in sequence do

polp [code(move)] ← polp [code(move)] + α
z ← 0.0
for m in possible moves for state do

z ← z + exp (policy [code(m)])
end for
for m in possible moves for state do

polp [code(m)] ← polp [code(m)] - α ∗ exp(policy[code(m)])
z

end for
state ← play (state, move)

end for
policy ← polp

Algorithm 3. The NRPA algorithm
NRPA (level, policy)
if level == 0 then

return playout (root, policy)
end if
bestScore ← −∞
for N iterations do

(result,new) ← NRPA(level − 1, policy)
if result ≥ bestScore then

bestScore ← result
seq ← new

end if
policy ← adapt (policy, seq)

end for
return (bestScore, seq)



Nested Rollout Policy Adaptation with Selective Policies 47

This can be done differently for each application of the algorithm. In this
section we describe the move pruning for three problems: the bus regulation
problem, SameGame and the Weak Schur problem.

3.1 Bus Regulation

In the bus regulation problem [9] the bus regulator knows the location of all
the buses of a bus line. At each stop he can decide to make a bus wait before
continuing his route. Waiting at a stop can reduce the overall passengers waiting
time. The score of a simulation is the sum of all the passengers waiting time.
Optimizing a problem is finding a set of bus stopping times that minimizes the
score of the simulation. It is possible to use rules to decide the bus waiting time
given the number of stops before the next bus. Monte Carlo bus regulation with
NMCS has been shown to improve on rule-based regulation.

In this paper we use NRPA to choose the bus waiting times. We compare
the standard policy that can choose a waiting time between 1 and 5 min to a
selective policy that always chooses a waiting time of 1 if there are fewer than δ
stops before the next bus.

An important detail of the NRPA algorithm is the way moves are coded. A
move code for the bus regulation problem takes into account the bus stop, the
time of arrival to the bus stop and the number of minutes to wait before leaving
the stop.

Algorithm 4 gives the rule used to compute the legal moves for the bus
regulation problem.

Algorithm 4. Legal moves with a selective policy for the bus regulation problem.
legalMoves (moves)
moves ← [1 min]
if next bus is at strictly less than δ stops then

return moves
end if
for i in 2,max waiting time do

add (i minutes) to moves
end for
return moves

3.2 SameGame

SameGame is a puzzle composed of a rectangular grid containing cells of different
colors. A move removes connected cells of the same color. The cells of other colors
fall to fill the void created by a move. At least two cells have to be removed for
a move to be legal. The score of a move is the square of the number of removed
cells minus two. A bonus of one thousand is credited for completely clearing the
board.
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MCTS has been quite successful for SameGame. SP-MCTS [29,30], NMCS [7]
and Nested MCTS [1] have reached great scores at SameGame. For all algorithms
an effective improvement on random playouts is to use the tabu color strategy.
As it is often beneficial to remove all the cells of the most frequent color in one
move, the tabu color strategy avoids the moves of the most frequent color until
all of its cells form only one group.

We propose to apply NRPA to SameGame and to improve on standard NRPA
using selective policies.

There are many possible different moves at SameGame. So many moves that
it is not possible to code them with a simple function without exceeding storage
capacities. The way we deal with this problem is by using Zobrist hashing [31].
Zobrist hashing is popular in computer games such as Go and Chess [5]. It uses
a 64 bits random integer for each possible color of each cell of the board. The
code for a move is the XOR of the random numbers associated to the cells of
the move. A transposition table is used to store the codes and their associated
weights. The index of a move in the transposition table is its 16 lower bits. For
each entry of the transposition table, a list of move codes and weights is stored.

It has been previously shown that in SameGame it is possible to improve
simulation policies by allowing more randomness in the endgame [24].

What we do is that we use a modified version of the tabu color strategy. We
allow moves of size two of the tabu color when the number of moves already
played is greater than a threshold with value t. Algorithm 5 gives the function
used to compute the legal moves for SameGame.

Algorithm 5. Legal moves with a selective policy for SameGame.
legalMoves (moves, tabuColor)
if only one move of the tabu color then

tabuColor = noColor
end if
for m in possible moves do

if color (m) == tabuColor then
if nbCells (m) == 2 and nb moves played > t then

add m to moves
end if

else
add m to moves

end if
end for
if moves is empty then

for m in possible moves do
add m to moves

end for
end if
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Fig. 1. Example of the initial state of a SameGame problem (Color figure online)

Figure 1 gives an example of a starting board at SameGame. We can see on
the side the number of cells for each color. In this example the tabu color is
green since it has 54 cells.

3.3 Weak Schur Numbers

The Weak Schur problem is to find a partition of consecutive numbers that
contains as many consecutive numbers as possible, where a partition must not
contain a number that is the sum of two previous numbers in the same partition.

The last number that was added to the partition before the next number
could not be placed is the score of a partition. The goal is to find partitions with
high scores.

The current records for the Weak Schur problem are given in Table 1. The
records for 7 and 8 are held by Bruno Bouzy using NMCS [3].

One of the best partitions of size three is for example:

1 2 4 8 11 22
3 5 6 7 19 21 23
9 10 12 13 14 15 16 17 18 20

When possible, it is often a good move to put the next number in the same
partition as the previous number. The selective policy for SameGame follows this
heuristic. The algorithm for the legal moves is given in Algorithm 6. If it is legal
to put the next number n in the same partition as the previous number then it
is the only legal move considered. Otherwise all legal moves are considered.

The code of a move for the Weak Schur problem takes as input the partition
of the move, the integer to assign and the previous number in the partition.
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Table 1. Current records for the weak scwur problem

K 1 2 3 4

WS(K) = 2 = 8 = 23 = 66

K 5 6 7 8

WS(K) ≥ 196 ≥ 582 ≥ 1736 ≥ 5105

Algorithm 6. Legal moves with a selective policy for the Weak Schur problem.
legalMoves (moves, n)
moves ← []
for i in 0,nbPartitions do

if previous number in partition i == n - 1 then
if playing n in partition i is legal then

add (i, n) to moves
end if

end if
end for
if moves == [] then

for i in 0,nbPartitions do
if playing n in partition i is legal then

add (i, n) to moves
end if

end for
end if

4 Experimental Results

In order to evaluate a policy we run 200 times the NRPA algorithm with this
policy. The scores are recorded starting at 0.01 s and for every power of two
multiplied by 0.01. The algorithm is stopped after 163.84 s. We chose to record
the scores this way in order to see the average improvement in score each time
the search time is doubled. It has no influence on the NRPA algorithm.

4.1 Bus Regulation

Table 2 gives the evolution with time of the best score of the standard NRPA
algorithm in the No δ column and compares it to the evolution of the best score
using rules with different δ for the legal moves. We can see that using δ = 3
always gives better results than the No δ policy. For small times the δ = 4 policy
is much better than the other policies. For the longest search time (163.84 s),
the playout rule that uses δ = 3 has a score of 1,610 which is better than the
playout policy without rules that has a score of 1,632.
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Table 2. Evaluation of selective policies for the bus regulation problem

Time No δ δ = 1 δ = 2 δ = 3 δ = 4

0.01 2,620 2,441 2,344 2,147 1,929

0.02 2,441 2,292 2,173 2,049 1,866

0.04 2,329 2,224 2,098 2,000 1,828

0.08 2,242 2,178 2,045 1,959 1,791

0.16 2,157 2,135 2,011 1,925 1,764

0.32 2,107 2,108 1,986 1,903 1,736

0.64 2,046 2,074 1,959 1,868 1,713

1.28 1,974 2,013 1,917 1,811 1,694

2.56 1,892 1,926 1,869 1,754 1,679

5.12 1,802 1,832 1,822 1,703 1,667

10.24 1,737 1,757 1,769 1,660 1,658

20.48 1,698 1,712 1,729 1,640 1,651

40.96 1,682 1,695 1,699 1,629 1,644

81.92 1,660 1,674 1,661 1,617 1,637

163.84 1,632 1,642 1,629 1,610 1,635

4.2 SameGame

We performed two experiments for SameGame. The first experiment tests differ-
ent playout strategies for the first problem of the test set. NRPA is run 200 times
for each strategy and the evolution of the mean score with time is recorded.

The second experiment runs a level 4 search on the standard test set and the
results are compared to the state of the art.

Table 3 gives the evolution of the mean score for problem one of the standard
test set. We can observe that the tabu strategy is a large improvement over
the standard policy (2,484.18 instead of 2,011.25). Allowing moves of the tabu
color of size two when the playout length is greater than 10 gives even better
results for long time settings even if it is worse for short time settings. The tabu
policy is equivalent to the selective policy with t = ∞. For short time settings the
tabu policy is the best one. However, when more time is given to the algorithm it
discovers ways of using the increased freedom of moves contained in the selective
policy with t > 10 and eventually reaches a better score of 2,636.22 instead of
2,484.18 for the tabu policy.

Table 4 gives the best scores obtained with different algorithms for
SameGame. The website js-games.de maintains the best scores obtained by its
internet users. We can see that these scores are higher than the one obtained with
Monte Carlo search. Little is known about the holders of these records. However
we could exchange emails with a record holder who told us he is using beam
search with a complex domain specific evaluation function to play SameGame.
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Table 3. Evaluation of selective policies for SameGame

Time No tabu tabu t > 0 t > 10

0.01 155.83 352.19 260.37 257.59

0.02 251.28 707.56 487.27 505.05

0.04 340.18 927.63 666.91 677.57

0.08 404.27 1,080.64 810.29 822.44

0.16 466.15 1,252.14 924.41 939.30

0.32 545.78 1,375.78 1,043.97 1,058.54

0.64 647.63 1,524.37 1,185.77 1,203.91

1.28 807.20 1,648.16 1,354.69 1,356.81

2.56 1,012.42 1,746.74 1,508.10 1,497.90

5.12 1,184.77 1,819.43 1,616.44 1,605.86

10.24 1,286.25 1,886.48 1,737.35 1,712.17

20.48 1,425.55 1,983.42 1,859.12 1,879.10

40.96 1,579.67 2,115.80 2,078.30 2,100.47

81.92 1,781.40 2,319.44 2,329.73 2,384.24

163.84 2,011.25 2,484.18 2,539.75 2,636.22

Table 4. Best scores for SameGame

Position NMCS SP-MCTS Selective NRPA js-games.de

1 3,121 2,919 3,179 3,413

2 3,813 3,797 3,985 4,023

3 3,085 3,243 3,635 4,019

4 3,697 3,687 3,913 4,215

5 4,055 4,067 4,309 4,379

6 4,459 4,269 4,809 4,869

7 2,949 2,949 2,651 3,435

8 3,999 4,043 3,879 4,771

9 4,695 4,769 4,807 5,041

10 3,223 3,245 2,831 3,937

11 3,147 3,259 3,317 3,783

12 3,201 3,245 3,315 3,921

13 3,197 3,211 3,399 3,821

14 2,799 2,937 3,097 3,263

15 3,677 3,343 3,559 4,161

16 4,979 5,117 5,025 5,517

17 4,919 4,959 5,043 5,227

18 5,201 5,151 5,407 5,503

19 4,883 4,803 5,065 5,343

20 4,835 4,999 4,805 5,217

Total 77,934 78,012 80,030 87,858
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We can also observe that NRPA with a selective policy has better scores than
NMCS and SP-MCTS since the total of its scores is 80,030 for a level 4 search.
It is approximately 2,000 points better than previous MCTS algorithms.

Table 5. Evaluation of selective policies for the Weak Schur problem

Time ws(6) ws-rule(6) ws(7) ws-rule(7)

0.01 81 300 111 652

0.02 110 376 150 825

0.04 117 398 160 901

0.08 123 419 168 950

0.16 129 435 177 1,001

0.32 137 448 186 1,050

0.64 147 460 197 1,100

1.28 154 465 216 1,150

2.56 164 468 236 1,184

5.12 174 479 252 1,203

10.24 186 489 267 1,220

20.48 197 498 284 1,258

40.96 215 503 303 1,297

81.92 232 505 337 1,332

163.84 239 506 384 1,356

Table 6. Evaluation of selective policies for the Weak Schur problem

Time ws(8) ws-rule(8) ws(9) ws-rule(9)

0.01 151 1,382 199 2,847

0.02 193 1,707 246 3,342

0.04 207 1,898 263 3,717

0.08 218 2,055 273 4,125

0.16 227 2,162 286 4,465

0.32 236 2,297 293 4,757

0.64 245 2,423 303 5,044

1.28 263 2,574 314 5,357

2.56 288 2,717 331 5,679

5.12 316 2,852 362 6,065

10.24 335 2,958 384 6,458

20.48 351 3,010 403 6,805

40.96 371 3,096 422 7,117

81.92 394 3,213 444 7,311

163.84 440 3,318 473 7,538
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4.3 Weak Schur Numbers

Tables 5 and 6 give the evolution with time of the best score of the standard
NRPA algorithm and of the rule-based selective NRPA algorithm. The most
striking example of the usefulness of a selective policy is for 9 partitions in
Table 6. The standard policy reaches 473 in 163.84 s when the selective policy
reaches 7,538 for the same running time.

5 Conclusion

We have applied selective policies to three quite different problems. For each
of these problems selective policies improve NRPA. We only used simple pol-
icy improvements, better performance could be obtained refining the proposed
policies.

For all three problems, simple and effective rules could be found that avoid
bad moves in playouts. In some other problems such as Morpion Solitaire [7,28]
for example such rules could be more difficult to find. Also, even if rules generally
improve playouts they can make NRPA blind to some moves that are good in
specific cases and prevent it from finding the best sequence.

For future work we intend to improve the selective policies and to apply the
principle to other difficult problems.
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Abstract. Monte Carlo Tree Search (MCTS) has been found to be a
weaker player than minimax in some tactical domains, partly due to
its highly selective focus only on the most promising moves. In order
to combine the strategic strength of MCTS and the tactical strength of
minimax, MCTS-minimax hybrids have been introduced in prior work,
embedding shallow minimax searches into the MCTS framework. This
paper continues this line of research by integrating MCTS and minimax
even more tightly into one rollout-based hybrid search algorithm, MCTS-
αβ. The hybrid is able to execute two types of rollouts: MCTS rollouts
and alpha-beta rollouts, i.e. rollouts implementing minimax with alpha-
beta pruning and iterative deepening. During the search, all nodes accu-
mulate both MCTS value estimates as well as alpha-beta value bounds.
The two types of information are combined in a given tree node when-
ever alpha-beta completes a deepening iteration rooted in that node—by
increasing the MCTS value estimates for the best move found by alpha-
beta. A single parameter, the probability of executing MCTS rollouts
vs. alpha-beta rollouts, makes it possible for the hybrid to subsume both
MCTS as well as alpha-beta search as extreme cases, while allowing for
a spectrum of new search algorithms in between.

Preliminary results in the game of Breakthrough show the proposed
hybrid to outperform its special cases of alpha-beta and MCTS. These
results are promising for the further development of rollout-based algo-
rithms that unify MCTS and minimax approaches.

1 Introduction

Monte Carlo Tree Search (MCTS) [7,11] is a sampling-based tree search algo-
rithm. Instead of taking all legal moves into account like traditional full-width
minimax search, MCTS samples promising moves selectively. This is helpful in
many large search spaces with high branching factors. Furthermore, MCTS can
often take long-term effects of moves better into account than minimax, since it
typically uses Monte-Carlo simulations of entire games instead of a static heuris-
tic evaluation function for the evaluation of states. This can lead to greater
positional understanding with lower implementation effort. If exploration and
exploitation are traded off appropriately, MCTS asymptotically converges to
the optimal policy [11], while providing approximations at any time.
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While MCTS has shown considerable success in a variety of domains [5],
there are still games such as Chess and Checkers where it is inferior to minimax
search with alpha-beta pruning [10]. One reason that has been identified for this
weakness is the selectivity of MCTS, its focus on only the most promising lines
of play. Tactical games such as Chess can have a large number of traps in their
search space [16]. These can only be avoided by precise play, and the selective
sampling of MCTS based on average simulation outcomes can easily miss or
underestimate an important move.

In previous work [2–4], the tactical strength of minimax has been combined
with the strategic and positional understanding of MCTS in MCTS-minimax
hybrids, integrating shallow-depth minimax searches into the MCTS framework.
These hybrids have shown promising results in tactical domains, both for the
case where heuristic evaluation functions are unavailable [4], as well as for the
case where their existence is assumed [2,3]. In this paper, we continue this line
of work by integrating MCTS and minimax even more closely. Based on Huang’s
formulation of alpha-beta search as a rollout-based algorithm [9], we propose a
hybrid search algorithm MCTS-αβ that makes use of both MCTS rollouts as
well as alpha-beta rollouts. MCTS-αβ can switch from executing a rollout in
MCTS fashion to executing it in alpha-beta fashion at any node traversed in
the tree. During the search, all nodes accumulate both MCTS value estimates
as well as alpha-beta value bounds. A single rollout can collect both types of
information. Whenever a deepening iteration of alpha-beta rooted in a given
node is completed, the move leading to the best child found by this alpha-beta
search is awarded a number of MCTS wins in that node. This allows the hybrid
to combine both types of information throughout the tree.

Unlike previously proposed hybrid search algorithms, MCTS-αβ subsumes
both MCTS as well as alpha-beta search as extreme cases. It turns into MCTS
when only using MCTS rollouts, and into alpha-beta when only using alpha-
beta rollouts. By mixing both types of rollouts however, a spectrum of new
search algorithms between those extremes is made available, potentially leading
to better performance than either MCTS or alpha-beta in any given search
domain.

This paper is structured as follows. Section 2 gives some background on
MCTS and Huang’s rollout-based alpha-beta as the baseline algorithms of this
paper. Section 3 provides a brief overview of related work on hybrid algorithms
combining features of MCTS and minimax. Section 4 outlines the proposed
rollout-based hybrid MCTS-αβ, and Sect. 5 shows first experimental results in
the test domain of Breakthrough. Section 6 finally concludes and suggests future
research.

2 Background

The hybrid MCTS-αβ proposed in this paper is based on two search methods as
basic components: Monte Carlo Tree Search (MCTS) and minimax search with
alpha-beta pruning.
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2.1 MCTS

The first component of MCTS-αβ is MCTS, which works by repeating the fol-
lowing four-phase loop until computation time runs out.

Phase one: selection. The tree is traversed from the root to one of its not
fully expanded nodes, choosing the move to sample from each state with the
help of a selection policy. The selection policy should balance the exploitation
of states with high value estimates and the exploration of states with uncertain
value estimates. In this paper, the popular UCT variant of MCTS is used, with
the UCB1-TUNED policy as selection policy [1].

Phase two: expansion. When a not fully expanded node has been reached,
one or more of its successors are added to the tree. In this paper, we always add
the one successor chosen in the current rollout.

Phase three: simulation. A default policy plays the game to its end, starting
from the state represented by the newly added node. MCTS converges to the
optimal move in the limit even when moves are chosen randomly in this phase.
Note that this phase is often also called “rollout” phase or “playout” phase in
the literature. We are calling it simulation phase here, and refer to its policy as
the default policy, while choosing “rollout” as the name for one entire four-phase
loop. This is in order to draw a clearer connection between MCTS rollouts in
this subsection and alpha-beta rollouts in the next one. It is also consistent with
the terminology used in [5].

Phase four: backpropagation. The value estimates of all states traversed in
the tree are updated with the result of the finished game.

Algorithm 1.1 shows pseudocode for a recursive formulation of MCTS used
as a first starting point for this work. gameResult(s) returns the game-theoretic
value of terminal state s. backPropagate(s.value, score) updates the MCTS
value estimate for state s with the new result score. UCB1-TUNED for example
requires a rollout counter, an average score and an average squared score of
all previous rollouts passing through the state. Different implementations are
possible for finalMoveChoice(); in this work, it chooses the move leading to
the child of the root with the highest number of rollouts.

Many variants and extensions of this framework have been proposed in the lit-
erature [5]. In this paper, we are using MCTS with theMCTS-Solver extension [21]
as a component of MCTS-αβ. MCTS-Solver is able to backpropagate not only reg-
ular simulation results such as losses and wins, but also game-theoretic values such
as proven losses and proven wins whenever the search tree encounters a terminal
state. The idea is marking a move as a proven loss if the opponent has a winning
move from the resulting position, and marking a move as a proven win if the oppo-
nent has only losing moves from the resulting position. This avoids wasting time
on the re-sampling of game states whose values are already known. Additionally,
we use an informed default policy instead of a random one, making move choices
based on simple knowledge about the domain at hand. It is described in Sect. 5.
Both of these improvements are not essential to the idea of MCTS-αβ, but together
allow for MCTS to win a considerable number of games against alpha-beta in our
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1 MCTS(root) {
2 while(timeAvailable) {
3 MCTSRollout(root)
4 }
5 return finalMoveChoice ()
6 }
7

8 MCTSRollout(currentState) {
9 if(currentState ∈ Tree) {

10 # selection
11 nextState ← takeSelectionPolicyMove(currentState)
12 score = MCTSRollout(nextState)
13 } else {
14 # expansion
15 addToTree(currentState)
16 # simulation
17 simulationState ← currentState
18 while(simulationState.notTerminalPosition) {
19 simulationState ← takeDefaultPolicyMove(simulationState)
20 }
21 score ← gameResult(simulationState)
22 }
23 # backpropagation
24 currentState.value ← backPropagate(currentState.value , score)
25 return score
26 }

Algorithm 1.1. Monte Carlo Tree Search.

experiments. This makes combining their strengths more worthwhile than if alpha-
beta utterly dominated MCTS (or the other way around).

2.2 Rollout-Based Alpha-Beta

The second component of MCTS-αβ is alpha-beta search. Specifically, we base
this work on the rollout-based formulation of alpha-beta presented by Huang [9].
It is strictly equivalent not to classic alpha-beta search, but to an augmented
version alphabeta2. Alphabeta2 behaves exactly like classic alpha-beta if given
only one pass over the tree without any previously stored information, but it
can “outprune” (evaluate fewer leaf nodes than) classic alpha-beta when called
as a subroutine of a storage-enhanced search algorithm such as MT-SSS* [15].
See [9] for a detailed analysis.

The basic idea of rollout algorithms is to repeatedly start at the root and tra-
verse down the tree. At each node representing a game state s, a selection policy
chooses a successor state c from the set C(s) of all legal successor states or children
of s. In principle, any child could be chosen. However, it is known from alpha-beta
pruning that the minimax value of the root can be determined without taking all
children into account. Based on this realization, rollout-based alpha-beta was con-
structed as a rollout algorithm that restricts the selection policy at each state s to
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a subset of C(s). This enables the algorithm to visit the same set of leaf nodes in
the same order as alpha-beta, if the selection policy is chosen correctly.

Algorithm 1.2 shows pseudocode for the rollout-based formulation of alpha-
beta used as a second starting point for this work. It requires the tree to maintain
a closed interval [v−

s , v+
s ] for every visited state s. These intervals are initialized

with [−∞,+∞] and contain at any point in time the true minimax value of the
respective state. When v−

s = v+
s , the minimax value of state s is found. When the

minimax value of the root is found and the search is over, finalMoveChoice()
chooses an optimal move at the root. The result of Algorithm 1.2 is indepen-
dent of the implementation of takeSelectionPolicyMove(feasibleChildren);
in order to achieve alpha-beta behavior however, this method always needs to
return the left-most child in feasibleChildren. That is the implementation
used in this work. MAX and MIN refer to states where it is the turn of the
maximizing or minimizing player, respectively.

1 alphaBeta(root) {
2 while(v−

root < v+
root) {

3 alphaBetaRollout(root , v−
root , v+

root)
4 }
5 return finalMoveChoice ()
6 }
7

8 alphaBetaRollout(s, αs, βs) {
9 if( C(s) �= ∅ ) {

10 for each c ∈ C(s) do {
11 [αc, βc] ← [

max
{

αs, v−
c

}
, min

{
βs, v+

c

}]

12 }
13 feasibleChildren ← {c ∈ C(s)|αc < βc}
14 nextState ← takeSelectionPolicyMove(feasibleChildren)
15 alphaBetaRollout(nextState , αnextState , βnextState)
16 }

17 v−
s ←

⎧
⎪⎨

⎪⎩

gameResult(s) if s is leaf

maxc∈C(s)v
−
c if s is internal and MAX

minc∈C(s)v
−
c if s is internal and MIN

18 v+
s ←

⎧
⎪⎨

⎪⎩

gameResult(s) if s is leaf

maxc∈C(s)v
+
c if s is internal and MAX

minc∈C(s)v
+
c if s is internal and MIN

19 }

Algorithm 1.2. Rollout-based alpha-beta as proposed by Huang [9].

As mentioned by Huang, “it seems that [Algorithm 1.2] could be adapted to
an ‘incremental’ rollout algorithm when incorporating admissible heuristic func-
tion at internal nodes (essentially an iterative deepening setting)” [9]. As shown
in Sect. 4, we extended Algorithm 1.2 with an heuristic evaluation function and
iterative deepening in order to create practical alpha-beta rollouts for MCTS-
αβ. Furthermore, Huang predicted that “traditional pruning techniques and the
recent Monte Carlo Tree Search algorithms, as two competing approaches for
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game tree evaluation, may be unified under the rollout paradigm” [9]. This is
the goal of the work presented in this paper.

3 Related Work

The idea of combining the strengths of alpha-beta and MCTS in one search
algorithm is motivated for instance by the work of Ramanujan et al. [16], who
identified shallow traps as a feature of domains that are problematic for the
selectively searching MCTS. Informally, Ramanujan et al. define a level-k search
trap as the possibility of a player to choose an unfortunate move such that after
executing the move, the opponent has a guaranteed winning strategy at most k
plies deep. While such traps at shallow depths of 3 to 7 are not found in Go until
the latest part of the endgame, they are relatively frequent in Chess games even
at grandmaster level [16], partly explaining the success of MCTS in Go and its
problems in Chess. Finnsson and Björnsson [8] discovered the similar problem
of optimistic moves, which refers to seemingly strong moves that can be refuted
right away by the opponent, but take MCTS prohibitively many simulations to
evaluate correctly. The work presented in this paper is meant as a step towards
search algorithms that can successfully be used in both kinds of domains—those
favoring MCTS and those favoring alpha-beta until now.

Previous work on developing algorithms influenced by both MCTS and min-
imax has taken two main approaches. The first approach is to embed minimax
searches within the MCTS framework. Shallow minimax searches have for exam-
ple been used in every step of the simulation phase for Lines of Action [20], Chess
[17], and various multi-player games [14]. Baier and Winands studied approaches
that use minimax search without evaluation functions nested into the selection/-
expansion phase, the simulation phase, and the backpropagation phase of MCTS
[4], as well as approaches that use minimax search with evaluation functions in
the simulation phase, for early termination of simulations, and as a prior for tree
nodes [2,3].

The second approach is to identify individual features of minimax such
as minimax-style backups, and integrate them into MCTS. In the algorithm
UCTMAXH [18] for example, MCTS simulations are replaced with heuristic
evaluations and classic averaging MCTS backups with minimaxing backups. In
implicit minimax backups [12], both minimaxing backups of heuristic evaluations
and averaging backups of simulation returns are managed simultaneously.

This paper takes a new approach. While in our previous hybrids [2–4], alpha-
beta searches were nested into the MCTS framework and had to complete before
MCTS could continue—MCTS and alpha-beta functioned as combined, but
separate algorithms—the newly proposed MCTS-αβ tightly interleaves MCTS
and alpha-beta. The formulation of alpha-beta as a rollout algorithm [9] allows
MCTS-αβ to decide about continuing a rollout in MCTS fashion or in alpha-beta
fashion at every node encountered during the search. As opposed to UCTMAXH

and implicit minimax mentioned above, MCTS-αβ is not picking and combin-
ing individual features of MCTS and minimax. It subsumes both regular MCTS
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and regular alpha-beta when only MCTS rollouts or only alpha-beta rollouts
are used, but results in a new type of search algorithm when both types are
combined. A probability parameter p determines the mix.

Apart from Huang [9], several other researchers have proposed rollout-based
formulations of minimax search. For example, Weinstein, Littman, and Goschin
[19] presented a rollout algorithm that outprunes alpha-beta, and Chen et al. [6]
proposed a rollout algorithm similar to MT-SSS*. We chose Huang’s alpha-beta
formulation as a basis for this work because of its clear formal characterization,
unifying both alpha-beta and MT-SSS* under the rollout framework.

4 MCTS-αβ

The basic idea of MCTS-αβ is to allow for a mix of MCTS and alpha-beta
rollouts. A simple way of achieving this is by introducing a parameter p ∈ [0, 1]
as the probability of starting an MCTS rollout at the root. 1 − p, conversely, is
the probability of starting an alpha-beta rollout instead. Assume that an MCTS
rollout is chosen at the root. At every recursive call of the MCTS rollout, the
randomized decision is made again whether to continue with MCTS or whether
to switch to alpha-beta, using the same probabilities. If the search tree is left
without switching to an alpha-beta rollout at any point, the simulation and
backpropagation phases are executed just like in a regular MCTS rollout. MCTS
value estimates are updated in all traversed nodes, and the next rollout begins.

If however any randomized decision indicates the start of an alpha-beta
rollout—either at the root or at a later stage of an MCTS rollout—then the
rollout continues in alpha-beta fashion, with the current node functioning as the
root of the alpha-beta search. This is similar to starting an embedded alpha-beta
search at the current node, like the MCTS-IP-M algorithm described in [2,3]. But
MCTS-αβ does not necessarily execute the entire alpha-beta search. The newly
proposed hybrid can execute only one alpha-beta rollout instead, and potentially
continue this particular alpha-beta search at any later point during the search
process—whenever the decision for an alpha-beta rollout is made again at the
same node. The interleaving of MCTS and minimax is more fine-grained than
in previous hybrids.

There are a few differences between the alpha-beta rollouts of Huang’s Algo-
rithm1.2 and those of MCTS-αβ. First, MCTS-αβ uses an evaluation func-
tion to allow for depth-limited search. Second, these depth-limited searches are
conducted in an iterative deepening manner. Third, MCTS-αβ can reduce the
branching factor for alpha-beta rollouts with the help of move ordering and k-best
pruning (only searching the k moves ranked highest by a move ordering func-
tion). Fourth, if an alpha-beta rollout of MCTS-αβ was called from an ongoing
MCTS rollout instead of from the root, it returns the evaluation value of its leaf
node to that MCTS rollout for backpropagation. And fifth, if the alpha-beta
rollout is finishing a deepening iteration in a state s—if it is completing a 1-ply,
2-ply, 3-ply search etc—MCTS-αβ gives a bonus in MCTS rollouts to the MCTS
value estimate of the best child of s found in that iteration. At the same time,
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the bonus given for the previous deepening iteration is removed, so that only
the currently best child of s is boosted.

This last point makes it clear how MCTS-αβ can subsume both MCTS and
alpha-beta. If p = 1, only MCTS rollouts are executed, and MCTS-αβ behaves
exactly like regular MCTS. If p = 0, only alpha-beta rollouts are started imme-
diately at the root, and only the best move found by the last deepening itera-
tion has a positive MCTS value estimate due to its bonus. MCTS-αβ therefore
behaves exactly like alpha-beta (an iterative deepening version of Huang’s aug-
mented alphabeta2, to be precise). If 0 < p < 1 however, MCTS-αβ becomes
a true hybrid, combining MCTS and minimax behavior throughout the search
tree, and choosing moves at the root based on both real MCTS rollout counts
as well as MCTS rollout bonuses from the last completed deepening iteration of
alpha-beta.

Algorithm 1.3 shows pseudocode for MCTS-αβ. D(s) is the current search
depth for alpha-beta starting in state s, initialized to 1 for all states. K(s) is the
set of the k best successor states or children of state s as determined by the move
ordering function. random(0,1) returns a random, uniformly distributed value
in [0, 1].

[
v−

s,d, v
+
s,d

]
is an interval containing the value of state s when searched

to depth d. eval(s) is a heuristic evaluation of state s, and sigmoid(x) is a
sigmoid transformation used to spread out heuristic evaluations to the interval
[0, 1]. s.giveBonus(b) adds b winning rollouts to the MCTS value estimate of
state s, and s.removeLastBonusGiven() removes the last bonus given to s.
finalMoveChoice() is the same as for regular MCTS, choosing the child with
the most rollouts at the root.

The parameters of MCTS-αβ are the MCTS rollout probability p, the bonus
weight w, the bonus weight factor f that defines how much stronger bonuses
become with the depth of the completed alpha-beta search, the number of moves
k for k-best pruning, and the maximum minimax depth l. When a depth-l alpha-
beta search starting from state s is completed, the search depth is not further
increased there. Only MCTS rollouts will be started from s in the rest of the
search time.

Note that while an MCTS rollout can turn into an alpha-beta rollout at any
node, a mid-rollout switch from alpha-beta back to MCTS is not possible in
MCTS-αβ.

5 Experimental Results

We conducted preliminary experiments with MCTS-αβ in the deterministic, two-
player, zero-sum game of Breakthrough. MCTS parameters such as the explo-
ration factor C (C = 0.8) were optimized for the baseline MCTS-Solver and
kept constant during testing. We used minimax with alpha-beta pruning, move
ordering, k-best pruning, and iterative deepening, but no other search enhance-
ments. Every experimental condition consisted of 1000 games, with each player
playing 500 as White and 500 as Black. All algorithms were allowed to expand
2500 nodes before making each move decision, unless specified otherwise. A node
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1 MCTSAlphaBeta( root ) {
2 whi le ( t imeAvai lab le ) {
3 i f ( random(0 ,1) <p) {
4 MCTSRollout ( root )
5 } e l s e {
6 alphaBetaRol lout ( root , D( root ) , v

−
root,D(root) , v

+
root,D(root) )

7 }
8 }
9 return f inalMoveChoice ( )

10 }
11
12 alphaBetaRol lout ( s , d , αs , βs ) {
13 i f ( K(s) �= ∅ and d > 0 ) {
14 f o r each c ∈ K(s) do {
15 [αc, βc] ←

[
max

{
αs, v

−
c,d−1

}
, min

{
βs, v

+
c,d−1

}]

16 }
17 f e a s i b l eCh i l d r e n ← {c ∈ K(s)|αc < βc}
18 nextState ← takeSe lect ionPol i cyMove ( f e a s i b l eCh i l d r en )
19 r o l l o u tRe su l t ← alphaBetaRol lout ( nextState , d−1, αnextState , βnextState )
20 }

21 v
−
s,d

←

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gameResult(s) if s is leaf

eval(s) if d = 0

maxc∈K(s)v
−
c,d−1 if d > 0 and s is internal and MAX

minc∈K(s)v
−
c,d−1 if d > 0 and s is internal and MIN

22 v
+
s,d

←

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gameResult(s) if s is leaf

eval(s) if d = 0

maxc∈K(s)v
+
c,d−1 if d > 0 and s is internal and MAX

minc∈K(s)v
+
c,d−1 if d > 0 and s is internal and MIN

23 i f (K(s) = ∅ or d = 0) {
24 r o l l o u tRe su l t ← v

+
s,d

25 }
26 return r o l l o u tRe su l t
27 }
28
29 MCTSRollout ( cur r entSta te ) {
30 i f ( cur r entSta te ∈ Tree ) {
31 nextState ← takeSe lect ionPol i cyMove ( cur r entSta te )
32 i f ( random(0 ,1) <p or D( nextState )= l {
33 sco r e ← MCTSRollout ( nextState )
34 } e l s e {
35 sco r e ← alphaBetaRol lout ( nextState , D( nextState ) ,

36 v
−
nextState,D(nextState) , v

+
nextState,D(nextState) )

37 s co r e ← s igmoid ( s co r e )

38 i f (v
−
nextState,D(nextState) = v

+
nextState,D(nextState) ) {

39 bestChi ld ← bestChildFoundByAlphaBetaIn ( nextState )

40 bonus ← s co r e ∗ w ∗ fD(nextState)

41 bestChi ld . removeLastBonusGiven ( )
42 bestChi ld . giveBonus ( bonus )
43 D( nextState ) ← D( nextState )+1
44 }
45 }
46 } e l s e {
47 addToTree ( cur r entSta te )
48 s imu la t i onState ← cur r entSta te
49 whi le ( s imu la t i onSta te . notTerminalPos i t ion ) {
50 s imu la t i onState ← takeDefaultPol icyMove ( s imu la t i onSta te )
51 }
52 sco r e ← gameResult ( s imu la t i onSta te )
53 }
54 cur r entSta te . value ← backPropagate ( cur r entState . value , s co r e )
55 return sco r e
56 }

Algorithm 1.3. MCTS-αβ.
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limit was chosen instead of a time limit in order to first test whether the newly
proposed hybrid can search more effectively than its special cases MCTS and
alpha-beta, without taking into account the additional questions of using more or
less computationally expensive evaluation functions and MCTS default policies.

Subsection 5.1 describes the rules of Breakthrough as well as the evaluation
function, move ordering, and default policy used for it. Subsection 5.2 shows the
results.

5.1 Test Domain

The variant of Breakthrough used in our experiments is played on a 6×6 board.
The game was originally described as being played on a 7 × 7 board, but other
sizes such as 8×8 are popular as well, and the 6×6 board preserves an interesting
search space.

At the beginning of the game, White occupies the first two rows of the board,
and Black occupies the last two rows of the board. The two players alternatingly
move one of their pieces straight or diagonally forward. Two pieces cannot occupy
the same square. However, players can capture the opponent’s pieces by moving
diagonally onto their square. The game is won by the player who succeeds first
at advancing one piece to the home row of her opponent, i.e. reaching the first
row as Black or reaching the last row as White.

The simple evaluation function we use for Breakthrough gives the player one
point for each piece of her color. The opponent’s points are subtracted, and the
resulting value is then normalized to the interval [0, 1].

The move ordering ranks winning moves first. Second, it ranks saving moves
(captures of an opponent piece that is only one move away from winning). Third,
it ranks captures, and fourth, all other moves. Within all four groups of moves,
moves that are closer to the opponent’s home row are preferred. When two moves
are ranked equally by the move ordering, they are searched in random order.

The informed default policy used for the experiments always chooses the
move ranked first by the above move ordering function.

5.2 Performance of MCTS-αβ

In our first set of experiments, we hand-tuned the five MCTS-αβ parameters
against two opponents: regular alpha-beta with the same evaluation function,
move ordering, and k-best pruning (k = 10 was found to be the strongest set-
ting, which confirms our observations in [2] for 6 × 6 Breakthrough), as well as
regular MCTS with the same informed default policy as described in the previous
subsection. The best parameter settings found were k = 8, l = 6, w = 200, f = 8,
and p = 0.95. With these settings, the results for MCTS-αβ were a winrate of
63.7% against alpha-beta and 58.2% against MCTS. This means MCTS-αβ is
significantly stronger than both of its basic components (p < 0.001). MCTS won
63.6% of 1000 games against alpha-beta, which means that also in the resulting
round-robin competition between the three players MCTS-αβ performed best
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with 1219 won games, followed by MCTS with 1054 and alpha-beta with 727
wins in total. The optimal parameters for MCTS-αβ in this scenario include a
high MCTS rollout probability (p = 0.95), resulting in few alpha-beta rollouts
being carried out. This fact seems to be agree with the strong performance of reg-
ular MCTS against regular alpha-beta. MCTS rollouts with an informed default
policy seem to be more effective than alpha-beta rollouts with the primitive eval-
uation function described above, especially when the higher computational cost
of the MCTS simulations is not taken into consideration.

In a second set of experiments, we contrasted this with a different scenario
where no strong default policy is available. Instead, MCTS simulations are
stopped after 3 random moves, the heuristic evaluation function is applied to
the current state, and the resulting value is backpropagated as MCTS simula-
tion return. This technique is called MCTS-IC here for consistency with previous
work [3]; a similar technique where the evaluation function value is rounded to
either a win or a loss before backpropagation has also been studied under the
name MCTS-EPT [13]. Alpha-beta rollouts remain unchanged. MCTS-IC with
the simple evaluation function we are using is weaker than MCTS with the
strong informed policy described above—in a direct comparison, MCTS-IC won
only 20.5% of 1000 games. In this setting, and keeping all other parameters
constant, MCTS-αβ performed best with p = 0.3. This confirms that as soon
as MCTS is weakened in comparison to alpha-beta, alpha-beta rollouts become
more effective for MCTS-αβ than MCTS rollouts, and the optimal value for p is
lower. The results of 1000 games against the baselines were 53.7% against reg-
ular alpha-beta (not significantly different), and 73.1% against MCTS-IC (here
the hybrid is significantly stronger with p < 0.001). With alpha-beta winning
73.1% of games against MCTS-IC as well, this means a round-robin result of
1268 wins for MCTS-αβ, now followed by alpha-beta with 1194 and MCTS-IC
with 538 wins. Although the lack of a strong MCTS default policy has pushed
alpha-beta ahead of MCTS, the hybrid algorithm still leads.

Figures 1 and 2 illustrate the performance landscape of MCTS-αβ with regard
to the crucial p parameter, both in the scenario with informed simulations and
in the scenario with MCTS-IC simulations. Each data point results from 1000
games against regular alpha-beta.

In a third and last set of experiments, we tested the generalization of the
behavior of MCTS-αβ to different time settings. In the scenario with MCTS-
IC simulations, all parameter settings were left unchanged (p = 0.3, k = 8,
l = 6, w = 200, f = 8), but all algorithms were now allowed 10000 nodes per
move. MCTS-αβ won 51.9% of 1000 games against regular alpha-beta, and 76.4%
against regular MCTS-IC. Alpha-beta won 71.9% of games against MCTS-IC.
The round-robin result is 1283 wins for MCTS-αβ, followed by alpha-beta with
1200 and MCTS-IC with 517 wins. The algorithms were also tested against each
other with only 500 nodes per move—here parameter l was reduced to 4, while
all other parameters stayed the same (experience with other MCTS-minimax
hybrids has shown that shorter search times often profit from keeping alpha-
beta more shallow [2]). For this setting, the results were 54.6% for MCTS-αβ
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Fig. 1. Performance of MCTS-αβ with informed MCTS simulations.
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Fig. 2. Performance of MCTS-αβ with MCTS-IC simulations.
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versus alpha-beta, 67.2% for MCTS-αβ versus MCTS-IC, and 74.0% for alpha-
beta versus MCTS-IC. Added up, this results in a round-robin with 1218 wins
for MCTS-αβ, 1194 for alpha-beta, and 588 for MCTS-IC. In conclusion, the
relative performance of MCTS-αβ generalized to time settings 4 times longer as
well as 5 times shorter without requiring extensive re-tuning.

6 Conclusion and Future Research

In this paper, we introduced the new hybrid search algorithm MCTS-αβ. It
is based on MCTS rollouts and alpha-beta rollouts and unifies both search
approaches under the same framework. While subsuming regular alpha-beta
and regular MCTS as extreme cases, MCTS-αβ opens a new space of search
algorithms in between.

Preliminary results in the game of Breakthrough are promising, but do not
constitute much more than a proof of concept yet. More work has to be done
to gain an understanding of MCTS-αβ, and to further develop rollout-based
MCTS-minimax hybrids. A first possible research direction is the exploration
of different design choices in the algorithm. Can alpha-beta and MCTS rollouts
be more intelligently combined than by choosing them at random? How much
playing strength comes from the backpropagated evaluation values, and how
much from the MCTS bonuses given after alpha-beta finishes a search depth? A
second direction is an analysis of the conditions under which MCTS-αβ works
best. Does it only show promise when the performance of MCTS and alpha-beta
in the domain at hand are at least roughly comparable, or can it also improve
an algorithm which is already clearly superior? How does MCTS-αβ perform
against MCTS and alpha-beta at equal time controls? And finally, a comparison
of MCTS-αβ with previously proposed hybrids would be of great interest.

Acknowledgment. The author thanks the Games and AI group, Department of Data
Science and Knowledge Engineering, Maastricht University, for computational support.
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Abstract. We train a number of neural networks to play the games
Bowling, Breakout and Seaquest using information stored in the mem-
ory of a video game console Atari 2600. We consider four models of neural
networks which differ in size and architecture: two networks which use
only information contained in the RAM and two mixed networks which
use both information in the RAM and information from the screen.

As the benchmark we used the convolutional model proposed in [17]
and received comparable results in all considered games. Quite surpris-
ingly, in the case of Seaquest we were able to train RAM-only agents
which behave better than the benchmark screen-only agent. Mixing
screen and RAM did not lead to an improved performance comparing to
screen-only and RAM-only agents.

1 Introduction

An Atari 2600 controller can perform one of 18 actions1 and in this work we are
intended to learn which of these 18 actions is the most profitable given a state of
the screen or memory. Our work is based on deep Q-learning [17] – a reinforce-
ment learning algorithm that can learn to play Atari games using only input
from the screen. The deep Q-learning algorithm builds on the Q-learning [25]
algorithm, which in its simplest form (see [19, Fig. 21.8]) iteratively learns values
Q(state, action) for all state-action pairs and lets the agent choose the action
with the highest value. In the instance of Atari 2600 games this implies evaluating
all pairs (screen, action) where action is one of the 18 positions of the controller.
This task is infeasible and similarly, learning all values Q(state, action) is not a
realistic task in other real-world games such as chess or Go.

This feasibility issues led to generalizations of the Q-learning algorithm which
are intended to limit the number of parameters on which the function Q depends.
One can arbitrarily restrict the number of features which can be learned2, but
1 For some games only some of these 18 actions are used in the gameplay. The number

of available actions is 4 for Breakout, 18 for Seaquest and 6 for Bowling.
2 E.g. we may declare that Q(state, action) = θ1f1(state, action)+θ2f2(state, action),

where f1, f2 are some fixed pre-defined functions, for example f1 may declare value
1 to the state-action pair (screen, fire) if a certain shape appears in the bottom-left
corner of the screen and 0 otherwise and f2 may declare value 1 to (screen, left)
if an enemy appeared on the right and 0 otherwise. Then the Q-learning algorithm
learns the best values of θ1, θ2.

c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 71–85, 2017.
DOI: 10.1007/978-3-319-57969-6 6
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instead of using manually devised features, the deep Q-learning algorithm3 pre-
sented in [17] builds them in the process of training of the neural network. Since
every neural network is a composition of a priori unknown linear maps and fixed
non-linear maps, the aim of the deep Q-learning algorithm is to learn coefficients
of the unknown linear maps.

In the deep Q-learning algorithm the game states, actions and immedi-
ate rewards are passed to a deep convolutional network. This type of network
abstracts features of the screen, so that various patterns on the screen can be
identified as similar. The network has a number of output nodes – one for each
possible action – and it predicts the cumulative game rewards after making
moves corresponding to actions.

A number of decisions was made in the process of designing of the deep Q-
learning algorithm (see [17, Algorithm 1] for more details): (1) in each step there
is some probability ε of making a random move and it decreases from ε = 1 to
ε = 0.1 in the course of training, (2) the previous game states are stored in the
replay memory; the updates in the Q-learning are limited to a random batch
of events polled from that memory, (3) the updates of unknown linear maps
in the neural network are performed according to the gradient of the squared
loss function which measures discrepancy between the estimation given by the
network and the actual reward. In this work we use the same computational
infrastructure as in [17], including the above decisions (1)–(3).

Related Work

The original algorithm in [17] was improved in a number of ways in [15,18,21].
This includes changing network architecture, choosing better hyperparameters
and improving the speed of algorithm which optimizes neural network’s loss
function. These attempts proved to be successful and made the deep Q-learning
algorithm the state-of-the-art method for playing Atari games.

Instead of the screen one can treat the RAM state of the Atari machine as
the game state. The work [16] implemented a classical planning algorithm on
the RAM state. Since the Atari 2600 RAM consists of only 128 bytes, one can
efficiently search in this low-dimensional state space. Nevertheless, the learning
in [16] happens during the gameplay, so it depends on the time limit for a single
move. In contrast, in [17] the learning process happens before the gameplay - in
particular the agent can play in the real-time. To the best of our knowledge the
only RAM-based agent not depending on search was presented in [11]. We cite
these results as ale ram.

In our work we use the deep Q-learning algorithm, but instead of using
screens as inputs to the network, we pass the RAM state or the RAM state and
the screen together. In the following sections we describe the games we used for
evaluation, as well as the network architectures we tried and hyperparameters
we tweaked.

3 This algorithm is also called a deep q-network or DQN.
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The Work [17] as the Main Benchmark

The changes to the deep Q-learning algorithm proposed in [18] came at a cost of
making computations more involved comparing to [17]. In this work we decided
to use as the reference result only the basic work [17], which is not the state of
the art, but a single training of a neural network can be contained in roughly 48
hours using the experimental setup we describe below. This decision was also moti-
vated by a preliminary character of our study – we wanted to make sure that indeed
the console memory contains useful data which can be extracted during the train-
ing process using the deep Q-learning algorithm. From this perspective the basic
results in [17] seem to be a perfect benchmark to verify feasibility of learning from
RAM. We refer to this benchmark architecture as nips through this paper.

2 The Setting of the Experiment

2.1 Games

Bowling – simulation of the game of bowling; the player aims the ball toward
the pins and then steers the ball; the aim is to hit the pins [1,2].

Breakout – the player bounces the ball with the paddle towards the layer of
bricks; the task is to destroy all bricks; a brick is destroyed when the ball hits it
[3,4].

Seaquest – the player commands a submarine, which can shoot enemies and
rescue divers by bringing them above the water-level; the player dies if he
fails to get a diver up before the air level of submarine vanishes [8,9].

We’ve chosen these games, because each of them offers a distinct challenge.
Breakout is a relatively easy game with player’s actions limited to moves along
the horizontal axis. We picked Breakout because disastrous results of learning
would indicate a fundamental problem with the RAM learning. The deep Q-
network for Seaquest constructed in [17] plays at an amateur human level and
for this reason we consider this game as a tempting target for improvements. Also
the game state has some elements that possibly can be detected by the RAM-
only network (e.g. oxygen-level meter or the number of picked divers). Bowling

Fig. 1. From left to right Bowling, Breakout and Seaquest. The 128 vertical bars and
the bottom of every screenshot represent the state of the memory, with black rep-
resenting 0 and lighter color corresponding to higher values of a given memory cell.
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seems to be a hard game for all deep Q-network models. It is an interesting target
for the RAM-based networks, because visualizations suggest that the state of the
RAM is changing only very slightly (Fig. 1).

2.2 Technical Architecture

By one experiment we mean a complete training of a single deep Q-network. In
this paper we quote numerical outcomes of 30 experiments which we performed4.
For our experiments we made use of Nathan Sprague’s implementation of the deep
Q-learning algorithm [6] in Theano [12] and Lasagne [5]. The code uses the Arcade
Learning Environment [11] – the standard framework for evaluating agents playing
Atari games. Our code with instructions how to run it can be found on github [7].
All experiments were performed on a Linux machine equipped with Nvidia GTX
480 graphics card. Each of the experiments lasted for 1–3 days. A single epoch
of a RAM-only training lasted approximately half of the time of the screen-only
training for an architecture with the same number of layers.

2.3 Network Architectures

We performed experiments with four neural network architectures which accept
the RAM state as (a part of) the input. The RAM input is scaled by 256, so all
the inputs are between 0 and 1.

All the hyperparameters of the network we consider are the same as in [17], if
not mentioned otherwise (see AppendixA). We only changed the size of the replay
memory to ≈105 items, so that it fits into 1.5 GB of Nvidia GTX 480 memory5.

3 Plain Approach

Here we present the results of training the RAM-only networks just ram and
big ram as well as the benchmark model nips.

Neural network 1. just ram(outputDim)
Input: RAM
Output: A vector of length outputDim

1 hiddenLayer1 ← DenseLayer(RAM, 128, rectify)
2 hiddenLayer2 ← DenseLayer(hiddenLayer1, 128, rectify)
3 output ← DenseLayer(hiddenLayer2, outputDim, no activation)
4 return output

The next considered architecture consists of the above network with two
additional dense layers:

4 The total number of experiments exceeded 100, but this includes experiments involv-
ing other models and repetitions of experiments described in this paper.

5 We have not observed a statistically significant change in results when switching
between replay memory size of 105 and 5 · 105.
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Neural network 2. big ram(outputDim)
Input: RAM
Output: A vector of length outputDim

1 hiddenLayer1 ← DenseLayer(RAM, 128, rectify)
2 hiddenLayer2 ← DenseLayer(hiddenLayer1, 128, rectify)
3 hiddenLayer3 ← DenseLayer(hiddenLayer2, 128, rectify)
4 hiddenLayer4 ← DenseLayer(hiddenLayer3, 128, rectify)
5 output ← DenseLayer(hiddenLayer4, outputDim, no activation)
6 return output

The training process consists of epochs, which are interleaved by test periods.
During a test period we run the model with the current parameters, the proba-
bility of doing a random action ε = 0.05 and the number of test steps (frames)
being 10 000. Figures 2, 3 and 4 show the average result per episode (full game,
until player’s death) for each epoch.

Figures 2, 3, and 4 show that there is a big variance of the results between
epochs, especially in the RAM models. Because of that, to compare the models,
we chose the results of the best epoch6. We summarized these results in Table 1,
which also include the results of ale ram7.

In Breakout the best result for the big ram model is weaker than those
obtained by the network nips. In Seaquest the best result obtained by the
big ram network is better than the best result obtained by the network nips.
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Fig. 2. Training results for Breakout for three plain models: nips, just ram, big ram.

6 For Breakout we tested networks with best training-time results. The test consisted
of choosing other random seeds and performing 100 000 steps. For all networks,
including nips, we received results consistently lower by about 30%.

7 The ale ram’s evaluation method differ – the scores presented are the average over 30
trials consisting of a long period of learning and then a long period of testing, never-
theless the results are much worse than of any DQN-based method presented here.
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Fig. 3. Training results for Seaquest for three plain models: nips, just ram, big ram.
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Fig. 4. Training results for Bowling for three plain models: nips, just ram, big ram.

In Bowling our methods give a slight improvement over the network nips, yet
in all considered approaches the learning as illustrated by Fig. 4 seem to be poor
and the outcome in terms of gameplay is not very satisfactory. We decided to
not include in this paper further experiments with Bowling and leave it as a
topic of a further research.

4 Regularization

Training a basic RAM-only network leads to high variance of the results (see the
figures in the previous section) over epochs. This can be a sign of overfitting.
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Table 1. Table summarizing test results for basic methods.

Breakout Seaquest Bowling

nips best 213.14 1808 54.0

just ram best 99.56 1360 58.25

big ram best 178.0 2680 66.25

ale ram 4.0 593.7 29.3

To tackle this problem we have applied dropout [20], a standard regularization
technique for neural networks.

Dropout is a simple, yet effective regularization method. It consists of “turn-
ing off” with probability p each neuron in training, i.e. setting the output of
the neuron to 0, regardless of its input. In backpropagation, the parameters of
switched off nodes are not updated. Then, during testing, all neurons are set to
“on” – they work as in the course of normal training, with the exception that
each neuron’s output is multiplied by p to make up for the skewed training.
The intuition behind the dropout method is that it forces each node to learn
in absence of other nodes. The work [24] shows experimental evidence that the
dropout method indeed reduces the variance of the learning process.

We’ve enabled dropout with probability of turning off a neuron p = 1
2 . This

applies to all nodes, except output ones. We implemented dropout for two RAM-
only networks: just ram and big ram. This method offers an improvement for
the big ram network leading to the best result for Seaquest in this paper. The
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Fig. 5. Training results for Seaquest with dropout p = 0.5 for models just ram,
big ram. This figure suggests that indeed dropout reduces the variance of the learning
process.
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Table 2. Summary of test results for training which involves regularization with the
dropout method with the parameter p = 0.5.

Breakout Seaquest

just ram with dropout best 130.5 1246.67

big ram with dropout best 122.25 2805

best epoch results are presented in the Table 2 and the intermediate training
results for Seaquest are shown in Fig. 5.

5 Decreasing Learning Rate

We also tried to reduce the variance of the learner through reduction of the
learning rate from 0.0002 to 0.0001.

The learning rate is a parameter of the algorithm rmsprop that decides how
parameters are changed in each step. Bigger learning rates correspond to moving
faster in the parameter space, making learning faster, but more noisy.

We expected that the drastic changes in performance between consecutive
epochs, as illustrated by Figs. 2 and 3, may come from stepping over optimal val-
ues when taking too big steps. If it is the case, decreasing the step size should lead
to slower learning combined with higher precision of finding minima of the loss
function.

The results of these experiments can be found in Table 3. Comparing to the
training without regularization, scores improved only in the case of Breakout
and the just ram network, but not by a big margin.

Table 3. Summary of test results for modified learning rate.

Breakout Seaquest

just ram best 137.67 1233.33

big ram best 112.14 2675

6 Frame Skip

Atari 2600 was designed to use an analog TV as the output device with 60 new
frames appearing on the screen every second. To simplify the search space we
impose a rule that one action is repeated over a fixed number of frames. This
fixed number is called the frame skip. The standard frame skip used in [17] is
4. For this frame skip the agent makes a decision about the next move every
4 · 1

60 = 1
15 of a second. Once the decision is made, then it remains unchanged

during the next 4 frames.
Low frame skip allows the network to learn strategies based on a super-human

reflex. High frame skip will limit the number of strategies, hence learning may
be faster and more successful.
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In the benchmark agent nips, trained with the frame skip 4, all 4 frames are
used for training along with the sum of the rewards coming after them. This is dic-
tated by the fact that due to hardware limitations, Atari games sometimes “blink”,
i.e. show some objects only every few frames. For example, in the game Space
Invaders, if an enemy spaceship shoots in the direction of the player, then shots
can be seen on the screen only every second frame and an agent who sees only the
frames of the wrong parity would have no access to a critical part of the game infor-
mation.

In the case of learning from memory we are not aware of any critical loses
of information when intermediate RAM states are ignored. Hence in our models
we only passed to the network the RAM state corresponding to the last frame
corresponding to a given action8.

The work [13] suggests that choosing the right frame skip can have a big
influence on the performance of learning algorithms (see also [14]). Figure 6
and Table 4 show a significant improvement of the performance of the just ram
model in the case of Seaquest. Quite surprisingly, the variance of results appeared
to be much lower for higher FRAME SKIP.

As noticed in [13], in the case of Breakout high frame skips, such as
FRAME SKIP = 30, lead to a disastrous performance. Hence we tested only lower
FRAME SKIP and for FRAME SKIP = 8 we received results slightly weaker than
those with FRAME SKIP = 4.

Table 4. Table summarizing test results for training which involves higher FRAME SKIP

value. For Breakout FRAME SKIP = 30 does not seem to be a suitable choice.

Breakout Seaquest

just ram with FRAME SKIP 8 best 82.87 2064.44

just ram with FRAME SKIP 30 best – 2093.24

big ram with FRAME SKIP 8 best 102.64 2284.44

big ram with FRAME SKIP 30 best – 2043.68

7 Mixing Screen and Memory

One of the hopes of future work is to integrate the information from the RAM and
information from the screen in order to train an ultimate Atari 2600 agent. In this
work we made some first steps towards this goal. We consider two mixed network
architectures. The first one is mixed ram, where we just concatenate the output of
the last hidden layer of the convolutional network with the RAM input and then
in the last layer apply a linear transformation without any following non-linearity.

8 We also tried to pass all the RAM states as a (128∗FRAME SKIP)-dimensional vector,
but this did not lead to an improved performance.
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Fig. 6. Training results for Seaquest with FRAME SKIP = 8 and FRAME SKIP = 30 for
the model just ram.

Neural network 3. mixed ram(outputDim)
Input: RAM,screen
Output: A vector of length outputDim

1 conv1 ← Conv2DLayer(screen, rectify)
2 conv2 ← Conv2DLayer(conv1, rectify)
3 hidden ← DenseLayer(conv2, 256, rectify)
4 concat ← ConcatLayer(hidden, RAM)
5 output ← DenseLayer(concat, outputDim, no activation)
6 return output

The other architecture is a deeper version of mixed ram. We allow more dense
layers which are applied in a more sophisticated way as described below.

Neural network 4. big mixed ram(outputDim)
Input: RAM,screen
Output: A vector of length outputDim

1 conv1 ← Conv2DLayer(screen, rectify)
2 conv2 ← Conv2DLayer(conv1, rectify)
3 hidden1 ← DenseLayer(conv2, 256, rectify)
4 hidden2 ← DenseLayer(RAM, 128, rectify)
5 hidden3 ← DenseLayer(hidden2, 128, rectify)
6 concat ← ConcatLayer(hidden1, hidden3)
7 hidden4 ← DenseLayer(concat, 256, rectify)
8 output ← DenseLayer(hidden4, outputDim, no activation)
9 return output

The obtained results presented in Table 5 are reasonable, but not particularly
impressive. In particular we did not notice any improvement over the benchmark
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Table 5. Table summarizing test results for methods involving information from the
screen and from the memory.

Breakout Seaquest

mixed ram best 143.67 488.57

big mixed ram best 67.56 1700

nips network, which is embedded into both mixed architectures. This suggests
that in the mixed ram and big mixed ram models the additional information
from the memory is not used in a productive way.

8 RAM Visualization

We visualized the first layers of the neural networks in an attempt to understand
how they work. Each column in Fig. 7 corresponds to one of 128 nodes in the first
layer of the trained big ram network and each row corresponds to one of 128 mem-
ory cells. The color of a cell in a given column describes whether the high value in
this RAM cell negatively (blue) or positively (red) influence the activation level
for that neuron. Figure 7 suggests that the RAM cells with numbers 95–105 in
Breakout and 90–105 in Seaquest are important for the gameplay – the behavior
of big ram networks depend to the high extent on the state of these cells.

(a) big ram in Breakout (b) big ram in Seaquest

Fig. 7. Visualization of the parameters of the first layer of the trained Q-networks.
(Color figure online)

9 Conclusions

We trained a number of neural networks capable of playing Atari 2600 games:
Bowling, Breakout and Seaquest. The novel aspect of this work is that the net-
works use information stored in the memory of the console. In all games the
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RAM agents are on a par with the screen-only agent nips. The RAM agents
trained using methods described in this work were unaware of more abstract fea-
tures of the games, such as counters controlling amount of oxygen or the number
of divers in Seaquest.

In the case of Seaquest, even a simple just ram architecture with an appro-
priately chosen FRAME SKIP parameter as well as the big ram agent with stan-
dard parameters, performs better than the benchmark nips agent. In the case
of Breakout, the performance is below the screen-only agent nips, but still rea-
sonable. In the case of Bowling methods presented in [17] as well as those in this
paper are not very helpful – the agents play at a rudimentary level.

10 Future Work

10.1 Games with More Refined Logic

Since in the case of Seaquest the performance of RAM-only networks is quite
good, a natural next target would be games such as Pacman or Space Invaders,
which similarly to Seaquest offer interesting tactical challenges.

10.2 More Sophisticated Architecture and Better Hyperparameters

The recent papers [15,18,21,23] introduce more sophisticated ideas to improve
deep Q-networks. We would like to see whether these improvements also apply
to the RAM models.

It would be also interesting to tune hyperparameters in a way which would
specifically address the needs of RAM-based neural networks. In particular we
are interested in:

– better understanding what the deep Q-network learns about specific memory
cells; can one identify critical cells in the memory?

– improving stability of learning and reducing variance and overfitting,
– more effective joining of information from the screen and from the memory,
– trying more complex, deeper architectures for RAM.

10.3 Recurrent Neural Networks and Patterns of Memory Usage

Reading the RAM state while running the deep Q-learning algorithm gives us
an access to a practically unlimited stream of Atari 2600 memory states. We
can use this stream to build a recurrent neural network which takes into account
previous RAM states.

In our view it would also be interesting to train an autoencoder. It may help
to identify RAM patterns used by Atari 2600 programmers and to find better
initial parameters of the neural network [22].
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10.4 Patterns as Finite State Machines

The work of Angluin [10] introduced the concept of learning the structure of
a finite state machine through queries and counter-examples. A game for Atari
2600 can be identified with a finite state machine which takes as input the
memory state and action and outputs another memory state. We are interested
in devising a neural network which would learn the structure of this finite state
machine. The successive layers of the network would learn about sub-automata
responsible for specific memory cells and later layers would join the automata
into an automaton which would act on the whole memory state.

Acknowledgements. This research was carried out with the support of grant GG63-
11 awarded by the Interdisciplinary Centre for Mathematical and Computational Mod-
elling (ICM) University of Warsaw. We would like to express our thanks to Marc G.
Bellemare for suggesting this research topic.

A Parameters

The list of hyperparameters and their descriptions. Most of the descriptions come
from [18] (Table 6).

Table 6. Parameters

Hyperparameter Value Description

Minibatch size 32 Number of training cases over which each stochastic gradient
descent (SGD) update is computed

Replay memory size 100 000 SGD updates are randomly sampled from this number of
most recent frames

Phi length 4 The number of most recent frames experienced by the agent
that are given as input to the Q network in case of the
networks that accept screen as input

Update rule rmsprop Name of the algorithm optimizing the neural network’s
objective function

Learning rate 0.0002 The learning rate for rmsprop

Discount 0.95 Discount factor γ used in the Q-learning update. Measures
how much less do we value our expectation of the value of
the state in comparison to observed reward

Epsilon start 1.0 The probability (ε) of choosing a random action at the
beginning of the training

Epsilon decay 1000000 Number of frames over which the ε is faded out to its final
value

Epsilon min 0.1 The final value of ε, the probability of choosing a random
action

Replay start size 100 The number of frames the learner does just the random
actions to populate the replay memory
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Clustering-Based Online Player Modeling
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Abstract. Being able to imitate individual players in a game can ben-
efit game development by providing a means to create a variety of
autonomous agents and aid understanding of which aspects of game
states influence game-play. This paper presents a clustering and locally
weighted regression method for modeling and imitating individual play-
ers. The algorithm first learns a generic player cluster model that is
updated online to capture an individual’s game-play tendencies. The
models can then be used to play the game or for analysis to identify how
different players react to separate aspects of game states. The method is
demonstrated on a tablet-based trajectory generation game called Space
Navigator.

1 Introduction

Automating game-play in a human-like manner is one goal in intelligent gaming
research, with applications such as a gaming version of the Turing Test [14] and
human-like game avatars [6]. When we move from playing a game generically
to playing like a specific individual, the dynamics of the problem change [10].
In complex dynamic environments, it can be difficult to differentiate individ-
ual players, because the insights exploited in imitating ‘human-like’ game-play
can become less useful in imitating the idiosyncrasies that differentiate specific
individuals’ game-play. By learning how to imitate individual player behaviors,
we can model more believable opponents [6] and understand what demarcates
individual players, which allows a game designer to build robust game personal-
ization [18].

The Space Navigator environment provides a test-bed for player modeling
in routing tasks, and allows us to see how different game states affect disparate
individuals’ performance of a routing task. The routing task is a sub-task of
several more complex task environments, such as real-time strategy games or
air traffic control tasks. Since there is only one action a player needs to take:
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draw a trajectory, it is easy for players to understand. However, Space Navigator,
with its built in dynamism, is complex enough that it is not simple to generate
a single ‘best input’ to any given game state. The dynamism also means that
replaying an individual’s past play is not possible.

Specifically, we use individual player modeling to enable a trajectory genera-
tor that acts in response to game states in a manner that is similar to what a spe-
cific individual would have done in the same situation. Individualized response
generation enables better automated agents within games that can imitate indi-
vidual players for reasons such as creating “stand-in” opponents or honing strat-
egy changes by competing against oneself. In addition, the player models can be
used by designers to identify where the better players place emphasis and how
they play, which can be used to balance gameplay or create meaningful tutorials.

This paper contributes a player modeling paradigm that enables an automated
agent to perform response actions in a game that are similar to those that an indi-
vidual player would have performed. The paradigm is broken into three steps: (1)
a cluster-based generic player model is created offline, (2) individual player models
hone the generic model online as players interact with the game, and (3) responses
to game situations utilize the individual player models to imitate the responses
players would have given in similar situations. The resulting player models can
point game designers toward the areas of a game state that affect individual behav-
ior in a routing task in more or less significant ways.

The remainder of the paper proceeds as follows. Section 2 reviews related
work. Section 3 introduces the Space Navigator trajectory routing game. Section 4
presents the online individual player modeling paradigm and the model is then
applied to the environment in Sect. 5. Section 6 gives experimental results show-
ing the individual player modeling system’s improvements over a generic modeling
method for creating trajectories similar to individual users. Section 7 summarizes
the findings presented and proposes potential future work.

2 RelatedWork

Player models can be grouped across four independent facets [15]: domain, pur-
pose, scope, and source. The domain of a player model is either game actions or
human reactions. Purpose describes the end for which the player model is imple-
mented: generative player models aim to generate actual data in the environ-
ment in place of a human or computer player, while descriptive player models
aim to convey information about a player to a human. Scope describes the level of
player(s) the model represents: individual (one), class (a group of more than one),
universal (all), and hypothetical (other). The source of a player model can be one
of four categories: induced - objective measures of actions in a game; interpreted
- subjective mappings of actions to a pre-defined category; analytic - theoretical
mappings based on the game’s design; and synthetic - based on non-measurable
influence outside game context. As an example classification, the player model cre-
ated in [16] for race track generation models individual player tendencies and pref-
erences (Individual), objectively measures actions in the game (Induced), creates
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tracks in the actual environment (Generative), and arises from game-play data
(Game Action). The player model created here furthers this work by updating
the player model online.

One specific area of related work in player modeling involves player decision
modeling. Player decision modeling [8] aims to reproduce the decisions that play-
ers make in an environment or game. These models don’t necessarily care why a
given decision was made as long as the decisions can be closely reproduced. Uti-
lizing player decision modeling, procedural personas [7,11] create simple agents
that can act as play testers. By capturing the manner in which a given player or
set of players makes decisions when faced with specific game states, the personas
can help with low-level design decisions.

Past work has used Case-Based Reasoning (CBR) [5] and Learning from
Demonstration (LfD) [1] to translate insights gained through player modeling
into responses within an environment. The nearest neighbor principle, maintain-
ing that instances of a problem that are a shorter distance apart more closely
resemble each other than do instances that are a further distance apart, is used to
find relevant past experiences in LfD tasks such as a robot intercepting a ball [1],
CBR tasks such as a RoboCup soccer-playing agent [5], or tasks integrating both
LfD and CBR such as in real time strategy games [13]. When searching through
large databases of past experiences approximate nearest neighbors searches, such
as Fast Library for Approximate Nearest Neighbors (FLANN [12]), have proven
useful in approximating nearest neighbor searches while maintaining lower order
computation times in large search spaces.

3 Application Environment

Space Navigator [2,3] is a tablet computer game similar to Flight Control [4] and
Contrails [9]. Figure 1 shows a screen capture from the game and identifies several
key objects within the game. Spaceships appear at set intervals from the screen
edges. The player directs each spaceship to its destination planet (designated by
similar color) by drawing a line on the game screen using his or her finger. Points
accumulate when a ship encounters its destination planet or bonuses that ran-
domly appear throughout the play area. Points decrement when spaceships col-
lide and when a spaceship traverses one of several “no-fly zones” (NFZs) that move
throughout the play area at a set time interval. The game ends after five minutes.

4 Methodology

The player modeling paradigm shown in Fig. 2 begins with a cluster-based generic
player model created offline (area 1). The generic player model is updated online to
adapt to changing player habits and quickly differentiate between players (area 2).
Then the online player modeler creates responses to game states that are similar
to those that an individual player would have given in response to similar states
(area 3).
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Fig. 1. A Space Navigator screen capture highlighting important game objects. (Color
figure online)

Fig. 2. An online updating individual player modeling paradigm.

State and Response Clustering. Clustering reduces the state-response pairs
into a set of representative clusters, dramatically reducing the representation size
of a player model. Ward agglomerative clustering [17] provides a baseline for the
player modeling method and was proven effective for clustering in trajectory cre-
ation game environments in [3,9]. The clustering implemented here takes each
game-play instance, containing a state and its associated response, and assigns
it to both a state cluster and a response cluster. The number of clusters is a choice
left to the practitioner, accounting for the specific environment and resource con-
straints. A state-response instance mapping from a given state cluster to a given
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response cluster demonstrates a proclivity for a player to react with a class of
maneuver in a specific type of game situation. By determining the frequency of
mappings, common situational responses and outlier actions emerge.

Cluster Outlier Pruning. If a state has only been seen in one instance by
one player, that state is unlikely to provide much benefit in predicting future
responses. After state and response clustering, clusters with outlier responses are
removed first by removing all instances assigned to the least populated response
clusters. The cutoff threshold for determining which instances to remove could
be either a minimum response cluster size or a percentage of response clusters to
remove. For example, due to the distribution of cluster sizes in the Space Navi-
gator database we removed instances falling in the bottom 25% of all response
clusters according to cluster size (setting a cutoff threshold relies on knowledge
of the environment and underlying dataset distribution, and is an area for future
work).

Similarly, a response given by only one player in one instance is unlikely to
reoccur in future player responses. Outlier state clusters are removed in two ways.
First, instances that fall in the bottom 25% of all state clusters according to clus-
ter size are removed, eliminating response clusters that are rare overall. However,
removing states not seen by many different players is also important. Pruning
also removes instances falling into a state cluster encountered by a minimal subset
of players, eliminating response clusters reached by an extremely small subset of
players.

The resulting player model, Px,y is the (x = the number of state clusters) × (y
= the number of response clusters) matrix of likelihoods that a given state cluster
maps to a given trajectory cluster, such that pi,j represents the likelihood that
state si maps to response ri. This model is created across all game-play instances
after cluster pruning is complete. This generic player model, created off-line, forms
the baseline for individual player model creation.

4.1 Individual Player Models

For online individual player modeling, the generic player model is updated as an
individual plays the game (shaded area 2 of Fig. 2). Over time, the updates shape a
player model of an individual player’s game-play tendencies. The individual player
update trains quickly by weighting learning according to state-response cluster
scores.

Algorithm 1 is the online algorithm for learning individual player models.
The algorithm begins with the generic player model P. Once a player submits
a response in the game environment, the current game state and the response are
given as inputs. The algorithm finds the closest state (Sclose) and response (Rclose)
clusters, and the player model is updated at the intersection of Sclose and Rclose

by δclose. Then the player model is normalized across all the R values for Sclose so
that the values sum to 1.

There are certain states that provide more information than others. Weight-
ing the increment values for a given state-trajectory pair aids quick learning of
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Algorithm 1. Individual player model online update algorithm.
1: inputs: P = x × y generic player model; 〈sin, rin〉 = a state-response pair; M =

{〈S1, R1〉 , 〈S1, R2〉 , · · · , 〈Sx, Ry〉}, all cluster mappings
2: Sclose = the closest state cluster to state sin

3: δclose = q · (δcp + δcmv + δpma), Sclose’s update increment weight
4: Rclose = the closest response cluster to response rin

5: p (Sclose, Rclose) = p (Sclose, Rclose) + δclose

6: for p (Sclose, i) where i = 1 → y do
7: p (Sclose, i) = p (Sclose, i) / (1 + δclose)
8: end for

player idiosyncrasies. Traits gleaned from the clustered data help determine which
state clusters should create larger learning increments, and which states provide
minimal information beyond the generic player model. Three traits comprise the
update increment, δ. As shown in Algorithm1, Line 3 these include: cluster pop-
ulation, cluster mapping variance, and previous modeling utility.

Cluster Population: When attempting to learn game-play habits quickly,
knowing the expected responses of a player to common game states is impor-
tant. Weighting δ according to the size of a state cluster in comparison to that of
the other state clusters across the entire game-play dataset emphasizes increased
learning from common states for an individual player model. States that fall into
larger clusters can provide better information for quickly learning to differenti-
ate individual player game-play. To calculate the cluster population trait, all state
cluster sizes are calculated and any state cluster with a population above a selected
population threshold is given a cluster population trait weight of δcp = 1 and all
other state clusters receive a weight of δcp = 0.

Cluster Mapping Variance: When mapping state clusters to response clusters,
some state clusters will consistently map to a specific response cluster across all
players. Other state clusters will consistently map to several response clusters
across all players. Very little about a player’s game-play tendencies is learned from
these two types of state clusters. However, state clusters that map to relatively few
clusters per player (intra-player cluster variance), while still varying largely across
all players (inter-player cluster variance) can help quickly differentiate players.
The state cluster mapping variance ratio is the total number of response clusters
to which a state cluster maps across all players divided by the number of response
clusters to which the average player maps, essentially the ratio of inter-player clus-
ter variance to the intra-player cluster variance. The cluster mapping variance
trait weight, δcmv, is set according to a cluster variance ratio threshold. All state
clusters with a variance ratio above the threshold receive a weight of δcmv = 1 and
all others receive a weight of δcmv = 0.

Previous Modeling Utility: The last trait involves running Algorithm1 on the
existing game-play data. Running the individual player update model on previ-
ous game-play data provides insight into how the model works in the actual game
environment. First, Algorithm1 runs with δ = 1 for all state clusters, training
the player model on some subset of a player’s game-play data (training set). Then
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it iterates through the remaining game-play instances (test set) and generates a
response to each presented state, using both the individual player model and the
generic player model. This iteration includes each individual player in the game-
play dataset. For each test set state, the response most similar to the player’s
actual response is determined. Each time the individual player model is closer than
the generic player model to the actual player response, tally a ‘win’ for the given
state cluster and a ‘loss’ otherwise. The ratio of wins to losses for each state cluster
makes up the previous modeling utility trait. The previous modeling utility trait
weight, δpma, is set according to a previous modeling utility threshold. All state
clusters with a previous modeling utility above the threshold receive a weight of
δpma = 1 and all others receive a weight of δpma = 0.

Calculating δ: When Algorithm 1 runs, δ is set to the sum of all trait weights
for the given state cluster multiplied by some value q which is an experimental
update increment set by the player. Line 3 shows how δ is calculated as a sum of
the previously discussed trait weights.

4.2 Generate Response

Since response generation is environment specific, this section demonstrates the
response generation section shown in area 3 of Fig. 2 for a trajectory generation
task. The resulting trajectory generator creates trajectories that imitate a specific
player’s game-play, using the cluster weights in P from either a generic or learned
player model.

The trajectory response generation algorithm takes as input: the number of
trajectories to weight and combine for each response (k), the number of state and
trajectory clusters (x and y respectively), the re-sampled trajectory size (μ), a
new state (snew), a player model (P), and the set of all state-trajectory cluster
mappings (M). Line 2 begins by creating an empty trajectory of length μ which
will hold the trajectory generator’s response to snew. Line 3 then finds the state
cluster (Sclose) to which snew maps. Pclose, created in Line 4, contains a set of
likelihoods. Pclose holds the likelihoods of the k most likely trajectory clusters to
which state cluster Sclose maps.

The loop at Line 5 then builds the trajectory response to snew. Humans tend
to think in terms of ‘full maneuvers’ when generating trajectories–specifically for
very quick trajectory generation tasks such as trajectory creation games [9]–rather
than creating trajectories one point at a time. Therefore, the Space Navigator
trajectory response generator creates full maneuver trajectories. Line 7 finds the
instance assigned to both state cluster Sclose and trajectory cluster Ti with the
state closest to snew. The response to this state is then weighted according to
the likelihoods in P. The loop in Line 9, then combines the k trajectories using
a weighted average for each of the μ points of the trajectory. The weighted aver-
age trajectory points are normalized across the k weights used for the trajectory
combination in Line 13 and returned as the response to state snew according to
the player model P.
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Algorithm 2. Trajectory response generation algorithm.
1: inputs: k = the number of trajectories to combine; x = the number of state clus-

ters; y = the number of trajectory clusters; μ = the re-sampled trajectory
size; snew = a state we have not seen before; P = an x × y player model;
M = {〈S1, T1〉 , 〈S1, T2〉 , · · · , 〈Sx, Ty〉}, all state-trajectory cluster mappings

2: initialize: tnew (μ) ← an empty trajectory of μ points
3: Sclose = the closest state cluster to state snew

4: Pclose = max
k

[
PSclose,(z|∀z∈1,...,y)

]

5: for each Pclose,i ∈ Pclose do
6: Ti = the trajectory cluster associated with Pclose,i

7: sclose,i ← state closest to snew in 〈Sclose, Ti〉
8: tclose,i ← the response trajectory to sclose,i

9: for ν = 1 → μ do
10: tnew (ν) = tnew (ν) + tclose,i (ν) · Pclose,i

11: end for
12: end for

13: return tnew = tnew/
k∑

i=1

Pclose,i

5 Environment Considerations

This section demonstrates how the player modeling paradigm can be applied to
generating trajectory responses in Space Navigator. First, an initial data capture
experiment is outlined. Then, solutions are presented to two environment specific
challenges: developing a state representation and comparing disparate trajecto-
ries.

5.1 Initial Data Capture Experiment

An initial experiment captured a corpus of game-play data for further compari-
son and benchmarking of human game-play [3]. Data was collected from 32 par-
ticipants playing 16 five-minute instances of Space Navigator. The instances rep-
resented four difficulty combinations, with two specific settings changing: (1) the
number of NFZs and (2) the rate at which new ships appear. The environment
captures data associated with the game state when the player draws a trajec-
tory, including: time stamp, current score, ship spawn rate, NFZ move rate, bonus
spawn interval, bonus info (number, location, and lifespan of each), NFZ info
(number, location, and lifespan of each), other ship info (number, ship ID number,
location, orientation, trajectory points, and lifespan of each), destination planet
location, selected ship info (current ship’s location, ship ID number, orientation,
lifespan, and time to draw the trajectory), and selected ship’s trajectory points.
The final collected dataset consists of 63,030 instances.

5.2 State Representation

Space Navigator states are dynamic both in number and location of objects. The
resulting infinite number of configurations makes individual state identification
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difficult. To reduce feature vector size, the state representation contains only the
elements of a state that directly affect a player’s score (other ships, bonuses, and
NFZs) scaled to a uniform size, along with a feature indicating the relative length
of the spaceship’s original distance from its destination. Algorithm3 describes the
state-space feature vector creation process.

Algorithm 3. State-space feature vector creation algorithm.
1: input: L = the straight-line trajectory from spaceship to destination planet.
2: initialize: η ∈ [0.0 · · · 1.0) = weighting variable; s = empty array (length 19);

zoneCount = 1
3: Translate all objects equally s.t. the selected spaceship is located at the origin.
4: Rotate all objects in state-space s.t. L lies along the X-axis.
5: Scale state-space s.t. L lies along the line segment from (0, 0) to (1, 0).
6: for each object type ϑ ∈ (OtherShip, Bonus, NFZ) do
7: for each zone z = 1 → 6 do
8: zoneCount = zoneCount + 1
9: for each object o of type ϑ in zone z do

10: do = the shortest distance of o from L
11: wo = e−(η·do)

2
� Gaussian weight function

12: s [zoneCount] = s [zoneCount] + wo

13: end for
14: end for
15: end for
16: s [19] = the non-transformed straight-line trajectory length
17: return s, normalized between [0, 1]

The algorithm first transforms the state-space features against a straight-line
trajectory frame in Line 1. Lines 3–5 transform the state-space along the straight-
line trajectory such that disparate trajectories can be compared in the state-space.
The loop at Line 6 accounts for different element types and the loop at Line 7
divides the state-space into six zones as shown in Fig. 3. This effectively divides the
state-space into left and right regions, each with three zones with relation to the
spaceship’s straight-line path: behind the spaceship, along the path, and beyond
the destination.

To compare disparate numbers of objects, the loop beginning in Line 9 uses a
weighting method similar to that used in [5], collecting a weight score (s) for each
object within the zone. This weight score is calculated using a Gaussian weight-
ing function based on the minimum distance an object is from the straight-line
trajectory. Figure 3 shows the transformation of the state into a feature vector
using Algorithm 3. The state-space is transformed in relation to the straight-line
trajectory, and a value is assigned to each “entity type + zone” pair accordingly.
For example, Zone 1 has a bonus value of 0.11 and other ship and NFZ values of
0.00, since it only contains one bonus. Lastly, the straight-line trajectory distance
is captured. This accounts for the different tactics used when ships are at differ-
ent distances from their destination. The resulting state representation values are
normalized between zero and one.
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Fig. 3. The six zones surrounding the straight line trajectory in a Space Navigator state
representation and the state representation calculated with Algorithm 3.

5.3 Trajectory Comparison

Trajectory generation requires a method to compare disparate trajectories. Tra-
jectory re-sampling addresses the fact that trajectories generated within Space
Navigator vary in composition, containing differing numbers of points and point
locations. Re-sampling begins by keeping the same start and end points, and iter-
ates until the re-sampled trajectory is filled. The process first finds the propor-
tional relative position (pm) of a point. The proportional relative position indi-
cates where the i-th point would have fallen in the original trajectory and may
fall somewhere between two points. The proportional distance (dm) that pm falls
from the previous point in the old trajectory (p0) is the relative distance that the
i-th re-sampled point falls from the previous point. To compare trajectories, the
target number of points is set to 50 (approximately the mean trajectory length in
the initial data capture) for re-sampling all the trajectories.

Re-sampling has two advantages: the re-sampling process remains the same for
both trajectories that are too long and too short and maintains the distribution
of points along the trajectory. A long or short distance between two consecutive
points, remains in the re-sampled trajectory. This ensures that trajectories drawn
quickly or slowly maintain those sampling characteristics despite the fact that the
draw rate influences the number of points in the trajectory. Since feature vector
creation geometrically transforms a state, the trajectories generated in response
to the state are transformed in the same manner, ensuring the state-space and
trajectory response are positioned in the same state space.

To ensure the trajectories generated in Space Navigator are similar to those
of an individual player, a distance measure captures the objective elements of
trajectory similarity. The Euclidean trajectory distance treats every trajectory
of i (x, y) points, as a 2i-dimensional point in Euclidean space where each x
and each y value in the trajectory represents a dimension. The distance between
two trajectories is the simple Euclidean distance between the two 2i-dimensional
point representations of the trajectories. A 35-participant human-subject study
confirmed that Euclidean trajectory distance not only distinguished between
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trajectories computationally, but also according to human conceptions of trajec-
tory similarity.

6 Experiment and Results

This section describes testing of the online individual player modeling trajec-
tory generator and presents insights gained from the experiment. The results
show that, with a limited amount of training data, the individual player mod-
eling trajectory generator is able to create trajectories more similar to those of
a given player than a generic player-modeling trajectory generator. Additionally,
the results show the model provides insights for a better understanding of what
separates different players’ game-play via comparison to the generic player model.

6.1 Experiment Settings

The experiment compares trajectories created with the generic player model, the
individual player model, and a generator that always draws a straight line between
the spaceship and its destination planet. The first five games are set aside as a
training dataset and the next eleven games as a testing dataset. Five training
games (equivalent to 25 min of play) was chosen as a benchmark for learning an
individual player model to force the system to quickly pull insights that would
manifest in later game-play. For each of 32 players, the individual player model is
trained on the five-game training dataset using Algorithm1 with the trait score
weights. Next, each state in the given player’s testing set is presented to all three
trajectory generators and the difference between the generated and actual tra-
jectories recorded. Experimental values for the individual player model are set as
follows: update increment (q) = 0.01, cluster population threshold = 240, clus-
ter mapping variance threshold = 17.0, and previous modeling utility threshold
= 3.0.

The three learning thresholds specific to Space Navigator are: (1) state cluster
population threshold = 240 (set at a value of one standard deviation over the mean
cluster size), forty of 500 state clusters received a cluster population weight of
δcp = 1; (2) cluster mapping variance ratio threshold = 17, with 461 of 500 state
clusters receiving a cluster variance weight of δcmv = 1; and (3) previous modeling
utility threshold = 3, with 442 of 500 clusters receiving a previous modeling utility
score of δpma = 1.

To account for the indistinguishability of shorter trajectories, results were
removed for state-trajectory pairs with straight-line trajectory length less than
approximately 3.5 cm on tablets with 29.5 cm screens used for experiments. This
distance was chosen as it represents the trajectory length at which an accuracy
one standard deviation below the mean was reached.

6.2 Individual Player Modeling Results

Testing of the game-play databases shows that the trajectories generated using the
individual player model significantly improved individual player imitation results
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Fig. 4. Euclidean trajectory distance between generated trajectories and actual trajec-
tory responses.

when compared to those generated by the generic player model and the straight
line trajectory generator. Table 1 and Fig. 4 show results comparing trajectories
generated using each database with the actual trajectory provided by the player,
showing the mean Euclidean trajectory distance and standard error of the mean
across all 32 players and instances.

Table 1. Mean and standard error of the Euclidean trajectory distances (in
SpaceNavigator environment meters).

Database Mean dist Std err

Individual player model 1.8640 ±0.0063

Straight line generator 1.8781 ±0.0069

Generic player model 1.8784 ±0.0063

The individual player model generator provides an improvement over the other
models. The mean Euclidean trajectory distance of 1.8640 provides a statistically
significant improvement over the straight line and generic player models, as stan-
dard error across all instances from all 32 players does not overlap with the latter
two player models. The similar player model improves the generic databases accu-
racy by learning more from a selected subset of presented states to ensure that the
player model more accurately generates similar trajectories.
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6.3 Individual Player Model Insight Generation

The changes in player model learning value for each element of a state represen-
tation show which aspects of the state influence game-play. This enables a better
understanding of what distinguishes individual game-play within the game envi-
ronment.

Table 2 shows the results of a Pearson’s linear correlation between the mean
learning value change of each state cluster across all 32 players and the state rep-
resentation values of the associated state cluster centroids. The results show that
there is a statistically significant negative correlation between the mean learning
value changes and all of the zones, but some changes are much larger than others.
The overall negative correlation arises among object/zone pairs intuitively: high
object/zone pair scores imply a large or close presence of a given object type, con-
straining the possible trajectories. There is more differentiability of player actions
when more freedom of trajectory movement is available.

Table 2. Correlation of each state representation value with the mean change in asso-
ciated state cluster learning values in player models

Zone Pearson’s r p-value Pearson’s r p-value Pearson’s r p-value

Other Ships Bonuses NFZs

1 −0.1227 0.0060 −0.1569 0.0004 −0.1002 0.0251

2 −0.3911 0.0000 −0.3552 0.0000 −0.2749 0.0000

3 −0.1616 0.0003 −0.2212 0.0000 −0.1184 0.0080

4 −0.1465 0.0010 −0.1662 0.0002 −0.1159 0.0095

5 −0.4244 0.0000 −0.3693 0.0000 −0.2398 0.0000

6 −0.1903 0.0000 −0.2056 0.0000 −0.1040 0.0200

Dist −0.6434 0.0000

With the ship-to-planet distance feature, longer distances correlate to smaller
learning value changes among player models, with the strongest correlation of all
features: r of−0.6434 and p-value <0.0001. Possible explanations for this behavior
include: (1) players are more constrained over long distances, (2) as distances get
longer, the variance in the way an individual player draws trajectories in similar
situations increases, (3) shorter distances capture consistent tendencies that carry
along to distinguish individual game-play over time.

Another aspect that Table 2 shows is the importance of the middle zones in
comparison to the ‘before’ and ‘after’ zones. Figure 5 illustrates this point graph-
ically. The r values show that the middle two zones provide a larger influence
on the amount of change in the learning values. For example, in Fig. 5a the r
values for zones two and five are more than double those of any other zone.
This idea is somewhat intuitive as this is the area that the ship will traverse,
providing the most likely cause for interaction with objects of any given type.
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The results also provide insight into the relative value that players place on certain
types of objects. For example, determining the correlation coefficients of different
Object/Zone Pairs can show that No Fly Zones in the middle two zones provide
a significantly smaller influence on learning value changes than other ships do in
the same zones.

Fig. 5. Graphical representation of the correlation coefficient for each Object
Type/Zone score with the mean change in learning values in player models.

Three examples of how player modeling insights can be used in game applica-
tions involve training, game design, and player automation. Player models can be
used to find places where specific users who are doing really well properly value
certain actions over others. Proper valuations can then be communicated to play-
ers during training within the environment. Another example is that, we can use
the player modeling insights to design point structures to more closely align with
the way players perceive the value of different object types. Lastly, modeling a
specific player enables the designer to incorporate an automated player to play
like a specific expert or current user within the game.

7 Conclusions and FutureWork

The online individual player modeling paradigm presented in this paper is able to
generate trajectories similar to those of a specific Space Navigator player. The sys-
tem is able to operate online without needing to perform time-consuming offline
calculations to update individual player models. Additionally, the gains in individ-
ual player imitation are found in a relatively small number of games (five games,
totaling 25 min). The player models developed to imitate players also allow for
a better understanding of what traits of a given state provide understanding of
player differences which occur for different states.

This work provides opportunities for several areas of future work. Further
studies will research the effects of using the trajectory generator to act as an
automated aid for players interacting with the Space Navigator game. Addition-
ally, further analysis of the player modeling methods could yield further insights
into how much differentiation of individual players can be gained over different
amounts of time. Moreover, imitating individual players could provide helpful
insights in determining how experts play Space Navigator to aid in experiments
to learn how to improve player training.
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Abstract. In this study, we specify the design of an artificial intelligence (AI)
player for a communication game called “Are You a Werewolf?” (AI Wolf). We
present the Werewolf game as a standard game problem in the AI field. It is similar
to game problems such as Chess, Shogi, Go, and Poker. The Werewolf game is
a communication game that requires several AI technologies such as multi-agent
coordination, intentional reading, and understanding of the theory of mind.
Analyzing and solving the Werewolf game as a standard problem will provide
useful results for our research field and its applications. Similar to the RoboCup
project, the goal of this project is to determine new themes while creating a
communicative AI player that can play the Werewolf game with humans. As an
initial step, we designed a platform to develop a game-playing AI for a compe‐
tition. First, we discuss the essential factors in Werewolf with reference to other
studies. We then develop a platform for an AI game competition that uses simpli‐
fied rules to support the development of AIs that can play Werewolf. The paper
reports the process and analysis of the results of the competition.

1 Introduction

The development of an artificial intelligence (AI) player that can play a game with a
human has been one of the main benchmarks in the AI field for researching intelligence
and its requirements. In the field of complete-information games, such as Chess or Shogi,
AIs have already defeated top human players. In 2016, an AI defeated a human in the
last-remaining complete-information game, Go [1]. In the field of incomplete games,
Texas Hold’em Poker is a conventional game that organizes competitions in the AI field
[2]. In 2015, Bowling et al. solved the problem of two-player-limited Poker [3]. Further,
action video games are starting to be used for evaluating AI in real-time situations [4].

Compared to previous game challenges, communication or communicative intelli‐
gence, which is commonly used in board and card games, has not been attempted. When
users play board and card games, they also converse with other players. Furthermore,
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some games are actually conducted through conversations, and these are referred to as
communication games. Relatively few studies focus on the application of AI in such
communication games.

“Are You a Werewolf?” is one of the most popular communication games. The cover story of
the “Werewolf” game (also known as “Mafia”) is as follows. “It’s a story about a village. Were‐
wolves have arrived who can change into and eat humans. The werewolves have the same form
as humans during the day, and attack the villagers one-by-one every night. Fear, uncertainty,
and doubt towards the werewolves begin to grow. The villagers decide that they must execute
those who are suspected of being werewolves, one by one…’’

The winner of the Werewolf game is decided solely through discussions. Conse‐
quently, game players must use their cognitive faculties to the full. In contrast to a
perfect-information game, players hide considerable information. Every player attempts
to determine the hidden information by using other players’ conversations and behav‐
iors, while trying to hide his/her own information to accomplish the objective. The game
highlights various problems that have not been addressed adequately in the area of AI,
such as an asymmetric diversity of player information, persuasion as a method of earning
confidence, and speculation as a method of detecting fabrication.

Therefore, we started a project to create an AI Werewolf (AI Wolf), which plays the
Werewolf game in place of a human. In addition, there are several trials for improving
AI with game competitions such as Lemonade Stand Game competition [5] and Annual
Computer Poker competition [6].

This is a comprehensive project, which aims at the development of not only a game-
playing algorithm but also virtual agents and real robots. Many tasks must be solved to
achieve the stated objective. Similar to the RoboCup [7] approach in robotics, to solve
these tasks, we employ a collective-intelligence approach, which uses competition to
improve each player’s algorithm. A common platform is indispensable when imple‐
menting a collective-intelligence approach. In this paper, we describe the outline of the
Werewolf platform for AI (AI Wolf Platform) that we developed as an open-source
project. We plan to organize a tournament of AI Wolf in which researchers from various
backgrounds can participate freely, with the aim of realizing collective intelligence with
the participating researchers.

Section 2 consists of the related studies about incomplete information games and
Sect. 3 provides the overview of the werewolf games. Next, the AI Wolf project is
defined in Sect. 4, and we describe our analysis for the first competition in Sect. 5.
Finally, Sect. 6 provides the conclusion and future proposals.

2 Challenges for Incomplete-Information Games

The development of a game-playing agent has been a challenge from the beginning of
AI research [8]. Several two-player board games with perfect information, such as
Checkers, Othello, Chess, and Go, have been used for trials by applying several new
algorithms [9, 10]. In these games, all information is observable by both players. An AI
system must only handle the condition of the board and does not need to determine a
competitor’s thought processes.
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Further, there are several unsolved games in incomplete information game fields.
Card games have information that cannot be observed by other players [11]. This is also
an important field in AI research. Poker is one of the best-known examples, on which
several theoretical analyses have been conducted [12]. Other games, including Bridge
and the two-player version of Dou Zi Zhu (a popular game in China), have also been
studied [13, 14]. Compared to these games, the Werewolf game requires intelligence to
estimate the roles and internal states of other players. Although their information cannot
be observed by other players, each player’s role in the aforementioned games is deter‐
mined before the game starts and is known to all players. In contrast, a player’s role in
the Werewolf game is hidden from the other players and is only revealed at the end of
the game. This type of situation requires more intelligence because each player (espe‐
cially a villager) needs to hold multiple world models for the other players’ actions. It
also suggests that a stable strategy does not exist because if some action suggests that a
player supports the villagers, a werewolf will mimic this action. Inaba analyzed the
change in the theory in the online werewolf game called “werewolf bulletin board system
(BBS)” [15] for 10 years. In addition, this game requires persuasion of other players.
This type of intelligence requires two levels of the Theory of Mind: the expectation of
other players’ expectations [16]. All these considerations suggest that research on the
Werewolf game will lead to several new findings in the field of AI.

2.1 Studies on the Werewolf Game

There have been some studies on the Werewolf (or Mafia) game, including a mathe‐
matical analysis [17, 18]. In addition, some researchers have attempted to detect a play‐
er’s role by using the length of utterances and the number of interruptions of a speaker
[19], nonverbal information [20], hand and head motions [21], and the words used in
discussions [22].

Some researchers have used the Werewolf game as a study for human–agent inter‐
actions. Aylett et al. [23] applied the Werewolf game for educating children on cultural
sensitivity. Katagami et al. [20] investigated the effect of nonverbal information in the
Werewolf game. However, studies have not attempted to develop playing agents.

To realize Werewolf playing agents, many tasks must be solved. These include the
asymmetric diversity of player information, persuasion as a means of earning confi‐
dence, and speculation to detect fabrication. These tasks are not generally considered in
the field of AI agents.

3 AI Wolf Project

3.1 What Is “Are You a Werewolf?”

Overview
Werewolf is a popular party game played worldwide. Werewolf card sets include “Are
You a Werewolf?” and “Lupus in Tabula.” The game is still played around the world.
Additionally, “Mafia” has an identical game structure but with a much less magic-based
theme. “Are you a Werewolf?” is a party game that models a conflict between an
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informed minority and an uninformed majority. Initially, each player is secretly assigned
a role affiliated with one of these teams. There are two phases: night and day. At night,
the werewolves “attack” the townsfolk. During the day, surviving players discuss the
elimination of a werewolf by voting. The objective of the werewolves is to kill off all
the villagers without being killed themselves. The objective of the townsfolk is to ascer‐
tain who the werewolves are and to kill them.

There are two techniques for playing Werewolf. The first includes face-to-face play
by using the game cards described earlier. The other is to play online using web appli‐
cations, or a BBS-type platform. For example, large BBS services exist in Japan for
playing Werewolf. In fact, there are more than a thousand logs of Werewolf games.
Many players still play Werewolf on a BBS. Moreover, some academic studies make
use of the BBS game logs. Developing physical robots that can play Werewolf face-to-
face is one objective of our project; however, many problems must be solved. Conse‐
quently, in this paper, we use a simplified representation of the essence of the game
based on a BBS-type Werewolf.

Game Procedures
The roles of all players are allocated randomly. Players are divided into two teams,
townsfolk and werewolf teams, according to their roles and the method of winning of
their teams. The victory condition for the townsfolk is to kill all the werewolves. For
the werewolves, the victory condition is to kill humans such that they become equal or
fewer in number to the werewolves. A player fundamentally cannot know the other
players’ roles because the allocated roles are unpublicized. A basic course of action for
the townsfolk players is to discover werewolves through conversation because they do
not know who the werewolves are. In contrast, the werewolf players know who the
werewolves are. Therefore, a basic course of action for the werewolf players is to engage
in various cooperative maneuvering, without the townsfolk knowing about their roles.

The game proceeds in alternating phases of day and night. During the day, all players
discuss who the werewolves are. Simultaneously, players who have special abilities (which
we discuss later) lead discussions that produce advantages for their respective teams by
using the information derived from their abilities. After a certain period, players execute
one player who is suspected of being a werewolf, as chosen by majority voting. The
executed player then leaves the game and cannot play. During the night, werewolf players
can attack a townsfolk team player. The attacked player is killed and is eliminated from the
game. In addition, players who have special abilities can use those abilities during the night
phase. The day and night phases alternate until the winning conditions are met.

Townsfolk players must be able to detect a werewolf player’s lie. In addition,
persuading other players by using the information obtained through their special abilities
is important. Furthermore, a crucially important point for the werewolf team is to
manipulate the discussion to the team’s advantage. Occasionally, they must impersonate
a role and obfuscate the conditions and evidence.

Roles of Players
There are many variations of the rules and roles of the Werewolf game. Therefore, we
use the following basic set of roles for simplification.
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• Villager: Townsfolk team. A character in this role has no special ability.
• Werewolf: Werewolf team. Werewolves can attack one townsfolk player during each

night phase. They all decide on a single player to attack together with vote, and zero
or one villager dies each night. BBS-type game also allows werewolves to talk with
each other simultaneously during the day, and we used the same rules in this AI game.

• Seer: Townsfolk team. A seer can inspect a player in every night phase to ascertain
whether or not a player is a werewolf.

• Bodyguard: Townsfolk team. A bodyguard can choose a player in every night phase
and protect the player against an attack by a werewolf.

• Medium: Townsfolk team. A medium can ascertain whether a player who was
executed during the previous day phase was a werewolf.

• Possessed: Werewolf team. Werewolves do not know who is a possessed player. The
possessed have no special ability. This role secretly cooperates with werewolves
because a werewolf-team victory is also regarded as a victory for possessed players.

3.2 Roadmap of AI Wolf Project

We plan to create AI agents that can play the Werewolf game [9]. It is an incomplete-
information game. In addition, the Werewolf game is conducted solely through discus‐
sion, and players must use their cognitive faculties completely to win. The symbolization
of the Werewolf game is difficult compared to other incomplete-information games such
as Poker. This feature requires a different approach than other incomplete-game chal‐
lenges.

An AI agent requires multiple research areas, such as analyzing the human playing
Werewolf, natural language processing, agent technology, and human-agent interaction.
Our project consists of not only a sole project team but also of multiple research teams.
Figure 1 explains the milestones of the project, the keystone of which is a Werewolf
intelligence competition (WIC) that gathers the collective intelligence of people in a
program.

Fig. 1. Project plan of WIC
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4 AI Wolf Platform

4.1 Architecture of the AI Wolf Platform

We have been developing the AI Wolf Platform, which is intended to function as an
apparatus for evolving AI Wolf agent Game Player algorithms through collective intel‐
ligence. The platform consists of the game server and game-player agents (as shown
schematically in Fig. 2). These agents connect to the server and play the Werewolf game.
Therefore, this platform is built on the client–server architecture. The game server
performs the role of game moderator. Moreover, the server controls the network commu‐
nication between the agents and itself and maintains a log of the games. Game-player
agents communicate with the game server via TCP/IP or an internal function-call API.
By using the TCP/IP connection, developers can play against other wired player agents.
In addition, by using the internal function call, developers can conduct high-speed
simulations. The AI Wolf Platform has a communication protocol API between the
server and clients. This API is an abstraction layer for the game server and player agents.
It facilitates parsing by restricting communication to a specific content format.

Fig. 2. AI Wolf platform architecture

The game server library is offered by Java. Agent-building libraries are offered by
Java, .NET Framework, and Python. Agent programmers need not be concerned about
communication between server and client because the communication protocol is
wrapped by a library. Agent programmers simply implement the Player interface. All
agent classes work by an event-driven method. The server asks clients for their behavior,
and clients reply accordingly.

4.2 Development of an AI Wolf Agent

Each agent acts through event-driven systems. The game server sends a request and
agents return a response as an action in the Werewolf game. Table 1 shows the requests
that are sent from the AI Wolf Server to the agents. Therefore, a game-agent developer
must consider only how agents should act when each request arrives. In summary, the
developer must implement some method that corresponds to each request.
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Table 1. Requests from the AI Wolf Server

Request Agent action Reply
Initialize Initialize for game start –
DailyInitia
lize

Initialize for day Start –

Finish Finish the game –
Name Return name of the agent Name
Role Return the role of an agent Role
Talk Talk to other agents Talk
Whisper Talk to other werewolves Whisper
Vote Choose an agent to be voted Agent
Divine Choose an agent to be divined Agent
Guard Choose an agent to be guarded Agent
Attack Choose an agent to be attacked Agent

In the Werewolf game, an agent should change its behavior pattern depending on its
role. The possible requests differ for each role.

To simplify the accommodation of different roles, the AI Wolf agent library contains
the class of AbstractRolePlayer (as shown at the left in Fig. 3). When the developers
implement a role, they program the AbstractPlayer class (e.g., in the case of Seer, it
would be AbstractSeerPlayer) and assign its class as the function MyRoleAssignPlayer.
For example, if we wish to implement a Seer player, we program AbstractSeerPlayer
and assign it to MyRoleAssignPlayer, whereupon the agent can act as a seer player. This
AbstractRoleAssignPlayer has default behaviors for all roles. The developer should not
have to create all the role-behavior algorithms but can instead use default algorithms (or
those of other developers) from an early stage.

Fig. 3. Class diagram of AbstractRolePlayer (left) and GUI log viewer (right)
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Furthermore, we implemented a GUI log viewer (shown at the right in Fig. 3) to help
with program debugging. It can be used not only for showing the behavior of agents but
also for interactive debugging when programming an agent’s behavior.

4.3 AI Wolf Protocol

During the game, agents communicate with other agents using the AI Wolf Protocol,
which is a shortened communication protocol designed for AI Wolf. This communica‐
tion protocol is determined by referring to frequent utterances used in Werewolf BBS.
The Werewolf BBS allows a limited number of communications (20 per day for the
villagers, and 30 per day for werewolves); this limitation causes shortened symbols. For
example, the expressing of a role is called “coming out”‘ (divulgence), which is short‐
ened to “CO.” As such, CO and other designators are used distinctively; we applied this
difference to our protocol.

The current version of AI Wolf Platform employs a simple protocol as the first step
of the project. This simple protocol permits only limited utterances, such as “I declare
as seer” and “I suspect that he is a werewolf.” We evaluated the Werewolf BBS logs,
in which 50% of the utterances are represented through 10 protocols. Hence, each agent
can use the following 10 communication protocols as explained:

– estimate(Agent, Role)
• An agent expresses its suspicion that [Agent] is [Role].

– comingout(Agent, Role)
• The agent asserts that [Agent] is [Role].

– divined(Agent, Species)
• The agent (implicated as a seer) gives the divined result that [Agent] is [Species

(human or werewolf)]
– inquested(Agent, Species)

• The agent (implicated as a medium) gives the inquested (investigated) result that
the executed [Agent] is [Species (human or werewolf)]

– guarded(Agent)
• The agent (implicated as a bodyguard) gives the result that [Agent] is protected.

– vote(Agent)
• The agent claims that a player will select [Agent] for the execution vote

– agree(day, id)
• The agent agrees with someone’s statement at statement number [id] on [day].

– disagree(day, id)
• The agent disagrees with someone’s statement at statement number [id] on [day].

– skip()
• The agent skips its turn to talk, and waits for the next turn. That is, the agent waits

to listen to an opponent’s talk and wishes to continue the discussion.
– over()

• The agent skips its turn to talk, waits for the next turn, and agrees to finish its
discussion the same day.
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To ease the development of AI Wolf agents, the platform provides an utterance
factory and parser for the protocol.

5 The First WIC

We organized the first WIC at the Computer Entertainment Developers Conference
(CEDEC) on August 27, 2015. CEDEC is one of the biggest domestic conferences in
Japan for video-game competitions, and is being organized since the last 17 years. More
than 30,000 people participate in the conference. Representatives from academic insti‐
tutions and video-game companies attend and exchange their findings. Moreover,
several international research sessions are organized. Thus, we considered that this
conference would be a good forum to evaluate our approach.

5.1 Rules of the Competition

We organized preliminary and final competitions. Both competitions were staged
according to a BBS-type Werewolf game. Fifteen agents joined one game set, and roles
listed in Table 2 were assigned to each agent. One set comprised 100 games, and agents
was the same in each set but with different assigned roles. Each agent in the winning
team received one point in each game.

Table 2. Roles and agents

Role Count Side
Villager 8 Villager
Seer 1 Villager
Medium 1 Villager
Bodyguard 1 Villager
Werewolf 3 Werewolf
Possessed 1 Werewolf

In the final competition, 1,124,890 games were played and 15 agents were assigned
their roles randomly in the games. All the games were ranked.

5.2 Participants

Each participating team could submit one agent program. 78 teams joined the compe‐
tition, and 45 teams submitted programs. Seven agents were rejected because of errors;
hence, 38 agents joined the preliminary competition.

Table 3 shows the fraction of students in the competition. More than half of the
participants comprised students from universities and other educational organizations.
This result suggests that these participants not only joined in with the programming
competition, but also focused on the research associated with the Werewolf game
(several students also published research on the Werewolf game after the competition).
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However, the lower rate of students in the final competition suggests that the profes‐
sionals, including video programmers, were more proficient than the students.

Table 3. Participating teams

Total Students Fraction of Students
Registered 78 42 0.53
Preliminary 38 24 0.63
Final 15 7 0.47

Figure 4 shows some of the participants during the final competition at CEDEC 2015.
More than 200 participants took part in the final competition, and our results were
reported through at least five media outlets. In the CEDEC 2015 session, we selected
one example from the final competition, and participants explained their algorithms to
each other.

Fig. 4. Final competition in CEDEC 2015

5.3 Results of the Competition

The left of Fig. 5 shows the success rates of all 38 teams who took part in the preliminary
competition. According to this result, although high-ranking agents generally have
higher success rates, most agents have rates that are approximately the same. This may
be because Werewolf is a multiple-player game. As such, each agent’s contribution
toward a win is lower than it would be in a single-player game. The rate of the top-ranked
agent is 0.4915, whereas the rate of the bottom-ranked agent is 0.3629. This represents
a 13% difference between the strengths of agents. There is no significant difference
between the agents ranked 15th and 16th, and participants in this rank border are assigned
by luck. We need to improve our rules for the next competition to reflect significant
differences at the borders.
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Fig. 5. Success rate of agents in preliminary competition (left) and in final competition (right)

The right of Fig. 5 shows the success rates of all 15 agents who took part in the final
competition. We statistically analyzed the difference between two odd ratios. The result
suggests that the five top-ranked agents are significantly stronger than the other 10
agents.

5.4 Analysis of the Final Competition

Table 4 shows the types of roles in which an agent was strongest. The results suggest
that the top-ranked agents are strong in nearly every role.

Table 4. Ranking for each role

Final rank Villager
rank

Seer rank Medium
rank

Bodyguard
rank

Werewolf
rank

Possessed
rank

1 1 1 7 1 1 1
2 4 2 8 2 3 4
3 3 3 3 8 2 14
4 2 11 12 4 4 5
5 10 7 1 5 5 3
6 9 4 9 10 6 8
7 11 9 4 6 12 2
8 6 10 15 3 10 6
9 14 5 10 7 7 12
10 5 14 2 15 8 11
11 13 6 11 11 13 7
12 8 13 5 12 11 10
13 12 8 13 13 9 15
14 7 15 6 9 14 9
15 15 12 14 14 15 13

First, we calculated the total success rate for each role and the difference between
square errors of these rates. Next, we plotted the results using multidimensional scaling.
We calculated the distance Dkl between points k and l according to the following equa‐
tion:
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The value of x
ik
 represents the success rate of role k for agent i. Figure 6 (left/right)

shows the data from the preliminary/final competition. The success rates for Villager,
Medium, and Bodyguard are relatively close, whereas those for Seer, Werewolf, and
Possessed are distinctly different. The Seer, Werewolf, and Possessed roles require more
specific skills, thus explaining the large distances in the plot in Fig. 6. In the final
competition, the Medium and Possessed roles showed different behaviors than in the
previous competition. We speculate that players in the final competition wrote more
intelligent code than those in the preliminary competition. For a Medium, the highest
and lowest scoring agents showed very slight difference, indicating that a Medium does
not contribute much toward winning: a result similar to those obtained through statistical
analyses of online Werewolf games in Japan. Moreover, some high-ranking players
score lower than the low-ranking players in the Possessed role. This suggests that the
Possessed role requires certain unique features than the other roles. We speculate that
this apparent fact helped players with their programming-resource management from
one competition to the next.

Fig. 6. Plots for success-rate distance of each role (left: preliminary competition; right: final
competition).

Lastly, we evaluated the difference between the success rates of agents who did and
did not reach the final according to each role (Fig. 7). In all roles, finalists are stronger
by a significant difference. In particular, the differences range between 4% and 5% for
both Seer and Werewolf roles. This fact may be helpful in suggesting where program‐
mers could best focus AI in the Werewolf game.
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Fig. 7. Success rates of preliminary and finalist agents in each role

5.5 Discussion

There are several trends that are observed in the participating agents.

1. Strong agents tend to be strong in any role.
2. Seer, Werewolf, or Possessed scores might differ from their real ability in the

preliminary competition.
3. Although higher-ranked agents tend to score higher, the success rates of Medium

and Possessed roles differ from the other roles.
4. All agents in the final competition are significantly stronger than unsuccessful agents

in any role. The difference is especially clear for both Seer and Werewolf.

Our findings suggest that these competition trials facilitate a collective-intelligence
approach, the findings of which contribute to the analysis of Werewolf games. However,
there are still some agents with anomalous behavior, even in the final competition. These
difficulties may improve in future challenges. For further evaluation, we want to reflect
evaluation methods for other competitions [24, 25].

The first competition was reported by several media outlets (NIKKEI, Game Watch,
GPara.com, ASCII/Digital). We believe that our challenge made a good impact on
society, and the notion of “lying AIs” stimulated discussions on the role of AI in modern
society.

6 Conclusion and Future Work

This paper summarized the AI Wolf project, its competition server, and results from the
first WIC. Thirty-eight agents participated in the competition, with 15 agents partici‐
pating in the finals. The top agent UDON was significantly stronger than all the other
agents. The results of the study support the assertion that a competition facilitates in
achieving collective intelligence.

The analysis of the relationship between roles and success rates reveals several role-
dependent features. Theses agent sources are available on an open-source basis on our
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site, and agents who outsmart these programs are likely to win in the next competition.
This step “evolves” agent strategy, and we expect that this ecosystem will produce new
findings for the AI field about the meaning of communication. Our source codes are
completely open. The server codes are available on GitHub (https://github.com/
aiwolf/), and the final agent source codes are available on the AI Wolf project site (http://
aiwolf.org/). We are now planning a second competition for CEDEC 2016.

In the future, we want to evaluate the value of entertainment of the Werewolf game.
Werewolf is a type of party game. People play party games for not only winning and
losing but also enjoying the game and its communication element. Therefore, an AI for
Werewolf that can “entertain players” must be established. We assume that if the agents
are sufficiently strong to defeat all the humans without any entertainment, most people
will avoid playing with them. In addition, we want to attempt to determine the source
of pleasure in competitive games. Sometimes, the value of entertainment can be under‐
stood from a game’s rules. However, in many cases the action of opponents becomes a
factor in determining the pleasure derived from a game. Therefore, to understand “why
games entertain players,” it is necessary to consider the interaction between the oppo‐
nent’s behavior and the game’s rules. In certain situations, players may enjoy a game.
Such situations include competitive games between human players. In such a case, the
purpose of AI can be assumed to be the generation of those pleasant situations. There‐
fore, the AI must act to change the game environment.
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Abstract. Artificial agents that interact with humans may find that understanding
those humans’ plans and goals can improve their interactions. Ideally, humans
would explicitly provide information about their plans, goals, and motivations to
the agent. However, if the human is unable or unwilling to provide this informa‐
tion then the agent will need to infer it from observed behavior. We describe a
goal reasoning agent architecture that allows an agent to classify natural language
utterances, hypothesize about human’s actions, and recognize their plans and
goals. In this paper we focus on one module of our architecture, the Natural
Language Classifier, and demonstrate its use in a multiplayer tabletop social
deception game, One Night Ultimate Werewolf. Our evaluation indicates that our
system can obtain reasonable performance even when the utterances are unstruc‐
tured, deceptive, or ambiguous.

Keywords: Semantic classification · Social deception game · Tabletop game ·
Goal reasoning

1 Introduction

Agents that interact with humans, cooperatively or competitively, can benefit from
understanding those humans’ plans and goals. By having this information, the agent can
more effectively assist a human teammate or thwart an adversarial human. While in
some circumstances a human may directly and concisely provide its plans and goals, it
is often more realistic that the agent will need to infer this information based on the
human’s behavior. In this work, we consider a particular problem domain where humans
do not unambiguously share this type of information, and will often attempt to inten‐
tionally conceal it through deception.
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In this paper, we describe our architecture for an agent that classifies natural language
utterances to hypothesize about humans’ plans and goals. We have previously shown
that such an agent can successfully predict squad members’ goals in a military domain
(Gillespie et al. 2015). However, deploying the agent in a social deception game adds
the following complexities:

• Human cooperation:
– Military domain: The humans are squad members working in collaboration with

the agent.
– Social deception game: The humans can be teammates of the agent but can also

be neutral or adversaries.
• Language:

– Military domain: The fixed-vocabulary language is highly constrained.
– Social deception game: There are minimal constraints on the language.

• Clarity of utterances:
– Military domain: The utterances will be direct, concise, and unambiguous.
– Social deception game: The utterances may be incomplete, ambiguous, incorrect,

or deceptive. Additionally, some utterances may have no relevance to the game
(e.g., casual conversation among players).

Although our focus has been on military scenarios and social deception games, the
ability to reason about goals from natural language is also relevant in other domains
such as those involving negotiations, diplomacy, and legal reasoning.

While we describe the entire agent architecture in Sect. 2, our focus in this paper is
on the module that allows the agent to classify the semantic meaning of each utterance.
Section 3 provides an introduction to the social deception game we use, One Night
Ultimate Werewolf, and Sect. 4 presents our approach for extracting information from
in-game utterances. In Sect. 5, we describe an evaluation using logs of actual gameplay
and show that the agent is able to classify several key aspects of each utterance. We
examine related work in Sect. 6 and present future research directions in Sect. 7.

2 Agent Architecture

Our agent interprets and responds to its environment via a five-step goal reasoning
process (Klenk et al. 2013; Aha 2015). This process allows an agent to dynamically
refine its goals in response to unexpected external events or opportunities, and enact
plans to accomplish those goals. The agent’s decision cycle is shown in Fig. 1 and has
five primary components:

1. Natural Language Classifier: This module listens for natural language utterances
(i.e., spoken language) in the environment and attempts to extract semantic meaning
from the utterances. For each utterance received, the module outputs a multi-label
classification of the utterance.

2. Explanation Generator: This module uses the classified utterances and environ‐
mental observations (i.e., the current state of the environment) to generate possible
explanations for what has occurred in the environment (Molineaux and Aha 2015).
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The explanation contains, in part, the agent’s hypothesis as to what actions each
other entity (e.g., humans, robots, or other agents) in the environment must have
performed for the environment to have changed from its prior state to the current
state. As more classified utterances and state observations are received, the Explan‐
ation Generator further refines its explanation. The most likely actions for each entity
are output.

3. Plan Recognizer: For each entity in the environment, the Plan Recognizer receives
a sequence of actions that the entity may have performed (i.e., one action in the
sequence every time the Explanation Generator produces output). The Plan Recog‐
nizer uses the sequence of actions to identify the entity’s plan (Vattam et al. 2014).
The Plan Recognizer assumes that each plan achieves a goal, so the recognized plan
can be used to identify the entity’s current goal. This module outputs the recognized
goal of each entity in the environment.

4. Goal Selector: This module monitors for any changes in the goals of the entities or
external events, and can modify the agent’s goal in response. This allows the agent
to dynamically respond to any unexpected behaviors or opportunities (i.e., the agent
changes its goal to better respond to other entities’ goals). The output of this module
is the agent’s goal (even if the goal is unchanged).

5. Plan Generator: If the agent’s goal has changed, the Plan Generator generates a
new plan for the agent to perform. The plan generator also monitors the progress of
the current plan to determine if it is necessary to repair the plan or generate a new
plan. The output of this module are the actions (of the plan) that the agent is
attempting to perform.

Fig. 1. Decision cycle of the agent
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In this paper we focus exclusively on the Natural Language Classifier and how it
generates classified utterances from unconstrained natural language.

3 Background: One Night Ultimate Werewolf

The domain we are examining is a tabletop social deception game called One Night
Ultimate Werewolf1 (Bezier Games 2016). We chose Ultimate Werewolf because
players interact using unconstrained natural language, have a variety of goals, work
under hidden information, and actively engage in deception.

In the game, players are randomly assigned roles that place them into three
competing factions: Villagers, Werewolves, and the Tanner. The goal of the Villagers
is to identify which players are Werewolves, the goal of the Werewolves is to avoid
detection, and the goal of the Tanner is to convince the Villagers that it is a Werewolf.
We constrained the game to five players and eight possible roles (i.e., five roles will be
assigned and three will be unused), with some roles granting special abilities. The roles
we use are: Werewolf (x2), Mason (x2), Generic Villager (x2), Seer, and Tanner. The
Werewolf roles are part of the Werewolves faction, the Tanner is part of the Tanner
faction, and all remaining roles are part of the Villagers faction. The three unused role
cards are placed, face down, on the table.

The game proceeds as follows:

1. Role assignment: Each player receives a role card with an assigned role printed on
it. After viewing their role, the player then places the card face down in front of them.
They may not view their card again2.

2. Special abilities: An external moderator oversees this portion of the game:
(a) The moderator instructs all players to close their eyes.
(b) The moderator instructs all Werewolves to open their eyes, identify the other

Werewolves (if any), and close their eyes. If only one Werewolf opens their
eyes, they may look at one of the unused role cards.

(c) The moderator instructs all Masons to open their eyes, identify the other Masons
(if any), and close their eyes.

(d) The moderator instructs the Seer to open their eyes. The Seer may look at the
role card of one other player or two of the unused role cards. The Seer then
closes their eyes.

(e) The moderator instructs all players to open their eyes again.
3. Information gathering: The players have several minutes to attempt to gather

information about the other players. There is no turn-taking so players can speak as
much or as little as they wish. Similarly, there are no constraints on what is discussed
or the vocabulary used.

1 We will refer to the game as Ultimate Werewolf for the remainder of the paper.
2 Although viewing your role again does not influence our game, in some versions of Ultimate

Werewolf a player’s role can be switched without their knowledge.
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4. Shooting phase: Each player chooses one other player to “shoot” and players
announce their choices simultaneously. The player who is shot by the most other
players “dies”. In the event of a tie, all players tied for the most shots die.

5. Declaring winners:
(a) If the Tanner dies, the Tanner wins (regardless of which other players die).

Otherwise, the Tanner loses.
(b) If at least one Werewolf dies, the Villagers faction wins (regardless of the

Tanner’s fate). Otherwise, they lose.
(c) If the Tanner does not die and no Werewolves die, the Werewolves faction wins.

Otherwise, the Werewolves lose.

Each player knows their own role and, depending on their special ability, may have
more information as well (i.e., from special abilities). The Werewolves and Masons
know information about other members of their faction; the Seer may know the role of
any one other player; and a lone Werewolf or the Seer may know either 1 or 2 unused
roles. Players with the Generic Villager role have no special abilities, so they have less
information than other players.

4 Multilabel and Multiclass Semantic Classification

The Natural Language Classifier receives as input each natural language utterance that
it can sense in the environment. Each utterance represents a continuous unit of speech
with a distinct beginning and ending (e.g., “I think you are a werewolf.” or “Did you
look at anyone’s role?”). Utterances are encoded using a bag-of-words representation.
An utterance u is a set containing each word w in the utterance:

u = {w
a
, w

b
,…}

For example, “I think you are a werewolf.” would be represented as
{′I′,′ think

′,′ you
′,′ are

′,′ a
′,′ werewolf

′}. We classify each utterance along nine different
dimensions using a set of parallel classifiers. The classification tasks and their associated
class labels are listed below:

• Purpose: The general type of utterance being made.
– Classes: claim (make a factual claim), question (ask a question), hypothesis (pose

a hypothesis), suggest-target (suggest a target to shoot), self-explain (explain the
player’s behavior to the group), other (an utterance that does not fall under any
of the other classes).

• Address-type: The size of the group the utterance was addressed to.
– Classes: everyone (the utterance was directed at all or most of the players), one-

person, two-people.
• Addressee: Whether an utterance is directed to a specific player. This classification

task is complementary to Address-type (i.e., a known Addressee only occurs when
the Address-type is one-person or two-people).
– Classes: known (the utterance directly addresses one of the players), none (no

specific player is addressed).
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• Subject: The subject matter discussed in the utterance.
– Classes: starting-role (a player’s role when they viewed their role card), unused-

role (roles that were not assigned to anyone), starting-role-group (a subgroup of
possible roles for a player), role-observe-performer (whether a player has a role
that allows the observation of other players’ roles), role-observe-target (whether
a player had their role observed by another player), divulge (a player provides
information about themselves to other players), statement (the utterance is in
regards to a previously made statement), shoot-target (discusses targeting a player
for shooting).

• Target-role: The role being discussed in the utterance.
– Classes: none (no role is being discussed), unknown (a role is being discussed but

the exact role is not known), Seer, Werewolf, Villager, Mason, Tanner.
• Target-role-group: The subgroup of roles is being directly discussed.

– Classes: none, villagers, non-villagers, paired-roles (roles, either Masons or
Werewolves, which can view the other members with the same role).

• Target-player: The player being discussed in the utterance.
– Classes: known (directly referring to one of the players), unknown (a player is

discussed but the exact player is unknown), none (no player is discussed).
• Target-position: The presence and location of an unused role card on the table (e.g.,

a card viewed by the Seer, knowledge of an unused role because there were no other
Werewolves).
– Classes: one-unknown (a role is unused but its position is unknown), two-

unknown (two roles are unused but their positions are unknown), three-unknown
(three roles are unused but their positions are unknown), left (the leftmost unused
role card), middle (the middle unused role card), right (the right unused role card),
none (no unused role is mentioned).

• Negation: Whether a statement is positive (e.g., something happened or is true) or
negative (e.g., something did not happen or is not true).
– Classes: positive, negative.

4.1 Classifiers

We examine three methods for training the classifiers used by the Natural Language
Classifier: Frequency, Probabilistic, and Probabilistic Frequency. All three methods
use a dictionary of known words. If there are N known words, the dictionary dict will
contain N entries (dict = ⟨w1, w2,… , w

N
⟩). Each utterance u is filtered to remove stop

words and converted to a vector v
u
 of length N (v

u
= ⟨m1, m2,… , m

N
⟩). The ith element

in v
u
 (i.e., m

i
) contains the multiplicity in the utterance of the ith element in dict (i.e.,

w
i
). For example, if the 3rd word in the dictionary is ‘werewolf’ and the word ‘were‐

wolf’ occurred in the utterance once, the 3rd element of v
u
 would be 1.

The three classification methods learn classification vectors from a set of labelled
training utterances. Like the utterance vectors, the classification vectors are of length N
(i.e., classification vector (cv = ⟨s1, s2,… , s

N
⟩)). For each classification task, the training

examples are partitioned by class and one classification vector is learned for each class
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(e.g., for the Negation task the training examples are partitioned into one set with the
positive label and one set with the negative label). The three methods generate classifi‐
cation vectors as follows:

Frequency
All utterance vectors from a partition are summed. If the utterance vectors from class C
are in partition p

C
, classification vector cv

freq

C
 for that class is:

cv
freq
C

=
∑

v
ui
∈p

C

v
u

i

Since each utterance vector encodes the number of times each word appeared in the
utterance, the classification vector contains the total number of times each word appeared
for a given class.

Probabilistic
The Probabilistic classification vector cv

prob

C
 is computed by dividing each element of

the Frequency classification vector by the number of utterances in the partition:

cv
prob

C
=

cv
freq

C

|p
C
|

This classification vector represents what percentage of utterances in the partition
contained each word.

Probabilistic Frequency
The Probabilistic Frequency classification vector cv

pf

C
 is calculated using both the

Frequency and Probabilistic classification vectors. A new classification vector is created
such that the ith element is the product of the ith elements in the Frequency and Proba‐
bilistic classification vectors:

cv
pf

C
= ⟨sfreq

C,1 × s
prob

C,1 , s
freq

C,2 × s
prob

C,2 ,… , s
freq

C,N × s
prob

C,N ⟩

4.2 Classification

An input utterance is classified by the Natural Language Classifier using the learned
classification vectors. If a classification task l has a set of possible labels 

l
, the Natural

Language Classifier computes the dot product between the utterance vector and each of
the classification vectors for that classification task (e.g., to find the Negation classifi‐
cation, only the classification vectors for the positive and negative classes are used). The
associated label of the classification vector that maximizes that value is assigned to the
utterance:

label
l
= argmax

C
i
∈

l

v
u
⋅ cv

C
i
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In the Ultimate Werewolf domain, nine labels are assigned to each input utterance.

5 Evaluation

In our empirical evaluation we assess whether the agent can correctly classify natural
language utterances using multilabel and multiclass semantic classification. Using data
from real games of Ultimate Werewolf, our results show that our agent can extract
important semantic information from utterances without limiting the language of
players.

5.1 Data Collection

We collected data from eight games of Ultimate Werewolf, with each game being played
by five human players. The same five players participated in all eight games. In addition
to the rules described in Sect. 3, the players were also encouraged to use proper names
when referring to each other. This was done because the agent only has access to the
audio of the game (i.e., it cannot see who a player is facing when speaking). However,
this was not strictly enforced so there are instances where the players use pronouns. No
other limitations were placed on vocabulary, utterance structure, conversation ordering,
or topics of discussion.

Audio was recorded for each game along with the players’ roles, special ability
actions (e.g., if they viewed another player’s role), and shooting targets. Each recording
was manually transcribed and separated into the individual utterances. The mean number
of utterances per game was 49.1, with a minimum of 36 and a maximum of 69. Each
utterance was manually labelled for each of the nine classification tasks. The labelling
was done by a third party (i.e., not the players themselves), so it represents how an
external observer would classify each utterance rather than a player’s intended meaning
(e.g., how the observer interpreted ambiguous statements).

5.2 Experimental Setup

Evaluation was performed using leave-one-out testing (i.e., each run used seven anno‐
tated game transcripts for training and one for testing). The utterances from the testing
transcript were given as input to the agent. The performance of the agent (i.e., how well
its classification matched the annotated classes of the utterance) was measured for each
of the nine classification tasks. We used the F1 score to measure performance

(F1 = 2
precision × recall

precision + recall
). The three classification methods described in Sect. 4 were

evaluated: Frequency, Probabilistic, and Probabilistic Frequency. The results from
these three classification approaches were also compared to a baseline that randomly
classifies each utterance (referred to as Random in our results).
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5.3 Results

The results for each of the nine classification tasks and the overall performance are
shown in Figs. 2 and 3. The Probabilistic and Probabilistic Frequency approaches
outperformed the baseline over all classification tasks and outperformed the Frequency
approach over all tasks except Target-role-group (i.e., all three approaches achieved
similar results for this task). Other than the Target-role task (where Probabilistic
Frequency performed better), and Purpose and Target-role-group (where they performed
similarly), the Probabilistic method outperformed the Probabilistic Frequency method.
The Frequency approach performed poorly, underperforming the Random baseline in
six of the classification tasks and recording a lower average F1-score.

Fig. 2. Classification performance for the Purpose, Address-type, Addressee, Subject, and
Target-role tasks

5.4 Discussion

The classification tasks have between two and eight classes each (with a median of 4).
We observed an inverse correlation between the number of classes and agent perform‐
ance. The two classification tasks that do not follow this inverse correlation are the
Target-role and Target-role-group tasks. Target-role has seven classes but the agent
performed better than expected on this task. The primary reason for this is because the
utterances contain keywords (i.e., the name of the role) that make them easy to classify.
In contrast, the agent performed poorly on the Target-role-group task, which has only
four classes. This is because the agent has difficulty determining if an utterance is
explicitly discussing one of the groups or only implicitly referencing the group by
mentioning one of the roles in that group. This is especially prevalent since the players
use group names that are similar to role name. For example, “I think you are one of the
villagers” would be classified as villagers (i.e., it discusses the villagers group) whereas
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“I think you are the Villager” would be classified as none (i.e., a role is discussed, not
an entire group).

The classes are highly imbalanced given the wide range of possible utterances. In
our dataset, between 45% and 96% of utterances belong to the majority class (𝜇 = 69%)
and between 0.5% and 28% of the utterances belong to the least frequent class
(𝜇 = 7%). While this imbalance affects all three classification methods, it is the primary
reason the Frequency method performs poorly. For each class, the Frequency method
counts the number of times each word appears in the training examples. This causes
classes with more training examples (i.e., the majority class) to have higher frequency
values and therefore be more likely to be the labelled class of an input utterance. Even
if a specific word is a strong indication that an utterance should be labelled as the minority
class, if that word appears occasionally in the majority class it can cause the classifier
to label the utterance as the majority class. The Probabilistic and Probabilistic Frequency
approaches help mitigate the class imbalance problem by taking into account the
percentage of training examples that contain each word rather than just the number of
times a word occurs. However, as with the Frequency approach, they also suffer from
having very few training examples for some classes (e.g., some classes only have a single
example in the dataset). Additionally, some classes have such a wide range of different
utterances (e.g., non-game talk amongst the players) that it makes it difficult to learn a
model for that class even if a significant number of examples are available.

Our results, while an improvement over the baseline, fall well short of ideal perform‐
ance. Given the difficulty of the problem (i.e., unconstrained text, rapid changes in topics,
highly unbalanced data, ambiguity), we expected the agent to have difficulty classifying
the utterances but are unsure what performance is necessary for the remaining compo‐
nents (i.e., how erroneous the classifications can be before the Explanation Generator
and Plan Recognizer fail). Even for a human annotator, the utterances were often highly

Fig. 3. Classification performance for the Target-role-group, Target-player, Target-position,
Negation, and Overall tasks
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ambiguous and difficult to classify. While the agent should ideally accurately predict all
nine categories, it may be possible that the remaining modules can achieve reasonable
results even if only a subset of each utterance’s classifications is correct. We intend to
investigate the system’s sensitivity to classification performance in future work.

As was shown in our results, the Probabilistic method achieved the best performance
on most tasks but Probabilistic Frequency performed best on the Target-role classifica‐
tion task. This indicated that it will likely be necessary to determine the best performing
classification strategy on each task or use an ensemble approach rather than committing
to a single strategy for all tasks. Given our current level of performance, this will also
necessitate exploring new classification approaches and taking steps to manage the class
imbalance problem (e.g., collect more data, balance the dataset, use label regularization
(Mann and McCallum 2007)).

6 Related Work

Our work focuses on utterance classification in a game where the players often engage
in deception. Although we do not attempt to identify which utterances or players are
deceptive, related work in deception detection often addresses similar problems. Decep‐
tion detection in conversational games has been approached using textual cues (Zhou
and Sung 2008) (e.g., word selection, utterance duration, utterance complexity), vocal
cues (Chittaranjan and Hung 2010) (e.g., pitch, pauses, laughter), and visual cues
(Raiman et al. 2011) (e.g., head and arm movements). These systems are designed to
classify players as truthful or deceptive, and use that information to identify players with
deceptive roles (e.g., werewolves). However, while collecting experimental data we
observed that even players with roles that should not require deception (e.g., villagers)
actively engage in deception and omission. Since nearly all players engage in deception,
it becomes more important to identify when they are being deceptive and why they are
being deceptive.

Network analysis has been used to identify groups of players with similar patterns
of behavior (Yu et al. 2015). The statements made by each player are used to determine
their attitudes toward other players (e.g., a positive attitude if they regularly defend
another player or a negative attitude if they regularly accuse another player) and players
are clustered based on their attitudes. The underlying assumption is that deceptive
players will have positive attitudes toward other deceptive players while having negative
attitudes toward other players. In our domain, even the most common roles (e.g., Were‐
wolf, Mason, and Generic Villager) only have at most two players with those roles. If
a player knows of another player with the same role (i.e., using a special ability), they
often avoid displaying a positive attitude toward that player since it can arouse suspicion.

Azaria et al. (2015) have developed an agent that is able to identify deception,
convince other players of the deception, and avoid raising suspicions about their own
behavior. The agent participates in a simplified social deception game where a single
pirate has to deceive three non-pirates in order to steal treasure. The primary differences
between their work and our own are that their game uses structured sentences rather than
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free text, the game is less complex (i.e., fewer roles and player goals), and their system
is focused on identifying deception rather than a player’s plan or role.

Orkin and Roy (2010) use sequences of utterances and actions to predict a player’s
behavior in a restaurant simulation game. Due to the number of utterances possible using
free-form text, they had relatively poor performance when training with 8-10 game logs
compared to 30-100 game logs. This is similar to our own evaluation where many of
the classes had few training instances. They found that increasing the number of training
logs increased performance but required significant annotation time (approximately
56 h). In the AutoTutor Intelligent Tutoring System (Olney et al. 2003), utterances are
used to determine when initiative has changed and determine the needs of the student.
For example, certain utterances indicate the student has switched from providing
responses to being stuck or asking questions. This can be thought of as a simplified
version of plan recognition, where the student has three plans: respond, ask questions,
or do nothing. However, only a single utterance is used for each classification, rather
than the entire sequence of utterances.

Vázquez et al. (2015) have studied the reaction of human players when a robotic
player participates in a social deception game. The robot has the appearance of autonomy
but is actually controlled by an unseen human. Although this differs from our own goal
of an autonomous player, it does demonstrate that humans are open to playing social
deception games with robotic participants.

7 Conclusions and Future Work

We described our architecture for an agent that uses unstructured natural language
utterances to reason about the plans and goals of humans. In this paper, we focus on one
module of this architecture, the Natural Language Classifier, and examine its ability to
classify utterances in a multiplayer tabletop social deception game. Our previous work
(Gillespie et al. 2015) described the application of our agent architecture in a military
domain. However, in this paper we chose to examine a social deception game because
it posed several interesting challenges, including less constrained language, deception,
and ambiguity.

The Natural Language Classifier extracts information from each utterance by
assigning labels according to nine distinct classification tasks. We studied its ability
using three supervised learning methods for these tasks. We evaluated it in the social
deception game Ultimate Werewolf using logs of eight games played by human players.
We found that classification that considers only word frequency performed poorly,
whereas the other two classification methods achieved reasonable results and outper‐
formed our baseline.

Our principal area of future work is to integrate the Natural Language Classifier with
the other components of the agent architecture and evaluate the agent’s overall perform‐
ance. We performed such an evaluation in a military domain, but performing this inte‐
gration for Ultimate Werewolf will require a better understanding of the minimum
performance necessary during utterance classification. Currently, we have a limited
corpus of training data that was collected from a single set of players. Different players
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are likely to use different utterances and a different vocabulary, so it will be important
to collect data from a variety of players. Additionally, we plan to allow the agent to
observe games of Ultimate Werewolf and make predictions about player roles, identify
deception, and learn the motivations of individual players.
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Abstract. General Game Playing (GGP) programs need a Game
Description Language (GDL) reasoner to be able to interpret the game
rules and search for the best actions to play in the game. One method for
interpreting the game rules consists of translating the GDL game descrip-
tion into an alternative representation that the player can use to reason
more efficiently on the game. The Propositional Network (PropNet) is an
example of such method. The use of PropNets in GGP has become pop-
ular due to the fact that PropNets can speed up the reasoning process by
several orders of magnitude compared to custom-made or Prolog-based
GDL reasoners, improving the quality of the search for the best actions.
This paper analyzes the performance of a PropNet-based reasoner and
evaluates four different optimizations for the PropNet structure that can
help further increase its reasoning speed in terms of visited game states
per second.

1 Introduction

The aim of General Game Playing (GGP) is to develop programs that are able to
play any arbitrary game at an expert level by being only given its rules. These
programs must devise a playing strategy without having any prior knowledge
about the game. Moreover, the rules are given to the player just before game
playing starts and usually for each game step only few seconds are available to
choose a move. Thus, the player has to learn an appropriate playing strategy
on-line and in a limited amount of time.

To be able to play games, a GGP program has two main components: a way
to interpret the game rules, written in the Game Description Language (GDL),
and a strategy to choose which actions to play.

Regarding the first component, many different approaches have been pro-
posed to parse the game rules. Three main methods to interpret GDL can be
identified: (1) Prolog-based interpreters that translate the game rules from GDL
into Prolog and then use a Prolog engine to reason about them, (2) custom-
made interpreters written for the sole purpose of interpreting GDL rules, and
(3) reasoners that translate the GDL description into an alternative representa-
tion that the player can use to efficiently reason about the game. A description
and performance evaluation of available GDL reasoners is given in [7].

Regarding the second component, most of the approaches that proved suc-
cessful in addressing the challenges of GGP are based on Monte-Carlo simulation
c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 133–151, 2017.
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techniques and especially on Monte-Carlo Tree Search (MCTS) [1,2]. For Monte-
Carlo methods the choice of the best action to play is based on game statistics
collected by sampling the state space of the game. The number of samples that
Monte-Carlo methods can collect directly influences their performance. A higher
number of samples in general improve the quality of the chosen actions.

A faster GDL reasoner, which in a given amount of time can analyze a higher
number of game states than other reasoners, can positively influence Monte-Carlo
based search. Propositional Networks (PropNets) [3,8] have become popular in
GGP because they can speed up the reasoning process by several orders of mag-
nitude compared to custom-made or Prolog-based GDL reasoners. Nowadays,
all the best GGP programs use a PropNet-based reasoner [4,5,9].

The purpose of this paper is to analyze the performance of the implemen-
tation of the PropNet-based reasoner provided in the GGP-Base framework [9],
discuss four optimizations of the structure of the PropNet and empirically eval-
uate their impact on the speed of the reasoning process. The performance of
the custom-made GDL reasoner provided in the GGP-Base framework, called
GGP-Base Prover, has been used as a reference.

The reminder of the paper is structured as follows. Section 2 gives a short
introduction to GDL and PropNets. Sections 3 and 4 give some details about the
PropNet implementation and a description of the PropNet optimizations respec-
tively. Section 5 presents the empirical evaluation of the PropNet and Sect. 6
concludes and indicates potential future work.

2 Background

PropNets are one of the promising representations that can be used to reason
about GDL descriptions. Subsection 2.1 gives a brief introduction to GDL and
Subsect. 2.2 briefly describes the structure of a PropNet.

2.1 The Game Description Language

The Game Description Language (GDL) is a first order logic language used in
GGP to represent the rules of games [6]. In GDL a game state is defined by
specifying which propositions are true in that state. A set of reserved keywords
is used to define the characteristics of the game.

Figure 1 shows as an example the GDL description of a simple game, where
a player can independently turn on two lights (p and q). After being turned on,
each light will remain on. The game ends when both lights are on and the player
achieves a goal with score 100. In the figure, the GDL keywords are represented
in bold.

2.2 The PropNet

A Propositional Network (PropNet) [3,8] can be seen as a graph representation
of GDL. Each component in the PropNet represents either a proposition or a
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Fig. 1. Example of GDL game description.

logic gate. Propositions can be distinguished into three types: input propositions
that have no input components, base propositions that have one single transition
as input, and view propositions that are the remaining ones. The truth values of
base propositions represent the state of the game. The dynamics of the game are
represented by transitions that are identity gates that output their input value
with one step delay and control the truth values of base propositions in the next
step. The truth value of every other component is a function of the truth value
of its inputs, except for input propositions, for which the game playing agent
sets a value when choosing the action to play. Figure 2 shows as an example the
PropNet that corresponds to the GDL description given in Fig. 1.

Fig. 2. PropNet structure example.
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3 PropNet Implementation

To create the PropNet the algorithm provided in the GGP-Base framework
is used.1 This algorithm is implemented in the create(List<Gdl> description)
method of the OptimizingPropNetFactory class and builds the PropNet accord-
ing to the rules in the given GDL description.

The final product of the algorithm is a set of all the components in the Prop-
Net, each of which has been connected to its input and output components. This
set can then be used to initialize a PropNet object. The algorithm distinguishes
six different types of components: constants (TRUE and FALSE), propositions,
transitions and three different gates (AND, OR, NOT).

The GGP-Base framework also provides a PropNet class that can be initial-
ized using the created set of components. We used this class as a starting point
and implemented some changes to the initialization process to ensure that the
PropNet respects certain constraints that are needed for the optimizations algo-
rithms to work consistently. The first step of the initialization iterates over all
the components in the PropNet and inserts them in different lists according to
their type. While iterating over all the components, the following are the main
actions that the initialization algorithm performs:

– Identify a single TRUE and a single FALSE constant, creating them if they
do not exist, or removing the redundant ones.

– Identify the type of each proposition. Each proposition must be associated
to one type only. A proposition that has a transition as input is identified as
BASE type and a proposition that corresponds to a GDL relation contain-
ing the does keyword is identified as INPUT type. The propositions corre-
sponding to GDL relations containing the legal, goal or terminal keyword are
identified as LEGAL, GOAL and TERMINAL type respectively. To all other
propositions the type OTHER is assigned.

– Make sure that all the INPUT and LEGAL propositions are in a 1-to-1 rela-
tion. If a proposition is detected as being an INPUT but there is no corre-
sponding LEGAL in the PropNet, then it can be removed since we are sure
that the corresponding move will never be chosen by the player. On the con-
trary, if there is a LEGAL proposition with no corresponding INPUT, the
INPUT proposition is added to the PropNet, since the LEGAL proposition
might become true at a certain point of the game and the player might choose
to play the corresponding move.

– Make sure that only constants and INPUT propositions have no input com-
ponents. If a different component is detected as having no inputs, set one of
the two constants as its input. This action is needed because as a by-product
of the PropNet creation some OR gates and non-INPUT propositions might
have no inputs. The behavior of the PropNet has been empirically tested to
be consistent when such components are connected to the FALSE constant.

1 We have used a more recent and improved version than the one tested in [7].
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4 Optimizations

The PropNets built by the algorithm given in the GGP-Base framework [9] con-
tain usually many components that are not strictly necessary to reason about
the game. This section presents four optimizations that can be performed on
the PropNet structure to reduce the number of these components. Opt0 (Sub-
sect. 4.1) removes components that are known to have a constant truth value,
Opt1 (Subsect. 4.2) removes propositions that do not have a particular meaning,
Opt2 (Subsect. 4.3) detects more constant components and removes them, and
Opt3 (Subsect. 4.4) removes components that have no output and are not influ-
ential. All the optimization algorithms except the last one are already provided
in the GGP-Base framework. The algorithms described here contain some minor
modifications with respect to the original GGP-Base version in order to adapt
them to the changes that were performed on the PropNet class structure.

4.1 Opt0: Remove Constant-Value Components

This optimization removes from the PropNet the components that are known
to be always true or always false and at the same time do not have a particular
meaning for the game. For example an AND gate that has an input that is
always false will also always output false, thus the gate can be removed and all
its outputs can be connected directly to the FALSE constant of the PropNet.

Algorithm 1 shows the main steps of this optimization. The sets OT and
OF , at any moment, contain respectively the outputs of the TRUE and the
outputs of the FALSE constant that still have to be checked for removal. At the
beginning OT contains all the outputs of the TRUE constant and OF contains
all the outputs of the FALSE constant (Lines 2 and 3).

The procedure RemoveFromTrue(propnet,OT , OF ) (Line 5) and the pro-
cedure RemoveFromFalse(propnet,OT , OF ) (Line 6) check the outputs of the
TRUE and of the FALSE constant respectively. Algorithm 2 shows exactly which
components the first procedure removes. The algorithm for the second proce-
dure removes the outputs of the FALSE constant in a similar way. In the case
of the FALSE constant, also always false GOAL and LEGAL propositions are
removed since they will never be used. Moreover, whenever a LEGAL proposi-
tion is removed also the corresponding INPUT proposition is removed, since it
is certain that the corresponding move will never be played.

Note that whenever a component is removed or detected as having always a
constant value, it means that also its output is constant, thus its output com-
ponents are connected directly to one of the two constants. In this case each
output component will be added to the appropriate set (either OT or OF ) to be
checked in the next steps.

Algorithm 1 alternates between the two procedures mentioned above until
both sets, OT and OF , are empty. This repetition is needed because of the NOT
gate. Whenever this gate is removed from the outputs of a constant, its outputs
are connected to the other constant, thus the set of outputs to be checked for
that constant will still have at least one element.
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Algorithm 1. Remove constant-value components
1: procedure Opt0(propnet)
2: OT ← propnet.TRUE .outputs
3: OF ← propnet.FALSE .outputs
4: while OT �= ∅ or OF �= ∅ do
5: RemoveFromTrue(propnet, OT , OF )
6: RemoveFromFalse(propnet, OT , OF )
7: end while
8: end procedure

Algorithm 2. Remove true components
1: procedure RemoveFromTrue(propnet, OT , OF )
2: while OT �= ∅ do
3: c ← OT .removeElement()
4: switch c.compType do
5: case TRANSITION
6: if |c.outputs| = 0 then
7: propnet.remove(c)
8: end if
9: case NOT

10: connect c.outputs to FALSE
11: OF ← OF ∪ c.outputs
12: propnet.remove(c)

13: case AND
14: if |c.inputs| = 1 then � Only TRUE as input
15: connect c.outputs to TRUE
16: OT ← OT ∪ c.outputs
17: propnet.remove(c)
18: else if |c.inputs| = 2 then � Only 2 inputs, one is TRUE
19: connect c.outputs to other input
20: propnet.remove(c)
21: else � More than 2 inputs, one is TRUE
22: disconnect c form TRUE
23: end if
24: case OR
25: connect c.outputs to TRUE
26: OT ← OT ∪ c.outputs
27: propnet.remove(c)

28: case PROPOSITION
29: connect coutputs to TRUE
30: OT ← OT ∪ c.outputs
31: if c.propType ∈{OTHER, BASE} then
32: propnet.remove(c)
33: end if
34: end switch
35: end while
36: end procedure



Optimizing Propositional Networks 139

4.2 Opt1: Remove Anonymous Propositions

This optimization is trivial, nevertheless useful as it removes many useless com-
ponents from the PropNet. The algorithm for this optimization (Algorithm 3)
simply iterates over all the propositions in the PropNet and removes the ones
with type OTHER, connecting their input directly to each of their outputs. These
propositions can be safely removed as they do not have any special meaning for
the game.

Algorithm 3. Remove anonymous propositions
1: procedure Opt1(propnet)
2: for all p ∈ propnet.propositions do
3: if p.propType = OTHER then
4: connect p.input with p.outputs
5: propnet.remove(p)
6: end if
7: end for
8: end procedure

4.3 Opt2: Detect and Remove Constant-Value Components

This optimization can be seen as an extension of Opt0 where, before remov-
ing from the PropNet the constant value components directly connected to the
TRUE and FALSE constant, the algorithm detects if there are other constant
value components that have not been discovered yet.

This optimization (see Algorithm 4) associates to each component c in the
PropNet a set Vc that contains all the truth values that such component can
assume during the whole game. There are only four possible sets of truth values,
namely:

– N = ∅: if the corresponding component can assume neither of the truth
values.

– T = {true}: if the corresponding component can only be true during all the
game.

– F = {false}: if the corresponding component can only be false during all the
game.

– B = {true, false}: if the corresponding component can assume both values
during the game.

The idea behind the algorithm is to start from the components for which the
truth value that they will assume in the initial state of the game is known. It then
propagates this value to each of their outputs o and updates the corresponding
truth value set Vo. Whenever the truth values set of a component is updated, the
algorithm propagates such changes on to its output components. This process
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Algorithm 4. Detect and remove constant-value components
1: procedure Opt2(propnet)
2: Initialize all the parameters and the stack S
3: while S �= ∅ do
4: (c, Pi) ← S.pop()
5: Oc ← ToOutputValueSet(c, Pi)
6: Pc ← Oc \ Vc

7: if Pc �= N then
8: Vc ← Vc ∪ Pc

9: for all o ∈ c.outputs do
10: S.push(o, Pc)
11: end for
12: if c.compType = PROPOSITION and c.propType = LEGAL then
13: i ← c.correspondingInput
14: S.push(i, Pc)
15: end if
16: end if
17: end while
18: for all c ∈ propnet.components do
19: if Vc = T or Vc = F then
20: Connect c to the appropriate constant
21: end if
22: end for
23: Opt0(propnet)
24: end procedure

will eventually end when the truth values sets of all components stop changing.
Termination is guaranteed since only the truth values just added to the truth
values set of a component are propagated to its outputs and the number of
possible truth values is finite.

When the algorithm starts, the set Vc of each component c is set to N , since it
is not known yet which values the component can assume. For each AND gate a
the algorithm keeps track of TIa, i.e. the number of inputs of a that can assume
the true value. Similarly, for each OR gate o the algorithm keeps track of FIo,
i.e. the number of inputs of o that can assume the false value. This parameters
are used to detect when an AND gate and an OR gate can assume respectively
the true (if TIa = |a.inputs|) and the false (if FIo = |o.inputs|) value. These
values are initialized to 0 for all the gates.

The algorithm exploits a stack structure S to keep track of the components
for which the set of truth values that their input(s) can assume is changed. A
pair (c, Pi) is added to the stack when the algorithm detects that an input i of
the component c can also assume the values in the set Pi ⊆ Vi, and such values
must be propagated to the component c. At the beginning the stack is filled with
the following pairs:

– (TRUE , T ), the TRUE constant can assume value true.
– (FALSE , F ), the FALSE constant can assume value false.
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– (i, F ), for each INPUT proposition i in the PropNet. Each INPUT proposition
can be false since we assume that no game exists where one player can only
play a single move for the whole game.

– (bj , T ), for each BASE proposition bj in the PropNet that is true in the initial
state.

– (bj , F ), for each BASE proposition bj in the PropNet that is false in the initial
state.

During each iteration, the algorithm pops a pair (c, Pi) from the stack (Line 4)
and checks if, given the new truth values Pi that the input i can assume, also
the truth values Vc of its output c will change. Note that not for each type of
component the set of truth values that its input can assume corresponds to the
set of truth values that the component itself can output. The NOT component
n, for example, has Vn = T if its input i has Vi = F . Moreover, for an AND
gate a, true ∈ Va ⇔ true ∈ Vi,∀i ∈ a.inputs. The same holds for the false
value for an OR gate. This means that the algorithm must first change the
values in Pi according to the type of the component c, obtaining the new set
of truth values Oc that c can output. This is done at Line 5 by the function
ToOutputValueSet(c, Pi). Subsequently, the algorithm checks if in Oc there
are some values Pc that were not in Vc yet (Line 6), and if so, it adds them to
the set Vc (Line 8) and records on the stack that they have to be propagated
to all the outputs o of c (Lines 9–11). Here the algorithm treats each LEGAL
propositions as if it was a direct input of the corresponding INPUT proposition,
thus whenever the truth values set of a LEGAL proposition changes, the values
are propagated to the corresponding INPUT proposition (Lines 12–15).

When no more changes are detected in the truth values sets (Line 3), the
process terminates. At this point, the truth values set of each component is
checked (Line 19) and if it equals the set T or F it is certain that the component
will always be respectively true or false. It can then be disconnected from its
input(s) and connected to the correct constant (Line 20).

The last step the algorithm performs consists in running the same algorithm
that was proposed as Opt0 to remove all the newly detected constant components
(Line 23).

4.4 Opt3: Remove Output-Less Components

This optimization is also quite trivial, but helps remove some more useless com-
ponents. Algorithm 5 shows this procedure: all the components in the PropNet
are checked, if they are gates, or propositions of type OTHER and they have no
output they are removed from the PropNet. Every time a component is removed,
its inputs are added again to the set of components to be checked, since removing
their outputs might have made them output-less.

5 Empirical Evaluation

In this section an empirical evaluation of the performance of the PropNet
and its optimizations is presented. Subsection 5.1 describes the setup of the
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Algorithm 5. Remove output-less components
1: procedure Opt3(propnet)
2: Q ← propnet.components
3: while Q �= ∅ do
4: c ← Q.removeElement()
5: if ((c.compType = PROPOSITION and c.propType = OTHER)

or c.compType ∈ {AND, OR, NOT}) and |c.outputs| = 0 then
6: Q ← Q ∪ c.inputs
7: propnet.remove(c)
8: end if
9: end while

10: end procedure

performed experiments. Subsections 5.2 and 5.3 discuss the results of the exper-
iments that compare the performance of single optimizations and combinations
of them respectively. The combination of PropNet optimizations that performs
overall best is then compared with the default Prover. Subsection 5.4 presents
a comparison of PropNet and Prover in terms of their speed, while Subsect. 5.5
presents a comparison in terms of their game-playing performance.

5.1 Setup

To evaluate the performance of the PropNet multiple series of experiments are
performed. Each of them tests the performance of the PropNet with different
optimizations and combinations of them. Each series of experiments poses the
bases to decide which other combinations of optimizations to check.

The different PropNet optimizations and their combinations are tested using
flat Monte-Carlo Search (MCS) on a set of heterogeneous games. For each opti-
mized PropNet the search is run from the initial state of the game with a time
limit of 20 s. This experiment is repeated 100 times for each of the chosen games.
Such games are the following: Amazons, Battle, Breakthrough, Chinese Checkers
with 1, 2, 3, 4 and 6 players, Connect 4, Othello, Pentago, Skirmish and Tic
Tac Toe. The GDL descriptions of these games can be found on the GGP-Base
repository [10].2

One of the reasons behind the choice of repeating each experiment multiple
times for each game is that for each repetition of the game a different seed is used
for the random number generator that controls the random exploration of the
search tree with the MCS algorithm. Thus, for different seeds different results
might be obtained and different parts of the search space explored.

Another reason is that the number of components that the PropNet of a
game has when created by the basic algorithm (i.e. without optimizations) is
not always constant. This variance in the number of components could be due

2 The GDL descriptions used for the experiments were downloaded from the repository
on 03/02/2016.
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to the non-determinism of the order in which game rules are translated into Prop-
Net components for different runs of the algorithm. This can cause a different
grounding order of the GDL description, originating more or less propositions
and can also cause gates and propositions to be connected in different equivalent
orders.

The optimized PropNet that showed the best overall performance in the
previous series of experiments is compared with the GGP-Base Prover in another
series of experiments. Both reasoners are also tested with the addition of a cache
that memorizes the queries results.

This series of experiments matches two MCS-based players that use the
Prover, one with cache and one without, against each other, and two MCS-
based players that use the best optimized PropNet, one with cache and one
without, against each other. We use the same 13 games that were used for the
other experiments. Each player has 10 s per move to perform the search. A new
PropNet is built for each match in advance, before the game playing starts. For
each game, if r is the number of roles in the game, there are 2r different ways in
which 2 types of players can be assigned to the roles [11]. Two of the configu-
rations involve only the same player type assigned to all the roles, thus are not
interesting and excluded from the experiments. Each configuration is run the
same number of times until at least 100 games have been played in total.

At the end of each game repetition the speed of the reasoners is computed by
dividing the total number of nodes visited by the total time spent on the search
during the whole game. Since we are only interested in the reasoning speed, for
this experiment we do not consider the 10 s search time per move strictly, but
we allow each player to finish the current simulation when this time expires.

The final series of experiments aims at evaluating the impact of the reasoners
on the win rate of game playing agents. This experiments match two MCTS-
based players, one that uses the fastest version of the Prover (i.e. with the cache)
and one that uses the fastest optimized PropNet (also with the cache), against
each other. The settings are the same as in the previous experiment, except the
minimum number of played games that is increased to 200. Moreover, for this
experiment the 10 s search time per move is considered strictly.

Before running any of the described experiments, the PropNet and all its
optimized versions were tested against the Prover for consistency. For each game
(about 300) in the GGP-Base repository [10], for a duration of 60 s, the same
random simulations were performed querying both the Prover and the currently
tested version of the PropNet for next states, legal moves, terminality and goals
in terminal states. The results returned by the PropNet were compared with the
ones returned by the Prover for consistency. All the PropNet versions passed
this test on all the games in the repository, except for 12 games for which the
PropNet construction could not be completed in the given time.

In all experiments, a limit of 10 min was given to the program to build the
PropNet. The experiments that compare the speed of PropNet and Prover with
and without cache were performed on an AMD Opteron 6174 2.2-GHz. All other
experiments were performed on an AMD Opteron 6274 2.2-GHz.
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5.2 Comparison of Single Optimizations

The first series of experiments compares with the basic version of the PropNet
(BasicPN) the performance of each of the previously described optimizations
applied singularly (Opt0, Opt1, Opt2, Opt3). Table 1 shows the obtained results.
For each PropNet variant, for each game the first block of the table gives the
average simulation speed in nodes per second, the second block gives the average
number of components and the third block gives the average total initialization
time (creation+optimization+state initialization) in milliseconds. The line at the
bottom of each block reports the average over the 13 games of the percentage
increase of the values considered in the block, relative to the basic version of the
PropNet (BasicPN).

The main interest is the speed increase that the optimizations induce on
the PropNet, however the other two aspects are also relevant. A low number of
components means less memory usage, and a shorter initialization time means
more time for metagaming at the beginning of a match (or more chances to avoid
timing out when the start clock time is short). From the table it seems that for
most of the games, as expected, the increase in the simulation speed is related
to the decrease in the number of components in the PropNet.

As can be seen, none of the optimizations outperforms the others in speed
for all games. Opt0 and Opt2 seem to have the best performance in Amazons,
Battle, Othello and Connect 4, while Opt1 performs best in the other games.
When looking at the initialization time, Opt2 is the one that increases it the
most for almost all the games. Another observation is that the performance of
Opt2 is overall better than the one of Opt0. This was expected because Opt2 is
an extension of Opt0, thus for the same PropNet it always removes at least the
same number of components as Opt0.

The speed is used as main criterion to choose which of the four optimization
to use as starting point for further experiments that involve testing combinations
of optimizations. If we consider the speed, Opt0 and Opt2 are the ones that, on
average, produce the highest increase. However, the high average is due to the
considerable relative increase that they produce in Othello. If we consider the
optimization that produces the highest speed in most of the games, then Opt1 is
the most suitable to be selected. Moreover, Opt1 is the optimization that reduces
the most the number of components of the PropNet without consistently slowing
down the initialization process.

5.3 Comparison of Combined Optimizations

In this series of experiments Opt1 is combined with other optimizations applied
in sequence. In general, when we refer to OptXY we refer to the PropNet opti-
mization obtained by applying OptX and OptY in sequence. These experiments
first compare the combinations of optimizations Opt13, Opt12 and Opt102. The
combination Opt10 has been excluded from the test since it is considered less
interesting. As also previously mentioned, Opt0 always removes a subset of the
components that are removed by Opt2, thus Opt10 is expected to perform less
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Table 1. Comparison of single optimizations

Game BasicPN Opt0 Opt1 Opt2 Opt3

Avg. speed

(nodes/second)

Amazons 35.1 41.4 32.7 41 40.2

Battle 34957 49666 37877 51257 35276

Breakthrough 50557 50932 65518 51357 51058

Chinese Checkers 1P 426374 427773 550230 444671 424516

Chinese Checkers 2P 125581 128623 189368 128910 127519

Chinese Checkers 3P 155886 157242 169352 161000 159267

Chinese Checkers 4P 105766 106738 127886 107153 105660

Chinese Checkers 6P 119650 118547 126863 113700 118783

Connect 4 110081 113484 105081 112920 109672

Othello 290 1610 235 1604 295

Pentago 76336 76786 116065 76721 96782

Skirmish 5887 6022 6780 6230 6151

Tic Tac Toe 223403 228056 248769 234915 222952

Avg. relative increase – 40.59% 15.51% 41.44% 3.95%

Avg. number of

components

Amazons 1497649 1254742 741874 1192364 1023913

Battle 51197 14267 36863 14262 50721

Breakthrough 10745 10678 5933 10678 10584

Chinese Checkers 1P 793 785 559 785 789

Chinese Checkers 2P 1540 1524 1179 1524 1532

Chinese Checkers 3P 2411 2389 1845 2236 2400

Chinese Checkers 4P 3159 3119 2465 2999 3133

Chinese Checkers 6P 4451 4411 3473 4123 4431

Connect 4 2164 2063 1724 1291 2114

Othello 1311988 274940 1033197 274940 1305515

Pentago 3696 3706 1470 3708 2111

Skirmish 126019 124267 108171 124267 78575

Tic Tac Toe 312 291 249 291 302

Avg. relative increase – –14.28% –29.21% –18.62% –9.49%

Avg. total init.

time (ms)

Amazons 311335 313719 314455 417097 315637

Battle 5756 6027 5897 6303 5869

Breakthrough 3989 4007 4012 4358 3910

Chinese Checkers 1 2699 2651 2659 2653 2707

Chinese Checkers 2 2848 2773 2810 2873 2775

Chinese Checkers 3 3162 3140 3159 3251 3149

Chinese Checkers 4 3258 3261 3241 3473 3244

Chinese Checkers 6 3225 3203 3204 3639 3205

Connect 4 2437 2465 2456 2698 2430

Othello 35756 36486 37074 39417 36544

Pentago 4249 4230 4278 4390 4232

Skirmish 11887 11702 11664 12089 11824

Tic Tac Toe 1525 1529 1523 1522 1508

Avg. relative increase – 0.13% 0.24% 7.69% –0.19%
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than Opt12. However, Opt0 has less negative impact than Opt2 on the total
initialization time. This is why these experiments include the test of Opt102: we
want to see if the application of Opt0 before Opt2 can speed up the process of
Opt2 that will then run on a smaller PropNet.

The results of this series of experiments can be seen in columns 3, 4 and
5 of Table 2. The structure of this table is the same as Table 1. The average
percentage increase reported in the last line of each block is still computed with
respect to the basic version of the PropNet (BasicPN).

As the table shows, regarding the speed, Opt12 seems to be the one achieving
the best overall performance. However, the performance of Opt102 is rather close,
as expected, because these two combinations should reduce each PropNet to the
same number of components. The small difference in performance is probably due
the reasons already mentioned in Sect. 5.1. Both the difference in the random
seed used for each repetition of the game and the variance in the number of
components generated by the algorithm that creates the initial PropNet can
influence the performance.

One more thing that can be noticed from Table 2 is that running Opt0 before
Opt2 helps reducing the initialization time for large games, while it seems to have
almost no effect on smaller games. Moreover, Opt13 is the one that, regarding
the speed, performs worse in this series of experiments, thus it has been excluded
from further tests. Among Opt12 and Opt102, it has been chosen to keep testing
on top of Opt102 because of its shorter initialization time for games with large
PropNets, given that its speed is still comparable with the one of Opt12.

Using Opt102 as starting point, there is only one more interesting combina-
tion of optimizations left to test: Opt1023. No further gain in performance can
be obtained by repeating the same optimizations multiple times in a row, since
no further change will take place in the structure of the PropNet. Thus, it is not
interesting to evaluate combinations of optimizations that extend Opt1023.

The last column of Table 2 shows the statistics for Opt1023. For most of
the games, Opt1023 seems to be the fastest. It is also the one that reduces
the number of PropNet components the most. As for the initialization time,
this optimization is between a few milliseconds and a bit more than 1 second
slower that the basic version of the PropNet, except for Amazons. Optimizing
the large PropNet of Amazons can slow down the initialization time by more
than a minute.

5.4 Comparison of PropNet and Prover

In this series of experiments the overall fastest combination of optimizations
among the tested ones (Opt1023) is compared with the Prover. More precisely,
Opt1023 and the Prover are compared measuring their speed over complete
games (as opposed to previous experiments that were comparing the speed only
on the first step of the game).

Moreover, for both of them also a cached version is tested (i.e. CachedProver
and CachedOpt1023). The GGP-Base framework [9] provides a cache structure
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Table 2. Comparison of combined optimizations

Game BasicPN Opt12 Opt102 Opt13 Opt1023

Avg. speed

(nodes/second)

Amazons 35 38.5 41.4 32.3 41

Battle 34957 59308 59697 39981 60419

Breakthrough 50557 66943 66551 66833 66991

Chinese Checkers 1P 426374 570858 562737 541682 561634

Chinese Checkers 2P 125581 194442 192048 190161 193752

Chinese Checkers 3P 155886 175410 176162 170722 176185

Chinese Checkers 4P 105766 130362 130279 129194 130451

Chinese Checkers 6P 119650 127535 128111 127619 129000

Connect 4 110081 127053 126535 105978 129272

Othello 290 1934 1894 245 1979

Pentago 76336 116353 115064 117127 121108

Skirmish 5887 7075 7042 7403 7600

Tic Tac Toe 223403 259980 257285 247246 257525

Avg. relative increase – 70.32% 69.39% 17.38% 73.48%

Avg. number of

components

Amazons 1497649 623460 623460 711596 596240

Battle 51197 11084 11077 36676 10902

Breakthrough 10745 5900 5900 5869 5836

Chinese Checkers 1P 793 556 556 559 556

Chinese Checkers 2P 1540 1172 1172 1179 1172

Chinese Checkers 3P 2411 1718 1718 1845 1718

Chinese Checkers 4P 3159 2362 2362 2465 2362

Chinese Checkers 6P 4451 3238 3238 3473 3238

Connect 4 2164 1063 1063 1724 1056

Othello 1311988 208510 208510 1031580 206846

Pentago 3696 1464 1473 1338 1337

Skirmish 126019 107296 107296 62427 61552

Tic Tac Toe 312 239 239 249 239

Avg. relative increase – –42.34% –42.32% –32.52% –45.65%

Avg. total init.

time (ms)

Amazons 311335 411905 400113 312793 401559

Battle 5756 6367 6233 5968 6329

Breakthrough 3989 4354 4415 3982 4328

Chinese Checkers 1P 2699 2693 2654 2707 2652

Chinese Checkers 2P 2848 2848 2843 2817 2842

Chinese Checkers 3P 3162 3214 3186 3160 3167

Chinese Checkers 4P 3258 3405 3330 3275 3379

Chinese Checkers 6P 3225 3423 3430 3207 3395

Connect 4 2437 2536 2555 2417 2525

Othello 35756 39170 36689 35359 37804

Pentago 4249 4269 4286 4308 4325

Skirmish 11887 12386 12285 11870 12577

Tic Tac Toe 1525 1532 1535 1524 1555

Avg. relative increase – 6.38% 5.18% 0.18% 5.66%
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Table 3. Comparison of the PropNet with the Prover and effect of the cache

Game Prover CacheProver Opt1023 CacheOpt1023

Avg. speed
(nodes/second)

Amazons 5.7 2316 28.1 30519

Battle 45.2 2457 38656 36607

Breakthrough 235 241 56275 51569

Chinese Checkers 1P 2273 466014 532426 862408

Chinese Checkers 2P 1478 93251 159935 258639

Chinese Checkers 3P 1105 28300 118160 133733

Chinese Checkers 4P 536 32684 82955 117017

Chinese Checkers 6P 607 5744 57008 53230

Connect4 180 2455 122325 207508

Othello 3.2 5502 649 80328

Pentago 152 155 93185 75998

Skirmish 26 4081 2997 3946

Tic Tac Toe 1650 287380 225127 547398

Avg. relative increase – 22139% – 9321%

that memorizes the results returned by the underlying reasoner and prevents it
from computing the same queries multiple times.

The results of these experiments are shown in Table 3. The last row of this
table reports for both CachedProver and CachedOpt1023 the average percentage
increase of the speed with respect to their non-cached versions.

From the table it is visible how the optimized PropNet achieves a much better
performance than the Prover in the considered games. When adding the cache
to both reasoners the difference in performance is reduced, however the PropNet
is still faster in all games but one, Skirmish, for which the speed of the cached
PropNet and the cached Prover are quite close.

The use of a cache provides some benefits increasing the overall performance
of both reasoners with respect to their non-cached version. However, the cache
gives more benefits to the Prover. For the Prover the speed is increased for all
the games, while for the PropNet it is increased for most, but not all of them.
To be noticed is that the increase in speed provided by the cache is especially
relevant in the games of Amazons and Othello.

Moreover, observing the results for all the Chinese Checkers versions it is
clear that the speed of the cached Prover and the speed of the cached PropNet
both decrease when increasing the number of players. However, for the PropNet
this decrease is slower. For Chinese Checkers with 1 player the cached PropNet
is about 2 times faster than the cached Prover, while for the version with 6
players it is almost 10 times faster.

When performing the experiments it was also noticed that in many games
the cache decreases the speed of the PropNet reasoner during the initial steps.
This loss is then balanced towards the endgame, when the chance of finding
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cached query results increases. It takes some time for the cache to be filled with
a sufficient number of entries and thus have a positive impact on the speed of
the PropNet.

The same effect was not observed for the Prover. For the first steps of the
games the cache did not decrease the speed of the Prover for any of the games,
and for some of them increased it. The explanation for this is that the time for
computing the answer of a query with the Prover is in general much higher than
the one of the PropNet. Thus, for the Prover finding in the cache even a small
number of query results saves enough computational time to compensate the
extra time spent looking in the cache for results that are not present yet.

Finally, the results of Table 3 also help putting the PropNet into perspective
with the other GDL reasoners analyzed in the paper [7]. Even if that paper uses
different experimental settings than ours, we can still make some general obser-
vations. Considering the performance of the reasoners that, like the PropNet,
rely on an alternative representation of the GDL description, it seems that our
implementation of the PropNet provides for most of the games a speed increase
of the same order of magnitude when compared to the Prover. Moreover, for
Amazons, Othello and Chinese Checkers with 4 and 6 players, it seems that
our optimized PropNet, especially with the cache, could even achieve a better
performance in similar circumstances.

5.5 Game Playing Performance

In this series of experiments an MCTS player that uses the cached PropNet
reasoner with the fastest combination of optimizations (Opt1023) is matched
against an MCTS player that uses the cached Prover. Because Sect. 5.4 showed
the cache to be overall beneficial for both reasoners, it has been included in this
experiment.

Table 4 shows the win percentage of the cached PropNet-player against the
cached Prover-player. The table does not include the results for the single-player
version of Chinese Checkers because this game is tested separately and the score
is used to measure the performance of the players. This game has a relatively
small search space, so both players achieved the maximum score in every match.

Moreover, no results are shown for Amazons and Othello because for both
games, during the first game steps, the cached Prover-player could not return
a move within the given time limit. Even with the use of the cache, during the
first game steps the number of memorized query results is not sufficient to allow
the Prover to complete even one MCTS simulation within the time limit.

Looking at the results for the remaining games, for most of them the cached
PropNet-player achieves a win percentage close or equal to 100%. The games in
which the performance of the cached PropNet-player seems to drop are the ones
with more than 2 players. Chinese Checkers with 4 and 6 players are the ones
where the win percentage for the cached PropNet-player is the lowest, but it is
still significantly better than the one of the cached Prover-player. The game of
Tic Tac Toe is the only exception, because its state space is so small that both
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Table 4. Win percentage of the PropNet-player against the Prover-player

Game Opt1023

Battle 100.0(±0.0)

Breakthrough 100.0(±0.0)

Chinese Checkers 2P 96.0(±2.72)

Chinese Checkers 3P 77.5(±5.75)

Chinese Checkers 4P 68.1(±6.32)

Chinese Checkers 6P 64.7(±5.73)

Connect 4 99.3(±1.09)

Pentago 100.0(±0.0)

Skirmish 100.0(±0.0)

Tic Tac Toe 50.0(±0.0)

players can easily reach a sufficient number of simulations to play optimally and
result in a tie.

The results of Table 4 are in line to what would be expected when looking
at the average speed reported in Table 3 for the two cached reasoners. For all
the games for which the speed of the cached PropNet is at least one order
of magnitude higher than the one of the cached Prover, the cached PropNet-
player achieves a significantly higher win percentage. However, for the game of
Skirmish Table 3 reports a similar average speed for both the cached reasoners
so their performance would be expected to be close. A win rate of 100% for
the cached PropNet can be explained by the fact that the speed per game step
of the Prover exhibits a higher variance than the speed of the PropNet. The
speed of the PropNet in the initial game steps is close to the average speed.
The Prover, instead, is about 340 times slower than the PropNet in this stage.
Its speed increases only in the last few steps of the game. At this point the
PropNet-player already gained enough advantage over the Prover-player to win
the game.

6 Conclusion and Future Work

In this paper the performance of a PropNet-based reasoner has been evaluated,
together with four possible optimizations of the structure of the PropNet and
their impact on the performance. Even though the tested implementation of
the PropNet is based on the code provided by the GGP-Base framework, the
principles behind its representation and its optimizations can also be applied in
general.

Experiments have shown that the use of a PropNet substantially increases
the reasoning speed by, on average, at least two orders of magnitude with respect
to the GGP-Base Prover. Moreover, the addition of a combination of optimiza-
tions that reduce the size of the PropNet increases the reasoning speed further.



Optimizing Propositional Networks 151

Experiments also show that the reasoning speed increase has a positive effect on
the performance of the PropNet-based player. This player achieves a win rate
close to 100% in most of the games for which it is matched against an equivalent
player based on the Prover. Thus, it is possible to conclude that for a general
game playing agent a reasoner based on a PropNet, especially when optimized, is
in general a better choice than a custom-made GDL interpreter like the Prover.

Also the use of a cache proved to be useful for the PropNet in most of the
games. For small games its effect is already visible in the first steps, while for
most of the other games it helps only during later game steps. However, we may
conclude that the use of a cache is overall positive for a PropNet reasoner.

Future work could further investigate the use of the cache with the PropNet,
for example by devising a strategy to detect for each game if and when the use
of a cache is helpful. Finally, another interesting aspect that future work could
consider is the impact that the use of different strategies to propagate truth
values among the components of the PropNet would have on the reasoning speed.
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Abstract. Many state-of-the-art general game playing systems rely on
a ground (propositional) representation of the game rules. We propose a
theoretically well-founded approach using efficient off-the-shelf systems
for grounding game descriptions given in the game description language
(GDL).

1 Introduction

Games in General Game Playing are generally described in the game descrip-
tion language (GDL) [11]. While allowing to describe a large class of games and
being theoretically well-founded, reasoning with GDL is generally slow com-
pared to game specific representations [16]. This limits the speed of search, both
for heuristic search methods, such as Minimax, as well as for simulation-based
approaches, such as Monte Carlo Tree Search. Thus, an important aspect of
General Game Playing is to find a better representation of the rules of a game
that facilitates both fast search in the game tree as well as efficient meta-gaming
analysis. Propositional networks [19] and binary decision diagrams (BDDs) [5]
have been proposed for faster reasoning with the game rules. Both approaches,
require that game descriptions be grounded, that is, translated into a propo-
sitional representation. Other meta-gaming approaches could also benefit from
having a propositional description of the game rules as input. Some examples
are finding symmetries in games [14], discovering heuristics for games (e.g., [12]),
proving game properties [8,17] and factoring games [3,4].

The GGP-Base framework [20], which is the basis for a number of general
game players, contains code for generating a propositional network [19] repre-
senting the game rules. This code requires computing ground instances of all rules
in the game description. However, the code seems ad-hoc and it is not obvious
whether and for which class of game descriptions it maintains the semantics of
the game rules. With this paper, we propose to transform the game description
into an answer set program [2] and use the grounder of a state-of-the-art answer
set solving system to compute a propositional representation of the game. This
has the advantage of using a highly optimized and well-tested system, as well as
being theoretically well-founded. Our system also turns out to be able to handle
more games than the GGP-Base framework and being significantly faster for
many games.

c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 152–164, 2017.
DOI: 10.1007/978-3-319-57969-6 11
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2 Related Work

In [9], the authors report two methods for grounding GDL, one using Prolog and
another using dependency graphs. Both methods have some deficiencies and the
authors only manage to ground 96 out of the 171 tested games. While the authors
do not report on the size of the grounded game descriptions, they report on one
of their methods to produce game descriptions that are unnecessarily big.

In [8], The authors use Answer Set Programming (ASP) [2] to prove prop-
erties of games by transforming a GDL description into an answer set program
and adding constraints that encode the properties to be proven. The system they
have implemented uses the Potassco ASP solver [6] which relies on grounding
the answer set program, and thus, indirectly the game description.

3 Game Description Language (GDL)

The game description language [11,18] is a first-order-logic based language that
can be seen as an extension of Datalog permitting negations and function sym-
bols. Thus, a game description in GDL is a logic program. The game specific
semantics of GDL stems from the use of certain special relations, such as for
describing the initial game state (init), detecting (terminal) and scoring (goal)
terminal states, for generating legal moves (legal) and successor states (next).
A game state is represented by the set of terms that are true in the state (e.g.,
cell(1,1,b)) and the special relations true(f) and does(r,m) can be used to
refer to the truth of f being in the current state and role r doing move m in the
current state transition. Figure 1 shows a partial GDL description for the game
Tic-Tac-Toe.

GDL allows to describe a wide range of deterministic perfect-information
simultaneous-move games with arbitrary number of adversaries. Turn-based
games are modeled by having the players that do not have a turn return a
move with no effect (e.g., noop in Fig. 1).

To ensure an unambiguous declarative interpretation, valid GDL descriptions
need to fulfill a number of restrictions:

Definition 1. The dependency graph for a set G of clauses is a directed, labeled
graph whose nodes are the predicate symbols that occur in G and where there is
a positive edge p +→q if G contains a clause p(s) ⇐ . . .∧ q(t)∧ . . ., and a negative
edge p −→q if G contains a clause p(s) ⇐ . . . ∧ ¬q(t) ∧ . . ..

To constitute a valid GDL specification, a set of clauses G and its dependency
graph Γ must satisfy the following.

1. There are no cycles involving a negative edge in Γ (this is also known as being
stratified [1,7]);

2. Each variable in a clause occurs in at least one positive atom in the body (this
is also known as being allowed [10]);
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Fig. 1. A partial GDL game description for the game Tic-Tac-Toe (reserved GDL
keywords are marked in bold)

3. If p and q occur in a cycle in Γ and G contains a clause

p(s1, . . . , sm) ⇐ b1(t1) ∧ . . . ∧ q(v1, . . . , vk) ∧ . . . ∧ bn(tn)

then for every i ∈ {1, . . . , k},
– vi is variable-free, or
– vi is one of s1, . . . , sm, or
– vi occurs in some tj (1 ≤ j ≤ n) such that bj does not occur in a cycle

with p in Γ.
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4 Restrictions

As mentioned in [8] (Subsect. 3.2), there is no finite grounding of a GDL descrip-
tion in general. While the restrictions from Definition 1 ensure that reasoning
about single states or state transitions is finite, the restrictions are not strong
enough to ensure finiteness or decidability of reasoning about the game in gen-
eral, such as, whether the game will terminate or is winnable for some player.

In fact, without further restrictions, GDL as defined in [11] or [18] is Turing
complete [13]. Thus, some restrictions to the language are necessary in order to
be able to ground a game description and only game descriptions that adhere
to these restrictions can be grounded. The restriction used in [8] and termed
bounded GDL in [13] is the following:

Definition 2. Let G be a GDL specification. Let G′ be G extended with the
following three rules:

1 true(F ) :- init(F ).

2 true(F ) :- next(F ).

3 does(R,M ) :- legal(R,M ).

G is in the bounded GDL fragment of GDL descriptions, if, and only if, G′

satisfies the recursion restriction.

As discussed in [13], this restriction makes bounded GDL decidable and there-
fore truly less expressive than (unbounded) GDL. However, this is of little prac-
tical consequence as all of the game descriptions currently available in GDL
belong to the bounded fragment.

5 Grounding

To obtain a ground version of a game description, we transform it into an answer
set program P , ground P using very optimized grounder for answer set programs
and extract the ground version of the game rules from the grounded answer set
program.

Specifically, the program P that we create consists of

– the game description itself,
– a state generator,
– an action generator, and
– rules that encode all possible state terms and moves in the game.

The following definitions are based on [8], but simplified for our purpose.

Definition 3. A state generator for a valid GDL specification G is an answer
set program P gen such that

– The only atoms in P gen are of the form true(f), where f ∈ Σ, or auxiliary
atoms that do not occur elsewhere; and
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– for every reachable state S of G, P gen has an answer set A such that for all
f ∈ Σ: true(f) ∈ A iff f ∈ S.

We use the following state generator

1 {true(F):base(F)}.

where, intuitively, base(f) encodes all possible terms f that might appear in a
state of the game.

Definition 4. Let A(S) denote the set of all legal joint moves in S, that is,

A(S) def= {A : R �→ Σ|l(r,A(r), S)}

An action generator for a valid GDL specification G is an answer set program
P legal such that

– The only atoms in P legal are of the form does(r,m), where r ∈ R and m ∈ Σ,
or auxiliary atoms that do not occur elsewhere;

– for every reachable (non-terminal) state S of G and every joint move A ∈
A(S), P legal has an answer set A such that for all r ∈ R: does(r,A(r)) ∈ A;
and

– for every reachable (terminal) state S ∈ T of G, P legal has an answer set.

We use the following action generator

1 1={ does(R, M):input(R, M)} :- role(R).

where, intuitively, input(r,m) encodes all possible moves m of role r in the game.
Thus, our action generator does admit answer sets that might not be legal joint
moves for a specific state. However, this is not a problem, since we are not
interested in the answer sets, but only the grounded answer set program.

For several years, games in the international general game playing competi-
tion contain definitions of base and input predicates as used above. However,
there is no formal definition of the semantics of those predicates in GDL and
many older game descriptions do not have those predicates. We argue for the
following definition:

Definition 5. A game description G is said to have well defined base and input
definitions if, and only if,

– for every reachable state S of G, for every f ∈ S, G � base(f); and
– for every reachable state S of G with S /∈ T , role r ∈ R and move m ∈ Σ, if

l(r,m, S) then G � input(r,m).

Instead of putting the burden of writing well defined base and input defini-
tions, we propose to generate them from the remaining rules. The idea for this
is that the possible instances of base(f) should comprise all possible instances
of init(f) and all possible instances next(f) for all possible state transitions.
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Similarily, the possible instances of input(r,m) must contain all instances of
legal(r,m) in any reachable non-terminal state.

The idea is to compute a static version P base of the rules that define next
states and legal moves of the players. Here, static means a relaxation of the rules
that is independent of true and does, defined as follows.

Definition 6. Let G be a GDL specification. We call a predicate p in G static
iff p /∈ {init, true, next, legal, does} and p does neither depend on true nor
does in the dependency graph of G.

Furthermore, let pstatic be a predicate symbol which represents a unique name
for the static version of predicate p. By definition

initstatic = base
truestatic = base
nextstatic = base
doesstatic = input
legalstatic = input
pstatic = p if p is static

For each rule p(X) : − B ∈ G such that p ∈ {init, next, legal} or either one
of init, next, legal depends on p in the dependency graph of G with positive
edges, P base contains the rule

pstatic(X) : − Bstatic.

where Bstatic comprises the following literals:

{qstatic(Y) : q(Y) ∈ B} ∪
{not q(Y) : not q(Y) ∈ B ∧ q is static }

As an example, the following rules form P base as generated for the Tic-Tac-
Toe game (Fig. 1):

1 base(cell(1, 1, b)).

2 ...

3 base(cell(3, 3, b)).

4 base(control(xplayer )).

5 base(cell(M, N, x)) :-

6 input(xplayer , mark(M, N)),

7 base(cell(M, N, b)).

8 base(cell(M, N, o)) :-

9 input(oplayer , mark(M, N)),

10 base(cell(M, N, b)).

11 base(cell(M, N, C)) :-

12 base(cell(M, N, C)), C!=b.

13 base(control(xplayer )) :-

14 base(control(oplayer )).

15 base(control(oplayer )) :-

16 base(control(xplayer )).
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17 base(cell(M, N, b)) :-

18 base(cell(M, N, b)),

19 input(R, mark(X, Y)), M!=X.

20 base(cell(M, N, b)) :-

21 base(cell(M, N, b)),

22 input(R, mark(X, Y)), N!=Y.

23

24 input(W, mark(X, Y)) :-

25 base(control(W)), base(cell(X, Y, b)).

26 input(xplayer , noop) :-

27 base(control(oplayer )).

28 input(oplayer , noop) :-

29 base(control(xplayer )).

The answer set program P that we generate from a game description G is
defined as P = G ∪ P base∪
1 {true(F):base(F)}.

2 1={ does(R, M):input(R, M)} :- role(R).

As can easily be seen, our definition of P base (and thus P ) fulfills the restric-
tions for a valid GDL description (Definition 1) if the original game description
G belongs to the bounded fragment of GDL (Definition 2). The reason is that
in P base we introduce recursions involving truestatic and nextstatic (which are
both base) and therefor also between legalstatic and doesstatic (both input).
Thus, all bounded GDL programs can be grounded using this method in princi-
ple. GDL descriptions not fulfilling the restrictions for bounded GDL, can lead
to an infinite ground representation.

That said, grounding bounded GDL can still lead to an exponential blowup
in the size of the representation which can make grounding infeasible. Especially
games containing rules with many variables suffer from this problem.

Optimizations. Before grounding the answer set program P , we apply optimiza-
tions to it similar to the ones described in [8] (Subsect. 6.2). That is, we try to
reduce the resulting grounding by removing existential variables and removing
unnecessary rules, as illustrated in the following paragraphs.

As an example, consider the rule p(X,Z) :- q(X,Y), r(Y), s(Z).. The
variable Y in the body is existentially quantified (does not appear in the head).
We replace this rule by

1 p(X,Z) :- qr(X), s(Z).

2 qr(X) :- q(X,Y), r(Y).

where qr is a new predicate symbol and obtain two rules with two variables each
instead of one rule with three variables. This reduces the number of ground rules
that are generated (unless the domains of the variables are singletons).

Some rules in the game descriptions are unnecessary and can be removed.
For example, Tic-Tac-Toe (see Fig. 1) contains the rules for line(X). In those
rules X can be replaced with any of {x, o, b}, however only line(x) and line(o)
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appear in the body of another rule. Thus, the ground rules that would be gener-
ated for line(b) are irrelevant as are the ground instances of row, column and
diagonal where X is replaced with b. We prevent these unnecessary rules from
being generated in the first place, by instantiating the X in the rules for line(X)
with x and o and handing these partially instantiated rules to the grounder.

6 Experiments

We ran experiments on 231 games from the GGP server [15]. For each game we
ran our grounder and recorded

– the time it took to generate the answer set program P ;
– the total runtime for grounding (including the time for generating P );
– the size of the resulting ground description in terms of number of resulting

clauses;
– the number of components of a propositional network created from the those

clauses without optimizations.

For comparison, we used the GGP-Base framework [20] to generate a proposi-
tional network (propnet) using the OptimizingPropNetFactory class. Generating
a propnet includes grounding the game description as a first step and we mea-
sured only the time for this step without the remaining time that is spent on
optimizing the propositional network. However, these two are somewhat inter-
twined such that a complete separation is not possible. GGP-Base makes use of
base and input predicates. Since most games on the GGP server do not contain
base and input definitions, we added the base and input definitions that were
generated by our own grounder to the game rules that were given as input to
the propnet generation. For GGP-Base we recorded the runtime and the number
of resulting components, where each component represents a conjunction, dis-
junction, negation or proposition in the (grounded) rules. Thus, this number is
roughly comparable to the number of clauses (including facts) in the grounded
game description.

The ASP-based grounder can ground 226 of the 231 tested games within
the time limit of 1 h and memory limit of 4 GB. The median runtime was 1.4 s
(average 4.5 s), which includes the time for starting an external process for the
grounder and reading the resulting grounded game description. For comparison,
the GGP-Base grounder can ground 218 of the tested games with a median
runtime of 2.4 s (average 5.9 s). Since no external process needs to be started,
this runtime does not include any process communication overhead. There was
no game that could be grounded using GGP-Base but not using ASP. Most of
the games that could be handled by the ASP-based grounder but not by GGP-
Base feature heavy use of recursive rules. Neither system could ground laik-
Lee hex, merrills, mummymaze1p, ruledepthquadratic or small dominion. All of
those games feature recursive rules, except for mummymaze1p, which could be
grounded by the ASP system resulting in about 5 million clauses, but processing
the ground clauses and generating the propnet took too much time. The games
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Fig. 2. Runtime for grounding game descriptions with GGP-Base vs. our ASP-based
grounder. Points above the diagonal denote games where the GGP-Base grounder takes
longer than the ASP-based grounder. The runtime limit was set to 1 hour. Thus, points
at x = 3600 s denote games where the ASP grounder failed to ground the game within
the time limit (and conversely for the GGP-Base grounder). The horizontal and vertical
lines show the median runtime of GGP-Base and ASP-based grounder, respectively.

farmers, god, Goldrush, kalaha 2009, quad 5x5, SC TestOnly, sudoku simple and
uf20-01.cnf.SAT could be grounded by the ASP-based grounder, while the GGP-
Base grounder exceeds the run-time limit. Of those games, only farmers and
kalaha 2009 can be considered complex games taking 25.4 s and 21.7 s to ground
respectively and resulting in more than 100000 components. The other games
could all be grounded by the ASP-based grounder in under 5 s resulting in no
more than 13000 components.

Figure 2 shows the runtimes of the GGP-Base vs. ASP-based grounder for all
231 games on a logarithmic scale. We can see that most games can be grounded
in less than 1 min with both grounders. In 173 cases the ASP-based grounder
is faster than the GGP-Base grounder (some of them within the margin of
error). On average, the ASP-based grounder is 20.4% faster than the GGP-Base
grounder.

We compared the size of the grounded description with both systems in Fig. 3.
As can be seen, there is little difference between both systems, but the GGP-Base
system creates significantly larger groundings in few selected games (smallest,
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Fig. 3. Number of components of a propositional network created from the ground-
ing resulting from GGP-Base vs. our ASP-based grounder. Points above the diagonal
denote games where the GGP-Base grounder creates larger propnets. The horizontal
and vertical lines show the median numbers of components for GGP-Base and ASP-
based grounder, respectively.

logistics, mastermind, crossers3, othello-comp2007, othellosuicide, racer, racer4,
battlebrushes). The number of clauses of the grounded game descriptions range
from 26 (from troublemaker01) to 2038583 (for battlesnakes1509) with a median
of 2444. The number of components in the generated propositional networks is
similar (between 46 and 2715284). The median number of generated components
is 2455 for the ASP-based grounder vs. 2518 for the GGP-Base grounder.

In Fig. 4, we plotted the size of the ground representation (propositional net-
work) compared to the size of the original GDL rules for each of the games. We
used the smaller of the two groundings for each game and measured the size of
the rules by taking the sum of the number of literals of all rules. As can be seen in
the graph, the propositional network is generally some orders of magnitude larger
than the GDL rules, except for some edge cases where the rules are essentially
already grounded. However, we cannot see a general trend indicating an expo-
nential blowup in size. That is, although this blowup is theoretically possible, it
seems to happen rarely in the games we looked at. In fact, the best fit to the data
(excluding the abnormal cases) seems to be a power law which puts the propnet
size at slightly more than a quadratic function of the size of the GDL rules.
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Fig. 4. Number of components of the propositional network compared to the size of the
original GDL description (without base and input rules) measured in number of literals
for all 226 games that could be grounded. The dots denote games that are abnormal
in that the GDL rules are larger than the propnet. All of these games turned out to
be either test case games made to test certain aspects of GDL reasoners (as opposed
to general game players) or games that are essentially already ground. The line shows
the best matching regression.

7 Conclusion

Grounding game descriptions using a state-of-the art answer set programming
system is a viable alternative to the GDL specific approach implemented in
the GGP-Base framework. The system we presented is able to handle more
games and is typically faster despite the overhead of transforming GDL into
a different format and starting and communicating with a separate process.
Furthermore, our grounding of a game description is well-founded theoretically
by the transformation into answer set programs. This allows to optimize the
descriptions further without changing their semantics. In the future, we plan
to look into further optimizations of the grounding to allow grounding of more
complex game descriptions. Additionally, these optimizations will likely reduce
the size of the grounded descriptions which generally leads to faster reasoning
with the grounded game descriptions, for example, in the form of propositional
networks. However, even with those optimization there will likely be games where
the potential exponential blowup will prevent grounding from being feasible.
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In those cases it is necessary to fall back on reasoners that do not require a
propositional representation (e.g., Prolog).
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Abstract. We present a general approach for the decomposition of
games described in the Game Description Language (GDL). In the field
of General Game Playing , the exploration of games described in GDL
can be significantly sped up by the decomposition of the problem in
sub-problems analyzed separately. Our program can decompose game
descriptions with any number of players while addressing the problem of
joint moves. This approach is used to identify perfectly separable sub-
games but can also decompose serial games composed of two subgames
and games with compound moves while avoiding, unlike previous works,
to rely on syntactic elements that can be eliminated by simply rewriting
the GDL rules. We tested our program on 40 games, compound or not,
and we can decompose 32 of them successfully in less than 5 s.

1 Introduction

Despite incentives from Genesereth and Björnsson [3] to encourage the develop-
ment of GGP players able to discern structure of compound games and therefore
to dramatically decrease search cost, not much research exists in this area.

Cox et al. [2] prove conditions under which a global game represents mul-
tiple, simultaneous independent sub-games, but the practical implementation
of a GGP player using decomposition presents two major issues: the first is to
detect and decompose a compound game, the second is to combine local subgame
solutions into a global one.

Cerexhe et al. [1] provide a systematic approach for single player games
to solve this second difficulty which they refer to as the composition problem.
However, identifying and decomposing games is not within the scope of their
paper.

Günther et al. [5,6] propose a decomposition approach for single player games
by building a dependency graph between fluents and actions: the connected
parts of the graph represent the different subgames. Potential preconditions,
positive and negative effects between fluents and actions are used to build this
dependency graph while action-independent fluents are isolated in a separate
subgame to prevent them from blocking the decomposition.

Zhao et al. [10,11] propose a similar approach for multiplayer games using
partially instantiated fluent and action terms. Serial games and games with
compound actions are handled separately.
c© Springer International Publishing AG 2017
T. Cazenave et al. (Eds.): CGW 2016/GIGA 2016, CCIS 705, pp. 165–177, 2017.
DOI: 10.1007/978-3-319-57969-6 12
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These approaches present different shortcoming we will details below such as
a heavy reliance on certain syntactic structures in game descriptions.

We propose a more general approach to decompose games with any number
of players while addressing the problem of joint moves, compound moves and
serial games without relying on syntactic elements that can be eliminated by
simply rewriting the GDL rules. The result of our decomposition can be used to
solve the game by an approach like the one of Cerexhe et al. [1]; it is a non-trivial
problem outside the scope of this paper.

We begin (Sect. 2) with a brief introduction of the Game Description Lan-
guage and the different types of compound games that can be found on the
different online servers and that our approach can decompose. Then we present
the different aspects of our method to handle these different types of games
(Sect. 3). We present results on 40 games, compound or not (Sect. 4). Finally, we
conclude and present future work (Sect. 5).

2 Preliminaries

We present here some details about the Game Description Language and the
different types of compound games that our approach can decompose.

2.1 The Game Description Language

We assume familiarity of the reader with the General Game Playing [4] as well as
with the Game Description Language (GDL) [7]. A GDL game description takes
the form of a set of assertions and of logical rules which conclusion describes: the
transition to the next position (next predicate); the legality of actions (legal);
the game termination (terminal); and the score (goal). The rules are expressed
in terms of actions (does) and fluents (true) describing the game state.

Rule premises can also include auxiliary predicates, specific to the game
description itself, which truth is defined by rules also using true and does
premises. In the rest of this article, we will refer to auxiliary predicates, exclu-
sively defined in terms of fluents (true) (does never appear in their premises),
which have an important role in our decomposition approach (Sects. 3.3, 3.5).

2.2 Types of Compound Games

Among games available on the different General Game Playing servers (http://
games.ggp.org) different types of compound games can be identified. The types
we distinguish represent specific issues for the decomposition and are not directly
related to the formal classification proposed by (Cerexhe et al. [1]).

For example, Parallel games like Dual Connect 4 or Double Tictactoe
Dengji are composed of two subgames played in parallel that can be synchro-
nous or asynchronous, but this difference has no influence on the decomposition
approach to use. Decomposing these games does not present any particular dif-
ficulty.

http://games.ggp.org
http://games.ggp.org
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However, in some synchronous parallel games like Asteroids Parallel each
player’s action is a compound moves corresponding to two simultaneous
actions played in each subgames. These create a strong connection between sub-
games and represent a specific difficulty for decomposition.

Serial Games like Blocker Serial are composed of two sequential subgames
i.e. the second starts when the first is completed. As the two games are linked
together, identifying the boundary between them is a specific issue for decom-
position.

Multiple Games like Multiple Buttons And Lights are composed of sev-
eral subgames, only one of them being involved in the score calculation or the
game termination. The other subgames only increase the size of the game tree
to explore. Identifying those useless subgames allows to avoid unnecessary cal-
culations. Note that in the game Incredible, contemplate actions are detected as
noop actions by our decomposition program and does not constitute a useless
subgame.

Games using a Stepper to ensure finite games like Eight Puzzle may be
considered as compound games (synchronous). In these games, different descrip-
tions of a position can vary only by the value of the stepper (step counter). To
allow a programmed player to exploit these near-perfect transpositions, it is nec-
essary to operate a game decomposition to separate the stepper from the game
itself. This stepper is then an action independent subgame.

Some Impartial Games, like Nim starting with several piles of objects,
may also be considered as compounds games (asynchronous) as they can be
decomposed in several subgames, one for each pile, each of them being an impar-
tial game [10]. Identifying that these subgames are impartial, subsequently allows
to use known techniques for the resolution of the global game.

3 Method

Our approach is based on Günther’s idea [5] and consists in using a dependency
graph between actions and fluents, and then to identify the connected parts of
the graph representing the subgames. As nothing in the GDL specification pro-
hibits the use of completely instantiated rules or prevents that fluents or actions
be reduced to simple atoms, we identify relations between totally instantiated
fluents f and actions a and rely neither on their predicates names nor their
arguments.

For the analysis of these relations, we use the following definitions:

Definition 1. Let F be the set of all the instantiated fluents f appearing in
true(f) or ¬true(f).

Definition 2. R being the set of all the roles r and O the set of all options o
of these roles, let A ⊂ R × O be the set of all the instantiated player actions
a = (r, o).
Or is the set of all the possible options of role r.

Definition 3. Let C be the set of all the possible conjunctions of atoms of the
form true(f), ¬true(f), does(r, o) or ¬does(r, o).
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3.1 Grounding and Creation of a Logic Circuit

To instantiate completely the rules (grounding), we carry out a fast instantiation
using Prolog with tabling [9] and use these instantiated rules to build a logic
circuit similar to a propnet [8]. Conclusions of legal, next, goal or teminal rules
are the outputs of the circuit and only depends on fluents (true) and actions
(does) at the inputs.

It is possible, according to the GDL specifications, to produce a description
with fully developed rules using no auxiliary predicate at all. However, these
predicates, like column1, diagonal2 or game1over in Tictactoe, may be neces-
sary for some specific stages of our process of decomposition (Sects. 3.3, 3.5). To
ensure that these auxiliary predicates will be available even when not specified in
the GDL description, we proceed to a factorization of the conjunctions, disjunc-
tions and use De Morgan’s laws to reduce the number of negations in the circuit.
As a perfect factorization is an NP-hard problem, our program uses a greedy
approach where the first common factor is used. Factorization and application
of De Morgan’s laws are iterated until the circuit reaches a minimum size.

We identify the needed auxiliary predicates as these are represented by inter-
nal logic gates of the circuit, depending only on input fluents and representing
important expressions in the logic of the game i.e. these expressions are used
several times, several logic gates use their outputs.

After the factorization, the GDL description is a set of formulas under dis-
junctive normal form of which atoms are fluents, actions, and auxiliary predi-
cates. In the following we say that these formulas are under DNF form.

Other stages of the decomposition process need a description of the game
under canonical form. By recursively replacing auxiliary predicates by their
expression we obtain a new set of formulas in disjunctive normal form describing
the same game where all the auxiliary predicates have been eliminated. In the
following we say that these formulas are under DNFD form.

3.2 Building a Dependency Graph

To build our dependency graph and to identify the different subgames, we start
with a set of vertices which are the fully instantiated actions and fluents. We
then identify different relations between these fluents and actions that we define
below. For each of these relations we add an edge between the involved actions
and fluents vertices. These relations correspond to preconditions or effects of the
actions.

Unfortunately, GDL does not explicitly describe action effects unlike STRIPS
or PDDL languages used for planning domains. A fluent being false by default,
an action present in a next rule can have an effect or not. For example, let
us consider the legal actions does(r, a), does(r, b) and does(r, c), in the rule
next(f):− ¬true(f) ∧ (does(r, a) ∨ does(r, b)). a and b have an effect if the rule
means “The cell will contain a pawn if r does one of the 2 actions moving a
pawn in it” and c has an effect if it means “the boat will sink if r does anything
else than action c (bailing)”. A similar example can be found for any next rule
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with an action (in a negation or not) and regardless of the value of the fluent f
and its presence or not in the rule premises.

It is thus possible to produce GDL descriptions in which the actions present
in a next rule body belong to another subgame than the fluent in the rule head.
We can only address this using heuristics similar to those of Günther [6].

They propose to consider that an action a has a negative effect on a fluent f if
this action does not keep the fluent true i.e. if next(f) does not contain true(f)∧
does(a) in its premises. However in a game like Double Tictactoe, there is no
rule like this to indicates that actions of a subgame do not change the value of
the other subgame fluents. Consequently, fluents of a subgame can be considered
as negative effects of the second subgame actions and the decomposition fails.

In our approach we use slightly different heuristics which work well for exist-
ing composed games to find potential effects of actions:

Definition 4. The fluent f is a potential negative effect of the action a =
(r, o) if next(f) under DNFD has a clause where ¬does(r, o) appears.

The fluent f is a potential positive effect of the action a = (r, o) if next(f)
under DNFD has a clause containing the does(r, o) literal and not containing the
true(f) literal.

In case of joint moves from several players, it is necessary to identify if the
action of each player is responsible of the observed effect on the rule conclusion
to avoid linking unrelated action with the conclusion.

To solve this problem Zhao et al. [11] propose to compare the arguments
used in a next rule head with the ones used in the moves (does). For example,
in the following rule from Blocker Serial, we can see that the action from crosser
is the only one that is likely to affect the conclusion:

next(cell2(XC,YC, crosser)) :− distinctcell(XC,YC,XB, Y B)
∧ does(crosser,mark2(XC,YC)) ∧ does(blocker,mark2(XB,Y B)).

However, GDL specification allows to use completely instantiated rules and
simple atoms to represent fluents and moves. For example, we can replace the
previous rule by some instantiated rules:

next(f) :− does(crosser, o1) ∧ does(blocker, o2).
next(f) :− does(crosser, o1) ∧ does(blocker, o3).

...

With fluents like f and moves like does(r, o), their approach is no longer able to
deal with joint moves.

To identify which action has an effect without relying on syntactic elements,
we compare, for each player, the different actions used in conjunction with the
same fluents and actions of other players in the clauses of each next rule.

Suppose that next(f) ← Cf is in DNFD. Let us consider a specific option
o′ for player r′. We consider the set E(o′) of the different options of the role r
when r′ choose the o′ option:
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E(o′) = { o ∈ Or | ∃c ∈ Cf ,∃b ∈ C,

c = does(r, o) ∧ does(r′, o′) ∧ b }
We define E(o) the same way by exchanging the role of (r, o) with (r′, o′).
If all the options of the r are present in conjunction with the same action of

r′: these options have probably no effect i.e. the result is the same regardless of
the option chosen. On the contrary, if a single option of r is present, it is probably
responsible for the observed effect. We then use the following heuristics:

Definition 5. The action a = (r, o) ∈ A is potentially responsible for an
effect on f if:

– card(E(o′)) = 1, or
– E(o′) � Or and card(E(o)) �= 1

For example, in the game BlockerSerial, the term next(cell1(2, 3, crosser))
is true if blocker choose any option but mark1(2, 3) and crosser choose the
mark1(2, 3) option. All the options of blocker are not represented but, as crosser
has a single possible option, its action is considered responsible for the effect
while actions of blocker are not linked to the cell1(2, 3, crosser) fluent.

Even if this approach sometimes put aside actions related to the conclusion,
we did not observe any over-decomposition. At least one of the actions is indeed
related to the conclusion and edges between fluents and actions added in the
dependency graph to represent preconditions relations are redundant with those
added for effect relations.

Therefore a fluent is a potential effect of an action if this action has a
potential positive or negative effect on this fluent and if this action is potentially
responsible for this effect in presence of joint moves. From the potential effect
of actions we can deduce fluents that are action-independent, such as step or
control fluents, and actions that are fluent-independent such as noop actions:

Definition 6. A fluent f is action-independent if it is not the potential effect
of any action a. An action a is fluent-independent if no fluent f is the poten-
tial effect of this action.

Then we can identify fluents that are potential preconditions of an action in the
same subgame and create a link in the graph between them:

Definition 7. The fluent f is a potential precondition in the same sub-
game of the action a = (r, o) if:

– a is not fluent-independent, and
– f is not action-independent, and
– one of the two following conditions holds:

• legal(r, o) under DNFD has a clause where true(f) or ¬true(f) appears,
or

• it exist f ′ which is a potential effect of a, such that next(f ′) under DNFD
has a clause containing does(r, o) ∧ true(f) or does(r, o) ∧ ¬true(f).

An action-independent fluent can be present in the premises of all legal rules,
it is then a precondition of all actions but belongs to another subgame which is
action-independent.
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3.3 Subgoal-Predicates to Fix Over-Decomposition

Edges between actions and fluent vertices corresponding to preconditions or
effects of these actions may not be sufficient to connect all the elements of a
subgame. For instance, in a subgame like Tictactoe, an action has an effect on
a cell and the state of this cell is a precondition to this action. However, no link
exists through actions between fluents describing different cells.

In the game Double Tictactoe given as an example by Zhao et al. [11] the
auxiliary predicates line1/1 or line2/1 are present in the premises of some legal
rules. All the fluents in the premises of these predicates are then preconditions
of the corresponding actions and create a link between the cells of each sub-
game. However, in games like Tictactoe Parallel, Connect4 or Rainbow no such
predicate is present in the legal rules and an over-decomposition occurs.

The logic link between elements of a subgame is in the goal to reach and
this goal is usually a condition for the termination of the global game. We
need to distinguish an auxiliary predicate corresponding to a subgoal in one
subgame from one corresponding to different subgoals from different subgames
because the second one can prevent the decomposition. To address this prob-
lem of over-decomposition we use the following heuristic to identify potential
subgoal-predicates corresponding to only one subgame:

Definition 8. Let g be the maximum possible score of r. An auxiliary predicate
b is a potential subgoal-predicate if:

– terminal depends on the logical value of b, and
– goal(r, g) under DNF has a clause where b appears.

or

– All the roles play in different subgames, and
– goal(r, g) under DNF has a clause where b appears, and for all roles r′ �= r,

goal(r′, g′) under DNF has no clause where b appears.

In games like Dual Rainbow or Dual Hamilton, subgoal-predicates appear
only in the premises of goal rules. Since these games are composed of single
player subgames, an auxiliary predicate present in the goal rule of a single player
involves only this player and therefore only one subgame.

The first part of the definition holds in the games where the victory in one
of the subgames terminates the game as it is generally the case in compound
games. Otherwise, the subgames may be connected by the use of a misidentified
subgoal-predicate.

Once a subgoal-predicate is identified, we add edges in our dependency graph
between fluents that appear in a same clause in its formulas under DNFD.

3.4 Compound Moves and Meta-Action Sets

A compound move is composed of two or more actions related to different sub-
games. For example, the compound move legal(ship,do(clockcounter)) in the
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game Asteroid Parallel corresponds to a clockwise move in a first subgame
and a counterclockwise move in a second subgame. Such an action creates a
link between the different subgames and can interfere with the decomposition
process.

To detect compound moves, Zhao et al. [11] use the same app-
roach as that applied to the problem of joints move. For example, in
the following rule from Tictactoe Parallel we can see that only the
first two arguments of the action have an effect on the rule conclusion:
next(cell1(X1,Y1, o)) :− does(oplayer,mark(X1,Y1,X2, Y 2)). Once again,
the rule has just to be rewritten to defeat detection: next(f) :− does(oplayer, o).

In games with compound moves, the set of all actions is a combination of the
sets of all actions of each subgame. Then in a game composed of two subgames,
for each action in the first subgame, there is N compound moves corresponding
to this action combined to the N possible actions in the second subgame. To
identify the different parts of compound moves, we distribute actions into meta-
action sets. An action can belong to one or several meta-action sets which depend
only on a role r, a fluent f ∈ F and two clauses c ∈ C and c′ ∈ C.

Definition 9. An action a = (r, o) belongs to the meta-action set
P (r, f, c, c′) if:

– f is a potential effect of a, and
– next(f) under DNFD has a clause (does(r, o) ∧ c), and
– if c′ is empty, legal(r, o) must always be true, or if c′ is not empty, it contains

only action-dependent literals and appears in at least one clause of legal(r, o)
under DNFD.

Therefore a meta-action set is a group of actions with an identical effect on
a fluent of a particular subgame, the same preconditions in the corresponding
next rule and at least one precondition in common in their legal rules.

For example, in the game Blocks World Parallel we can find the meta-
action set {does(robot, do(stackstack,a,b, ∗, ∗)), does(robot, do(stackunstack,
a,b, ∗, ∗))}1 corresponding to the action stack(a, b) in the first subgame.
These actions have an effect in common on true(on1(a, b)), same preconditions
{true(table 1(a)), true(clear1(b)), true(clear1(a))} in the next(on1(a, b)) clauses
and are always legal.

In a game with compound actions, each action is placed in M meta-action
sets corresponding to M effects. If a game contains no compound action but some
actions with an identical effect in the same situation, these actions are grouped
in the same meta-action set. And finally, if all actions in a game have a different
effect, each one constitutes a meta-action singleton. The use of meta-action sets
is then compatible with all games.

In our dependency graph, we then encapsulate all actions into meta-action
sets to avoid compound actions from connecting different subgames. The links

1 The * represents different possible values, the whole meta-action set contains 12
compound moves.
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between actions and fluents are replaced by links between action sets and fluents
i.e. in the dependency graph, edges are added between a meta-action set and its
effect f and preconditions f ′ ∈ c ∪ c′.

3.5 Serial Games

In serial games an auxiliary predicate describing the terminal situation of the
first subgame determines the legality of all actions of the second subgame. Con-
sequently, it creates links between first subgame fluents and second subgame
actions. We must detect it and avoid these links to separate both subgames.

Zhao [10] uses a separate special detection: the desired auxiliary predicate
must be false to authorize the first subgame actions and true to authorize the
second ones, like game1over in Tictactoe Serial :

legal(PLAY ER,mark1(X,Y )) :− ¬game1over ∧ ... .

legal(PLAY ER,mark2(X,Y )) :− game1over ∧ ... .

with game1over depending on line1(x) ∨ line1(o) ∨ ¬open1. However, someone
can defeat this approach by simply rewriting the first subgame legal rules with
a different precondition: legal(PLAY ER,mark1(X,Y )) :− ongoing1∧ ... . with
ongoing1 depending on ¬line1(x) ∧ ¬line1(o) ∧ open1.

To generalize the approach of Zhao [10], we consider that a pivot between two
serial subgames is composed of two auxiliary predicates that can be the negation
of each other or two completely different predicates. We use our circuit repre-
senting the game to test the influence of each auxiliary predicate detected during
the circuit creation on the actions legality and look for a couple of predicates
that parts the fluent-dependent actions in two groups.

If such a couple of auxiliary predicates is found, then it is a pivot and the
latter predicates are directly used as action preconditions instead of the fluents
included in them. In our dependency graph, fluents of the first subgame are then
encapsulated in these auxiliary predicates to ensure that they will not connect
the different subgames with direct links to actions (meta-action sets) of the
second subgame. This approach works for existing games that are limited to two
serial subgames.

Unfortunately, we cannot generalize this approach and identify a pivot in
case of more than two serial subgames without risking an over-decomposition of
games with movable parts. In a pivot, each auxiliary predicate is necessary to
allow the legality of some actions and may prevent the legality of other actions.
If a third subgame is present, its actions are not affected by both auxiliary
predicates. In a game with movable pawns, an auxiliary predicate may be used
to describe the state of a cell; this predicate may allow the legality of some moves
from this cell, prevent some moves to this cell and does not concern other moves
of the game, consequently it may be confused with a part of a pivot. Therefore, if
we try to identify pivots for more than two serial subgames with a generalization
of this approach, a game with movable pawn may be over-decomposed, each cell
being a small serial subgame leading to the next ones.
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3.6 Multiple Games and Useless Subgames

Some subgames are involved in the calculation of the score or can cause the end
of the game when some position is reached. A subgame may also be played to
allow another subgame to start in the case of serial subgames.

Definition 10. Let VS be the set of vertices of a connected part of the depen-
dency graph representing a subgame S. S is considered useful if:

– S is played before another subgame in a serial game and is necessary to start
it, or

– it exists f ∈ F ∩VS such that terminal depends on the logical value of true(f),
or

– it exists f ∈ F ∩VS such that goal(r, g) depends on the logical value of true(f).

In multiple games, all the subgames that are not identified as useful can
be ignored and remain unexplored. However, a useless action (noop) can be
sometime strategically useful to avoid a zugzwang in another subgame. Actions
of these subgames can then be flagged as noop actions, be considered equivalently
useless, and only one of them need to be explored (if legal) for each position of
the game.

4 Experiments

We evaluated our decomposition program on a panel of 40 descriptions of games,
compound or not, from the servers of Dresden, Stanford and Tiltyard. We took
all the available compound games except for the redundant ones. We added
the original version of games commonly used as subgames and a representative
panel of games with different characteristics (movable parts, steppers, asymme-
try, impartiality) and complexity. The experiments were run on one core of an
Intel Core i7 2,7 GHz with 8Go of 1600 MHz DDR3.

For each game, we measured the mean time necessary for each stage of the
decomposition on a set of 100 decomposition tests. To limit the duration of
the experiments, a decomposition test was aborted after 60 min. The longest
stages of the decomposition are grounding the rules, factorizing the circuit and
calculating completely developed disjunctive normal forms (DNFD). The column
5 of Table 1 indicates the total time needed to decompose each game and shows
that the DNFD calculation can be very time consuming.

We try to compute DNF without developing the auxiliary predicates identi-
fied during the circuit construction. As we can see it in column 6, the time saved
is really significant and allows the successful decomposition of 32 games among
40 in less than 5 s. The major part of the total time necessary for the decompo-
sition using DNF corresponds to the rules grounding and circuit factorization.

Unfortunately, the use of partially developed DNF presents a shortcoming: if
a rule containing variables is already instantiated in the original GDL description
of a game and if some of these instances only are expressed in terms of auxil-
iary predicates, actions may occur in conjunction with different but equivalent
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premises: a group of fluents or an equivalent auxiliary predicate. The factoriza-
tion of the circuit should restore auxiliary predicates in all rules instances but as
we use a greedy approach (Sect. 3.1), it is not guaranteed. Therefore, meta-action
sets detection may be hindered. Nevertheless, this case is sufficiently specific to
successfully use the auxiliary predicates in DNF, in most cases.

For Hex and Blocker Parallel, the time required to compute the grounded
rules, the factorization and the DNFs still remains too large. The factorization
does not allow to sufficiently reduce the complexity of Hex and, in Blocker Paral-
lel, the presence of compound actions combined with joint moves for both players
brings a large number of combinations.

Note that LeJoueur of Jean Noël Vittaut, which won the 2015 Tiltyard Open,
is on average 8.5 times faster to ground and factorize the three most complex
games (Breakthrough, Hex and Blocker Parallel). This indicates the potential
scope for improving these steps.

Table 1 also shows the total number of subgames discovered for each of the
40 games and among them, the ones that are action-dependent and action-
independent. The figures in parenthesis indicate the number of discovered sub-
games considered as useless.

Games at the top of the table are composed of only one action-dependent sub-
game and sometimes a stepper detected as a useful action-independent subgame.
The useless action-independent subgame detected for games like Breakthrough
or Sheep and Wolf corresponds to the control fluents which indicate the active
player in an alternate moves game and does not represent a playable game per
se.

Useless subgames in multiple games are correctly identified. We remark that
for Multiple Tictactoe, the number of useless subgames is particularly large
because these subgames have been over-decomposed as no auxiliary predicate
creates a link between their cells.

For the game of Nim, our program has detected an action-independent sub-
game not involved in the end of the game (it is not a stepper) while it is the
only subgame useful for the calculation of the score: this is an important clue
indicating that this game is impartial.

Except for the special case of Chomp, all the detected subgames are the
expected ones and correspond to what would have been obtained by a manual
decomposition. Chomp is an example of a game on which the heuristics used
for the action effects detection do not work properly. Other actions than eating
the poisoned chocolate square have only implicit negative effects which are not
detected. These actions are considered as noop actions and would be evaluated
as equivalent during the game: this could not allow the player to prevent the
fatal outcome. Fortunately, such a wrong detection of the action effects is visible
in the resulting dependency graph as a huge proportion of fluents and actions are
isolated vertices. So we can prevent this error from affecting the game solving.
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Table 1. Result of the decomposition for a panel of 40 games descriptions from the
servers of Dresden (D), Stanford (S) and Tiltyard (T) with comments on subgames
(SG) found.

5 Conclusion and Future Work

In this paper we presented a general approach for the decomposition of games
described in the Game Description Language (GDL). Our program decomposes
descriptions of games, compound or not, with any number of players while
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addressing the problem of joint moves. It decomposes parallel games, games
with compound moves and serial games composed of two subgames. It also iden-
tifies steppers, useless subgames in multiple games, and unlike previous works,
without relying on syntactic elements that can be eliminated by simply rewriting
GDL rules. We tested our program on 40 games, compound or not, and have
decomposed 32 of them with success in less than 5 s which is a time compatible
with GGP competition setups.

Using Meta-action sets is an efficient way to the problem raised by compound
moves (Sect. 3.4). However, it requires the completely developed disjunctive nor-
mal form of the next rules which is computationally expensive. We are seeking
another approach to avoid this need or to minimize its computation time. Beside
this, we plan to eliminate the ad-hoc heuristics used to identify action effects
(Sect. 3.2) and to avoid over-decomposition (Sect. 3.3). We will also address the
problem of the decomposition of more than two sequential subgames.

Finally, using these decomposed games to solve the composition problem for
any games with any number of players remains an open problem.
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