
Converting DEMO PSI Transaction Pattern into
BPMN: A Complete Method

Ondřej Mráz, Pavel Náplava, Robert Pergl(B), and Marek Skotnica

Czech Technical University in Prague, Prague, Czech Republic
mraz.ondra@gmail.com, naplava@fel.cvut.cz,

{perglr,skotnicam}@fit.cvut.cz

Abstract. The goal of this paper is to contribute to efforts of improving
the Business Process Modelling (BPM) practice. We present an original
method for converting 0enterprise ontology Design & Engineering Method
for Organisations (DEMO) process models into a BPMN 2.0 notation. By
this approach, we are able to mitigate certain methodological deficiencies
of BPMN. The method exhibits the following qualities: Implementation
of the complete transaction pattern formulated by the PSI-theory, correct
managing of multiple child transaction instances, and executability of the
resulting BPMN model.

Keywords: PSI-theory · BPMN · DEMO · Business Process
Modelling · Enterprise ontology · Conceptual modelling

1 Introduction

BPMN (Business Process Model and Notation) [1] is a graphical notation that
is used for modelling business processes. Key characteristics of BPMN are sim-
plicity of the underlying theory (flowchart), standardised notation and a large
number of tools. This makes BPMN one of the most wide-spread process mod-
elling notation in practice, in spite of its limitations and flaws. BPMN offers
three different types of diagrams: Choreography, Conversation and Collabora-
tion diagrams. For this work, only the Collaboration Diagram will be considered.
This diagram expresses the process flow in achieving participants’ goals.

One of the BPMN weaknesses is the absence of a methodology for construct-
ing diagrams, which is addressed for example by Silver [2]. Nevertheless, the
design freedom is still too broad, which results in different modelling styles of
individual analysts and different models depicting the same situation, which
complicates enterprise engineering tasks like mergers and reorganisations.

DEMO (Design & Engineering Method for Organisations) [3] is a leading
modelling method used in the discipline of Enterprise Engineering [4] based on
deep and sound theoretical basis (the PSI-theory) and high ontological relevance.
Its benefits for the practical use has been proven, as documented for example
in [5] or [6]. It does not limit itself just to process modelling, but it also deals

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 85–98, 2017.
DOI: 10.1007/978-3-319-57955-9 7



86 O. Mráz et al.

with capturing structural (factual) knowledge and business rules, thus deliver-
ing a complete enterprise ontology exhibiting certain criteria (C4E). However,
compared to BPMN, DEMO is still a niche approach and relatively demanding
to master. Also, a limited number of tools is available today.

For a brief description of DEMO, we take a help of Op’t Land and Dietz [5]:
A complete, so-called essential model of an organization consists of four

aspect models: Construction Model (CM), Process Model (PM), Action Model
(AM), and State Model (SM). The CM specifies the composition, the environ-
ment and the structure of the organization. It contains the identified transaction
types, the associated actor roles as well as the information links between actor
roles and transaction banks (the conceptual containers of the process history).
The PM details each transaction type according to the universal transaction
pattern. In addition, it shows the structure of the identified business processes,
which are trees of transactions. The AM specifies the imperatively formulated
business rules that serve as guidelines for the actors in dealing with their agenda.
The SM specifies the object classes, the fact types and the declarative formula-
tions of the business rules.

The DEMO Process Model reveals details of the transactions with the respect
to universal transaction pattern. The basis is the “happy flow” consisting of
request, promise, state and accept, which is also called the basic transaction
pattern. In the so-called standard transaction pattern (not depicted), declinemay
happen instead of promise and reject may happen instead of accept. Then,
a new attempt may be made, or quit, resp. stop may end the transaction unsuc-
cessfully. Real situations may become even more complicated, which is addressed
by the complete transaction pattern in Fig. 1. It incorporates the notion of revoca-
tion – an actor may want to “take back” their act done before1. If that is allowed
by the other party, the transaction “rolls back” to the desired state.

The logic of the complete transaction pattern is automatically included in all
DEMO transactions, which is one of the reasons why the models are compact.

The main goal of this paper is to combine the simplicity of the BPMN and onto-
logical qualities of the DEMO. The result is the method that converts enterprise
ontology Design & Engineering Method for Organisations (DEMO) process mod-
els into a BPMN 2.0 notation. This approach mitigates the mentioned absence of
a sound methodological approach for BPMN. The BPMN models resulting from
the described method converge, similarly to DEMO, to one essential model, thus
eliminating different modelling styles of individual analysts leading to comparable
models. Our other requirements are: implementation of the complete transaction
pattern formulated by the PSI-theory, correct managing of multiple child trans-
action instances, and executability of the resulting BPMN model.

We start the paper by the discussion of the related work of efforts of
improving BPM and BPMN, specifically the approaches based on applying the
enterprise-engineering rigour (Sect. 2). We then briefly present results of a com-
parative analysis of DEMO and BPMN (Sect. 3), which led to formulating our

1 In the DEMO theory, nothing can disappear, so the original fact remains in the fact
bank, however, the transaction flow is changed.



Converting DEMO PSI Transaction Pattern into BPMN 87

Fig. 1. DEMO complete transaction pattern [7]

method of conversion (Sect. 4). We demonstrate the method on an example
(Sect. 5). Finally, we discuss the result and formulate conclusions (Sect. 6).

2 Related Work - Improving BPM and BPMN

A poor ontological quality of BPMN is generally known and documented [8].
The most practised remedy is exercising a methodological approach like the one
proposed by Silver [2], who distinguishes three levels of BPMN: (i) Descriptive,
(ii) Analytical and (iii) Executable and proposes several analysis patterns and
anti-patterns.

The discipline of enterprise engineering (EE) [4] brought about a rigorous
approach of building an enterprise ontology (EO) [3], DEMO being its modelling
method. There are several foundational EE theories, the most notable being
the PSI-theory. As on of the central concerns of EE is the business process
management, the effort to apply EE theories (EET) to the existing (less formal
approaches) is promising. The efforts in this area are twofold:

1. Applying EET for analysis of existing BPMN models of business processes:
for example [9–11].

2. Enhancing the formal foundations of BPMN by EET: for example [9,10,12,13]

2.1 Applying EET for Analysis of Existing BPMN Models of
Business Processes

Caetano et al. showed that applying the DEMO PSI-theory to improve busi-
ness process modelling deserves attention [9]. The authors started by analysing



88 O. Mráz et al.

existing BPMN models and identified missing DEMO transaction pattern steps
in these models. It had been determined or each BPMN activity from the
analysed models, whether this activity is an ontological, infological or data-
logical part of a transaction. It had been also determined, which part of the
transaction pattern each activity represents. Next, the authors created an ATD
and a PSD diagram of DEMO and using a PSD diagram, they enriched exist-
ing BPMN models by adding missing parts of the transaction pattern into the
BPMN models.

In the second part, the authors present results of applying this method to
analysis of existing BPMN models of key processes of a big organization (more
than 500 activities and 60 actors). The authors identified numerous missing act
types in the original BPMN models. The results from this analysis were: (i) 25%
of production C-acts missing in the original BPMN model, (ii) 25% of request
C-acts missing in the original BPMN model, (iii) 50% of promise C-acts missing
in the original BPMN model, (iv) 25% of state C-acts missing in the original
BPMN model, (v) 40% of accept C-acts missing in the original BPMN model.

Results reported by Pergl and Náplava for an academic institution [11] state
reduction of DEMO essential models complexity to 21% of the original BPMN
size and several model quality improvements similar to [9].

2.2 Enhancing the Formal Foundations of BPMN by EET

These efforts aim to precisely express the EE ontological constructs using the
standard BPMN notation. Two approaches have been followed. The first is to
enhance the BPMN models by adding the missing C-(F)acts and other constructs
from the PSI-theory. Caetano [9] is an example of this method.

The second way is generating BPMN models from the DEMO models. This
method was discussed in the diploma theses [13], from which the approach in
this paper was designed.

3 Analysis of DEMO and BPMN

Here follows observations of comparing various aspects of DEMO with respect to
BPMN, from which follows the conversion principles and decisions made. These
were formulated based on the DEMO theory axioms and models definitions
related to the BPMN elements definitions, as introduced in Sect. 1.

– Similar parts of methods that can be simply transformed from the DEMO to
BPMN:

– The Process Structure Diagram (PSD) of DEMO contains process infor-
mation, which can be related to a BPMN process diagram.

– The Action Model (AM) of DEMO expresses complex decision rules for
Coordination acts (C-acts)2. The contained information can be used for
branching in BPMN.

2 Apart from containing all the information from the other models.



Converting DEMO PSI Transaction Pattern into BPMN 89

– BPMN does not distinguish the three key human abilities (forma, informa,
performa), however applying this distinction can be introduced straight-
forwardly, as shown for example in [11]. As this concern is orthogonal to
our effort, we do not discuss the distinction axiom here.

– Related to the point above, the (atomic) actor roles in DEMO are execu-
tors of exactly one transaction, while swimlanes may contain many dif-
ferent actions.

– Different parts of methods that require deep analysis before transformation
from DEMO to BPMN:

– The DEMO Transaction Axiom concept does not exist in BPMN. Only
happy flows and the most obvious unhappy flows are expressed in models.

– The Object Fact Diagram (OFD) being a factual model does not have an
analogy in BPMN.

– DEMO and BPMN employ different execution models. While BPMN is
flow-based, DEMO operates on the basis of a so-called CRISP model [3],
which may be characterised as an event-driven, or more precisely, an
agenda-driven execution model.

– The Construction Model (CM) of DEMO is an abstraction that does not
specify process, it provides just structural information.

4 Converting DEMO into BPMN

The goal is to convert the complete transaction axiom into BPMN, including all
revoke types. Sections 4.1 to 4.4 describe all the necessary pieces and Sect. 4.7
presents the result. We used BPMN 2.0 and leveraged the newly available Data
Store construct.

4.1 C-acts

C-acts are essentially activities that take place in order specified by the transac-
tion pattern. BPMN has the concept of activities and the order is specified by
sequence flows. As C-acts are atomic, the appropriate activity type is task.

4.2 C-facts

As mentioned in Sect. 1, a C-fact becomes existent in the world as a consequence
of performing a C-act. Heller in his thesis [13] lists three possibilities of expressing
C-facts using BPMN:

1. Not explicitly expressed – the existence of the fact-C is not explicitly
expressed. It is indirectly realised by a sequence flow. This option is suffi-
cient if revokes are not considered (see further).

2. Using a BPMN message – the actor, who performs the given C-act sends a
BPMN message with the C-fact to the other actor (transaction participant).



90 O. Mráz et al.

3. Using a BPMN signal – the actor, who performs the given C-act emits a
BPMN signal on creating a C-fact. This has the benefit that apart from the
other actor, any other actor may subscribe to the signal reception, which is
aligned with the PSI-theory, where facts are present in the world, not only
in the transaction, thus available also outside the transaction (modelled by
interstriction links).

However, under a closer consideration, none of the above solutions are com-
pletely sufficient for a correct handling of revokes. For each revoke act, the PSI-
theory specifies a certain state in which the transaction must be. The state is
formulated like “X or further”: request(ed) or further, promise(d) or further
and so on. This is why we decided for another representation: the BPMN 2.0
data store, into which the state of the transaction is stored. This data store is
connected to every C-act activity by an association.

4.3 P-(F)acts

It is not necessary to store information about them creating a P-(f)act into
the data store, because they can be derived from C-(f)acts: According to the
PSI-theory, the P-fact starts to exist based on acceptance of the product, so
P-(f)acts can be expressed by an activity only. If need be (optimisation of an
implementation), they can be stored similarly to the C-(f)acts described above.

4.4 Actors

Swimlanes in BPMN are isomorphic to actors in DEMO [10]. BPMN lacks a
higher abstraction level of actor roles, being the logical sum of responsibility,
authority and competence necessary to carry out the product [3]. There are gen-
erally two approaches: (i) abstracting the swimlanes to actor roles (like Decider
or Concluder), (ii) remaining on the BPMN’s low level of abstraction and using
swimlanes to represent actors – company functional roles – like CEO or specific
people like Jane.

Another possibility for representing actor roles is using BPMN pools, where
each pool represents one actor. The resulting BPMN models will be very simi-
lar to models using swimlanes, however we have not chosen this representation
because: (i) The correspondence of actor roles and transactions is not explicit,
(ii) sequence flow cannot be used between pools, which would result in using
messages, further complicating the diagrams.

4.5 The Composition Axiom

A composition of transactions may be dealt with in two ways: (i) to model all
the transactions in one diagram, (ii) to separate diagram for every transaction.
Generally, both approaches are valid, but (ii) may lead to huge diagrams, as can be
seen in Figs. 8 and 9. As (ii) guarantees the limit of the diagram size, we preferred
it. On the other hand, it may render understanding of the big picture harder.

We propose the following 2-part expression of the composite axiom:



Converting DEMO PSI Transaction Pattern into BPMN 91

1. Launching a child transaction in a specific place in the parent transaction.
The child transaction must be started just after creating a specific C-fact. A
message-throwing event may be used in case of initiating a single child trans-
action. In case of firing multiple child transactions, signals are appropriate,
similar to the C-acts above. Moreover, it is needed to ensure the multiplicity.
In case that it is greater than one, we need to initiate several child transaction
instances. This is achieved either by using a cycle for creating child trans-
actions or a loop activity. Modelling by cycle (Fig. 2) means, that the model
contains an activity counting, how many times the activity was run. After
this activity, there is a gateway. If the counter has not reached the number of
child transaction instances to spawn, the process goes into message throwing
event to start a child transaction instance and then the process returns to the
counting activity. This happens 0...N times, as required. When multiplicity is
modelled by a loop activity (Fig. 3), the activity is in the form of a subprocess
(with parallel loop), which sends a signal3 that starts a child transaction. In
the examples described below, the first (counter) variant is used because the
model is more explicit. At the same time for models with a multitude of child
transactions, the more concise loop variant is recommended. Also, from the
execution point, the implementation variant may be driven by the vendor, as
correlation of instances must be ensured (more discussed in Sect. 4.8).

2. Blocking execution of the parent process until the child process has not
reached the given state (creating a C-fact being waited on). This blocking can
be realized by a BPMN catching event condition in the parent process waiting
for a specific condition before the given C-act. Here, a conditional event must
be used instead of a signal event, as we do not wait just for a signal, but for a
specific instance in case of multiple child transaction instances. This situation
is modelled in Fig. 4. Again, specific vendor correlation techniques may apply
(Sect. 4.8).

Fig. 2. Launching child transactions by using counter

3 We cannot use a message send in this situation, because the encapsulation would be
violated.



92 O. Mráz et al.

Fig. 3. Launching child transactions by using loop

Fig. 4. Waiting for a child transaction

4.6 Revokes

Revokes are the most challenging part of the conversion. Let us present the
challenges and how we dealt with them:

– A revoke must be applied on a specific instance of the transaction; in a certain
time, there can be several parallel transaction instances running. This must
be ensured by the BPMN system (Sect. 4.8).

– A revoke can be fired independently on the running main process. Can be
modelled straightforward, as BPMN allows several independent start events.

– A revoke can be fired only if the transaction is in an allowed state. This
we ensure by an activity checking the state of the transaction, which was
previously stored into a data store.

– When revoking a C-fact, after which a child transaction has been started,
the child transaction must be completely revoked. This is done by calling
a compensation throwing event by the revoke, followed by performing the
compensation activity by the corresponding parent transaction.

– In the process flow, there can happen a situation, that a P-fact was already
created (the P-act has been finished), while a revoke moves the process to a
state preceding performing the P-act. In this case, it is necessary to “throw-
away” the P-fact. We solve this using a BPMN compensation element and
the respective compensation activity, similarly to the previous point.

– A revoke must be initiated by the actor who performed the respective C-act
to be revoked. This is ensured by using the same identifier for the swimlane
of the actor role initiating the revoke as for the actor role of the respective
transaction.

A revoke works in the following steps according to the transaction pattern.
First, the revoking actor asks the other actor for granting the revoke. The other



Converting DEMO PSI Transaction Pattern into BPMN 93

Fig. 5. Transaction in BPMN, Happy flow is marked by green colour (Color figure
online)

Fig. 6. Revokes in BPMN



94 O. Mráz et al.

actor allows or refuses. If the revoke is allowed, the main process returns to the
appropriate state. We model this by using simple BPMN subprocess with a set
of appropriate activities (Fig. 6).

4.7 The Resulting BPMN Model

The complete transaction pattern described by the BPMN notation illustrates
Fig. 54. Although it describes only one transaction, it is very complex and com-
plicated. As it is presented in Sect. 5 and discussed in Sect. 6, models containing
more than one transaction are not easily readable by usual readers and it is
recommended to use them for the process execution in BPM systems.

4.8 The Execution

Apart from documentation purposes, BPMN models can be simulated and/or
executed. While designing the conversion, we tried to make the resulting BPMN
model precisely following the required behaviour. Unfortunately, the BPMN
standard does not specify the execution implementation details. Each com-
pany developing BPM system (system for modelling, simulation and execution
of processes), as Intalio, BizAgi or IBM, has their specific implementation, which
requires various additional modelling and programming steps necessary to make
the model executable. At the same time, some of the BPMN constructs may
not be supported or they are implemented differently. All these aspects must be
taken into consideration for turning the resulting BPMN models into an exe-
cutable form. Generally, here are the things that must be implemented:

– Agenda handling. The possibility to start a process and providing a “task
inbox” of the required reactions on the originating C-facts. This requires
developing some sort of user interface (UI).

– Allowing the participants to make their choices. Again, some sort of UI solves
this. Also, some choices may be determined by complex facts evaluation spec-
ified in the Action Model. There are two possible approaches:
1. Leaving the evaluation to users, which means the users have the rules in

their head or consult the Action Model or any other codification of the
rules.

2. Programming the BPM system to (help) evaluate the rules. The extent
to which the automation may happen depends on the possibilities of the
BPM system used and also on the context (the availability of the necessary
data in the company technological systems and their accessibility).

– Signals handling.
– Implementation of reading and writing data to data stores.
– Instance matching. Specific instances of transactions must be matched in some

situations as child transactions (Sect. 4.5) and revokes (Sect. 4.6). Intalio and
Oracle call this concept a “correlation”.

4 This and the following models may not be legible in the printed version. We rec-
ommend obtaining the electronic (zoomable) version. The source models may be
downloaded from https://ccmi.fit.cvut.cz/methodologies/bpmn/.

https://ccmi.fit.cvut.cz/methodologies/bpmn/


Converting DEMO PSI Transaction Pattern into BPMN 95

5 Example – Case Voley

As an example for the demonstration of our method, the traditional Case Voley
example [7] was selected because of its simplicity, yet including the substantial
constructs. In Fig. 7 there is the OCD diagram of this example.

The process has two transactions and three actors. The transformed BPMN
model converted by the described method is in Figs. 8 and 9. Subprocesses
depicted in Fig. 6 are not shown here, as they are generally the same.

Fig. 7. OCD of Case Voley [7]

Fig. 8. Case Voley converted into BPMN – part 1



96 O. Mráz et al.

Fig. 9. Case Voley converted into BPMN – part 2

6 Discussion and Conclusions

The limitation of typical BPMN models from the view of the PSI-theory lie in
their limited expression of reactions to unexpected situations. Many situations
like decline, reject and especially revokes are not covered in the models, which
causes operation troubles. The presented conversion method offers a remedy
to this by bringing the complete transaction pattern into BPMN, which means
including all revokes. Moreover, compared to the previous efforts, our method
deals with spawning of multiple child transaction instances (initiation links with
multiplicity �= 1) and waiting for them in the parent transaction (waiting links
with multiplicity �= 1). Also, the resulting models are executable.

As for the DEMO models covered, the described conversion method covers
the Construction Model plus the Process Model. Based on a concrete BPM
system implementation, decision rules contained in the Action Model can be
incorporated in the respective activities, as described in Sect. 4.8, which is also
true for rules from the State Model.

The concept of interstriction has not been discussed, however a keen reader
has probably realised that whenever an actor in its activity needs a specific



Converting DEMO PSI Transaction Pattern into BPMN 97

information from another transaction, it is simply modelled by accessing the
respective transaction data store.

The example shows that in spite of the simplicity of the DEMO model
involved, the resulting BPMN model is complex. The reason is mostly the com-
plete transaction pattern, which covers all the possible situations according to
the PSI-theory. The question arises about the human readability. There are sev-
eral points to this topic:

1. In practice, the model may be made smaller by leaving out the parts, which
are not applicable (which means they (almost) never happen). These are
typically the revoke patterns.

2. Yet, for complex models the resulting size may remain still unmanageable.
In this case it would be advisable to cut the model into smaller pieces using
some sort of decomposition and/or link BPMN elements. The concrete way
how to do this may be explored in a future research.

3. It is questionable whether a human readability is required. If one wants
human-readable diagrams according to the PSI-theory, the DEMO diagrams
are the solution, as they have been tailored to it. It may be the case that
learning and applying them comes at a lower cost than forcing the diagrams
into a BPMN notation, just because “BPMN is the standard”.

Our stance is that the greatest possibilities of our method lie in machine
readability, which means generating BPMN models that can be fed into a BPMN
execution system to implement an automated workflow that is able to react to
every possible situation specified by the complete transaction pattern, not just
a typical BPMN “happy path with a bit of branching”.

Apart from converting the DEMO models, the conversion may be applied
also for analysis of existing BPMN models of business processes as described
in Sect. 2.1. The way of working would be to transform the BPMN models into
DEMO and then generate the “supercharged” BPMN version by converting them
back using our method.

As for the future work, a verification on a bigger models from practice is
necessary. As such conversion will not be feasible by hand, an implementation
of the conversion automation will be required.

Acknowledgements. This research has been funded by CTU SGS grant No.
SGS16/120/OHK3/1T/18. The authors wish to deeply thank ForMetis BV and espe-
cially Dr. Steven van Kervel for the kind support of this research.

References

1. OMG: OMG: Business Process Model and Notation (BPMN) Version 2.0
2. Silver, B.: BPMN Method and Style, 2nd edn. with BPMN Implementer’s Guide:

A Structured Approach for Business Process Modeling and Implementation Using
BPMN 2.0. Cody-Cassidy Press, New York, October 2011

3. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Berlin
(2006)



98 O. Mráz et al.

4. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., Kervel, S.J.V.: The discipline of enterprise
engineering. Int. J. Organ. Des. Eng. 3(1), 86–114 (2013)

5. Op ’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology in governing
complex enterprise transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.)
EEWC 2012. LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29903-2 6

6. Décosse, C., Molnar, W.A., Proper, H.A.: What does DEMO do? A qualitative
analysis about demo in practice: founders, modellers and beneficiaries. In: Aveiro,
D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 16–30.
Springer, Cham (2014). doi:10.1007/978-3-319-06505-2 2

7. Dietz, J.L.: The Essence of Organization - An Introduction to Enterprise Engi-
neering. Sapio bv, Voorburg (2012)

8. Guizzardi, G., Wagner, G.: Can BPMN be used for making simulation models? In:
Barjis, J., Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP, vol. 88, pp. 100–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24175-8 8

9. Caetano, A., Assis, A., Borbinha, J., Tribolet, J.: An application of the Ψ -
theory to the analysis of business process models. In: Poels, G. (ed.) CONFE-
NIS 2012. LNBIP, vol. 139, pp. 258–267. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36611-6 24

10. Nuffel, D., Mulder, H., Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS
-2009. LNBIP, vol. 34, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01915-9 9

11. Naplava, P., Pergl, R.: Empirical study of applying the DEMO method for improv-
ing BPMN process models in academic environment. In: 2015 IEEE 17th Confer-
ence on Business Informatics, vol. 2, pp. 18–26, July 2015

12. Figueira, C., Aveiro, D.: A new action rule syntax for DEmo MOdels based auto-
matic workflow procEss geneRation (DEMOBAKER). In: Aveiro, D., Tribolet,
J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 46–60. Springer, Cham
(2014). doi:10.1007/978-3-319-06505-2 4

13. Heller, S.: Usage of DEMO methods for BPMN models creation. Master thesis,
Czech Technical University in Prague. Computing and Information Centre (2016).
https://ccmi.fit.cvut.cz/wp-content/uploads/2017/03/Heller thesis 2016.pdf

http://dx.doi.org/10.1007/978-3-642-29903-2_6
http://dx.doi.org/10.1007/978-3-642-29903-2_6
http://dx.doi.org/10.1007/978-3-319-06505-2_2
http://dx.doi.org/10.1007/978-3-642-24175-8_8
http://dx.doi.org/10.1007/978-3-642-36611-6_24
http://dx.doi.org/10.1007/978-3-642-36611-6_24
http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-319-06505-2_4
https://ccmi.fit.cvut.cz/wp-content/uploads/2017/03/Heller_thesis_2016.pdf

	Converting DEMO PSI Transaction Pattern into BPMN: A Complete Method
	1 Introduction
	2 Related Work - Improving BPM and BPMN
	2.1 Applying EET for Analysis of Existing BPMN Models of Business Processes
	2.2 Enhancing the Formal Foundations of BPMN by EET

	3 Analysis of DEMO and BPMN
	4 Converting DEMO into BPMN
	4.1 C-acts
	4.2 C-facts
	4.3 P-(F)acts
	4.4 Actors
	4.5 The Composition Axiom
	4.6 Revokes
	4.7 The Resulting BPMN Model
	4.8 The Execution

	5 Example -- Case Voley
	6 Discussion and Conclusions
	References


