
 123

LN
BI

P
28

4

7th Enterprise Engineering Working Conference, EEWC 2017
Antwerp, Belgium, May 8–12, 2017
Proceedings

Advances in
Enterprise Engineering XI

David Aveiro
Robert Pergl
Giancarlo Guizzardi
João Paulo Almeida
Rodrigo Magalhães
Hans Lekkerkerk (Eds.)

Lecture Notes
in Business Information Processing 284

Series Editors

Wil M.P. van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

David Aveiro • Robert Pergl
Giancarlo Guizzardi • João Paulo Almeida
Rodrigo Magalhães • Hans Lekkerkerk (Eds.)

Advances in
Enterprise Engineering XI
7th Enterprise Engineering Working Conference, EEWC 2017
Antwerp, Belgium, May 8–12, 2017
Proceedings

123

Editors
David Aveiro
University of Madeira and Madeira
Interactive Technologies Institute

Funchal
Portugal

Robert Pergl
Czech Technical University in Prague
Prague
Czech Republic

Giancarlo Guizzardi
Free University of Bozen-Bolzano
Bolzano
Italy

João Paulo Almeida
Federal University of Espírito Santo
Vitoria
Brazil

Rodrigo Magalhães
Kuwait Maastricht Business School
Kuwait
Kuwait

Hans Lekkerkerk
Radboud University Nijmegen
Nijmegen
The Netherlands

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-57954-2 ISBN 978-3-319-57955-9 (eBook)
DOI 10.1007/978-3-319-57955-9

Library of Congress Control Number: 2017938323

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The CIAO! Enterprise Engineering Network (CEEN) is a community of academics and
practitioners who strive to contribute to the development of the discipline of Enterprise
Engineering (EE), and to apply it in practice. The aim is to develop a holistic and
general systems theory-based understanding on how to (re)design and run enterprises
effectively. The ambition is to develop a consistent and coherent set of theories,
models, and associated methods that: enable enterprises to reflect, in a systematic way,
on how to realize improvements; and assist them, in practice, in achieving their
aspirations.

In doing so, sound empirical and scientific foundations should underlie all efforts
and all organizational aspects that are relevant should be considered, while combining
already existing knowledge from the scientific fields of information systems, software
engineering, management, as well as philosophy, semiotics, and sociology, among
others. In other words, the (re)design of an enterprise and the subsequent implemen-
tation of changes should be the consequence of rationalized decisions that: take into
account the nature and reality of the enterprise and its environment; and respect rele-
vant empirical and scientific principles.

Enterprises are taken to be systems whose reality has a dual nature by being
simultaneously, on one hand, centrally and purposefully (re)designed, and, on the other
hand, emergent in a distributed way, given the fact that, its main agents, the humans
that are the pearls of the organization, act with free will, in a creative and in a
responsible (or sometimes not) way. We acknowledge that, in practice, the develop-
ment of enterprises is not always a purely rational/evidence-based process. As such, we
believe the field of EE aims to provide evidence-based insights into the design and
evolution of enterprises and the consequences of different choices irrespective of the
way decisions are made.

The origin of the scientific foundations of our present body of knowledge is the
CIAO! Paradigm (Communication, Information, Action, Organization) as expressed in
our Enterprise Engineering Manifesto and the paper: “The Discipline of Enterprise
Engineering.” In this paradigm, organization is considered to emerge in human com-
munication, through the intermediate roles of information and action. Based on the
CIAO! Paradigm, several theories have been developed, and are still being proposed.
They are published as technical reports.

The CEEN welcomes proposals of improvements to our current body of knowledge,
as well as the inclusion of compliant and alternative views, always keeping in mind the
need to maintain global systemic coherence, consistency, and scientific rigor of the
entire EE body of knowledge, as a prerequisite for the consolidation of this new
engineering discipline. Yearly events like the Enterprise Engineering Working Con-
ference and associated Doctoral Consortium are organized to promote the presentation
of EE research and application in practice, as well as discussions on the contents and
current state of our body of theories and methods.

Since 2005 the CEEN has organized the CIAO! Workshop and, since 2008, its
proceedings have been published as Advances in Enterprise Engineering in the
Springer LNBIP series. From 2011 on, this workshop was replaced by the Enterprise
Engineering Working Conference (EEWC). This volume contains the proceedings
of the 7th EEWC, held in Antwerp, Belgium. There were 40 submissions. Each sub-
mission was reviewed by three Program Committee members and the decision was to
accept 12 full papers and 4 short papers, which were carefully reviewed and selected
for inclusion in this volume.

The EEWC aims at addressing the challenges that modern and complex enterprises
are facing in a rapidly changing world. The participants of the working conference
share a belief that dealing with these challenges requires rigorous and scientific solu-
tions, focusing on the design and engineering of enterprises. The goal of EEWC is to
stimulate interaction between the different stakeholders, scientists as well as practi-
tioners, interested in making EE a reality.

May 2017 David Aveiro
Robert Pergl

Giancarlo Guizzardi
João Paulo Almeida
Rodrigo Magalhães
Hans Lekkerkerk

VI Preface

Organization

EEWC 2017 was the seventh Working Conference resulting from a series of successful
CIAO! Workshops and EEWC Conferences over the last years. These events were
aimed at addressing the challenges that modern and complex enterprises are facing in a
rapidly changing world. The participants in these events share the belief that dealing
with these challenges requires rigorous and scientific solutions, focusing on the design
and engineering of enterprises.

This conviction has led to the effort of annually organizing an international working
conference on the topic of enterprise engineering, in order to bring together all
stakeholders interested in making enterprise engineering a reality. This means that not
only scientists are invited, but also practitioners. Next, it also means that the conference
is aimed at active participation, discussion, and exchange of ideas in order to stimulate
future cooperation among the participants. This makes EEWC a working conference
contributing to the further development of enterprise engineering as a mature
discipline.

The organization of EEWC 2017 and the peer review of the contributions to the
conference were accomplished by an outstanding international team of experts in the
fields of enterprise engineering. The organizational structure of EEWC 2017 is listed
herein.

Advisory Board

Antonia Albani University of St. Gallen, Switzerland
Jan Dietz Delft University of Technology, The Netherlands

Conference Chairs

Jan Verelst University of Antwerp, Belgium
Henderik A. Proper Luxembourg Institute of Science and Technology,

Luxembourg

Program Chairs

David Aveiro University of Madeira and Madeira Interactive
Technologies Institute, Portugal

Robert Pergl Czech Technical University in Prague, Czech Republic

Session Chairs

Foundational Ontologies

Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
João Paulo Almeida Federal University of Espírito Santo, Brazil

Organizational Design

Rodrigo Magalhes Kuwait Maastricht Business School, Kuwait
Hans Lekkerkerk Radboud Universiteit Nijmegen, The Netherlands

Organizing Chair

Jan Verelst University of Antwerp, Belgium

Program Committee

Alberto Silva INESC and University of Lisbon, Portugal
Carlos Mendes University of Lisbon, Portugal
Christian Huemer Vienna University of Technology, Austria
Duarte Gouveia University of Madeira, Portugal
Eduard Babkin Higher School of Economics, Nizhny Novgorod, Russia
Fernanda Araujo Baiao UNIRIO, Brazil
Florian Matthes Technical University Munich, Germany
Frank Harmsen Maastricht University and Ernst & Young Advisory,

The Netherlands
Frederik Gailly Ghent University, Belgium
Geert Poels Ghent University, Belgium
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
Gil Regev École Polytechnique Fédérale de Lausanne, Switzerland
Graham McLeod University of Cape Town and Inspired.org, South Africa
Hans Mulder University of Antwerp, Belgium
Jan Dietz Delft University of Technology, The Netherlands
Jan Hoogervorst Sogeti Netherlands, The Netherlands
Jens Gulden University of Duisburg-Essen, Germany
Joop de Jong Mprise, The Netherlands
Jose Tribolet INESC and University of Lisbon, Portugal
Joseph Barjis Institute of Engineering and Management, San Francisco,

USA
Julio Nardi Federal Institute of Espírito Santo, Brazil
Junichi Iijima Tokyo Institute of Technology, Japan
Linda Terlouw Delft University of Technology, The Netherlands
Luiz Olavo Bonino VU University of Amsterdam, The Netherlands
Marcela Vegetti Universidad Tecnológica Nacional, Argentina

VIII Organization

Martin Cloutier Université du Québec à Montréal, Canada
Martin Op ’T Land Capgemini, The Netherlands
Mauricio Almeida Federal University of Minas Gerais, Brazil
Miguel Mira Da Silva INESC and University of Lisbon, Portugal
Monika Kaczmarek University Duisburg Essen, Germany
Nelson King Khalifa University, United Arab Emirates
Niek Pluijmert INQA Quality Consultants, The Netherlands
Peter Loos University of Saarland, Germany
Petr Kremen Czech Technical University in Prague, Czech Republic
Philip Huysmans University of Antwerp, Belgium
Ricardo Falbo Federal University of Espírito Santo, Brazil
Robert Lagerström KTH Royal Institute of Technology, Sweden
Robert Pergl Czech Technical University in Prague, Czech Republic
Robert Winter University of St. Gallen, Switzerland
Rodrigo Magalhaes Kuwait Maastricht Business School, Kuwait
Rony Flatscher Wirtschaftsuniversität Wien, Austria
Sérgio Guerreiro INESC and University of Lisbon, Portugal
Sanetake Nagayoshi Shizuoka University, Japan
Steven van Kervel Formetis, The Netherlands
Sybren de Kinderen University of Luxembourg, Luxembourg
Tatiana Poletaeva Higher School of Economics, Nizhny Novgorod, Russia
Ulrik Franke Swedish Defense Research Agency, Sweden

Organization IX

Contents

Formalisms

Formal Specification of DEMO Process Model and Its Submodel:
Towards Algebra of DEMO Models . 3

Tetsuya Suga and Junichi Iijima

A DEMO Machine - A Formal Foundation for Execution
of DEMO Models . 18

Marek Skotnica, Steven J.H. van Kervel, and Robert Pergl

Standards and Laws

Adding Quality of Information to the Ontological Model
of an Enterprise . 35

Ron Deen, Johan Mijs, and Martin Op ’T Land

DEMO/PSI Theory and the Law of the Land . 50
Duarte Gouveia and David Aveiro

The Perspectives of DEMO Application to COSO Internal Audit
Framework Risks Mitigation. 66

Eduard Babkin, Pavel Malyzhenkov, and Fabrizio Rossi

VISI Revisited . 74
Niek J. Pluijmert

Business Processes

Converting DEMO PSI Transaction Pattern into BPMN:
A Complete Method . 85

Ondřej Mráz, Pavel Náplava, Robert Pergl, and Marek Skotnica

DEMO Business Processes Design to Improve the Enterprise Business
Continuity Plans . 99

José Brás and Sérgio Guerreiro

Normalized Systems and Evolvability

Investigating the Evolvability of Financial Domain Models 111
Marjolein Deryck, Ondrej Dvořák, Peter De Bruyn, and Jan Verelst

http://dx.doi.org/10.1007/978-3-319-57955-9_1
http://dx.doi.org/10.1007/978-3-319-57955-9_1
http://dx.doi.org/10.1007/978-3-319-57955-9_2
http://dx.doi.org/10.1007/978-3-319-57955-9_2
http://dx.doi.org/10.1007/978-3-319-57955-9_3
http://dx.doi.org/10.1007/978-3-319-57955-9_3
http://dx.doi.org/10.1007/978-3-319-57955-9_4
http://dx.doi.org/10.1007/978-3-319-57955-9_5
http://dx.doi.org/10.1007/978-3-319-57955-9_5
http://dx.doi.org/10.1007/978-3-319-57955-9_6
http://dx.doi.org/10.1007/978-3-319-57955-9_7
http://dx.doi.org/10.1007/978-3-319-57955-9_7
http://dx.doi.org/10.1007/978-3-319-57955-9_8
http://dx.doi.org/10.1007/978-3-319-57955-9_8
http://dx.doi.org/10.1007/978-3-319-57955-9_9

Exploring Design Aspects of Modular and Evolvable Document
Management. 126

Gilles Oorts, Herwig Mannaert, and Peter De Bruyn

Application of Enterprise Engineering to Lean Process Management:
An Explorative Case Study . 141

Marjolein Deryck and Philip Huysmans

Ontologies

The REA Model Expressed in a Generic DEMO Model for Co-creation
and Co-production. 151

Frantisek Hunka and Steven J.H. van Kervel

SysPRE - Systematized Process for Requirements Engineering 166
Ana Neto, Duarte Pinto, and David Aveiro

Revisiting the DEMO Transaction Pattern with the Unified Foundational
Ontology (UFO) . 181

Tanja Poletaeva, Giancarlo Guizzardi, João Paulo A. Almeida,
and Habib Abdulrab

Organisation Design

An OD-Pearl for the EE-Oyster . 199
L.J. Lekkerkerk

A Literature Review of Coordination Mechanisms: Contrasting
Organization Science and Information Systems Perspectives 220

Maximilian Brosius, M. Kazem Haki, Stephan Aier, and Robert Winter

Author Index . 235

XII Contents

http://dx.doi.org/10.1007/978-3-319-57955-9_10
http://dx.doi.org/10.1007/978-3-319-57955-9_10
http://dx.doi.org/10.1007/978-3-319-57955-9_11
http://dx.doi.org/10.1007/978-3-319-57955-9_11
http://dx.doi.org/10.1007/978-3-319-57955-9_12
http://dx.doi.org/10.1007/978-3-319-57955-9_12
http://dx.doi.org/10.1007/978-3-319-57955-9_13
http://dx.doi.org/10.1007/978-3-319-57955-9_14
http://dx.doi.org/10.1007/978-3-319-57955-9_14
http://dx.doi.org/10.1007/978-3-319-57955-9_15
http://dx.doi.org/10.1007/978-3-319-57955-9_16
http://dx.doi.org/10.1007/978-3-319-57955-9_16

Formalisms

Formal Specification of DEMO Process Model
and Its Submodel

Towards Algebra of DEMO Models

Tetsuya Suga(B) and Junichi Iijima

Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8550, Japan

{suga.t.ac,iijima.j.aa}@m.titech.ac.jp

Abstract. This paper discusses a specification and merge operation over
submodels of a given Process Model (PM) in Design and Engineering
Methodology for Organizations (DEMO). In general, a submodel is a
part of a given model. An earlier work proposed how submodels of a given
DEMO Construction Model (CM) can be attained by a set-theoretic for-
malization. However, it remains unclear how to expand the formalism
to the notion of submodels of a given PM. Since the given PM should
align with the corresponding CM, a submodel of the given PM should
not only be a PM, but also conform to the corresponding submodel of
the CM. These two independent constraints indicate the desired defini-
tion and formalization of submodels of PMs. The proposed approach is
shown to be applicable to a common demonstration case. Through the
formalization, this paper shows the closure, commutativity, and associa-
tivity of the merge operation over submodels of a given PM. Moreover, it
is found that the consistency between CMs and PMs is preserved during
the merge operation.

Keywords: Enterprise ontology · Merge · Algebra · DEMO process
model · Match

1 Introduction

In recent years, organizations have been objects of interest in a variety of disci-
plines, not only in social science and business administration, but also in engi-
neering. Enterprise engineering (EE) is an emerging discipline of systems engi-
neering that studies organizations from an engineering perspective [1]. Since
Enterprise Ontology provides models of enterprises with considerably reduced
complexity [2], a (re)design process with such a methodology inevitably requires
working with a model of the organization rather than the real-world organization
itself. Put another way, (re)designing an enterprise is substantially achieved by
building and editing models of the enterprise, and implementing the changes in
the model in the real world.

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-57955-9 1

4 T. Suga and J. Iijima

A vast majority of the work in this area has focused on artifacts in the
category of Way of Thinking (WoT), Way of Modeling (WoM), and Way of
Working (WoW) in five ways in information system methodologies [3], such as
artifacts that are typically involved in the process of modeling. There is, however,
relatively limited research investigating theories that may support the process of
manipulating models, a possible contribution to Way of Supporting (WoS). In
particular, the requirements of submodels of enterprise models and operations
over the submodels remain unclear.

In this article, a submodel is a part of a given model that has been already
created. The given model is often called the global model. Submodels are used
for diverse reasons and purposes, such as to partition the enterprise, to focus on
only some part in question, to hide some part for readability or even because of
an access control policy, and so on. Logically speaking, regardless of the reasons,
the requirements of those partial models of enterprise models should be specified
if we rigidly define what “part of” means. Unless they are defined properly, we
might allow submodels that do not conform to preconditions of the global model,
including (but not limited to) its metamodel. An operation over one or more
models (i.e., inputs) means creating another model by input model(s). Once the
requirements of submodels have been established, we may leverage those sub-
models by considering operations over the submodels such as merge submodels.
Such operations may include merge, diff, split, slice, and so forth. Again, if we do
not define the operation rigorously, we might get a model that does not conform
to the requirements of the global model as a result of performing the operation.
In addition, we should study and then be aware of properties of the operation
such as the associative and the commutative properties.

Insufficient investigation of the formalization and manipulability of enterprise
models, i.e., a scarcity in WoS, stands in the way of the success of EE in the
market. Presently, such a model manipulation and the following model checking
require manual work by professionals with considerable expertise not only in
the business, per se, but also in the modeling framework and theories behind
it. However a certain part of the work could be taken over or even rendered
unnecessary by formalization and automation with computer-aided design tools.
Other disciplines, such as mechanical engineering, electrical engineering, and
computer science, demonstrate the successful implementation of computer-aided
design tools and automation.

Therefore, this research aims at investigating the structure and properties in
submodels and operations in DEMO PMs based on an earlier work on those in
DEMO CMs. Although the earlier work established the formalization of CMs,
PMs are characterized by components that are specific to PMs, such as process
step kinds and causal/waiting links. Another requirement for the formalization
of PMs is to capture the relationship between a CM and a PM when they are
integrated in one DEMO model. In this article, we say that a Process Structure
Diagram (PSD, a representation of a PM) is matched to an Organization Con-
struction Diagram (OCD, a representation of CMs) as defined formally later in
Definition 13.

Formal Specification of DEMO Process Model and Its Submodel 5

We first propose an algebraic structure of a PSD and its submodels. In this
step, we use the set-theoretic formalization and encode the structure of a DEMO
PSD. It is because, as the earlier work [4] extensively discussed, other forms of
formalism such as Z notation, temporal logic, description logics, and category
theory turn out to be inappropriate for the purpose of the study. Those existing
formalisms not only have different structures in modularity than DEMO PSDs,
but are also inadequate for algebraic construction. In addition, it is beneficial
to use the same type of formalism with the earlier work on CMs to leverage the
knowledge and findings there. Although a PM specifies the state and transition
space of the coordination world, it seems enough to rely on the set-theoretic
formalism as long as we follow the metamodel. Secondly, an operation over the
structure, the “merge” operation, is defined and associated properties are exam-
ined by formal proofs. Then, we consider a pair-wise merge operation for OCDs
and PSDs. The result corroborates the coherence and consistency of DEMO mod-
els from a different angle. Towards the ultimate goal of constructing the algebra
of DEMO models, including four aspect models, the current research project has
worked on the algebra of PSDs. This article reports preliminary findings of the
ongoing research, which captures a DEMO PSD as a static object.

The remainder of this paper is composed as follows. In the next chapter, we
provide an overview of the background concepts and previous works related to
the issue addressed in this article. The main result is given for the construction
of an algebraic structure for DEMO PMs and an algebra over the structure, in
Sects. 3 and 4, respectively. Section 5 discusses the contribution and limitations
of this work, and concludes with a look at future directions.

2 Literature Review

2.1 Background Concepts

DEMO. Design & Engineering Methodology for Organizations (DEMO) is a
modeling methodology for enterprises [2]. Although an enterprise—as an abstract
term referring to (an assembly of) collaborative activities by human beings—
has two perspectives (i.e., function and construction) in terms of systems engi-
neering, DEMO spotlights the construction perspective. In addition to its focus
on the construction of enterprises, DEMO also emphasizes the communications
within enterprises, namely from the language/action perspective. For detailed
information about DEMO, we refer the reader to [1,2].

DEMO is more suitable for the purpose and procedures of this research than
other enterprise modeling languages, including business process modeling lan-
guages. It is because it provides a strong connection between the syntax and
semantics. As shown in the rest of this article, elements of DEMO models are
formalized by mathematics and studied from their isomorphic mathematical rep-
resentations rather than the DEMO models themselves. Therefore, the strong
connection is beneficial and essential to ensure the alignment between meanings
(semantics) and symbols (syntax) when we encode DEMO models to mathemat-
ical representations and decode them back.

6 T. Suga and J. Iijima

Aspect Models. The ontological model of an enterprise is represented by four
aspect models, which each reflect a specific aspect of the enterprise. Because of
the interest of this paper, we elaborate the Process Model here.

The Process Model (PM) of an enterprise specifies the state and transition
space (i.e., the set of lawful sequences of the states) of the coordination world.
Those states and transitions are largely specified by the universal transaction
pattern. A PM is expressed in a Process Structure Diagram (PSD) for the whole
and a Transaction Pattern Diagram (TPD) for each transaction kind. Although
“exception(s)” dealt with in the model can be only specified in the TPD, the
PSD occupies the central role in the PM. In other words, if we limit ourselves
to a happy path, a PSD can be regarded as a PM without a TPD. Therefore,
as a first attempt, this work concentrates on PSDs in the rest of this article.
Figure 1a shows an example of a PSD. We use this metamodel as the grounds of
the formalization of PSDs.

Fig. 1. DEMO PM

Abstract Algebra. Set theory and structure jointly play significant roles in
mathematics. Intuitively, a set is simply a collection of objects known as ele-
ments that exist without any relation to each other. In contrast, a structure is a
set together with some relations among elements of the set. Informally, such a
structure is defined by specifying the elements and the relations. The rest of this
section introduces an algebraic structure, which is one of well-known structures
established by mathematicians.

Algebraic Structure. In abstract algebra, an algebraic structure consists of a
set (called an underlying set), with one or more operations defined on the set,
that satisfies certain axioms. The structure enables us to formalize and analyze
objects that are more complex than just a collection of objects. Schematically,
an algebraic structure is specified as a pair 〈A;F 〉, where A is an underlying set
and F is a family of finitary operations on A. Although we often assume the
axioms of set theory, we may add or modify the axioms to shape the structure
in order to represent more complex systems and allow derivations. A set is an
instance of such an algebraic structure with F being empty (i.e., 〈A; ∅〉), whereas
there are well-known variants such as groups, rings, lattices, and so on.

Formal Specification of DEMO Process Model and Its Submodel 7

Algebra of Structures. Now we rise to a meta-level and introduce an algebra of
(over) a structure. In the case of a set as a simple structure, the algebra of sets
defines the laws over sets, the relations over sets (e.g., equality and inclusion),
and set-theoretic operations over sets (e.g., union, intersection, and complement).
Similarly, one may construct an algebra of an arbitrary structure. The ultimate
goal of this research is to construct an algebra of DEMO models.

2.2 Related Works

Except for an earlier work [4], there exist very few formalizations for DEMO
models, namely the CRISP model [6], Petri Nets [7,8], and XML schema [9].
Though we do not repeat the details of evaluations and insufficiency of those
formalizations as a solution for the issue targeted by this research, the main
deficiencies of the existing approaches are that none of them provide algebraic
operations to form any type of algebra [4]. Since, this present work is dependent
on the formalization of DEMO OCDs in the earlier work, we recall the essen-
tial definitions and theorem here. The full descriptions, including proofs and
rationale, are available in [4].

Algebraic Structure of DEMO OCD. An algebraic structure of a DEMO
OCD is defined by elements of sets and associated operations over the sets.

Definition 1 (Society). A society S = 〈A,T〉, as a universe, is made up of a
set of actor roles A and a set of transaction kinds T.

Definition 2 (Actor Role). An actor role has the following mappings:

1. fARno : A → N
0 represents the number of each actor role, and

2. fARname : A → string represents the name of each actor role.

Definition 3 (Transaction Kind). A transaction kind t is a pair of actor
roles (a, a′), where a and a′ are called an initiator and an executor, respectively1.
Formally, t ∈ A × A. Transaction kinds have the following mappings:

1. fTno : T → N
+ represents the number of each transaction kind,

2. fTname : T → string represents the name of each transaction kind,
3. fTin : T → A represents the initiator of each transaction kind,
4. fTex : T → A represents the executor of each transaction kind.

Definition 4 (OCD). Given that A is a subset of A, and T is a subset of T,
an OCD is a pair 〈A, T 〉 ∈ 2A × 2T that satisfies the following conditions:

Condition 1 (Unique Actor Role Name).
∀ai,∀aj ∈ A, (fARname (ai) = fARname (aj) ⇒ ai = aj)

Condition 2 (Unique Transaction Kind Name).
∀ti,∀tj ∈ T, (fTname (ti) = fTname (tj) ⇒ ti = tj)

1 [4] assumes that there is only one initiator for each transaction kind.

8 T. Suga and J. Iijima

Condition 3 (Numbering Convention).
∀t ∈ T, fARno (fTex (t)) = fTno (t)

Condition 4 (Closure for Actor Role).
∀t ∈ T,∀a ∈ ActorRole, a ∈ fTin (t) ∪ fTex (t) ⇒ a ∈ A

Condition 5 (Actor Role Participation).
∀a ∈ A,∃t ∈ T, a ∈ fTin (t) ∪ fTex (t)

Based on this algebraic structure, we define the notion of “submodel” of a given
OCD with the following formal specification.

Definition 5 (Sub-OCD). Given an OCD 〈A◦, T ◦〉, a couple 〈A, T 〉 is said
to be “a sub-OCD of 〈A◦, T ◦〉” if 〈A, T 〉 is an OCD (i.e., satisfies Definition 4),
and A ⊆ A◦ and T ⊆ T ◦ hold.

Algebra of DEMO OCDs. Toward the algebra of DEMO OCDs, the previous
work [4] introduced an operation over sub-OCDs of a given global OCD which
performs the merger of the two sub-OCDs. Here we repeat the definition and its
behavior as formulated in the form of theorems.

Definition 6 (OCD Merge). Given an OCD 〈A◦, T ◦〉 and its two sub-OCDs
〈AX , TX〉 and 〈AY , TY 〉, the merge operation ∇ :

(
2A × 2T

)
×
(
2A × 2T

)
→
(
2A × 2T

)

is defined as 〈AX , TX〉∇ 〈AY , TY 〉 � 〈AX ∪ AY , TX ∪ TY 〉.

Theorem 1. The family of sub-OCDs of a given OCD is closed under the merge
operation ∇.

Theorem 2. The merge operation ∇ is commutative and associative in the fam-
ily of sub-OCDs of a given OCD.

Relationship Between a CM and a PM. Although the specification of
DEMO [5] specifies the metamodels for each aspect model separately, with less
attention to the relationship between them, there are a few articles that address
the relationship to ensure the integrity of the four aspect models. Particularly,
we use [9] as a reference, which elaborates the requirements for transformation
from a CM to a PM with coherence and consistency as “transformation rules”.

3 Construction of Algebraic Structure

This section provides a formalization of the DEMO PSD and its submodels,
which serves as the rigorous foundation for this research.

We use a common case study of Pizzeria [2] as a running example throughout
this paper. For convenience, the PSD of Pizzeria is repeated in Fig. 2. Although
it is a convention to draw actor roles with swim lanes, we omit them because
they are not included in the metamodel of the PM.

Formal Specification of DEMO Process Model and Its Submodel 9

3.1 PSD and Its Submodels

Algebraic Structure of PSD. As noted by the metamodel of the DEMO PM
in Fig. 1b, the PSD has transaction kinds (TK), process step kinds (PSK), and
transaction process step kinds (TPSK) as its components, with causal links and
conditional links (denoted as “TK is an initiated from TPSK” and “TPSK is a
wait condition for [another] TPSK”, respectively). As a natural and straightfor-
ward approach, these components and links are formalized as sets and relations,
respectively, below.

Let T be a set of transaction kinds. Transaction kinds have mappings to
provide the name and number, namely fTname : T → string and fTno : T → N.
This definition is to give a universe, which contains all the entities we may wish
to consider in a given situation. Thus, this set is not restricted to transaction
kinds in a particular enterprise under consideration.

I is a set of process step kinds, which consists of Production-acts and
Coordination-acts, namely I = {rq, pm, ex, st, ac} in the case of the basic trans-
action pattern2. Since the static structure is of interest in the formalization, it
is enough for I to be a set within the scope of this article. If the dynamic aspect
in timing is considered, I should be accompanied by an order relation.

Based on the notations introduced so far, (t, i) ∈ T × I denotes a transac-
tion process step kind, as specified in the metamodel by an aggregation of a
transaction kind and a process step kind.

Example 1. Suppose we decide to consider Pizzeria as a given DEMO model. As
it is a convention that sets and relations for the given global model are indicated
by a circle ◦ in the superscript, the OCD of Pizzeria is denoted as 〈A◦, T ◦〉,
and the PSD is denoted as 〈T ◦, V ◦,W ◦〉. In the scope of Pizzeria, we identify
four transaction kinds: T1, T2, T3, and T4. We use t with the corresponding
index to refer to these transactions kinds. Thus, the set of transaction kinds is
T = {. . . , t1, t2, t3, t4, . . .}. As clarified in Sect. 3.1, “. . .” is intentionally placed
to express that T is a universe, and hence may include other transaction kinds.

Fig. 2. PSD of Pizzeria

2 When the formalization is expanded to the standard transaction pattern, I equals
{rq, pm, ex, st, ac, dc, qt, rj, sp}.

10 T. Suga and J. Iijima

In the universe of transaction kinds, we create the set of transaction kinds for
Pizzeria T ◦ ⊆ T as

T ◦ = {t1, t2, t3, t4} .

According to the names of the transaction kinds in Pizzeria, we have fTname :
t1 �→ “completion”, t2 �→ “preparation”, t3 �→ “payment”, t4 �→ “delivery”.
Based on this configuration, a transaction process step kind request of T1, for
instance, is encoded into (t1, rq) ∈ T × I.

Definition 7 (Activation Relation). Let V be a relation over (T × I) × T,
where ((t, i) , t′) ∈ V represents that a transaction kind t′ is activated from a
transaction process step kind (t, i). In this case, V is called an activation relation
over T.

Example 2. The PSD of Pizzeria has three causal links from the promise of
T1 to T2, T3 and T4. In our formalism these are expressed by the relation
V ⊆ (T × I) × T. Thus, the relation for causal links in Pizzeria V ◦ ⊆ V is

V ◦ = {((t1, pm) , t2) , ((t1, pm) , t3) , ((t1, pm) , t4)} .

Definition 8 (Wait Relation). Let W be a relation over (T × I) × (T × I),
where ((t, i) , (t′, i′)) ∈ W represents that a transaction process step kind (t′, i′)
is a wait condition for a transaction process step kind (t, i). In this case, W is
called a wait relation over T.

Example 3. The PSD of Pizzeria also specifies three conditional links from the
accept of T2 to the execute of T4, from the accept of T4 to the request of
T3, and from the accept of T3 to the execute of T1. These are encoded into
the relation W ⊆ (T × I) × (T × I). In Pizzeria, W ◦ ⊆ W is

W ◦ = {((t2, ac) , (t4, ex)) , ((t4, ac) , (t3, rq)) , ((t3, ac) , (t1, ex))} .

Just for the purpose of labeling, we define a Transaction Process Step net (TPS-
net), which is a triple-wise subset of a given tuple of sets as defined below.

Definition 9 (TPS-net). A TPS-net is a triple 〈T, V,W 〉, where T is a subset
of T, V is a subset of V, and W is a subset of W.

Definition 10 (PSD). Given that T is a subset of T, V is a subset of V, and
W is a subset of W, a PSD is a TPS-net 〈T, V,W 〉 that satisfies3

Property 1. ∀ti, tj ∈ T, (fTname (ti) = fTname (tj) =⇒ ti = tj),
Property 2. ∀ ((t, i) , t′) ∈ V, t ∈ T ∧ t′ ∈ T , and
Property 3. ∀ ((t, i) , (t′, i′)) ∈ W, t ∈ T ∧ t′ ∈ T .

3 Although it is possible to impose more constraints such as “a wait condition must
bridge two distinct transaction kinds”, we aim for fidelity to the metamodel.

Formal Specification of DEMO Process Model and Its Submodel 11

In plain English, the first property imposes the uniqueness of the names of
transaction kinds as name equivalence; the second and third properties ensure
the source and target transaction kinds of a link are included in the PSD. By
definition, any PSD of 〈T, V,W 〉 is also a TPS-net. As we assume the basic
transaction pattern in this article, we do not explicitly write I.

Example 4. It is easily confirmed that the tuple 〈T ◦, V ◦,W ◦〉 satisfies the
definition of a PSD.

Algebraic Definition of PSD Submodels. So far, we have described the
formalism for PSDs. Here we proceed to define the notion of submodels for
PSDs.

Definition 11 (Sub-TPS-net). Given two TPS-nets 〈T, V,W 〉 and 〈T ′, V ′,
W ′〉, 〈T ′, V ′,W ′〉 is said to be a sub-TPS-net of 〈T, V,W 〉 if T ′ ⊆ T , V ′ ⊆ V , and
W ′ ⊆ W . Accordingly, we define “the family of sub-TPS-nets brought by a given
PSD 〈T, V,W 〉” that is the collection of all the TPS-nets 〈T ′, V ′,W ′〉 that are sub-
TPS-nets of 〈T, V,W 〉. We use ℘ (〈T, V,W 〉) as a shorthand form for the family of
sub-TPS-nets of 〈T, V,W 〉.

Definition 12 (Sub-PSD). Given a PSD 〈T, V,W 〉, a TPS-net 〈T ′, V ′,W ′〉 is
said to be a sub-PSD of 〈T, V,W 〉 if 〈T ′, V ′,W ′〉 is a sub-TPS-net of 〈T, V,W 〉
and a PSD (i.e., it satisfies the three properties in Definition 10). Accordingly,
we define “the family of sub-PSDs brought by a given PSD 〈T, V,W 〉” that is the
collection of all the PSDs 〈T ′, V ′,W ′〉 that are sub-PSDs of 〈T, V,W 〉. We use
P (〈T, V,W 〉) as a shorthand form for the family of sub-PSDs of 〈T, V,W 〉.

Example 5. Figure 3a illustrates one member of the family of sub-TPS-nets
made by the given PSD. As the diagram notes, this is broken in the sense
that the causal link from the promise of T1 to T2, but T2 is not included
in Fig. 3a. Let 〈T0, V0,W0〉 denote this diagram. Since T0 = {t1, t4} ⊆ T ◦,
V0 = {((t1, pm) , t2) , ((t1, pm) , t3)} ⊆ V ◦, and W0 = {((t3, ac) , (t1, ex))} ⊆ W ◦,
〈T0, V0,W0〉 is a sub-TPS-net of the given PSD according to Definition 11. How-
ever, this is not a sub-PSD of the given PSD due to the second property of
Definition 12 not being satisfied. In contrast, Fig. 3b is a sub-PSD of the given
PSD.

Although this definition requires a sub-PSD to satisfy the three conditions in
Definition 10, we have to ensure only the second and third properties because
of the following proposition. For readability, all proposition and theorem proofs
are detailed in the Appendix.

Proposition 1. Given a PSD 〈T ◦, V ◦,W ◦〉, any member of the family of sub-
TPS-nets ℘ (〈T ◦, V ◦,W ◦〉) satisfies the following condition:

Property 1. ∀ti, tj ∈ T, (fTname (ti) = fTname (tj) =⇒ ti = tj)

12 T. Suga and J. Iijima

Fig. 3. Example in Pizzeria

3.2 Match Between a CM and a PM

Independent of Sect. 3.1, this section describes another angle to restrict the free-
dom in a formalized PSD in terms of its coherence and consistency to the corre-
sponding CM. Based on previous work [9, Chaps. 4 and 7], the requirements are
shaped as (1) the set of transaction kinds in the PSD equals that in the OCD
(up to name equivalence), and (2) the causal links between transaction kinds in
the PSD should reflect the product structure of the OCD. These are formally
defined as follows:

Definition 13 (Match). Given an OCD 〈A, T 〉, a PSD 〈T, V,W 〉 is said to be
matched to the OCD if

1. T = T , and
2. ∀t, t′ ∈ T , (∃a ∈ A, fex (t) = a = fin (t′)) ⇐⇒ (∃i ∈ I, ((t, i) , t′) ∈ V).

In this case, we may say an OCD and a PSD are matched.

The second condition above states the PSD is aligned to the product structure
of the enterprise. Notably, based on our formalism, the product structure is
uniquely derived from the OCD. Precisely speaking, the OCD can be uniquely
transformed to the tree of organizational building blocks, and then uniquely
converted to the tree of the product structure. According to the composition
axiom [2], a root node is uniquely identified by a transaction kind that is initiated
by the environmental actor role, or initiated by its executor itself (i.e., a self-
activated transaction kind). In a simple case such as Pizzeria, the product struc-
ture is said to be a tree, which has one root transaction. The product structures
of more complex cases, including Library [2], must be a collection of trees with
sharing. The directed adjacency relation between transaction kinds, written as
R ⊆ T × T , is uniquely obtained as R = {(t, t′) | ∃a ∈ A, fex (t) = a = fin (t′)}.

4 Algebra of PSDs

This section introduces an operation and explores its properties. As the first
step, we define the “merge” operation for two sub-PSDs of a given PSD. Then,

Formal Specification of DEMO Process Model and Its Submodel 13

in association with the merge operation of the OCD proposed in the earlier work
(see Sect. 2.2), we elaborate the behavior of the DEMO OCD and PSD during
the “merge” operation.

4.1 Merge Operation on Sub-PSDs

Analogous to set-theoretic union, the merge operation takes two sub-PSDs of
a given PSD and produces an output that contains the two input models—
specifically, the two sub-PSDs shall be a part (submodel) of the output, as for-
mulated below.

Definition 14 (PSD Merge). Given a PSD 〈T ◦, V ◦,W ◦〉 and its two sub-
PSDs 〈TX , VX ,WX〉 and 〈TY , VY ,WY 〉, the merge operation � :

(
2T × 2V × 2W

)

×
(
2T × 2V × 2W

)
→

(
2T × 2V × 2W

)
is defined as

〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 � 〈TX ∪ TY , VX ∪ VY ,WX ∪ WY 〉 .

Example 6. Finally, we demonstrate the merge operation using the sub-PSDs
(Figs. 4a and b) of the given PSD in Fig. 2 to obtain the result in Fig. 4c.
The sub-PSD in Fig. 4a is encoded as 〈T1, V1,W1〉 = 〈{t1, t3} , {((t1, pm) , t3)} ,
{((t3, ac) , (t1, ex))}〉 and in Fig. 4b as 〈T2, V2,W2〉 = 〈{t1, t2} , {((t1, pm) , t2)} ,
∅〉. Then, the merged PSD in Fig. 4c is obtained by Definition 14 as 〈T1, V1,W1〉
� 〈T2, V2,W2〉 = 〈 {t1, t3}∪{t1, t2} , {((t1, pm) , t3)}∪{((t1, pm) , t2)} , {((t3, ac) ,
(t1, ex))} ∪ ∅ 〉 = 〈{t1, t2, t3} , {((t1, pm) , t3) , ((t1, pm) , t2)} ,
{((t3, ac) , (t1, ex))}〉.

Based on this definition, we claim three notable properties. First, the result of the
operation is indeed a sub-PSD of the given PSD. Furthermore, this operation
frees users from concerns about the order of the input models; changing the
order of inputs does not change the result. These properties are formulated in
theorems.

T1, V1,W1 T2, V2,W2

=

Fig. 4. PSD merge in Pizzeria

Theorem 3. The family of sub-PSDs of a given PSD 〈T ◦, V ◦,W ◦〉 is closed
under the merge operation �, i.e., ∀ 〈TX , VX ,WX〉 , 〈TY , VY ,WY 〉 ∈ P (〈T ◦, V ◦,
W ◦)〉,

〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 ∈ P (〈T ◦, V ◦,W ◦〉) .

14 T. Suga and J. Iijima

Theorem 4. The merge operation � is commutative and associative on the
family of sub-PSDs of a given PSD 〈T ◦, V ◦,W ◦〉, i.e., ∀ 〈TX , VX ,WX〉 ,
〈TY , VY ,WY 〉 , 〈TZ , VZ ,WZ〉 ∈ P (〈T ◦, V ◦,W ◦〉),

〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 = 〈TY , VY ,WY 〉 � 〈TX , VX ,WX〉

and

(〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉) � 〈TZ , VZ ,WZ〉
= 〈TX , VX ,WX〉 � (〈TY , VY ,WY 〉 � 〈TZ , VZ ,WZ〉) .

4.2 Preserved Match Between the OCD Merge and PSD Merge

In addition to the behavior of the PSD merge as discussed so far, we claim the
final theorem in this article guarantees the consistency between the PSD merge
and OCD merge, as illustrated in Fig. 5.

X , TX Y , TY

X , TX Y , TY

TX , VX ,WX TY , VY ,WY

TX , VX ,WX TY , VY ,WY

match match

match?

Fig. 5. Illustration of Theorem5

Theorem 5. Given an OCD 〈A◦, T ◦〉 and a matched PSD 〈T ◦, V ◦,W ◦〉, let
〈AX , TX〉 and 〈AY , TY 〉 be sub-OCDs of the given OCD and 〈TX , VX ,WX〉 and
〈TY , VY ,WZ〉 be sub-PSDs of the given PSD.

If 〈TX , VX ,WX〉 is matched to 〈AX , TX〉 and 〈TY , VY ,WY 〉 is matched to
〈AY , TY 〉, the result of the PSD merge is matched to the result of the OCD
merge, i.e., 〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 is matched to 〈AX , TX〉∇ 〈AY , TY 〉.

Practitioners may take advantage of this theorem. A project to merge two sub-
OCDs and sub-PSDs can be divided into four smaller tasks as follows: (1) ensure
one sub-PSD is matched to one sub-OCD, (2) ensure the other sub-PSD is
matched to the other sub-OCD, (3) merge the two sub-OCDs, and (4) merge
the two sub-PSDs. The four tasks can be completed separately by different indi-
viduals and/or computers without collaboration. Moreover, nobody has to check
whether the result of task 4 (PSD merge) is matched to the result of task 3 (OCD
merge) because it is guaranteed by this theorem.

Formal Specification of DEMO Process Model and Its Submodel 15

5 Conclusion and Future Research

The goal of this paper was to present a straightforward construction of an alge-
braic structure for DEMO PSDs and explore the merge operation as an instance
of model manipulations. The primary result states that the family of sub-PSDs of
a given PSD is closed under the merge operation, while preserving the integrity
of sub-OCDs and sub-PSDs. Furthermore, the merge operation is commutative
and associative in that family. Stated another way, the finding may reinforce the
coherence and consistency of DEMO from a different angle.

The contribution of this work is not limited to the theoretical aspect, is but of
significance to practitioners as well. The commutativity and associativity of the
merge operation ensure the same result regardless of the order of the operations.
If one wishes to merge three models, A, B, and C but B is not available yet, one
can first merge A and C, then merge the result and B later when B becomes
available. Moreover, Sect. 4.2 exhibits the contribution of this work in terms of
division of labor in a practical scenario. As we mentioned in Sect. 1, these for-
mal specifications of DEMO aspect models and investigation of mathematical
behavior should provide a solid foundation of computer-aided design environ-
ments, which may play an important role in the future development of Way of
Supporting, which has attracted less attention so far, but will be of significance
in Enterprise Engineering.

Although this research has answered the issue addressed in Sect. 1, there is
an intrinsic limitation in that the formalization only captures the static aspect of
DEMO PMs. Considering each transaction kind is a finite state machine (FSM)
in the sense of the universal transaction pattern, a PM is a composition of FSMs.
Thus, this paper ignores dynamic aspects such as the behavior of the composite
FSMs and may miss some important points. In fact, the authors noticed that a
PSD in Fig. 6b is intuitively and realistically a good submodel of a given PSD in
Fig. 2 in the sense that the accept of T4 is a waiting condition for the execute of
T1, particularly when you interpret the purpose of making submodels is to ignore
one or more specific transaction kinds. However, the PSD in Fig. 6b is invalid
in the presented formalization because the waiting condition in question is not
included in the given global PSD. This observation implies that the formalization
could be improved, probably by revising the definition of part of to reflect the
dynamic aspects. This limitation also implies more case studies are required for
further validation.

Fig. 6. Two Sub-PSDs

16 T. Suga and J. Iijima

Future research plans include three stages. The first is to improve the for-
malization of PSDs to reflect the dynamic aspects, for instance, by introducing
behavioral preorders and equivalence such as traces, failures, and (bi)similarity
of finite state machines instead of set-theoretic ones. Furthermore, the proposed
artifact could be validated through further case studies involving real organiza-
tions. Although these two steps have higher priority, the third one is to ultimately
expand the formalization by covering other operations such as set-theoretic inter-
section and complement to complete the algebra of DEMO PSDs. Nevertheless,
the authors are convinced this contribution is an abstract but important step
in evolving the research and development of Way of Supporting in engineering
enterprises.

Acknowledgments. This work was supported in part by Program for Leading Gradu-
ate Schools “Academy for Co-creative Education of Environment and Energy Science”,
MEXT, Japan.

Appendix: Proofs

Proof of Proposition 1. Suppose 〈T, V,W 〉 is an arbitrary member of the fam-
ily of sub-TPS-nets ℘ (〈T ◦, V ◦,W ◦〉). Considering that 〈T ◦, V ◦,W ◦〉 is a PSD,
for any ti and tj in T ◦, if fTname (ti) = fTname (tj) then ti = tj . Now that
T ⊆ T ◦ by Definition 9, for any ti and tj in T ⊆ T ◦, if fTname (ti) = fTname (tj)
then ti = tj .

Proof of Theorem 3. Since 〈TX , VX ,WX〉 and 〈TY , VY ,WY 〉 are members
of the family of sub-PSDs of a given PSD 〈T ◦, V ◦,W ◦〉, we have TX ⊆ T ◦,
TY ⊆ T ◦, VX ⊆ V ◦, VY ⊆ V ◦, WX ⊆ W ◦, and WY ⊆ W ◦ by Definition 9.
Then, because TX ∪ TY ⊆ T ◦, VX ∪ VY ⊆ V ◦, and WX ∪ WY ∈ W ◦ hold,
it is obvious with Definition 14 that 〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 is a sub-
TPS-net of 〈T ◦, V ◦,W ◦〉. Next, for any ((t, i) , t′) in VX ∪ VY , if ((t, i) , t′) is
in VX [resp. VY], t ∈ TX and t′ ∈ TX [resp. t ∈ TY and t′ ∈ TY] holds, hence
t ∈ TX ∪TY and t′ ∈ TX ∪TY . Thus, any ((t, i) , t′) in VX ∪VY satisfies the second
property of Definition 10. Similarly, any ((t, i) , (t′, i′)) in WX ∪ WY satisfies the
second property of Definition 10. Note that the first property of Definition 10
is satisfied by Proposition 1 because 〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 is a TPS-
net. Hence, 〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 is a PSD. Therefore, by Definition 12,
〈TX , VX ,WX〉�〈TY , VY ,WY 〉 is a sub-TPS-net of 〈T ◦, V ◦,W ◦〉 and a PSD, thus
a sub-PSD of the given PSD 〈T ◦, V ◦,W ◦〉.
Proof of Theorem 4. The commutativity and associativity of merge opera-
tion � are obvious from those of set-theoretic union of sets.

Proof of Theorem 5. Since 〈TX , VX ,WX〉 is matched to 〈AX , TX〉 and
〈TY , VY ,WY 〉 is matched to 〈AY , TY 〉, Definition 13 gives TX = TX , TY = TY ,
“∀t, t′ ∈ TX ,(∃a ∈ AX ,fex (t) = a = fin (t′)) ⇐⇒ (∃i ∈ I,((t, i) , t′) ∈ VX)”,
and “∀t, t′ ∈ TY ,(∃a ∈ AY ,fex (t) = a = fin (t′)) ⇐⇒ (∃i ∈ I,((t, i) , t′) ∈ VY)”.

Formal Specification of DEMO Process Model and Its Submodel 17

Thus, TX ∪ TY = TX ∪ TY . It also holds that ∀t, t′ ∈ TX ∪ TY ,(∃a ∈ AX ∪ AY ,
fex (t) = a = fin (t′)) ⇐⇒ (∃i ∈ I,((t, i) , t′) ∈ VX ∪ VY). Therefore, by Def-
inition 13, the PSD of 〈TX , VX ,WX〉 � 〈TY , VY ,WY 〉 is matched to the OCD
〈AX , TX〉∇ 〈AY , TY 〉.

References

1. Dietz, J.L., Hoogervorst, J.A., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., van Kervel, S.J., Mulder, H., Op’t Land,
M., Proper, H.A., Sanz, J., Terlouw, L., Tribolet, J., Verelst, J., Winter, R.: The
discipline of enterprise engineering. Int. J. Organisational Design Eng. 3(1), 86–114
(2013)

2. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg
(2006)

3. Seligmann, P., Wijers, G., Sol, H.: Analyzing the structure of IS methodologies - an
alternative approach. In: Maes, R. (ed.) Proceedings of the First Dutch Conference
on Information Systems, Amersfoort, pp. 1–28 (1989)

4. Suga, T., Iijima, J.: Does ‘Merging DEMO Models’ satisfy the associative law?
- Validation of partial models and merge operation. In: Proceedings of the 7th
International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, Lisbon, vol. 2, pp. 467–478. SCITEPRESS - Science
and Technology Publications (2015)

5. Dietz, J.L.G.: DEMO specification language (version 3.3, November 2015) (2015).
http://www.ee-institute.org/download.php?id=165&type=doc. Accessed 15 Jan
2017

6. Dietz, J.L.G.: The DELTA theory - understanding systems. Technical report TR-
FIT-15-05, Czech Technical University in Prague (2015)

7. Barjis, J.: Automatic business process analysis and simulation based on DEMO.
Enterp. Inf. Syst. 1(4), 365–381 (2007)

8. Fatyani, T., Iijima, J., Park, J.: Transformation of DEMO model into coloured
petri net: Ontology based simulation. In: 6th International Conference on Knowl-
edge Engineering and Ontology Development, KEOD 2014, Italy, pp. 388–396.
SCITEPRESS (Science and Technology Publications, Lda.) (2014)

9. Wang, Y.: Transformation of DEMO models into exchangeable format. Master’s
thesis, Delft University of Technology (2009)

http://www.ee-institute.org/download.php?id=165&type=doc

A DEMO Machine - A Formal Foundation
for Execution of DEMO Models

Marek Skotnica1(B), Steven J.H. van Kervel2, and Robert Pergl1

1 Czech Technical University, Prague, Czech Republic
skotnicam@gmail.com, robert.pergl@fit.cvut.cz

2 Formetis, Boxtel, The Netherlands
steven.van.kervel@formetis.nl

Abstract. The discipline of enterprise engineering and the DEMO
methodology provide enterprise designers with a formal techniques to
design companies where competency, responsibility and authority is
clearly defined. In such companies, process-based anomalies can be
avoided and people tend to cooperate more effectively and contentedly.

These techniques are so far mostly used just for business process mod-
eling consultancy. DEMO-based software systems are needed to adopt
and support these techniques in professional companies. This paper pro-
poses a theoretical computation concept called DEMO Machine that
provides us with formal foundations for a simulation of DEMO models.
We demonstrate these formal foundations on a Volley Club example.

Keywords: DEMO machine · Enterprise engineering · DEMO simula-
tion · DEMO software implementation

1 Introduction

The Enterprise engineering community has been working on formal theories and
methodologies for more than 15 years. The results were found to surpass the
state of the art of business process management (BPM) approaches in terms
of formal correctness, ontological completeness, and anomalies [1]. But, so far
an adoption of these principles in practice is very slow. One of the reasons is
that the largest benefit from these theories is provided to middle-sized or large
companies and these organizations tend to change very slowly. In addition, a
new technology adoption is associated with high risks. Large IT systems with
many complex features are required, as well, usually provided by large companies
such as IBM, Pega, Oracle, or Microsoft. There are no such large DEMO-based
IT systems so far. As argued in the FAR Ontology paper [2], it is not easy
to understand how the DEMO models are simulated. This work builds on van
Kervel’s work [3], simplifies it according to the Occam’s law and enables for
further extensions. It also builds on ForMetis company professional experience
in building DEMO-based systems.

The goal of this paper is to propose a theoretical computation foundations
that are easy to understand (like BPMN) and yet allow to express all the DEMO
c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 18–32, 2017.
DOI: 10.1007/978-3-319-57955-9 2

DEMO Machine 19

aspect models. This is a prerequisite for building DEMO-based IT systems that
could compete with state-of-the art BPM systems (BPMS). For this purpose,
we propose a DEMO Machine – an abstract formalism, which can be used for
DEMO model simulation and DEMO model code implementation.

The paper is organized as follows: In Sect. 2, the research question is sum-
marized. In Sect. 3, the underlying scientific foundations are briefly discussed.
In Sect. 4, formal definitions of DEMO Machine are proposed, investigated, and
represented in a formal notation. In Sect. 5, the proposed theories are demon-
strated on a Volley Club example. In Sect. 6, the current results are summarized
and further research is proposed.

2 Research Question

This paper elaborates on a research question proposed in FAR Ontology paper
Sects. 3.1 and 3.2 [2]. The DEMO Machine is meant as a formal computation
model (similar to the e.g. the Turing Machine). The DEMO Machine needs to
take into account challenges that are induced by the execution level and thus not
addressed in DEMOSL [2]. The research question was stated as: “How should
a DEMO Machine be designed to interpret DEMOSL?”.

3 Theories Used and Related Work

Theories used in this paper were already mentioned in the FAR Ontology
paper [2], therefore we just offer a brief summary of them: Guizzardi’s ontol-
ogy theories [4], the Enterprise Ontology [5], the DEMO methodology [5], van
Kervel’s papers [3,6].

This paper is also influenced by related work in this area, most notably:
Figueira and Aveiro [7], Huysmans [8], Krouwel [9], and Op’t Land [10].

4 DEMO Machine

This section elaborates on the research question proposed in Sect. 2. To investi-
gate characteristics of a software system, it is better to do it on its formal model
rather than on its software implementation. We do take an inspiration from
Turing’s invention called the Turing Machine [11], which was the first universal
computer made in 1936, years before any physical computers existed.

DEMOSL provides specification for the DEMO models of an enterprise. How-
ever, for the simulation of the models there are no definitions provided yet.
Therefore, we define the missing concepts and propose a formal DEMO Machine
that is able to simulate the models. This machine is independent on any software
implementation, and it is only based on the mathematical concepts.

20 M. Skotnica et al.

4.1 DEMO Model Definitions

In this section, essential DEMO model definitions are provided in a form that
is suitable for DEMO Machine simulation. The semantics of these concepts is
aligned with the DEMO theory [5]. DEMO model is an ontological representa-
tion of an enterprise. Demo models are commonly represented by four aspect
diagrams – OCD, PSD, OFD, and AM. Diagrams together express a DEMO
model. The following formalization deals with the DEMO model itself.

Definition 1. Actor Role. An actor role is an ordered tuple:

ActorRole := (Identifier,ActorRoleType) (1)

Identifier – A unique identifier of an actor role.
ActorRoleType ∈ {Elementary, Composite}
An elementary actor role is an atomic amount of authority, responsibility, and
competence. It is a producer in exactly one transaction, and a customer of zero,
one, or more transactions [5]. A composite actor role is a network of transaction
kinds and (elementary) actor roles, of which one does not (want to) know the
details [12].

Definition 2. Transaction Kind. A transaction kind is an ordered tuple:

Transaction := (Identifier, T ransactionKindName,Executor, Initiators)
(2)

The second axiom of the Ψ -theory states that coordination acts are performed
as steps in universal patterns [5]. These patterns, also called transactions, always
involve two actor roles and are aimed at achieving a particular result [5]. These
patterns are formally defined in Sect. 4.3.

Definition 3. Causal Link. A causal link is an ordered tuple:

CausalLink := (SourceTransactionKind, SourceState,

TargetTransactionKind, TargetState,MinCardinality,

MaxCardinality, InitiatorActorRole)
(3)

InitiatorActorRole – An initiator Actor Role to distinguish to which executor
this link applies since a transaction can have multiple initiators.

According to the theory, a causal link is defined as: “a link between a coordination
act and its resulting coordination fact, indicating the fact is result of the act.”
[12]. A Causal link is used in a tree-like structure to define a business process
composed of multiple transactions. For example, when there is a causal link from
T1/pm to T2/rq it means that you can initiate a new T02 instance from a T01
instance that is in state promised or a later state.

DEMO Machine 21

Definition 4. Conditional Link. A conditional link is an ordered tuple:

ConditionalLink := (SourceTransaction, SourceState, TargetTransaction,

TargetState, InitiatorActorRole)
(4)

InitiatorActorRole – An initiator Actor Role to distinguish to which executor
this link applies since a transaction can have multiple initiators.

Conditional link restricts the source transaction state from being reached until
the causal link’s cardinalities are satisfied. For example, there is a causal link
from T1/pm to T2/rq with cardinality 1..1. There is a conditional link from
T02/ac to T01/st. This means that you can perform cAct T01/st only when one
child transaction T02 reached ac.

Definition 5. DEMO Model. A DEMO Model is an ordered tuple:

DEMOModel := (Identifier, T ransactionKinds,ActorKinds,

ConditionalLinks, CausalLinks, Facts,Rules)
(5)

A DEMO Model is a conceptual representation of an enterprise or a sub-
enterprise at a given time frame. Facts and rules definitions are provided in [2].

4.2 DEMO Enterprise Application Definitions

We considered model definitions so far, but once the simulation of a model takes
place, the instances need to be taken into the account because they represent
the day to day operation of an enterprise.

Definition 6. Enterprise Position. A DEMO enterprise position is an
ordered tuple:

EnterprisePosition := (Identifier,ActorRoles) (6)

Identifier – Is and identifier of DEMO Enterprise Position
ActorRoles – Is a finite set of actor roles. An ActorRole can belong to several
Enterprise Positions.

An enterprise position is defined as a coherent set of actor roles. In practice, it
means a principle to group these roles and define responsibilities, competence,
and authorities at a generic level; e.g. sales director, production manager etc.
These are sometimes also called functional roles.

Definition 7. Actor. An actor is an ordered tuple:

Actor := (Identifier, EnterprisePositions) (7)

Identifier – A unique identifier of an actor instance.
EnterprisePositions – A finite set of enterprise positions

22 M. Skotnica et al.

An actor is a person or group of persons (board) that operates in an enterprise
in given enterprise positions.

Definition 8. Transaction. A transaction is an ordered tuple:

Transaction := (DEMOModel, T ransactionKind, ParentTransaction,

InitiatorActor, ExecutorActor, State)
(8)

DEMOModel – A model according which a transaction behaves.
TransactionKind – Is a type of transaction.
ParentTransaction – Is parent transaction. May be empty in case of a root trans-
action.
InitiatorActor – An actor that initiated the transaction.
ExecutorActor – An actor that is responsible for the execution side of the trans-
action. May be empty or changed over time as the execution responsibility may
be delegated.
State – The current transaction state. States are further explained in Sect. 4.3.

A transaction represents an actual situation, in which the transaction kind is
carried out (by people).

Definition 9. DEMO Enterprise Application. A DEMO enterprise appli-
cation is an ordered tuple:

DEMOEnterpriseApplication := (Identifier, PublishedModels,

EnterprisePositions,Actors, T ransactions)
(9)

PublishedModels – Is a finite set of DEMO models.
Identifier – Is an identifier of DEMO Enterprise Application.
EnterprisePositions – A finite set of enterprise positions that actors can partic-
ipate in. Enterprise positions can only contain actor roles defined in Published-
Models.
Actors – Is a finite set of Actors.
Transactions – Is a finite set of Transactions.

A DEMO enterprise application represents an actual enterprise that consists of
DEMO models, actors, and their interactions. A DEMO model is a conceptual-
ization of an enterprise in one given time. A real-world enterprise changes over
time, and therefore it needs to act according to multiple DEMO models, resp.
their versions. For example, a mortgage company creates a contract in 1990
based on certain conditions, and these conditions do still need to apply in 2017
even though conditions for new mortgages are different. A DEMO Enterprise can
also consist of multiple sub-enterprises or departments represented by multiple
DEMO models. This concept is very important for a software system implemen-
tation, it allows aggregation of agenda – work-items from multiple DEMO Model
instances.

DEMO Machine 23

4.3 DEMO Axiom Definitions

There are three DEMO axioms that need to be formalized and performed in
order to calculate an agenda for a given transaction instance. Agenda, and cAct
definitions are provided in [2].

Definition 10. DEMO Axiom is a function that takes an agenda and calcu-
lates a set of cActs:

DEMOAxiom : (Transaction,Agenda) → {cAct} (10)

Transaction Axiom. For the purposes of software simulation, we do formally
define the transaction axiom as a state machine in Fig. 1. The circles are states
(cFacts), and the boxes are allowed actions (cActs). With this state machine, an
implementation of Transaction DEMOAxiom function is straightforward.

We propose also some practical changes that make the transaction axiom suit-
able for building enterprise information systems. We added a possibility to start
a transaction instance without being requested. This supports the real-world
situations where people start to negotiate about a transaction. Documents are
created, but no request has been made, yet. A distinction whether a transaction
starts with a request or initiate or both is done as an extra information on the
causal link in the PSD.

The second deviation from the theory is that we do not support revoke of
all states at all times. This simplification is mostly because of the composition
axiom. For example, when a child transaction is created from the promised state,
therefore you are not able to revoke the promise. Revokes combined with the
composition axiom are quite a challenging topic in the execution and are a
subject to further and mostly empirical research.

Composition Axiom. Composition axiom adds cActs based on the condi-
tional and causal links, so that the transaction instances can form a process. An
implementation of this axiom is out of scope of this paper, and it is a subject
for further research.

Rule Axiom. Rule axiom adds cActs based on the conditional and causal rules
based on the definitions from the FAR Ontology [2].

4.4 DEMO Model Simulation

An Operation of an organisation is the manifestation of its construction in time
[13]. Simulation is the imitation of the operation of a real-world process or system
over time [14]. DEMO model simulation is the imitation of the operation of
a DEMO model for a purpose of validation of the model correctness. DEMO
model execution is a DEMO model simulation for the purpose of supporting an
operation of an enterprise IT system.

24 M. Skotnica et al.

Initiator ExecutorInitiator Executor

Initiator ExecutorInitiator Executor Initiator Executor

Initiated

Request Requested

Decline

Promise

Declined

Promised

StateStated

AcceptedAccept

Reject Rejected

Request
Revoked

Refuse
Revoke
Request

Allow
Revoke
Request

Revoke
Request

Requested

Declined

Initiated

Promise
Revoked

Revoke
Promise

Requested

Promised

Revoke
Accept

Allow
Revoke
Promise

Refuse
Revoke
Promise

Refuse
Revoke
Accept

Allow
Revoke
Accept

Accept
Revoked

Accepted

Stated

State
Revoked

Revoke
State

Allow
Revoke
State

Refuse
Revoke
State

Promised

Stated

Rejected

Initiate

Fig. 1. Transaction axiom state machine

Definition 11. A DEMO Machine is an ordered tuple:

DEMOMachine := (DEMOEnterpriseApplication,

ExternalFactImplementations, TransactionInstanceLinking,

InputInstructions,OutputMessages)
(11)

DEMOEnterpriseApplication – A DEMO enterprise application.
TransactionInstanceLinking – Ternary relation that represents connections
between transaction instances in the outside world.
ExternalFactImplementations – Outside world implementations of functions that
calculate external facts.
InputInstructions – A set of instructions that the machine needs to process.
OutputMessages – Results produced by the machine that represent facts about a
behaviour of an enterprise.

The DEMO Machine is receiving instructions on the input and producing
messages on the output.

The list of allowed instructions is:

– GetActorAgenda(Actor) – Writes an Agenda for a specified Actor into
OutputMessages.

– PerformCAct(cAct) – Performs a cAct and puts a new Agenda for the
actor instance (defined in cAct) into OutputMessages. Performing an empty
cAct causes a recalculation of the model instance.

DEMO Machine 25

The Algorithm 1 shows a pseudo-code of how the agenda is calculated for a
transaction instance.

Algorithm 1. Agenda calculation
1: function CalculateAgenda(transactionInstance, actorPerformCActs)
2: #Adds actors perform cActs
3: agenda ←actorPerformCActs
4: #Adds allowed cActs based on Transaction axiom
5: agenda.add(TransactionAxiom(agenda))
6: #Adds allowed and restricted cActs based on Composition axiom
7: agenda.add(CompositionAxiom(agenda))
8: #Adds perform and restricted cActs based on Rule axiom
9: agenda.add(RuleAxiom(agenda))

10: #Find perform cActs that are allowed and not restricted.
11: if agenda has cAct c to perform then
12: #Performs cActs selected to be performed
13: PerformCAct(transactionInstance, c)
14: #Transaction states have been changed so recalculation of agenda is

needed.
15: return CalculateAgenda(transactionInstance, nil)
16: else
17: #No cActs to be performed found, agenda reached a stable state.
18: return agenda

The presented algorithm is just a high-level abstract schema. A detailed
description of the DEMO Machine calculation is outside of the scope of this
paper.

5 Proof of Concept – Volley Club

In this section, a proof-of-concept DEMO Machine is demonstrated on a Volley
club model from the book “The Essence of the Organization” by Jan Dietz [15].
The model is well specified in the book, so we do not elaborate on it much, and
we rather point out the differences in our approach and the proposed way of
simulation.

To verify the formal definitions, we created a proof-of-concept software imple-
mentation of the presented DEMO Machine. In this section we use a general
object-oriented pseudo-code inspired by C# to implement the simulation accord-
ing to the definitions provided above.

5.1 DEMO Model

The organization construction diagram (OCD) in Fig. 2 contains two transac-
tions describing the situation where a customer comes into the club, requests a
membership, pays for it, and he becomes a member.

26 M. Skotnica et al.

Fig. 2. OCD model volley club [15]

The Process Diagram (PSD) describes how are the two transactions related.
The membership payment is requested after a membership start is promised.
There is also a conditional link which specifies that the membership execution
phase can’t be done until the membership payment is accepted. Cardinality is
not mentioned here, but we expect only one payment per membership. Later
payments are not part of the model.

The Action Model (AM) here consists of four rules, and all of them are for
the membership starter (A1). The logic of working with facts defined in the OFD
is also included in the rules, but DEMO materials do not elaborate on how they
should be dealt with. The precise definition, how to execute this AM rules, is
also not provided, but for a communication between human stakeholders, this
notation is sufficient.

1. Action Rule for A1(1) – When the membership start (T1) is requested, in
case the person who is requesting is eligible, then it is automatically promised,
otherwise declined. Eligibility means that the person is old enough, starting
day of the membership is the first day of some month and maximum number
of members was not reached.

2. Action Rule for A1(2) – When the membership start (T1) is promised,
then automatically request the membership payment.

3. Action Rule for A1(3) – When the membership payment (T2) is stated,
while the paid amount for the membership has been paid, then accept the
membership payment (T2), otherwise reject (T2).

4. Action Rule for A1(4) – When the membership start (T1) is promised
while the membership payment (T2) is accepted, then execute the member-
ship start (T1) and state the membership start (T2).

5.2 DEMO Machine Model

Here is how the same Volley club model looks like when described by the concepts
introduced in this paper.

DEMO Machine 27

OCD and PSD remain the same. They are represented as:

AspirantMember = ("Aspirant member", Composite);

MembershipStarter = ("Membership starter", Elementary);

Payer = ("Payer", Composite);

T1 = ("T01","Membership Start", MembershipStarter, {AspirantMember})

T2 = ("T02","Membership Payment", Payer, {MembershipStarter})

VolleyClubModel = ("Volley Club", {T1, T2}, {AspirantMember,

MembershipStarter, Payer}, ...)

Information about memberships or person is likely to be stored in an external
database and there is no use in duplicating them inside the DEMO Machine, as
explained in [2].

The action model implementation differs from the DEMO, so let’s go through
the Volley club business rules and see how they are expressed in the DEMO
Machine.

Action Rule for A1(1) is represented by an external fact and a causal rule.
The external fact contains all the business conditions that are needed in order to
evaluate, whether a person is eligible for a membership. The LogicalProposition
is there merely to suggest what logic should be used to evaluate such fact. The
real logic then lies in the outside world implementation, and it calls the database.
A benefit of this approach is that we do not need to change the model when this
business rule is modified. A new implementation version is simply plugged in,
and the system goes on.

The causal rule T1RequestedCausalRule is there to implement the action
part (state transition) of the AM rule. It says: “When an instance of trans-
action1 is in state Requested and fact IsMemberElegibleFact is evaluated as
True, then add a cAct with SettlementType=Perform and Intention=Promise
to the transaction instance agenda. If the fact is evaluated as False, then add a
cAct with SettlementType=Perform and Intention=Decline to the transaction
instance agenda.” This explanation may seem to be more complicated than the
previous action rule, but it covers much more scenarios. Adding of an enforcing
cAct is used instead of a direct state transition, because the transition may be
forbidden by some conditional rule. The state transition also needs to be allowed
by the transaction or the composition axiom. In case of multiple rules enforcing
different state transitions, a priority should be assigned to the rules.

IsMemberElegibleFact = ExternalFact("Is member eligible for application

?",

LogicalProposition = "Person.Age >= Minimal_Required_Age",

VolleyClubCalculationEngineId)

T1RequestedCausalRule = CausalRule(T1, Requested, IsMemberElegibleFact,

cAct(T1, T1.Current, T1.Current.Executor, Promise, Perform),

cAct(T1, T1.Current, T1.Current.Executor, Decline, Perform))

Action Rule for A1(2) – is represented by a causal rule and an external
fact. The external fact will be always True in this case since there are no business
conditions. The causal rule is expressed bellow and it says: “If the transaction
instance of type T1 is in state Promised and the TrueExternalFact is evaluated

28 M. Skotnica et al.

as True, then add a cAct that (i) performs creation of a new instance of T2 that
will be a child of the current T1 transaction instance and (ii) will be in state
Created to the current transaction instance agenda”.

T1_Promised_CausalRule = (T1, Promised, TrueExternalFact, cAct(T1, T1.

Current, T1.Current.Executor, Create(T2, 1), Perform), null)

An interesting problem is that the transaction instance T1 can get into state
Promised multiple times. Does it mean that it should create a new instance
of T2 each time it gets there? And does it depend on some external system?
In this model, the creation of unwanted transactions is controlled by the 1..1
cardinality defined in the PSD. However, for generic purposes, we introduced a
possibility for external fact implementation to return a number of transactions
to be created together with the fact result. This is the way, how we can control
how many transactions are created.

Another problem is in determining the executor actor instance for a created
transaction instance of T2. It is clear in this particular model that the mem-
bership payer will be the same person as an aspirant member. However, it is
not formally defined. We do delegate this problem to the outside world imple-
mentation. Once it is notified about the created instance of T2, it has all the
information it needs to assign the executor. More empirical experience shows,
whether this is sufficient, or a more sophisticated solution needs to be designed.

This proof of concept implementation does not contain the composition
axiom, and therefore the rules to create child transactions are not implemented,
as well.

Action Rule for A1(3) – is represented by a causal rule and an exter-
nal fact. The external fact is a business rule that determines whether the paid
amount was enough. The causal rule then performs accept or reject.

IsPaidAmountEnoughFact = ExternalFact("Is paid amount for membership

enough?",

LogicalProposition = "this.Membership.AmountToPay <= this.Membership.

Payment.AmountPaid", VolleyClubCalculationEngineId)

T2StatedCausalRule = CausalRule(T2, Requested, IsPaidAmountEnoughFact,

cAct(T1, T2.Current, T2.Current.Executor, Accept, Perform),

cAct(T2, T2.Current, T2.Current.Executor, Reject, Perform))

Action Rule for A1(4) – is represented by a conditional rule and a com-
munication fact. We only want the execution phase to be allowed when the child
transaction of T1 instance is in state Allowed. We capture such fact using a com-
munication fact that says: “Are all current transaction instance children with
type T2 accepted?”. If there is no child transaction with type T2, the fact is
evaluated as Undefined.

The conditional rule says: “If there is a cAct with Intention=State and Set-
tlementType=Allow within the current transaction instance agenda and the
fact IsMembershipPaidFact is not evaluated as true, then a cAct with Inten-
tion=State and SettlementType=Restrict is added to the current transaction
agenda.” Simply put, the transaction instance state Stated can be only reached
when the fact is True.

DEMO Machine 29

IsMembershipPaidFact = CommunicationFact("Is membership paid?",

CommunicationFactExpression = "this.children<T02>.all(t => t.state ==

accepted)", VolleyClubCalculationEngineId)

T2StatedCausalRule = ConditionalRule(T1, IsMembershipPaidFact, State)

5.3 Volley Club Outside World Implementation

The outside world consists of the implementation of external facts, transaction
relation provider, and state change receiver. It can be implemented in any pro-
gramming language, as long as it provides values required in the definitions. In
our proof of concept implementation, we created a simple implementation of
such system that accessed a database and returned relevant values. However, a
detailed description of such implementation is not relevant for purposes of this
paper.

5.4 Step by Step Execution

In this section, we will provide detailed description of what happens in the
execution of Volley club model during the happy-flow scenario.

At first, a Volley club enterprise application is created, and an implementa-
tion of the outside world is attached. The Activity Log shows all the changes
in the running enterprise application, and we present all steps of the simulation
bellow.

Step 1 – We create enterprise positions and attach them to actor roles. Then we
assign actors to enterprise positions. Marek is going to be a Customer, which is
an enterprise position with actor roles Aspirant member and Payer. Elisabeth is
going to be an Employee – the Membership starter since she works in the Volley
club.

Step 2 – Marek would like to be a member of Volley club, so he initiates a new
transaction 1 instance and selects its executor to be Elisabeth. He is prepared
to do a request of the membership, but he needs to fill out the starting day.
He fills today and performs the request. Because there is nothing to restrict
Marek’s request, the transaction moves to state Requested. New Membership
object is created, and it stores the data Marek entered. In state T1 Requested,
a causal rule is defined and therefore evaluated. Marek is 27 years old, and
that is enough to be a member of Volley club. The causal rule adds enforcing
cAct to the agenda, and it moves the transaction to state Promised. In the
Promised state, there is a conditional rule that restricts the State from being
performed before the membership is paid. The communication fact is evaluated
as Undefined, because there is no accepted child T2. No interaction was required
from Elisabeth.

New transaction T01 was created with name=T01.1.

T01.1:Request:Allow

Initiator of T01.1 performed Request.

30 M. Skotnica et al.

T01.1:Request:Allow,T01.1:Request:Perform

Fact "Is member eligible for application?" was evaluated as True.

T01.1:Promise:Allow,T01.1:Decline:Allow,T01.1:RevokeRequest:Allow,T01.1:

Promise:Perform

Fact "Is membership paid?" was evaluated as Undefined.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T01.1:State:Restrict

Step 3 – Elisabeth received a request from Marek, and she would like to deliver
him the membership. However, she needs to ask for a payment first, and therefore
she initiates a new transaction 2. After the transaction 2 was initiated, the
conditional rule was evaluated again. Now, the result of communication is not
Undefined but False. This is because the T2 exists.

New transaction T02 was created with name=T02.2.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:

State:Restrict

Step 4 – Elisabeth calculated a membership fee for Marek, and she requested
a membership payment. The communication fact is still False.

Initiator of T02.2 performed Request.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Request:Allow,T01.1:

State:Restrict,T02.2:Request:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:

Decline:Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict

Step 5 – Marek promises to pay for the membership. Before he states the
payment, he needs to fill the amount to pay based on the requested amount
created by Elisabeth. He fills 30 Euro and states the payment. When transaction
2 is stated, a causal rule that validates if the paid amount is valid is activated.
The sum of money matches and transaction 2 is accepted. Communication fact
“Is membership paid?” is finally evaluated as True.

Executor of T02.2 performed Promise.

Fact"Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Promise:Allow,T02.2:

Decline:Allow,T02.2:RevokeRequest:Allow,T01.1:State:Restrict,T02.2:

Promise:Perform

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict

Executor of T02.2 performed State.

Fact "Is membership paid?" was evaluated as False.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:State:Allow,T02.2:

RevokePromise:Allow,T01.1:State:Restrict,T02.2:State:Perform

Fact "Is paid amount for membership enough?" was evaluated as True.

Fact "Is membership paid?" was evaluated as False.

DEMO Machine 31

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:Accept:Allow,T02.2:

Reject:Allow,T02.2:RevokeState:Allow,T02.2:Accept:Perform,T01.1:State

:Restrict

Fact "Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow

Step 6 – Elisabeth is allowed to state the membership, and she does so. The
communication fact “Is membership paid?” was evaluated once more because
transaction 2 could have changed in the meantime.

Executor of T01.1 performed State.

Fact"Is membership paid?" was evaluated as True.

T01.1:State:Allow,T01.1:RevokePromise:Allow,T02.2:RevokeAccept:Allow,T01

.1:State:Perform

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:

RevokeAccept:Allow

Step 7 – Marek accepts the membership creation.

Initiator of T01.1 performed Accept.

T01.1:Accept:Allow,T01.1:Reject:Allow,T01.1:RevokeState:Allow,T02.2:

RevokeAccept:Allow,T01.1:Accept:Perform

T01.1:RevokeAccept:Allow,T02.2:RevokeAccept:Allow

Step 8 - Marek is a proud member of Volley club. We can see that his record
was created in the database. The TransactionId is there to associate the DEMO
engine transaction instance identifier with the membership record. The relation
could be also stored inside the DEMO engine as transaction instance’s external
identifier.

6 Conclusions and Further Research

In this paper, we proposed a theoretical computation model called the DEMO
Machine, and we demonstrated its capability to simulate DEMO models on a
Volley club example. We strive to contribute to developing model-driven sys-
tems based on DEMO models. However, there are still many topics for further
research. Apart from the specific topics mentioned in the text, we would like to
stress the evolvability of DEMO models and its consequences, alignment with
existing business process management systems, and adoption of DEMO-based
systems for the end users, so they are easy to use and comprehend.

Acknowledgement. This research has been supported by CTU SGS grant No.
SGS16/120/OHK3/1T/18.

References

1. Nuffel, D., Mulder, H., Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS
-2009. LNBIP, vol. 34, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01915-9 9

http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-642-01915-9_9

32 M. Skotnica et al.

2. Skotnica, M., Kervel, S.J.H., Pergl, R.: Towards the ontological foundations for
the software executable DEMO action and fact models. In: Aveiro, D., Pergl, R.,
Gouveia, D. (eds.) EEWC 2016. LNBIP, vol. 252, pp. 151–165. Springer, Cham
(2016). doi:10.1007/978-3-319-39567-8 10

3. Van Kervel, S.J.H.: Ontology driven enterprise information systems engineering.
TU Delft, Delft University of Technology (2012)

4. Guizzardi, G.: Ontological foundations for structural conceptual models, vol. 015.
University of Twente, Enschede (2005)

5. Dietz, J.L.G.: Enterprise Ontology Theory and Methodology. Springer, Heidelberg
(2006)

6. Van Kervel, S., Dietz, J., Hintzen, J., Van Meeuwen, T., Zijlstra, B.: Enterprise
ontology driven software engineering. In: Proceedings of the 7th International Con-
ference on Software Paradigm Trends, ICSOFT 2012, pp. 205–210 (2012).

7. Figueira, C., Aveiro, D.: A new action rule syntax for DEmo MOdels based auto-
matic worKflow procEss geneRation (DEMOBAKER). In: Aveiro, D., Tribolet,
J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 46–60. Springer, Cham
(2014). doi:10.1007/978-3-319-06505-2 4

8. Huysmans, P., Oorts, G., Bruyn, P., Mannaert, H., Verelst, J.: Positioning the
normalized systems theory in a design theory framework. In: Shishkov, B. (ed.)
BMSD 2012. LNBIP, vol. 142, pp. 43–63. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37478-4 3

9. Krouwel, M.R., Op ’t Land, M.: Combining DEMO and normalized systems for
developing agile enterprise information systems. In: Albani, A., Dietz, J.L.G.,
Verelst, J. (eds.) EEWC 2011. LNBIP, vol. 79, pp. 31–45. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21058-7 3

10. Op’t Land, M.: Exploring normalized systems potential for dutch MoD’s Agility
(2011). Accessed 25 April 2014

11. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proc. London Math. Soc. s2–42(1), 230–265 (1937)

12. Dietz, J.L.: The Essence of Organization - an Introduction to Enterprise Engineer-
ing. Sapio bv (2012)

13. Jan, D., Jan, H.: Theories in Enterprise Engineering Memorandum - TAO
14. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-

tion, 3rd edn. Prentice Hall, Upper Saddle River (2000)
15. Dietz, J.L.G.: Enterprise ontology - understanding the essence of organizational

operation. In: Chen, C.S., Filipe, J., Seruca, I., Cordeiro, J. (eds.) Enterprise Infor-
mation Systems VII, pp. 19–30. Springer, Dordrecht (2006)

http://dx.doi.org/10.1007/978-3-319-39567-8_10
http://dx.doi.org/10.1007/978-3-319-06505-2_4
http://dx.doi.org/10.1007/978-3-642-37478-4_3
http://dx.doi.org/10.1007/978-3-642-37478-4_3
http://dx.doi.org/10.1007/978-3-642-21058-7_3

Standards and Laws

Adding Quality of Information
to the Ontological Model of an Enterprise

Ron Deen1,4(B), Johan Mijs2,4, and Martin Op ’T Land3,4

1 Ilionx, Hondiuslaan 40, 3528 AB Utrecht, The Netherlands
rdeen@ilionx.com

2 Cultuurconnect, Priemstraat 51, 1000 Brussel, Belgium
johan.mijs@cultuurconnect.be

3 Capgemini Netherlands, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
Martin.OptLand@capgemini.com

4 Antwerp Management School, Sint-Jacobsmarkt 9-13, 2000 Antwerp, Belgium

Abstract. Critical to the success of an enterprise is to not only remem-
ber and share information, but also to make sure it meets the required
quality. We developed a method for adding information quality require-
ments to the ontological DEMO model of an enterprise, by first defining
information products, second determine relevant quality characteristics
from the ISO/IEC 25012:2008 Data Quality Model for Software prod-
uct Quality Requirements and Evaluation standard, and third add these
quality characteristics to the ontological model [1]. As a benefit we found
that it not only offers a systematic way to determine the needed qual-
ity of information to support the business organization, it also reveals
a way to model this need on an ontological level through the creation,
remembering and recalling of new information and by the use of this new
information in the action rules of new or existing actor roles. Further
research is required to ascertain this is a good starting point for elicit-
ing software requirements to support responsibilities regarding quality of
information.

Keywords: Enterprise ontology · Quality of information · ISO/IEC
25012:2008 · Data quality

1 Introduction

Enterprises are increasingly dependent on information systems to support the
delivery of services and products to their customers [17]. In order for informa-
tion systems to offer effective support in the process of information delivery,
their software requirements should be aligned with the information need of the
business organization. In literature a lot of different approaches can be found
about how to design and engineer information systems, and how to elicit require-
ments for such systems. We are proponents of approaches that first model the
business requirements (requirements regarding the services and products that

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 35–49, 2017.
DOI: 10.1007/978-3-319-57955-9 3

36 R. Deen et al.

are delivered to customers), before modeling the information need of the busi-
ness organization and designing the information systems that fulfill that need.
The Design and Engineering Methodology for Organizations or DEMO [6] is a
methodology that enables the modeling of the business organization of an enter-
prise and its information need in a coherent way. We believe this is the right
starting point for requirements analysis and system modeling for a supporting
information system.

We have studied several other approaches, and agree with Van Lamsweerde
[12] in his preface that some books on the subject mainly consider the require-
ments engineering process and discuss general principles, guidelines and docu-
mentation formats, while other books focus on software design. Whitten and
Bentley [20] explain traditional modeling approaches like structured analysis
and information engineering, and also the Unified Modeling Language (UML),
which is a more modern object oriented approach. Sommerville [18] discusses
the requirements engineering process, as well as system modeling and exclu-
sively uses UML as a modeling notation. All these approaches are focused on
software design, and are completely without concepts to model the business
organization that will be using the software system. The approach of Van Lam-
sweerde is better in our view, in the sense that he starts from a Goal orientation,
which enables the modeling of the goals of the business organization. His method
eventually drills down from goals to requirements for a supporting software sys-
tem. This makes it possible to trace back which goals have led to which system
functionality.

Although DEMO allows for the modeling of the information need of the
business organization, currently it lacks a proper treatment of the quality of
the needed information. It refers to non functional requirements in the Generic
System Development Process (GSDP), equalling non functional requirements
with the constructional requirements that are guiding the constructional design
of a system [6]. However, how such requirements are added to a constructional
design remains unclear. When considering quality of information requirements
specifically, ISO/IEC 25012:2008 lists 15 data quality characteristics which can
be applied to data and information [7].

Quality of information is never an end in itself. It must always support the
business requirements of an enterprise. We propose a method that starts from
the essential model of the enterprise and has the following steps: 1. Define the
information products from the essential model of the (or part of the) enterprise. 2.
Determine the relevant information quality characteristics based on the business
requirements of the enterprise. 3. Model quality of information in the ontology
of the B and I-organization of the enterprise. Further research is required to
ascertain that this more complete or enriched ontological model allows for the
elicitation of software requirements that better take information quality into
account.

The remainder of this paper is structured as follows. In Sect. 2 we describe
our research approach and problem statement. In Sect. 3 we describe the method
we created in more detail. In Sect. 4 we show how, by using this method, quality

Adding Quality of Information to the Ontological Model of an Enterprise 37

of information requirements can be added to the essential model of an enterprise.
We finally demonstrate and evaluate the practical relevance of our method in the
real life case of a Unified Library System for Flemish public libraries in Sect. 5.
We end with the conclusions of our research in Sect. 6 and do some suggestions
for further research.

2 Research Approach

2.1 Problem Statement

Enterprises are goal oriented cooperatives to be implemented by people and means
[14]. The business organization of an enterprise is responsible for the business func-
tion, which means it is responsible for delivering the services and products to cus-
tomers. The requirements that need to be taken into account while designing the
business function we will call business requirements. While executing its business
function, the business organization depends on information delivered by the infor-
mation organization. Poor quality of information leads to customer dissatisfaction,
increased operational cost, less effective decision making, a reduced ability to make
and execute strategy and, more subtle, poor information quality hurts employee
morale, breeds organizational mistrust, and makes it more difficult to align the
enterprise [17]. In order for information systems to offer effective support in this
process of information delivery, their software requirements should be aligned with
the information need of the business.

The Design and Engineering Methodology for Organizations or DEMO [4]
claims to offer a coherent, comprehensive, consistent, and concise method for
modeling organizations. The distinctive property of organizations is that the
active elements are human beings in their role of social individual. DEMO models
every organization in three distinct aspect organizations: a business, information,
and documental organization. The business organization produces the goods and
services to the environment. The information organization supports the business
organization with information services and the documental organization sup-
ports the information organization with documental services. Applying DEMO
leads to a so called ontological model which is free from implementation choices.
With implementation we understand that technological means like information
technology, machines, or even humans according to Dietz in [4], are assigned to
transactions and actor roles. Dietz defines the essential model of an enterprise
as the ontological model of the business organization, including the specification
of its information need [5].

Currently DEMO theory lacks a proper treatment of quality characteristics,
although we found a reference to nonfunctional requirements in the Generic
System Development Process (GSDP) which is described in [6]. The GSDP is
a general framework for understanding the process of design, where an object
system is designed (and further developed) to be used by another (the using)
system. Two types of design are part of the GSDP. The first is functional design,
the second constructional design, which is supported by constructional require-
ments, which we will call non functional requirements in this text (Fig. 1).

38 R. Deen et al.

Fig. 1. Generic system development process

Although nonfunctional requirements are mentioned in GSDP, it remains
unclear how they fit into the constructional design of a system. Since the high-
est level constructional model is the ontological model, it seems logical to first
investigate the impact of nonfunctional requirements on the ontological model
of the object system.

In literature many taxonomies of nonfunctional requirements can be found.
An overview of classifications of nonfunctional requirements for system analysis
and design is given by Adams who introduces a taxonomy of 27 nonfunctional
requirements in 4 categories: design, viability, sustainability and adaptation [2].
Van Lamsweerde [12] classifies nonfunctional requirements into quality of service
(QoS), compliance, architecture constraints and development constraints. Op
’T Land and Proper further subclassify quality of service for the three DEMO
aspect organizations into quality of business (QoB), quality of information (QoI)
and quality of data (QoD) and position them in the Enterprise Engineering
Framework (EEF), which is inspired by xAF and GSDP [15]. From the previous
discussion we conclude that business requirements can be split into functional
business requirements and nonfunctional or quality of business (QoB) require-
ments. Functional business requirements are about what services and products
are offered to customers. Nonfunctional or quality of business requirements are
about how services and products are offered to the customers, they specify the
need for a certain quality to make the business function useful.

In Fig. 2 we have visualized the scope of our research project. The yellow
shaded area is our starting point. First, it contains the function perspective of
the B-organization, which consists of the business content (the products or ser-
vices themselves, e.g. the home-delivery of a pizza) and the quality of business
(e.g. home-delivery within half an hour). Although literature often positions
quality of service as non-functional, in EEF it is positioned in the function per-
spective, because of its black-box observability. Second, it contains the essential
model (the ontological construction perspective of the B-organization and the
information content of the Function perspective of the I-organization). Note that
choices made for implementing the B-organization can also lead to information
requirements for the design of the I-organization (single yellow square), but this
was out of scope of our research project.

Adding Quality of Information to the Ontological Model of an Enterprise 39

Fig. 2. Positioning our research project (pink section) in EEF

The pink shaded area is the subject of our research. First, it includes the
function perspective of the I-organization, because we want to find functional
and information quality requirements. Second, it includes the ontological con-
struction perspective of the B-organization as well as that of the I-organization,
because we want to add the functional and quality requirements that are found
to the design of the ontologies of the B and I-organization. The Document-
organization, or D-organization, is mainly out of scope, but we did include an
example of a D-actor role and a D-transaction in the section Artefact demon-
stration and evaluation.

To summarize the above in a Problem statement : When you want to use
DEMO to create an essential model of (part of) the enterprise as the starting
point for eliciting requirements for an information system, it is not clear how to
take quality of information requirements into account.

This leads us to the following Research question: How do we systematically
add information quality requirements to the essential model of an enterprise,
given that its functional and nonfunctional business requirements are known?

2.2 Proposed Method: Design Science

The research method that seemed most appropriate for our purposes was design
science. Recker states that the fundamental principle of design science research
is that knowledge and understanding of a design problem and its solution are
acquired in the building and application of an artefact [16]. This is exactly what
we wanted to do. By actually designing a method for adding information quality
requirements to the ontological model of an enterprise and by trying out this
method, we tried to gain more insight in how information quality fits in the
methodological concepts of DEMO. By carrying out our research in the described
manner we adhered to the three core criteria for design science mentioned by
Recker:

40 R. Deen et al.

1. The artefact is novel.
To our knowledge there is no prior research about how quality of information
can be added to the essential DEMO model of an enterprise.

2. The artefact is useful (makes a positive difference compared to existing work).
Alternative methods of requirements engineering that we studied, either focus
on the engineering process, or focus on software design, without introducing
concepts to model the business organization that will use the information
system. Our method explicitly uses requirements of the business organization
to find the relevant nonfunctional requirements and adds these requirements
to the essential model. We believe this makes its easier to make the tran-
sition to lower level construction models that ultimately could lead to the
implementation of an information system.

3. The usefulness of the artefact is proved.
We have tested the practical usefulness of the artefact in a real-life case.

Recker provides a short introduction to design science using the work of
Hevner ([10]), connecting environment, research and a knowledge base through
a relevance, design and rigor cycle. Further exploration of the literature on design
science led us to Johannesson and Perjons who developed a method framework
to create an overview of a design science project: the design science canvas [9].
The canvas helped us to get an structured and concise visual overview of our
research project.

3 Artefact Requirements

Our research artefact is a method that is intended to be used by enterprises who
are looking for a structured way to improve the quality of the information that
is used to support their business organization. To be able to use the method
effectively, the following conditions have to be met for the part of the enterprise
that is within scope:

1. The essential DEMO model has been created.
2. The functional and nonfunctional business requirements are defined.

To let enterprises benefit optimally from our method, first of all it should con-
sider a complete list of information quality characteristics. We took the quality
characteristics from ISO/IEC 25012:2008 as a starting point [7]. This standard
lists 15 quality characteristics which can be applied to data. The standard makes
a difference between inherent data quality as the degree to which quality charac-
teristics of data have the intrinsic potential to satisfy stated and implied needs
when data is used under specified conditions. System dependent data quality is
defined as the degree to which data quality is reached and preserved within a
computer system when data is used under specified conditions. In our method, we
have only used the inherent quality characteristics, leaving out the system (and
implementation) dependent characteristics Availability, Portability and Recov-
erability.

Adding Quality of Information to the Ontological Model of an Enterprise 41

Second, to let our method be hands-on and scientifically sound we positioned
it within the Total Data Quality Management (TDQM) method of Wang [19].
Wang applies Total Quality Management from the field of product manufactur-
ing to information products. He defines a cycle to continuously Define, Measure,
Analyze and Improve information quality, based on Demings Plan, Do, Check,
Act cycle. Our approach fits in the Define phase of TDQM, but doesnt touch
the other steps.

Third, the method is based on supporting the business requirements of the
enterprise, which means in short that the need for information to have a certain
quality characteristic depends on the requirements the business has.

Fourth, the underlying aim of the method is to make it possible to design
implementation construction models that take business requirements and the
required information quality into account.

4 Artefact

In order to demonstrate our method we have made use of the well known DEMO
reference case Pizzeria [4]. DEMO consists of four integrated models for mod-
eling the business organization. The most concise model is the Organization
Construction Model (Fig. 3).

This model shows the actor roles of the business organization, the production
acts they perform and the transactions they initiate to put other actor roles to
work. It also shows on a high level what is the functional information need of

Fig. 3. Organization construction diagram of the B-organization of pizzeria

42 R. Deen et al.

each actor role, by means of information links to so-called transaction banks
containing information.

Next to the Construction Model, there are three other models. The Process
Model shows how actors coordinate the process of delivering a good or service
to the environment. The Fact Model shows the information that is relevant for
the operation of the enterprise. The most comprehensive model is the Action
Model. It specifies all of the above, but adds the rules that actor roles use to
decide how they will act on tasks they are requested to perform (their agenda).
For instance, when an actor role receives a request to produce some goods, he
will use an action rule to decide if he will promise or decline the request. In the
following paragraphs the steps of our method are performed, to end up with a
more elaborate ontological model, taking quality of information into account.

4.1 Define Information Products from the Essential Model of the
(or Part of the) Enterprise

The first step of our method consists of defining the information products of
the Pizzeria. Wang defines information products as information conceptualized
in terms of its functionalities for information consumers. In DEMO the infor-
mation consumer is the B-actor role. The specific need of the B-actor role on
a specific moment is best expressed in the Action Model, in which each Action
Rule specification expresses how the B-actor role should react on a specific agen-
dum. How the B-actor will react not only depends on the rule itself, but also on
the information that is used to calculate the outcome of the rule. Therefore we
use the following definition of information product: a piece of information that
is part of an Action Rule specification and that is used by the B-actor role to
decide about his reaction on an agendum. We don’t make any demands about
the granularity of the information products in Action Rule specifications.

So, to find all information products, it is sufficient to create the Action
Model of the ontological model of our scope of interest. How to do this is elabo-
rately described in [4]. To visualize the information products and the way they
can be retrieved, we have used Construction Diagrams to show all relevant I-
transactions. As a convention information products are I-transactions that are
initiated by a B-actor role.

Although we have defined the complete set of information products for the
Pizzeria case in the master thesis [1], we will show one example here. The specific
part we will look at is the support of the B-actor role baker during execution of
transaction O-T02 bake order. Figure 4 shows the relevant information products
in a Construction Diagram, namely Share order and Derive order baking instruc-
tions. One can imagine that to be able to bake the ordered pizzas, information
about the order and information about how to bake the pizzas is required.

Adding Quality of Information to the Ontological Model of an Enterprise 43

Fig. 4. I-organization supporting the baker in execution phase of O-T02 bake order

4.2 Determine the Relevant Quality of Information Characteristics
Based on the Business Requirements of the Enterprise

To be able to apply quality characteristics sensibly we first need to gather the
business requirements that apply to our scope of interest. Second, we need to pri-
oritize the information products we have found in step 1, based on their relevance
for the business requirements. Third, we need to determine which quality charac-
teristics of the relevant information products should be improved, by questioning
information producers (the I-organization) and the information consumers (the
B-organization) about the importance of each quality characteristic, about the
perceived and expected level of quality in a characteristic.

In our example we will use the following business requirement: Our pizzas
have a unique taste and texture. A big part of the customer base specifically
orders the pizzas of Pizzeria because of the unique taste and texture. For man-
agement it is very important that these unique properties cannot be copied by
other pizzerias. For baking the pizzas, the baker uses the information product
Derive order baking instructions. The management of Pizzeria wants to enforce
that unauthorized personnel cannot access this information. Based on this busi-
ness requirement we decide we need quality characteristic Confidentiality of the
Data Quality Model standard ISO/IEC 25012. We adapted the definitions of the
standard for a better match with DEMO terminology and because we wanted to
explicitly use the term information product in the definition [1]. The ISO/IEC
25012 definition of Confidentiality is: The degree to which data has attributes
that ensure that it is only accessible and interpretable by authorized users in a
specific context of use. We changed the definition into: The degree to which the
facts of an information product are shared only with actors with the authority to
perform a specific actor role.

44 R. Deen et al.

4.3 Model Information Quality Characteristics in the Ontology of
the B and I-Organization of the Enterprise

In the last step of the method we will let the management of Pizzeria make
decisions about how to add the selected quality of information requirements to
the essential model of the Pizzeria. We don’t know of any clearcut way to do
this. The solution depends on the specific situation and the combined expertise
of the modeling team.

The first moment that an employee receives authorization to perform some
responsibility within the Pizzeria, is the moment he is hired by the Pizzeria
and signs his employee contract. In this example we assume that the employee
contract sufficiently describes all responsibilities of the employee in the Pizzeria.
The part of the Construction Model of Pizzeria that shows the B-transactions
and responsibilities needed to hire new personnel for Pizzeria is shown in Fig. 5
(N.B. this B-organization is in principle generic for the implementing of any
enterprise with parties & people).

Fig. 5. Hiring personnel for Pizzeria

The model contains a B-actor role Man-
ager hiring responsible for hiring new per-
sonnel. If new employees need to be hired
in a certain Period, the Manager hiring
will initiate one or more transactions Start
employee contract. Before an employee con-
tract can be started, the Employee con-
tract starter needs a selected candidate to
sign the contract. It is the responsibility of
the Candidate selector to select a candi-
date. To be able to do this, the Candidate
selector first requests the Candidate sup-
plier to offer one or more candidates for the
job. The Pizzeria uses an external party for
this. Next, all candidates will be assessed
by the Assessor. Based on the assessment
the Candidate selector chooses a candidate.
The last step of candidate selection is the
checking of the references of the candidate
(to make sure he or she is not part of the

Italian mob that has a firm grip on the city) by an external party.
The management of the Pizzeria acknowledges that to enforce confidentiality

of internally used information products, it must make the access to them depend
on the authorization of an employee. Therefore from now on, each employee will
receive a unique employee identity and specific employee authorization, based on
the signed employee contract, not only to perform his business responsibilities,
but also to have access to the information that is needed to fulfill them. The
information products needed by the Employee contract starter are:

1. Share public identity information (source: selected candidate)
2. Share personal info (source: selected candidate)

Adding Quality of Information to the Ontological Model of an Enterprise 45

3. Share selected candidate
4. Share employee information
5. Share job description

The Employee contract starter will first request public identity information
from the selected candidate to be able to identify him as a specific person outside
the enterprise (Share public identity information). The selected candidate must
also provide some form of proof (e.g. a passport). With the provided public
identity the necessary personal information of the selected candidate is requested
(Share personal information). With the public identity the Employee contract
starter will ask the I-organization to check if the selected candidate really doesn’t
already have an employee identity (Share employee information). If all is well,
the Employee contract starter will create a new employee contract based on the
job description of the job the new employee will fulfill. He will then request the
selected candidate to sign the employee contract. After this is done the Employee
contract starter creates a new employee identity, which is linked to the public
identity of the new employee.

After the new contract is started, the Employee contract starter will request
the I-organization to remember the newly created facts (Remember start
employee contract facts). These facts consist of:

1. The employee identity
2. The public identity of the employee
3. The personal facts of the employee
4. The contract facts of the employee
5. The B-actor roles of the employee

From the last group of facts the necessary access to information products
can be derived. The moment the baker tries to access an information product,
the responsible I-actor role Deriver order baking instructions first checks the
authorization of the baker by making use of the generic information product
Share employee authorization facts. See Fig. 6.

Since this is generic, it is probably best to model this once in a separate
generic diagram, to make sure the requirement to check the authorization of B-
actor roles accessing information is not forgotten. Note that this confidentiality
requirement can also be found in the top section of the Action Model, in every
action rule specification, in the assess part, in the justice condition. This is the

Fig. 6. I-organization supporting the baker extended with Sharing employee autho-
rization facts

46 R. Deen et al.

assessment whether or not the performer of the coordination act is identified
and authorized to be the performer and whether or not the addressee of the
coordination act is identified and authorized to be the addressee.

Conclusion. We conclude that in order to improve the confidentiality of the
information product Derive order baking instructions:

1. Information about the identity and authorization of employees must be
remembered in the I-organization.

2. Business processes must be in place that lead to the start, change and end of
employee contracts on which the authorization of the employees are based.

3. The authorization of each B-actor role trying to access a confidential informa-
tion product must first be checked by the I-actor role responsible for sharing
the information product.

5 Artefact Demonstration and Evaluation

To demonstrate and evaluate our method, we applied its three steps to the real-
life case of gathering requirements for a library information system for all public
libraries in Flanders. We defined the information products that were created in
the Subscription process, detected where they were used in the Library organi-
zation and focused on the use of these information products in the Start loan
and Establish library policy processes. Interviews with different libraries led to a
number of business requirements of which we used two in our thesis to determine
relevant information quality characteristics. These business requirements were:

1. The library communicates effectively with its subscribers.
2. The library has a good insight in the geographical distribution of subscribers.

The second requirement proved a real concern during the interviews with some
of the larger libraries who were trying to develop a special policy for subscribers
coming from outside of the library city. The first requirement is important,
among others, because with the introduction of a cashless library, a lot of sub-
scribers postpone their payment for loans. When the amount to pay is higher
than 10 euros, they receive an invoice from the library. Last year, 5% of the
invoices returned because the address was incorrect. Effective communication in
this case means invoices are sent to the right address. The number of addresses
that are out of date therefore needs to be minimized. So, the nonfunctional busi-
ness requirement of effective communication (QoB) leads to the nonfunctional
information requirement (QoI) that subscriber addresses are current. This can
be achieved in more than one way. We found four strategies to deal with cur-
rentness of address information. The first strategy requests the current address
from the external source every time it is needed. The second strategy does it
periodically. The third strategy only does it when the information is considered
to be too old. The fourth strategy makes use of an update service that only

Adding Quality of Information to the Ontological Model of an Enterprise 47

Fig. 7. Personal information is requested from the external source when the remem-
bered facts are too old

sends information when there is an update of a certain address. As an example
we will here only show the Construction Diagram of strategy 3 (Fig. 7).

In this strategy the way to deal with the need for current address information
is to let the age of the subscriber address determine whether we use the informa-
tion or refresh it by requesting the most current information from the external
source. To achieve this we first need to define a new business transaction Estab-
lish maximum age subscriber information that may be periodically performed
by Library Management. Second, we need to define a new I-actor role (Deriver
subscriber address), who needs to check if the specific subscriber address that is
requested by the B-organization has been received too long ago.

So, to find out if the subscriber address can be recalled internally or needs to
be requested from the external source, the Deriver subscriber address will first
request the maximum age of personal information, and second the last receive
date of personal information (note this is a datalogical transaction!). By using
this data the Deriver subscriber address can calculate if what needs to be done.

5.1 Conclusion

We conclude that to be able to improve currentness of Derive subscriber address
for strategy 3 we have introduced:

1. a B-transaction to establish the maximum age of personal information
2. a D-transaction and corresponding D-actor role to provide the last receive

date of personal information.
3. a new information product Share maximum age personal information and the

corresponding I-actor role.

48 R. Deen et al.

4. the I-actor role Deriver subscriber address to derive the subscriber address.
5. new action rules for the Deriver subscriber address to decide if the internally

stored personal information is too old.

The benefits of applying our method in this real-life case were:

1. We were able to compare different strategies for achieving currentness of
address information and make the tradeoff between the level of currentness
and the costs of technical solutions to realize it.

2. The need for an I-actor role with the responsibility to derive a subscriber
address with the selected level of currentness, led to specific requirements for
the supporting library information system.

3. We were able to trace back implementation decisions regarding quality of
information to business requirements.

6 Main Finding and Further Research

During to the development of our method, we came to the following main finding:

1. Applying our method leads to an ontological model that takes quality of
information requirements into account, and is therefore more complete and
more integrated with the I-organization.

We have shown a few examples of how the quality of information requirements
led to the creation, remembering and recalling of new information, and of the
use of this new information in the action rules of new or existing actor roles.
In the Pizzeria case to take confidentiality into account we needed to model the
ontology of hiring new personnel to be able to let I-actor roles check for the right
authorization of B-actor roles requesting certain information.

In the real life case of the new library information system the need for effective
communication (QoB) and current address information (QoI) led in strategy
3 to new information products, a new B-transaction, a new I-transaction and
corresponding I-actor role, and a new D-transaction and corresponding D-actor
role.

Further research could investigate if useful software requirements can be
extracted from the enriched ontological models and in how far quality of infor-
mation is automatically taken into account. Especially the new I-actor roles we
found seem to be candidates for automation in a supporting information system.
Other possibilities for further research are:

1. A further analysis of concepts like need, product and service. Though we
defined some concepts necessary for our research, more investigation of terms
like information product is needed.

2. Metrics of quality of information. We did not discuss the development of
proper metrics for the quality characteristics of a particular information prod-
uct. The quality characteristics of the ISO/IEC 25012 standard also have
associated measurement methods and quality measure elements in the ISO

Adding Quality of Information to the Ontological Model of an Enterprise 49

standard Measurement of Data for Software product Quality Requirements
and Evaluation [8]. It would be interesting to investigate how to use this ISO
standard to extend our method to also fit in the Measure phase of TDQM.

3. Metrics of quality of business. Since this is input for quality of information
(cycle time, capacity of production/ coordination acts, etc.)

References

1. Deen, R.J.P., Mijs, J.: Adding quality of information requirements to the ontolog-
ical model of an enterprise. Master thesis, Antwerp Management School (2016)

2. Adams, K.: Non-functional Requirements in Systems Analysis and Design.
Springer, Cham (2015)

3. De Jong, J.: A Method for Enterprise Ontology based Design of Enterprise Infor-
mation Systems. Dissertation, TU Delft (2013)

4. Dietz, J.: Enterprise Ontology. Theory and Methodology. Springer, Heidelberg
(2006)

5. Dietz, J. (alias Perinforma, A.P.C.): The Essence of Organization. An Introduction
to Enterprise Engineering, Sapio Enterprise Engineering (2013)

6. Dietz, J.: Architecture: Building Strategy into Design. Academic Service, The
Hague (2008)

7. ISO/IEC 25012:2008: Software Engineering Software Product Quality Require-
ments and Evaluation (SQuaRE) Data Quality Model

8. ISO/IEC 25024:2015: Systems and Software Engineering Systems and Software
Quality Requirements and Evaluation (SQuaRE) Measurement of Data Quality

9. Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Cham
(2014)

10. Hevner, A.R.: Design science in information system research. MIS Q. 28, 75–105
(2004)

11. Krouwel, M., Op ’T Land, M.: Using enterprise ontology as a basis for requirements
for cross-organizationally usable applications. In: MCIS (2012)

12. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

13. Op ’T Land, M.: DEMO as core of Informed Governance at Rijkswaterstaat. In:
EEWC (2013)

14. Op ’T Land, M., et al.: Enterprise Architecture: Creating Value by Informed Gov-
ernance. Springer, Heidelberg (2009)

15. Op ’T Land, M., Proper, E.: Impact of principles on enterprise engineering. In:
ECIS (2007)

16. Recker, J.: Scientific Research in Information Systems. A Beginners Guide.
Springer, Heidelberg (2013)

17. Redman, T.: The impact of poor data quality on the typical enterprise. Commun.
ACM 41(2), 79–82 (1998)

18. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Boston (2011)
19. Wang, R.: A product perspective on total data quality management. Commun.

ACM 41(2), 58–65 (1998)
20. Whitten, J.L., Bentley, L.D.: Systems Analysis and Design Methods, 7th edn.

McGraw-Hill, Inc., New York (2007)

DEMO/PSI Theory and the Law of the Land

Duarte Gouveia(✉) and David Aveiro(✉)

Madeira Interactive Technologies Institute, University of Madeira, Caminho da Penteada,
9020-105 Funchal, Portugal

duarte.gouveia@m-iti.org, daveiro@uma.pt

Abstract. This work analyzes two sources of law and elicit its underlying transac‐
tions. Then tries to model them using DEMO/PSI theory and analyzes the assump‐
tions mismatches between law and DEMO/PSI. Design Engineering and Modeling
for Organizations (DEMO) is a general-purpose theory and method to model inter‐
actions in society (between individuals and/or organizations) that uses a communica‐
tion-centric approach. The Performance in Social Interactions (PSI) theory is a
component of DEMO that explains a “universal transaction pattern” used to model
those social interactions. The laws used as case studies are Portuguese contract law
included in the Civil Code (from 1966); and the Common European Sales Law
(CESL) from the European Union (EU), which is currently in final proposal stage.
Through the analysis and discussion of these case studies, we suggest improvements
to the DEMO/PSI theory based on the constraints expressed in those laws.

Keywords: DEMO · PSI theory · Common European Sales Law · Contract law

1 Introduction

Societies evolved to promote the “Rule of Law” over despotic government based on
coercion from the strongest. The law sets rules, defines rights, duties and due procedures
to promote trust, fairness and justice for all. But laws change over space and time. Each
country has its own “Law of the Land”, many times incompatible with what is estab‐
lished in the neighboring country, as things are valued differently.

This work uses two sources of law:

• Portuguese Contract Law is a section of Civil Code (Decreto-Lei 47344/66, 25/
November/1966 [2]) initially approved 51 years ago, but currently in its 69th revision
[3]. We will address a section of this law (35 articles) that handles general conditions
for contracts, content of contracts and time aspects of the process.

• Common European Sales Law (CESL) [4] is not yet an active law as it is still in the
approval process by the European Union (EU) institutions. When the process started,
in 2001, it aimed at harmonizing the European Contract Law. The current version is
restricted to sales law and has been approved by the European Commission and
Council in 2011 and has also been approved with recommendations by the European
Parliament in a first reading in 2014. Although it is not yet an active law, from an
academic perspective, the existing text provides relevant information that brings

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 50–65, 2017.
DOI: 10.1007/978-3-319-57955-9_4

novel and useful knowledge regarding the transaction pattern. We will analyze the
full extent of the law (186 articles).
CESL aims at being used as a second layer law that might be explicitly adopted by
sellers and buyers on trades that cross-national borders, instead of the existing laws
of both states.

Current law establishes that traders must fulfill the law of the land of the consumers
[4]. This is a challenge for small and medium enterprises (SME) in EU with 28 different
sets of laws to comply with. These constraints add transaction costs, that for SME mean
a bigger share of company’s turnover.

According to European Union (EU), only 10% of traders in EU export to other
countries of the EU [4], and even those, only to a small number of countries. Among
consumers in the EU, although 55% of consumers made online purchases, only 18% of
consumers made purchases from a business in a different EU member state [6]. This
raises concerns in the EU on the “differences in contract law between the EU member
states that hinder traders and consumers who want to engage in cross-border trade within
the internal market” [4].

Having a common law and a better model for sales might enable improved process
awareness, flow, security and reduce transaction costs across borders.

Our hypothesis was: Can DEMO/PSI model the business processes established in
the two sources of law identified above?

This paper is organized as follows. Section 2 reviews succinctly the DEMO/PSI
theory [7]. Section 3 presents the research method used in this work. Sections 4 and 5
describe each of the two laws as case studies. Section 6 concludes summarizing the
major contributions from this work.

2 Literature Review

The foundational theory of Organizational Engineering field is the Design and Engi‐
neering Methodology for Organizations (DEMO) [7]. A core idea of DEMO is that to
model business interactions we should use a communication-centric approach, instead
of the data-centric approach which is the dominant approach in the design of information
systems.

The communication-centric approach has its roots in the Action Workflow Loop [8]
presented in Fig. 1, being “general and universal”, models the core pattern of all
successful interactions.

Fig. 1. Action Workflow Loop [8]

DEMO/PSI Theory and the Law of the Land 51

According to Denning and Medina-Mora [9], “Incomplete workflows invariantly
cause breakdowns, and if they persist, they give rise to complaints and bad feelings that
interfere with the ultimate purpose of work – to satisfy the customer.”

DEMO extends this core loop through Performance in Social Interactions Theory
(PSI) [7, 10]. It describes the world through a model based on transactions, each
producing a single result, initiated by a set of actor roles and executed by one particular
actor role. This result is the simplified pattern presented in Figs. 4 and 5 which uses a
sequence of coordination acts surrounding a production (execute) act.

As depicted in Figs. 2, 3 and 4, the transaction starts with a request (rq) by the initiator
which includes the desired outcome in full detail. If the executor can fulfill that request,
he will promise (pm) a delivery and then produce/execute the expected result and state
(st) its completion to the initiator. Assuming that the delivered result is as requested, the
initiator will finish the transaction by accepting (ac) the result, otherwise it can be
rejected (rj). Therefore, this pattern assigns different acts to the initiator and the executor
actor roles. These core acts can be split into three phases, as can be seen in Fig. 3: order,
execution and result [11].

Fig. 2. Simplified pattern for a PSI transaction [7]

Fig. 3. Order, Execution and Result phases [11]

Fig. 4. DEMO 3.4 complete transaction pattern [12]

52 D. Gouveia and D. Aveiro

This simplified description becomes more complex, as can be seen in Fig. 4, as
additional revoke acts are needed and so are added to each phase [10]:

• The initiator can change his mind and revoke the request (rv rq) at any time.
• The executor can decline (dc) the initial request if he does not wish, is not able, or

can’t deliver in the conditions requested by the initiator.
• The executor can revoke his previous promise act (rv pm).
• The executor can revoke his previous state act (rv st).
• The initiator may reject (rj) the stated (st) result.
• The initiator may revoke a previous accept (rv ac).

Revoking acts contradict previously established expectations. They may be initiated
by any of parties and the counterparty may allow the revoke or refuse it. Please refer to
the literature [7] for further information.

3 Research Design

To make research design options explicit, we adhered to the extension of this pattern
presented in [13] and depicted the research process in Fig. 5.

Fig. 5. Research Design options using [13] pattern

This work is an applied research work (A1) that starts from a research question,
presented in Sect. 1, and two case studies (B2) in a bottom-up general orientation.

From the Case Studies were analyzed using grounded theory method (C8) to detect
more general concepts and patterns. Those results were also modeled using DEMO to
develop model artifacts using Design Science [14] (B6). Both results were observed
(C7) and compared (C8) with a critical approach (A4) and extracts its qualitative infor‐
mation (B5), which are the findings for this work. This work uses an inductive logic
(A2) to evaluate (A3) DEMO/PSI assumptions and tools, confronting real world law
examples with the current existing theoretical paradigm [15].

DEMO/PSI Theory and the Law of the Land 53

4 Portuguese Civil Law

4.1 Definitions in Portuguese Contract Law

What is stated by the Law
Portuguese Civil Law [2] defines an “obligation” (art. 397) as a lawful bound that a

person has with another, to perform a certain act. Obligations can be enforced by the
states through coercion, with one exception. A “natural obligation” (art. 402, 404) is an
act, founded in a duty to justice, that is not mandatory by law.

A “contract” is an agreement between the parties, which is a special case of obliga‐
tions. A “unilateral promise” is a “promise contract” where only one of the parties has
established an obligation. A “reciprocal contract” (or “bilateral contract”) is a “contract”
where both parties have established obligations to one another.

In a “promise contract” parties create obligations to establish a future “contract” with
certain terms (art. 410 .1), as they are not presently able to fulfil them, typically because
depend on acts from third parties. The promise contracts are common on sales that
require registry, certificates, licences or other requirements determined by law (art 410 .
3). Promise contracts can be transmitted to the heirs, in case of death of the initial parties
(art. 412).

Modeling it with DEMO/PSI
DEMO/PSI assumes participants always act freely in transactions [7]. The literature

does not reference how to force an act by coercion by a court decision, neither its effects,
which might be complex and hard to fully predict.

Obligations, as defined by Portuguese law, match the result phase of the transaction
(state-accept), as depicted in Fig. 2. The agreement established by contract creates those
obligations. The contract corresponds to the order phase of DEMO/PSI transaction
(request-promise), as depicted in Fig. 2.

DEMO/PSI assumes that each transaction produces a single transaction result. The
law does not force that constraint. On the contrary it assumes the opposite by defining
reciprocal contracts. The contract may include several obligations from one party to the
other. Modelling each obligation as a distinct transaction ignores the fact that they are
approved together (order phase).

The Portuguese law clearly distinguishes “unilateral promise” from “reciprocal
contract”. This not only contradicts the single result assumption, but also the assumption
that establishes fixed roles, assigning to the initiator actor role the acts of requesting and
accepting, and to the executor actor role the acts of promising, executing and stating.
This topic has been discussed in the literature [16–19].

This conceptual mismatch is clarified by distinguishing the contract (order phase),
from the obligations (result phase). DEMO/PSI transactions bundle both phases into a
single transaction. We believe a good improvement to DEMO/PSI theory would be to
split the two phases. The contract is the mutual agreement that participants reach after
discussing the expected results. Contracts establish intents and promises for the future
- one or more obligations - not its concrete execution.

Each obligation should be a transaction with one executor, one beneficiary and one
result. When executed, stated and accepted, the transaction result fact is enacted.

54 D. Gouveia and D. Aveiro

Natural obligations are an interesting case, as they do not emerge from a contract.
A natural obligation is optional, and lives on the discretionary decision scope of its
executor. This special case provides additional reasons to the splitting of DEMO/PSI
transactions into the order phase and the result phase.

4.2 What Is the Content of a Contract?

What is stated by the Law
Parties can freely agree on contracts (art. 398 .1, 405 .1), and establish as many terms

as they wish, even including rules from other contracts (art. 405 .2).
The contract might not include money, but must be something that the receiver values

and is worthy of legal protection (art. 398 .2). The contract contents (art. 398 .1) can be
a positive (things to do) or a negative (things to abstain from doing).

The content of the contract can be undetermined when agreed upon, because the
precise terms might be trusted to any of the parties or to a third party, using fairness as
ruling principle (art. 400 .1). In case of disagreement, the decision is up to a court of law
to clarify the terms of the contract (art. 400 .2).

The transfer of ownership is determined by contract, except in the exceptions deter‐
mined by law (art 408 .1). In general, ownership is transferred when the thing is acquired
by the seller (art 408 .2). In case of undetermined things, the ownership is transferred
when the thing is determined and both parties acknowledge it. In case of natural fruits,
component parts or parts of a whole, ownership is only transferred, by default, at the
moment of separation (art. 408 .2). In case of transfer of ownership for goods that require
registry, like properties, registry date is the reference (art 409 .2).

The seller might reserve the ownership rights until total or partial fulfilment of the
obligations established by the counterparty or until any established event (art 409 .1).

Modeling it with DEMO/PSI
Portuguese law allows the free establishment of contracts. The interdependencies

that parties may agree upon in contracts may be difficult to model in DEMO/PSI.
Among the things that the receiver might agree upon is the “negative content”, that

is, the absence of performing a certain act, or not to do it during a certain period. In
general, facts in DEMO/PSI are positive facts. This is a novel issue that must be noticed
by the academic community.

A negative act is a recognition that an act did not occur. Unless an act is public, only
one of the parties can do that recognition.

The Portuguese law allows contracts where the content is not fully determined. For
example, the next year fruits from apple trees in an orchard might be sold without
knowing quantity, quality or price by which they will be sold. They will need information
acts to establish that additional information, which may be subject to disagreement and
dispute. This contradicts current DEMO/PSI assumptions where all details of a trans‐
action are fully established when a request is performed.

The Portuguese law introduces a conceptual distinction between the actual transfer
of the goods and the ownership of the goods. The location of the goods does not deter‐
mine ownership. Ownership is an inter-social concept that the law regulates. Some

DEMO/PSI Theory and the Law of the Land 55

cultures don’t even have the concept of ownership. Things might just belong to everyone
or to nature, or to the country. This topic is further developed in Sect. 5.3.

4.3 Who Is Who in Contracts

What is stated by the Law
If, by successive contracts, different people gain rights over the same thing that are

incompatible, it takes precedence the oldest contract (art. 407).
In “reciprocal contracts”, any of the parties may delegate his position to a third party,

as long as counterparty agrees on that transfer, either at start or during the execution of
the contract (art 424 .1). If agreed at start-up it only becomes active with the acknowledge
of the delegation (art 424 .2).

A “preference pact” is an agreement where a party assumes the obligation of giving
preference to someone in the transfer of ownership of a thing (art. 414). Preference pacts
are not able to be transferable to others, either in life or death (art. 420). The law estab‐
lishes the duty to inform of the intention to sell, the default time to decide on that pref‐
erence, the right to bundle things that significantly increase value if sold together, how
to act when several entities have the right to preference, and the situations that cancel
the right to preference (art. 416 to art. 423).

Modeling it with DEMO/PSI
DEMO/PSI establishes that the assignment of persons to transaction actor roles is

performed by someone with the authority and responsibility. A person in an assigned
position cannot freely delegate its role assignment to a third person, but this law allows
it if there is agreement by the counterparty in the transaction.

It is also not sufficiently clear in DEMO/PSI the distinction between persons and
legal persons. Not all persons are legal persons, due to under age, incapacity or illness
issues. But organizations might be collective legal persons. This is a topic that requires
additional clarification in DEMO/PSI theory.

This law says that delegation become active only after the counterparty as acknowl‐
edges the information act. The assumption that the mere delivery (through e-mail, phys‐
ical delivery or digital notification on a channel or device) is enough to acknowledge is
clearly disputable and a reason for substantial disagreement and abuse in the social
world.

The preference pact rule elicits the need of question acts or timed events with default
answer. A counterparty decides on a right they have. We detected a general pattern for
enacting rights from what occurs in preference pacts, which is different from the execu‐
tion of obligations. Obligations are expected to occur according to the PSI pattern, in
particular the result phase as stated in Sect. 4.1. Enacting rights act are optional. When
they occur, they change the inter-social context by mere notification, not by agreement.
The enacting of the right might be contested by the other party, leading to the need to
an agreement or an external ruling. Enacting rights enable or disable other acts as
designed in each business process.

56 D. Gouveia and D. Aveiro

4.4 How Contracts Are Executed?

What is stated by the Law
A contract can establish initial conditions, suspension conditions, conditional terms,

and until conditions, with validity time periods (art. 401 .2).
The impossibility of performing an act makes the contract null – as if it never existed

(art. 401 .1), but only when that constraint is from the object, not from the person with
an obligation (art. 401 .3).

The contract should be fulfilled by parties as initially agreed upon. The termination
of the contract or any change to it requires mutual consent (art. 406 1.).

Modeling it with DEMO/PSI
DEMO/PSI transaction pattern defines initial conditions and revoking conditions

through agreement. Suspension conditions hold the execution of the contract, that is, the
obligations not yet performed, but do not destroy the initial agreement. Suspension
conditions can be enacted by an information act, that might be disputed by the counter‐
party. These conditions can have time periods that enact changes in the inter-social state.
These requirements are not currently handled by DEMO/PSI.

Conditional terms and Until conditions might terminate the contract. We might argue
that these terms can be modelled in DEMO action rules, but action rules only enable or
prevent existing acts to be performed, and do not allow new coordination acts to take
place. _These terms follow the right pattern previously elicited. Further discussion on
this topic on Sect. 5.5.

The Portuguese law establishes that the contracts must be fulfilled as initially agreed
upon. DEMO/PSI is more flexible and allows the initiator to accept the production result
through a state act, even if it does not comply with the initial agreement. We believe the
Portuguese law should accommodate this option, as it enlarges the options to the bene‐
ficiary. DEMO/PSI also states that even if no state result is produced, the initiator should
be able to accept. This however is not supported by the current PSI transaction pattern,
as defined in [12]. Section 5.1 will provide additional clarification on the discussed topics
in this section.

4.5 When – Temporal Aspects of Contracts

What is stated by the Law
A contract can establish future dates for the fulfilment of its terms (art. 399). If a

contract that does not establish milestones for obligations by the parties, each party can
refuse to fulfil its duties until the counterparty fulfils theirs, or do it simultaneously (art.
428 .1), or provide additional guarantees (art. 428 .2). If there are changes in the circum‐
stances that diminish guarantees by a party, the other party may refuse to fulfil its acts
(art. 429, art. 430). This situation may be reverted if a party delegate their rights and
obligations to a third party (art. 431).

If there was no time limit established initially, the person in with an obligation may
request the setting of a time limit, after which the obligation ends (art. 411).

Modeling it with DEMO/PSI

DEMO/PSI Theory and the Law of the Land 57

The contract may include timely defined events that change the inter-social world.
DEMO/PSI describes a discrete event system where at each moment in time a set of
events can take place in unpredictable sequence. Each event might induce a change in
the social-world state and therefore on the possible events that become available.

DEMO/PSI does not allows events that change the inter-social world without the
deliberate act of parties. That is clearly a limitation of current theory. If terms have been
established in the contract based on the passage of time, when due time has passed, the
inter-social world should change accordingly. It should be assumed to be implicit acts
that was previously agreed upon in the contract.

Portuguese law has a unclear and confusing formulation regarding the “changes in
the circumstances that diminish guarantees by a party”, and its consequences, as these
circumstances are subjective by each party.

5 European Common Sales Law (Proposal)

5.1 Reaching a Contract – the “Contract Resolution”

What is stated by the Law
The ECSL aims at regulating sales contracts, including digital content and related

service. Contracts are agreements that give rise to obligations between parties (art. 2),
as they can freely agree on the terms of the contract (art. 1). The ECSL distinguishes
the cases where the buyer is a consumer or a trader (art. 23).

Communication between the parties is performed with “notices” (art. 10). A notice
becomes effective when it reaches the addressee, unless it provides for a delay effect. A
notice has no effect if a revocation of it reaches the addressee before the notice.

The sales process starts with an “offer” presented by the seller (art. 31), which is the
most common case, or by the buyer (art. 38). Offers from the seller promoting its prod‐
ucts and services can be done to the public (or to some segment) or directly (to a partic‐
ular person or organization). If the offer is public, it must be requested by the buyer and
accepted by the seller. If the offer is directed to a buyer, then it can be just explicitly
accepted (art. 34, 35) or rejected by default (art. 30, 33).

The offer might have a time limit for acceptance (art. 32, 35, 36, 39). The ECSL
establishes that in late acceptances (art. 37) it is up to the seller to explicitly clarify its
option to confirm it or not.

A buyer might notify a seller with a modified acceptance (art. 38). According to the
ECSL (art. 38), a modified acceptance should be considered as a rejection of the initial
offer, and the creation of a new offer. That new offer is initiated by the buyer, with the
terms of the original offer, changed by the modified terms. The seller can then decide if
he accepts the offer or not. If the seller responds with a modified acceptance, then again
it should be considered as a rejection of the offer and the creation of a new one, this time
initiated by the seller with the new bundle of terms.

The offer may be revoked by the party that proposed it at any time (art. 32). However,
if the counterparty has already “sent an acceptance” or in cases of “acceptance by
conduct”, the contract may be assumed to be established (art. 32, 35). The ECSL intro‐
duces ambiguity with these ruling.

58 D. Gouveia and D. Aveiro

The ECSL distinguishes the terms of the contract that were subject to previous
discussion or individual negotiation (art. 7) and those that were proposed by the seller
and accepted by the buyer without individual negotiation of the terms. A term is said to
be individually negotiation if the buyer has the ability to influence the content of the
terms. When the buyer is a consumer, the burden of proof on individually negotiated
terms is on the seller, even if the terms of the contract were written by a third party.
When the buyer is a trader the burden of proof on individually negotiated, terms is on
the party making that claim.

When a contract is established it is said to be concluded (art. 30, 35), but not in a
very clear way, in the authors opinion. Contract conclusion should not to be confused
with contract termination (art. 8) that are handled at Sect. 5.5.

Modeling it with DEMO/PSI
Just like the Portuguese law, the ECSL defines a contract as something that can have

with multiple fulfilments by multiple parties.
The ECSL clearly states that communication between parties is made through noti‐

fications and that each notification only becomes effective when acknowledge by the
counterparty, except in a delay effect is included in the message. As current electronic
communications are so fast, we believe there should be a mandatory quarantine period
so that the sender can detect a mistake and correct it. It could also be a beneficial situation
for the receiver as revoking acts because of cancelations can be a costly process and
prone to errors.

The ECSL states that the business transaction starts with an offer. This is aligned
with ontological constructions for services [20], but not with DEMO/PSI [7] that
assumes it to be initiated by the transaction beneficiary with a request.

ECSL describes the negotiation phase in a turn based interaction with detailed
instructions on the importance of individually discussed terms. The discussion of the
terms between parties is not yet a common practice in electronic commerce, but it is an
idea that is creating its path in law scholars [21]. The ECSL tries to reduce the inter‐
vention of courts of law (or equivalent arbitrary decisions) to decide on things parts can
freely agree upon. Portuguese law call for action from courts more often.

DEMO/PSI does not prescribe how the negotiation takes place. ECSL assumes a
rigid turn based process. In the author’s opinion the actual negotiation process isn’t that
important, as long it is clear what terms are included in the agreement, which terms were
individually discussed, that all important issues are covered and that a clear agreement
was reached and acknowledged.

5.2 Withdrawal from Contract and Defects in Consent

What is stated by the Law
For contracts established at distance or off-premises between traders and consumers,

the ECSL allows the consumer to withdraw from a contract within 14 days after it was
concluded, without any need to justify that position (art. 40). There are exceptions to
this right (art. 40), as it cannot be applied to food and beverages or others liable to
deteriorate or expire rapidly like newspapers or magazines, goods or digital content that

DEMO/PSI Theory and the Law of the Land 59

were made to the customer specification or clearly personalized or that has started to be
provided without a tangible medium, or other sealed goods.

The withdrawal is established by simple notification and does not require agreement
by the seller. The seller must acknowledge such a withdrawal without a delay. (art. 41).
The ECSL establishes a complex rule for determining when those 14 days start to count
(art. 42).

In the case of withdrawal, buyer and seller are no longer obliged to the terms of the
contract, but still have new obligations to fulfil to the counterparty (art. 17, 44, 45)
regarding restitution, as presented in Sect. 5.5.

The ECSL also distinguishes several forms of defects in consent, namely: mistakes;
fraud; threats and unfair exploitation:

• Mistake of fact or law (art. 48), when: (a) a party would not have concluded the contract
or would have done so only on fundamentally different contract terms; (b) the other party
knew or could be expected to have known this; (c) the other party caused the mistake or
did the same mistake, or failed to inform the counterparty as expected based on pre-
contractual information duties.

• Fraud (art. 49), if the other party has induced the conclusion of the contract by frau‐
dulent misrepresentation, whether by words or conduct, or fraudulent non-disclosure
of any information which good faith and fair dealing required that party to disclose,
especially if the other party had special expertise or information.

• Threats (art. 50), if the other party has induced the conclusion of the contract by the
threat of wrongful, imminent and serious harm or of a wrongful act.

• Unfair exploitation (art. 51), if at the time of the conclusion of the contract a party
was in economic distress, had urgent needs, was improvident, ignorant or inexper‐
ienced and the other party knew or could be expected to have known this and, in the
light of the circumstances and purpose of the contract, exploited the first party’s
situation by taking an excessive benefit or unfair advantage.

An avoidance based on the previous terms, is established through notice to the coun‐
terparty (art. 52). The avoiding party has a period to avoid after becoming aware of the
relevant circumstances or becomes capable of acting freely. That period is six months
in case of mistake and one year in case of fraud, threats and unfair exploitation. If the
party who has the right to avoid the contract, has become aware of the circumstances
that might lead to avoid, but confirms the contract, either expressly or impliedly, it may
no longer avoid the contract (art. 53).

The effects of avoidance (art. 54) can be limited to only certain contract terms. A
contract which may be avoided is valid until avoided but, once avoided, is retrospectively
invalid from the beginning. Rules of restitution, as presented in Sect. 5.5, may be applied
to an avoided contract. A party may have the right for damages for loss, provided that
the other party knew or could be expected to have known of the relevant circumstances
(art. 55).

Modeling it with DEMO/PSI
Withdrawal is a novel coordination act that doesn’t exist in DEMO/PSI. It is an

unilateral act (right) with a limited time bound to be enacted, that requires acknowledge
by the counterparty and has the same effect as a allowed revoke request in DEMO/PSI.

60 D. Gouveia and D. Aveiro

Defects in consent is a very interesting part of the ECSL. DEMO/PSI assumes that
in each coordination act there is always a claim to truth, to justice and to sincerity,
otherwise the coordination act does not take place. The ECSL does not assume any of
those constraints, but allows an act to be avoided for extended periods.

We could argue that the defects in consent can be modelled by existing revoke request
or revoke promise acts in DEMO/PSI. The main difference is that on revoke acts, they
only take effect with agreement by the counterparty, while in ECSL they just have to be
acknowledge to become effective, even if later on contested by the counterparty. It is
the contestation that requires agreement, not the avoidance. The avoidance takes imme‐
diate effects.

5.3 Obligations and Rights

What is stated by the Law
The ECSL distinguishes: (a) the transfer of the goods or fulfilment of services; (b)

the transfer of ownership; (c) the acceptance of goods (or services) after checking
conformity; (d) the transfer of risk; (e) the installation of goods; (f) accepting the instal‐
lation of goods (art. 91, 140–146).

The seller has responsibilities regarding the carriage of the goods (art. 96). In the
case of transfer of digital content, the initiative of transferring of the content might be
of the buyer (art. 97).

In the case of delivery of physical goods the ECSL establishes the terms in which
the delivery will occur, namely place (art. 93), method (art. 94) and time (art. 95). A
delivery to be performed earlier than expected is subject to rules. Delivery of goods
might require installation, maintenance and repair obligations to be performed by the
seller (or a third party he delegates it to). If not agreed otherwise, it is expected that the
delivery takes place within 30 days (art. 15) from the date of conclusion of the contract.
The ECSL treats differently lack of conformity in the goods and in the installation of
the goods. The contract might also require maintenance obligations. If the performance
of those obligations requires seller access (or third parties he delegates to) to the buyer’s
facilities, it is subject to previous scheduling and approval.

A contract made up of divisible components can be partially fulfilled if only some
of the obligations are fulfilled. A party may withhold some obligations if the counter‐
party has not fulfilled theirs in due time (art. 113). The law establishes remedies to solve
unfulfilled parts of the contract, as presented in Sect. 5.4. It is possible to terminate only
parts of the contract. The ECSL distinguishes between fundamental and non-funda‐
mental non-performance (art. 87).

If the buyer is a trader, he might request the examination of the goods (art. 121, 122)
in the delivery chain. Lack of conformity must be notified to the counterparty.

Both parties can delegate the performance of its obligations or transferring its bene‐
fits to a third party (art. 78, 92), unless the contract explicitly requires the “personal
performance” by the seller.

Both buyer and seller can, in anticipation, inform the counterparty of a temporal
constraint that prevents them from performing an obligation in due time. Those acts are
called “excused non-performance” (art. 88). The excused non-performance does not

DEMO/PSI Theory and the Law of the Land 61

require agreement by the counterparty. The counterparty can establish a reasonable time
limit to overcome that limitation, that if not fulfilled in time, becomes a reason for
termination. The non-performer can contest the proposed reasonable time when that
time constraint is established, but not later on (art. 88).

The ECSL references “changes of circumstances” (art. 89), but does not defines
bounds to it. Even if the cost of performance has increased its value or what is to be
received has diminished, that is not a reason to force re-negotiations on an established
contract. Only on “exceptional circumstances” parties have a duty to negotiate, adapt or
terminated the contract.

The ECSL establishes the terms for payments (art. 123–128) as one of the obligations
that have to be fulfilled by the parts. Different circumstances can give rise to obligations
to pay from both parties, as defined in Sect. 5.4.

Modeling it with DEMO/PSI
The separation of several transfers within a single sale contract provides additional

evidence to the need to separate the order-phase from the result-phase in DEMO/PSI.
The ECSL introduces a notion of excused non-performance, through mere notifica‐

tion. That situation, constrains the rights of the counterparty regarding the termination
of contract by non-performance, but creates a right to set a time limit. DEMO/PSI does
not provide for any mechanism to enforce this in the standard transaction pattern. Prom‐
ised times in DEMO/PSI are merely indicative, but not enforced in any way.

Regarding delegation, the ECSL provides a different legal method than what was
presented on Sect. 4.3. The Portuguese law accepts delegation at any time if the coun‐
terparty accept it. The ECSL allows delegation at any time through mere notification,
unless the contract requires the personal performance. The delegation can occur either
on the provider or on the beneficiary sides of the transaction. The authors believe that
changing the legal persons in the transaction is a substantial change that should not occur
unless the counterparty agrees to, either initially in contract terms or through acceptance
during execution.

5.4 Remedies, Damages and Interest

What is stated by the Law
The ECSL establishes remedies (art. 106–112, 147–158) for damages, delays, costs

they might produce, non-performance and performance below what was reasonable to
expect from the contract. Delays in payments (art. 159–171) are also subject to interest
at an establish reference rate (EU Central Bank or National Banks) plus 2%.

Modeling it with DEMO/PSI
DEMO/PSI does not establish any rulings on how to get out of discussion states,

except that it has to be done through agreement between the parties.
The ECSL follows the same principles, but lists the possible remedies. All remedies

can be modelled by parties agreeing upon a set of new obligations. This provides addi‐
tional evidences to the idea that a transaction should be split between ordering and result
phase, and that the result phase should have multiple obligation fulfilment transactions,
each producing its own transaction result.

62 D. Gouveia and D. Aveiro

5.5 Termination and Restitution

What is stated by the Law
Terminating a contract (art. 8) means to bring to an end the rights and obligations of

the parties under the contract, except of those that are explicitly applicable even after
termination, like settlement of disputes, payments due and damages for non-perform‐
ance established before the time of termination.

The reasons that might lead to a termination are the non-performance of obligations
(art. 87, 114–116). An obligation is not performed if there wasn’t the timely delivery of
the goods or digital content in conformity with the contract, or payments were not
executed or were executed later than expected.

ECSL establishes (art. 88) that a fundamental non-performance is one that “substan‐
tially deprives the other party of what that party was entitled to expect under the contract”
or that anticipates non-performance as the party cannot be relied upon.

A contract that was established with undetermined duration can be terminated with
a reasonable period of notice, not exceeding two months (art. 77).

When a contract is avoided or terminated there might emerge the rights of restitution
(art. 17, 44, 45, 172–177). Namely the return of the goods and the full amounts made
available by the counterparty within 14 days from the withdrawal notice. The seller may
withhold the reimbursement until it has received the goods back. The consumer must
bear the costs of returning the goods and is responsible for the diminished value of the
goods if improperly handled.

Modeling it with DEMO/PSI
The conditions established in ECSL for terminating and agreement, in the authors

opinion, are equivalent to reaching a change agreement, that is, replacing the existing
obligations with new ones, even if the new are restitution obligations.

In the authors opinion, the only relevant change in a transaction that justifies having
a special inter-social state that marks the contract as terminated is when there is no
additional obligation to fulfil and for that moment on no new obligation can be created
through the enacting of any right. In DEMO/PSI terms it would mean no additional
coordination acts are to be performed, including revoke acts.

6 Conclusions

This Section summarizes the findings presented in Sects. 4 and 5:

• There are at least six types of acts that change the inter-social state of the world:
(a) Coordination acts freely taken by actors according to the transaction pattern;
(b) Negative-acts, the absence of some party to perform a certain act;
(c) Information acts that notice changes in context (by parties or third parties);
(d) Question acts that require an answer, eventually associated with a default

answers and a time limit;
(e) Enacting of Rights by mere declaration, taking immediate effect, but that might

be disputed later on, reverting its effect;
(f) Previously agreed timed based acts enacted by agreed time or elapsed time;

DEMO/PSI Theory and the Law of the Land 63

(g) Acts enforced by a court or by death of a party;
• Contracts are always established by legal persons (either capable persons or recog‐

nized legal organizations).
• DEMO/PSI transactions could be split into distinct transactions for the Ordering

Phase and the Result Phase, with benefits in modelling business transactions.
(a) The ordering phase is an agreement that expresses the intention of the parties to

perform a certain bundle of obligations (one or more).
(b) The ordering phase might be established in an incomplete form, requiring later

notifications or agreements on the missing terms.
(c) The result phase corresponds to the fulfilment of a specific obligation by one

party in the benefit of another. The agreement may include several obligations,
performed by different parties and to the benefit of others.

• All coordination acks require acknowledge by the counterparty, or a subsequent act
that tacitly acknowledges it.

• It should be possible for a party at the top to delegate role and responsibilities beneath
him to a third party with agreement by the counterparty.

• The conclusion of agreements requires a final acknowledge that makes it active.

All models simplify reality and therefore are never complete. Models should be
judged by their usefulness, not completeness. The current DEMO/PSI transaction
pattern is not able to model the complexity of the laws used as case studies. Some minor
changes to DEMO/PSI, as the ones suggested on this work, could largely increase
conformity with the law, without diminishing DEMO/PSI current use. We believe the
suggestions presented above are general, but that must be subject to validation on future
studies.

Acknowledgments. This work was partially funded by FCT/MCTES LARSyS (UID/EEA/
50009/2013 (2015-2017)).

This work was developed with financial support from ARDITI (Agência Regional para o
Desenvolvimento da Investigação, Tecnologia e Inovação), in the context of project M14-2009–
5369-FSE-000001-Bolsa de Doutoramento.

References

1. http://www.dgpj.mj.pt/sections/leis-da-justica/pdf-ult/sections/leis-da-justica/pdf-ult/codi-
comercial-de-1888/downloadFile/file/CodComercial.pdf?nocache=1188821262.8

2. https://dre.pt/application/dir/pdf1sdip/1966/11/27400/18832086.pdf
3. http://www.pgdlisboa.pt/leis/lei_mostra_articulado.php?nid=775&tabela=leis&so_miolo=
4. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52011PC0635
5. http://www.europarl.europa.eu/oeil/popups/summary.do?id=1339866&t=e&l=en
6. https://www.out-law.com/en/articles/2015/june/common-european-sales-law-proposals-to-

be-replaced-as-new-consultation-is-opened-on-online-sales-barriers/
7. Dietz, J.L.G.: Enterprise Ontology – Theory and Methodology (2006)

64 D. Gouveia and D. Aveiro

http://www.dgpj.mj.pt/sections/leis-da-justica/pdf-ult/sections/leis-da-justica/pdf-ult/codi-comercial-de-1888/downloadFile/file/CodComercial.pdf%3fnocache%3d1188821262.8
http://www.dgpj.mj.pt/sections/leis-da-justica/pdf-ult/sections/leis-da-justica/pdf-ult/codi-comercial-de-1888/downloadFile/file/CodComercial.pdf%3fnocache%3d1188821262.8
https://dre.pt/application/dir/pdf1sdip/1966/11/27400/18832086.pdf
http://www.pgdlisboa.pt/leis/lei_mostra_articulado.php%3fnid%3d775%26tabela%3dleis%26so_miolo
http://eur-lex.europa.eu/legal-content/EN/TXT/%3furi%3dcelex:52011PC0635
http://www.europarl.europa.eu/oeil/popups/summary.do?id=1339866&t=e&l=en
https://www.out-law.com/en/articles/2015/june/common-european-sales-law-proposals-to-be-replaced-as-new-consultation-is-opened-on-online-sales-barriers/
https://www.out-law.com/en/articles/2015/june/common-european-sales-law-proposals-to-be-replaced-as-new-consultation-is-opened-on-online-sales-barriers/

8. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The action workflow approach to
workflow management technology. In: Proceedings of the 1992 ACM Conference on
Computer-supported Cooperative Work, pp. 281–288. ACM, December 1992

9. Denning, P.J., Medina-Mora, R.: Completing the loops. Interfaces 25(3), 42–57 (1995)
10. Dietz, J.L.G.: DEMO-3 Way of Working (2009)
11. Van Reijswoud, V.E., Mulder, H.B., Dietz, J.L.: Communicative action-based business

process and information systems modelling with DEMO. Inform. Syst. J. 9(2), 117–138
(1999)

12. Dietz, J.L.G.: The PSI theory – understanding human collaboration (v3.2) (2016)
13. Wohlin, C., Aurum, A.: Towards a decision-making structure for selecting a research design

in empirical software engineering. Empir. Softw. Eng. 20(6), 1427–1455 (2015)
14. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum

impact. MIS Q. 37(2), 337–355 (2013)
15. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago

(2012)
16. Rittgen, P.: Negotiating models. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007.

LNCS, vol. 4495, pp. 561–573. Springer, Heidelberg (2007). doi:
10.1007/978-3-540-72988-4_39

17. Weigand, H., De Moor, A.: A framework for the normative analysis of workflow loops. ACM
Siggroup Bull. 22(2), 38–40 (2001)

18. Lind, M., Goldkuhl, G.: Questioning two-role models or who bakes the pizza. In: Seventh
International Workshop on the Language-Action Perspective on Communication Modeling
(LAP 2002), p. 44, June 2002

19. Dietz, J.L.: Isn’t baking a pizza that easy? In: Seventh International Workshop on the
Language-Action Perspective on Communication Modeling (LAP 2002), p. 65, June 2002

20. Quirino, Glaice K., et al.: Towards a service ontology pattern language. In: Johannesson, P.,
Lee, M.L., Liddle, Stephen W., Opdahl, Andreas L., López, Ó.P. (eds.) ER 2015. LNCS, vol.
9381, pp. 187–195. Springer, Cham (2015). doi:10.1007/978-3-319-25264-3_14

21. de Rosnay, M.D.: Peer-to-peer as a design principle for law: distribute the law. J. Peer Prod.
6, 1–9 (2015)

DEMO/PSI Theory and the Law of the Land 65

http://dx.doi.org/10.1007/978-3-540-72988-4_39
http://dx.doi.org/10.1007/978-3-319-25264-3_14

The Perspectives of DEMO Application to COSO Internal
Audit Framework Risks Mitigation

Eduard Babkin1, Pavel Malyzhenkov1(✉), and Fabrizio Rossi2

1 Department of Information Systems and Technologies,
National Research University Higher School of Economics,

Bol. Pecherskaya 25, 603155 Nizhny Novgorod, Russia
{eababkin,pmalyzhenkov}@hse.ru

2 Department of Economics and Enterprise, University of Tuscia,
Via del Paradiso, 47, 01100 Viterbo, Italy

fabrizio.rossi@unitus.it

Abstract. The Committee of Sponsoring Organizations of the Treadway
Commission (COSO) Framework is one of the most diffused internal audit (IA)
tools. According to some sources 82% of companies use it realizing the IA proce‐
dures as their reference framework. Still, it presents some limitations, especially
in the field of risk assessment linked to the weak formal distinction between the
framework itself (the organizational structures and policies realized to promote,
integrate and improve the management of risk) and the process used for risk
management (the operations realized to assess, treat and monitor the risk). So, the
formal separation of the organizational level from the aspects which the frame‐
work seeks to integrate into all critical organizations processes where decisions
are made is needed. The COSO framework was realized on the base of principles-
based approach. So, the aim of the present paper is to describe the formal approach
based on DEMO methodology tools oriented to the elimination or mitigation of
limits inherent to COSO framework.

Keywords: Internal audit · COSO framework · DEMO · Interaction model

1 Introduction

Committee of Sponsoring Organizations of the Treadway Commission [4] defines
internal control as ‘‘a process, effected by an entity’s board of directors, management
and other personnel, designed to provide reasonable assurance regarding the achieve‐
ment of objectives in the following categories:

• effectiveness and efficiency of operations;
• reliability of financial reporting;
• compliance with applicable laws and regulations’’.

This definition reflects certain fundamental concepts. Internal control is:

• geared to the achievement of objectives in one or more categories—operations,
reporting, and compliance;

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 66–73, 2017.
DOI: 10.1007/978-3-319-57955-9_5

• a process consisting of ongoing tasks and activities—a means to an end, not an end
in itself;

• effected by people - not merely about policy and procedure manuals, systems, and
forms, but about people and the actions they take at every level of an organization to
affect internal control;

• able to provide reasonable assurance - but not absolute assurance, to an entity’s senior
management and board of directors;

• adaptable to the entity structure - flexible in application for the entire entity or for a
particular division, operating unit, or business process.

This definition is intentionally broad. It captures important concepts that are funda‐
mental to how organizations design, implement, and conduct internal control, providing
a basis for application across organizations that operate in different entity structures,
industries, and geographic regions. Actually, the idea of a principles-based approach to
standard setting is not new. The Board’s conceptual framework contains the body of
principles that underlies business activity conducting principles. The Board has used the
conceptual framework in developing the principles for more than 20 years. However,
many assert that the standards have become increasingly detailed and rules-based (with
“bright-lines” and “on-off” switches that focus on the form rather than the substance of
transactions), complex, and difficult and costly to apply. Many also assert that the stand‐
ards allow business engineering to structure transactions “around” the rules, referring
to situations such as those in which complex structures or a series of transactions are
created to achieve desired results (Fig. 1).

CA 01

Board

T01 CA 02

Controller

T02

CA 03

Decision-
maker

T03

Control procedure

Control results

Control results
implementation

Fig. 1. Actor–transaction diagram

Under a principles-based approach [1, 3, 4], the principles in audit and control
standards would continue to be developed from the conceptual framework, but would
apply more broadly than under existing standards, thereby providing few exceptions to
the principles. In addition, different standard-setting bodies would provide less inter‐
pretive and implementation guidance for applying the standards. Because exceptions
and interpretive and implementation guidance are largely demand-driven, a principles-
based approach would require changes in the processes and behaviors not just of different
standard-setting bodies, but of all participants in the accounting and reporting process
including preparers, auditors, control bodies like SEC or CONSOB (Italian Securities
and Exchange Commission) and users of financial information.

The Perspectives of DEMO Application to COSO 67

All these risks present in Internal Audit field can be eliminated by using formal
reference models constructed on the DEMO base as a tool which offers the possibilities
of formal approach to audit process engineering. Besides, DEMO may contribute in the
mitigation of COSO risks linked to a weak distinction of responsibilities between the
policy-setters and policy-implementators. So, the idea is that applying the DEMO appa‐
ratus which stresses much on authority and responsibility concepts this disadvantage
can be overcome. The paper is organized as follows: Sect. 2 analyzes the COSO char‐
acteristics and the risks that it carries; Sect. 3 describes methodological proposals to its
mitigation formed on DEMO base; Sect. 4 describes the results, formulates questions
for future research and concludes the paper (Table 1).

2 COSO Framework and Its Characteristics

Exceptions in the standards create situations in which the principles in the standards do
not apply. Under a principles-based approach, it might not be possible to eliminate all
exceptions [7]. However, the standard-setters believe that an objective of that approach
should be to eliminate exceptions that are intended to achieve desired business results,
which may obscure the underlying economics of the related transactions and events. To
achieve that objective, it is necessary to resist pressures to provide exceptions in the
standards. The stakeholders would need to accept the consequences of applying stand‐
ards with fewer exceptions to the principles.

Under a principles-based approach, the key objectives of reporting are defined in the
subject area and then the guidance explaining the objective is provided. While rules are
sometimes unavoidable and the guidance should be sufficient to enable proper imple‐
mentation of the principles, the intent is not to try to provide specific guidance or rules
for every possible situation. A principles-based approach, while desirable, would require
participants to exercise good professional judgment and resist the urge to seek specific
answers and rulings on every implementation issue.

Management must evaluate and report on the effectiveness of internal control.
Utilizing the COSO framework in internal auditing adds depth to the audit programs
and constitutes the base for creating of broad internal audit work programs in compliance
matter.

In addition to the principles, the 2013 Framework introduces 81 points of focus which
represent typically important characteristics of principles that can be used to facilitate
designing, implementing and conducting internal control. These are items, management
can consider to determine if the principles are present and functioning. According to
this Framework management is not required to separately evaluate whether each of the
points of focus is in place to determine if the principles are present and functioning.

As COSO states, control activities are the actions established through policies and
procedures that help ensure that management’s directives to mitigate risks to the
achievement of objectives are carried out. Control activities are performed at all levels
of the entity, at various stages within business processes, and over the technology envi‐
ronment [4]. So, the process is a tool which supports a policy realization and the
achieving of enterprise objectives.

68 E. Babkin et al.

Table 1. COSO internal control components and principles [4]

Component Principle
Control
environment

Principle 1: The organization demonstrates a commitment to integrity and
ethical values.
Principle 2: The board of directors demonstrates independence of
management and exercises oversight for the development and performance
of internal control.
Principle 3: Management establishes, with board oversight, structures,
reporting lines and appropriate authorities and responsibilities in the pursuit
of objectives.
Principle 4: The organization demonstrates a commitment to attract, develop,
and retain competent individuals in alignment with objectives.
Principle 5: The organization holds individuals accountable for their internal
control responsibilities in the pursuit of objectives.

Risk assessment Principle 6: The organization specifies objectives with sufficient clarity to
enable the identification and assessment of risks relating to objectives.
Principle 7: The organization identifies risks to the achievement of its
objectives across the entity and analyzes risks as a basis for determining how
the risks should be managed.
Principle 8: The organization considers the potential of fraud in assessing
risks to the achievement of objectives.
Principle 9: The organization identifies and assesses changes that could
significantly impact the system of internal control.

Control activities Principle 10: The organization selects and develops control activities that
contribute to the mitigation of risks to the achievement of objectives to
acceptable levels.
Principle 11: The organization selects and develops general control activities
over technology to support the achievement of objectives.
Principle 12: The organization deploys control activities as manifested in
policies that establish what is expected and in relevant procedures to effect
the policies.

Information and
communication

Principle 13: The organization obtains or generates and uses relevant, quality
information to support the functioning of other components of internal
control.
Principle 14: The organization internally communicates information,
including objectives and responsibilities for internal control, necessary to
support the functioning of other components of internal control.
Principle 15: The organization communicates with external parties regarding
matters affecting the functioning of other components of internal control.

Monitoring
activities

Principle 16: The organization selects, develops, and performs ongoing and/
or separate evaluations to ascertain whether the components of internal
control are present and functioning.
Principle 17: The organization evaluates and communicates internal control
deficiencies in a timely manner to those parties responsible for taking
corrective action, including senior management and the board of directors,
as appropriate.

The Perspectives of DEMO Application to COSO 69

It was found [8] that, in the absence of time pressure, structured audit programs
improve audit effectiveness, efficiency, and consistency. Disadvantages of a structured
audit program include inflexibility (a fixed set of variables), mechanistic thinking (over-
reliance on the structured audit program), audit inefficiency (not using sufficient avail‐
able resources to successfully complete the task), and audit ineffectiveness (e.g., not
detecting fraud when fraud is present).

3 Methodological DEMO-Based Proposal for COSO Improvement

The COSO Framework recognizes that while internal control provides reasonable assur‐
ance of achieving the entity’s objectives, limitations do exist. Internal control cannot
prevent bad judgment or decisions, or external events that can cause an organization to
fail to achieve its operational goals.

Because many companies have implemented structured programs and the vast
majority of companies, namely 82%, apply the COSO Framework, its revisions are likely
to have widespread effects on Internal Audit compliance programs [7]. Whether required
audit program adjustments will be substantial could depend on the flexibility of the
program. Some organizations will view the new explicit principles and associated attrib‐
utes as constituting additional requirements for assuring the compliance to COSO prin‐
ciples as additional requirements for its implementation and its subsequent assurance.
The Institute of Internal Auditors suggests the 17 principles and 81 attributes will be
perceived as a ‘‘checklist;’’ if the principles and attributes are employed in this manner,
non-value added activities may increase regulation norms compliance burden [6].

Even being a very diffused framework its main limitation is that COSO document
confuses and mixes up the framework (the organizational structures, policies, and
arrangements put in place to promote, integrate and improve the management of risk)
with the process used for risk management, particularly that used for risk assessment,
risk treatment and monitor and review. They need to be thought of separately where the
framework operates at an organizational level while the process is that which the frame‐
work seeks to integrate into all critical organizations processes where decisions are
made.

We’ll study the possibilities to eliminate these problems and defects from the enter‐
prise engineering point of view and here the DEMO methodology [5] represents a valid
support. The DEMO gives the analyst an understanding of the business processes of the
organization, as well as the agents involved. Analysis of models built on DEMO allows
the company to obtain detailed understanding of the processes of governance and coop‐
eration and serves as a basis for business reengineering and information infrastructure
development consistent with business requirements.

So, as one can see, the internal audit process in the company presupposes the exis‐
tence of the following main actors:

• Board of Directors or external control body which initiate the audit process;
• Management;
• Auditor (internal or external one).

70 E. Babkin et al.

For the purpose of DEMO application which must be free of implementation aspect
we can define these roles as “Board”, “Decision-maker” and “Controller”. An important
element to apply the DEMO methodology is the Transaction Result Table (Table 2).

Table 2. The Transaction Result Table of internal audit procedure

Transaction type Result type
T01 Control procedure start Control procedure has been started
T02 Control results state Control results have been stated
T03 Control results
implementation

Control results have been
implemented

Below we present one element of the Construction model, the Actor–Transaction
Diagram. It expresses the main initiators and executors (CA) of the transactions indi‐
viduated in the Transaction Result Table (Table 2).

As one can see, Auditor (“Controller”) is the initiator of T3 because on the base of
the results of his/her control activity the Management (“Decision-maker”) elaborates
the corrections in the business policies or processes.

All elements listed above represent a base for ontological model creation using the
following models.

• the Construction Model (CM) which specifies the identified transaction types and the
associated actor roles, as well as the information links between the actor roles and
the information banks;

• the Process Model (PM) which contains, for every transaction type in the CM, the
specific transaction pattern of the transaction type;

• the Action Model (AM) which specifies the action rules that serve as guidelines for
the actors in dealing with their agenda;

• the State Model (SM) specifies the object classes and fact types, the result types, and
the ontological coexistence rules.

So, internal audit involves human action, which introduces the possibility of errors
in processing or judgment. Internal control can also be overridden by collusion among
employees or coercion by top management.

These limitations preclude the board and management from having absolute assur‐
ance of the achievement of the entity’s objectives - that is, internal control provides
reasonable but not absolute assurance. Notwithstanding these inherent limitations,
management should be aware of them when selecting, developing, and deploying
controls that minimize, to the extent practical, these limitations.

The 2013 Framework [4] acknowledges that there are limitations related to a system
of internal control. For example, certain events or conditions are beyond an organiza‐
tion’s control, and no system of internal control will always do what it was designed to
do. Controls are performed by people and are subject to human error, uncertainties
inherent in judgment, management override, and their circumvention due to collusion.
An effective system of internal control recognizes their inherent limitations and
addresses ways to minimize these risks by the design, implementation, and conduct of
the system of internal control. However, an effective system will not eliminate these

The Perspectives of DEMO Application to COSO 71

risks. An effective system of internal control (and an effective system of internal control
over financial reporting) provides reasonable assurance, not absolute assurance, that the
entity will achieve its defined operating, reporting, and compliance objectives.

Below (Table 3) the advantages of different DEMO models and their application to
COSO limitations according to [8] correction are presented:

Table 3. The corrective measures of different DEMO models

Limitation DEMO model application
Suitability of objectives established as a
precondition to internal control and the
existence of external events beyond the
organization’s control

The Interaction Model (IAM), which represents the
most compact ontological model of an enterprise,
shows the boundary of the organization, as well as
the interface transactions with actor roles in the
environment [5]. This makes the IAM preeminently
suitable for strategic alignment and objectives
individuation. The IAM clearly presents the
interface units of collaboration, namely complete
transactions.

Reality that human judgment in decision
making can be faulty and subject to bias
and, more generally, human factor

To correct this limitation the apparatus of
ontological maps based on DEMO and described in
[2, 9, 10] can be used

Ability of management to override
internal control

The IAM shows the ontological units of
competence, authorization and responsibility. This
may deliver a new view to human resource
professionals, who have always struggled with
finding the right chunks for the identification and
classification of organizational functions. A
comparison of the IAM with the current assignment
of organizational functions to actor roles may
provide the first ideas for improving it.

Ability of management, other personnel,
and/or third parties to circum-vent
controls through collusion

The Process Model facilitates these decisions
considerably because it clearly shows that these side
paths are either full-fledged transactions (in which
original facts are created) or not. In the latter case,
the approval turns out to be only a matter of being
informed about or a situation of an unclear
assignment of authority. It is also very well suited
to forward the discussion about the assignment of
organizational functions to actor roles.

4 Results and Conclusions

In this paper we introduce the approach to the most diffused audit framework COSO
limitations mitigation by means of DEMO methodology which later be used in further
research. The ontological approach expressed by means of DEMO represents a concep‐
tual model that only shows the essence of an enterprise or a business process and is
coherent, comprehensive, consistent and concise [5]. These properties allow to reduce

72 E. Babkin et al.

the design costs and can be applied to the modelling of audit activity in its operative
phase as well.

Thus, analysis of DEMO models provides decision makers with particular means of
organizational transformations. Such choice unavoidably deals with information
systems management and from such positions the use of the DEMO for both enterprise
structure modeling and individuation of the most suitable information system use is quite
advantageous. DEMO is easily reproducible, and it can be applied regardless of the
business segment of the enterprise.

So, the future direction of the research could be constituted by the further extension
of DEMO models application to COSO limitations differing it by components or prin‐
ciples, detailing the contents of different DEMO models according to COSO’s compo‐
nents or principles. It may also constitute, besides some practical case analysis, the
enlargement of DEMO application also to other Internal Audit frameworks generalizing
in DEMO language all terminological notions proper to them. We also plan to extend
our starting research point (a formal description of internal audit process) to the usage
of DEMO means for the audit principles accomplishment verification.

The reported study was funded by Russian Fund of Basic Research according to the
research project № 16-06-00300-a.

References

1. Arjoon, S.: Striking a balance between rules and principles-based approaches for effective
governance: a risks-based approach. J. Bus. Ethics 68(1), 53–82 (2006)

2. Babkin, E., Malyzhenkov, P.: Assessment of brand competences in a family business: a
methodological proposal. In: Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS
2016. LNBIP, vol. 272, pp. 129–138. Springer, Cham (2016). doi:10.1007/978-3-319-49454-8_9

3. Challagalla, G., Murtha, B., Jaworski, B.: Marketing doctrine: a principles-based approach to
guiding marketing decision making in firms. J. Market. 78(4), 4–20 (2014)

4. COSO Internal Control — Integrated Framework Executive Summary (2013)
5. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
6. Institute of Internal Auditors, Responses to COSO’s public exposure feedback questions

(2012)
7. Kasey, M., Sanders, E., Scalan, G.: The potential impact of COSO internal control integrated

framework revision on internal audit structured SOX work programs. Res. Account. Regul.
26, 110–117 (2014)

8. Shaw, H.: The trouble with COSO. CFO Mag. 22(4), 74–77 (2006)
9. Sergeev, A., Babkin, E.: Towards a formal approach to solution of ontological competence

distribution problem. In: Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS
2016. LNBIP, vol. 272, pp. 84–97. Springer, Cham (2016). doi:10.1007/978-3-319-49454-8_6

10. Sergeev, A., Babkin, E.: Towards competence-based enterprise restructuring using ontologies.
In: Aveiro, D., Pergl, R., Valenta, M. (eds.) EEWC 2015. LNBIP, vol. 211, pp. 34–46.
Springer, Cham (2015). doi:10.1007/978-3-319-19297-0_3

The Perspectives of DEMO Application to COSO 73

http://dx.doi.org/10.1007/978-3-319-49454-8_9
http://dx.doi.org/10.1007/978-3-319-49454-8_6
http://dx.doi.org/10.1007/978-3-319-19297-0_3

VISI Revisited

Niek J. Pluijmert1,2(B)

1 Radboud University, Comeniuslaan 4, 6525 Nijmegen, HP, The Netherlands
2 INQA Quality Consultants B.V.,

Herman van Swaneveltplein 19, 3443 Woerden, HZ, The Netherlands
pluijmert@inqa.nl

Abstract. In this paper we investigate the use in practice of the VISI
standard. The goal of the VISI standard is to arrange the cooperation
of the parties in construction projects. Application of the VISI stan-
dard is not without troubles. The VISI standard is based on the DEMO
methodology. We used the Hevner Three Cycle View and Sein’s ADR to
understand what and we used interviewing and process mining to under-
stand how the development and use of VISI has been. We conclude that
an overall cycle over the three cycle view is necessary to see that the
right process is followed in using scientific knowledge to design artifacts
that solve practical problems.

Keywords: VISI · DEMO · ISO standard · Enterprise engineering ·
Enterprise ontology · Process management · Action research · Design
science research · Action design research · Construction sector · Large
infrastructure projects

1 Introduction

In the Dutch construction sector for large infrastructure projects cooperation
between parties is becoming ever more important. With ‘parties’ is understood
all companies and principal(s) that realize an infrastructure object in one project.
The number of parties involved in one infrastructure project has risen and respon-
sibilities have shifted. In order to improve the cooperation, in 1998 the VISI1

project was started. This resulted in 2003 in the VISI standard and the VISI stan-
dard resulted in 2012 in the ISO 29481 standard2. In the Netherlands the use of
the VISI standard is widespread and since 2012 its use is mandatory. The appli-
cation of the VISI standard is not without trouble, so the owner of the standard,
CROW3, wants a new version of the VISI standard that overcomes the problems.
1 VISI is a registered trademark of CROW. It is an acronym of Voorwaarden scheppen
voor het invoeren van standaardisatie ICT in de GWW-sector, which can best be trans-
lated to “Creating conditions for introducing standardization ICT in the infrastruc-
ture sector”.

2 ISO 29481–2 was prepared by Technical Committee ISO/TC59, Buildings and civil
engineering works, Subcommittee SC 13, Organization of information about construc-
tion works.

3 CROW is not-for-profit knowledge partner for (decentral) government, contractors
and consultancy firms.

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 74–81, 2017.
DOI: 10.1007/978-3-319-57955-9 6

VISI Revisited 75

CROW wants insights from science to be taken into account. In this article we
investigate the problems and try to define an approach for solving the problems.

VISI is founded on the DEMO (Design and Engineering Methodology for
Organisations [1]) methodology. The core of the VISI project was convinced
that the theory of DEMO was the right one to apply, because it is founded on
communication theory. This leads to the following questions:

– What is the process of design and implementation of the VISI standard?
– How do projects that follow the VISI standard for structuring communication,

implement the VISI standard?
– How has the improvement cycle of the designed artifact VISI been?

The remainder of this article is structured as follows. In Sect. 2 we write about
research approaches for IT. In Sect. 3 we describe the case study of the VISI
project and the use of VISI in construction projects. In this section the results
of the VISI project are described and how VISI is used in practice. In Sect. 4 we
discuss the results of the VISI case study and draw conclusions.

2 Research Approach

In [2] we wrote about the three cycle view of design science (DS) from Hevner
[3], see Fig. 1. The left cycle, the relevance cycle, are the issues described and
analyzed in Subsects. 3.1 and 3.2 and discussed in Sect. 4. The VISI standard
itself is a designed artifact (middle cycle). The DEMO methodology and process
mining theory are for our situation part of the knowledge base. We wrote in
[2] also about action research (AR) as most appropriate method to study social
phenomena and as a way to respond faster to environment’s demands. Sein in
[4] proposes to combine AR and DS into a new method Action Design Research
(ADR) in order to combine theory with practice and thinking with doing, see
Fig. 2. Hevner has primarily a cyclic view and Sein has a staged view. Keeping
in mind nowadays practices like Agile, Scrum and Lean that focus on delivering

Application Domain
People
Organizational
Systems
Technical
Systems
Problems &
Opportunities

Foundations

Theories & Methods

Experience &
Expertise
Meta-Artifacts
(Design Products &
Design Processes)

Build Design
Artifacts &
Processes

Evaluate

Rigor Cycle
Grounding
Additions to KB

Environment
Design Science
Research

Knowledge
Base

Relevance cycle
Requirements
Field Testing

Design
Cycle

Fig. 1. Three cycle view of design science, Hevner [3]

76 N.J. Pluijmert

Principle 6: Guided Emergence

3. Reflection and
Learning

Principle 7: Generalized Outcomes

4. Formalization of Learning

Principle 3: Reciprocal Shaping
Principle 4: Mutually Influential Roles
Principle 5: Authentic and
Concurrent Evaluation

2. Building, Intervention and
Evaluation

Principle 1: Practice Inspired Research
Principle 2: Theory-Ingrained Artifact

1. Problem Formulation

Fig. 2. Action design research (ADR) acc. Sein et al. [4]

added value fast, we will use Hevner and Sein to design our research method
that is intended to deliver practical results fast and being thoroughly founded
in science. The underlying epistemology we use is an interpretive one (see Myers
[5], Orlikowski [6] and Chua [7]). In Action Research interviewing is the way
of collecting data. We added process mining as a way to gather objectively
data. Van der Aalst describes in [8] what process mining is. In our opinion the
advantage of process mining with respect to VISI is that we have the facts about
communication.

3 Case Study of VISI Development and VISI
Use in Dutch Infrastructure Construction Sector

3.1 Introduction

In this section we describe and analyze in Subsect. 3.2 how the VISI standard
was developed in the VISI project and in Subsect. 3.3 how it was used.

3.2 VISI Project

In the investigation phase (see Fig. 3 for a time line) the concept agreements
of the VISI standard were developed. In this phase the choice for DEMO as

VISI Revisited 77

Fig. 3. Time line of the VISI project, extended with ISO standard; the VISI project
ended in 2004, after that year the implementation started

underlying theory is made. The outcome consisted of the generic communication
model (the existence of which was confirmed) and the table of contents of the
VISI guideline.

In the try-out phase (2002–2004, see Fig. 3) the VISI model was verified in
two infrastructure projects and the results were discussed in group decision ses-
sions with the project managers of infrastructure projects. The project managers
confirmed the results and that marks the coming into existence of the VISI stan-
dard: the first version of the VISI guideline.

VISI as standard can very well be compared with EDIFACT (see e.g. [9]).
EDIFACT is a standard for electronic data interchange that provides a set of
semantics and syntax rules to structure data, an interactive exchange protocol
and standard messages which allow multi-country and multi-industry exchange.
Just as EDIFACT, VISI is a business language so all stakeholders in the net-
work are capable of understanding the responsibilities of the actors in executing
business transactions. The VISI standard consists of:

• Interaction Chart or Framework for an infrastructure project. This chart is
not formally part of the guideline and is a model of the communication in the
construction sector. This model is independent of the way of cooperating that
is contractually agreed.

• Principles and fundamentals. This consists of a description of parts of DEMO
and of a way to design a framework. In this way of working, VISI deviates
from the DEMO methodology while VISI recognizes other statuses and doesn’t
implement the complete transaction pattern.

• Specification of interaction framework and messages in XSD and XML for-
mats.

• A software program, called Promoter, that generates a machine readable
scheme in which all messages are defined, based on a framework. Software
makers use this Promoter in developing VISI software.

3.3 Implementation of VISI

We looked at the developments in the standard and in the use of VISI. Devel-
opments in the VISI-standard

78 N.J. Pluijmert

After the first version of VISI standard in 2003, there have been new releases
in 2008, 2011, 2014, 2015, 2016. Governance and control is arranged: changes
are prepared in the technical committee and approved in the steering group. In
the governance and control organs science is not represented.

The developments in the standard have all been more (detailed) prescriptions
for the form and content of the messages. The concept of status has been aban-
doned in 2014 release in favor of the concept of previous message determining
the next message.

Table 1. Messages of process proposal for change

Proposal for change

Acceptance of proposal Acceptance of proposal,
no financial
consequences

Denial of proposal

Offer for change Message of
accomplishment

Withdrawal of proposal

Acceptance of offer for
change

Acceptance of
accomplishment

Work completion
statement

Acceptance of work
completion statement

Developments in the use of VISI
For this purpose we analyzed the data of five projects that applied VISI soft-
ware for communication. This data is analyzed with a process mining tool (ICRIS
process miner) and for one case we interviewed the contract manager of the prin-
cipal and the manufacturing engineer of the contractor. We used process mining
mostly to learn about the processes of transactions, this is the messages that are
sent consecutively from start (this is a message of a transaction before which
is no other message) to finish (this is a message after which no other message
follows). Table 1 gives the messages of an example process. From the names of
the messages it is derived that it is a process of one transaction. In the simple
example of Table 1 the DEMO pattern of request-promise-state-accept cannot be
recognized. We see also a change of result in the transaction: first it is a proposal
for a change, next it is an offer (proposal with a price) for a change and at last
it is a work completion statement. And moreover a distinction is made between
a proposal with and without financial consequences. With the process miner it
is also possible to make a list of all start messages. From this list we learn that
the use is for contractual changes, delivery of contractually agreed documents,
work completion statements and the report of the constructors meeting. For all
transactions it holds that they are between principal and contractor. The frame-
work that is applied, is not documented, we can only reconstruct it with the

VISI Revisited 79

process miner. We use here a simple example, in the data of other projects we
saw much more complex processes that exist of up to ten transactions and those
processes had the same properties as described here. New transaction types were
about external judgment of a proposal or document. Judgment transactions are
solely found within the organization of principal. From the interviews with con-
tract manager and manufacturing engineer we learn that both were satisfied with
how their communication was supported by VISI software. They delivered their
wishes for the set up of the communication and between the two of them they
had an appointment how to use it.

In the above paragraph we elaborated on some aspects of the use of VISI.
Because of considerations for the length of this article, we summarize and do
not go into detail here all our findings from interviews and process mining:

1. The use of the DEMO methodology is essential.
2. VISI applied the DEMO theory in a different way by defining other statuses

than DEMO and during the use of VISI software the concept of status was
abandoned.

3. VISI applied DEMO not completely.
4. VISI doesn’t recognize the possibility of revoking a communication act.
5. VISI focuses on coordination solely, while coordination and production

shouldn’t be considered separately.
6. Several issues in the project context were important: the core group with its

stable composition, the members of the core having decision power, commit-
ment of top management, use of a participative approach towards project
managers of construction projects.

7. After the first release of VISI standard the shift towards an IT based approach
for defining and supporting the communication scheme of a project (project
specific framework).

8. Users of VISI-software in a construction project are satisfied how it supports
the communication.

4 Discussion and Conclusions

In this section we discuss the findings from the perspective of DS and ADR.
First from the DS-perspective. Item 1 confirms that the rigor cycle has been

walked through correctly. Items 2, 3 and 5 state that in the design cycle it is
decided to deviate from the theory because the project members decided that
this was the best they could do to get the standard accepted and applied in the
construction sector. So, here is a decision taken that should have been tested in
a relevance cycle. Item 4 is an issue that was still in development in DEMO, so
this could have been an addition to the knowledge base. Item 6 has not much
to do with the three cycles of design science but is an important condition for
a successful (design) project! Items 7 and 8 are facts from the relevance cycle.
The application of the VISI standard in construction projects is made with an
IT-perspective and mostly by IT-people.

80 N.J. Pluijmert

From the ADR-perspective (see Fig. 2) we see that the investigation phase
was about Problem Formulation. At the end of investigation phase and during
try-out phase Building, Intervention and Evaluation is recognized because in
those phases VISI standard was defined and built. Also Reflection and Learning
is recognized, because inventories were made and also the solution was found
appropriate for application in other sectors than building. In our data we didn’t
find so much that points to Formalization of Learning.

In the implementation phase, when VISI is used in construction projects for
communication between principal and contractor, design cycles and ADR-stages
are not so well recognizable. There is a cycle of 1.5 year from determination of
the content of a new release till the availability of the adapted software for use. In
terms of design science, it seems that the relevance and design cycle are walked
through regularly but only to the extent that software has been developed. In
terms of ADR, it is only part of stage 2, Building, Intervention an Evaluation.
It is good te repeat that VISI standard is about 2 things:

1. a theory about communication between people (Principals and fundamen-
tals).

2. a specification for software that supports communication between people with
digital messages (Specification of interaction framework and messages).

It seems that during the use of VISI (see Fig. 3) the development of VISI standard
has not been based on research and science anymore. But referring in Sect. 1 to
encountered problems, research and science are necessary and there should be a
cycle that takes into consideration whether all aspects are dealt with properly,
that the right process is followed and that the organization can deal with the
implied change. This last aspect is different from the distinction in IT-dominant
and organization-dominant BIE that Sein makes in [4, p. 42]. In Sein [4] it is
about the content of the artifact to be designed, we aim at the impact of a
change that an organization can handle or the answer to the question whether
the organization will accept a certain change. We define this as a cycle that
implies environment, design science research and knowledge base. By constantly
taking into account where (in which cycle) what has to be done, we come ever
closer to the desired result. In [11] Argyris et al. describe this aspect. Argyris et
al. call this double loop learning. Single loop learning is design the artifact and
improve it, while double loop learning also takes the followed process as subject
for improvement. In Fig. 4 we represent this by a spiral over the three cycles
according to Hefner. In ADR (Fig. 2) this aspect can be imagined implicitly
in the double arrows, but it would be more clear if it was represented by a
separate rounded rectangle called management of change. Double loop learning
takes both the what (three cycles) and the how (organizing and controlling
the process or project management) into account. In [2] we wrote about the
participative project approach of Mulder [10] that has a large added value in AR
research because of the coherence between this approach and decision making
in an organization. Such an approach could help prevent the problems that are
encountered in the application of VISI.

VISI Revisited 81

Fig. 4. Design science cycles with action research spiral

References

1. Dietz, J.L.: Enterprise Ontology Theory and Methodology. Springer, Berlin (2006)
2. Pluijmert, N.J., Molnar, W.A., Proper, H.A.: Research approach in enterprise

engineering: a matter of engineering. In: Franch, X., Soffer, P. (eds.) CAiSE
2013. LNBIP, vol. 148, pp. 73–86. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38490-5 6

3. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst.
19(2), 87–92 (2007)

4. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design
research. MIS Q. 35(1), 37–56 (2011)

5. Myers, M.D.: Qualitative research in information systems. MIS Q. 21(2), 241–243
(1997)

6. Orlikowski, W.J., Baroudi, J.J.: Studying information technology in organizations:
research approaches and assumptions. Inf. Syst. Res. 2(1), 1–28 (1991)

7. Chua, W.F.: Radical developments in accounting thought. Account. Rev. 61(4),
601–632 (1986)

8. Van der Aalst, W.: Process Mining Discovery, Conformance and Enhancement of
Business Processes. Springer, Heidelberg (2011)

9. https://en.wikipedia.org/wiki/EDIFACT: United Nations/Electronic Data Inter-
change for Administration, Commerce and Transport (UN/EDIFACT) is the inter-
national EDI standard developed under the United Nations

10. Mulder, J.B.F.: Rapid enterprise design. Ph.D. thesis, Technical University Delft
(2006)

11. Argyris, C., Putnam, R., McLain Smith, D.: Action Science. Concepts, Methods,
Skills for Research and Intervention. Jossey-Bass Publishers, San Francisco (1985)

http://dx.doi.org/10.1007/978-3-642-38490-5_6
http://dx.doi.org/10.1007/978-3-642-38490-5_6
https://en.wikipedia.org/wiki/EDIFACT:

Business Processes

Converting DEMO PSI Transaction Pattern into
BPMN: A Complete Method

Ondřej Mráz, Pavel Náplava, Robert Pergl(B), and Marek Skotnica

Czech Technical University in Prague, Prague, Czech Republic
mraz.ondra@gmail.com, naplava@fel.cvut.cz,

{perglr,skotnicam}@fit.cvut.cz

Abstract. The goal of this paper is to contribute to efforts of improving
the Business Process Modelling (BPM) practice. We present an original
method for converting 0enterprise ontology Design & Engineering Method
for Organisations (DEMO) process models into a BPMN 2.0 notation. By
this approach, we are able to mitigate certain methodological deficiencies
of BPMN. The method exhibits the following qualities: Implementation
of the complete transaction pattern formulated by the PSI-theory, correct
managing of multiple child transaction instances, and executability of the
resulting BPMN model.

Keywords: PSI-theory · BPMN · DEMO · Business Process
Modelling · Enterprise ontology · Conceptual modelling

1 Introduction

BPMN (Business Process Model and Notation) [1] is a graphical notation that
is used for modelling business processes. Key characteristics of BPMN are sim-
plicity of the underlying theory (flowchart), standardised notation and a large
number of tools. This makes BPMN one of the most wide-spread process mod-
elling notation in practice, in spite of its limitations and flaws. BPMN offers
three different types of diagrams: Choreography, Conversation and Collabora-
tion diagrams. For this work, only the Collaboration Diagram will be considered.
This diagram expresses the process flow in achieving participants’ goals.

One of the BPMN weaknesses is the absence of a methodology for construct-
ing diagrams, which is addressed for example by Silver [2]. Nevertheless, the
design freedom is still too broad, which results in different modelling styles of
individual analysts and different models depicting the same situation, which
complicates enterprise engineering tasks like mergers and reorganisations.

DEMO (Design & Engineering Method for Organisations) [3] is a leading
modelling method used in the discipline of Enterprise Engineering [4] based on
deep and sound theoretical basis (the PSI-theory) and high ontological relevance.
Its benefits for the practical use has been proven, as documented for example
in [5] or [6]. It does not limit itself just to process modelling, but it also deals

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 85–98, 2017.
DOI: 10.1007/978-3-319-57955-9 7

86 O. Mráz et al.

with capturing structural (factual) knowledge and business rules, thus deliver-
ing a complete enterprise ontology exhibiting certain criteria (C4E). However,
compared to BPMN, DEMO is still a niche approach and relatively demanding
to master. Also, a limited number of tools is available today.

For a brief description of DEMO, we take a help of Op’t Land and Dietz [5]:
A complete, so-called essential model of an organization consists of four

aspect models: Construction Model (CM), Process Model (PM), Action Model
(AM), and State Model (SM). The CM specifies the composition, the environ-
ment and the structure of the organization. It contains the identified transaction
types, the associated actor roles as well as the information links between actor
roles and transaction banks (the conceptual containers of the process history).
The PM details each transaction type according to the universal transaction
pattern. In addition, it shows the structure of the identified business processes,
which are trees of transactions. The AM specifies the imperatively formulated
business rules that serve as guidelines for the actors in dealing with their agenda.
The SM specifies the object classes, the fact types and the declarative formula-
tions of the business rules.

The DEMO Process Model reveals details of the transactions with the respect
to universal transaction pattern. The basis is the “happy flow” consisting of
request, promise, state and accept, which is also called the basic transaction
pattern. In the so-called standard transaction pattern (not depicted), declinemay
happen instead of promise and reject may happen instead of accept. Then,
a new attempt may be made, or quit, resp. stop may end the transaction unsuc-
cessfully. Real situations may become even more complicated, which is addressed
by the complete transaction pattern in Fig. 1. It incorporates the notion of revoca-
tion – an actor may want to “take back” their act done before1. If that is allowed
by the other party, the transaction “rolls back” to the desired state.

The logic of the complete transaction pattern is automatically included in all
DEMO transactions, which is one of the reasons why the models are compact.

The main goal of this paper is to combine the simplicity of the BPMN and onto-
logical qualities of the DEMO. The result is the method that converts enterprise
ontology Design & Engineering Method for Organisations (DEMO) process mod-
els into a BPMN 2.0 notation. This approach mitigates the mentioned absence of
a sound methodological approach for BPMN. The BPMN models resulting from
the described method converge, similarly to DEMO, to one essential model, thus
eliminating different modelling styles of individual analysts leading to comparable
models. Our other requirements are: implementation of the complete transaction
pattern formulated by the PSI-theory, correct managing of multiple child trans-
action instances, and executability of the resulting BPMN model.

We start the paper by the discussion of the related work of efforts of
improving BPM and BPMN, specifically the approaches based on applying the
enterprise-engineering rigour (Sect. 2). We then briefly present results of a com-
parative analysis of DEMO and BPMN (Sect. 3), which led to formulating our

1 In the DEMO theory, nothing can disappear, so the original fact remains in the fact
bank, however, the transaction flow is changed.

Converting DEMO PSI Transaction Pattern into BPMN 87

Fig. 1. DEMO complete transaction pattern [7]

method of conversion (Sect. 4). We demonstrate the method on an example
(Sect. 5). Finally, we discuss the result and formulate conclusions (Sect. 6).

2 Related Work - Improving BPM and BPMN

A poor ontological quality of BPMN is generally known and documented [8].
The most practised remedy is exercising a methodological approach like the one
proposed by Silver [2], who distinguishes three levels of BPMN: (i) Descriptive,
(ii) Analytical and (iii) Executable and proposes several analysis patterns and
anti-patterns.

The discipline of enterprise engineering (EE) [4] brought about a rigorous
approach of building an enterprise ontology (EO) [3], DEMO being its modelling
method. There are several foundational EE theories, the most notable being
the PSI-theory. As on of the central concerns of EE is the business process
management, the effort to apply EE theories (EET) to the existing (less formal
approaches) is promising. The efforts in this area are twofold:

1. Applying EET for analysis of existing BPMN models of business processes:
for example [9–11].

2. Enhancing the formal foundations of BPMN by EET: for example [9,10,12,13]

2.1 Applying EET for Analysis of Existing BPMN Models of
Business Processes

Caetano et al. showed that applying the DEMO PSI-theory to improve busi-
ness process modelling deserves attention [9]. The authors started by analysing

88 O. Mráz et al.

existing BPMN models and identified missing DEMO transaction pattern steps
in these models. It had been determined or each BPMN activity from the
analysed models, whether this activity is an ontological, infological or data-
logical part of a transaction. It had been also determined, which part of the
transaction pattern each activity represents. Next, the authors created an ATD
and a PSD diagram of DEMO and using a PSD diagram, they enriched exist-
ing BPMN models by adding missing parts of the transaction pattern into the
BPMN models.

In the second part, the authors present results of applying this method to
analysis of existing BPMN models of key processes of a big organization (more
than 500 activities and 60 actors). The authors identified numerous missing act
types in the original BPMN models. The results from this analysis were: (i) 25%
of production C-acts missing in the original BPMN model, (ii) 25% of request
C-acts missing in the original BPMN model, (iii) 50% of promise C-acts missing
in the original BPMN model, (iv) 25% of state C-acts missing in the original
BPMN model, (v) 40% of accept C-acts missing in the original BPMN model.

Results reported by Pergl and Náplava for an academic institution [11] state
reduction of DEMO essential models complexity to 21% of the original BPMN
size and several model quality improvements similar to [9].

2.2 Enhancing the Formal Foundations of BPMN by EET

These efforts aim to precisely express the EE ontological constructs using the
standard BPMN notation. Two approaches have been followed. The first is to
enhance the BPMN models by adding the missing C-(F)acts and other constructs
from the PSI-theory. Caetano [9] is an example of this method.

The second way is generating BPMN models from the DEMO models. This
method was discussed in the diploma theses [13], from which the approach in
this paper was designed.

3 Analysis of DEMO and BPMN

Here follows observations of comparing various aspects of DEMO with respect to
BPMN, from which follows the conversion principles and decisions made. These
were formulated based on the DEMO theory axioms and models definitions
related to the BPMN elements definitions, as introduced in Sect. 1.

– Similar parts of methods that can be simply transformed from the DEMO to
BPMN:

– The Process Structure Diagram (PSD) of DEMO contains process infor-
mation, which can be related to a BPMN process diagram.

– The Action Model (AM) of DEMO expresses complex decision rules for
Coordination acts (C-acts)2. The contained information can be used for
branching in BPMN.

2 Apart from containing all the information from the other models.

Converting DEMO PSI Transaction Pattern into BPMN 89

– BPMN does not distinguish the three key human abilities (forma, informa,
performa), however applying this distinction can be introduced straight-
forwardly, as shown for example in [11]. As this concern is orthogonal to
our effort, we do not discuss the distinction axiom here.

– Related to the point above, the (atomic) actor roles in DEMO are execu-
tors of exactly one transaction, while swimlanes may contain many dif-
ferent actions.

– Different parts of methods that require deep analysis before transformation
from DEMO to BPMN:

– The DEMO Transaction Axiom concept does not exist in BPMN. Only
happy flows and the most obvious unhappy flows are expressed in models.

– The Object Fact Diagram (OFD) being a factual model does not have an
analogy in BPMN.

– DEMO and BPMN employ different execution models. While BPMN is
flow-based, DEMO operates on the basis of a so-called CRISP model [3],
which may be characterised as an event-driven, or more precisely, an
agenda-driven execution model.

– The Construction Model (CM) of DEMO is an abstraction that does not
specify process, it provides just structural information.

4 Converting DEMO into BPMN

The goal is to convert the complete transaction axiom into BPMN, including all
revoke types. Sections 4.1 to 4.4 describe all the necessary pieces and Sect. 4.7
presents the result. We used BPMN 2.0 and leveraged the newly available Data
Store construct.

4.1 C-acts

C-acts are essentially activities that take place in order specified by the transac-
tion pattern. BPMN has the concept of activities and the order is specified by
sequence flows. As C-acts are atomic, the appropriate activity type is task.

4.2 C-facts

As mentioned in Sect. 1, a C-fact becomes existent in the world as a consequence
of performing a C-act. Heller in his thesis [13] lists three possibilities of expressing
C-facts using BPMN:

1. Not explicitly expressed – the existence of the fact-C is not explicitly
expressed. It is indirectly realised by a sequence flow. This option is suffi-
cient if revokes are not considered (see further).

2. Using a BPMN message – the actor, who performs the given C-act sends a
BPMN message with the C-fact to the other actor (transaction participant).

90 O. Mráz et al.

3. Using a BPMN signal – the actor, who performs the given C-act emits a
BPMN signal on creating a C-fact. This has the benefit that apart from the
other actor, any other actor may subscribe to the signal reception, which is
aligned with the PSI-theory, where facts are present in the world, not only
in the transaction, thus available also outside the transaction (modelled by
interstriction links).

However, under a closer consideration, none of the above solutions are com-
pletely sufficient for a correct handling of revokes. For each revoke act, the PSI-
theory specifies a certain state in which the transaction must be. The state is
formulated like “X or further”: request(ed) or further, promise(d) or further
and so on. This is why we decided for another representation: the BPMN 2.0
data store, into which the state of the transaction is stored. This data store is
connected to every C-act activity by an association.

4.3 P-(F)acts

It is not necessary to store information about them creating a P-(f)act into
the data store, because they can be derived from C-(f)acts: According to the
PSI-theory, the P-fact starts to exist based on acceptance of the product, so
P-(f)acts can be expressed by an activity only. If need be (optimisation of an
implementation), they can be stored similarly to the C-(f)acts described above.

4.4 Actors

Swimlanes in BPMN are isomorphic to actors in DEMO [10]. BPMN lacks a
higher abstraction level of actor roles, being the logical sum of responsibility,
authority and competence necessary to carry out the product [3]. There are gen-
erally two approaches: (i) abstracting the swimlanes to actor roles (like Decider
or Concluder), (ii) remaining on the BPMN’s low level of abstraction and using
swimlanes to represent actors – company functional roles – like CEO or specific
people like Jane.

Another possibility for representing actor roles is using BPMN pools, where
each pool represents one actor. The resulting BPMN models will be very simi-
lar to models using swimlanes, however we have not chosen this representation
because: (i) The correspondence of actor roles and transactions is not explicit,
(ii) sequence flow cannot be used between pools, which would result in using
messages, further complicating the diagrams.

4.5 The Composition Axiom

A composition of transactions may be dealt with in two ways: (i) to model all
the transactions in one diagram, (ii) to separate diagram for every transaction.
Generally, both approaches are valid, but (ii) may lead to huge diagrams, as can be
seen in Figs. 8 and 9. As (ii) guarantees the limit of the diagram size, we preferred
it. On the other hand, it may render understanding of the big picture harder.

We propose the following 2-part expression of the composite axiom:

Converting DEMO PSI Transaction Pattern into BPMN 91

1. Launching a child transaction in a specific place in the parent transaction.
The child transaction must be started just after creating a specific C-fact. A
message-throwing event may be used in case of initiating a single child trans-
action. In case of firing multiple child transactions, signals are appropriate,
similar to the C-acts above. Moreover, it is needed to ensure the multiplicity.
In case that it is greater than one, we need to initiate several child transaction
instances. This is achieved either by using a cycle for creating child trans-
actions or a loop activity. Modelling by cycle (Fig. 2) means, that the model
contains an activity counting, how many times the activity was run. After
this activity, there is a gateway. If the counter has not reached the number of
child transaction instances to spawn, the process goes into message throwing
event to start a child transaction instance and then the process returns to the
counting activity. This happens 0...N times, as required. When multiplicity is
modelled by a loop activity (Fig. 3), the activity is in the form of a subprocess
(with parallel loop), which sends a signal3 that starts a child transaction. In
the examples described below, the first (counter) variant is used because the
model is more explicit. At the same time for models with a multitude of child
transactions, the more concise loop variant is recommended. Also, from the
execution point, the implementation variant may be driven by the vendor, as
correlation of instances must be ensured (more discussed in Sect. 4.8).

2. Blocking execution of the parent process until the child process has not
reached the given state (creating a C-fact being waited on). This blocking can
be realized by a BPMN catching event condition in the parent process waiting
for a specific condition before the given C-act. Here, a conditional event must
be used instead of a signal event, as we do not wait just for a signal, but for a
specific instance in case of multiple child transaction instances. This situation
is modelled in Fig. 4. Again, specific vendor correlation techniques may apply
(Sect. 4.8).

Fig. 2. Launching child transactions by using counter

3 We cannot use a message send in this situation, because the encapsulation would be
violated.

92 O. Mráz et al.

Fig. 3. Launching child transactions by using loop

Fig. 4. Waiting for a child transaction

4.6 Revokes

Revokes are the most challenging part of the conversion. Let us present the
challenges and how we dealt with them:

– A revoke must be applied on a specific instance of the transaction; in a certain
time, there can be several parallel transaction instances running. This must
be ensured by the BPMN system (Sect. 4.8).

– A revoke can be fired independently on the running main process. Can be
modelled straightforward, as BPMN allows several independent start events.

– A revoke can be fired only if the transaction is in an allowed state. This
we ensure by an activity checking the state of the transaction, which was
previously stored into a data store.

– When revoking a C-fact, after which a child transaction has been started,
the child transaction must be completely revoked. This is done by calling
a compensation throwing event by the revoke, followed by performing the
compensation activity by the corresponding parent transaction.

– In the process flow, there can happen a situation, that a P-fact was already
created (the P-act has been finished), while a revoke moves the process to a
state preceding performing the P-act. In this case, it is necessary to “throw-
away” the P-fact. We solve this using a BPMN compensation element and
the respective compensation activity, similarly to the previous point.

– A revoke must be initiated by the actor who performed the respective C-act
to be revoked. This is ensured by using the same identifier for the swimlane
of the actor role initiating the revoke as for the actor role of the respective
transaction.

A revoke works in the following steps according to the transaction pattern.
First, the revoking actor asks the other actor for granting the revoke. The other

Converting DEMO PSI Transaction Pattern into BPMN 93

Fig. 5. Transaction in BPMN, Happy flow is marked by green colour (Color figure
online)

Fig. 6. Revokes in BPMN

94 O. Mráz et al.

actor allows or refuses. If the revoke is allowed, the main process returns to the
appropriate state. We model this by using simple BPMN subprocess with a set
of appropriate activities (Fig. 6).

4.7 The Resulting BPMN Model

The complete transaction pattern described by the BPMN notation illustrates
Fig. 54. Although it describes only one transaction, it is very complex and com-
plicated. As it is presented in Sect. 5 and discussed in Sect. 6, models containing
more than one transaction are not easily readable by usual readers and it is
recommended to use them for the process execution in BPM systems.

4.8 The Execution

Apart from documentation purposes, BPMN models can be simulated and/or
executed. While designing the conversion, we tried to make the resulting BPMN
model precisely following the required behaviour. Unfortunately, the BPMN
standard does not specify the execution implementation details. Each com-
pany developing BPM system (system for modelling, simulation and execution
of processes), as Intalio, BizAgi or IBM, has their specific implementation, which
requires various additional modelling and programming steps necessary to make
the model executable. At the same time, some of the BPMN constructs may
not be supported or they are implemented differently. All these aspects must be
taken into consideration for turning the resulting BPMN models into an exe-
cutable form. Generally, here are the things that must be implemented:

– Agenda handling. The possibility to start a process and providing a “task
inbox” of the required reactions on the originating C-facts. This requires
developing some sort of user interface (UI).

– Allowing the participants to make their choices. Again, some sort of UI solves
this. Also, some choices may be determined by complex facts evaluation spec-
ified in the Action Model. There are two possible approaches:
1. Leaving the evaluation to users, which means the users have the rules in

their head or consult the Action Model or any other codification of the
rules.

2. Programming the BPM system to (help) evaluate the rules. The extent
to which the automation may happen depends on the possibilities of the
BPM system used and also on the context (the availability of the necessary
data in the company technological systems and their accessibility).

– Signals handling.
– Implementation of reading and writing data to data stores.
– Instance matching. Specific instances of transactions must be matched in some

situations as child transactions (Sect. 4.5) and revokes (Sect. 4.6). Intalio and
Oracle call this concept a “correlation”.

4 This and the following models may not be legible in the printed version. We rec-
ommend obtaining the electronic (zoomable) version. The source models may be
downloaded from https://ccmi.fit.cvut.cz/methodologies/bpmn/.

https://ccmi.fit.cvut.cz/methodologies/bpmn/

Converting DEMO PSI Transaction Pattern into BPMN 95

5 Example – Case Voley

As an example for the demonstration of our method, the traditional Case Voley
example [7] was selected because of its simplicity, yet including the substantial
constructs. In Fig. 7 there is the OCD diagram of this example.

The process has two transactions and three actors. The transformed BPMN
model converted by the described method is in Figs. 8 and 9. Subprocesses
depicted in Fig. 6 are not shown here, as they are generally the same.

Fig. 7. OCD of Case Voley [7]

Fig. 8. Case Voley converted into BPMN – part 1

96 O. Mráz et al.

Fig. 9. Case Voley converted into BPMN – part 2

6 Discussion and Conclusions

The limitation of typical BPMN models from the view of the PSI-theory lie in
their limited expression of reactions to unexpected situations. Many situations
like decline, reject and especially revokes are not covered in the models, which
causes operation troubles. The presented conversion method offers a remedy
to this by bringing the complete transaction pattern into BPMN, which means
including all revokes. Moreover, compared to the previous efforts, our method
deals with spawning of multiple child transaction instances (initiation links with
multiplicity �= 1) and waiting for them in the parent transaction (waiting links
with multiplicity �= 1). Also, the resulting models are executable.

As for the DEMO models covered, the described conversion method covers
the Construction Model plus the Process Model. Based on a concrete BPM
system implementation, decision rules contained in the Action Model can be
incorporated in the respective activities, as described in Sect. 4.8, which is also
true for rules from the State Model.

The concept of interstriction has not been discussed, however a keen reader
has probably realised that whenever an actor in its activity needs a specific

Converting DEMO PSI Transaction Pattern into BPMN 97

information from another transaction, it is simply modelled by accessing the
respective transaction data store.

The example shows that in spite of the simplicity of the DEMO model
involved, the resulting BPMN model is complex. The reason is mostly the com-
plete transaction pattern, which covers all the possible situations according to
the PSI-theory. The question arises about the human readability. There are sev-
eral points to this topic:

1. In practice, the model may be made smaller by leaving out the parts, which
are not applicable (which means they (almost) never happen). These are
typically the revoke patterns.

2. Yet, for complex models the resulting size may remain still unmanageable.
In this case it would be advisable to cut the model into smaller pieces using
some sort of decomposition and/or link BPMN elements. The concrete way
how to do this may be explored in a future research.

3. It is questionable whether a human readability is required. If one wants
human-readable diagrams according to the PSI-theory, the DEMO diagrams
are the solution, as they have been tailored to it. It may be the case that
learning and applying them comes at a lower cost than forcing the diagrams
into a BPMN notation, just because “BPMN is the standard”.

Our stance is that the greatest possibilities of our method lie in machine
readability, which means generating BPMN models that can be fed into a BPMN
execution system to implement an automated workflow that is able to react to
every possible situation specified by the complete transaction pattern, not just
a typical BPMN “happy path with a bit of branching”.

Apart from converting the DEMO models, the conversion may be applied
also for analysis of existing BPMN models of business processes as described
in Sect. 2.1. The way of working would be to transform the BPMN models into
DEMO and then generate the “supercharged” BPMN version by converting them
back using our method.

As for the future work, a verification on a bigger models from practice is
necessary. As such conversion will not be feasible by hand, an implementation
of the conversion automation will be required.

Acknowledgements. This research has been funded by CTU SGS grant No.
SGS16/120/OHK3/1T/18. The authors wish to deeply thank ForMetis BV and espe-
cially Dr. Steven van Kervel for the kind support of this research.

References

1. OMG: OMG: Business Process Model and Notation (BPMN) Version 2.0
2. Silver, B.: BPMN Method and Style, 2nd edn. with BPMN Implementer’s Guide:

A Structured Approach for Business Process Modeling and Implementation Using
BPMN 2.0. Cody-Cassidy Press, New York, October 2011

3. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Berlin
(2006)

98 O. Mráz et al.

4. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., Kervel, S.J.V.: The discipline of enterprise
engineering. Int. J. Organ. Des. Eng. 3(1), 86–114 (2013)

5. Op ’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology in governing
complex enterprise transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.)
EEWC 2012. LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29903-2 6

6. Décosse, C., Molnar, W.A., Proper, H.A.: What does DEMO do? A qualitative
analysis about demo in practice: founders, modellers and beneficiaries. In: Aveiro,
D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 16–30.
Springer, Cham (2014). doi:10.1007/978-3-319-06505-2 2

7. Dietz, J.L.: The Essence of Organization - An Introduction to Enterprise Engi-
neering. Sapio bv, Voorburg (2012)

8. Guizzardi, G., Wagner, G.: Can BPMN be used for making simulation models? In:
Barjis, J., Eldabi, T., Gupta, A. (eds.) EOMAS 2011. LNBIP, vol. 88, pp. 100–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24175-8 8

9. Caetano, A., Assis, A., Borbinha, J., Tribolet, J.: An application of the Ψ -
theory to the analysis of business process models. In: Poels, G. (ed.) CONFE-
NIS 2012. LNBIP, vol. 139, pp. 258–267. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36611-6 24

10. Nuffel, D., Mulder, H., Kervel, S.: Enhancing the formal foundations of BPMN by
enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS
-2009. LNBIP, vol. 34, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01915-9 9

11. Naplava, P., Pergl, R.: Empirical study of applying the DEMO method for improv-
ing BPMN process models in academic environment. In: 2015 IEEE 17th Confer-
ence on Business Informatics, vol. 2, pp. 18–26, July 2015

12. Figueira, C., Aveiro, D.: A new action rule syntax for DEmo MOdels based auto-
matic workflow procEss geneRation (DEMOBAKER). In: Aveiro, D., Tribolet,
J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 46–60. Springer, Cham
(2014). doi:10.1007/978-3-319-06505-2 4

13. Heller, S.: Usage of DEMO methods for BPMN models creation. Master thesis,
Czech Technical University in Prague. Computing and Information Centre (2016).
https://ccmi.fit.cvut.cz/wp-content/uploads/2017/03/Heller thesis 2016.pdf

http://dx.doi.org/10.1007/978-3-642-29903-2_6
http://dx.doi.org/10.1007/978-3-642-29903-2_6
http://dx.doi.org/10.1007/978-3-319-06505-2_2
http://dx.doi.org/10.1007/978-3-642-24175-8_8
http://dx.doi.org/10.1007/978-3-642-36611-6_24
http://dx.doi.org/10.1007/978-3-642-36611-6_24
http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-642-01915-9_9
http://dx.doi.org/10.1007/978-3-319-06505-2_4
https://ccmi.fit.cvut.cz/wp-content/uploads/2017/03/Heller_thesis_2016.pdf

DEMO Business Processes Design to Improve
the Enterprise Business Continuity Plans

José Brás1(B) and Sérgio Guerreiro2,3

1 Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
a21400334@alunos.ulusofona.pt

2 IST, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
sergio.guerreiro@tecnico.ulisboa.pt

3 INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa, Portugal

Abstract. Organizations are concerned in building resilience to miti-
gate the challenges that result from unpredictable and constant threat
scenarios. Therefore, designing, implementing and operating solutions to
increase the resilience is nowadays a key concern that must be addressed
properly. The most usual resilience mechanism to deal with the unpre-
dictable within the business ecosystem and correspondingly IT is to pro-
duce business continuity (BC) plans. On the one hand, a BC plan is
usually established with the data collected from the operation and from
the as-is holistic design of business processes (BP). However, BC plans
are usually challenged by the insufficient, fragmented, inconsistent and
incomplete information when capturing the enterprise’ BP. On the other
hand, the Business Impact Analysis (BIA) must be properly prepared
to support all business activities and build good recovery strategies,
demanding precise, concise, complete, coherent and consistent enterprise’
business processes. This paper integrates and evaluates the DEMO holis-
tic design of business processes with BIA. This solution contributes to
the identification and enrichment of existing weaknesses in BC plans and
thus improve resilience in case of threat. The validation of the solution
is performed using an insurance company case study.

Keywords: Business continuity · Business transactions · DEMO ·
Business Impact Analysis

1 Introduction

In order to ensure an ability to operate on an ongoing basis and limit losses
in the event of severe business disruption, companies need to have documented
BC and Disaster Recovery (DR) plans. They must be reviewed on a periodic
basis and updated to reflect changes in the business environment or within the
supporting IT infrastructure. In general, the BC and DR plans need to iden-
tify critical functions, assets, processes and supporting systems in the business
impact assessments, determine ways to operate key external services and internal
functions in situations of disruptions, including alternative sites.
c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 99–107, 2017.
DOI: 10.1007/978-3-319-57955-9 8

100 J. Brás and S. Guerreiro

After a disruptive situation, it is necessary to give an adequate response to
the situations arising from it, and for this it is required to pre-establish the nec-
essary measures to give an adequate response. The BC Plan allows the founding
of strategies, procedures and critical actions necessary to respond and manage
a crisis situation [16] and expresses an organization condition to responds to
unexpected disasters, disruptions or sudden business changes [5]. These situa-
tions can result from a natural disaster, a catastrophe or might just occur from
a simple accident and can cause the interruption of a service, a partial or total
loss of the processes that sustain the business [9].

The British Standards Institution defines BC as the “capability of the orga-
nization to continue the delivery of products or services at acceptable predefined
levels following a disruptive event”, also it defines business continuity manage-
ment (BCM) as “is a holistic management process that identifies potential threats
to an organization and the impacts to business operations those threats, if real-
ized, might cause, and which provides a framework for building organizational
resilience with the capability for an effective response that safeguards the interests
of its key stakeholders, reputation, brand and value-creating activities” [1].

In a recent study [3], present a study on the adoption of DEMO (design
methodology and engineering for organizations) as a complement to the process
of analyzing the impact of processes on BC.

The adoption of DEMO in business ontology as become an important tool,
not only as a form of process modeling, but also in the case of separations, reor-
ganizations and post-merger integration of companies, in the form of process re-
engineering. These facts are supported by several studies [6,14]. DEMO applica-
tions at a business level have demonstrated a great return in terms of modeling
effort and in this particular case in this study, a systematic and reproducible
abstraction capability that DEMO allows us to make and implement at the level
of organizations, are beneficial to a business continuity function. The return on
modeling effort (ROME) in this case is even higher by the integration of the two
methodologies in the prevention and mitigation of risks [13].

The research problem is the following: “the documentation to support a BC
plan is often insufficient, fragmented and inconsistent, leading to misjudgment,
misinterpretations and wrong impact calculations.”

This paper contributes with an integration between BC best practices and
the DEMO concepts, to allow the construction of new models that enhance and
serve as foundational knowledge to help building a BC Plan.

The rest of the paper is organized as follows. The next section of the paper,
Sect. 2, introduces the ontological approach to BC combined with the concepts of
DEMO theory and methodology, where the case study was founded. Afterwards,
Sect. 3 presents conceptual foundations, particularly about BC concepts and the
case study advances and the research methodology used in this paper. Subse-
quently, Sect. 4 presents the outcome learnings obtained from the case study and
finally, Sect. 5 concludes and presents future work.

Improving Business Continuity Plans with DEMO 101

2 Background

Organizations now need to find solutions to face emerging challenges due to
increasing complex organizational BP, consequence of the development of Indus-
try 4.0 and by the Internet of Things [4,8,11,12]. An ongoing effort to develop
new solutions to understand, implement, monitoring and continuous manage
BCM [1] have motivated the industry, e.g., the TOGAF 9.1 standard [15] that
included the principle of BCP within the architecture principles framework.

Regarding Enterprise Ontology, nowadays it is fundamental to an organiza-
tion not only to understand how the his business works but also to capture and
retain knowledge. This can be done by modeling its BP with the use of an ontol-
ogy for describing the elements, concepts, structures of the enterprise and the
business itself. This knowledge can be captured and represented by modeling,
here called the organizational model. Enterprise Ontology is a way of perceiving
the construction and operation of a company independently of its realization
and implementation. It is basically the highest-level constructional model of an
enterprise, and the implementation model being the lowest one. It is also a way of
gaining knowledge about how the organization works, allowing the development
of a global awareness about the organization, as it allows the sharing of knowl-
edge among individuals. This can be done through the representation of different
organizational aspects, such as BP, resources (Technological artifacts, suppliers,
key stakeholders etc.) and by representing the organizational structure.

Regarding Business Continuity Management (BCM), it allows a company
to align its business to Governance, Risk and Compliance (GRC) frameworks.
“BCM Lifecycle shows the stages of activity that an organization moves through
and repeats with the overall aim of improving organizational resilience. These
stages are referred to as the Professional Practices and are made up of Man-
agement and Technical Practices” [2]. The goal of the BIA is to detect and
classify which business units/departments and processes are essential to the sur-
vival of the company and is the base of a BC and DR plans being a vital piece
of the process in a comprehensive BC Program. Identifying correctly all BP
will help evaluating the impact of disasters on business, providing the basis for
investment in recovery strategies as well allowing to invest in prevention and
mitigation strategies. After perform the BIA, the critical BP and dependencies
are identified, which will allow the organization to prioritize resources and focus
on the most critical processes first, when doing planning or actual BP recovery
during an Severe Business Disruption. Finally, it is important to highlight that
the International Organization for Standardization (ISO) Technical Committee
(TC) 292, has already released the ISO/TS 22317:2015 - Societal security BCM
Systems Guidelines for BIA [10]. Figure 1 shows and highlights the overall steps
to accomplish the BIA process, along with the DEMO methodology. The outputs
from the BIA and Risk Assessment (RA), which establishes and maintains the
capability to resume business operations upon a disruption of service or event,
will be the base and permit to develop and implement a resiliency strategy.

102 J. Brás and S. Guerreiro

3 Organizational Requirements

In order to formulate the understanding of the applicability of DEMO and BC
working together, to a BC strategy, it is necessary to provide important infor-
mation to assist the understanding of the organization’s needs and constraints.
Companies that are regulated (telecommunications or bank and insurance, as
an example) need to have consistent and well documented processes. They will
form the basis of their activity which drives BC and DR planning, and need to
be performed in a consistent manner and go through all relevant risks in order to
create resilience. To do this, an organization must then identify organization’s
activities, functions, services, products, partnerships, supply chains, relation-
ships with interested parties, and the potential impact related to a disruptive
incident [7].

If we analyze Fig. 1, over steps (A to D) of the BIA process we can find
links to the DEMO methodology where we find points of contact between the
two methodologies with DEMO models, more specifically with the OCD model.
This can serve as a base of analyses as these steps state that it is necessary to
identify all activities that support the delivery of products and services, assess
their impacts over time of not performing these activities, create an action plan
by setting prioritized time-frames for resuming critical activities and to end, it
is also essential to identify dependencies and all supporting resources for these
activities, points where DEMO can give important contributions.

Fig. 1. Business Impact Analysis (Adapted from ISO 22301(2012)) [1, p. 15].

Improving Business Continuity Plans with DEMO 103

In summary, for a most comprehensive and credible BIA, all the important
aspects of a process, interactions and dependencies, are required to correctly
calculate the impact of a disruptive event on an organization. Since DEMO uses
BP as the main focus of its methodology, its feature becomes an essential tool
for studying or analyzing non-business impacts.

3.1 The Case Study Description

In addition to the investigation carried out by the literature review, a typical
(potentially fictitious) BP of the insurance activity, involving different depart-
ments and external suppliers, was used as a case study. In this process, it was
documented all the business flows, dependencies and activities between depart-
ments that were recaptured and documented using the DEMO methodology.

The BP and existing documentation (based on Rich Text Figures (RTF))
where analyzed and investigated, targeting all the major stakeholders that would
be covered, and DEMO was used to re-evaluate, complete and re-validate the
entire process, where applicable.

The method to capture a BP is normally a arduous assignment to accom-
plish. Stakeholders tend to use their natural “language” very much related to
their specific area to describe their internal processes. Occasionally this implies
misinterpretation by other departments that they interact with, since there isn’t
a common understanding about the way to capture business processes. Man-
agers also need to easily audit and validate that the process complies with what
is described at the business plan and check its completeness.

Methodologically, the original information which was collected, accessed and
used during the course of the research, and originated the findings and final
report of this paper. The collection and the analysis of data for this research was
done doing meetings with process key stakeholders. They are the owners of the
needed knowledge that will help in developing more in-depth understanding of
the processes to be modeled. Also some semi-structured contacts on the subject
with peers, was done and internal documents were also analyzed and reviewed.

4 Outcome Learnings

The research carried out under the DEMO integration with the BC process, more
specifically in its conjunction with the BIA allowed to highlight some benefits
by using the two methodologies together.

On the one hand, from the literature review, this research allowed the identifi-
cation of a set of limitations that could be solved by the DEMO/BIA integration.
These findings are presented in Table 1.

On the other hand, from the analysis of the conducted case study, the results
were important to allow a better understanding of the problem and also to show
the difficulties that the business continuity function finds and leads, either in the

104 J. Brás and S. Guerreiro

Table 1. Limitations findings and DEMO/BIA solution from the literature review

Limitations Benefit by using DEMO/BIA integration

Lack of representation of the external
players role. This effect is highlighted
when comparing the BIA with the OCD
DEMO models

This limitation is well solved in Fig. 2 -
Organization Construction Diagram
(OCD), where all the actors involved in
the business processes are fully expressed,
including external actors together with
the banks shared between them. These
banks are not taken into account in a
BIA study. Nevertheless they are
mandatory to prepare a proper BC plan

Impact quantification for the business
offered by the BIA, but not offered by
DEMO

It is required in this case additional
resources to other solutions, for instance:
e3value, in which this case the BIA
allows assess and collect evidences

Lack of detail and granularity of the BIA
documents

Higher levels of granularity defining the
DEMO compared to models and data
models that are typically used by the
BIA

Lack of state models used in the BIA
calculation of risks and impacts on
business. DEMO uses a formal state
model to declare the rules, types of
essential facts and relevant to real-world
objects in its field of application

In DEMO, a state model is specified
using an “object-fact diagram” (OFD)
that is able to show the essential
modelling of the world

The BIA does not show evidences of
documentation where the dependencies
between BP are sufficient to calculate the
impact of disruptions into business
processes

DEMO models highlight evidences of the
dependencies of all the actors of the
process. Offering a full detail of the
conversation between actors within a
business transaction

day-to-day basis, or to do the necessary anticipation of potential crises. These
results are summarized in Table 2.

The use of a DEMO models will allows management to have a more broad
and comprehensive view of all BP, permitting them to better assess the plans
consistency, and to verify if it addresses all necessary activities to support BP. By
using an OCD model it is easier to audit and confirm if the plan and the described
processes are consistent and correct. Also permits to assess and audit whether
the capture of the necessary resources and their interactions and dependencies
have been properly carried out.

The combination of these two frameworks can allow an organization to have
a more complete view of the structure of his business and also can serve to
have a common language that can be more easily understood by all involved

Improving Business Continuity Plans with DEMO 105

Table 2. Limitations findings and DEMO/BIA solution from the case study

Limitations Benefit by using DEMO/BIA integration

Lack of an inventory of external
databases to the organization properly
connected to the business processes to
allow the BIA to estimate the impact of
the loss of this information

DEMO help in qualifying and
quantifying these data. With DEMO this
is easier to detect because they are
associated with the processes, this aspect
reveals to be of great importance because
it is an asset in terms of control and
management of this information

Lack of a proper inventories of business
rules and their mapping in the respective
processes in a systematic way

It is evident by comparison with the
existing documentation that DEMO
models uses which are better organized -
supported by the DEMO models (Action
Model (AM) and Process Model(PM))
and its base methodology

Legal and Compliance related issues that
arise due to often unauthorized and
improper access to customer data, which
can be done during and after recovery
from disaster

These unauthorized access are
incomplete documentation of reflection
and failures and communication of rules
and business standards in the
documentation that supports the BP. In
this case, the modelling allows using
DEMO through OCD diagram (shown in
Fig. 2 - DEMO OCD) which refers to the
databases used in the process and AM
and PM models support the following
business rules and regulations

If a disaster occurs, the failures after a
recovery must be mitigated. These can
be derived from non-compliance with the
legal aspects and regulation of the
entities regulating the banking and
insurance business. This needs to be
easily identifiable and be aggregated to
each processes description. One example
can be the times required to respond in
case of a complaint from a customer and
its accessory penalties in case of default

DEMO allows a response to this need by
using the model states to map all
business process transactions in time and
the AM and PM models for the rules and
regulations

stakeholders. In addition to this it allows an easier way to redesign and re-
engineering the business processes in the case of a major disruption by supporting
the management board dealing with a crisis situation and fundamentally rethink
how they will do their work.

106 J. Brás and S. Guerreiro

Fig. 2. DEMO OCD diagram - customer’s service life cycle

5 Conclusions/Future Work

Regarding the benefits of the complementary use of DEMO with BIA, the present
paper pinpoints that the DEMO methodology offers advantages to substantiate
the BIA calculations of the impacts of a disruptive event on the business in
more comprehensive and rigorous way by the use of DEMO models. The DEMO
methodology used in the presented model allowed to represent more realisti-
cally all the main aspects and also all dependencies related to a BP. Although
our initial results indicate positive benefits for combining the DEMO and BIA
methodologies, a set of research questions require a more in-depth and method-
ical analysis of the results found. In particular, the role of DEMO models and
their actual applicability to the benefit of their use with the BIA will in this case
be further and more detailed. The possibility of using DEMO to re-engineer
processes in the event of a real disaster occurring and some of the processes
affected is one of the possible areas of interest and development of new studies
and research.

Acknowledgments. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

Improving Business Continuity Plans with DEMO 107

References

1. ISO 22301:2012: Societal security – business continuity management systems
– requirements. International Organization for Standardization (2012). https://
www.iso.org/obp/ui/#iso:std:50038:en

2. BCI: What is business continuity? (2017). http://www.thebci.org/index.php/
resources/what-is-business-continuity

3. Brás, J., Guerreiro, S.: Designing business continuity processes using DEMO. In:
Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP,
vol. 272, pp. 154–171. Springer, Cham (2016). doi:10.1007/978-3-319-49454-8 11

4. Cerullo, V., Cerullo, M.J.: Business continuity planning: a comprehensive app-
roach. Inf. Syst. Manag. 21(3), 70–78 (2004)

5. COBIT: Cobit 5 for assurance. ISACA (2013). https://books.google.pt/books?id
=FDdbAwAAQBAJ&lpg=PA1&dq=cobit%205&hl=pt-PT&pg=PA2#v=
onepage&q=cobit%205&f=false

6. Dietz, J.L., Hoogervorst, J.A., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., van Kervel, S., et al.: The discipline of
enterprise engineering. Int. J. Organisational Des. Eng. 3(1), 86–114 (2013)

7. Drewitt, T.: A Manager’s guide to ISO 22301: a practical guide to developing
and implementing a business continuity management system. IT Governance Ltd.
(2013)

8. Elliott, D., Swartz, E., Herbane, B.: Business Continuity Management 2e: A Crisis
Management Approach. Routledge, London (2010)

9. Heng, G.M.: Managing Sustaining Your Business Continuity Management Pro-
gram. GMH, Singapore (2007)

10. ISO: Societal security - business continuity management systems - guidelines for
business impact analysis (BIA) (2015). http://www.iso.org/iso/catalogue detail.
htm?csnumber=50054

11. Krishnamurthy, T., Shetty, R.: 4G: Deployment Strategies and Operational Impli-
cations: Managing Critical Decisions in Deployment of 4G/LTE Networks and
their Effects on Network Operations and Business. Expert’s Voice in Networking.
Apress, New York (2014). https://books.google.pt/books?id=-eCEBQAAQBAJ

12. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. business.
Inf. Syst. Eng. 6(4), 239–242 (2014). http://dx.doi.org/10.1007/s12599-014-0334-4

13. Op’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology in governing complex
enterprise transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC
2012. LNBIP, vol. 110, pp. 77–92. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29903-2 6

14. Op’t Land, M., Zwitzer, H., Ensink, P., Lebel, Q.: Towards a fast enterprise ontol-
ogy based method for post merger integration. In: Proceedings of the 2009 ACM
Symposium on Applied Computing, pp. 245–252. ACM (2009)

15. TOGAF: TOGAF Version 9.1. Open Group Standard (2011)
16. Tucker, E.: Business Continuity from Preparedness to Recovery: A Standards-

Based Approach. Elsevier Science, Amsterdam (2014). https://books.google.pt/
books?id=v95FBAAAQBAJ

https://www.iso.org/obp/ui/#iso:std:50038:en
https://www.iso.org/obp/ui/#iso:std:50038:en
http://www.thebci.org/index.php/resources/what-is-business-continuity
http://www.thebci.org/index.php/resources/what-is-business-continuity
http://dx.doi.org/10.1007/978-3-319-49454-8_11
https://books.google.pt/books?id=FDdbAwAAQBAJ&lpg=PA1&dq=cobit%205&hl=pt-PT&pg=PA2#v=onepage&q=cobit%205&f=false
https://books.google.pt/books?id=FDdbAwAAQBAJ&lpg=PA1&dq=cobit%205&hl=pt-PT&pg=PA2#v=onepage&q=cobit%205&f=false
https://books.google.pt/books?id=FDdbAwAAQBAJ&lpg=PA1&dq=cobit%205&hl=pt-PT&pg=PA2#v=onepage&q=cobit%205&f=false
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50054
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50054
https://books.google.pt/books?id=-eCEBQAAQBAJ
http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1007/978-3-642-29903-2_6
http://dx.doi.org/10.1007/978-3-642-29903-2_6
https://books.google.pt/books?id=v95FBAAAQBAJ
https://books.google.pt/books?id=v95FBAAAQBAJ

Normalized Systems and Evolvability

Investigating the Evolvability of Financial
Domain Models

Marjolein Deryck1(B), Ondrej Dvořák2(B), Peter De Bruyn3(B),
and Jan Verelst3(B)

1 Department of Accountancy and Finance, University of Antwerp,
Antwerp, Belgium

marjolein.deryck@uantwerpen.be
2 Faculty of Information Technology, Czech Technical University,

Prague, Czech Republic
ondrej.dvorak@fit.cvut.cz

3 Department of Management Information Systems,
University of Antwerp, Antwerp, Belgium

{peter.debruyn,jan.verelst}@uantwerpen.be

Abstract. Evolvability is a characteristic dealing with change in Infor-
mation Systems (IS). As the requirements evolve in time, the complexity
of the system may increase. In turn, the ability to change it decreases.
Consequently, the cost of a change can become unbearable. A domain
model is an important abstraction covering key aspects of IS. Similarly
to the IS it represents, it can suffer with the same evolvability issues. The
goal of this paper is to assess combinatorial effects (CE) in a financial
industry domain model, more specifically a domain model of financial
risk management. It reveals difficulties related to identifying combinato-
rial effects in domain models in general and presents some insights on
the nature of combinatorial effects on this level.

Keywords: Domain model · Normalized systems · Evolvability ·
Combinatorial effect

1 Introduction

The start of the 21st century is characterised by a digitalization of every aspect
of society. The number of computers, internet access, applications and informa-
tion increases exponentially and societal structures adapt to it [1–3]. At the same
time, enabled by this digitalization, the expectations of customers and regulators
compel enterprises to become more agile at every level. For Information Systems
(IS), this can be interpreted as the capability to adapt to new functional require-
ments. These new functional requirements arise from changes in the environment
and processes that surround the system as well as the user’s experience [4]. This
phenomenon is captured by Lehman’s law of continuing change. At the same
time Lehman posits the law of increasing complexity. It states that unless some-
thing is done to prevent it, the structure of an IS deteriorates over time [5]. The
c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 111–125, 2017.
DOI: 10.1007/978-3-319-57955-9 9

112 M. Deryck et al.

challenges linked to that are often explained as technical debt [6]. At the end,
this results in the compulsory replacement of the existing system, which goes
against the idea of evolvability, and cost effectiveness. Op’t Land [7] attaches
that a consequence of the deteriorating structure is an annual growth in budgets
on development and maintenance. He clarifies that “Enterprises that decrease -
or (even) keep constant - the IT budget will be faced with less satisfactory IT,
decreased support of organizational changes, decreased business IT alignment
and decreased situational awareness”. Based on this statement, he identifies a
challenge in a software development area - an approach that could help IT com-
panies to develop software that exhibits high quality and is quickly continuously
changeable over time. This challenge is captured in a term evolvability.

Following Cook’s definition in [8], we altered it as:

Definition 1. Evolvability is the capability of software products and their related
design models to be evolved to continue to serve its customer in a cost effective
way.

A modular decomposition of a large system into smaller subsystems has long
been identified as a way to improve evolvability and facilitate changes (e.g. [9–
11]). To obtain its benefits, the subsystems should be partitioned in a precise,
unambiguous, and complete way, and they should interact through standardised
interfaces [11]. However, it is recognized that no universal measure or compo-
sition of a product’s modularity exists ([12–14]). Different decompositions are
possible and a firm should choose a decomposition that aligns with its objectives
[14]. In their highly-referenced review paper, Campagnolo and Camuffo empha-
sise a lack of research on product design modularity that addresses market or
industry specific factors possibly affecting product design modularity itself [14].

Normalized systems (NS) theory proposes a systematic methodology for a
modular design with the objective of creating evolvable systems [15]. Its applica-
bility as a theory for evolvable modular software systems has been proven by
the development of critical software systems for multiple organizations [16]. The
use of the theory in the broader scope of enterprise engineering has been demon-
strated by research performed by De Bruyn, Huysmans and Van Nuffel [17–19].
However, the successful identification of Combinatorial Effects (CE) in some
enterprise engineering instruments does not guarantee the general applicability.
CE typically emerge at a very low and fine-grained level. Aggregating this in
higher-level abstractions may hide the underlying impacts.

Moreover, the application of NS theory to specific industries only took off
recently, e.g., [20]. Its mission is to demonstrate the factors that may hamper
evolvable modular design. Such an analysis has not been done yet on the level
of domain models, neither in the financial industry.

Thus, the purpose of this paper is to investigate the evolvability of domain
models in the finance industry. We will focus on the sub-domain of market risk
management, that is expected to be subject to regulatory changes in the coming
years. Due to the importance of domain models in software development in general,
the main focus is on analysing corresponding reference models using NS theory.

Investigating the Evolvability of Financial Domain Models 113

We present typical change requests, and we show their possible implementation.
By doing so, CE inherent in the models are uncovered and described. The presence
(or absence) of these effects indicate how hard (or not) it is for companies to imple-
ment changes within a reasonable time frame. Ergo, CE in this case may point to
an increased risk for regulatory penalties if short-term changes are imposed.

In Sect. 2, we elaborate in general on what is meant by a change, and what
might be its consequences. Next, in Sect. 3, we deeply introduce a finance domain
model and we outline its possible changes. In Sect. 4 we revisit evolvability in
domain models. We present related work in Sect. 5, and we conclude the paper
in Sect. 6.

2 Evolvability

In the previous section we mentioned that the complexity of IS increases due to
new functional requirements. However, in itself the requirement does not incline
the increase of complexity. Rather, the corresponding changes effect it. Thus, in
this section, we will clarify what it is meant by a change.

Clearly, IS can be changed at various levels. On the level of its source code,
we usually refactor, optimise, add, or delete certain code constructs, e.g., func-
tions in structured programming [21], or classes in object oriented programming
[22]. On the level of a database, we alter, drop, or create new database objects,
e.g., tables, triggers, and views in relational databases [23]. The modification of
a software configuration is a change as well. Moreover, several cloud comput-
ing services offer a scalability option. For example, Microsoft Azure platform
can adapt the system to an unexpected amount of workload by increasing or
decreasing resources for an application [24]. Therefore, by introducing a new
functional requirement “adopt to a workload automatically”, we do not change
the system itself at all. Yet the changes in the surrounding environment can
affect it significantly.

Thus, in any kind of system, the formalisation of what a change means, is
crucial. Below, we will show that NS formalises it by a term task as a subject
to an independent change [15]. In structured programming, such a task is repre-
sented by a function. In Object-Oriented Programming (OOP), a method plays
that role. A number of code lines usually implements the given function, respec-
tive method. These can be logically grouped into a sub-function, respective a
sub-method, to signify they belong to a different change driver. Therefore, simi-
larly to structured programming, or OOP, we have to formalise a change in the
area of domain models, e.g., in the area of finance domain model.

2.1 Normalized Systems

The sections above describe the difficulty linked to the demand for evolvable
systems. NS theory offers an answer to this challenge. It uses the formal foun-
dations of system theoretic stability to study the transformation of (basic) func-
tional requirements to the software primitives of a stable system [15]. This stable

114 M. Deryck et al.

system is defined as “bounded input/bounded output” – if the system receives
bounded input it should create a bounded output. It means that for a set of
anticipated changes (i.e., changes in basic functional requirements) the impact
on the system should only depend on the change itself and not on the size of the
system [25].

NS proves that stable software systems can be created by the unification of
four well known software design theorems. The separation of concerns principle
states that in order to isolate change drivers an entity may only execute one task.
Those tasks should furthermore exhibit action version transparency, meaning
that a change in the task may not impact other tasks that call on the first
task. Data used in tasks need to exhibit data version transparency. If data is
modified this may not have an impact on the tasks that use the data. The final
requirement is the call for separation of states, meaning that the status of every
task should be kept.

The violation of either one of the four design theorems results in the creation
of unwanted CE.

2.2 Combinatorial Effect

The combinatorial effect is defined in [15] as follows:

Definition 2. ... functional changes causing impacts that are dependent on the
size of the system as well as the nature of the change...[are called] combinatorial
effects ([25], p. 5).

These unwanted effects stem from improper division in modules or an incor-
rect encapsulation of modules [15]. They may lead to large costs as changes will
need to be implemented in multiple modules. This is what Mannaert et al. [15]
call the law of exponential ripple costs.

However, modularity combinatorics might as well induce flexibility following
the law of exponential variation gains [15]. It states that if an overall system
consists of independent modules, the development and maintenance cost of those
modules is the sum of all modules, whereas the number of variations is the
product of all modules. In systems with multiple variants of the same unit of
work, this leads to an exponential increase of possible combinations [15].

Modules following the NS theorems both leverage the opportunity described
by the law of exponential variation gains while avoiding the unwanted CE.

3 Finance Domain Model

This paper covers the domain of risk management in financial institutions. Risk
management has always been an essential activity of the banking sector, and
since the financial crisis of 2008 it is under even closer scrutiny of local and
international regulators [26]. Furthermore, banks themselves seek to optimise
the internal models they use to calculate the regulatory capital, to avoid losses

Investigating the Evolvability of Financial Domain Models 115

and capital punishment (the so-called plus-factor in case the actual loss exceeds
the loss predicted by the internal model more than five times in one year) [27].

The Basel regulations discern three types of risk in the financial sector: credit
risk (i.e., the risk that a counterparty will not honor his obligations), market risk
(i.e., the negative financial impact of changing market conditions), and opera-
tional risk (e.g., fraud, settlement risk, etc.) [28]. Each of these risks cover mul-
tiple risk factors. For example, some factors that contribute to the market risk
are changes in interest rates, share prices, commodity prices, inflation, foreign
exchange rates, volatility and credit spread. The scope of this paper is the mea-
surement of market risk using Value-at-Risk. The choice for this scope emanates
first from the fact that this instrument shows clear disadvantages (i.e., lack of
sub-additivity) and has been said to have played a significant role in the 2008
financial crisis. Second, eight out of the ten largest Belgian banks report the use
of VaR in their annual (risk) report and the measure is accepted to calculate
the regulatory capital for market risk. Therefore VaR might continue to play an
important role in market risk management, but it will probably be subject to
changes in the years to come.

The VaR is a single currency amount that reflects the maximal loss that is
expected in the given time period. Regulators require at least 99% confidence
on a ten day period, so a 10 day VaR(99%) of 500k means that the bank is 99%
certain that the loss on the considered portfolio over the next 10 days will not
exceed 500k. Note that VaR does not give any indication of the amplitude of the
loss in case it is exceeded. The expected shortfall (ES), the calculation of which
will be mandatory as from 2018, is adequate to that end [29].

3.1 Establishment of the Domain Model

The focus of this paper is a domain model of the market risk domain extended
with a focus on market data import and trade repository. The model does not
represent the situation in a single case company, but rather constitutes a real-
istic representation of common parts, based on the experience of the authors in
multiple cases. The advantages of this approach are twofold. On one hand this
generalization allows the abstraction of company-specific implementations that
are not only the result of business requirements, but also of the company his-
tory, its specific systems and the quality of its implementation decisions. Even
though the importance of these factors is recognized, they are not relevant in the
light of this paper that aims to demonstrate the identification of combinatorial
effects in reference models. On the other hand a real and detailed datamodel of
a single case would require extensive access to the company’s IS architecture,
which might even not be readily available in the company.

3.2 Overview of the Domain Model

The domain model depicted in Fig. 1 abstracts the overall finance model. It
displays three large parts. Situated in the upper left part (in gray) is a part
related to the import of market data from an external market data supplier.

116 M. Deryck et al.

Fig. 1. Abstraction of a finance domain model

In the lower right part (with black cubes) a trade repository for foreign exchange
and interest rate trades is depicted. The part in between relates to the calculation
of Value-at-Risk following the historical method. The paragraph below explains
how these blocks fit together in the process to calculate the VaR.

3.3 Business Process Introduction

Figure 2 schematically represents the VaR-calculation process with the use of the
historical method. In this method the historical changes of the risk factors that
have been observed during the last x days (often 300 to 500 days) are applied to
the current trade portfolio. The process starts with the upload of relevant market
information from external market data suppliers, such as Bloombergs, Reuters
or others. The bank needs to specify which data should be downloaded at which
moment. This is done by so-called schedulers. Certainly, also corresponding data-
entities to store the information are needed. In the next step, the shift from
one day to the other is calculated. This is nothing more than calculating the
difference between yesterday’s and today’s value for, let’s say, the 300 last days.
Afterwards the one day shifts are scaled up with the factor

√
10 to obtain the

ten day shifts necessary for the calculation of the ten day VaR. In the Full
Reval Scenario the outstanding positions are valued against the ten day shifts.
It means that for each outstanding position 300 possible profit and loss scenarios
are calculated. The method is very simple, but it is heavy on calculating resources
and available market data. For some deals with heavy pricing models it can be
beneficial to calculate a proxy. This can be done with the use of sensitivities,
e.g., delta, which reflects the change in value of a derivative when the value
of the underlying changes. The sensitivities are used in the calculation of the
profit and loss scenarios. Their VaR-calculations have their own parameters,
including the alpha that indicates the certainty level. In Fig. 2 the method is

Investigating the Evolvability of Financial Domain Models 117

Fig. 2. High-level overview of the HVaR-process

represented by the rectangle below the full reval scenario-rectangle. They are
situated in front of a background with black cubes, that represents the trades in
the trade repository. The resulting outcomes of both the so-called full reval and
sensi method need to be aggregated with the purpose of obtaining a single VaR-
number in the end. As VaR is not sub-additive, this aggregation needs to follow
strict business-rules determining the appropriate calculations for the appropriate
positions. Afterwards, possible aggregated profit and loss outcomes are sorted
from the most negative (i.e., loss) to the most positive. Based on the desired
certainty level (usually 99%) the appropriate cut-off value corresponding to the
alpha is selected as the VaR.

This section offered a high-level overview of the general VaR-process. The
individual process phases are covered by the corresponding paragraphs in Sect. 4.

4 Revisiting Evolvability of Domain Models

The models described in Sect. 3 breaks down the VaR-calculation in blocks and
classes needed to execute it. The different parts are linked with each other
through interfaces. In short, the domain model exhibits a modular structure.
As explained above, the specific scope of the model was chosen because of the
expected regulatory changes in this domain. The characteristics of change and
modularity are exactly two fundamental concepts in NS. Therefore, in the section
below, we investigate the applicability of the theory on the VaR-domain model
by applying some changes as defined below:

Definition 3. [Changes to IS are] (1) the addition of new requirements;
(2) the modification of existing requirements; and (3) the obsolescence of existing
requirements ([15], p. 258).

This results in changes in the domain model, e.g., adding or renaming an
attribute, adding a relation, changing cardinality, etc. More specifically in this
case, the appended changes are the addition of equity market data, a new ver-
sion of 10 day VaR calculation, amendment of the alpha, and addition of a new
product.

118 M. Deryck et al.

4.1 Revealing Combinatorial Effects

The proposed domain model is limited to the follow-up of the foreign exchange
risk factor and the interest rate risk factor. The choice of the risk factors included
in a model depends on the nature of the business conducted by the bank. How-
ever, these two are most commonly measured by the VaR. In this section, we
will introduce a few changes to the model to investigate how the model reacts.

Addition of the equity risk factor. The first change is the addition of new
risk factor, e.g., the equity risk factor. This means that the share prices need
to be uploaded in the system. To this end a new data-entity Share needs to be
introduced. Usually, this type of market data, along with information on bonds,
futures, and funds, will inherit some general attributes from an instrument class.
To induce the upload of share prices from an external market data supplier, the
schedulers that start the retrieval of the data, need to be amended. This means an
impact of the five schedulers that are currently identified. Moreover, the number
of schedulers is not cast in stone itself. It is thinkable that new schedulers, e.g.,
quarterly or bi-yearly schedules, need to be introduced. That means that the
introducing a new data-entity is not only dependent on the size of the system,
but also grows along with the growth of the system. This demonstrates that the
addition of a new data-entity of equity risk factor leads to combinatorial effects.
Figure 3 schematically shows the discussed changes.

Fig. 3. Abstraction of a market data sub-model

Going further down the process, the market data are translated into Risk-
FactorData (RFD). In the drafted domain model this is represented by a single
RiskFactorData - entity. In fact, this hides two possible solutions – generic entity,
or multiversion entity.

The generic entity is configured in a way that it can include all necessary
details on forex, interest rate, and equity risk. It means that in this case a data-
structure with superfluous data-fields are sent as an input for the return shifts.

Investigating the Evolvability of Financial Domain Models 119

This is an example of stamp coupling. Even though at first sight it may be
tempting to tolerate this kind of coupling at the start, the risks associated with
this structure are:

1. The overly large data structure using an extravagant amount of resources.
2. If one of the attributes changes or an additional attribute needs to be included,

additional versions of the data-structure will need to be created. This leads
to CE if updates need to be done on the different versions.

The multiversion entity solution helps to avoid this kind of coupling. We can
create new versions of this Risk Factor Data (RFD) for each product. This would
mean that at first there exists RFD for Foreign Exchange (FX), and RFD for
Interest Rate (IR). We denote them RFD(FX) and RFD(IR) respectively. Upon
the addition of the equity (EQ) risk factor, a new version, RFD(EQ), needs to
be created. Going forward, when using separate versions of risk factor data, this
logically leads to different versions of return shifts. An additional return shift
would thus need to be created for equity risk. Figure 3 depicts the multiversion
entity solution of RFD.

This shows that the addition of a new risk factor leads to multiple amend-
ments in the system. To ascertain that these amendments are truly combinatorial
effects, the number of amendments should even increase with the growth of the
system. This is the case, which is demonstrated by the example below.

Amendment of 10 day VaR calculation method. In the current way of
working we recognise two return shifts for each risk factor, i.e., the one day
shift that is scaled to the ten day return shift. However, this kind of scaling
will probably not be allowed anymore in new risk models. Regulators ask for a
full calculation of the ten day VaR, and the adaptation of the existing domain
models is unavoidable. This means that the return shifts in the new system will
represent only one day changes. Therefore, next to the one day return shifts,
a new data entity to capture ten day changes must be introduced. Such an
adaptation must cover forex risk, interest rate risk, and equity risk. Conversely,
if a new risk factor is added at this point in time, as before the risk factor data
and the one day return shift need to be created. Furthermore, a 10 day return
shift and possibly even more return shifts will be affected. This may happen if
regulators estimate that the liquidity on the market has structurally changed
and e.g., 1 month VaRs are necessary. If a new risk factor is added at this point
in time, it requires more changes than the ones described for the addition of the
equity risk factor.

The amendment of calculation methodology for +1 day VaRs shows another
combinatorial effect when a full calculation (in contrast to the scaling calcula-
tion) is used. These changes are represented in Fig. 4.

At a basic level, the difference between two consecutive days can either
be absolute or relative. In the scaling method, this difference can be multi-
plied with the square root of the number of days, both for the 1 day calcula-
tion (as

√
1 = 1), as for the 10 day calculation (with δ10 day = δ1 day ∗ √

10).

120 M. Deryck et al.

Fig. 4. Abstraction of return shift calculation sub-model

However, if a full calculation of a multiple day VaR is mandatory, this would
mean that separate formulas for one day and ten day variations need to be
created.

Unfortunately this is not the end of the story. Again, the impact of another
VaR horizon does not always limit itself to the amendment of the two calcula-
tion methods. Although there are not an unlimited amount of possibilities, the
number of calculation methods itself might increase as well. This consciousness
emerged recently, with the prolonged low interest rates as an example. If the
interest rate is at 0.01% at day 1, and rises to 0.02% at day 2, this is a relative
change of +100%, and an absolute change of 0.01. Whereas the relative change
exaggerates the impact, the absolute change would not show any differentiating
power. A combination of relative and absolute elements in (one or more) ‘mixed’
calculation method could be implemented to remediate this. The introduction
of logarithmic calculations could be envisaged as well. If these different methods
are implemented, it means that a change in VaR horizon would be needed for
each of them, hence demonstrating the definition of a combinatorial effect.

Addition of a new product. Another example is a change in the certainly
level of VaR, which is the second important characteristic next to the time period
under consideration. Currently the required alpha for the 10 day VaR is 1% maxi-
mum. However, if longer time-horizons are envisaged or in combination with other
risk measures, regulators might be satisfied with a 2.5% alpha. Or conversely they
might require a higher level of certainty by lowering alpha to 0.5% maximum. In
the current domain model, this would mean that the alpha needs to be amended at
two places: one time in the VaR-parameters (necessary for the full reval method),
and one time for the calculation based on sensitivities (in the analysis parameters)
(see Fig. 5). The choice between the two methods is implemented as a business rule
at the Full Reval Scenario versus Sensi Scenario level.

Investigating the Evolvability of Financial Domain Models 121

Fig. 5. Abstraction of model with new product type and changed alpha.

Now imagine yet another kind of change, e.g., the creation of a new type of
product. In the current model only the clear-cut instruments from a risk factor
point of view were described: two forex instruments (option and forward) and
three interest rate instruments (swap, capfloor and future).

Let us see what happens if we add a currency interest rate swap (CIRS) to
the portfolio. As the name suggests, this instrument contains both characteristics
of the interest rate business (e.g., the respective interest rates of the currencies)
and of the foreign exchange business (the exchange rate between the two legs).
Therefore, a new data-entity will inherit some attributes from both businesses.
Also, traders will need to be able to price this new instrument, so a new valuation
model will be developed. This model will contain parts of IR-models and FX-
models. As the CIRS contains IR-characteristics, the most probable scenario is
the Full Reval Scenario, which means that the business rule that determines the
calculation scenario (full reval or sensi) needs to be updated. Moreover, in this
scenario a new Risk Portfolio needs to be created. This results in the adaptation
of Aggregation Scenario, as it defines aggregation rules per portfolio. Again, as
with the previous examples, it is the reaction of these changes to changes on
another dimension. This clarifies whether these are true combinatorial effects or
effects due to the original change. Imagine for example that the expression of
change in foreign exchange rates does not happen in percentages anymore, but
in pips (0.0001). It means that the original forex valuation models will need to
be adapted. However, the CIRS model, that contains parts of a forex model, will
be impacted as well. This applies to every new valuation model annexed with a
new product. On the level of the business rules in the Full Reval/Sensi Scenario,

122 M. Deryck et al.

the straightforward structure (with only one business rule) gets more and more
complicated each time a new product is introduced (Fig. 5).

4.2 Insights in Exploring the Domain Model

NS aims to promote evolvability in large and complex systems. One of its key
concepts is CE. In analyzing the domain model some insights on key character-
istics of CE stemming from their purpose was provoked. To start with, CE are
found in complex systems. Complex systems deal with entities that are prone to
changes in different dimensions. Because of this, it seems difficult at first sight to
uncover the CE in a domain model. Both knowledge on the domain to recognize
the different change dimensions as insight on the reasoning to reveal CE are
necessary. In turn, this implies that the use of CE to analyze small system that
mainly consist of uni-dimensional constructs is less fit. Next, CE appear at a
very basic level of analysis. Models, which are essentially abstractions of reality,
may thus hide this complexity. This was shown in the examples above in which
we identified CE on the level of business rules and attributes.

5 Related Work

Originally, the NS theory defines combinatorial effects on the software level.
In subsequent research the concepts and theorems of the theory proved useful
to evaluate evolvability on the enterprise level and in process models [17–19].
Eesaar [30,31] focuses on the database level of IS, and tackles the common
ground between database normalization and NS. His research concludes that
even though both theories overlap at some extent in their goal (avoid update
anomalies), manner (multistep nonloss-decomposition), and result (an increased
number of smaller tables/modules), NS covers a broader field with its focus on
combinatorial effects [31]. Domain models are frequently used as the input for
the creation of data models, and they often display the desired normalization
form of the final data model.

In line with the conclusion of Eesaar [30] the current paper illustrates that
normalization is a first, but by no means sufficient, step to avoid combinatorial
effects.

The related work in the area of risk management does not seem to pro-
vide relevant research on evolvability and implementation. Implementation in
this domain focuses mainly on the choice of unbiased parameters and financial
calculations, which is not the scope of our research.

6 Conclusion

This paper started by establishing the importance of evolvability for current IS.
IS are built to fulfil certain requirements, but these requirements tend to change
over time. NS theory proposes four design theorems to create evolvable software,

Investigating the Evolvability of Financial Domain Models 123

defined as software free from combinatorial effects. A combinatorial effect on this
level is the impact from a change that does not only depend on the change itself,
but also depends on the size of the system. CE can also be identified on the level
of process models, and guidelines exist to avoid them at this level [17].

However, when applying the concept of CE on business models, we need to
take into account that a high level of abstraction may hide CE present at lower
levels. Therefore the research for CE typically needs to happen on a low level
of aggregation. The current paper investigates whether the concept of combina-
torial effects can be applied on the level of domain models, which represent an
abstraction of the IS. And if this is the case, what can be concluded with regards
to the evolvability of domain models. By investigating a partial domain model of
financial risk management, it is demonstrated that combinatorial effects do exist
in this domain. Earlier research revealed the existence of CE in, e.g., account-
ing systems, education programs, and ERP-systems [20,32–34]. It supports the
belief that CE exist in more, if not all, economic sectors and types of IS.

It also demonstrates that the application of the concept of CE may not always
be as straightforward as one might be led to believe by the simplicity of its defi-
nition. In practice, it is not always clear which effects are ‘proprietary’ effects of
the change itself, and which ones are due to the size of the system. The reasoning
build up in the examples of this paper demonstrates a possible way to proceed.
It leans on the definition of a combinatorial effect as being dependent on the size
of the system, hence, its amplitude needs to grow when the system grows. The
system grows by adding changes of another dimension. This is demonstrated in
the paper by considering different scenarios for one change. This way of working
emphasizes the multidimensional nature of CE. Hence, it also contributes to the
understanding of the difference with database normalization, which removes some
data redundancy but in a one-dimensional way. In fact, only the CE emanating
from the definition of the alpha at two different places would be solved by simply
applying database normalization rules and isolating it in a new entity.

The changes that were applied on the original domain model show that CE
manifest themselves on multiple levels. In the most visible form a change leads to
the amendment of the domain model by the necessity to add additional classes
(see change of 10 day VaR calculation) or multiple relations (2 inheritance rela-
tions for CIRS). In other cases, the effect is situated on the level of the attributes
of (a) class(es). The increase in shift methods and the adjustment of the alphas
are examples of this. In yet other cases the business rules linked to certain
classes need to be amended. This is shown by the addition of the new product
type CIRS, which alters business rules in multiple classes.

Because of this, future research should formalize the definition of ’change’ at
domain model level. Moreover, future research should offer recommendations to
avoid the described CE. Moreover, the current paper is strictly limited to a well
defined scope that reflects common practices in the sector, but nevertheless dis-
regards others. Therefore, the future research should broaden the scope of cur-
rent paper. The model should be expanded to encompass the entire scope of mar-
ket risk, including multiple risk factors, other VaR-calculation methodologies,
backtesing and stress testing practices, and future requirements such as expected

124 M. Deryck et al.

shortfall calculation. Moreover, as we know now that CE do exist in one sub-part of
the financial industry, their existence in other sub-parts may be investigated. Also,
these sub-parts can be considered as modules in themselves. The information pass-
ing from one part to the other acts as the interface. Therefore future research could
focus on possible CE at a higher level. Of course, difficulties regarding the hiding
of CE at higher levels of abstraction need to be taken into account.

The current paper focusses mainly on data requirements in the domain.
Future work could consider the same domain from a dynamic point of view
and focus on e.g., process models like the HVaR process in Fig. 2.

Acknowledgement. We warmly thank Belfius and COPS GmbH which enabled us
to settle down the discussed financial domain model. This research has been supported
by SGS grant No. OHK3-006/17.

References

1. Hilbert, M., López, P.: The world’s technological capacity to store, communicate,
and compute information. Science 332(6025), 60–65 (2011)

2. Marketline: Mobile apps in the united states. website, February 2016. https://
store.marketline.com/report/mlohme7979--mobile-apps-in-the-united-states/

3. Fuchs, C.: Internet and Society. Social Theory in the Information Age. Routledge,
London (2008)

4. Ciraci, S., Van Den Broek, P.: Evolvability as a quality attribute of software archi-
tectures (2006)

5. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

6. Behutiye, W.N., Rodrguez, P., Oivo, M., Tosun, A.: Analyzing the concept of
technical debt in the context of agile software development: a systematic literature
review. Inf. Softw. Technol. 82, 139–158 (2017)

7. Op’t Land, M., Krouwel, M.R., Dipten, E., Verelst, J.: Exploring normalized sys-
tems potential for Dutch MoD’s agility. In: Harmsen, F., Grahlmann, K., Proper,
E. (eds.) PRET 2011. LNBIP, vol. 89, pp. 110–121. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23388-3 5

8. Cook, S., Ji, H., Harrison, R.: Software evolution and software evolvability. Tech-
nical report, University of Reading, UK (2000)

9. Simon, H.: The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482
(1962)

10. Sanchez, R., Mahoney, J.T.: Modularity, flexibility, and knowledge management in
product and organization design. Strateg. Manag. J. 17, 63–76 (1996)

11. Baldwin, C., Clark, K.: Managing in an age of modularity. Harv. Bus. Rev. 75,
84–93 (1997)

12. Gershenson, J.K., Prasad, G.J., Zhang, Y.: Product modularity: definitions and
benefits. J. Eng. Des. 14(3), 295–313 (2003)

13. Sako, M.: Modularity and outsourcing. In: The Business of Systems Integration,
pp. 229–253. Oxford University Press (2003)

14. Campagnolo, D., Camuffo, A.: The concept of modularity in management studies:
a literature review. Int. J. Manag. Rev. 12, 259–283 (2010)

15. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized systems software architectures.
Normalized Systems Institute (2016)

https://store.marketline.com/report/mlohme7979--mobile-apps-in-the-united-states/
https://store.marketline.com/report/mlohme7979--mobile-apps-in-the-united-states/
http://dx.doi.org/10.1007/978-3-642-23388-3_5

Investigating the Evolvability of Financial Domain Models 125

16. Huysmans, P., Verelst, J., Oost, H.M.A.: Integrating information systems using
normalized systems theory: four case studies. In: 17th IEEE Conference on Business
Informatics, 13–16 July 2015, Lisbon, Portugal. IEEE (2015)

17. Van Nuffel, D.: Towards desdesign modular and evolvable business processes. Ph.D.
thesis, University of Antwerp (2011)

18. Huysmans, P.: On the feasibility of Normalized Enterprises: applying Normalized
Systems Theory to the high-level design of enterprises. Ph.D. thesis, University of
Antwerp (2011)

19. De Bruyn, P.: Generalizing normalized systems theory: towards a foundational
theory for enterprise engineering. Ph.D. thesis (2014)

20. Vanhoof, E.: Evolvable accounting information systems: applying design science
methodology and Normalized Systems theory to tackle combinatorial effects of
multiple GAAP. Ph.D. thesis, University of Antwerp (2016)

21. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press Ltd., Cambridge (1972)

22. Smith, B.: Object-oriented programming. In: Advanced ActionScript 3, pp. 1–23.
Springer (2015)

23. Codd, E.F.: Relational database: a practical foundation for productivity. Commun.
ACM 25(2), 109–117 (1982)

24. Webber-Cross, G.: Learning Microsoft Azure. Packt Publishing Ltd., Birmingham
(2014)

25. Mannaert, H., Verelst, J., Ven, K.: The transformation of requirements into soft-
ware primitives: studying evolvability based on systems theoretic stability. Sci.
Comput. Program. 76(12), 1210–1222 (2011)

26. Saunders, A., Cornett, M.: Financial Institutions Management. A Risk Manage-
ment Approach, 7th edn. McGraw-Hill, New York (2011)

27. Basel Committee on Banking Supervision: Minimum capital requirements for mar-
ket risk. website, January 2016. https://www.bis.org/bcbs/publ/d352.pdf

28. Basel Committee on Banking Supervision: International convergence of capital
measurement and capital standards. website, June 2006. http://www.bis.org/publ/
bcbs128.pdf

29. Basel Committee on Banking Supervision: Fundamental review of the trading book.
website, May 2012. http://www.bis.org/publ/bcbs219.pdf

30. Eesaar, E.: The database normalization theory and the theory of normalized sys-
tems: finding a common ground. Baltic J. Modern Comput. 4(1), 5–33 (2016)

31. Eesaar, E.: On applying normalized systems theory to the business architectures
of information systems. Baltic J. Modern Comput. 2(3), 132–149 (2014)

32. Oorts, G., Mannaert, H., De Bruyn, P., Franquet, I.: On the evolvable and traceable
design of (Under) graduate education programs. In: Aveiro, D., Pergl, R., Gouveia,
D. (eds.) EEWC 2016. LNBIP, vol. 252, pp. 86–100. Springer, Cham (2016). doi:10.
1007/978-3-319-39567-8 6

33. Chongsombut, O., Verelst, J., De Bruyn, P., Mannaert, H., Huysmans, P.: Towards
applying normalized systems theory to create evolvable enterprise resource plan-
ning software: a case study. In: Lavazza, L. (ed.) The Eleventh International Confer-
ence on Software Engineering Advances: ICSEA 2016, 21–25 August 2016, Rome,
Italy, pp. 172–177 (2016)

34. De Bruyn, P., Van Nuffel, D., Verelst, J., Mannaert, H.: Towards applying normal-
ized systems theory implications to enterprise process reference models. In: Albani,
A., Aveiro, D., Barjis, J. (eds.) EEWC 2012. LNBIP, vol. 110, pp. 31–45. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29903-2 3

https://www.bis.org/bcbs/publ/d352.pdf
http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs219.pdf
http://dx.doi.org/10.1007/978-3-319-39567-8_6
http://dx.doi.org/10.1007/978-3-319-39567-8_6
http://dx.doi.org/10.1007/978-3-642-29903-2_3

Exploring Design Aspects of Modular
and Evolvable Document Management

Gilles Oorts(B), Herwig Mannaert, and Peter De Bruyn

Normalized Systems Institute, University of Antwerp, Antwerp, Belgium
{gilles.oorts,herwig.mannaert,peter.debruyn}@uantwerp.be

Abstract. Over the past decades, technological advances have dras-
tically changed the way organizations work. One thing that has not
changed however, is that they are still required to draft, maintain and
manage documents. Nowadays most of these documents are drawn up
and stored in an electronic way. Yet their structure is in essence still
the same as their analogue and physical predecessors. In this paper, we
present a new modular approach to document management that enables
the design of content-agnostic and evolvable documents. This new app-
roach imagines documents as multidimensional and ever-changing enti-
ties instead of mere static representation of their analogue predecessors.
Based on modularity and Normalized Systems reasoning, this approach
represents an alternative to the out-of-date paradigm of document man-
agement that is currently used. Modularity-based document manage-
ment leads to easier maintenance of the text modules as they offer a
clear aggregate structure and any information is stored in only one text
module. This enables both re-use and greater versatility of the informa-
tion stored in the text modules. As such, the approach presented in this
paper enables the creation of truly evolvable documents according to the
Normalized Systems theory.

Keywords: Normalized Systems theory · Modularity · Document man-
agement · Evolvable documents · Modular documents · Text modules

1 Introduction

Over the past decades, technological advances have drastically changed the way
organizations work. One thing that has not changed however, is that they are
still required to draft, maintain and manage documents. These documents are
present in organizations in an abundance of forms, such as books, spreadsheets,
slide decks, manuals, legal contracts, emails, reports, etcetera. Nowadays most of
these documents are drawn up and stored in an electronic way. Yet their struc-
ture is in essence still the same as their analogue and physical predecessors. Take
for example electronic invoices. They often look just the same as their equivalent
paper version. Therefore they are frequently just printed by the receiving orga-
nization and filed on paper. Similarly, the safety procedures in a manufacturing

c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 126–140, 2017.
DOI: 10.1007/978-3-319-57955-9 10

Toward Modular and Evolvable Document Management 127

plant are often just saved as a pdf-file on a server instead of being printed and
handed out (as was the case in the old days).

Lots of opportunities to optimize and rethink document management were
missed during the revolution in Information Technologies (IT). Because of the
lack of a theoretical approach to document management, most efforts in organi-
zations were limited to just digitizing documents, i.e., transforming them from
analogue to digital form as monolithic blocks. In this paper, we present a new
modular approach to document management that enables the design of content-
agnostic and evolvable documents. This new approach imagines documents as
multidimensional and ever-changing entities instead of mere static representation
of their analogue predecessors. Based on modularity and Normalized Systems
reasoning, this approach represents an alternative to the out-of-date paradigm
of document management that is currently used.

In Sect. 2, we will first demonstrate the need for variability and evolvability
in documents. Next, we will show how to achieve these document characteristics
using the principles of modularity and evolvability based on Normalized Systems
theory in Sect. 3. Based on these insights, we discuss how current approaches
address some aspects of document evolvability in Sect. 4. This brings us to the
principal part of this paper, in which we give an overview of the most important
aspects in creating modular and evolvable documents (Sect. 5) and how these
can be implemented in practice (Sect. 6).

2 The Need for Evolvability and Variability of Documents

Documents need to incorporate changes and evolve over time. Information has to
be added, changed or removed from organizational documents on a regular basis.
In the current ever-changing business environment, companies need to be able
to adapt to changing requirements of customers, government, competitors, sup-
pliers, substitute products or services, and newcomers to the market [10]. These
influences require adaptations in the supporting systems of the company, includ-
ing documents. In most organizations nowadays, these documents are managed
in a digital way. Therefore they can be more easily edited (by multiple people)
throughout time, will be changed more frequently and have several concurrent
variants.

In today’s agile markets, countless change events require changes to the sup-
porting document over time. Consider for instance the following events:

– a new legislation may require companies to add additional checks and safe-
guards to their documented corporate governance guidelines in order to avoid
corporate fraud;

– a smartphone manual may need to be updated because a new version with
added functionality was designed and is put into production;

– a financial report may need to be updated with new information and numbers
of a new financial quarter;

128 G. Oorts et al.

These are just some examples of business changes that require adaptations
in corporate documents. Listing all change events that require documentation
changes would be impossible, as there is an infinite amount of events that require
changes to the documents. To cope with this vast amount of change events,
documents need to be designed to be changed with ease from the start and be
evolvable. This will be discussed in the next sections of this paper.

The continuous change of documents also causes variability in documents.
Adaptations in documents may produce several versions of documents as all
these versions might need to be preserved. Consider for instance the following
possible variants [7]:

– a similar slide deck on a subject may be created for a one day seminar to a
management audience, a one week course for developers, a full-fledged course
for undergraduate students;

– a product manual may be drafted in different languages, several product vari-
ants (standard – professional – deluxe) may contain a partly overlapping set
of production parts requiring similar yet different manuals, etcetera;

– similar, but slightly different, legal documents (contracts) may be drafted
for different clients purchasing the same service (based on the same contract
template), etcetera;

These are once more just a few examples of how different versions of a
document may arise, as the potential cases resulting in multiple versions of a
document are limitless. To manage concurrent and successive document vari-
ants, most companies use so-called Document Management Systems (DMS).
The problem with (most of) these systems is that they store documents at the
“document” level. This corresponds with considering documents at their most
aggregate level of modularity (i.e., the complete document as a single entity).
As we will discuss in this paper, we propose a solution to store and manage doc-
uments at more fine-grained modular levels, enabling the creation of evolvable
and reusable documents.

3 Modular and Evolvable Documents

3.1 Modular Structure of Evolvable Documents

Using the concept of modularity as a principle to design systems has proven to
be very successful in various domains. It has for example been cited to be useful
in product, system and organizational design [1,2].

Based on these understandings, previous research has shown the benefits of
modularity in systems such as accountancy, business processes and enterprises.
This research has proven that all these systems can be regarded to be modular
[3,11,12]. Furthermore the scholars have shown that applying the modularity
principle to systems benefits the design, maintenance and support of the system.

We are convinced that documents can also be considered to be clear examples
of modular structures. Take for instance these examples [7]:

Toward Modular and Evolvable Document Management 129

– A book or a report typically consists of a set of chapters. Each of these chapters
will contain a set of sections, subsections, subsubsections, and so on. Each of
these (sub)sections can then contain paragraphs with the actual text, tables
and/or figures;

– A product manual will contain guidance sections regarding the different prod-
uct parts and/or functionality;

– A legal document may contain different parts, within each part different
clauses, and each clause may contain different paragraphs.

All of these document parts can be considered to be text modules. In our
approach, we define a module as a part of the system that is used or activated
separately. Once a part of the system cannot be used or activated as such, it
is considered to be on a sub-modular level. Applying this general definition
to documents, we can define a document to be a modular system. As such, a
document consists of a set of text modules. A text module can subsequently be
defined as a part of a document that can be included or referred to separately
in a document.

Text modules should be identified and defined based on change drivers. The
level of granularity (i.e., what information to combine or separate in text mod-
ules) should be based on whether the information is linked to one or multiple
change drivers. A change driver can trigger some text parts to need to be changed
in a document. As such, text parts linked to different change drivers should be
broken up into separate modules. In this way, a change driver only requires
changes to be made in a single module of a document.

To obtain documents that easily change over time, using the concept of modu-
larity to define modular documents is just a prerequisite. For documents to easily
incorporate changes, they need to exhibit evolvability. The Normalized Systems
(NS) theory was proposed to achieve such evolvability, based on the modularity
concept. Although the theory was originally defined for software, its applicabil-
ity and value in other domains (e.g., organizational design, business processes,
accountancy) quickly became clear [3,11,12].

To design evolvable systems, it is fundamental to eliminate so-called com-
binatorial effects according to NS theory. These effects occur when the impact
of a change to a system depends on the size of the system they are applied to
[8]. As such, the impact of the change would not solely depend on the nature of
change itself. Assuming systems become ever more complex over time, combina-
torial effects would become ever bigger barriers to change. Therefore, a system
designed to not include any combinatorial effects would require less effort to be
adapted when change requirements occur and thus be (more) evolvable.

To obtain evolvability, NS theory proposes four theorems, two of which are
of importance in this paper [8]:

– Separation of Concerns, stating that each change driver (concern) should be
separated from other concerns. This closely relates to the concept of cohesion;

– Version Transparency, stating that modules should be updatable without
impacting any linked modules;

130 G. Oorts et al.

In practice, the consistent application of these theorems results in a very fine-
grained modular structure, as will be shown in this paper.

3.2 Exploring Cross-Cutting Concerns

An important concept defined in NS theory is cross-cutting concerns. This con-
cept is often used in information technology and refers to functionality or con-
cerns that cut right across the functional structure of a system. Similarly, in
the context of documents the concept refers to functionality or concerns that
(may) matter to or affect several aspects of a document. According to the Sepa-
ration of Concerns principle, cross-cutting concerns should be encapsulated. As
such, changes can be made to the cross-cutting concerns without impacting the
whole document. As we will illustrate in this paper, this is not self-evident as
the functionality of these concerns are embedded deep down within documents.

The implementation of cross-cutting concerns should be available in a way
that they do not depend on each other or on the internals of the base text
modules. A text module should, for instance, be able to refer to another text
module (i.e., use a specific reference system) without this having an impact to
the typesetting/layout of the aggregate document.

Concerning documents, two types of cross-cutting concerns can be discerned.
These are the concerns resulting from (1) the nature of documents and (2) the
content of the documents (i.e., the underlying artifacts).

The documentation cross-cutting concerns are generic concerns that occur in
any document. These concerns do not dependent on the content of the document,
but need to be provided for all documents.

An important cross-cutting concern of this type is a mechanism for “relative”
embedding of text parts in the hierarchical structure of documents. This means
one should be able to include a text module on several hierarchical levels in a
document without this inclusion causing any changes in the text module. As
such, a text module can be variably used as a chapter, section, subsection, etc.
without any changes to the module.

Another cross-cutting concern in the context of documents might be a refer-
ence mechanism to allow the author to refer to other sections, figures or tables
within the overarching document (but possibly contained within other text mod-
ules), bibliographic items (e.g., another book or paper), etcetera. Preliminary
research shows there are several other cross-cutting concerns for documents,
such as for example:

– typesetting (layout),
– language,
– target audience,
– etc.

In addition to the documentation cross-cutting concerns, there is a second
type of concerns that is specific to the underlying artifact(s) described in the
document. We call these content cross-cutting concerns. They originate from

Toward Modular and Evolvable Document Management 131

the content or descriptions of the artifact(s). Take for example technical data
sheets included with a bucket of paint. These documents will contain prepara-
tion instructions, application instructions, safety guidelines, storage guidelines,
mixing directions, etc. These are necessary subjects needed in the description of
every paint and can, as such, be defined as content cross-cutting concerns.

4 Attempts in Modular and Evolvable Document
Management

Based on the requirements for modular and evolvable documents described in
the previous sections, the authors studied some available document systems that
showed promise in providing some of the requirements. One of the best systems
in which the researchers could recognize some of the modularity and evolvability
aspects mentioned is the LATEX document preparation system, which is widely
used for the formatting of scientific documents and was already available in the
1980s. A significant advantage of LATEX in term of modularity is that it allows
to include files into other files over multiple levels. This enables the aggregation
of several text modules and the re-use of these modules into multiple versions or
variants of overarching documents. When a base text module—which is included
within several aggregate documents—is changed, this change can be automati-
cally incorporated in all aggregate documents. As such, the user will be required
to make the change only once and all relevant documents can be updated. The
LATEX system uses .tex files, which are text files containing LATEX-specific com-
mands. These can be build into different output formats (e.g., pdf or ps) and
–via certain extensions– to .doc and simple HTML files by the LATEX document
preparation system. Moreover, the same base text modules can be used to build
files according to different layouts by using document classes (e.g., book, paper)
and stylesheets (e.g., applying the organizational house style to correspondence).
The LATEX system also allows to reference tables, figures or sections in a docu-
ment in a relative way. This means references are generated during the build of
the document and things can be referenced no matter where they are included
in the final document.

However, the LATEX system also has some important limitations in terms of
evolvability. First, the actual hierarchical structure of a document (i.e., whether
something is a chapter, section, subsection, subsubsection, etcetera) should be
hard coded within .tex files. This severely limits the potential for base text mod-
ules to be freely combined into aggregate documents, as it can only be incor-
porated in other documents on the same document level. Second, the inclusion
mechanism of individual LATEX text files within other files does not force users
to have a prescribed modular structure (e.g., to have separate text files for sep-
arate sections). As such, determining the modular structure of the text modules
and aggregate documents is still left up to the determination of the user. Finally,
LATEX does not seem to automatically embed all the documentation cross-cutting
concerns (e.g., a set of text property options which are used to automatically
select the right versions of certain text excerpts). However, the systems does

132 G. Oorts et al.

allow for extensions upon its basic functionality through the use of (predefined)
macros. Therefore, we believe that this (or a similar) text preparation systems is
an interesting and suitable candidate to explore the optimization of the modular
structure of documents.

Another text formatting syntax that has gained popularity over the past
decade is Markdown [4]. Originally created as text-to-HTML conversion tool, it
has been expanded upon with document conversion tools such as Pandoc [5]. This
allows documents to be transformed from about 15 source formats into even more
output formats. Pandoc can merge files as a part of this transformation, so you
can easily render multiple files into a single output. Markdown allows the user to
easily mark layout with punctuation characters (e.g., an * symbol for emphasis,
a = or - symbol to underline some words and a certain amount of # symbols
to define the header level). Although this allows for a evolvable implementation
of the typesetting cross-cutting concern, the Markdown/Pandoc system shows
some serious limitations in terms of evolvability. Similar to the LATEX solution,
Markdown/Pandoc requires hard coded document structure and does not force
a modular structure. It clearly also does not support all cross-cutting concerns.

In the next sections, we will examine the requirements for evolvable docu-
ments and if they can be accommodated with these readily available systems.

5 Design Aspects of Modular and Evolvable Documents

5.1 Coupling and Ripple Effects

Content within documents is often characterized by a high degree of dependen-
cies. This kind of coupling is unavoidable. A well written and coherent document
will build upon the knowledge or concepts explained in previous sections or chap-
ters. In the case of this paper for example, Sect. 3 requires it should always be
included after Sect. 2 as the latter requires the reader to have read and under-
stood the former. In legislation, certain statutes require the existence of other
statutes in a law. Removing or adapting particular statutes in the law will there-
fore cause other parts of the law to become inconsistent or change their meaning
inadvertently. Although well-designed texts might reduce coupling to a certain
extent by creating clearly cohesive and somewhat self-embedded document parts,
not all coupling can be avoided.

However, other types of coupling can be included in documents that are not
related to its content or buildup. These avoidable dependencies are positively
detrimental for evolvability and variant creation. Often this coupling is caused
by managing documents at an aggregate level instead of at a lower text mod-
ule level. This means some content that is embedded in multiple documents is
duplicated in a hard coded way within each of these documents. Furthermore,
most document systems also combine multiple cross-cutting concerns (e.g., con-
tent, output type, layout, etc.) in a single document file/module. Consider for
instance the following type of changes and their impacts [7]:

Toward Modular and Evolvable Document Management 133

– The organization documents are drafted for, changes its house style. Often,
this will require the manual adaptation of all versions and variants of all
reports and slide decks (and all its individual slides) in order to be consistent
with this new house style.

– A product part is used within several end products. Therefore, the text
explaining the working of the concerning product part is embedded (here:
duplicated) within all user manuals for all end products which contain this
product part. The manuals for the end products are available in hard copy,
an electronic offline document (e.g., pdf or .doc) and an online wiki (HTML
pages). Moreover, as the product is sold internationally, versions of the user
manuals have been created for all official languages spoken by the end product
users in all output formats. When a new bug has been found for a product
part which should be mentioned to the end users, this implies a change to all
manuals of all end products which contain this product part, in all relevant
languages and all output formats.

– After in-depth research, a researcher discovers that his definition of a particu-
lar concept needs to be adapted or refined. Typically, this will require him to
scan through all papers, reports and slide decks (as well as all their possible
versions and variants related to target audiences, output formats, languages,
etcetera) to identify and adapt this concept definition.

– After some further research, one finds out that an additional figure and an
additional paragraph might be useful within the sequence of steps generally
taken to explain a certain reasoning. Applying this additional step would have
an impact on all slide decks, reports, etcetera and all their versions, variants,
etcetera.

– An organization decides that from now on, all legal contracts should mention
that in case of disputes, trials will be held at a Belgian court and Belgian
legislation is applicable. Typically, this will require the organization to check
(and if the relevant clause is not present, adapt) all of its active legal contracts.

These examples show the impact of combinatorial effects in documents. By
managing documents at a text module level, some of these detrimental effects
could be avoided. This modular approach would also allow various types of
document aggregations without the duplication of content in every document a
text module is re-used.

5.2 Version Control

Currently, as mentioned above, most Document Management Systems manage
documents as one single monolithic unit. Classic word processors or presentation
software mostly work in the same way; they only allow the creation and editing
of documents as one monolithic whole. This approach is also applied in their
management of versions and variants, as they are also managed at the document
level: including the same product part description in multiple product manuals
via relative references instead of copy-paste is then, for instance, impossible. As
a result, the different variants or versions of a particular document created by

134 G. Oorts et al.

a user will hold many duplications and therefore be subject to the coupling and
ripple effects as described above.

Recently some software solutions have provided users with some ways of
keeping track of different versions of documents in a more detailed way. For
instance, most present-day word processors have a “track changes” functionality
in which changes to sentences can be proposed by users and inspected, accepted
or rejected by others. These are however mostly limited to a single concurrent
editor of the document as of today. Furthermore tracking of changes and variants
in these software packages is limited to the scope of the overall document and
tracking a long history of document changes is cumbersome.

For these reasons, several more advanced version control systems (e.g., git
or subversion) have been introduced over the past decade. These systems allow
users to keep track of document changes made by multiple concurrent users over
time. The users can commit to versions and merge their versions with changes in
versions of other users in an often automatic and much more user-friendly way.
These systems also support document variability by allowing different branches
to be created of documents, cherrypicking, etc. Although these version control
systems provide well desired functionality, they are mostly incompatible with
the most frequently used and recently released word processors or presentation
applications. This is because in order to work at their fullest potential (i.e.,
allowing merging, track changes within individual files, etcetera) these systems
should work with textual files (such as .txt, .tex, .md, or .java). More popular file
extensions (such as .doc, .docx., .ppt, etcetera) are however binary and do not
support universal and granular version control by external systems. Because they
work on textual instead of binary files, the advanced version control systems (e.g.,
git or subversion) work at the level of the individual lines within files. As such,
documents are considered at a very fine-grained modular level (i.e., individual
lines). However, this level does not correspond to a meaningful, anthropomorphic
modular level such as the ones we mentioned in the paragraphs above (e.g.,
paragraphs, part descriptions, clauses, etcetera).

Contrary to these approaches, the modular view of documents we propose
in this paper allows for version control on a meaningful level: based on changes
in the text modules. As such a module contains information on a specific aspect
(i.e., a content cross-cutting concern), changes to this information should be
contained within the module. Therefore the decomposition of information into
text modules can also be guided by separating all change drivers (i.e., information
that can change independently) into separate text modules.

This approach to version control detaches the management of versions from
content-agnostic levels (such as the document or document lines) and performs
it on a more useful level based on the actual content of textual components.
As such, the version of a document becomes based on the total composition of
the text module versions it contains. This also entails the simple chronological
and sequential way of versions control is a thing of the past. Instead, we can
manage the different versions of document that exist in two dimensions: time
and content.

Toward Modular and Evolvable Document Management 135

First, managing the successive versions of documents is lowered to the level of
text modules instead of an entire document. The current version of this document
is simply the aggregation of all versions numbers of the text modules it contains.
Take for example the scenario in which two text modules where updated and a
new version of a document was generated. However, one of these module updates
was premature and needed to be rolled back. In a chronological and sequential
version control system, the new correct document would simply get a higher
version number assigned to it. As such, a lot of information on these changes
would get lost when it is not captured in semi-structured or unstructured version
information. In the modular approach the version numbers are managed on a
text module level, which clearly shows what components of the document were
updated and rolled back in the successive document versions.

A second dimension of variation in modular documentation is introduced
by the free composition of text modules into new types of documents. This
means variations of documents with minor differences can be easily generated
and managed. An information system would need to be constructed that keeps
track off all these versions of documents and updates those documents that
need updating when a new version of a text module is introduced. Taking into
account the Version Transparency principle discussed earlier, some documents
should however be able remain unchanged because they might need to contain
the older version of the text module. This approach of version control requires
several types of functionality:

– Maintaining a version history of all text modules
– Storing all actual past and current versions of text modules
– Keeping track of which documents the text modules are used in
– Keeping track of which text modules the documents are made up off
– Assimilating text modules changes to all documents that need to be updated

It is clear from this list that such a version control system is more complex
than a simple linear and sequential version control system.

5.3 Relative Sectioning

Another important aspect of allowing text modules to be re-usable is to imple-
ment relative embedding. This is the possibility to embed a text module in the
hierarchical structure of overarching documents in a “relative” way (e.g., defin-
ing that a particular piece of text should be considered as contained within a
section situated one level deeper as its surrounding text: this could be subsec-
tion or subsubsection in LATEX, a H1 or H2 section in an Markdown document,
etcetera). As such, text modules can be used in all kinds of documents and on all
kind of document levels without this requiring any change in the text module.

The LATEX document preparation system for example allows the hierarchical
inclusion of sub-files (i.e., text modules) and allows the layout cross-cutting
concern to be handled in a separate layout file. LATEX however does not provide
a system for relative sectioning out of the box. The hierarchical structure of

136 G. Oorts et al.

Fig. 1. Example of a LATEX Structure File supporting relative sectioning

sections (i.e., whether something is a chapter, section, subsection, subsubsection,
etcetera) should be hard coded within .tex files and therefore limits the potential
for text modules to be freely combined into final documents which might use
the same text excerpts at different levels within their own document hierarchy.
To overcome this problem, a LATEX style file can be used that provides the
functionality of relative sectioning [6]. This allows the generation of a LATEX
structure file, of which the first part is shown in Fig. 1. In this file, text modules
are imported via the \input{} command. The names included in this command
are the files that should be part of the generated document. More importantly,
the \leveldown and \levelup commands can be automatically added whenever
the next text module of the document should be added on a lower or higher
level. As such, the basic text modules exist of solely a title (included within the
\dynsection{} that is provided by the custom style file) and the content of the
module.

5.4 Dynamic Cross-Referencing

The re-use of text modules also requires an alternative to static cross-referencing.
Because text modules can be inserted in a document on different locations or
levels, they do not have fixed section numbers across documents. For this reason,
modular documents need dynamic referencing to refer to specific text modules.
This can be achieved by inserting a static reference point in every text module.
In LATEX, this can for example be achieved by using the \label{} command,
in which a label can be defined for a section. This section can than be referred

Toward Modular and Evolvable Document Management 137

to by the \ref{} command. These commands can be used to reference to text
modules, figures, tables, equations, etc.

Using this cross-referencing system however requires additional checks to be
incorporated. Because of the combination potential of text modules, some refer-
ences might refer to components not included in the document. This would cause
undefined references in the document. To prevent this, the referencing system
should include some mechanism that checks whether the referenced component
is included in the document. If so, the reference can be included. If the reference
point cannot be found, the sentence referencing to it should not be included in
the document.

6 Modular and Evolvable Documents in Practice

6.1 Decomposing Documents into Text Modules

Based on the aspects of modular and evolvable design of documents, a proto-
type was developed to show the practical feasibility of a system that supports
this document management approach. This has been discussed in more detail
in previous research [9]. The prototype manages documents concerning study
programs at a university. Being the underlying artifacts, the study programs’
architecture was first modularized and made evolvable. After this redesign was
finished, existing content describing the courses was looked at and modularized
to allow the generation of different kind of documents. Information on the study
programs was derived from the course descriptions available on the faculty’s web-
site. From these descriptions, text modules with similar content were identified
based on the change driver guideline. This lead to the definition of 10 types of
text modules, based on 10 content cross-cutting concerns that were identified to
be present in courses and study programs. These concerns include for example
a short content description, internationalization, lended learning, assignments,
etcetera. Combined, these 10 types of text modules allow for a complete repre-
sentation of a course. As we defined learning-teaching tracks and study programs
to be aggregations of courses according to modularity reasoning, the text mod-
ules can be used to represent these parent artifacts as well. Taking into account
the total number of 258 courses and 10 content cross-cutting concerns, the mod-
ularization of the course descriptions resulted in a total of 258 ∗ 10 = 2, 580 text
modules. These text modules can be used to represent all aspects of the courses,
learning-teaching tacks and study programs of the faculty.

Although this large amount of text modules seems inefficient to manage and
maintain, this strict decomposition actually simplifies several aspects of doc-
ument management. First, this imposed separation of concerns established a
recurring structure across all course descriptions. This gives professors (who are
responsible for the content of the text modules) a template to hold on to in
describing their courses. Furthermore it is easier to retrieve information, as it
is separated in meaningful text modules that are named after the concern they
include. This also allows for easier maintenance of the information. However,

138 G. Oorts et al.

the most important advantage of the decomposition is the vast amount of pos-
sibilities combinations of modules that can be generated into documents. The
information included in the decomposed text modules allows for the generation
of a vast variety of documents with different purposes. This system for exam-
ple allows one to generate documents containing the assignments of all courses
in a study program. But the system can also generate a document listing all
courses or learning-teaching tracks in which some sort of internationalization is
present. But the true value of the systems becomes even clearer if for example
students were to be added. This would allow the system to generate for exam-
ple a document detailing all sustainability or social impact aspects a student
has encountered in his study program. Or how much hands-on experience he
has gained due to assignments or case studies. Such a system would allow to
draw up student-specific diploma’s with one click of a button. In general, the
decomposition thus allows for a versatile use of document modules and allows
the definition of new types of documents with new purposes.

6.2 Document Versatility, Variability, and Evolvability

As mentioned, the modular structure of documents provides an amount of doc-
ument versatility. Let’s explain this in numbers. Take for example a faculty
that offers 12 study programs (5 Bachelor and 7 Master programs). For each
study program, we would like to be able to generate a document consisting of
two or three document levels. If we abstract from the course level to simplify
the calculations, there are 3 possible selections for the first document level (i.e.,
cross-cutting concerns, learning-teaching tracks and sub-tracks). Therefore there
are only two selections left for the second level (the two remaining ones), and two
possible selection for the final level (i.e., either choosing the remaining selection
or not including a third level). This totals up to 12 possible selections for the doc-
ument levels. If we consider either including or not including the 10 cross-cutting
concerns, the amount of combinations adds up to 210 = 1024 possibilities. Mul-
tiplying the 12 study programs, 12 possible document level selections and 1024
possible combinations of 10 cross-cutting concerns inclusions gives us a total
of possible document combinations that can be generated based on the 2,580
defined text modules:

12 ∗ 12 ∗ 1024 = 147, 456 possible documents (1)

However, if for example 3,000 students were to be included in the system, the
document versatility would increase exponentially. Let’s assume there are 1,000
unique versions of study programs of these 3,000 students (which is actually a
cautious estimate considering the amount of courses students can choose in some
study programs). Substituting the 12 study programs by 1,000 study program
versions in the previous multiplication results in the total amount of possible
document combinations:

1000 ∗ 12 ∗ 1024 = 12, 288, 000 possible documents (2)

Toward Modular and Evolvable Document Management 139

This example clearly shows the combination potential of decomposing course
descriptions into fine-grained text modules.

As mentioned earlier, the decomposition in text modules also allows more
fine-grained version control to manage the variability in all types of documents
that can be generated. Changes can be tracked more specifically when version
control is managed on a text module level. A text module can be archived based
on their moment(s) of change, allowing the generation of documents according
to specific time specifications. This can prove to be very useful. Imagine for
example the re-generation of a student diploma after it has been lost. The grad-
uation might have been a few years ago, so courses and study programs will have
changed. Yet it is important for a university to be able to generate the diploma
with the correct descriptions of the version of the courses the student took. This
is possible with a module-based version control systems that takes into account
both versions in time and concurrent variations. This example shows the impor-
tance of tracking changes on a fine-grained modular level.

Furthermore, the use of modular text modules shows the importance of elimi-
nating combinatorial effects to achieve evolvability. Any change in the description
needs to be made in only one of the 2,580 files/text modules. By creating a script
that regenerates all documents in which this module is included, this change is
easily applied to all documents it is included in. As such, combinatorial effects
are avoided and evolvable documents can be generated.

7 Conclusion

In this paper, we presented an alternative approach to the use of static and mono-
lithic documents. Compared to traditional document and version management
systems, this new approach allows for more versatile document management. In
this paper we have shown how documents can be viewed as modular systems
and decomposed into text modules. There are several advantages to this app-
roach. First, modular documents are easier to maintain. The text modules they
are composed of show a clear structure and clearly indicate the single point of
storage of specific information. Another important advantage is the vast versa-
tility the use of text modules creates. New types of documents can be composed
simply by combining text modules in new ways. As such, new types of docu-
ments can be created with goals and purposes the user might now even be able
to imagine right now. This is shown in the paper by calculating the number of
possible document combinations for study program documents. And finally, the
systematic decomposition of documents into text modules allows the creation of
evolvable documents. By adhering to the Separation of Concerns and Version
Transparency principles, combinatorial effects can be eliminated and evolvable
documents can be generated.

Another contribution of this paper is the discussion on dynamic cross-
referencing, relative sectioning and version control. The paper shows the impor-
tance of these aspects in document management and in obtaining evolvable
documents.

140 G. Oorts et al.

In future research, additional cases will be studied to corroborate the theo-
retical and practical findings of the study program case mentioned in this paper.
Additional research will also be done to potentially expand the list of identified
cross-cutting concerns in documents.

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. MIT
Press, Cambridge (1999)

2. Campagnolo, D., Camuffo, A.: The concept of modularity in management studies:
a literature review. Int. J. Manage. Rev. 12(3), 259–283 (2010)

3. Huysmans, P.: On the feasibility of normalized enterprises: applying normalized
systems theory to the high-level design of enterprises. Ph.D. thesis, University of
Antwerp (2011)

4. Gruber, J.: Markdown (2004). https://daringfireball.net/projects/markdown/
5. MacFarlane, J.: Pandoc Universal Document Converter (2017). http://pandoc.org/
6. Leichsenring, C.: Relsec style file (2013). https://github.com/mudd1/relsec/blob/

master/relsec.sty
7. Mannaert, H., Verelst, J., De Bruyn, P.: Normalized Systems Theory: From Foun-

dations for Evolvable Software Toward a General Theory for Evolvable Design.
Koppa (2016)

8. Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based
on systems theoretic stability. Softw. Pract. Experience 42(1), 89–116 (2012)

9. Oorts, G., Mannaert, H., Franquet, I.: Toward evolvable document management
for study programs based on modular aggregation patterns. In: PATTERNS 2017:
The Ninth International Conferences on Pervasive Patterns and Applications, p. 6
(2017)

10. Porter, M.E.: Strategy and the internet. Harvard Bus. Rev. 79(3), 62–78, 164
(2001)

11. Van Nuffel, D.: Towards designing modular and evolvable business processes. Ph.D.
thesis, University of Antwerp (2011)

12. Vanhoof, E., Huysmans, P., Aerts, W., Verelst, J.: Evaluating accounting infor-
mation systems that support multiple GAAP reporting using normalized systems
theory. In: Aveiro, D., Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol.
174, pp. 76–90. Springer, Cham (2014). doi:10.1007/978-3-319-06505-2 6

https://daringfireball.net/projects/markdown/
http://pandoc.org/
https://github.com/mudd1/relsec/blob/master/relsec.sty
https://github.com/mudd1/relsec/blob/master/relsec.sty
http://dx.doi.org/10.1007/978-3-319-06505-2_6

Application of Enterprise Engineering
to Lean Process Management:
An Explorative Case Study

Marjolein Deryck1(B) and Philip Huysmans2(B)

1 Faculty of Applied Economics, University of Antwerp, Antwerp, Belgium
marjolein.deryck@uantwerpen.be

2 Antwerp Management School, Antwerp, Belgium
philip.huysmans@ams.ac.be

Abstract. Since the publication of ‘The machine that changed the
world’, lean has spread in academic and management literature. In this
case we study the lean transition of one process in a Belgian financial insti-
tution by means of Enterprise Engineering (EE) concepts and methods.
Enterprise Ontology (EO) and Normalized Systems (NS) are used. Addi-
tionally, Business Process Modeling Notation (BPMN) is used to describe
process implementations in more detail. In the case the role of each of
these methods is discussed, as well as their weaknesses and advantages.
However, it does not propose an explicit integration of different theories.
Based on our results and in line with calls from previous research we high-
light the contributions of EE tools for lean implementation.

Keywords: Enterprise Engineering · Ontology · Normalized Systems

1 Introduction

A bulk of management and academic literature is available on the advantages of
introducing lean principles in the organization (see e.g. [8]). The huge reported
cost reductions reported by some manufacturers spurred its diffusion to virtually
every sector. The effective realization of benefits however don’t seem to fulfill
the high expectations [3,7]. The absence of a solid implementation methodology
might partially explain this disappointment [5]. This is especially true for the
application of lean in services sectors, for which the development of frameworks
only started recently. Moreover, it is recognized that the application of lean in
these sectors requires different tools, because of the intangible nature of services,
and their intensive use of Information Systems (IS) [4].

EE may provide an answer. The discipline views organizations in analogy
with other engineering disciplines as a system that needs to be designed pur-
posefully [1]. Hence it develops tools and practices to systematically (re-)design
organizations. The case study research presented in this paper focuses on the lean
transformation of one of the operational processes started in a Belgian financial
institution. The difficulties that the enterprise encountered during the first lean
c© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 141–148, 2017.
DOI: 10.1007/978-3-319-57955-9 11

142 M. Deryck and P. Huysmans

phases were considered opportunities to connect with the contributions of other
methods. This resulted in the description of how different methods can be used
to achieve the predetermined purpose of a business process optimization project.
A related set of ontological models provides the starting point to differentiate
between value-adding and other activities, to map information streams and to
develop the data model of an IS. Our research also included the construction of
a prototype based on the data model. It can be used to visualize and discuss the
work in progress with end users and programmers. It also demonstrates how NS
are built to cope with changes and complexity.

This paper starts with the literature background of lean and EE. Section 3
discusses the case study: methodology, the background, and the contributions of
EO, BPMN and NS. The implications of these results are discussed in Sect. 4.
Finally the conclusion focuses on contributions and limitations of this research.

2 Related Work

2.1 Lean and Challenges

Lean appeared in academic and management literature at the end of last century.
It generalized the production principles from Japanese car manufacturers that
succeeded to produce more and better cars with less resources [8]. Central in
lean is the idea of ‘waste’ i.e., all activities that don’t add value to the customer.

At the end of last century some of the research focus shifted towards the
application of lean in service sectors. These sectors account for the largest part
of the GDP in most developed countries, but their efficiency lags far behind that
of physical manufacturing processes [9]. Nevertheless, a literature survey reveals
that many challenges remain when implementing lean in service sectors.

E.g., a generally accepted framework explaining how lean can be imple-
mented seems to be lacking (see e.g., [5]). Some frameworks prove useful in
a single case but don’t succeed in conveying the advantage to others.

This seems to be even more true in a service context [9]. A recent frame-
work is ‘Lean first, then automate’, by Bartolotti and Romano [4]. Prelimi-
nary to the development of the framework their research focused on the relation
between automation and lean. Traditionally lean advises to avoid the automa-
tion of processes, as this is a source of rigidity. However, in service processes
often the efficiency and quality increase when performed automatically. There-
fore automation in a pure service context is desirable, but since the automa-
tion of inefficient processes is counterproductive, processes first need to
be streamlined [4].

To implement frameworks they need to be supplemented with practical tools.
Previous research indicates that the nature of these may differ from that
of manufacturing tools. E.g. the determination of waste is acknowledged to
be particularly complex due to the intangible nature of services [2].

One of the techniques usually associated with lean is brainstorming. By unit-
ing members from different teams and having them put forward possible ideas,

Application of Enterprise Engineering to Lean Process Management 143

a solid solution will be attained. However, in practice the quality of the solu-
tion depends heavily on the knowledge of brainstorming participants,
personality traits and organizational influences.

2.2 Proposal: Purposeful Design with Enterprise Engineering

One possible remediation for these challenges is to call for a purposeful design of
the enterprise as put forth by the research area of EE. EE provides a set of tools
and theories to this end. It is not the intention of this paper to propose an explicit
integration of different theories. Nevertheless, the engineering perspective which
is the basis for all EE theories provides a common ground to contribute to the
lean methodology in complementary parts of a single case.

Enterprise Ontology provides a structured way to create models by the selec-
tion of only the essential (ontological) transactions. The theoretical underpinning
is rooted in Habermas’ communicative action theory. It builds on the similarity
between human communication and enterprises as social systems with multiple
organizational layers. This is discussed extensively in the work of Dietz [6]. Start-
ing from EO models, the aim is to deduct an optimal implementation from it.

The two main constructs used from EO are transactions and actors. Onto-
logical transactions are the basic building blocks of EO models. Abstraction is
made from the way these transactions are implemented in practice, which greatly
reduced the complexity associated with it. As a result, EO models are suitable
tools to enhance comprehension of clients and participants with regards to the
end-to-end process.

An actor role in EO is a theoretical construct that combines competence,
responsibility, and authority [6]. Mapping the ontological actor roles with the
implemented organization functions can provide insight in difficulties linked to
the information streams and responsibilities.

BPMN stands for Business Process Model and Notation. It is a widely used
standard to translate business processes in a visual representation. BPMN is not
a part of EE, but was used in this project to describe process implementations in
more detail, and to be able to integrate with the current modeling efforts of the
team. It supplements EO models with other aspects of organizational actions
situated at the infological level. Because of the intuitive way in which BPMN
models can be read and their wide-shared business use, it was preferred over
other process models.

Normalized Systems prescribes a set of design principles to achieve evolv-
ability at the implementation level, which is operationalized as the absence of
combinatorial effects (CE). While the theory is applicable to different domains,
its application is most advanced in the software domain. The NS design principles
are adhered to by proposing software elements, which each align with these four
theorems. These elements provide building blocks which enable a fast expansion
of flexible and scalable IS. These expanded systems can be used as analysis pro-
totypes, which allow a very iterative way of fine-tuning business requirements

144 M. Deryck and P. Huysmans

of an IS. Moreover, the four principles can be used to identify and explain the
causes of agility problems linked to the current way of working.

3 Demonstration: Case Study

3.1 Case Study Methodology

This research is conceived as a single descriptive case study of the lean trans-
formation of a cross-departmental processes. It illustrates the challenges and
pitfalls that initiators need to overcome if they aspire to reap all of lean’s bene-
fits. Information was gathered through analysis of internal procedures and doc-
uments, and supplemented with interviews. Minutes of every interview were
drafted and hence reviewed and (where needed) supplemented by meeting par-
ticipants. Drafted models, preliminary insights, and conclusions were discussed
with the lean tracker to ensure alignment with business insights. All of this
information was stored in a case study database. For each of the methodologies
used, it is indicated in the relevant section how the researchers proceeded. The
research started with the selection and demarcation of th process. It continued
along the analysis, brainstorming phase and the selection of optimization tracks.
Due to time constraints the effective implementation phase was not covered.

3.2 Case Study Background

The case study company is a financial institution in Belgium. It decided to
initiate a lean transformation in a selected scope of departments. They were
encouraged to select one process that cuts across different departments and in
which lean optimizations were to be expected. Lean was selected as method
because of the central position of the customer needs and to promote a general
“lean attitude” among employees.

The case study department is the back office financial markets. A selection of
tasks performed by this department include amongst other the validation of deals
concluded by the trading room, execution of payments, follow-up on collateral,
and financial and liquidity reporting.

The selected process has the purpose to conclude master agreements (MA)
that facilitate the conclusion of financial market transactions. The MA describes
the general conditions, restrictions and practices applicable to the settlement of
transactions. This way it suffices to confirm the specific details when an actual
transaction between the two parties is concluded (typically resulting in a three-
pages deal confirmation), given the fact that all other processing details are
agreed upon in the MA.

The targeted areas of improvement are the communication with customers
and internal communication between departments.

Application of Enterprise Engineering to Lean Process Management 145

3.3 Results

Enterprise Ontology Procedure. To ensure the collection of all relevant infor-
mation and validity of the conducted analysis we proceeded through five steps of
procedure analysis, interviews, ontological analysis of the obtained information,
grouping of transactions and validation. It is worthwhile to elaborate on the val-
idation step. In an earlier meeting the concepts of ontological transactions were
briefly (+− 30 min) explained to the business owners. Before the presentation of
the drafted models the main principles were repeated. The validation of the con-
struction model and the explanation of some pieces of information missing in the
detailed process models of the transactions took 90 min. The validation of the
MA process model took less than 15 min, including the repetition of modeling
principles. As a result of this step minor corrections and replenishment details
were made.

Contributions. The ontological models consist of departmental and process mod-
els. The departmental models have the department as its universe of discussion.
They contain the transactions performed or initiated by the department and the
resulting detailed models. The process-induced models have the MA process as
its universe of discussion. The connection between these two kind of models is a
shared transaction in which the back office acts as an actor.

The departmental models allowed for insights on the organizational role
of the department. By mapping the ontological model with the organization chart
it became apparent that given its size the number of transactions is very small.
Further analysis reveals that an even smaller number of teams execute these
transactions. Moreover, the transactions are linked to the mandatory distinction
between the trading room and back office. This may hamper the generalization
to other back-offices that may not have similar legal requirements.

The process models provide more insight on the actors in the process
and the role of the back office in it. The set of ontological process models (process
structure diagram, action model, information use table and state model) make
up a solid base for the design of the related IS. In the elaboration of the detailed
process models an additional mapping of actor roles on organization roles has
been performed for analysis purpose. This leads to the conclusion that in the
current organization a fragmented communication to the customer is almost
inevitable, as the actor role responsible for it is taken up by multiple teams in
the process chain.

Also a result-structure chart has been created. This model provides a very
high-level overview of the process. Therefore it is an ideal way to provide insight
in the broader purpose of the requested actions. Also, this model highlights in
a very condensed format the activities that need to be performed successfully
to conclude the contract with the customer. In lean-terminology this equals the
value-adding activities of the process. Therefore it is very suitable to extend the
regular lean tools in service processes.

146 M. Deryck and P. Huysmans

BPMN Procedure. The drawing of the model based on an operational proce-
dure proved difficult due to the lack of process structure contained in it. The
document available for the creation of the BPMN model was an eight pages
long operational procedure that described in a structured way the phases in the
process, the executor, the input, the activities and the output. The high level
process steps mentioned in the procedure did not contain enough information
to use as a guideline. The detailed operational information on the other hand
did not discern important activities from subactivities. These difficulties could
be overcome by enriching the drafted EO process models with implementation
details on info- and datalogical level to create the BPMN model.

Contributions. The BPMN model revealed that the procedure signed off between
the different departments mainly focuses on the successful processing of the MA
request. The tasks to perform with non-standard cases are not described, while
probably this type of files make lead times surge. Hence the explicit inclusion
of deviant situations could diminish average lead times. Moreover, it became
apparent that some information flows were not well documented, this in spite of
its ambition to include all information flows in the procedure. Therefore BPMN
is a useful tool to check the completeness of step-by-step procedures. Addition-
ally, using actor swimlanes might stimulate cross-departmental process-thinking.
The model might also be useful to identify suitable process owners and relevant
process performance indicators.

Normalized Systems Procedure. One of the optimization tracks concerns the
automation of the MA input information file. First the motivation to automate
the way of working were analyzed using NS theorems, then an evolvable proto-
type of an IS was created. The information file contains multiple worksheet and
some very detailed information on the client and his request. The big blocks of the
data model and the links between them were identified in the state model. For the
MA process these blocks are: client, masteragreement, transaction, credit line,
and guarantor. The information in the sheet contains more detailed attributes.
After assigning the attributes to one of the blocks, the obtained data-objects
were evaluated against the four NS theorems, thereby splitting the client-object
in multiple data-objects. This procedure was followed for each of the five original
blocks. The result is a NS-compliant data model that can be used as input for
the creation of the application structure using NS expanders.

After the data-structure has been built, a workflow representing the process
are identified and inserted into the data structure. Without further development
the application can be used as such, with employees performing tasks manually
and adapting the status accordingly. Company-specific customization code can
be inserted to automate some of these tasks. This code can’t be guaranteed to
be free from CE, but impacts will be limited to the structure in which it is
encapsulated.

Contributions. The evaluation of the sheet against the four NS-theorems explains
and underpins the factors that inhibit evolvability. A clear view on this might

Application of Enterprise Engineering to Lean Process Management 147

prove helpful to substantiate project benefits. By applying these same criteria
to the design of the data model it forms the basis of the stable application
structure. The way to obtain this is straightforward and described above. In
the situation where a new application needs to be created, not all requirements
may be available beforehand. In that case a more basic prototype can easily
be developed based on the building blocks identified in the state model. This
in turn can be used to solicit feedback from end users and reveal additional
requirements. As the prototype is evolvable, new requirements can easily be
included in it. Therefore it is an easy tool for an analyst to create an evolvable
application structure, to collaborate on short development cycles with end-users
without a lot of formalization. This complies well with the aim of lean projects to
eliminate waste, as the laborious requirements analysis phase and its translation
in documents is replaced with quick and tangible results.

4 Discussion

This paper starts from the lean transformation of a process in a financial insti-
tution. By using different widespread methodologies on the same process the
contributions of each method become apparent. For this discussion, we refer to
the challenges for lean identified in Sect. 2.

A first challenge referred to the lack of a generally accepted framework. The
absence of complicated models and the use of brainstorming techniques are seen
as facilitators to implement lean. However, in practice the absence of a standard-
ized implementation and tools induces difficulties with regards to the selection
and demarcation of the process to tackle, insight in the construction of the
process and translation to technical requirements for supporting applications.
EE consists of a set of interrelated theories, rooted in a common engineering
perspective. This can be illustrated by the way the different EO aspect mod-
els are used as a basis for modeling the BPMN processes and NS data models.
This reuse of knowledge captured in a certain model also demonstrates how
the challenge regarding the heavy dependence on brainstorming sessions can be
addressed. Moreover, it was illustrated how the consistent usage of and refer-
ence to the transaction model allow a demarcation of the brainstorming session,
which allows for more focused suggestions.

The explicit usage of EO models as a starting point in our approach high-
lights the concern to address the challenge regarding the need for different lean
tools in a service context. EO considers an organization as a social system, which
provides an adequate answer to the complexities in service organizations. The
demarcation of responsibilities of the department as discussed in Sect. 3.3 illus-
trates this point. This illustration shows that the creation of ontological models
does not hamper the dynamic and participation-stimulating nature of lean. On
the contrary, it may focus group discussions and drawing attention to possible
conflicts of interest. Because of the specific nature of ontological transactions
they can also be considered as the value-adding activities in a process. Hence
the ontological process model is particularly suitable for use in the initial stage
of a lean transformation that embarks with the identification of waste.

148 M. Deryck and P. Huysmans

Finally, the inclusion of the NS prototype discussed in Sect. 3.3 enables flex-
ibility and elicits experimentation for the proposed solutions. E.g., it was men-
tioned how the workflow constructs of NS allow interchanging manual or auto-
mated task implementations. Consequently, our approach enables a focus on the
overall process structure first, and postponing discussions regarding automation.
Additionally, the focus of NS on evolvability forces the artefacts of a lean project
to be prepared for future alignment with new customer preferences.

5 Conclusion and Future Research

The case study presented in this paper contributes to the body of knowledge
in three ways. First, it illustrates the practical application of EE concepts in a
real life case. Second, it contributes to the expansion of lean that was called for
by other authors [8]. It does this in such way that it copes with the challenges
associated with the use of lean in service sectors. In our study we show how EO
models can be used to understand the organizational structure, frame the initial
discussion and guide the subsequent design. On the other hand NS prototyping
associates well with lean in the implementation phase, as it allows quick and
easy modeling in short runs and without the waste typically associated with
requirements definition. Third, this paper extends the evidence that it is possible
to design processes and IS based on engineering principles. This implies a more
deterministic approach in which factors like experience of the modeler or the
coincidence of a successful brainstorming idea are less important.

References

1. Albani, A., Rabera, D., Wintera, R.: A conceptual framework for analysing enter-
prise engineering methodologies. Enterp. Model. Inf. Syst. Architect. 11, 1 (2016)

2. Andres-Lopez, E., Gonzalez-Requena, I., Sanz-Lobera, A.: Lean service: reassess-
ment of lean manufacturing for service activities. Procedia Eng. 132, 23–30 (2015)

3. Bhasin, S.: Prominent obstacles to lean. Int. J. Prod. Perform. Manage. 61(4), 403–
425 (2012)

4. Bortolotti, T., Romano, P.: Lean first, then automate: a framework for process
improvement in pure service companies. a case study. Prod. Planning Control 23(7),
513–522 (2012)

5. Chay, T., Xu, Y., Tiwari, A., Chay, F.: Towards lean transformation: the analysis
of lean implementation frameworks. J. Manuf. Technol. Manage. 26(7), 1031–1052
(2015)

6. Dietz, J.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg
(2006)

7. Pepper, M., Spedding, T.: The evolution of lean Six Sigma. Int. J. Qual. Reliab.
Manage. 27(2), 138–155 (2010)

8. Samuel, D., Found, P., Williams, S.J.: How did the publication of the book the
machine that changed the world change management thinking? Exploring 25 years
of lean literature. Int. J. Oper. Prod. Manage. 35(10), 1386–1407 (2015)

9. Surez-Barraza, M.F., Smith, T., Dahlgaard-Park, S.M.: Lean service: a literature
analysis and classification. Total Qual. Manage. Bus. Excellence 23(3–4), 359–380
(2012)

Ontologies

The REA Model Expressed in a Generic DEMO Model
for Co-creation and Co-production

Frantisek Hunka1(✉) and Steven J.H. van Kervel2

1 University of Ostrava, Ostrava, Czech Republic
Frantisek.hunka@osu.cz

2 Formetis Consultants BV, Boxtel, The Netherlands
info@formetis.nl

Abstract. The REA ontology is a domain ontology that aims to support
accounting information systems that must provide a truthful and appropriate –
GAAP compliant - descriptive perspective of an enterprise in operation. While
the application of a domain ontology provides strong benefits, the current repre‐
sentation of the REA model does not provide the desired results; an appropriate
working accounting system. One of the root causes of this problem is the lack of
a proper formal representation of the REA model. In this paper the DEMO meth‐
odology is applied to provide a generic domain and application-independent
DEMO model (the CC-CP model) for co-creation and co-production in any
industrial production chain. This model appears to be also appropriate to capture
any interaction between an enterprise and any external parties, stakeholders,
customers, suppliers, personnel etc., and support accounting systems. This
approach offers several new advantages, notably: (i) prescriptive workflow-like
operation of the enterprise with full transaction driven execution; (ii) process-
mining (-like) analysis of daily operation; (iii) ontological completeness of factual
knowledge as required not only for accounting systems but also for other descrip‐
tive information systems and (iv) completeness of implementation for any kind
of business interactions between enterprises.

Keywords: REA model · DEMO enterprise ontology (DEO) · DEMO
methodology · Co-creation and Co-production

1 Introduction

REA is considered a strong potential improvement of foundations for accounting systems.
It aims at providing a domain ontology which is a necessary condition of any system that
provides some perspective of “phenomena in the real world”. However, so far any attempts
to apply REA for accounting systems using the current representation [8, 9] have encoun‐
tered serious problems that are difficult to identify and even more difficult to fix [11, 12].
Its present formal representations appear not appropriate enough [12]. It is argued and
observed that the root of these problems is obviously caused by: (i) a lack of good onto‐
logical foundations; (ii) lack of good formal methods and (iii) lack of an appropriate formal
language to represent the model.

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 151–165, 2017.
DOI: 10.1007/978-3-319-57955-9_12

For the study and understanding of phenomena observed in reality, ontologies are
designed and used to understand and reason about some specific domain of reality
(reality “precedes” ontology). Section 5 specifies REA model-driven GAAP compliant
systems and the core theories. An ontology is defined as a “formal, explicit specification
of a shared conceptualization of reality” (Gruber 1993). The conceptualization is
composed of concepts of objects, their attributes and their relations. The conceptuali‐
zation is shared by knowledgeable human stakeholders, meaning in the first place that
all stakeholders are assumed to have an identical understanding of each object or
concept, each attribute and each relation. Informally, an ontology has two faces; one
face to the phenomena in the real world, and the other face a formal explicit represen‐
tation of concepts.

The REA ontology must capture all phenomena in the real world that are required
by some accounting system to provide a GAAP compliant accounting perspective and
representation of that enterprise. GAAP requirements define which phenomena must be
captured with a completeness criterion. If not all phenomena are captured or if the
phenomena are not captured in a truthful way, then any accounting system will provide
a wrong perspective, a wrong profit -loss statement, general ledger etc.

In this paper a representation of the REA model expressed in a DEMO model for
co-creation and co-production (CC-CP) [12] is assessed. The CC-CP model is generic,
application and industry independent and captures all relations between suppliers, stake‐
holders and individual workers for our enterprise of interest. This claim demands future
empirical support.

In Sect. 2 the ontological foundations of REA and DEMO are assessed. In Sect. 2.1
the strength and weaknesses of the REA ontology are described and why another repre‐
sentation of the REA model is needed. Notably the problematic notion of “value” has
been addressed and solved [3]. In Sect. 3 the CC-CP model is presented and assessed.
Section 4 describes the benefits of the CC-CP model representation of the REA model
and several quality and completeness criteria.

Future research, our long term strategic vision and objectives are described in
Sect. 5. If we have a proper formal representation of the REA model that is provided by
the DEMO CC-CP model, then that is a promising foundation for future model driven
GAAP compliant accounting systems, with strong benefits.

2 Ontological Foundations of REA and DEMO

The ontological foundations, the strength and weaknesses of REA are assessed. Its
apparent weaknesses are notably lack of formal methods, lack of empirical theories and
ontological flaws and incompleteness [14]. The strengths of the DEMO Enterprise
Ontology (DEO) are described; notably strong empirical foundations, formal methods,
design science and general systems theory. This approach is to express the REA ontology
in concepts and relations provided by the DEO in such a way that strength and value of
REA is kept and the apparent weaknesses are mitigated.

152 F. Hunka and S.J.H. van Kervel

2.1 REA Ontology

The REA ontology originates from accountancy systems and provides a domain specific
platform for value modeling business processes, see [10]. The principal economic
concepts are economic resources, economic events and economic agents. Economic
resources are things of economic value that have utility for economic agents and for this
reason they used to be planned, monitored, and controlled. Economic events are activ‐
ities within an enterprise that represent either an increment or a decrement in the value
of economic resources. Economic agents are individuals or organizations that participate
in the control and execution of economic events.

The other fundamental REA concepts, their relationships, constraints and rules for
constructing application models are illustrated in Fig. 1. Apart from the above mentioned
concepts, Fig. 1 also contains commitment and contract concepts and corresponding
relationships.

Fig. 1. REA metamodel level. Adopted from [9]

The main benefit of the REA approach is that all accounting artifacts such as debit,
credit, journals, ledgers, receivables, and account balances are derived from the data
describing exchange and conversion REA processes. It means that all accounting arti‐
facts are always consistent, because they are derived from the same data; for example,
data describing a sale event is used in warehouse management, payroll, distribution,
finance and other application areas, without transformation or adjustment [9].

REA anomalies have its origin in absence, to some degree, of rigorous theoretical
and philosophic foundations, mainly since these seem to be lacking. One of these lacking
capabilities is that the REA model itself does not have specific states from which a state
machine can be derived. Observation shows that in REA between two entities there are

The REA Model Expressed in a Generic DEMO Model 153

different discrete, disjoint, states of any economic transaction. Instead, only the resource
states are identified and frequently used as the states of the state machine, which is
incorrect. As a result of this, the REA model cannot provide decline and reject transac‐
tion steps, as well as revoking operations, things one observes happening in any
economic transaction. In addition, the REA model is predominantly design to capture
events that refer to the resource value or resource feature. The other events such as
business events or information events are difficult to capture and further processed.
Consequently, REA has not properly defined so called information or knowledge entities
such as contract or schedule because these entities are not resources. REA contains a
contract concept which represents a contract that came into effect. There is no concept
in REA for unsigned (not coming into effect) contract. The REA modeling approach
aims at descriptive information systems that are based on exchange, consumption, usage
and production of economic resources.

To summarize the main observed limitations and flaws of REA in its current repre‐
sentation.

1. Restriction to capture only production facts that in addition refers only to the
exchange of property rights to resources or to transformation of a set of resources
into another set of resources.

2. Lack of ontological completeness of a transaction for example: sending a production
order, receiving an invoice etc. These are all important facts for accounting systems.
Yet not provided by the current representation [9].

3. Not capturing transaction events which imply that there is no truthful state machine
based on transaction states and state transitions. This also includes missing transac‐
tion steps such as decline or reject, as well as cancellation patterns.

4. Conceptual mismatch – not capturing the real phenomena in the world. It is mani‐
fested in explicit distinction between past and current events and events which are
performed in future and in impossibility to express the change of state in which a
contract or a schedule comes into effect.

5. Restricted ability to express explicitly business rules. The type level mechanism
applied in REA enables only to impose business rules on the instances which are in
compliance with the given type.

6. No prescriptive capabilities – no certainty that “in real life” things go as defined.
7. REA and accounting apply the notion of value, but there are serious problems asso‐

ciated to this concept. The main problem is that value is subjective and does not exist
in the real world. Discussed in detail in [3, 12].

Yet, there are valuable aspects of the REA model. The approach in this paper is to
represent REA in a better way.

2.2 DEMO Enterprise Ontology

DEMO is an engineering methodology to derive conceptual models of enterprises, based
on an ontological theory, DEMO enterprise ontology (DEO) [1, 2]. DEO is comprised
of four axioms and a theorem. DEMO is part of the emerging discipline of ‘enterprise
engineering’ (EE) [2]. EE is founded on the same kind of theories as more mature

154 F. Hunka and S.J.H. van Kervel

engineering disciplines such as civil engineering, aviation and electronics. A claim for
the quality of the applied methodology is guaranteed by the underlying theories, meth‐
odologies, formal methods [2, 5, 7] and a good body of empirical cases in many
domains [5].

The DEMO methodology claims to provide models that meet the so-called C4-ness
quality criteria [7]. Comprehensiveness refers to the condition that the model should
encompass everything that is part of the ontology. This includes all concepts and rela‐
tions of the ontology; nothing is missing.

Consistency refers to the absence of any anomalies of any kind. Conciseness refers
to the requirement that anything that is not in the domain of the ontology should not be
represented in any model. Coherence refers to the ‘semantic meaningfulness of the
symbols and their relations from every perspective’.

Specific results of C4-ness qualities are (i) that any enterprise that may exist in the
real world, including virtual CC-CP enterprises, can be modeled correctly in one and
only one way; and (ii) the DEMO model(s) for any such enterprise must provide concise
and comprehensive factual knowledge about the operation of the enterprise. These two
claimed results must be empirically tested for co-creation and co-production (Sect. 3).
It is assumed, to be proven by validation and assessment, that expressing the REA
ontology in DEMO may provide a DEMO model that is truthful and appropriate to
represent the REA model and support accounting systems well.

3 The CC-CP Model

The purpose of the proposed CC-CP DEMO model [12, 13] is to be a generic specifi‐
cation of any financial or business interaction or transaction between our enterprise of
interest and any external stakeholders such as customers, suppliers, personnel staff and
taxation or other governmental institutions. In execution of that enterprise model factual
knowledge must be provided for information systems. This model is claimed to capture
any interactions between an enterprise and any stakeholder. It is a generic pattern of
interaction, equivalent to the DEMO transaction.

3.1 Co-creation and Co-production Between an Enterprise and Its Stakeholders

Many highly specialized enterprises ‘Contractors’ do not have a well-defined portfolio
of products with fixed prices but offer their capabilities to meet the specific requirements
of their Principals. We define: co-creation captures the principal and the contractor(s)
working together on the engineering of an acceptable artifact; co-production captures
the shared production of the engineering artifact by both principal and contractor(s),
including matching financial transactions.

In this paper, the original scope of co-creation and co-production has been extended
to any stakeholder that interacts with our enterprise of interest; including customers,
sub-contractors, suppliers, workers, tax offices etc.

It is assumed, but not proven and future research, that all – not only accounting
systems – information systems that provide some appropriate perspective of the

The REA Model Expressed in a Generic DEMO Model 155

enterprise must be supported. The CC-CP fact model must specify all possible facts for
any descriptive IS. To prove this completeness claim is future research.

3.2 Ontological Completeness Quality Criteria of the CC-CP Model

There are several mandatory quality and completeness quality criteria applicable.
Missing criteria 1 or 2 for only one case renders the model worthless.

1. Completeness of the CC-CP model to capture any business interactions with any
imaginable stakeholder in a truthful and appropriate way.

2. Completeness of the CC-CP model to capture any factual knowledge (Sect. 3.2) that
maps to any REA concept for accounting systems.

3. Completeness of the CC-CP model to capture all factual knowledge that may be
needed by any GAAP compliant accounting system. This is a wider quality criterion
than requirement 2. This quality requirement is desirable but demands assessment
of the common foundations of GAAP compliant accounting systems, which is future
research.

3.3 The CC-CP Factual Information Support for Accounting Systems

The model must provide factual knowledge (informally “data about events“) about the
operation of the enterprise of interest for any imaginable information system – an Enter‐
prise Information System or “EIS” - that provides some descriptive perspective of the
operation of this enterprise. Key notion is that “facts”, which are propositions about the
world of phenomena, provide all required information for the descriptive accounting
information systems.

The term factual knowledge refers to truthful propositions about phenomena in the
world, In our case some phenomena in or about our enterprise of interest. In the FAR
ontology [13] is specified that a fact is a proposition that may have a logic relation with
other facts in a recursive way. A fact is a proposition that may have three values; true |
false | undefined. While the meaning of the values true and false are clear, the value of
“undefined” reflects the situation that for some unknown reason factual information is
not available. In the FAR ontology there exist four kinds of facts:

1. Communicative facts; as defined by the DEMO transaction axiom.
2. Infologic and datalogic production facts. An example is the text of the contract of

the CC-CP model. It is precisely the ‘text only’, without any actor commitments.
3. Facts about the world of phenomena not captured by the DEMO ontology, the kinds

1 and 2. Example: the exchange rate dollar – euro = 0.85. The value of this propo‐
sition can be true | false | undefined.

4. Any logic aggregated facts, or dependent facts, composed of logic relations (AND
| OR | NOT relations) of other facts. Evaluation laws for the three-state logic.

The notion “full factual knowledge” is important. There are three completeness
claims; (i) all interactions with any stakeholder with which there are transactions (finan‐
cial or otherwise) must be captured well; (ii) for each interaction with a stakeholder all

156 F. Hunka and S.J.H. van Kervel

relevant facts must be provided; (iii) in addition there is the requirement that for each
fact all relevant attributes of that fact must be provided.

Example: the fact represented by proposition “Person a is member of Club c” can
be defined to be true if: The age of the proposed member is above 18 years of age; AND
the membership admittance procedure has been approved; AND the membership fee
has been paid. If these requirements have not all been met then the fact is not true. If
any of the composing facts cannot be evaluated and returns the value undefined then the
value of the fact becomes undefined. Relevant attributes of that fact may be the date
when the membership became true, the duration of the membership. There are also
relations to the person that is a member etc.

To summarize, the following propositions are formulated:

1. The CC-CP model captures any transaction based on business interactions betweenour
enterprise of interest and any stakeholders, suppliers, subcontractors, staff etc.

2. Capturing of the business interaction between the enterprise of interest and stake‐
holders implies that CC-CP model provides a truthful and appropriate representation
of all DEMO transactions.

3. For the enterprise of interest there exist a number of valuable descriptive perspectives
– seen from the perspective of the stakeholders, shareholders, management etc. - of
the operation of that enterprise. The relevant perspective of this paper is an
accounting perspective provided by an EIS (enterprise information system), a REA
compatible GAAP compliant accounting system.

4. There is a completeness claim for factual knowledge claims; all facts, and facts are
complete with all attributes.

3.4 The CC-CP Fact Model

The proposed CC-CP Fact Model strictly follows the CC-CP Construction Model which
is composed of six transactions, see Fig. 2. The presented Fact Model is described in three
phases which correspond to the phases of the Construction Model and is illustrated in Fig. 3.

The co-creation phase includes T-1 and T-2 transactions. The object class
CONTRACT which is the core concept in the whole CC-CP Fact Model is identified in
this phase. The other object classes that are identified in this phase are PRODUCTION,
PRICE, PRODUCTION-KIND, MONEY-KIND and the external object class ENTER‐
PRISE. All mentioned object classes are primal classes, which means that they cannot
be defined on the basis of other fact types. The lines between CONTRACT and ENTER‐
PRISE labeled “principal of contract is enterprise” and “contractor of contract is enter‐
prise” represent property types. Mandatory and uniqueness constraints indicate that a
contract must have one enterprise as a principal and one different enterprise as a
contractor.

The property type between the object classes CONTRACT and PRODUCTION
indicates that each contract has only one production and each production has only one
contract. The same holds for the property type between the object classes CONTRACT
and PRICE.

The REA Model Expressed in a Generic DEMO Model 157

The property type between the object classes PRODUCTION and PRODUCT-
KIND expresses that one product can include more product-kinds which is in compliance
with a purchase order containing more items. Each product-kind is further specified by
value types which represent the volume (amount), the price per unit and the delivery
day of the product-kind. The result kind “[production] was defined” is existentially
independent unary fact kind which is the result of T-1 transaction.

The property type between the object classes PRICE and MONEY-KIND indicates
that one price can have several money-kinds. Each money-kind is further specified by
value types which represent the price of production and the day of payment. The result
kind “[price] was defined” is existentially independent unary fact kind which is the result
of T-2 transaction. From the implementation point of view it is supposed that T-1 trans‐
action kind and T-2 transaction kind have each only one instance.

The contract phase includes T-3 and T-4 transactions. The result kind
CONTRACT_SIGNED is another core concept and is a subclass of the object class

CONTRACT. The figure illustrates that any contract can become a contract signed.
This result kind becomes existent when T-3 is Promised and T-4 is Promised. From the
above follows that in order to model a contract signing it is necessary to explicitly express
two coordination facts and perform a logical aggregate over them. As the traditional
DEMO methodology does not cope with this requirement, the FAR ontology was
utilized to capture the above described task. From the implementation point of view it
is supposed that T-3 transaction kind and T-4 transaction kind have each only one
instance.

Fig. 2. The CC-CP Construction Model

158 F. Hunka and S.J.H. van Kervel

Fi
g.

 3
.

Th
e

C
C

-C
P

Fa
ct

 M
od

el

The REA Model Expressed in a Generic DEMO Model 159

The co-production phase is formed by T-5 and T-6 transactions and the execu‐
tion and result phases of T-3 and T-4 transactions. The property type between the
object classes CONTRACT_SIGNED and PRODUCTION_DELIVERY indicates
that one contract_signed can have more production deliveries which is in compli‐
ance with the modeling reality. From the implementation point of view it is supposed
that T-5 transaction can have one or more instances.

The property type between the object classes PRODUCTION_DELIVERY and
PRODUCT (KIND) expresses that one production_delivery can have more products.
Each product is further specified by value types which represent the actual volume, the
actual price per unit and the actual delivery day. A product, as such, can be identifiable
or quantifiable or both. In case a product is identifiable, it can have a serial number and
the notion of product can be used. If the product is only quantifiable the notion of product
kind is used. The result kind “[production] delivery” is existentially independent unary
fact kind, which is the result of T-5 transaction.

The property type between the object classes PAYMENT and MONEY-KIND indi‐
cates that one payment can represents more money-kind which is in compliance with a
payment order containing more money kinds. Each MONEY-KIND is further specified
by value types which represent the actual price of production and the actual day of
payment. The result kind “[payment] was made” is existentially independent unary fact
which is the result of T-6 transaction.

The result kind PRODUCTION_AGREEMENT is a subclass of the object class
PRODUCTION_DELIVERY. It means that the object class PRODUCTION
DELIVERY can become the result kind PRODUCTION_AGREEMENT when the fact
“production_agreement was fulfilled” becomes existent. The result kind
PRICE_AGREEMENT is a subclass of the object class PAYMENT. It means that the
object class PAYMENT can become the result kind PRICE_AGREEMENT when the
fact “price_agreement was fulfilled” comes into existence.

The object class CONTRACT_FULFILLED becomes existent when the result types
PRODUCTION_AGREEMENT and PRICE_AGREEMENT come into existence. The
meaning of this object class is that obligations concerning production_agreement and
price_agreement as declared in the object class CONTRACT_SIGNED were fulfilled
and the contract is completed. The object class CONTRACT_FULFILLED represents
the duality relationship in REA.

3.5 Conceptual Mapping of the CC-CP FACT Model to REA Model Concepts

Despite the fact that the conceptual mapping is rather simple and needs further rigorous
elaboration, it captures the core issue. The DEMO Bank Contents Table, which is shown
in Table 1, contains object classes, fact types, and transaction banks, in which their
instances are contained.

160 F. Hunka and S.J.H. van Kervel

Table 1. The Bank Contents Table of the CC-CP Model

Bank Independent/Dependent fact
T1 CONTRACT

the principal of Contract
the contractor of Contract
ENTERPRISE
the production of Contract
PRODUCTION
the product-kind of Production
PRODUCT_KIND
the volume of Product-Kind
the price of Product-Kind
the delivery day of Product-Kind
the production of Contract is defined P1

T2 PRICE
the price of Contract
MONEY_KIND
the amount of payment of Money-Kind
the day of payment of Money-Kind
the price of Contract is defined P2

T3 the production_agreement is fulfilled P3
T4 the price_agreement is fulfilled P4
T3, T4 the production_agreement is promised and

the price_agreement is promised
the production requisition
CONTRACT_FULFILLED
the production_agreement is fulfilled and
the price_agreement is fulfilled P3 and P4

T5 PRODUCTION_DELIVERY
the production delivery of Contract_Signed
the product of Production_Delivery
PRODUCT
the actual volume of Product
the actual price of Product (price per unit)
the actual delivery day of Product
the production order placed (sent) T5.rq
the production order declined T5.dc
the production order received T5.pm
the delivery order handed over T5.st
the delivery order receipt T5.ac (P5)
the delivery order rejected T5.rj

T6 PAYMENT
the payment of Contract_Signed
the money-kind of Payment
MONEY_KIND
the actual amount of payment of Money-Kind
the actual day of payment of Money-Kind
the invoice placed (sent) T6.rq
the invoice declined T6.dc
the invoice received T6.pm
the payment made (sent) T6.st
the payment receipt T6.ac (P6)
the payment rejected – dispute T6.rj

The REA Model Expressed in a Generic DEMO Model 161

The coordination fact “the delivery order receipt” means that the production was not
only delivered but was also accepted by the principal. At this time, the corresponding
production fact comes into existence. The same holds for the coordination fact “the
payment receipt” which means that the payment was not only sent by the principal but
was also accepted by the contractor. At the same time the corresponding production fact
becomes existent.

The conceptual mapping deals with the DEMO CC-CP model fact kinds and their
mapping to REA concepts and relationships as follows. The production fact “the produc‐
tion of Contract is defined” which becomes existent as a result of T-1 transaction contains
all dependent facts (property types, attributes types) that are needed for one kind (decre‐
ment/increment) of an REA commitment. “The price of Contract is defined” is the next
production fact which comes into existence as a result of T-2 transaction. The T-2 trans‐
action instance contains all dependent facts (property types and attribute types) that are
needed for one kind of an REA commitment. The aggregate coordination fact “the
production of Contract is promised and the price of Contract is promised” is mapped
into the reciprocity relationship that relates a different kinds of commitments to each
other. The commitments are related to the corresponding resource types and economic
agent types. “The production requisition” is a dependent fact type, which is mapped into
the reservation relationship in the REA model.

The number of instances of the T-5 and T-6 transaction types corresponds to a
number of production deliveries and a number of installments, respectively. The T-5
transaction instance captures one production delivery, which is in compliance with
reality. The independent production fact “the delivery order receipt” is accompanied by
the dependent facts of the property types and attributes types. From the accounting
perspective the most important are explicitly expressed coordination facts that capture
the necessary inventory system events. The CC-CP model is able to register all these
events.

The T-6 transaction instance captures one payment (installment) in compliance with
reality. The independent production fact “the payment receipt” is accompanied by
dependent facts of the property types and attributes types. From the accounting perspec‐
tive, explicitly expressed coordination facts that capture the necessary accounting
system events are the most important. These events are: sending an invoice, receiving
an invoice, making a payment. The T-5 and T-6 transaction instances can provide coor‐
dination facts of decline and reject. Their practical meaning is as follows. “The produc‐
tion order was declined” or “the delivery order was rejected” in case of the T-5 trans‐
action instance, and “the invoice was declined” or “the payment was rejected” in case
of the T-6 transaction instance.

To summarize the following results are found. From the above simple analysis
follows that the CC-CP model provides all the facts that are necessary for the REA
exchange model. The decline and reject coordination facts have no equivalent in the
REA model but have equivalents in reality. In addition, the CC-CP model captures more
precisely and truthfully the facts that pertain to the signing of a contract and the facts
that concern the fulfilling of a contract.

Based on these simple and not rigorous assessments it is claimed that the DEMO
CC-CP model fully captures the facts needed by the REA model.

162 F. Hunka and S.J.H. van Kervel

4 Benefits of the REA Model Represented by the DEMO CC-CP
Model

The following benefits are provided by the CC-CP model and DEMO [1]:

1. The CC-CP model is extensible without loss of its capabilities. Supporting transac‐
tions can be added to provide more control of the enterprise operation. Example: An
employee is permitted to send a quotation for an order to a customer, a legally binding
commitment, but must have first an approval from a colleague. This is an imposed
business rule that must be enforced. To model this correctly, a transaction must be
created between the employee and the colleague. The production fact of that trans‐
action is an approval or a rejection. A business rules inhibits the c-act to send the
quotation until that permission Pfact becomes true – approved. If the Pfact is rejected
it will be never possible to send the quotation. DEMO enables precise definition and
execution of these kinds of rules [13].

2. The provision of all historic events, all documents, all commitments, with time/date
stamps, with guaranteed completeness in case of a dispute. This is also a complete
litigation case file. By applying the blockchain technology, the case file becomes
absolute trustworthy, it will be impossible to modify it.

3. The model can be extended or refined for any imaginable specific business situation
and adding defined business rules [13]. Including partially accepted deliveries, return
deliveries, not accepted payments, transaction roll-back etc. These claims are prom‐
ising but unproven benefits and can be considered more as a topic of future research.

4. The model must be free from anomalies such as deadlocks. While in the real world
it is possible to devise business rules may create anomalies such as a deadlock, a
deadlock condition can be modeled also. Though undesirable, it must be possible to
implement some system with a deadlock. Model simulation and validation identifies
and mitigates anomalies such as deadlock and other anomalies.

5 REA Model-Driven GAAP Compliant Systems and Theories

New ontological theories promise a model-driven approach for the development of
GAAP compliant accounting systems. The development of some GAAP compliant
accounting system is then simplified to devising a conceptual model, expressed in a
GAAP language, typically done by accounting experts. This model with matching soft‐
ware engine constitutes directly the GAAP compliant accounting system, which elimi‐
nates programming to a large degree (future research).

The theoretical foundations of the proposed approach are briefly described:
Guizzardi [4] proposed the foundations of ontological theories and a framework.

This framework captures (i) the phenomena of a specific domain in the real world; (ii)
the corresponding conceptualizations and (iii) an ontological modeling language. Any
proposition expressed in that ontological modeling language specifies some phenomena
that (may) exist in that domain in the real world.

Dietz J.L.G. [1] provided the DEO, DEMO Enterprise Ontology, a domain ontology
that captures any enterprise that operates in the real world. The DEMO methodology

The REA Model Expressed in a Generic DEMO Model 163

provides conceptual models, formal representations of enterprises. Dietz J.L.G. provided
also the Generic Systems Development Methodology [GSDP].

Van Kervel [6] extended the Guizzardi framework for static ontologies also for
dynamic ontologies and for a model executing software engine. This is based on the
GSDP methodology and results in the Generic Systems Development Process for
Model-Driven Engineering [GSDP-MDE] of (software) systems. This approach has
been proven; the DEMO engine has been built in this way [7].

The benefits are that in this way the development of a GAAP compliant accounting
system demands much less resources; “only” a conceptual model is needed (best case).
Also the validation that the accounting system is GAAP compliant is much easier. In
case the GAAP rules change, the model can be changed very quickly. The automatic
integration of different GAAP compliant systems to one coherent representation is
another promise.

6 Conclusion and Results

It has been shown that he CC-CP Fact Model contains all required facts, with proper
fact mapping for REA accounting systems, plus transactional behavior such as reject
delivery, decline order, reject payment etc. The complete and correct factual mapping
shows that the CC-CP model is appropriate to serve REA accounting systems.

However, much future research is needed to validate our generally careful claims:
(i) more rigorous assessment of conceptual alignment REA - DEMO concepts; (ii) more
empirical appropriateness case studies to support the claim that the CC-CP model
captures any enterprise - enterprise co-creation and co-construction operation; (iii) in
this perspective, many implementation-specific extensions of the CC-CP model; (iv)
progress in the application of the GSDP-MDE approach and in conceptual modeling;
the fact that one application - the DEMO engine - works well does not guarantee its
generic applicability; (v) Notably conceptual modeling of GAAP compliant systems is
a new domain.

Acknowledgements. The paper was supported by the grant provided by Ministry of Education,
Youth and Sports Czech Republic, reference no. SGS09/PRF/2017.

References

1. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006)
2. Dietz, J.L.G., Hoogervorst, J.A.P.: The discipline of enterprise engineering. Int. J.

Organisational Des. Eng. 3(1), 86–114 (2013)
3. Dietz, J., Aveiro, D., Pombinho, J., Hoogervorst, J.: An ontology for the τ-theory of enterprise

engineering. Frontiers Artif. Intell. Appl. 267, 386–395 (2014)
4. Guizzardi, G.: Ontological foundation for structural conceptual models. Ph.D. theses,

University of Twente (2005)
5. van Kervel, S.J.H., Dietz, J.L.G., Hintzen, J., van Meeuwen, T., Zijlstra, B.: Enterprise

ontology driven software engineering. In: Proceedings of International Conference on
Software Paradigm Trends (2012)

164 F. Hunka and S.J.H. van Kervel

6. van Kervel, S.J.H.: Ontology driven enterprise information systems engineering: Ph.D. thesis,
University of Technology Delft (2012)

7. Dudok, E., Guerreiro, S., Babkin, E., Pergl, R., Kervel, S.J.H.: Enterprise operational analysis using
DEMO and the enterprise operating system. In: Aveiro, D., Pergl, R., Valenta, M. (eds.) EEWC
2015. LNBIP, vol. 211, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-19297-0_1

8. Dunn, C.L., Cherrington, O.J., Hollander, A.S.: Enterprise Information Systems: A Pattern
Based Approach. McGraw-Hill/Irwin, New York (2004)

9. Hruby, P.: Model-Driven Design Using Business Patterns. Springer, Heidelberg (2006)
10. McCarthy, W.E.: The REA accounting model: a generalized framework for accounting

systems in a shared data environment. Account. Rev. 57, 554–578 (1982)
11. Hunka, F., Zacek, J.: Detailed analysis of REA ontology. In: Aveiro, D., Tribolet, J., Gouveia, D.

(eds.) EEWC 2014. LNBIP, vol. 174, pp. 61–75. Springer, Cham (2014). doi:
10.1007/978-3-319-06505-2_5

12. Hunka, F., Kervel, S.J.H., Matula, J.: Towards co-creation and co-production in production chains
modeled in DEMO with REA support. In: Aveiro, D., Pergl, R., Gouveia, D. (eds.) EEWC 2016.
LNBIP, vol. 252, pp. 54–68. Springer, Cham (2016). doi:10.1007/978-3-319-39567-8_4

13. Skotnica, M., van Kervel, S.J.H., Pergl, R.: Ontological foundation for the software executable
DEMO action and fact models. In: Aveiro, D., Pergl, R., Gouveia, D. (eds.) EEWC 2016,
LNBIP, vol. 252, pp. 151–165. Springer, Heidelberg (2016)

14. Nuffel, D., Mulder, H., Kervel, S.: Enhancing the formal foundations of BPMN by enterprise
ontology. In: Albani, A., Barjis, J., Dietz, Jan L.G. (eds.) CIAO!/EOMAS -2009. LNBIP, vol.
34, pp. 115–129. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01915-9_9

The REA Model Expressed in a Generic DEMO Model 165

http://dx.doi.org/10.1007/978-3-319-19297-0_1
http://dx.doi.org/10.1007/978-3-319-06505-2_5
http://dx.doi.org/10.1007/978-3-319-39567-8_4
http://dx.doi.org/10.1007/978-3-642-01915-9_9

SysPRE - Systematized Process for Requirements
Engineering

Ana Neto1(✉), Duarte Pinto1, and David Aveiro1,2

1 Faculty of Exact Sciences and Engineering, University of Madeira,
Caminho da Penteada, 9020-105 Funchal, Portugal

ana.b.neto@gmail.com, duarte.pinto.oelabuma@gmail.com
2 Madeira Interactive Technologies Institute, Caminho da Penteada, 9020-105 Funchal, Portugal

daveiro@uma.pt

Abstract. The domain of Knowledge Discovery (KD) and Data Mining (DM)
is of growing importance in a time where more and more data is produced and
knowledge is one of the most precious assets.

Having explored both the existing underlying theory, the results of the
ongoing research in academia and the industry practices in the domain of KD and
DM, it was found that this is a domain that still lacks some systematization.

It was also noticed that this systematization exists to a greater degree in the
Software Engineering and Requirements Engineering domains, probably due to
being more mature areas.

In this paper we propose SysPRE - Systematized Process for Requirements
Engineering in KD projects to systematize the requirements engineering process
for these projects so that the participation of enterprise stakeholders in the require‐
ments engineering for KD projects can increase.

Keywords: Knowledge discovery · Data mining · Requirements engineering ·
DEMO

1 Introduction

Software development has been around for several decades now and discussion on its
failures and successes has been strong.

It all started with the Standish Group’s Chaos Report of 1994 [1] that stated that
projects that did not meet customer satisfaction and/or went over time or budget in a
significant way corresponded to 53%. It was a bit shocking to see a figure that amounted
for over half of the projects and a discussion about a software crisis was started.

This report, however, was since then criticized for lack of peer review, for not having
a complete description of the study design or of the project selecting criteria, and for
defining successful and failed projects in a way that may bias the study [2, 3, 5].

Over 20 years later, the debate is still on, but there seems to be an agreement on the
failure rate of software development projects having dropped [5–7]. Although the values
do not coincide, they show a decrease tendency that may be significant if you take into
account that projects are increasingly complex.

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 166–180, 2017.
DOI: 10.1007/978-3-319-57955-9_13

One of the areas of software development that has helped this increased success in
software projects is Requirements Engineering (RE), following previous research such
as [8, 9]. Furthermore, according to [6], one of the three main reasons for the positive
development is that the communication of requirements has much improved. [10] makes
an even stronger statement that “Meets user requirements” is the most important success
criteria for both users (96%) and project managers (81%).

Knowledge discovery and data mining are much more recent areas than software
development and less mature fields. For instance, if considering process model devel‐
opment to be a sign of maturity, it can be seen that the first process model for this area
dates back to 1996 [11], while in software development, the well-known Waterfall model
goes back to 1970 [12].

Nonetheless, it is indisputable that knowledge discovery and data mining are of
growing importance in a time where more and more data is produced.

Data production numbers are, in fact, staggering, for example, 144.000 h of video
are uploaded to YouTube per day [13], 182.900.000.000 emails are sent per day [14]
and 1.000.000.000 pieces of content are shared on Facebook per day [15].

This results in massive amounts of data. Facebook has one of the largest data ware‐
houses in the world, storing more than 300 petabytes [16].

With such a large production of data and in a time when knowledge is one of the
most precious assets, it is no wonder that knowledge discovery and data mining are of
increasing importance.

The road for knowledge discovery and data mining projects is to increase system‐
atization, as the area becomes more main stream.

This seems important because the trends in this area, currently, are to have larger
projects (with larger amounts of data involved) and, at the same time, to have the people
involved in those same projects with lower technical skills and very little time to experi‐
ment with different approaches [17].

Within the knowledge discovery projects, the area of requirements engineering is
the one that can reap more benefits thanks to a higher level of systematization.

Firstly, because requirements engineering is particularly neglected in this type of
projects. Some authors even argue that this type of projects should be based on the
available data and not on stakeholders’ requirements [18].

Secondly, because, being a less mature field, less systematization efforts have been
made so far and when they occur, the participation of enterprise stakeholders will be
improved and facilitated and the area will follow software engineering in general, that
has improved in terms of customer satisfaction and time and budget compliance.

For these reasons, the research question was “How can systematization be brought
into Knowledge Discovery projects, in general, and into their Requirement Engineering
phase, in particular, aiming at improvements in their success rate?”

The research started by analysing the Knowledge Discovery process through a
systematic review of the state-of-the-art in academia and industry regarding knowledge
discovery and data mining process models. To conclude this review a comparing of the
main process models found was made.

Then the Requirements engineering area was analysed in a similar way followed
byocusing on requirements engineering for KD projects. It was found that requirements

SysPRE - Systematized Process for Requirements Engineering 167

engineering for KD is different. That is why it is claimed here that a requirements engi‐
neering for KD process model is needed and SysPRE, a Systematized Process for
Requirements Engineering designed specifically for KD projects is proposed.

SysPRE, began from an initial textual description which was then formally specified
as a DEMO ontology [45]. This formal specification was instantiated in two case studies
so that trivial and non-trivial errors could be identified and the necessary adjustments made.

SysPRE synthesises the knowledge obtained for the state-of-the-art reviews in a way
that can be helpful for enterprises and other organizations with KD projects both for
novice and expert users, with the hope of bringing improvements to the success rate of
such projects.

2 Knowledge Discovery Process and Demo Specification

In this section the Knowledge Discovery Process (KDP) will be described as seen after
analysing the existing process models listed in Sects. 2.1 and 2.2 with special detail with
what regards Requirements Engineering within the KDP.

This specifically considers business KDPs, but this description would also be accu‐
rate for other types of organizations, namely governmental or non-profit.

2.1 Knowledge Discovery

The need for a process model stems from the fact that data mining is non-trivial. In 2006,
Bernstein et al. referred that “there are many possible choices for each stage, and only
some combinations are valid. Because of the large space and nontrivial interactions,
both novices and data mining specialists need assistance” [19].

Still the need for a process model goes back to 1989, when it was first discussed
during the IJCAI workshop on Knowledge Discovery in Databases (KDD) [20]. This
was the original workshop that started the series of KDD workshops that, from 1995
onwards, grew into KDD conferences. Still, only in 1996 the first model was formally
proposed.

This original KDD model consisted in nine steps: learning the application domain,
understanding the domain and any relevant prior knowledge but also identifying the goal
of the process; creating a target dataset; data cleaning and pre-processing; data reduction
and projection; function of data mining selection (e.g., summarization, clustering); data
mining algorithm(s) selection and specification of relevant parameters; data mining,
which means the actual search for patterns; interpretation of the results; using discovered
knowledge, which could be done in many ways, such as incorporating the knowledge
into another system or simply generating a report of the findings.

From this model other models derived such as Ganesh et al. [21] and Adriaans and
Zantinge [22] in 1996, Brachman and Anand [23] in 1997, Berry and Linoff [24], Cabena
et al. [25], Knowledge Discovery Life Cycle (KDLC) model by Lee and Kerschberg
[26] 1998 or Buchner et al. [27] in 1999.

The most widely used in the industry however was CRISP-DM [46]. Created in 1997
by a group of organizations involved in data mining (NCR, SPSS, Daimler-Chrysler and

168 A. Neto et al.

OHRA). The first version was published in August 2000 [28]. Between 2006 and 2008
there were efforts to launch a second version of CRISP-DM, which was referred to as
CRISP-DM 2.0, but no result was ever published.

The CRISP-DM model life cycle consists of six iterative steps: business under‐
standing; data understanding; data preparation; modelling; evaluation; deploying.

To CRISP-DM many variations were proposed over the years, such as Rapid Collab‐
orative Data Mining System (RAMSYS) model [31] in 2001, Data Mining for Industrial
Engineering (DMIE) by Solarte [32] in 2002, Data Mining and Knowledge Discovery
(DMKD) model by Cios and Kurgan [33] in 2005, Ontology Driven Knowledge
Discovery (ODKD) by Gottgtroy [34] in 2007, Knowledge and Discovery and Commu‐
nication Framework (KDCF) by Rennolls and AL-Shawabkeh [35] and ASD-DM by
Alnoukari et al. [36] in 2008 or IKDDM by Osei-Bryson [37] in 2012.

Other models include Catalyst methodology in 2003 [30]. This methodology has two
parts: business modelling and data mining. For each part, a detailed step-by-step meth‐
odology is suggested. Originally it was proposed both in printed form and online, and
both formats followed a hyperlink structure.

Considering both parts of the methodology as a whole, we can say that it has six
steps: business modelling; data preparation; tool selection; mining; refining; deploying.

What makes this methodology interesting is the level of detail that is includes in each
step. It is very focused on what needs to be done and how it can be done. This is organized
in what the author calls “boxes”. There are four types of “boxes”: Action Boxes,
Discovery Boxes, Technique Boxes, and Example Boxes.

And finally SEMMA was created to be used is a specific application, SAS Enterprise
Miner [29].

The acronym SEMMA stands for sample, explore, modify, model, assess, which are
basically the five iterative steps proposed: sample, which consists of extracting sample
data (optional step); explore, which means the exploring the data or the sample data in
order to be able to simplify the model; modify, which can include any cleaning, pre-
processing, reductions or projections deemed necessary; model, which is the actual
search for patterns; assess, which is the evaluation and interpretation of the results.

SEMMA however is tied to the SAS Enterprise Miner tool and therefore overlooks
any steps that are not related to the tool, namely any business understanding tasks.

2.2 Requirements Engineering

The IEEE Standard Glossary of Software Engineering Technology [38] defines a soft‐
ware requirement as:

1. A condition or capability needed by a user to solve a problem or achieve an objective.
2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed
document.

3. A documented representation of a condition or capability as in 1 or 2.

In short, a software requirement is something that we expect the software to meet.

SysPRE - Systematized Process for Requirements Engineering 169

In the studied methods there was a special focus on six, Waterfall by Winston Royce
[12] in 1970, Spiral by Barry Boehm [39] in 1986, Rapid Application Development
(RAD) by the New York Telephone Company in mid-1970s, becoming notorious in the
early 90’s by James Martin and his approach [40], Rational Unified Process (RUP) by
the Rational Software Division of IBM [41], Agile proposed in 2001 in the Agile Mani‐
festo [42] and Goal-Oriented Requirements Engineering (GORE).

2.3 PIF and CAP Analysis

To the KDP a Performa-Informa-Forma (PIF) analysis and a Coordination-Actors-
Production (CAP) analysis were made with the goal to gain insight to what concepts
and activities are important in the KD process. Namely, in terms of activities, the
Performa items are the truly relevant ones and will later be the transactions of the DEMO
specification of SysPRE.

Most of the Performa-Informa-Forma is being omitted remaining only the Performa
items in italic. The Coordination-Actors-Production analysis was done simultaneously
by enclosing a piece of text indicating an actor role between the brackets “[“ and “]”.
Transaction’s id (for instance T01) are also marked next to Performa items.

The knowledge discovery process begins {T01} when the [business analyst] realizes
that there is a business problem or opportunity {T02} in which Knowledge Discovery
and Data Mining might be helpful. More commonly, the [business analyst] starts with
a question and needs certain information relevant to the decision he must make.

He or she starts by trying to learn {T03} as much as possible about the business and
the application domain. He will identify the [stakeholders] {T04}. He will try to under‐
stand what issues are important for the [stakeholders] {T05}. The five core issues are
[30]: product (goods or services, tangible or intangible); place; price; time; quantity.

The [business analyst] will classify the knowledge discovery process as {T06}:

• Demand driven - process is aimed to fulfil the information requirements of the users
• Data driven - process is aimed to discover the best use to the specific existing data
• Exploratory - process is designed to find how KD and DM in general can offer value

within that specific business

He will try to discover any relevant prior knowledge, namely the currently existing
solutions for the problem, and identify the goal for the project {T05}.

If it is an exploratory process, the [business analyst] will identify several possible
goals {T05} and review his stakeholders’ identification {T04} for each one (including
the core issues that each one might be concerned with {T05}).

Since starting the project might have costs, the [business analyst] might have to ask
for approval {T14} for the data mining project to the [business manager]. The [business
manager] might ask {T13} the [project manager] for a cost and resources estimation so
that he can decide on the approval {T14}. The [project manager] will create the cost,
time and resources estimates or a project plan {T13}, if necessary. The [project
manager] will hand these to the [business manager]. The [business manager] will decide
to go ahead or not {T14}, that is, he will decide on the feasibility of the KD project. If

170 A. Neto et al.

the decision is to go ahead, the [project manager] might have to get the resources (human
or otherwise) that are necessary and that were not available in the beginning.

If it is a demand driven project, the [business analyst] will then begin eliciting specific
requirements {T07}. If it is a data driven project, the [business analyst] will then proceed
by asking the [data analyst] to perform the data analysis. A hybrid approach is also
possible, in which both will happen in parallel. For the requirements elicitation {T07},
the [business analyst] will choose the elicitation techniques {T08}, which might be one
or more. He will execute them and document the resulting requirements from each
technique at what is judged to be an appropriate level of detail. These requirements will
be mostly information demand requirements, that is, requirements that describe why and
how the [stakeholders] need specific information. The [business analyst] will also elicit
non-functional requirements {T07}, and for that he will be particularly concerned with
the delivery mechanism (how will the results be physically made available to the [end
user]? What tools will the [user] employ to view it?), the format (will the [user] view
the results in reports, dashboards, or other formats?) and the degree of interaction needed
(to what extent must the [user] be able to manipulate the results following delivery?).

A detailed analysis of the requirements will be done by the [business analyst]. The
[business analyst] and the multiple [stakeholders] will negotiate to:

• Decide which requirements are accepted {T09} (which, in fact, is the same as
deciding the system boundaries or scope)

• Do a triage and prioritization of the requirements {T10}
• Assess requirements risks {T11}

The [business analyst] will validate {T12}, that is, check for completeness and for
consistency the resulting requirements.

The triage and prioritization {T10} should be done after the validation {T12}, as
the validation {T12} process might result in adding, changing or removing some
requirements.

The [business analyst] will also need data, so he will ask the [data analyst]. Again,
note that in a demand driven project this request will normally happen after the require‐
ment elicitation {T07}, but in a supply driven project the data gathering that we will
describe next will happen before the requirement elicitation {T07}. The [data analyst]
will look for the raw data {T15} to use for the project. The data might come from
databases, internal or external, or from other sources. It might also need still to be
collected for this specific purpose. The [data analyst] will need to select the data {T16}
and decide if and when the data might need to be combined {T17}. If the [data analyst]
considers the data to be too large for an initial analysis, he might consider using a sample
{T17} of the data.

The [data analyst] will also try to understand the data. To begin with, if the data was
already available at the beginning of the project, the [data analyst] should find the busi‐
ness motivation to collect and store the data in the first place, as it might provide some
insights. From the data understanding he might suggest a possible hypotheses or objec‐
tive {T18} to the [business analyst]. He might also identify constrains {T19} that arise
from the data, so he will inform the [business analyst] of the detected constrains.

SysPRE - Systematized Process for Requirements Engineering 171

Since the raw data might be incomplete, noisy or inconsistent, the [data engineer]
will perform data cleaning, pre-processing and transformation {T17}. This might
include filling missing values, normalization, discretization, reduction, projection or
other techniques. The data cleaning, pre-processing and transformation is guided by the
data itself and also by what data mining techniques are going to be used on the data. The
[data miner] selects the tool {T20} to be used (for the same project, more than one tool
might be used). For selecting the tool he will start by identifying possible tools {T28}
and decide on how he will compare them {T20}, specifying the evaluation criteria that
are important and how the evaluation will be performed (for instance, he might decide
to run a specific algorithm using all the tools and a sample of the data). He will then
proceed with the evaluation and choose the tool {T20} (or tools). The [data miner] also
selects the data mining technique {T21} (e.g., summarization, classification, regression,
clustering) and the specific algorithms {T22}. For the same project, more than one tool
might be used, as well as more than one data mining technique and one algorithm.

Some authors believe the choice of data mining technique can be simplified to four
decisions {T21}.

The [data miner] will entail the prepared data to the tool and be responsible for the
generation of the model {T24}. This means he will have, for instance, to decide on the
appropriate parameters {T23}.

After the actual data mining has occurred and the KD results are available, both the
[domain expert] and the [strategic manager] will analyse the results {T25}.

The [domain expert] analyses {T25} the data mining result, in the sense that he
evaluates how the results fit his domain knowledge {T25}, possibly resulting in the need
for refining what was done previously through:

• Creating new questions or hypothesis {T18} for the [business analyst]
• Pointing the need for new or more data {T15} for the [data analyst]
• Indicating the need to use a different function {T21} or algorithm {T22} or simply

to adjust parameters {T23} to the [data miner]

The [strategic manager] interprets and evaluates {T25} the data mining result, in
the sense that he evaluates how these results are relevant to or have an impact {T25}
on the current or future business situation.

The [knowledge engineer] will use the analysis results from the [domain expert] and
the [strategic manager] and make sure the discovered knowledge is used. He will specify
{T26} how the knowledge discovery result should be deployed, for instance he can
decide that an annual report should be produced for the senior management. The knowl‐
edge discovery result will then be deployed to the [end users] as planned.

2.4 Transaction Result Table

From the Performa-Informa-Forma analysis and Coordination-Actors-Production anal‐
ysis the Transaction Result Table (TRT) was the following.

This table shows the transactions (that correspond to the main tasks of the process) and
the result types corresponding to each transaction. In the result types, we can see (between
square brackets) the main concept that is being created or whose state is being changed.

172 A. Neto et al.

The last transactions (T28 to T31) refer to the specification of an elicitation technique
for requirements or, regarding the data mining stage, the specification of a tool, data

Table 1. Transaction Result Table

Transaction Result type
Id Name Id Description
T01 Knowledge Discovery R01 [knowledge discovery process] was realized
T02 Problem/Opportunity

identification
R02 [problem/opportunity] was identified

T03 Problem/Opportunity analysis R03 [problem/opportunity] was analysed
T04 Stakeholder identification R04 [stakeholder] was identified
T05 Goal/core issue identification R05 [goal/core issue] was identified
T06 Process classification R06 [knowledge discovery process] was classified
T07 Requirement elicitation R07 [requirement] was elicited
T08 Choice of elicitation technique R08 [elicitation technique] was chosen
T09 Decision of scope R09 decision on whether the [requirement] is in

scope was made
T10 Requirement prioritization R10 priority of [requirement] was defined
T11 Assessment of requirement risks R11 risks of [requirement] were assessed
T12 Requirement validation R12 [requirement] was validated
T13 Cost and resources estimation R13 [cost and resources] were estimated
T14 Go-no-go Decision R14 go-no-go decision of [knowledge discovery

process] was made
T15 Data source identification R15 [data source] was identified
T16 Data selection R16 [data] was selected
T17 Data preparation R17 [data] was prepared
T18 Hypothesis creation R18 [hypothesis] was created
T19 Data constrain identification R19 [data constrain] was identified
T20 Choice of tool R20 tool was chosen for [result]
T21 Choice of data mining technique R21 data mining technique was chosen for [result]
T22 Choice of algorithm R22 algorithm was chosen for [result]
T23 Choice of data mining parameter R23 data mining parameter was chosen for [result]
T24 Result obtention R24 [result] was obtained
T25 Result analysis R25 [result] was analysed
T26 Deployment specification R26 [deployment] was specified
T27 KD area artefact management R27 [KD area artefact] was managed
T28 Elicitation technique specification R28 [elicitation technique] was specified
T29 Tool specification R29 [tool] was specified
T30 Data mining technique

specification
R30 [data mining technique] was specified

T31 Algorithm specification R31 [algorithm] was specified
T32 Data mining parameter

specification
R32 [data mining parameter] was specified

SysPRE - Systematized Process for Requirements Engineering 173

mining technique, algorithm or data mining parameter that was previously unknown to
the system. This is necessary as the knowledge discovery and data mining area is very
dynamic and it is very likely that new tools, data mining techniques, algorithms or data
mining parameters need to be considered.

T27 is the transaction that manages all this. The elicitation techniques, tools, data
mining techniques, algorithms and data mining parameters are referred to as artefacts
in the context of T27 (KD area artefact management) (Table 1).

2.5 Object Fact Diagram

Due to space constrains the DEMO’s Actor Transaction Diagram and the Process step
diagram are omitted in this paper.

We then specified the DEMO’s Object Fact Diagram (OFD).
In this diagram it can be seen the classes that correspond to the main concepts

identified in the DEMO transactions of the Transaction Result Table, as well as other
related classes, the fact types that are associated with each class and the cardinalities
and dependence laws.

Fig. 1. Object Fact Diagram (Part 1)

174 A. Neto et al.

In the image marked in red are comments of an instantiation of each class derived
from a concrete case of a real organization, so that the interpretation of the diagram is
easier (Fig. 1).

The main class of this OFD is the KNOWLEDGE DISCOVERY PROCESS (KDP),
related to the main transaction T01. Each instance of this class will specify a particular
KDP. Most of the classes that follow (in all caps text) are self-explanatory, so will
presented as the example is described.

Instances of the class PROBLEM/OPPORTUNITY specify a problem or an oppor‐
tunity that triggered the KDP. Let’s say that a company wants to increase its sales to
existing customers. The company we are considering, sells memberships, so basically
they’ll want to increase the percentage of customers that renew their memberships. This
is the problem/opportunity.

One STAKEHOLDER is the Board of Directors. This particular stakeholder had a
GOAL/CORE ISSUE: they want to increase the annual revenue. Using one or more
ELICITATION TECHNIQUES, a REQUIREMENT to satisfy the above GOAL/CORE
ISSUE was elicited: Predict how many customers will renew. One possible ELICITA‐
TION TECHNIQUE is a structured interview, but many others were possible (Fig. 2).

Fig. 2. Object Fact Diagram (Part 2)

Normally several STAKEHOLDERS will be identified (T04), each with one or more
GOAL/CORE ISSUE from which several REQUIREMENTS will stem and be elicited
(T05).

From the accepted REQUIREMENTS, we will then proceed to create a HYPOTH‐
ESIS that can be tested in a KDP. For this case, one of the tested HYPOTHESIS was if
the number of logins can be used to predict if a customer will renew. The link between
HYPOTHESIS and REQUIREMENTS is important for traceability.

SysPRE - Systematized Process for Requirements Engineering 175

In the end, the RESULT of the KDP will either confirm this hypothesis or not. For
the KDP, there needs to be an estimation of COST AND RESOURCES, so that a Go-
no-go decision (T14) can take place.

If the KDP proceeds, instances of classes corresponding to the DATA SOURCE
(from which DATA will be selected and prepared), the data mining TOOL (in this case,
Tableau 8.1), the type of DATA MINING TECHNIQUE (in this case, classification)
and the ALGORITHM (in this case, AdaBoost) will be used to obtain a particular
RESULT. The ALGORITHM might require a DATA MINING PARAMETER (or
more) to be set. In this case we could change the value for a_t weight, but did not.

The KD AREA ARTEFACT is a generalization that includes ELICITATION
TECHNIQUE, TOOL, DATA MINING TECHNIQUE, ALGORITHM and DATA
MINING PARAMETER. The management of these artefacts (T27) involves specifying
an artefact that was previously unknown to the system whenever needed (T28, T29, T30,
T31, T32). The can then be chosen for use (T08, T20, T21, T22, T23) using ELICITA‐
TION TECHNIQUE CHOICE CRITERIA, TOOL CHOICE CRITERIA, DATA
MINING TECHNIQUE CHOICE CRITERIA, ALGORITHM CHOICE CRITERIA or
DATA MINING PARAMETER CHOICE CRITERIA respectively. It is important that
the choice criteria are all documented, which is why all these classes appear (Fig. 3).

Fig. 3. Object Fact Diagram (Part 3)

From the DATA might result some kind of DATA CONSTRAINT. In this case, it
was very noticeable that the customer age was not available. The identified DATA
CONSTRAINTS affected the KDP.

As mentioned, the execution of a particular algorithm with particular parameters and
applied to a particular data, in the context of a KDP will produce a particular RESULT

176 A. Neto et al.

- for example, a classification model or a set of association rules. For the case study at
hand, we found that the members who login more than once per month are more likely
to renew.

The RESULT will be target of an analysis (T25). From such analysis the conclusion
might be that new hypothesis needs to be formulated and/or new data, tools, data mining
techniques or specific algorithms applied so that refined or alternative results are found.
If none of this is necessary, the DEPLOYMENT of a RESULT can also be specified.
For example, in this case it was decided that an annual report with the obtained result
was to be produced (Fig. 4).

Fig. 4. Object Fact Diagram (Part 4)

3 Discussion and Conclusion

Other efforts have been made regarding knowledge discovery ontologies such as
OntoDM [43] or Knowledge Discovery Ontology [44], but focus in great detail in the
knowledge discovery process itself and don’t show any particular insight regarding its
surroundings, like the business side information.

This DEMO based ontology gives several interesting insights. Thanks to the speci‐
fied classes, for a particular problem/opportunity we can keep a record of detailed and
important information of a respective KDP. Namely keep a consistent and integrated
record of important business side information like the stakeholders, requirements,
hypothesis and costs; and also of the technical side like tools, sources and algorithms
used. The class RESULT is pivotal in the sense that each instance will include not only
the patterns obtained using the data mining technique, but also an analysis of the results

SysPRE - Systematized Process for Requirements Engineering 177

which may lead to the formulation of new hypothesis and requirements on the business
side.

Having SysPRE, an ontology that represents both the KD work in general and the
RE for KD work specifically can help technical roles not lose track of the big picture
while working on the task at hand. Also, since it is understandable not only by the
technical roles involved, but also by other stakeholders, SysPRE can foster a more
effective dialogue between them.

This ontology can encourage knowledge reuse of the KD process or RE KD process
itself in a consistent and integrated fashion because it enables keeping a record of iter‐
ations and refinements of a particular process in a highly structured way. This way, it’s
hoped to make enterprises become aware of their own KD process and RE process in
the KD projects, but also to improve such processes in reality, namely in terms of the
success rate. In other words, this can help the lessons learned from the past be reused to
improve the present.

The main contribution of this paper is to provide a systematization that can be applied
to KD projects in general and to the requirements engineering process in such processes
in particular.

Having a short, plain text description of a generic KD process with emphasis on RE
that was proposed after doing a thorough literature review can be useful for novices in
the area, both in the research and in the industry communities.

Having the SysPRE formal ontology can be helpful within the organization using
them because it can:

• Enable keeping a record of iterations and refinements of a particular process in a
highly structured way.

• Make enterprises (and specifically decision makers within the enterprise) become
aware of their own KD process and RE process in the KD projects.

• Assist enterprises that want to improve their own KD process and RE process in the
KD projects.

• Help each technical role involved keep an eye on the big picture while working on
whatever task they are working on at that specific moment.

Having the SysPRE formal ontology can also be helpful for the communication
between the organization and other stakeholders because, despite being formal, they are
understandable and do sum up a lot of information in a graphical way.

Acknowledgments. This work was partially funded by FCT/MCTES LARSyS (UID/EEA/
50009/2013 (2015-2017)).

References

1. The Standish Group, “1994 CHAOS Report,” (1994)
2. Glass, R.L.: IT Failure Rates-70% or 10–15%? IEEE Softw. 22(3), 110–112 (2005)
3. Jørgensen, M., Moløkken-Østvold, K.: How large are software cost overruns? A review of

the 1994 CHAOS report. Inf. Softw. Technol. 48(4), 297–301 (2006)

178 A. Neto et al.

4. Glass, R.L.: The Standish report: does it really describe a software crisis? ACM Commun.
49(8), 15–16 (2006)

5. Eveleens, J., Verhoef, C.: The Rise and fall of the Chaos report figures. IEEE Softw. 27(1),
30–36 (2010)

6. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

7. El Emam, K., Koru, A.G.: A replicated survey of IT software project failures. IEEE Softw.
25(5), 84–90 (2008)

8. Atkins, C.: An Investigation of the Impact of Requirements Engineering Skills on Project
Success. East Tennessee State University (2013)

9. Paiva, A., Varajão, J., Dominguez, C.: Principais aspectos na avaliação do sucesso de projectos
de desenvolvimento de software. Há alguma relação com o que é considerado noutras
indústrias? Interciencia 36(3), 200–204 (2011)

10. Wateridge, J.: How can IS/IT projects be measured for success? Int. J. Proj. Manag. 16(1),
59–63 (1998)

11. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining:
towards a unifying framework. KDD 96, 82–88 (1996)

12. Royce, W.W.: Managing the development of large software systems. In: Proceedings of IEEE
WESCON, vol. 26 (1970)

13. Statistics - YouTube. https://www.youtube.com/yt/press/statistics.html
14. Radicati, S. (ed.) Email Statistics Report 2013–2017 Executive Summary, April 2013
15. Manyika, J., Chui, M., Brown, B., Bughin, J.: Big Data: the Next Frontier for Innovation,

Competition, and Productivity. McKinsey & Company, May 2011. http://www.mckinsey.com/
insights/business_technology/big_data_the_next_frontier_for_innovation

16. Traverso, M.: Presto: interacting with petabytes of data at Facebook. Research at Facebook,
November 2013. https://research.facebook.com/blog/1489667567986457/presto-interacting-
with-petabytes-of-data-at-facebook/

17. Pytel, P., Britos, P., García-Martínez, R.: A proposal of effort estimation method for
information mining projects oriented to SMEs. In: Poels, G. (ed.) CONFENIS 2012. LNBIP,
vol. 139, pp. 58–74. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36611-6_5

18. Inmon, W.H.: Building the Data Warehouse. Wiley, New York (2005)
19. Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining process:

an ontology-based approach for cost-sensitive classification. IEEE Trans. Knowl. Data Eng.
17(4), 503–518 (2005)

20. Piatetsky-Shapiro, G.: Knowledge discovery in real databases: a report on the IJCAI-89
Workshop. AI Mag. 11(4), 68 (1990)

21. Ganesh, M., Han, E.H., Kumar, V., Shekhar, S., Srivastava, J.: Visual Data Mining:
Framework and Algorithm Development. Department of Civil Engineering, University of
Minnesota, MN USA (1996)

22. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Reading (1996)
23. Brachman, R.J., Anand, T.: Advances in knowledge discovery and data mining. In: Fayyad,

U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) American Association for
Artificial Intelligence, Menlo Park, pp. 37–57 (1996)

24. Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer
Support. Wiley, New York (1997)

25. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., Zanasi, A.: Discovering Data Mining: From
Concept to Implementation. Prentice Hall, Upper Saddle River (1997)

SysPRE - Systematized Process for Requirements Engineering 179

https://www.youtube.com/yt/press/statistics.html
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
https://research.facebook.com/blog/1489667567986457/presto-interacting-with-petabytes-of-data-at-facebook/
https://research.facebook.com/blog/1489667567986457/presto-interacting-with-petabytes-of-data-at-facebook/
http://dx.doi.org/10.1007/978-3-642-36611-6_5

26. Lee, S.W., Kerschberg, L.: A methodology and life cycle model for data mining and
knowledge discovery in precision agriculture. In: IEEE International Conference on Systems,
Man, and Cybernetics, vol. 3, pp. 2882–2887 (1998)

27. Buchner, A.G., Mulvenna, M.D., Anand, S.S., Hughes, J.G.: An internet-enabled knowledge
discovery process. In: Proceedings of the 9th International Database Conference, Hong Kong,
vol. 1999, pp. 13–27 (1999)

28. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In:
Proceedings of the 4th International Conference on the Practical Applications of Knowledge
Discovery and Data Mining, pp. 29–39 (2000)

29. SAS Institute: SEMMA (2005). http://www.sas.com/offices/europe/uk/technologies/analytics/
datamining/miner/semma.html

30. Pyle, D.: Business Modeling and Data Mining. Morgan Kaufmann, San Mateo (2003)
31. Moyle, S., Jorge, A.: RAMSYS-A methodology for supporting rapid remote collaborative data

mining projects. In: ECML/PKDD01 Workshop: Integrating Aspects of Data Mining, Decision
Support and Meta-learning (IDDM-2001) (2001)

32. Solarte, J.: A proposed data mining methodology and its application to industrial engineering.
Masters Theses, August 2002

33. Cios, K.J., Kurgan, L.A.: Trends in data mining and knowledge discovery. In: Pal, N.R., Jain, L.
(eds.) Advanced Techniques in Knowledge Discovery and Data Mining, pp. 1–26. Springer,
London (2005)

34. Gottgtroy, P.: Ontology driven knowledge discovery process: a proposal to integrate ontology
engineering and KDD. (2007)

35. Rennolls, K., Al-Shawabkeh, A.: Formal structures for data mining, knowledge discovery and
communication in a knowledge management environment. Intell. Data Anal. 12(2), 147–163
(2008)

36. Alnoukari, M., Alzoabi, Z., Hanna, S.: Applying adaptive software development (ASD) agile
modeling on predictive data mining applications: ASD-DM Methodology. In: International
Symposium on Information Technology, ITSim 2008, vol. 2, pp. 1–6 (2008)

37. Osei-Bryson, K.-M.: A context-aware data mining process model based framework for supporting
evaluation of data mining results. Expert Syst. Appl. 39(1), 1156–1164 (2012)

38. IEEE Computer Society, “IEEE Standard Glossary of Software Engineering Terminology,”
IEEE Std 61012-1990, pp. 1–84, December 1990

39. Boehm, B.: A spiral model of software development and enhancement. SIGSOFT Softw. Eng.
Notes 11(4), 14–24 (1986)

40. Martin, J.: Rapid Application Development. Mac Millan (1991)
41. IBM Rational software and systems delivery, 26 August 2014. http://www-01.ibm.com/software/

rational/
42. Beck, K., Beedle, M., Bennekum, A.: Agile Manifesto (2001). http://www.agilemanifesto.org/
43. Panov, P., Soldatova, L., Džeroski, S.: OntoDM-KDD: Ontology for Representing the Knowledge

Discovery Process. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS (LNAI),
vol. 8140, pp. 126–140. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40897-7_9

44. Zakova, M., Kremen, P., Zelezny, F., Lavrac, N.: Automating knowledge discovery workflow
composition through ontology-based planning. IEEE Trans. Autom. Sci. Eng. 8(2), 253–264 (2011)

45. Dietz J.L.: Enterprise ontology - understanding the essence of organizational operation. In: Chen
CS., Filipe J., Seruca I., Cordeiro J. (eds) Enterprise Information Systems VII, pp. 19–30.
Springer, Dordrecht (2007)

46. Piatetsky-Shapiro, G.: KDNuggets, “Poll: Data Mining Methodology,” (2014). http://
www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html

180 A. Neto et al.

http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html
http://www.sas.com/offices/europe/uk/technologies/analytics/datamining/miner/semma.html
http://www-01.ibm.com/software/rational/
http://www-01.ibm.com/software/rational/
http://www.agilemanifesto.org/
http://dx.doi.org/10.1007/978-3-642-40897-7_9
http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html

Revisiting the DEMO Transaction Pattern with the Unified
Foundational Ontology (UFO)

Tanja Poletaeva1(✉), Giancarlo Guizzardi2,3, João Paulo A. Almeida3, and
Habib Abdulrab1

1 LITIS lab., INSA de Rouen, Rouen, France
ta.poletaeva@gmail.com, habib.abdulrab@insa-rouen.fr

2 Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
3 Ontology and Conceptual Modeling Research Group (NEMO), Federal University of Espírito

Santo, Vitória, ES, Brazil
{gguizzardi,jpalmeida}@inf.ufes.br

Abstract. In this paper, we revisit the DEMO transaction pattern in light of the
domain-independent system of categories put forth by the Unified Foundational
Ontology (UFO). In this process, we treat social relationships in the scope of the
DEMO transactions as objectified social entities, and thereby separate the behav‐
ioural and structural aspects of the transaction pattern and clarify their interplay.
Further, we represent the pattern in the OntoUML ontology-driven conceptual
modeling language. The revisited pattern can be embedded in broader enterprise
ontologies and reference conceptual models based in UML. The proposed
OntoUML models can also be further refined to account for and consider different
organizational implementations of business transactions. We demonstrate the
proposed representation by applying it to OMGs EU-Rent case.

Keywords: Foundational ontology · Enterprise ontology · DEMO transaction
pattern · Organizational implementation

1 Introduction

Since 1960s, conceptual modeling is widely adopted for knowledge communication
among human users [1]. The importance of enterprise conceptual modeling in enterprise
engineering and transformation [2] has encouraged the development of various enter‐
prise modeling methods. Nowadays, there is a growing interest in approaches that
employ ontologies as theoretical tools for improving conceptual models. Among such
approaches, there is a mature DEMO methodology (the Design and Engineering Meth‐
odology for Organizations) [3], which comprises the DEMO enterprise ontology, the
ontology-based enterprise modeling language, and the modeling method.

Despite the conceptual quality of DEMO, we observe that there are still opportunities
for clarification and generalization of its conceptual basis, in particular considering some
aspects of social relationships that evolve in business transactions. In addition to that,
there are little guidelines on how to integrate knowledge conceptualized with DEMO to
other (non-DEMO based) organizational conceptual models that are widely employed

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 181–195, 2017.
DOI: 10.1007/978-3-319-57955-9_14

in practice (such as, e.g., reference organizational models captured in UML). These
organizational conceptual models can play an important complementary role in the
DEMO methodology, when used to represent the types of objects involved in business
interactions and their properties in addition to elements of the DEMO conceptual
models. Moreover, a broader ontological account of the DEMO models is required for
modeling of organizational implementations in compliance with the core enterprise
knowledge. We believe that coherent conceptual models of an organization at different
levels of details support understanding and communication of desired organizational
transformations.

We address these aforementioned issues in this paper. Firstly, we revisit a central
notion of the DEMO enterprise ontology, namely, – the transaction pattern. The trans‐
action pattern is a uniform communication pattern, which was proposed by Dietz for
modeling of business interactions [3]. We revisit the nature of social relationships in the
scope of the DEMO transaction pattern based on the domain-independent system of
categories put forth by the Unified Foundational Ontology (UFO) [4]. In this process,
we treat these social relationships as objectified social entities, and thereby separate the
behavioural and structural aspects of the transaction pattern and clarify their interplay.
Secondly, we represent the transaction pattern using the UFO-based OntoUML
ontology-driven conceptual modeling language [4]. The revisited pattern can be
embedded in broader enterprise ontologies and reference conceptual models based in
UML. The proposed OntoUML models can also be further refined to account for and
consider different organizational implementations of business transactions. We demon‐
strate the proposed representation by applying it to OMGs EU-Rent case that was the
subject of DEMO analysis in [5].

OntoUML is an example of a conceptual modeling language whose meta-model has
been designed to comply with the ontological distinctions and axiomatization of UFO
[4, 6]. OntoUML has been successfully employed in a number of industrial projects in
several different domains, such as petroleum and gas, digital journalism, complex digital
media management, off-shore software engineering, telecommunications, retail product
recommendation, and government [6]. A recent study shows that UFO is the second-
most used foundational ontology in conceptual modeling and the one with the fastest
adoption rate [7]. Moreover, the study also shows OntoUML is among the most used
languages in ontology-driven conceptual modeling (together with UML, (E)ER, OWL
and BPMN).

The outline of this article is as follows. In Sect. 2, we summarize the original DEMO
ontological commitments related to the transaction pattern. In Sect. 3, we briefly explain
some of the ontological foundations employed to revisit the pattern, including some key
social notions in UFO, along with the fragment of OntoUML adopted here. In Sect. 4,
we use the UFO notions to reconceptualize the DEMO transaction pattern with trans‐
actions analyzed from two complementary perspectives: a structural one, in which
transactions are considered objectified social relations, and a behavioural one, in which
transactions are considered occurrences or events. The section also presents OntoUML
models of the transaction pattern, showing the interplay between two perspectives.
Section 5 illustrates the application of the proposed OntoUML representation for

182 T. Poletaeva et al.

modeling of organizational implementation variables, extending the models of Sect. 4.
Finally, Sect. 6 presents our conclusions.

2 The DEMO Transaction Pattern

In the DEMO Enterprise Ontology [3], Dietz claimed to have proposed what he terms
the “molecular structure” of business interactions. In his view, a business transaction is
a minimal social conversation carried out between two social individuals, one of which
(the initiator1) initiated the conversation in order to delegate an achievement of his/her
goal to another party. The party who accepted the request for achievement of someone’s
goal is called the executor. In line with Habermas [8], Dietz relies on a desire of both
parties to reach a consensus in a business deal.

Hereafter, we summarize the ontological commitments of the DEMO Enterprise
Ontology [3, 9] related to the transaction pattern.

– C1. By performing coordination acts (C-acts), social individuals of an enterprise
enter into and comply with social commitments towards each other regarding the
product to be brought about.

– C2. The original new thing that is created by a C-act is a commitment (also named a
coordination fact).

– C3. Two time aspects of coordination facts are distinguished: the event time and the
settlement time.

– C4. By performing production acts (P-acts), social individuals in an organization
create products.

– C5. There is a one-to-one relationship between transaction kinds and product kinds.
Transaction kind is a basic property of every transaction.

– C6. Actor role is the authority to fill the executor role in transactions of a particular
transaction kind. It includes (by definition) the authority to be the initiator in trans‐
actions of a number of (other) transaction kinds.

– C7. An actor is a social individual (subject) in the quality of filling an actor role.
– C8. A transaction involves two actors, one as the initiator and one as the executor.
– C9. The process of a transaction is a temporally ordered sequence of coordination

acts of the initiator and the executor, starting from a requesting coordination act of
the initiator.

– C10. The process of a transaction is a path, possibly including iterations, through a
universal transaction pattern.

– C11. A complete transaction goes off in three consecutive phases: the order phase,
the execution phase, and the result phase. The process of a transaction in the order
and the result phases is a sequence of coordination acts. In the execution phase, the
executor performs some production act(s).

1 In this section, we introduce the terms from the DEMO vocabulary in italics.

Revisiting the DEMO Transaction Pattern with the UFO 183

3 UFO and OntoUML

In this section, we present a subset of OntoUML language that is employed here for the
representation of the DEMO transaction pattern. We also briefly discuss the UFO
concepts underlying the OntoUML constructs used. Finally, we summarize the UFO
ontological commitments about social entities [10] that are relevant to the DEMO
commitments discussed in Sect. 2.

3.1 OntoUML

OntoUML is an ontologically well-founded version of UML (Unified Modeling
Language) whose metamodel reflects a number of ontological distinctions and axioms
put forth by UFO [4, 6]. This means that an OntoUML representation of state of affairs
in reality is unambiguously interpreted based on domain-independent ontological cate‐
gories.

In OntoUML, class constructs stereotyped by «Kind» represent object types that
supply a uniform principle of identity2 for their instances. Specializations of classes
representing kinds are stereotyped as «SubKind», «Role», or «Phase». All these special‐
izations inherit their principle of identity from «Kind» types. While object types ster‐
eotyped by «Kind» and «SubKind» are necessarily applied to their instances in every
possible world (i.e., these types are rigid), instances of «Role» and «Phase» types can
cease to be instances of these types without ceasing to exist and without altering their
identity. Moreover, while instances of «Phase» types are characterized by a change of
their intrinsic property(s), instances of «Role» types are characterized by a relational
property(s) acquired in relationships with other entities.

«Category» and «RoleMixin» types represent an abstraction of properties that are
common to multiple «Kind» types and, therefore, do not carry a unique principle of
identity for their instances. Properties associated with «Category» types are rigid and
relationally-independent, while properties associated with «RoleMixin» types necessa‐
rily represent an abstraction of contingent (or anti-rigid) properties that are common to
different «Role» types.

In addition to the aforementioned object types, OntoUML class elements represent
types of existentially dependent individuals that can only exist by inhering in other
individuals. Such individuals are called moments. Those moments that inhere in one
single individual are categorized as «Mode» or «Quality» types. While qualities (also
called individual qualities) are moments that change in a particular space of possible
values (e.g. a color, a temperature, a weight), modes are complex individual moments
that can have their own qualities that take their respective values in multiple independent
value dimensions (e.g., a symptom, a capacity, a complex intention). While inhering in
a single individual, some modes and qualities can externally depend on (possibly a
multitude of) other individuals that are independent from their bearers. Moments that
existentially depend on two or more individuals are categorized as «Relator» types.

2 The terms from the UFO vocabulary, which are introduced in addition to OntoUML stereo‐
types, are highlighted in italics.

184 T. Poletaeva et al.

Instances of «Event» types are perdurants. Perdurants unfold in time accumulating
temporal parts. They are defined by the sum of their parts (their constituent sub-events)
and they bear to each other a number of temporal ordering and causality relations.
Moreover, perdurants are manifestations of dispositional properties of moments (qual‐
ities, modes, and relators). Finally, perdurants are immutable in all their parts and all
their properties [11].

Moments are connected to their bearers via existential dependence relations. In
OntoUML, intrinsic moment types (quality and mode types) are connected to the type
representing their bearers via a relation of «characterization». This relation is mapped
at the instance level to a relation of inherence, i.e., a particular type of functional external
dependence relation; relator types, in contrast, are connected to the type of entities they
relate (bind, mediate) via an association stereotyped as «mediation», which is mapped
at the instance level to a non-functional type of existential dependence relation.

3.2 UFO-C: The Social Layer of UFO

In a social context, the UFO-C part [10] of UFO distinguishes between agentive and
non-agentive substantial individuals. Agentive individuals (or agents) are capable of
bearing special kind of moments named intentional moments. Intentional moments can
be further specialized into mental moments (including beliefs, desires and intentions)
and social moments. Moreover, each type of intentional moments necessarily has a
propositional content, which may be matched by certain situations in reality. Thus, the
intentionality of agents should be understood as the capacity of their properties to refer
to possible situations of reality.

Among other types of intentional moments, Intentions refer to desired state of affairs
to which an agent internally commits at pursuing. For this reason, intentions cause the
agent to perform actions. Actions are intentional events, i.e., events with the specific
purpose of satisfying the propositional content of some intention of an agent. The prop‐
ositional content of an intention is termed a goal. UFO contemplates a relation between
situations and goals such that a situation may satisfy a goal.

Communicative acts (special kinds of actions) can create social moments (commit‐
ments and claims) inhering in the agents involved in these communicative acts. In oppo‐
site to internal intentional moments, social commitments and claims inhere in one agent and
are existentially depend on another. If a social commitment inheres in an individual X and
is externally dependent on another agent Y (i.e., it is a commitment of X towards Y) then
there is a dual social claim inhering in Y and which is externally dependent of X (i.e., the
claim of Y towards X). In other words, commitments and claims always form a pair that
shares a unique propositional content [10]. Two or more pairs of mutually dependent
commitments and claims form a kind of social relationship between involved social indi‐
viduals. This social relationship is termed in UFO-C a social relator. Social commitments
and claims are often associated with internal commitments (self-commitments).

Revisiting the DEMO Transaction Pattern with the UFO 185

4 Ontological Analysis and Representation of the Transaction
Pattern

In this section, we propose to align the original ontological commitments for the DEMO
transaction pattern given in Sect. 2 employing the conceptual notions put forth by UFO.
In this process, we elaborate on the benefits of considering business transactions as
endurants (more specifically as social relators) together with reifying corresponding
transaction events as the context of business interactions. In addition to revisiting the
conceptual aspects of the transaction pattern in light of the UFO, we provide a repre‐
sentation of the revisited pattern using OntoUML models which can be later used as a
basis for extension in order to model enterprise-specific settings. In this section as well
as in Sect. 5, we write the elements of the proposed models in italics. Stereotypes and
the names of relations start with lowercase, while types are capitalized.

4.1 Transactions as Endurants

A central notion in the transaction pattern is the notion of transaction. We propose a
transaction should be understood as a relator, composed of social commitments and
claims made by involved actors in their negotiation about an achievement of some shared
goal (i.e., a production result), as well as by other relational qualities acquired by actors
in this negotiation. Thus, a transaction can be represented by a relator mediating two
actors, which play the roles of Initiator and Executor (Fig. 1). A particular role played
by an agent in a transaction is defined by the type of his commitments and claims. An
actor is the executor, when he commits himself to a requesting actor (the initiator) to
achieve a production result. Although in this paper we excluded the self-activating actors
from consideration, this additional constraint cannot be expressed in UML.

Fig. 1. Participation in a transaction

Actor specializes the notion of UFO Agent; an Actor is an Agent that participates
(contingently) in a Transaction, which suggests that the Actor type should be stereo‐
typed «role». We have opted to represent the type Actor as a role mixin (instead of
role) in order to cater for the possibility that they obey different principles of identity
(for example to allow for individuals and for teams to be considered Actors).

By applying the powertype pattern from a Multi-Level Theory [12] to C6, C7, and
C8 commitments from Sect. 2, we propose modeling of the initiator and the executor of
a transaction as instances of the Actor Role powertype (Fig. 2), i.e. a rigid sortal whose

186 T. Poletaeva et al.

instances are types. Following [13], we extended the OntoUML metamodel by intro‐
ducing the stereotype «hou» to represent high-order universals. All roles specializing
Initiator are instances of the Initiator Actor Role powertype, while all roles specializing
Executor are instances of the Executor Actor Role powertype. The generalization set of
Initiator Actor Role and Executor Actor Role is overlapping, which means that some
instances of Transaction Kind relate with only one instance of the Actor Role powertype.

Fig. 2. Initiator and executor actor roles in relation to transaction kind

Following DEMO, we assume that an actor playing a particular actor role in an
organization commits himself to perform coordination acts and to accept social commit‐
ments of certain kinds under certain types of situations. Hereafter, social commitments
resulting coordination acts are called C-commitments (C- for “coordination”). Moreover,
since social commitments and claims always appear in pairs, we refer to C-claims that
result from coordination acts in addition to C-commitments. Note that we do not use the
term “C-fact” originally proposed in DEMO as the result of coordination acts. This
substitution of terms is motivated by the considerable difference in understanding of the
notion of fact put forth by the UFO and the DEMO ontological commitments.

The model depicted in Fig. 3 facilitates explicit representation of C-act types, C-
commitment and C-claim types which constitute a transaction. The details about rela‐
tions of endurants and events can be found in [14].

Fig. 3. Considering transactions as endurants composed of C-commitments and C-claims

Revisiting the DEMO Transaction Pattern with the UFO 187

Subsequent coordination acts performed by actors involved in a transaction
contribute to the life of this transaction over time, i.e., to the changes it might undergo.
Reified transaction types in conceptual models allow explicit representation of transac‐
tion phases and properties. A transaction phase is defined by C-commitments that
constitute this transaction during a certain period of time. For instance, a transaction can
be suspended until a C-commitment of a particular type is created, or it can be terminated,
etc. As it is the case for all endurant types, transaction phases are represented on concep‐
tual models as specializations of a transaction kind.

By considering transactions as endurants, we are able to specify their qualities in
addition to qualities of the participating actors. For example, a yearly membership
registration (Transaction) of a customer (Initiator) in a company (Executor) can have a
particular cost (a quality inhering in the transaction itself). Further, a modeler can char‐
acterize changes of a transaction cost over time. Another example is characterization of
transactions by a status that can be, for instance, “successful”, “failed”, or “uncon‐
firmed”.

As full-fledged endurants, transactions can play roles [15]. For instance, outsourced
transactions acquire specific contingent properties being parts of organizational struc‐
tures of third-party companies. Transactions initiated externally (i.e., by the initiator
from the environment of the organization under consideration) can play a role of service
agreements [16] provided by the organization.

4.2 Transactions as Events

According to the C9 and C10 DEMO commitments, a transaction process extends in
time by accumulating its temporal parts similar to other perdurants. In [11], it is proposed
to consider perdurants (there, generally termed events) as the manifestation of individual
qualities and relationships. Taking into account this notion of events, a transaction
process is a Transaction Event focusing on relationships of actors involved in a minimal
business interaction (i.e., on a transaction). In this section, we elaborate on the practical
relevance of having a transaction event as a modeling construct. Our arguments are based
on those in [11] made in favour of reifying events as the context of relationships.

Fig. 4. Considering transactions as events composed of C- and P-acts

188 T. Poletaeva et al.

Hereafter, we consider a transaction event constituted by coordination acts of
involved actors. These C-acts result in coordination commitments and claims, which,
in turn, constitute the transaction in the focus of the transaction event. Taking into
account that “roles are usually understood as ways of participation3 to an event” [11],
the C7 commitment can be reformulated as follows: an actor is a social individual which
participates a transaction event by making C-acts (Fig. 4).

The UML composition relation (represented by an association having a black
diamond in the association end connected to the class representing the whole) in Fig. 4
implies that the parts in the depicted part-whole relations are non-shareable among things
of that whole class, i.e., that the maximum cardinality w.r.t. to the whole class is 1. A
transaction event should be understood as an optional whole for coordination acts.

The execution phase of a transaction (see Sect. 2) is constituted by a production act,
and it can be modeled as a proper part of a transaction event. Considering the execution
phase as an event allows unambiguous relation of this phase with the completion (events)
of other transactions.

A modeler may want to explicitly represent other temporal constraints concerning a
transaction process. For instance, one may want to introduce a pick up event as a proper
part of a delivery transaction in order to express the constraints of the transaction dura‐
tion. When a transaction event evolves in time, it goes through phases composed of
events. Contrary to transaction phases composed of C-commitments and C-claims (i.e.,
endurants), these phases are complex events. By explicitly represented events (i.e.,
transaction events, C-acts, and P-acts), we can represent temporal and causal relations
between them [14].

Finally, the consideration of a transaction event in a broader context of the involved
objects and their qualities facilitate the specification of constraints for constituting coor‐
dination acts. For instance, a commitment for a delivery can be restricted by values of
a requested drop-off location of a delivered product.

5 Applying the Transaction Pattern: A Case Study

We believe that the conceptual models and ontological distinctions proposed in previous
sections facilitate understanding and communication of various organizational imple‐
mentations. In [5], the authors provided a thorough analysis of organization implemen‐
tation descriptions of OMGs EU-Rent case [17], using the DEMO construction model
of a fictitious car rental company for the representation of implementation independent
organizational essence. In this section, (a part of) the analysis given in [5] is supple‐
mented by OntoUML representations, which were obtained by specializing the modeling
structures from in Sect. 4. Since we did not transform the DEMO modeling language to
OntoUML, the conceptual models in this section should be considered as additions to
the model depicted in Fig. 5.

3 Following [11], we understand participation as a formal relation linking endurants and perdur‐
ants.

Revisiting the DEMO Transaction Pattern with the UFO 189

Fig. 6. Car Drop Off transactions as objectified social relationships

The DEMO construction model (Fig. 5) representing the immutable ontological
essence of a fictitious car rental company “Rent-A-Car” (of RAC for short) was
borrowed from [5]. Hereafter, we elaborate on some organization implementation

Fig. 5. The organization construction diagram (OCD) and the Transaction Result Table (TRT)
of a car rental company (after [5])

190 T. Poletaeva et al.

choices with the references to this ontological essence. A reading guide for this model
can be found in [18].

According to the DEMO analysis, “car drop off” is one of the transaction kinds in
RAC, of which “car issuer” and “driver” are the participating actor roles (see Fig. 5).
By specializing the model depicted in Fig. 2, a modeler can explicitly express that “car
drop off” is an instance of Transaction Kind, and instances of the Car Drop Off type are
transactions (Fig. 6); actors playing the Car Issuer role initiate Car Drop Off transac‐
tions, while actors playing the Driver role execute them. In Fig. 6 and other figures of
this section, we highlight the elements of the models from Sect. 4 in grey.

Case description in [5] provides further details about Car Drop Off transactions. The
RAC company allows cars to be dropped-off in different locations. Students are hired
to implement this service: “For a small amount of money, a student would await the
arrival of a rented car, e.g. at an airport, and drive it back to the office of RAC, after
which the student would go home by public transport” [5].

The given implementation of the company was analyzed in [5] as follows. “…
Students are authorized to accept the drop-off, so there is an assignment between
employees and act types (during some time frame), and, as the student is not the
requester of the drop-off, there is some form of delegation…” [5]. Some organization
implementation variables were extracted from this description including V14 and V2:

– V1: Cross-reference which employee is allowed to perform which type of act (cross
reference functionary type/act type);

– V2: Delegation of act types.

In order to model the values of these variables actual for RAC, we explicitly represent
a type of C-commitments (Accept-commitment), which are created when drop-offs are
accepted in the scope of Car Drop Off transactions (Fig. 7). In this specification, the
acceptance of a drop-off may not happen (in case the transaction has been failed at some
moment). Although instances of Car Issuer are recognized as bearers of C-commitments
of the Accept-commitment type, the execution of related C-acts can be delegated to
students. As illustrated in Fig. 8, Accept-act C-acts are performed by instances of Student
Qua Car Issuer, which participate in Car Drop Off Event transaction events.

Fig. 7. Car Issuer participations in Car Drop Off transactions

4 Here, we do not support the original numbering of implementation variables from [5].

Revisiting the DEMO Transaction Pattern with the UFO 191

Fig. 8. Accepting coordination acts of Car Drop Off transactions delegated to students

Without further elaboration on a relation between actor roles and organizational roles
(like employee, student, or director), we specify the delegation relationship between
Car Issuer and the Student Qua Car Issuer organizational role, where the latter can be
thought of as a specialization of the Student type. Contrary to Car Issuer, instances of
the Student Qua Car Issuer type are identifiable persons. This fact is represented by the
role stereotype and the kind Person, which is a supertype of this role. Despite partici‐
pating in car drop off events (instances of the Car Drop Off Event type), instances of
Student Qua Car Issuer do not bear social commitments created by accepting coordi‐
nation acts.

As noted in [5], “…the drop-off location could be anywhere (airport departure hall
3, town center, …) and not necessarily a RAC office. This implies that the state and
accept of the drop-off can happen at any location. For that, the locations of performing
certain acts must be defined.” Another organization implementation variable was
defined accordingly as follows:

– V3: Cross-reference which act type can be performed in which location (event loca‐
tion restrictions).

Fig. 9. Location constraints of C-acts

192 T. Poletaeva et al.

The behavioural aspects of the transaction pattern can be referred to for grounding
the discussions on values of this implementation variable. Obtained by specializing the
model in Fig. 4, the lower half of the model in Fig. 9 expresses a constraint concerning
the location where the acceptance of a dropped car (an instance of Car Dropped Off-
Accept) can be performed by an actor playing the Car Issuer actor role. The location
constraint cannot be applied to the Car Drop Off type (see Fig. 5), since a location is not
directly involved in transactions [11].

The upper and the lower parts of the model in Fig. 9 together illustrate the interde‐
pendency of the location constraints of C-acts constituting transaction events of different
types. Based on this model, an enterprise modeler can further specify to which extent
the execution of C-acts of a particular type is restricted to the location at which the whole
transaction event is triggered. This interdependency can further be specified, e.g., “pick-
up can only be done at branches near airports, while drop-off can be done at any
branch” [5]. For the given implementation of RAC, the CarPickUp-Promise event can
be constrained by Airport Area, which is a specialization of Location.

One can imagine the implementation of RAC, in which the acceptance of a car by a
student playing the Student Qua Car Issuer actor role triggers the planning of a main‐
tenance control required from a mechanical engineer, i.e., a Transport Completion
transaction (see Fig. 5).

The notion of transaction event from Sect. 4 allows referring to a transport comple‐
tion transaction before a transport manager has initiated it. In its planning stage, a trans‐
port completion transaction can be represented by a transport completion transaction
event (Fig. 10).

Fig. 10. Interrelation of Car Drop Off and Transport Completion transactions

6 Final Considerations

Enterprise conceptual modeling is not an easy task. In this paper, we make an attempt
to prepare foundations for possible extensions of the DEMO-based conceptual models
by considering the OntoUML representation of the DEMO transaction pattern. By using
the proposed modeling constructs, we represent some implementation aspects of a ficti‐
tious Rent-A-Car company and demonstrate the ability of these constructs to forth
making important ontological distinctions that can be overlooked in ordinary textual

Revisiting the DEMO Transaction Pattern with the UFO 193

descriptions of implementations. We also demonstrate the benefits of the incorporation
of events into structural conceptual models.

Acknowledgments. This research is partly funded by the FEDER grant number HN0002134:
CLASSE 2 (“Les Corridors Logistiques: Application a la Vallee de la Seine et son
Environnement”). This research is also partly funded by the Brazilian Research Funding Agencies
CNPq (grants number 311313/2014-0 and 461777/2014-2) and FAPES (grant number 69382549).

References

1. Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling
– a research agenda. Inf. Syst. Res. 13(4), 363–376 (2002). INFORMS, USA

2. Barjis, J.: Enterprise modeling and simulation within enterprise engineering. J. Enterpr.
Transform. 1(3), 185–207 (2011). Taylor&Francis Online

3. Dietz, J.L.G.: Enterprise Ontology – Theory and Methodology. Springer, Heidelberg (2006)
4. Guizzardi, G.: Ontological foundations for structural conceptual models. Telematics Instituut

Fundamental Research Series, ISSN 1388-1795, No. 015, The Netherlands (2005)
5. Land, M., Krouwel, M.: Exploring organizational implementation fundamentals. In: Proper,

H.A., Aveiro, D., Gaaloul, K. (eds.) EEWC 2013. LNBIP, vol. 146, pp. 28–42. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38117-1_3

6. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards ontological
foundation for conceptual modeling: the unified foundational ontology (UFO) story. Appl.
Ontol. 10(3–4), 259–271 (2015). IOS Press

7. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual
modeling languages in ontology-driven conceptual modeling. In: Comyn-Wattiau, I., Tanaka,
K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 83–97.
Springer, Cham (2016). doi:10.1007/978-3-319-46397-1_7

8. Habermas, J.: The Theory of Communicative Action. Lifeworld and System: A Critique of
Functionalist Reason, vol. 2. (Translated by Thomas McCarthy), 3d corrected edn. 1985.
Suhrkamp Verlag, Frankfurt am Main (1981)

9. Dietz, J.L.G.: The PSI theory – understanding human collaboration. Technical report TR-
FIT-15-05. Faculty of Information Technology Czech Technical University in Prague (2015).
http://www.ciaonetwork.org/uploads/eewc2015/ee_theories/theories/. Accessed 2016

10. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S.: Grounding software domain ontologies in the
unified foundational ontology (UFO): the case of the ODE software process ontology. In: XI
Iberoamerican Workshop on Requirements Engineering and Software Environments, pp.
244–251 (2008)

11. Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of reification
and truthmaking. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS
(LNAI), vol. 10037, pp. 237–249. Springer, Cham (2016). doi:
10.1007/978-3-319-49130-1_18

12. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level theory to
support the analysis and representation of the powertype pattern in conceptual modeling. In:
Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 309–324.
Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_19

13. Falbo, R.A., Ruy, F.B., Guizzardi, G., Barcellos, M.P., Almeida, J.P.A.: Towards an enterprise
ontology pattern language. In: 29th Annual ACM Symposium on Applied Computing, pp.
323–330. ACM (2014)

194 T. Poletaeva et al.

http://dx.doi.org/10.1007/978-3-642-38117-1_3
http://dx.doi.org/10.1007/978-3-319-46397-1_7
http://www.ciaonetwork.org/uploads/eewc2015/ee_theories/theories/
http://dx.doi.org/10.1007/978-3-319-49130-1_18
http://dx.doi.org/10.1007/978-3-319-39696-5_19

14. Guizzardi, G., Wagner, G., Almeida Falbo, R., Guizzardi, R.S.S., Almeida, J.P.A.: Towards
ontological foundations for the conceptual modeling of events. In: Ng, W., Storey, V.C.,
Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 327–341. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-41924-9_27

15. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”: revisiting relationships as
modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015.
LNCS, vol. 9097, pp. 279–294. Springer, Cham (2015). doi:10.1007/978-3-319-19069-3_18

16. Nardi, J.C., De Almeida Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira Pires, L., Van
Sinderen, M.J., Guarino, N., Fonseca, C.M.: A commitment-based reference ontology for
services. Inf. Syst. 54, 263–288 (2015). Elsevier Ltd.

17. Object Management Group: Business Motivation Model (BMM) Specification, V1.1. OMG
Available Specification OMG Document Number: formal/2010-05-01 (May 2010). http://
www.omg.org/spec/BMM/1.1/PDF/

18. Op’t Land, M., Dietz, J.L.G.: Benefits of enterprise ontology in governing complex enterprise
transformations. In: Albani, A., Aveiro, D., Barjis, J. (eds.) EEWC 2012. LNBIP, vol. 110,
pp. 77–92. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29903-2_6

Revisiting the DEMO Transaction Pattern with the UFO 195

http://dx.doi.org/10.1007/978-3-642-41924-9_27
http://dx.doi.org/10.1007/978-3-319-19069-3_18
http://www.omg.org/spec/BMM/1.1/PDF/
http://www.omg.org/spec/BMM/1.1/PDF/
http://dx.doi.org/10.1007/978-3-642-29903-2_6

Organisation Design

An OD-Pearl for the EE-Oyster

L.J. Lekkerkerk(✉)

Institute for Management Research, Radboud University, Nijmegen, The Netherlands
h.lekkerkerk@fm.ru.nl

Abstract. Explaining the basics of Lowlands-SocioTechnical Systems Design
(L-STSD) to the Enterprise Engineering community is the first goal of this contri‐
bution in order to show how it fits with EE. Then, a first attempt is made to link
L-STSD to basic EE insights gained so far. It seems that the commonalities are
good, because of a shared basis in general systems theory, and a desire to optimize
organizational functioning. The differences may not be problematic, so L-STSD
may be a compliant view to enhance the EE-body of knowledge with a new lens
on organisational structure, or the labour to be divided and coordinated &
controlled.

Keywords: Organisation design · Organisational structure design ·
Sociotechnical systems design

1 Introduction

At the 7th Enterprise Engineering Working Conference 2017 a special session was
planned on Organizational Design, with the intent to explore the OD-field for opportu‐
nities to enrich the Enterprise Engineering (EE) body of knowledge. The author is espe‐
cially familiar with the Lowlands SocioTechnical Systems Design (L-STSD) approach
to Organisational Design and is a novice in the EE-field. Table 1 presents EE-phrases
with their equivalent from L-STSD sources. The similarities will be obvious to the
reader.

Hence, explaining the basics of Lowlands-SocioTechnical Systems Design (L-
STSD) to the EE-community is the first goal of this paper. Because L-STSD is little
known outside Dutch speaking countries, The Netherlands and Flanders, due to a lack
of publications in English, this requires a textbook-like summary, which is, admittedly,
somewhat unusual for a conference paper. This summary then serves as a starting point
for the second goal, comparing and contrasting L-STSD with EE to figure out whether
and how EE may be enriched by L-STSD (and vice versa). This paper only presents a
first brief comparison by the author based on his first novice understanding of EE. At
the EEWC-2017 the debate will start, and hopefully lead to further developments.

Organisations seem to pay more attention to structure. Since around 2010 managers
try to improve their organization’s structure using one of the hypes, e.g. holacracy, agile/
scrum, ‘Spotify’, teal organizing [16], or Lean, hoping to meet the higher challenges of
contemporary multiple value creation by introducing forms of self-managing teams, and

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 199–219, 2017.
DOI: 10.1007/978-3-319-57955-9_15

flattening the hierarchy. However, to enable the successful introduction of self-manage‐
ment and a flat structure the organizational structure needs to be redesigned in most
cases, but the approaches mentioned tend to overlook that. Also, not all managers should
design an organisational structure. Everybody will agree that designing an affordable,
safe and durable bicycle, car, software package, or computer requires a design team with
specific knowledge, gained from a four to five year engineering study, and much expe‐
rience. Most managers do not have an education as organizational structure engineer.
And when moving the boxes in the organization chart, merely changing reporting lines,
those managers may really believe that they are ‘redesigning the structure’ of their
organization. As this paper shows, there is more to organisation design than ‘redrawing
the chart’, and this lack of knowledge will in part explain why so many reorganizations
fail miserably.

Table 1. EE and L-STSD have similar views on organisations

EE views L-STSD-views
1 ‘A holistic and general system theory based

understanding of how to (re)design and run
enterprises effectively’

General systems theory based, and favours
holistic redesign of the whole organization,
rather than just redesigning a lower level unit

2 Referring to organizations as socio-technical
systems

Named in Dutch ‘moderne sociotechniek’, in
English we refer to it now as ‘Lowlands
sociotechnical systems design’ or L-STSD

3 The human beings that are the ‘pearls’ of the
organization

Aiming at improving the ‘quality of work’ so
that the human employees have better jobs

4 Acknowledging the fact that these pearls do
not always act purely rational or evidence-
based

Eliminating unnecessary ‘red tape’ and
empowering employees to contribute to the
purpose of the organisation, and improving
the ‘quality of work’

5 A desire to make change efforts more
successful, and also an enterprise as a whole
more effective and efficient

Using a design sequence and design rules
that lead to higher controllability (both
operational and strategical), contributing to
a more effective and efficient organisation

6 Welcoming proposals to include compliant
views into the body of knowledge

N.A.

[6, 7, 13, 14, 20] [1, 10–12, 15, 17–19, 22, 24, 25]

2 Backgrounds and Basics of Lowlands SocioTechnical Systems
Design

2.1 Other OD-Approaches and Why L-STSD

There are different approaches to Organization Design, or rather Organizational Struc‐
ture Design, that may be used for an OD-EE-comparison. After mentioning a few OD-
approaches, L-STSD is put forward as the most suitable candidate for this goal.

The configurational approach describes several archetypes of structures, like the five
of Mintzberg [21], that each matches a typical situation, but the idea that ‘five sizes fit

200 L.J. Lekkerkerk

all’ is flawed. Another one is the contingency approach in which the structure design
should match the internal and external contingencies of the organization. Burton et al.
[5] is a typical example of this approach. Contingencies are different for each organi‐
sation, but some patterns emerged from studying structures. Then there is Galbraith’s
[9] information processing view, which sees the organizational structure mainly as a
tool that must be designed in such a way that it can process the necessary amount of
information processing to match the information need of the different organizational
units. Next a process oriented approach like Business Process Redesign mainly looks at
organizations that are information processors, and tries to make units with an end-to-
end responsibility for a value adding process, instead of a structure in which units
perform similar activities (activity based structure also labelled functional or bureau‐
cratic structure). Lean Thinking, originating in the automobile industry, also has a
(primary) process-focus and also tries to form units of people and equipment dedicated
to and responsible for a ‘flow’, delivering a subset of high customer value products.

Finally the approach chosen for this paper, is called Lowlands SocioTechnical
Systems Design (L-STSD). Founding father Ulbo De Sitter and his co-workers hardly
published in English. It is rooted in the sociotechnical tradition started by Tavistock
Institute research by Bamfort, Emery, and Trist, in the English coal mines in the 1950’s.
Ulbo de Sitter further developed sociotechnical thinking in the 1980’s and 1990’s into
an integral organisational structure design approach, with a theoretical foundation in
systems theory and organizational cybernetics (e.g. Ashby [2]). It is aimed at improving
the controllability of the organization and in doing so improving both Quality of Work
and Quality of the Organization, which comes close to the idea of ‘joint optimization’
of the social and technical subsystems the early sociotechnical writers were advocating.
De Sitter’s Dutch version of sociotechnical systems design (D-STSD), was sometimes
named ‘integral organizational renewal’ (IOR, e.g. in de Sitter et al. [25]). Following
jargon used in the US-based but worldwide SocioTechnical Systems Roundtable, ‘soci‐
otechnical systems design’ was adopted by Van Amelsvoort (in Mohr and Van Amels‐
voort ed’s 2016 [22]), and Lowlands replaced Dutch to honour the recent contributions
made in Belgium at the Catholic University in Louvain by Van Hootegem and his staff
[11, 12], in part via the Flanders Synergy Program [8].

Because the L-STSD-approach shares the systems theory as a foundation with
Enterprise Engineering, and the other OD-approaches mentioned above lack this foun‐
dation, the jump to the conclusion that L-STSD may be easy to compare with EE and
may also the most probable OD-candidate when it comes to enriching EE with a vision
on organisational structure design seems allowable.

2.2 Model of an Organization

An organization implies work, to be done by members, often using machines and equip‐
ment, aimed at realizing a main goal or higher purpose, which is to supply something
valued by customers, or to deliver a contribution to society. System theory models this
as a system where input is transformed in the output to be supplied (Fig. 1).

An OD-Pearl for the EE-Oyster 201

Fig. 1. An organisation as a system

Along with the main goal, an organization has several sub goals (stay viable, offering
employment, pay tax, increase shareholder value), and it is using all kinds of resources
(e.g. machinery, ICT, building, money, knowledge) when doing all the work involved
in realizing the goals set. Most organizations are permanent, or want to stay viable and
hence must adapt to the threats and challenges from their competitive and (rapidly)
changing environment. Some organizations are temporary, and ‘live’ only during the
time it takes to realize a unique result. We usually see this in the civil engineering and
building industries. When the bridge or the skyscraper is finished, the temporary organ‐
ization is dissolved. This means that the contractors that participated in the project take
back employees and equipment, and assign these resources to a new project with its own
temporary organization. Below the focus is on permanent, viable organizations.

2.3 Structure and Its Functions

A simple definition of organizational structure is ‘the division of labour and the coor‐
dination (that results from this division)’. Based on that, all organizations, big or small,
new or old, for profit or not, have a structure. Networks of organizational actors have a
structure too, because the work is divided among the network partners (being organi‐
zations or self-employed individuals), and intra-organizational coordination mecha‐
nisms must be in place.

The labour to be divided in a given organization is varied in nature and involves all
the activities that the organization has chosen to do in house (instead of outsourcing it),
which are necessary to deliver value to the customers that place orders. It comprises the
primary transformation or make activities, preparatory work linked to orders, and
support and maintenance work for the primary activities. Together these three types of
activity are grouped and labelled the Production Structure (PS). Regulating the primary
transformation by the Production Structure is the function of the Control Structure
(Fig. 2).

Fig. 2. Transformation involves a production and a control structure

The resulting need for coordination also equals work, usually, but not necessarily,
done by managers. Some authors use ‘coordination and control’ as a fixed combination,

202 L.J. Lekkerkerk

which indicates that they see control as something related to, but not the same as coor‐
dination.

Ashby [2] distinguishes three layers in regulation: Control, Regulation by design,
and Operational Regulation. Control, or ‘strategic regulation’, encompasses setting the
goals of the organisation and monitoring whether the work that is done actually leads
to reaching these goals and to take action if something happens that might prevent real‐
ization of the goals. Goals may be strategic, like entering a new market with a new
product-service-offering, or operational e.g. meeting the revenue-target and reliability
of order delivery. Then Regulation by Design develops changes needed to reach new
strategic goals. Because these changes usually are referred to as innovation projects, this
layer is sometimes referred to as ‘Innovation Structure’. Innovative ideas may also come
up when reflecting on operational activities or in contact with customers. This also leads
to innovation projects to be carried out by the Innovation Structure. Finally the Opera‐
tional Regulation of the Production Structure is the lower part of the Control Structure
[1, 24] (Fig. 3).

Fig. 3. Detailing the production structure and the control structure

So far, in spite of the term Structure, we dealt with functions, or contributions to the
system, which must be fulfilled in every organisation that aims to deliver value, and stay
viable. A self-employed professional will do all the PS and CS work for his one person
organization. In the classic functional bureaucracies each kind of PS-activity is sub-
divided and assigned to an organizational unit, and a hierarchy of managers is needed
for operational control and strategic management, with specialist staff in project teams
for innovation work.

2.4 Contingency, Complexity and Challenges Shape Structure

An increasing size of the organization, as measured in number of employees and number
of sites, will usually lead to an increasingly more elaborate, formalized, and in the end
even really complex organizational structure. Contingent factors, like the dynamics of
the market and technological development are to be considered when designing a struc‐
ture. When demand is seasonal, there is a need to vary capacity that must be ‘designed
in’ the structure to ensure a match between supply and demand. A fast growing demand
and workforce implies frequent rethinking of the structure or a scalable type of structure
where PS-units can be added easily.

An OD-Pearl for the EE-Oyster 203

New technology may enable automation of work and consequently leads to both a
reduction of staff and to new kinds of work. So implementing new technology also
demands rethinking the division of labour and always leads to changes in the structure.
STSD in general stresses organizational choice, meaning that technology does not
dictate the new structure.

New generations of higher educated workers are said to have higher demands on
their job; it must enable them to use and develop their talents, and by a visible contri‐
bution to the organization’s higher purpose also be meaningful for society. Employers
should also respect their work-life balance, and work should not be a threat to their health
and well-being. As customers they are also more critical.

Finally, the general public, ngo’s and governments demand more sustainability and
environmental awareness, social responsibility, and also, since the 2008 banking crisis,
more ethical behaviour from organizations.

Taken together, the bar is raised for organizations, and it is hard for organizations
with hierarchical, activity based, centralized, bureaucratic or matrix and multi-dimen‐
sional structures to meet the present standards of multiple value creation. This is caused
by the fact that these kinds of structures require so much coordination between the highly
interdependent units, that they are too complex to manage from a central point at the top
of the multi-layered hierarchy. Coordination also involves work for highly payed
managers, so it is costly too. And because all coordination and control entails informa‐
tion exchange, the information processing demand is much greater than the complex
structure can provide, no matter how much ICT the organization employs.

Before explaining the basics of L-STSD, some characteristics of structure need to
be highlighted first.

2.5 Division of Labour Influences Coordination Need

Organizations work, or rather, in organizations work is done by several people and part
of the work is automated and done by (computer controlled) machines and ICT. Is it
relevant and necessary to systematically design an organization or can structure be left
to self-organizing? Adam Smith divided the work of needle makers into simple steps,
and put workers in a row, Hundred years ago Frederic Taylor divided doing from
thinking, which made us believe somehow that people that ‘do’ cannot ‘think’ and that
thinkers better not ‘do’. He also aimed to improve the way work was done by using
scientific approaches to find the one best way of working. Implicit here is the assumption
that when all individual jobs are scientifically optimised the whole will perform optimal.
Closely related to Tayloristic thinking is the idea of an economic order quantity to spread
the cost of changeover and inventory optimally over a batch of products, leading to a
firm belief in economies of scale.

So we have over a century of history leading many to believe that the only logical
ways to group work are the assembly line for mass production and else the activity based
or functional approach, where ideal batch sizes are based on flawed economies of scale-
thinking.

When organizational work is divided over several people, or organizational units, it
must be coordinated to make sure that the result meets the request of the customer, and

204 L.J. Lekkerkerk

other norms and standards. The different contributions are usually interdependent, and
it is easy to imagine that different divisions of labour can lead to different interdepen‐
dencies, and hence to different needs and ways to coordinate. Some examples to show
this. A small coffin of a child can be carried by one person, so no coordination, but an
adult needs six carriers who must coordinate their movements when lifting the coffin
and walking to the grave. When each craftsman makes, finishes and assembles parts for
one piece of furniture, there are no interfaces between the craftsmen. When you group
them in three departments, for making, finishing and assembling, these departments need
to be coordinated.

Such sequential interdependencies between groups can be compared to a relay-team
handing over the baton, which stands for the order to be processed. Most of the problems
of any relay team have to do with handing over the baton, because at high speed it
requires very precise coordination effort to get it in the hands of the next runner. Coor‐
dination means extra work, and it can go wrong, the falling baton, and according to
Murphy: it will go wrong. Hence, designing a division of work with as little handovers
or interfaces as possible, will reduce much of the coordination work, and so reduce both
risk and the number of people doing that (staff, management, liaison roles, committees
to name a few). At the same time less interfaces equals less interface problems, so less
chances of disturbances, and the associate effort to solve these. Again, compare the
4 × 100 m relay team with a single athlete running 400 m. The latter may be a bit slower,
but the chance of missing a handover leading to disqualification is zero.

Concluding, a functional division of labour that leads to interfaces where coordina‐
tion is needed and where troubles find their cause, may not be such a good idea. A
redesign forming independent units with far less interfaces may be smarter, and has
another in-built advantage for the employees.

2.6 Division of Labour and Quality of Work

Without people organizations obviously do not exist, because even the ‘unmanned
factory’, or the fully automated internet based system for processing of payments by
banks, requires designers, builders to erect, and people watching its functioning, solving
defects, and do maintenance. When you take the importance of employees, including
managers, serious, their work should be of high quality. Is work in an activity based,
high interface situation of high quality? What about sharpening the point of countless
needles all day long (Adam Smith), shovelling tons of iron ore all day (Taylor’s famous
example) or making legs for chairs all day, and for tables the next day? Apart from the
boring character of the repetitive work itself, in such structures someone else decides
about the quality of your work, another tells you what to do, when to do it, and in how
little time. Western educational systems do not deliver needle-point-sharpeners, ore
shovelers or table leg makers to the labour market, but craftsmen and women with
considerable more knowledge and skills than the illiterate farmer sons that Taylor and
his contemporaries could hire for the work to be done at that time. Nowadays the organ‐
ization designer should match the work assigned to organisational units to the higher
skills of workers.

An OD-Pearl for the EE-Oyster 205

Following the previous example of furniture making, when in a group of ten workers,
each is coupled with the complete set of tasks to make furniture, the possibilities to
develop all necessary skills and become a real craftsman, are much better. Each
craftsman then has the task to complete a table or cupboard on his own, maybe even
including the contact with the customer about her demands for it. This grouping auto‐
matically facilitates job enlargement. So, instead of units that do one kind of activity for
all orders, leading to monotonous, poor quality of work, without much opportunities for
job-rotation within the group, (and the large number of interfaces), the designer should
group work in such a way that units are able to do all work needed to fulfil their sub-set
of customer orders; these units are a mini-factory or mini-service unit, that in principle
can manage its own affairs.

Or, to put it differently, the structure shapes the conditions for meaningful self-
management, and various team members can learn to perform internal and external
coordination too, which is a form of job enrichment. This way the quality of work
improves ‘by design’, and it goes along with the reduction of interfaces which improves
controllability explained above. So this kind of production structure design for the
primary transformation and its preparatory and support tasks, leads to a win-win design
for employees (higher quality of work), customers (higher quality, more reliable
performance with less chance of broken promises), and shareholders (coordination costs
reduced, higher performance, higher margins and/or turnover).

It should be clear by now that a simple structure, built of units that are as independent
as possible, has reduced coordination needs and costs, while at the same time offers
higher quality of work for employees, because it enables learning on the job within the
team and gives job control to facilitate meeting the job-demands. With such a structure
teams can be(come) truly and meaningfully self-managing, like mini companies. Now
the question is: how can you design or redesign such a simple structure?

3 L-STSD Design Principles, Sequence, Parameters and Function
Models

3.1 Starting Points for (Re-)designing Structure for New Organizing

There are three different design situations. First is a start-up with growth potential that
uses a philosophy that accommodates growth easily. Secondly when a big company
starts a new plant or subsidiary where a considerable number of people will work shortly
after the office or factory is build or rented, a new structure is designed and new people
are hired that match the chosen design, maybe based on a new design philosophy. The
third, and most frequent is in fact redesign of the structure of an existing organisation.
The latter is labelled a brownfield design, and the former two are called greenfield
designs.

The essential difference is the number of constraints. In a greenfield situation it is
easier to come close to realizing a ‘castle in the air’, because people, equipment, ICT
and building can be matched to the ideal structure. The brownfield may suffer more from
path dependencies, or all choices made in the past for equipment, building, or ICT that
do not fit the ideal design, and act as a constraint. This means that equipment designed

206 L.J. Lekkerkerk

for economies of scale that fitted well in an activity based structure will have to be part
of the new situation, and will create undesired interdependencies between units, at least
for the remaining write-off period. Lean labels this kind of equipment ‘monuments’ or
bottlenecks. All orders need to pass it, even though before and after it three independent
flows could be formed. As soon as new smaller scale equipment is available, and/or can
be afforded, the monument can be replaced by three, not necessarily identical pieces of
equipment for each of the flows, to make these independent end-to-end.

The following explains the design chain and is based mostly on the latest L-STSD
handbook by Kuipers et al. ‘Het nieuwe organiseren. Alternatieven voor de bureau‐
cratie.’ Translated: ‘The new organizing. Alternatives for a bureaucracy’ [15].

3.2 An Overview of Lowlands-SocioTechnical Systems Design

The handbook [15] prescribes a six-step design approach to organization design, and in
the fourth step the organizational structure design is made. All designers know that such
processes are in practice not sequential but iterative in character. However the order in
which the design steps are presented follows from engineering or design thinking logic.

At a higher level, the six steps are part of the four-phase intervention in organization-
cycle of:

diagnose – design – implement – evaluate.
Preceding the design phase, a diagnosis should be made in which it becomes clear

that the current problems cannot be solved, nor the strategic goals reached, with the
current structure. Alternatively, when there are a lot of problems with ICT, e.g. legacy,
too many applications, complex interfacing, the solution may seem to implement a new
ICT-architecture. However, then the structure should be scrutinized first, to see whether
that is really (near) future proof, especially if there is reason to expect that changing the
structure will be less easy after the new ICT-architecture, probably including an ERP-
system, is implemented.

Following the design, it is implemented in the change phase. After the implemen‐
tation is finished and the new structure and systems are settled somewhat, the project
should be evaluated.

The six L-STSD design-steps are:

1. Choose the scope of the redesign; preferably the whole organization, because that
enables the greatest reduction of interfaces.

2. Write a statement, if it is not available yet, in which the higher purpose and goals of
the organization are explained, and mention the multiple values to be created, for
the multiple stakeholders involved.

3. Detail the higher purpose, and the values to be created in functional design require‐
ments, and make them as ‘SMART’ as possible, to serve as criteria to guide and
judge the alternative design.

4. Design the organizational structure, starting with a top-down Production Structure
design, followed by a bottom-up design of the Control Structure. This order is unique
in the field of OD. The Production Structure will have groups as independent as
possible, and the Control Structure will be as decentralized as possible.

An OD-Pearl for the EE-Oyster 207

5. Design the hard and soft systems to make them fit with the chosen division of labour
in the previous step. This indicates that ideally, the systems (automation, ICT,
building) should fit the division of labour that delivers the best quality of work,
instead of adapting the workers to the technology used; it is indeed socio-technical
design, not techno-social.

6. Preceding the implementation the behaviour, leadership style, culture, and ‘the way
we will work’ must be redefined in a way that fits the purpose, functional require‐
ments and structure of the new organization. From the difference between the old
and the new situation an action learning plan to learn and train the new behaviour
and style can be designed.

The logic of Steps 1, 2 and 3 will be obvious to the reader, but the others need some
explanation.

3.3 Step 4a the Production Structure Design Is Top-Down

As mentioned above the structure (re)design starts with the production structure, and
this is done top down. The aim is to increase controllability of the production structure
by reducing the number of interfaces between groups as much as possible. To do that
first the units and jobs involved in making must be found in the old structure. Then the
products and/or services made, the markets served, and the various inputs are listed. A
bit oversimplifying, you start with N employees ‘making’ and you must divide these
first into independent units, lean would say ‘flows’, linked to a product group or to a
part of the market (geographically or type of customer). If needed you ‘cut’ the branches
further in smaller independent units, until you end up with groups that have a size that
allows the members to feel and work like a team: 6 to 12 employees as a rule of thumb
(with 4–20 as extremes). If possible you divide in flows all the way down, because those
units have an end-to-end responsibility for their own subset of customer orders. Ideally
these team can work parallel, and independent, without intensive coordination, only an
occasional exchange, e.g. of knowledge or capacity when workload is low in one of the
flows, and high in another with similar employees and work.

Then the attention is turned to the preparing activities and the employees that held
these jobs. They may initially be placed as specialists inside the teams, because that
reduces interfaces compared to making separate prepare groups that are linked to several
make-teams. Only when there is a good reason, a separate prepare-group can be
designed, and then an attempt is made to form mixed groups of staff linked to some of
the (sub)flows.

Finally, the supporting activities are studied, with the same basic question as for
preparing, whether some of the people can be transferred to the teams, or that, after
training some of that work may be added to the jobs of the members of the make teams.
Simple maintenance of team equipment, or cleaning the team’s own workspace, makes
them independent from a staff group that has its own ideas about the ideal moment to
maintain or clean. For some very specialized or skilled tasks of a handful of specialists
that must divide their attention to all teams, a central support group may be formed.

208 L.J. Lekkerkerk

Placing all preparing and supporting activities (with staff) in the independent flow
related make-teams is the theoretically ideal ‘least interface’ Production Structure
design, where each team is a plant-within-the-plant, a hospital-within-the hospital, or
an office-within-the-office. Of course there are also organisations that serve a large
geographical area, where each sub region or neighbourhood has its own clients, e.g.
home nursery care, or police, that may be served by a local team with a small office in
that neighbourhood.

In practice this ideal of dividing in (sub)flows all the way down is not always possible.
There can be reasons why only sequentially dependent units can be created at a particular
design level or ‘cut’. In an automobile plant there are usually three basic steps; making
the body parts and weld or glue them together and link bonnet, hood and doors. Then
the largely automated step of painting is done. Finally the painted bodies enter the
assembly lines to become cars that are driven to the parking lot to wait for further trans‐
port. The painting equipment cannot be split in two, one for each assembly line. And
the presses require a different kind of operators, and are universal and not related to the
models that the assembly lines are dedicated to. In such a plant the three units are
sequentially dependent, and L-STSD names those kinds of units ‘segments’, and their
interfaces cannot be avoided. Within that constraint, the designer then tries to make units
within each segment, that are flow-based, and the two assembly lines are an easy guess,
but the body painting part will be less easy dividable in parallel flows.

As a simple example, when there are 24 employees making ‘stuff’, using the rule of
thumb you may design 2 teams of 12, 3 teams of 8, or 4 teams of 6 employees (and
maybe 8 teams of 4). Now, suppose you have to process two materials, metal and plastic,
to make three products, for four sub-markets. This matches to the 2, 3 or 4-team options,
material, product, or market based respectively. Then, figure out which option leads to
the smallest number of interdependencies or interfaces between the teams. In such a
small organisation, Production Structure design involves just one divide or ‘cut’.

In bigger companies more divides are necessary, before the last cuts in each branch
deliver the 6–12 (4–20) employee make-teams. A grouping of teams forming a business
unit together should add up to a maximum of 150–200 employees according to Kuipers
et al. (2010). The Dunbar number, related to the maximum amount of people humans
can relate too, is around 150 people. W.L. Gore is dividing its plants when they grow
beyond that number, and builds a new one ‘at the other side of the parking space’ when
the area allows that, of course. When the designer has to deal with an about 500 employee
organisation (all working in one site), a first cut tries to find three independent units of
about 170 employees.

There is no general rule of thumb on how to divide the Production Structure of a big
multinational, selling different product & service categories, produced in numerous
plants throughout the world, but basically the question always is: how can we make the
units as independent as possible.

A separate kind of design challenge occurs when demand is local, and must be
supplied by local small units; like fast-food e.g. McDonalds, Starbucks, KFC, with their
large number of outlets, including franchises, or home care e.g. Buurtzorg Nederland
with their independent, self-managing neighbourhood teams serving clients in ‘their’
neighbourhoods, with other teams in surrounding areas.

An OD-Pearl for the EE-Oyster 209

This top-down design procedure and rule is very similar to modular product or
system design and in fact uses the hierarchical decomposition described by Herbert
Simon. And evidently, a modular product design enables the forming of Production
Structure groups that are responsible for their own module, and an assembly group to
combine the modules each customer has chosen. This may be a PS with two segments
(modules and assembly), and sub-flows in the module-segment.

So far we have been dealing only with activities that are necessary to fulfil customer
orders by preparing and making, and supporting. The resulting set of PS-units needs to
be coordinated, or ‘pasted’, when they are interdependent, and control is always needed
to make sure everything works according to the standards set, so that customer expect‐
ations are met (or exceeded), in spite of the disturbances that occur. For this the Control
Structure is needed, and only now it can be designed, bottom-up.

3.4 Step 4b the Control Structure Design Follows Bottom-up

The control structure entails three different types of control, and they have a logical
hierarchical order. They are named, bottom to top: operational regulation, regulation by
design and strategic regulation.

When the design of the production structure is ready there are a number of units that
are as independent as possible. At the lowest PS- and CS-level each unit needs opera‐
tional control of its own internal processes. Then, for the units that have an interface
with other units, an inter-unit second layer of operational coordination and control must
be designed. Depending on the size of the organization and the design of the production
structure, an operational control hierarchy is designed. Do note that these layers are not
the same as hierarchical layers depicted in the orgchart. The top layer just ensures that
all coordination and potential synergies between PS-units are taken care of.

The operational control activities are triggered partly by disturbances in the external
environment, partly by problems with an internal cause, often at the interfaces. Which
employees are charged with operational control activities is the second question. They
may be assigned in a classical way to first line supervisors, and higher managers, but
the autonomy of the units creates better opportunities to assign much of the operational
control activities to one or more members of the unit.

Then next layer, named ‘regulation by design’ based on Ashby [2], can be designed.
It is also named ‘innovation structure’. This entails all the innovation and change activ‐
ities that an organization undertakes, which are usually done as ‘projects’ and ‘programs’
or ‘portfolio’s’ (sets of related projects). Before a project can start, opportunities have
been searched, business cases or project proposals drafted for the most promising oppor‐
tunities, and a selection of the best project proposals is then made by an ‘innovation
portfolio board’, based on strategic criteria. Considering who should search, make busi‐
ness cases, select them, and be part of the project teams, is again a design question. In
a functional structure separate groups of innovators exist. And the stage-gate-approach
leads to intermediate project results being ‘thrown over the wall’ to the next functional
group at each gate, until the result is finally received by Operations to make, and by
Marketing to sell. And it is regularly thrown back too, when the downstream group finds
flaws that must be corrected by a previous unit.

210 L.J. Lekkerkerk

Concurrent engineering already tried to solve this by bringing the downstream func‐
tional representatives in the project from the earliest stage of the project on, to make
sure that all relevant perspectives could be taken into account. In these cases innovation
project teams are a mix between fulltime innovators, and part-time contributors that
spend most of their working hours in PS-work and/or operational regulation. The former
may be an industrial design engineer, a service developer, and the latter may be from
manufacturing, logistics, quality control, to help meet standards for manufacturability,
simplify logistics, improve quality level adding statistical process control thinking to
the design team. Laloux [16] presents an example of FAVI, a French company that goes
further in decentralizing innovation tasks. There a machine operator may visit a trade
fair, see a useful new machine, and be appointed to the process innovation project
managers role by his team to carry the innovation case further. When the new machine
is up and running he comes back in his operator role.

The top layer of the Control Structure is named strategic regulation and that involves
defining purpose of the organization, the values to be created, and the goals to be reached
in the short and longer term. Following from the central definitions of the goals, these
must be deployed to (when applicable) the divisions, their strategic business units, and
their business units, until the floor units are reached. In this process each level clearly
sees its contribution to the purpose of the organization as a whole.

The basic design ideas of independent units and decentralising control responsibil‐
ities, implies that decisions on local strategy and innovation that are only influencing
the particular unit on the shop or office floor, should be made by members of that unit,
when needed supported by specialist staff. When an innovative idea relates to a business
unit (here a group of related floor units), then that project ‘belongs’ to the business unit
and floor unit members and specialist innovator staff may work together in the project
team. Radical or disruptive innovations usually lead to a new (business) unit in the
production structure, and must be coupled to the corporate level because no (business)
unit can ‘own’ it, and even may regard it as a threat to its current market position.

3.5 The U-Shaped Design Order of L-STSD Is Unique

Lowlands STSD is believed to be unique in its systems theory based design sequence,
and its aim to improve controllability of the organizational system by designing inde‐
pendent and self-managing units. Because these units are made responsible for an output
that is recognizable as a meaningful subset of the total output of products and services,
all work in the production structure is firmly linked to the purpose of the organization.
Because a unit fulfilling a complete customer order on its own will do a variety of tasks,
the potential for job enlargement is close at hand for each member of the team.

The independency of the units is a precondition to assigning various control tasks to
at least of part of the members of each unit, enriching their jobs. There is a much greater
variety of coordination and control tasks that such a unit can do without interfering with
other units, compared to units in traditional, activity based structures. The latter are so
tightly coupled to many other units in pooled, sequential, and sometimes even reciprocal
interdependencies, that almost all control decisions need to be coordinated with other
units, and only a small subset can be self-controlled. Giving such a unit in a functional

An OD-Pearl for the EE-Oyster 211

structure the name ‘self-managing team’ is misleading the members, and in fact wrong
from the systems theoretical perspective explained above. Compare it with a ‘team’ of
3-year olds that believe that they are self-steering the police car to the crime in the Merry-
go-round, the structure. Each seat has its own wheel. They soon enough find out that no
matter how much, or in what direction they turn their wheels, the car just goes round in
the circle dictated by the design of the Merry-go-round.

Based on the systemic or cybernetic logic the Lowlands-STSD design sequence is
top-down for the production structure, and then building the control structure bottom-
up. When controllability is the ultimate design aim, this sequence is believed to be the
only way to optimize the design of the organizational structure; reducing complexity
implies less disturbances, decentralizing control implies faster response, and in combi‐
nation the quality of work is increased because both job demands and job control can
be balanced by the units themselves. In other words L-STSD uses economies of flow or
scope instead of economies of scale.

Now that the PS and CS are designed and people are placed in teams, it is about time
to remember that organizations are not just people, but ‘sociotechnical’ systems. The
people use all kinds of technology and knowledge, which are either hard (building,
equipment, ICT, vehicles) or soft (quality system, handbooks, procedures). So now, the
technical hardware deserves attention.

3.6 Step 5 Designing the Hard and Soft Systems Needed

When the design of the structure is completed in Step 4, the systems must be (re)designed
in such a way that the units have all means they need to fulfil the assigned work. L-STSD
proposes the ‘First organize, then automate’ as the leading principle, so that’s why Step
5 deals with it. It is worth noting that the systems can be distinguished using the types
of work described above:

• Production Structure systems:
– transforming systems, like CNC-machines in CAM-systems or robots, or IT-

systems for the workflows in data-processing companies
– preparing systems; for all kinds of preparatory activities
– supporting systems for the support tasks

• Control systems for
– operational control
– innovation
– strategizing

Some of these systems are stand-alone and dedicated to one activity, while others
are from different vendors, but linked or integrated (CAD to CAE and CAM/CAx into
CIM), and some (like ERP) are combining various functions in one (modular) package.

When redesigning an organization there is usually a lot of existing hardware and
software. In manufacturing big machines based on economies of scale-logic will not fit
the smaller units. Buying new and smaller equipment must be both possible, and afford‐
able. ERP-systems are adaptable to any structure via templates and parameters, but the
step from an activity based structure to a flow based one usually implies a new

212 L.J. Lekkerkerk

implementation with all associated costs. This may even stop the restructuring. Alter‐
natively, the new structure may be so simple that there is no need any longer for such a
complex ICT-system, and ERP becomes obsolete [10, 19].

3.7 Step 6 Soft Factors like Behaviour, Leadership, and Culture

For the sake of completeness, the sixth step must be briefly mentioned. When employees
from different departments are brought together in a group, it will not instantaneously
be a team. Maybe used to just do what you’re told, shifting towards taking more initia‐
tives, and learning the other tasks in the team also takes time.

And managers and supervisors who were used to a command and control style and
centralized authorities, must adapt to the situation where as much responsibilities for
control as possible are decentralized to the group members of truly self-managing teams.

Depending on the starting point, it may take at least about two year or more,
according to Kuipers et al. (2010) before the organization will work in a completely self-
managing mode. Patience with this process with higher management and the Board may
be one of the most important conditions to make such a holistic change a success. As
far as the approach to change is concerned, it is common knowledge that going from a
state A to a new state B, in which other behaviour will be the norm, can only be accom‐
plished using a B-method. Using an A-method here would be like making people self-
managing on command.

3.8 Diagnosing and Designing a Structure Using Parameters

Before and during a design project the current structure should be diagnosed, and the
new designs should be judged respectively. To do that L-STSD provides the parameters
developed by de Sitter [1, 15, 24–26].

De Sitter’s parameters aim to capture where the structure or the design is between a
maximal degree of functional organizing (i.e. activity based units with lots of interde‐
pendence and operations separated from control) or a minimal degree (i.e. independent,
autonomous units delivering value to a subset of customers, with as little central or
shared units). There are seven or eight parameters, depending on the source, and it seems
beyond the scope of this paper to present all in detail.

Low parameter value structures are better in terms of their controllability, and of the
higher quality of labour that come with the production structure with independent units
and a decentralised control structure.

3.9 Diagnosing and Designing a Structure Using Function Models

When redesigning the focus may be automatically on the work already being done
‘somewhere’ in the old structure. But some systemic function may be missing, and that
can cause problems too. To find these missing functions the Viable System Model
(VSM) developed by Beer [3, 4] is a useful tool. It is comprising five, interlinked func‐
tions that together are ‘necessary and sufficient’ for viability. According to Beer, not
fulfilling a function of his ‘viable system model’ (VSM) adequately, or not link them

An OD-Pearl for the EE-Oyster 213

together, will eventually lead to problems with the viability of the system. So far the
rather bold claim by Beer about the functions being ‘necessary and sufficient’ is not
convincingly challenged. As an example, if nobody searches the relevant environment
for signals that imply that something in the offering of the organization must change,
e.g. a truly disrupting innovation being developed by a new competitor, it will only
notice it when sales are rapidly declining.

Because of the very abstract nature of the VSM, the ‘Model Innovation and Organ‐
isation Structure’ (the MIOS) was developed by Lekkerkerk [17, 18] as a descriptive
and diagnostic tool for structures, with an emphasis on the ‘innovation structure’ (or
‘regulation by design’). The VSM and the MIOS enable answering the question: ‘Are
the functions carried out and are they properly linked, or not?’ If not, they must be added
or linked. And, when carried out, are they formally assigned or just informally done?
When employees perform a function because they think they should, or because they
‘just like it’, this may sound fine and proactive. But when it is not in their formal job or
role descriptions, this function stops when they move to another job, and that will inevi‐
tably lead to problems.

3.10 Summarizing L-STSD

Combining the specific design order, PS top to bottom and then building CS bottom up,
and ‘systems follow structure’, should lead to better structures. They have low parameter
values and all VSM or MIOS functions are assigned.

It is interesting to note that some organizations developed structures that can be
called ‘Lowlands sociotechnical’ without any apparent knowledge of this specific Dutch
approach. So the kind of systemic logic to build a structure with can be found or re-
invented without knowing L-STSD. But using this theory-based approach will lead to
a ‘good’ structure faster. A few examples follow.

Ricardo Semler, the Brazilian entrepreneur, applies it in his company Semco, and
his book ‘Maverick’ is widely read, and he is often invited as an inspirational speaker
at expensive business conferences.

Ten of the twelve inspiring cases in the book ‘Reinventing organizations’ by Frederic
Laloux [16], show these kind of structures too. Laloux also presents two Dutch cases,
BSO and Buurtzorg Nederland. BSO was founded in 1973 by the late Eckart Wintzen,
so before De Sitter started publishing with his group. He used a cell division approach.
As soon as BSO-units grew beyond 50 employees, they were forced to make a plan to
divide in two, which would be executed as soon as the headcount was around 60–65
people. To the cells he added only very limited central units for support at headquarters.
Buurtzorg Nederland (BN), the other Dutch example Laloux presents, was started near
the end of 2006. Its founder, Jos de Blok probably learned about De Sitter’s work in a
reorganization at his former employer. By 2016 BN employs some 900 teams of about
12 nurses, who deliver care to the clients in their neighbourhood. Headcount in The
Netherlands after only ten years is around 12.000 employees, of which only about 40
work at the central support office.

214 L.J. Lekkerkerk

Now the basics of L-STSD are explained, by summarizing mainly Kuipers et al. [15],
the reader who is familiar with Enterprise Engineering may understand these basics to
such an extent that the following comparison between the two now can be appreciated.

4 Comparing EE and L-STSD

As said, the comparison is based on a limited set of EE-texts [6, 7, 13, 14, 20], and a
comparative description of Enterprise Architecture methods [23], and some were a bit
hard to understand at first, so this is far from the final word, but rather a first attempt to
compare and contrast.

4.1 Observed Commonalities

Apart from the similarities listed in Table 1, there are at least four more. In the attempt
to use a holistic approach EE resembles L-STSD, because that approach rather goes for
an integral redesign of a whole organization. Redesigning a sub-system may sometimes
be inevitable due to pragmatic or power reasons, but it will probably lead to sub-opti‐
mization because of the relations between the rest of the organization and the unit to be
redesigned.

Secondly, both EE and L-STSD find common ground in their use of general systems
theory as a basis.

The fact that EE regards people as the ‘pearls’ of an organization, and wants to
improve organisational functioning (‘reducing strategic failures’), resonates well with
the L-STSD aim to enhance Quality of Work (for employees), while at the same time
improving Quality of the Organization, under which heading mostly factors related to
external stakeholder value creation are comprised.

Fourth and finally, Herbert Simon’s modular or hierarchically decomposable
systems are mentioned in the EE-Manifesto [6] and are also clearly recognizable in the
top-down Production Structure design approach. That a modular design of an organi‐
sation or a system would be based on atomic elements, as The Manifesto states, seems
a first difference.

4.2 Differences

The Manifesto states that modular designs are based on atomic elements. Elsewhere
transactions are defined as these basic building blocks [13, 14]. When atomic elements,
the transactions, are put first, linked together in chains to form a process, the question
comes up how to link all processes to the organizational structure. This has to do with
the L-STSD-idea of interfaces and aiming at their reduction. A process that involves
multiple departments, must have different transactions for each department. Let’s take
a furniture example with four functional groups: (1) a request to make parts, (2) one to
paint parts, (3) one to assemble them, and (4) another to transport and install it at the
customer’s house. However, when a firm making the same kind of furniture employs

An OD-Pearl for the EE-Oyster 215

craftsmen who deal with all the four steps, then one request (or transaction) seems
sufficient: ‘make a drawer for Mrs. Hofer at Farmer street 24’.

A related question is when to stop dividing transactions further into sub-transactions.
This surely is a problem for authors of procedures and (quality) manuals for an organ‐
ization. If everybody in the organization knows where to get coffee, do you need to
divide the request ‘Please get me a cup of coffee.’ into al the steps needed? However, if
the organization has a complicated manual espresso machine with lots of controls and
buttons, the situation is different.

It should be investigated how the L-STSD-rule of ‘minimum critical specification’
is different from the apparently highly detailed EE-idea of atomic transactions, and
perfecting each. And what to do with transactions that are not linked to an IT-system is
puzzling me.

Another problem linked to (my understanding of) the atomic transactions, and the
idea of perfecting all to build a perfect organization, is that it looks like something that
Taylor advocated, wrongly assuming that optimizing each sub-task lead to optimal
processes adding up to an optimal organisation. Dietz et al. mention that Taylor was
heavily criticised (p. 90 [7]), and seem to agree, so why use his wrong idea.

Also, Dietz et al. [7] remark: “Obviously, an effective design science must have its
fundamentals in the natural sciences.” When it comes to technical systems, governed
by laws of physics, as are designed by architects, civil, mechanical, aeronautical, and
electrical engineers, to name a few designers, this seems right. However, the statement
denies the fact that ‘knowing how’ may do for designers making design choices,
although they may regret that they are not yet ‘knowing why’ precisely. These ‘rules of
thumb’ that are developed from ‘what worked well’ can be proven, and usually much
refined, by empirical research in one of the natural sciences. An example may be metal
fatigue and the ‘Wohler-curves’.

Furthermore, it is highly questionable whether a complex system like an organisa‐
tion, consisting of human ‘pearls’ (and much else), will obey laws from the natural
sciences in a deterministic way. Its interactions with its complex environment have so
many unknown factors, and consequently the outcomes of actions, based upon decisions
may never be known for sure in advance. The book by Achterbergh and Vriens [1] has
a title explaining this: “Organizations. Social systems conducting experiments.” The
stress Dietz et al. [7] put on theoretical underpinning of enterprise design seems to negate
the idea of bounded rationality, and the tendency of people (which managers obviously
are, in spite of the super-human nature ascribed to people like Jack Welsh, Steve Jobs,
or Michael Dell) to ‘satisfice’ (Simon), because of time and knowledge constraints,
rather than to ‘optimize’, in the many and complex problem solving and decision making
situations they are facing every day.

Also, managers and social scientists will simply not believe that there is a one best
way to engineer the entire enterprise in every detail, and if it would be possible, then
the design is already obsolete the moment it is finished, because detailed design is so
time-consuming that the world around already necessitates another design before it is
half way done. Because of this, sociotechnical designers advocate and use the idea of
‘minimum critical specification’ when designing. Basically this means that you design

216 L.J. Lekkerkerk

only the key characteristics and leave ample room for employee self-design and self-
control to take care for all eventualities and disturbances that cannot be incorporated in
a formal design. Designing all atomic transactions, seen as the building block of the
enterprise, seems to violate this ‘law’ of minimum critical specification.

As far as the three generic goals of EE are concerned, there is little doubt that EE
and L-STSD agree upon social devotion. For intellectual manageability, it appears that
EE eventually hopes to develop theory that may master the complexities of the enter‐
prise. L-STSD rather argues that complexity in the environment is given, and that the
only way to deal with that is to reduce the internal complexity, meaning that each dedi‐
cated organizational unit deals with a limited part of the environment only, and is inter‐
nally as simple as possible by stressing the design of flows (with sub-flows, sub-sub-
flows) until the unit has a headcount that allows it to function as a team. Chaos theory
seems to tell us that an organization and its behaviour can never be fully determined
because of their non-linearity and sensitivity to initial conditions. The third, organiza‐
tional concinnity, seems to deal with the control structure, which L-STSD sees as the
tool to link the production structure units into a coherent whole, but is not that clear.

Dietz et al. state: “Because of its holistic, systemic, approach, it resembles systems
engineering […]. But it differs from it in an important aspect: enterprise engineering
aims to do for enterprises (which are basically conceived as social systems) what systems
engineering aims to do for technical systems.” [7, p. 92]. However, when designing both
technical and social systems the people involved must always be taken into account,
whether they work with the technical system, or work in the social system. So, where
is the difference?

Finally, another potential difference is the order in which changes must be designed
and implemented. L-STSD is explicit in prescribing to first design the division of labour,
and only after that design the systems that match the structure, including the ICT that
EE seems to care mostly about. This order should prevent the quality of work to be
hampered by systems that enforce an implicit structure upon the organisation. Especially
ERP-systems have a bad reputation among L-STSD practitioners for their lack of adapt‐
ability to changes in the division of labour that are deemed necessary after ERP has been
implemented [10, 19]. If there is no such sequence in EE, it may be possible to start
redesigning transactions and (re)build or refine ICT-systems, without dealing first with
the question whether the existing division of labour, the Production Structure, is as
simple as possible and sometimes the question whether it fits the new strategy that is
currently under development is also relevant. Developing ICT for an obsolete structure,
and may be even blocking the introduction of a new one due to the costs of ICT-changes
associated with that, cannot be acceptable when EE aims to help (people in) enterprises
work as effective and efficient as possible.

5 Conclusion

Although there are a number of differences between Enterprise Engineering and the
Lowlands SocioTechnical Systems Design-approach, based upon this first comparison
it seems that these can be solved.

An OD-Pearl for the EE-Oyster 217

A first point is the design sequence ‘systems follow structure’, which L-STSD
favours. This seems to fit with EE.

A second point, the modular top down design of the Production Structure, which
basically defines who needs what information to make sure that the coordination of
interfaces works well, will probably not be in contradiction with EE.

Thirdly, the focus on atomic transactions needs to be rethought. When the basic
(Production) Structure seems to be ‘future proof’, it can be useful to make all the details
explicit and clear between al transaction partners. However, when a big change and
investment in ICT systems seems necessary, e.g. to replace legacy systems, it is impor‐
tant to answer the question about the viability of the existing (Production) Structure
first, and make the ‘systems follow structure’.

It may be added that both EE and the founders of L-STSD around De Sitter like to
use their own jargon or give their own meaning to terms that others use in a quite different
sense. This is confusing and leads to managers putting aside their ideas as being too
difficult, academic or theoretical to be of any practical value.

Both communities are also relatively small, not widely known, and somewhat closed
like an oyster. However, they can both be regarded as pearls in the Enterprise Archi‐
tecture and Organisational Design fields respectively. So, to help organisations function
more effectively and efficiently, let’s join forces, grow the pearls and open the oysters.

Acknowledgements. The authors thanks H.A. Proper for his invitation to be part of the special
session on Organisational Design at EEWC2017.

References

1. Achterbergh, J., Vriens, D.: Organizations; Social Systems Conducting Experiments.
Springer, Heidelberg (2009)

2. Ashby, W.R.: An Introduction to Cybernetics. Wiley, New York (1956)
3. Beer, S.: The Heart of Enterprise, ‘The Stafford Beer Classic Library’. Wiley, Chichester

(1994). (1st edn. 1979)
4. Beer, S.: Diagnosing the System for Organizations, ‘The Stafford Beer Classic Library’.

Wiley, Chichester (2000). (1st edn. 1985)
5. Burton, R., Øbel, O., Håkonson, D.D.: Organizational Design: A Step-by-Step Approach, 3rd

edn. Cambridge University Press, Cambridge (2015)
6. Dietz, J.L.G.: Enterprise Engineering. The Manifesto (2011) (3 April 2017). http://

www.ciaonetwork.org/publications/EEManifesto.pdf
7. Dietz, J.L.G., Hoogervorst, J.A.P., et al.: The discipline of enterprise engineering. Int. J.

Organ. Des. Eng. 3(1), 86–114 (2013)
8. Flanders Synergy: http://www.flanderssynergy.be/
9. Galbraith, J.R.: Designing Complex Organizations. Addison Wesley Publishing Company,

New York (1973)
10. Govers, M.: Met ERP-systemen op weg naar moderne bureaucratieën? eigen uitgave,

proefschrift KUN (2003)
11. van Hootegem, G., Benny, C.: Slimmer zorgen voor morgen. Het nieuwe organiseren in

theorie en praktijk. Acco, Leuven (2013)

218 L.J. Lekkerkerk

http://www.ciaonetwork.org/publications/EEManifesto.pdf
http://www.ciaonetwork.org/publications/EEManifesto.pdf
http://www.flanderssynergy.be/

12. Huys, R., Maes, G.: Geert Van Hootegem: Meten en veranderen. Instrumenten bij het nieuwe
organiseren. Acco, Leuven (2014)

13. Janssen, T.: Werken aan samenwerking. Naar effectieve organisaties met Enterprise
Engineering. Scriptum, Schiedam (2015)

14. de Jong, J.: A method for an enterprise ontology based design of enterprise information
systems. Ph.D.-thesis Delft University of Technology. SIKS-dissertatiereeks 2013-39 MPrise
(2013)

15. Kuipers, H.: Pierre van Amelsvoort, Erik-Hans Kramer: Het nieuwe organiseren.
Alternatieven voor de bureaucratie. Acco, Leuven (2010)

16. Laloux, F.: Reinventing Organisations. A Guide to Creating Organisations Inspired by the
Next Stage of Human Consciousness. Nelson Parker, Belgium (2014)

17. Lekkerkerk, L.J.: Innovatie- en OrganisatieStructuur. Ontwikkeling en test van een
functiemodel voor structuuronderzoek en -diagnose. Proefschrift Radboud Universiteit
Nijmegen, Innovatica, Nijmegen (2012). http://repository.ubn.ru.nl/handle/2066/93601

18. Lekkerkerk, L.J.: Verbinden van Organisatie- en Architectuur-ontwerp: een innovatie? Paper
presented at EAM 2013 – Innovatie door verbinding (2013)

19. van Lieshout, T.: Simple and effective, designing information systems for modern
organizations, Ph.D.-Thesis KUN-NSM, Nijmegen (2002)

20. Magalhães, R., Proper, H.A.: Model-enabled design & engineering of organisations and their
enterprises. Int. J. Organ. Des. Eng. 1(1), 1–12 (2017)

21. Mintzberg, H.: Structure in Fives; Designing Effective Organizations. Prentice Hall, Upper
Saddle River (1993). (1st edn. 1983)

22. Mohr, B., van Amelsvoort, P. (eds.): Co-creating humane and innovative organizations.
Evolutions in the practice of socio-technical system design (2016). https://
www.createspace.com/5593720

23. Santema, A., van Gils, B., Oord, E., Driel, M., van Rijn, R.: Wegwijzer voor methoden bij
enterprise-architectuur, 2e druk, Ngi-Van Haren Publishers (2013)

24. de Sitter, L.U.: Synergetisch produceren. Human Resource Mobilisatie in de productie: een
inleiding in de structuurbouw, Van Gorcum, Assen. Out of print (2000). (1st 1994, 2nd
1998/2000)

25. de Sitter, L.U., Den Hertog, F., Dankbaar, B.: From complex organizations with simple jobs
to simple organizations with complex jobs. Hum. Relat. 50(5) (1997). doi:10.1023/A:
1016987702271

26. Ulbo de Sitterkennisinstituut: http://www.ulbodesitterkennisinstituut.nl/

An OD-Pearl for the EE-Oyster 219

http://repository.ubn.ru.nl/handle/2066/93601
https://www.createspace.com/5593720
https://www.createspace.com/5593720
http://dx.doi.org/10.1023/A:1016987702271
http://dx.doi.org/10.1023/A:1016987702271
http://www.ulbodesitterkennisinstituut.nl/

A Literature Review of Coordination Mechanisms:
Contrasting Organization Science and Information

Systems Perspectives

Maximilian Brosius(✉), M. Kazem Haki, Stephan Aier, and Robert Winter

Institute of Information Management, University of St. Gallen, St. Gallen, Switzerland
{maximilian.brosius,kazem.haki,stephan.aier,

robert.winter}@unisg.ch

Abstract. Information systems (IS) research has long been promoting the neces‐
sity of aligning local IS investments in organizations with their enterprise-wide
objectives. One of the prominent means to realize such an alignment are mecha‐
nisms that coordinate various stakeholders in different organizational entities.
Despite its prominent origins and manifold translations from organization science
(OS), there is no single theory on coordination. The research at hand conducts a
literature review of the underlying coordination mechanisms to offer a compre‐
hensive understanding of coordination for prospective IS research. To this end
and structured in eight categories of mechanisms, we contrast the reflection of
coordination in OS and IS research. In outlining implications for future research,
we also discuss how IS studies follow and complement OS research.

Keywords: Coordination · Coordination mechanism · Literature review ·
Organization science · Information systems research

1 Introduction

An increasing number of information systems (IS) change and development endeavors
focus on creating local solutions for specific business needs [66]. Prominent reasons
refer to organizational landscape complexities, time dependencies, and economic effi‐
ciency arguments that have led organizations to allocate IS change and development
responsibilities as well as project ownerships to local business units [56]. While this
allocation has brought about high performance gains on a local/short-term basis, in the
long-run organizations have begun to face challenges in consistently aligning, inte‐
grating, and managing their corporate IS landscapes [52].

Over the past decades, IS research and practice have broadly addressed the necessity
to coordinate IS change and development endeavors on an enterprise-wide basis in order
to meet enterprise-wide and long-term intentions. In this vein, a particular group of
enterprise-wide IS management approaches has been promoted, such as enterprise
architecture management [67], project portfolio management [14], or enterprise appli‐
cation integration management [42]. Nonetheless, in response to increasing complexities
and uncertainties, a key characteristic of many enterprise-wide IS management

© Springer International Publishing AG 2017
D. Aveiro et al. (Eds.): EEWC 2017, LNBIP 284, pp. 220–233, 2017.
DOI: 10.1007/978-3-319-57955-9_16

approaches is their operationalization under top-down, strictly governance-based coor‐
dination mechanisms (e.g., hierarchical authority command, control) [23, 24]. Notwith‐
standing their specific utility, these top-down coordination mechanisms reflect only a
limited facet of coordination, and may thus not be effective in every organizational
context [6, 24]. Hence, a comprehensive understanding, reflecting the magnitude and
diverse facets of coordination and its constituent mechanisms, becomes necessary.

Coordination is a well-established research topic that has arguably been developed
in organization science (OS) and later on adopted by IS research [7, 16]. It is defined as
the achievement of “concerted action” whenever actors (e.g., employees) become
dependent on one another, for example due to sharing the same tasks, resources, or goals
[75]. In this vein, coordination is further defined as the “linkage and integration of
different parts of an organization” toward a certain goal [77, p. 322]. Coordination
becomes realized through a diverse set of mechanisms [45], which are defined as “tools
for achieving integration among different units within an organization” [49, p. 490].
Mechanisms address specific and general problems of emerged dependencies [12] and
“permit coordinated action across a large number of interdependent roles” [25, p. 28].

Despite coordination’s manifold adaptions, translations, and interpretations from the
OS literature, there is not a single theory on coordination [29]. Recognizing this general
laggard, in the paper at hand we aim at contributing toward a comprehensive under‐
standing of coordination for prospective IS research. As coordination has originated and
been largely adopted from the OS literature, we provide an overview and contrast the
existing research on coordination mechanisms in both the extant OS and IS literature.
Furthermore, we emphasize a structured representation of mechanisms as a basis for
guiding prospective IS research through the lens of coordination.

The paper at hand is structured as follows: In the next section, we present our liter‐
ature selection and analysis method. Then, the results are presented in the subsequent
section. Finally, we critically discuss the resulted insights along with a conclusion on
further steps, implications, and limitations.

2 Research Method

In order to provide an overview on the phenomenon of interest, we opted for a review
of prior research to identify the main discourses on coordination mechanisms in OS on
the one hand, and to compare them with the discourses in the IS literature on the other
hand. Both disciplines, OS and IS, have been discussing coordination for decades. A
significant number of publications arrived in the top journals of both disciplines. Because
of the large number of available publications and as we expect the highest quality work
in the top journals, we limited our review to these journals. Hence, we selected the
relevant peer-reviewed publications from both the AIS senior scholars’ basket of jour‐
nals1 and a selected basket of highest ranked journals provided in Harzing’s journal

1 European Journal of Information Systems, Information Systems Journal, Information Systems
Research, Journal of the Association for Information Systems, Journal of Information Tech‐
nology, Journal of Management Information Systems, Journal of Strategic Information
Systems, MIS Quarterly.

A Literature Review of Coordination Mechanisms 221

quality list2 [30]. As a search strategy [78], we used the inclusion criterion of “coordi‐
nation” solely, searching on the EBSCOhost databases for (i) title (TI “coordination”)
and (ii) abstract (AB “coordination” NOT TI “coordination”) fields. This was followed
by a significant exclusion of articles (focusing hereby in particular abstracts, keywords
as well as the main text body of the respective publications). Articles were excluded that
either did not exclusively focus the linkage and integration of corporate units or stake‐
holders toward a certain ends [see also 44, 76] or did not have an explicit focus on
coordination mechanisms [see also 48]. We used only the search term “coordination”
because our study aims at providing an overall analysis of explicit coordination litera‐
ture, thereby also identifying different topics and discourses related to coordination
mechanisms. In order to ensure the inclusion of influential and frequently cited publi‐
cations outside the senior scholar basket, we used forward and backward searches [78].

Following the suggestions of Webster and Watson [78], we developed a framework
for guiding the literature analysis and for classifying the collected publications based
on their topical focus of discussion. We built our analysis framework on the taxonomy
of coordination mechanisms suggested by Martinez and Jarillo [49], who differentiate
formal (departmentalization, de-/centralized decision-making, formalization/standard‐
ization, planning, control) and informal (lateral relations, communication, socialization)
classes of mechanisms (Table 1).

Table 1. Overview of coordination mechanism coverage in IS and OS literature

Mechanism Coverage

Formal Informal

D
ep

ar
tm

en
ta

liz
at

io
n

D
ec

is
io

n-
M

ak
in

g

Fo
rm

al
iz

at
io

n/

St
an

da
rd

iz
at

io
n

Pl
an

ni
ng

C
on

tr
ol

La
te

ra
l R

el
at

io
ns

C
om

m
un

ic
at

io
n

So
ci

al
iz

at
io

n

Discipline Hits
Hits after
exclusion

IS 146 30 10 5 4 5 5 8 4 6

OS 835 31 7 7 8 3 8 4 7 5

Total 981 61 17 12 12 8 13 12 11 11

As opposed to other forms of classification [16, 25, 29], this taxonomy offers an
explicatory basis for a comprehensive review of coordination mechanisms. Since organ‐
izations maintain complex structures, different levels of functionalities, as well as
vertical and horizontal integration, the developed analysis framework based on Martinez

2 Academy of Management Journal, Academy of Management Review, Administrative Science
Quarterly, Journal of Business, Strategic Management Journal, Management Science, Organ‐
ization Science, Organization Studies, Organizational Behavior and Human Decision
Processes.

222 M. Brosius et al.

and Jarillo’s [49] taxonomy gives an exhaustive abstraction of coordination mecha‐
nisms. Furthermore, it explicitly differentiates between formal and informal (more
personal) coordination modes, which has been emphasized by early coordination mech‐
anism literature [77]. Building upon this framework, we developed a coding scheme to
systematically synthesize the collected publications.

As Table 1 indicates, prior to exclusion, coordination mechanisms have received
different levels of attention from OS and IS scholars. This is partially due to the fact that
the IS literature started comparably late addressing coordination mechanisms. Other
reasons may be found in different foci of OS and IS discussing the respective coordi‐
nation mechanisms. Due to our significant exclusion, we were able to not only filter
those articles with the most exclusive focus on coordination, but also to select those with
the most explicit coverage of coordination mechanisms. This led to a reduced and more
compact set of articles for further analysis, given the initially large number of publica‐
tions in the extant OS and IS literature.

The next section provides an overview on each coordination mechanism as well as
on the main topics discussed in OS and IS for each of these mechanisms. We abstract
the discussed topics in each discipline first, before reporting their main findings in order
to contrast differences and similarities in OS and IS, respectively. Since the collected
literature includes publications that address more than one coordination mechanism,
some publications were assigned to more than one category.

3 Results

3.1 Formal Mechanisms

Departmentalization. Often reflected in the organizational structure [49], departmen‐
talization is discussed as a coordination mechanism to enhance business unit integration
and horizontal work process alignment [26]. The corresponding linkage between depart‐
mentalization and coordination effects receives strong support throughout OS literature
[26, 41]. Departmentalization has been mainly discussed in the context of organizational
process design [47] as well as organizational unit segmentation [41, 79]. Early contri‐
butions reveal organizational process design as a coordination mechanism that impacts
departmental interactions [7, 54]. With the same token, organizational unit segmentation
has been introduced as a coordination mechanism that manages dependencies among
work processes [46, 47, 63], and is impacted by the degree of integration and alignment
as well as by the form of communication [29, 79].

IS literature mainly promotes departmentalization in the form of governance
bodies, structural overlays (e.g., roles, groups) and physical colocation [7]. It refers
to the extent to which business and IT entities engage in workflows, tasks, and
processes related to IS and information technology (IT) functions [2, 28]. Further‐
more, IS literature emphasizes the role of IT as a means to support departmentaliza‐
tion-related coordination [5, 22, 24, 70]. This role has been demonstrated in
decreasing transaction costs of coordination [59, 60, 82] as well as in increasing
task-related interactions [77] and communication [50].

A Literature Review of Coordination Mechanisms 223

Decision-Making. According to Martinez and Jarillo [49], decision-making can be
reflected in either centralized (higher levels of command) or decentralized (lower levels
of command) coordination mechanisms. The centralized decision-making is explained
mainly by the structural design of the organization, particularly by hierarchies in OS
literature [21, 55]. In the context of decentralized decision-making, social interaction
and organizational communication [10] become increasingly important as mechanisms
of coordination [10, 23]. The more decentralized organizations are, the more complex
decision-making becomes [29]. This complexity is also expressed by the comparably
high efforts of communication made in decentralized structures [33, 40].

The IS discipline investigates decision-making in decentralized forms, aimed at
integrating business unit collaboration, as well as in centralized forms, aimed at miti‐
gating risks of uncertainty [7, 81]. Thereby, decentralized decision-making promotes
the role of individual responsiveness, for instance on IT systems development [16].
Drawing from the results of centralized decision-making, IS literature acknowledges the
role of IT as supporting mechanism on enterprise-wide coordination [15, 53, 64]. Finally,
Brown [7] studied prior OS and IS literature, finding a significant number of organiza‐
tions engaged in horizontal mechanisms, i.e. a combination of centralized and non-
centralized forms of authority command. These mechanisms facilitate collaboration and
integration in the organization, and further promote the coordination of business and IS
activities across corporate boundaries [7].

Formalization and standardization. Formalization and standardization is the extent
to which policies and rules are documented and established through standard routines
[49]. Formalization and standardization have been addressed by OS literature in the
context of large organizations with complex work environments [36]. Within these
complex environments, formalization and standardization act as a coordination mech‐
anism through applying methods and procedures to reduce complexity in processes
within, and collaborations between organizational units [36, 49]. Hereby, formalization
and standardization lower costs/risks and increase the organization’s overall efficiency
[82]. OS studies see coordination to be achieved by standards in workflow processes
[47, 55] as well as by the establishment of rules and formalized procedures [29, 38].
Both methods are reviewed as rather top-down delegation [27]. The same counts for
behavioral control on interactions, which aims at fostering coordination across organi‐
zational units by rules and regulations [29, 58]. For this reason, strong hierarchical
organizations are often described as being highly dependable on formalization, which
establish structural methods top down, for example by the formation of routines [29,
38]. In line with formalization, this coordinating effect is similarly explained by stand‐
ardization [27].

The IS discipline explicitly differentiates formalization/standardization from informal,
more personal modes of coordinating corporate entities and stakeholders [7]. Compared to
OS, the IS literature covers formalization and standardization in the context of IT support
on complex organizational environments and workflow processes [48, 68]. Both formaliza‐
tion and standardization are addressed as approaches for organization-wide guidance/coor‐
dination, thereby incorporating standardized methods and technologies [48, 68] and formal‐
izing the intra-organizational process alignment function of IT [72].

224 M. Brosius et al.

Planning. Systems and processes like strategic planning, budgeting, schedules, and
goal settings are considered as planning mechanisms [49]. The OS literature investigates
the coordination mechanism of planning in the case of new technology investment, team
performance, and dynamics, as well as concurrent engineering processes. Kapoor and
Lee [37] examine firms’ coordination choices (alternative plans) and demonstrate alli‐
ance types of coordination (the broader the better) as the most effective plan for new
technology investment. Lanaj et al. [43] criticize decentralized planning, owing to the
fact that even though decentralized planning has positive effects on multi-team perform‐
ance, it has even stronger negative impact on between-team dynamics. Finally,
Terwiesch et al. [74] provide alternative coordination strategies to manage coordination
in concurrent (parallel) engineering processes.

In terms of planning, the IS discipline is less prescriptive than OS. Except Tan and
Harker [73], who explicitly recommend distributed scheduling methods, other studies
aim at outlining a typology of planning mechanisms instead of prescribing a specific
approach [16, 28]. Yet, other studies take a different perspective and outline steps of
strategic planning for information resource management by taking into account coor‐
dination requirements [68] or argue the strategic opportunity granted by communication
technology to foster coordination in a globally distributed teams [80].

Control. Control mechanisms consider both output control as well as bureaucratic and
impersonal control [49]. The OS discipline provides different perspectives on control
mechanisms of coordination. Considering control mechanisms as a feedback loop
between different coordination practices [9], the existing literature suggests a taxonomy
of control options (structures) for different sets of coordination practices [21, 71]. The
extant literature also investigates control mechanisms on both the individual and group
(team) levels. On the individual level, the role of liaisons [61] as well as the transfer of
managers between different subsidiaries [18] has been discussed. On the group (team)
level, scholars have investigated control mechanism as a means for knowledge sharing
and integration [29, 62]. Lastly, organizational learning, as a control mechanism [10],
has also been the focus of extant research.

In the IS literature, coordination and control are often discussed concurrently. A great
deal of research has been dedicated to illustrate the role of IT as enabler of coordination
and control [22, 59]. Also, a large number of publications discusses the trade-off between
coordination and control [11, 22], where coordination is reflected in integrated/federated
IS and control in centralized IS. Furthermore, in line with some topics of research in OS
literature, IS scholars also provide a taxonomy of control mechanisms for business-to-
IT and IT-to-IT units horizontal collaborations [7], discussing the organizational
learning aspect of control mechanisms [69].

3.2 Informal Mechanisms

Lateral relations. Martinez and Jarillo [49] explain lateral relations as direct contact
between individuals, groups or organizational departments that cut across the formal
structure. OS literature sheds light on lateral relations by the investigation of task inte‐
gration (activity-resource fit) and interactional behavior [7, 28]. Here, lateral relations

A Literature Review of Coordination Mechanisms 225

are described as cross-departmental forms of interaction: complex tasks are coordinated
by cross-functional interactions, thereby integrating tasks and resources [7, 9]. Another
widely addressed topic refers to employee behavior and roles in lateral relations [55],
indicating that they impact social interaction [76].

Regarding the IS discipline, lateral relations are mostly described in the context of
task design, role-based interactions, and group dynamics with the purpose of conquering
organizational/task complexity [2]. Thus, organizational structures and processes are of
facilitating rather than impacting relations [28]: for instance, cross-departmental rela‐
tions may be fostered by IS governance mechanisms [7, 16] and eventually lead to
integrations of lateral interactions [44]. These lateral relations, which are considered as
horizontal mechanisms [28, 70, 77], evolve as supplement mechanisms to the firm’s
established structural forces (i.e. hierarchy) and enable interaction across depart‐
ments [4].

Communication. According to Martinez and Jarillo [49] and similar to lateral rela‐
tions, communication acts as a supplement to formal mechanisms. Both OS and IS
literature consider this coordination mechanism as contact practice among organiza‐
tional actors that fosters information and knowledge exchange [57] as well as organi‐
zational learning [20]; however, the form and nature of underlying mechanisms differs.
The OS literature investigates communication mechanisms as creator of a common basis
to transfer information [55, 62] and knowledge [57]. Communication, in knowledge
management, can also be an active coordinating mechanism in the practice of social
interaction [76]. This coordination mechanism evolves in the form of boundary spanners
[27], connecting social interactions and facilitating the exchange of information [38].

The IS literature mainly addresses the role of IT systems as a means to reinforce
communication mechanisms [16], for instance, reducing informational complexity [65],
and bridging differences in knowledge characteristics and physical distances [13, 16].
The role of IT has been highly emphasized in enhancing information processing capa‐
bilities, task, information, and environmental uncertainty [70]. Since information
processing capabilities are highly dissimilar in nature [8], information technologies are
considered as a necessity to realize communication mechanisms [13]. Furthermore, IT
contributes to coordination performance through enabling and supporting cooperative
work [70].

Socialization. Socialization is described as building an organizational culture of shared
strategic objectives and values [49]. Socialization remains a subject to the OS discipline
as a control artifact on employee behavior in the organizational environment [18, 31].
OS literature indicates socialization as coordination base in the context of interaction
and relationship management [32]. The underlying mechanisms of socialization facili‐
tate not only the coordination within organizations, but also increase firm capabilities,
individual knowledge, and organizational learning [8, 29, 76].

The IS discipline introduces socialization as IT supported integration mechanism of
the work environment [31]. Socialization is present in information processing and
communication, both inside [35] and outside [17] of the organization. It furthermore
coordinates organizational units toward shared objectives [3, 34]. Important to mention

226 M. Brosius et al.

is the enablement and support of cooperative work through the means of IT [70]. In
addition, socialization integrates work-flow processes through the support of IT and
thereby reduces their complexity [19].

4 Discussion

Building on a comprehensive review of coordination in the extant OS and IS research,
we synthesized the reflection of coordination mechanisms to three general streams (see
Table 2).

The first stream describes IS as an artifact subject to coordination. Due to the
substantial penetration of IS in organizations’ daily routines [6] as well as in strategic
planning processes [51], the integration of IS in organizations, from the coordination
perspective, has long been the subject of investigations. The integration of large,
dispersed organizations through the means of IT and IS artifacts is instrumental to realize
coordination success, not only on a local/business unit basis, but also on the enterprise-
wide level [16]. This finding is underpinned by a considerable number of studies in OS
outlets [47, 74] that contribute to this discussion. In this stream, IS follows OS as its
reference discipline in the main discourses, for instance in socialization, communication,
and formalization/standardization [8, 31, 60].

The second stream exposes IS as a means of coordination. This is where IS act
primarily as technological coordination support for organizational work environments
— more prominently for communication [16] — such as by IT systems that bridge
physical distances or different knowledge characteristics [13, 16]. In addition, IS also
support the horizontal integration of the work environment, for instance by aligning
corporate teams to a boundaryless network [34], by linking team members toward shared
objectives [34], or by enabling cooperative work through the means of IT systems [70].
Nevertheless, IS literature goes beyond the mere discussion on IS as yet another coor‐
dination means. Due to ever increasing size of organizations and their presence in global
markets, IS are used to leverage global synergies [22], to coordinate business functions
[39], and to manage cross-subsidiary similarities [11]. This is where IS literature
contributes to OS through commencing emergent management approaches, such as IS-
enabled enterprise transformation, digital transformation, among the others. For
instance, these new approaches are initially discussed in new typologies of control
mechanisms [7], modular business configuration to overcome complexity [65], and IS-
enabled horizontal integration [16].

The third stream reveals the complementarity of coordination mechanisms in IS.
Typically, a high degree of specificity of coordination mechanisms helps to translate
coordination goals into individual tasks and actions. However, this specificity might
only be useful in a given situation [12] and it may neglect to consider the organization
as a whole. For this reason, IS literature has often applied a combination of different
perspectives of mechanisms, concluding that the reach and impact of specific/one-sided
coordination mechanisms—for instance, strict top-down driven planning or control
mechanisms—often remain limited [4, 7]. For example, formal coordination mecha‐
nisms are often complemented by informal mechanisms, in which desired coordination

A Literature Review of Coordination Mechanisms 227

goals become concretized in specific tasks, actions, or sub-goals [4, 7, 16]. These find‐
ings highlight, on the one side, the complementarity of coordination mechanisms for

Table 2. Main discourses on coordination mechanisms in OS and IS literature

228 M. Brosius et al.

prospective research. On the other side, these findings also imply to reconsider singular
perspectives in research, which often shed light only on specific mechanisms, but neglect
their meaning to the organization as a whole. For instance, enterprise-wide IS manage‐
ment disciplines, such as enterprise architecture management [1] or project portfolio
management [14], might benefit from such a broader, complementary perspective.

5 Conclusion

This study offers a structured representation of coordination and its respective mecha‐
nisms in both OS and IS research. Through contrasting the reflection of coordination in
the OS and IS discipline, this study argues how IS research follows and how it can go
beyond its reference discipline of OS. Our investigation is limited to a selective, although
important, set of peer-reviewed journals. We admit that the current evaluation neglects
other potentially relevant contributions. Due to the chosen level of abstraction, more
granular insights into the collected set of coordination mechanisms become a necessary
step for future research. Nevertheless, this study provides a valuable basis given the
large number of topically broad publications discussing coordination in various contexts.

With regards to the resulted insights from our review of coordination literature, we
encourage future research to particularly focus on the second and third identified stream,
namely, IS as a means of coordination and the (often necessary) complementarity of
coordination mechanisms. Firstly, we emphasize to focus on decentralized and federated
as well as informal modes of coordination. As mentioned earlier, companies are growing
to target diverse geographical markets through diverse sets of products and services;
simultaneously, they are impacted by a broad range of dynamic influences. Owing to
the increasing investments in corporate IS, growing interdependencies as well as
complexities, firmly centralized modes of coordination become unfeasible and need to
be complemented. Decentralized (also horizontal) and federated forms are expected to
complement and leverage coordination among sub-units and subsidiaries, thereby rein‐
forcing cross-unit collaboration, synergies, and ultimately performance improvements.
This might lead to eventually reconsider the traditional understanding of exercising
coordination in a strict hierarchical, top-down driven way. This also implies the necessity
of investigating how organizations dynamically move between different modes of coor‐
dination as well as how top-down and bottom-up modes of coordination co-exist or
complement each other. Further, due to increasing dominance of technologies that foster
informal coordination, such as enterprise social media, the impact of traditionally formal
mechanisms might be reconsidered through the complementary impact of informal,
more personal mechanisms. Secondly, we call for future research to deepening investi‐
gations into pertinent IS sub-disciplines that all share the same ends, i.e. to align local
corporate IS endeavors so as to meet enterprise-wide objectives and long-term inten‐
tions. This encompasses, among others, the disciplines of enterprise engineering, IT
governance, project portfolio management, and enterprise architecture management.

Acknowledgement. This work has been supported by the Swiss National Science Foundation
(SNSF).

A Literature Review of Coordination Mechanisms 229

References

1. Aier, S., Labusch, N., Pähler, P.: Implementing architectural thinking. In: Persson, A., Stirna,
J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 389–400. Springer, Cham (2015). doi:
10.1007/978-3-319-19243-7_36

2. Andres, H.P., Zmud, R.W.: A contingency approach to software project coordination. J.
Manag. Inf. Syst. 18(3), 41–70 (2002)

3. Ba, S., Stallaert, J., Whinston, A.B.: Research commentary: introducing a third dimension in
information systems design - the case for incentive alignment. Inf. Syst. Res. 12(3), 225–239
(2001)

4. Balaji, S., Brown, C.V.: Lateral coordination mechanisms and the moderating role of
arrangement characteristics in information systems development outsourcing. Inf. Syst. Res.
25(4), 747–760 (2014)

5. Bordetsky, A., Mark, G.: Memory-based feedback controls to support groupware
coordination. Inf. Syst. Res. 11(4), 366–385 (2000)

6. Broadbent, M., Weill, P., Clair, D.S.: The implications of information technology
infrastructure for business process redesign. MIS Q. 23(2), 159–182 (1999)

7. Brown, C.V.: Horizontal mechanisms under differing is organization contexts. MIS Q. 23(3),
421–454 (1999)

8. Brown, J.S., Duguid, P.: Knowledge and organization: a social-practice perspective. Organ.
Sci. 12(2), 198–213 (2001)

9. Bruns, H.C.: Working alone together: coordination in collaboration across domains of
expertise. Acad. Manag. J. 58(1), 62–83 (2013)

10. Ching, C., Holsapple, C.W., Whinston, A.B.: Reputation, learning and coordination in
distributed decision-making contexts. Organ. Sci. 3(2), 275–297 (1992)

11. Clemmons, S., Simon, S.J.: Control and coordination in global ERP configuration. Bus.
Process Manag. J. 7(3), 205–215 (2001)

12. Crowston, K.: A taxonomy of organizational dependencies and coordination mechanisms. In:
Malone, T.W., Crowston, K., Herman, G.A. (eds.) Organizing Business Knowledge, pp. 85–
108. MIT Press, Cambridge (2003)

13. Dabbish, L., Kraut, R.E.: Awareness displays and social motivation for coordinating
communication. Inf. Syst. Res. 19(2), 221–238 (2008)

14. De Reyck, B., Grushka-Cockayne, Y., Lockett, M., Calderini, S.R., Moura, M.: The impact
of project portfolio management on information technology projects. Int. J. Project Manag.
23(7), 524–537 (2005)

15. DeSanctis, G., Gallupe, R.B.: A foundation for the study of group decision support systems.
Manag. Sci. 33(5), 589–606 (1987)

16. DeSanctis, G., Jackson, B.M.: Coordination of information technology management: team-
based structures and computer-based communication systems. J. Manag. Inf. Syst. 10(4), 85–
110 (1994)

17. Dibbern, J., Winkler, J., Heinzl, A.: Explaining variations in client extra costs between
software projects offshored to India. MIS Q. 32(2), 333–366 (2008)

18. Edström, A., Galbraith, J.R.: Transfer of managers as a coordination and control strategy in
multinational organizations. Adm. Sci. Q. 22(2), 248–263 (1977)

19. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Familiarity, complexity, and team
performance geographically distributed software development. Organ. Sci. 18(4), 613–630
(2007)

20. Faraj, S., Sproull, L.: Coordinating expertise in software development teams. Manag. Sci.
46(12), 1554–1568 (2000)

230 M. Brosius et al.

http://dx.doi.org/10.1007/978-3-319-19243-7_36

21. Faraj, S., Xiao, Y.: Coordination in fast-response organizations. Manag. Sci. 58(8), 1155–
1169 (2006)

22. Finnegan, P., Longaigh, S.N.: Examining the effects of information technology on control and
coordination relationships: an exploratory study in subsidiaries of pan-national corporations.
J. Inf. Technol. 17(3), 149–163 (2002)

23. Foss, N.J., Lyngsie, J., Zahra, S.A.: The role of external knowledge sources and organizational
design in the process of opportunity exploitation. Strateg. Manag. J. 34(12), 1453–1471 (2013)

24. Fritz, M.B.W., Narasimhan, S., Rhee, H.-S.: Communication and coordination in the virtual
ofice. J. Manag. Inf. Syst. 14(4), 7–28 (1998)

25. Galbraith, J.R.: Organization design: an information processing view. Interfaces 4(3), 28–36
(1974)

26. Garicano, L., Wu, Y.: Knowledge, communication, and organizational capabilities. Organ.
Sci. 23(5), 1–16 (2012)

27. Gittel, J.H.: Coordinating mechanisms in care provider groups: relational coordination as a
mediator and input uncertainty as a moderator of performance effects. Manag. Sci. 48(11),
1408–1426 (2002)

28. Gosain, S., Lee, Z., Kim, Y.: The management of cross-functional inter-dependencies in ERP
implementations: emergent coordination patterns. Eur. J. Inf. Syst. 14(4), 371–387 (2005)

29. Grant, R.M.: Toward a knowledge-based theory of the firm. Strateg. Manag. J. 17(Winter
Special Issue), 109–122 (1996)

30. Harzing, A.W.K.: Journal Quality List. http://www.harzing.com/download/jql_subject.pdf.
Accessed 1 February 2017

31. Horton, M., Biolsi, K.: Coordination challenges in a computer-supported meeting
environment. J. Manag. Inf. Syst. 10(3), 7–24 (1993)

32. Humphrey, S.E., Morgeson, F.P., Mannor, M.J.: Developing a theory of the strategic core of
teams: a role composition model of team performance. J. Appl. Psychol. 94(1), 48–61 (2009)

33. Jansen, J.P., van den Bosch, F.A.J., Volberda, H.W.: Managing potential and realized
absorptive capacity: how do organizational antecedents matter? Acad. Manag. J. 48(6), 999–
1015 (2005)

34. Jarvenpaa, S.L., Knoll, K., Leidner, D.E.: Is anybody out there? Antecedents of trust in global
virtual teams. J. Manag. Inf. Syst. 14(4), 29–64 (1998)

35. Jarvenpaa, S.L.: Staples: exploring perceptions of organizational ownership of information
and expertise. J. Manag. Inf. Syst. 18(1), 151–183 (2001)

36. Joseph, J., Ocasio, W.: Architecture, attention, and adaptation in the multibusiness firm:
general electric from 1951 to 2001. Strateg. Manag. J. 33(6), 633–660 (2012)

37. Kapoor, R.: Coordinating and competing in ecosystems: how organizational forms shape new
technology investments. Strateg. Manag. J. 34(3), 274–296 (2013)

38. Kellogg, K.C., Orlikowski, W.J., Yates, J.: Life in the trading zone: structuring coordination
across boundaries in postbureaucratic organizations. Organ. Sci. 17(1), 22–44 (2006)

39. Kim, K., Park, J.H., Prescott, J.E.: The global integration of business functions: a study of
multinational businesses in integrated global industries. J. Int. Bus. Stud. 34(4), 327–344
(2003)

40. Kolde, E.J., Hill, R.E.: Conceptual and normative aspects of international management. Acad.
Manag. J. 10(2), 119–128 (1967)

41. Kretschmer, T., Puranam, P.: Integration through incentives within differentiated
organizations. Organ. Sci. 19(6), 860–875 (2008)

42. Lam, W.: Investigating success factors in enterprise application integration - a case-driven
analysis. Eur. J. Inf. Syst. 14(2), 175–187 (2005)

A Literature Review of Coordination Mechanisms 231

http://www.harzing.com/download/jql_subject.pdf

43. Lanaj, K., Hollenbeck, J.R., Ilgen, D.R., Barnes, C.M., Harmon, S.J.: The double-edged sword
of decentralized planning in multiteam systems. Acad. Manag. J. 56(3), 735–757 (2013)

44. Li, E.Y., Jiang, J.J., Klein, G.: The impact of organizational coordination and climate on
marketing executives’ satisfaction with information systems services. J. Assoc. Inf. Syst. 4(1),
99–117 (2003)

45. Malone, T.W., Crowston, K.: What is coordination theory and how can it help design
cooperative work systems? In: Proceedings of the Conference on Computer-Supported Co-
operative Work, pp. 357–370 (1990)

46. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Comput.
Surv. 26(1), 87–119 (1994)

47. Malone, T.W., Crowston, K., Lee, J., Pentland, B.T., Dellarocas, C., Wyner, G.M., Quimby,
J., Osborn, C.S., Bernstein, A., Herman, G.A., Klein, M., O’Donnell, E.: Tools for inventing
organizations: toward a handbook of organizational processes. Manag. Sci. 45(3), 425–443
(1999)

48. Mani, D., Srikanth, K., Bharadwaj, A.: Efficacy of R&D work in offshore captive centers: an
empirical study of task characteristics, coordination mechanisms, and performance. Inf. Syst.
Res. 25(4), 846–864 (2014)

49. Martinez, J.I., Jarillo, J.C.: The evolution of research on coordination mechanisms in
multinational corporations. J. Int. Bus. Stud. 20(3), 489–514 (1989)

50. Massey, A.P., Montoya-Weiss, M.M., Hung, Y.-T.: Because time matters: temporal
coordination in global virtual project teams. J. Manag. Inf. Syst. 19(4), 129–155 (2003)

51. McAfee, A., Brynjolfsson, E.: Investing in the IT that makes a competitive difference. Harvard
Business Review 86(7/8), 98–107 (2008)

52. Melville, N., Kraemer, K., Gurbaxani, V.: Review: information technology and organizational
performance: an integrative model of IT business value. MIS Q. 28(2), 283–322 (2004)

53. Mentzas, G.N.: Coordination of joint tasks in organizational processes. J. Inf. Technol. 8, 139
(1993)

54. Mintzberg, H.: The Structuring of Organizations: A Synthesis of the Research. Prentice-Hall,
Englewood Cliffs (1979)

55. Mom, T.J.M., van den Bosch, F.A.J., Volberda, H.W.: Understanding variation in managers’
ambidexterity: investigating direct and interaction effects of formal structural and personal
coordination mechanisms. Organ. Sci. 20(4), 812–828 (2009)

56. Murer, S., Bonati, B., Furrer, F.J.: Managed Evolution: A Strategy for Very Large Information
Systems. Springer, Heidelberg (2010)

57. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci. J. Inst.
Manag. Sci. 5(1), 14–37 (1994)

58. Ouchi, W.G.: Markets, bureaucracies, and clans. Adm. Sci. Q. 25(1), 129–141 (1980)
59. Ravichandran, T., Liu, Y., Han, S., Hasan, I.: Diversification and firm performance: exploring

the moderating effects of information technology spending. J. Manag. Inf. Syst. 25(4), 205–
240 (2009)

60. Ren, Y., Kiesler, S., Fussell, S.R.: Interruptions, coping mechanisms, and technology
recommendations. J. Manag. Inf. Syst. 25(1), 105–130 (2008)

61. Reynolds, E.V., Johnson, J.D.: Liaison emergence: relating theoretical perspectives. Acad.
Manag. Rev. 7(4), 551–559 (1982)

62. Rico, R., Sánchez-Manzanares, M., Gil, F., Gibson, C.: Team implicit coordination processes:
a team knowledge-based approach. Acad. Manag. Rev. 33(1), 163–184 (2008)

63. Ring, P.S., van de Ven, A.H.: Developmental processes of cooperative interorganizational
relationships. Acad. Manag. Rev. 19(1), 90–118 (1994)

232 M. Brosius et al.

64. Roberts, N., Grover, V.: Leveraging information technology infrastructure to facilitate a firm’s
customer agility and competitive activity: an empirical investigation. J. Manag. Inf. Syst.
28(4), 231–270 (2012)

65. Rosenkranz, C., Vraneši, H., Holten, R.: Boundary interactions and motors of change in
requirements elicitation: a dynamic perspective on knowledge sharing. J. Assoc. Inf. Syst.
15(6), 306–345 (2014)

66. Ross, J.W., Beath, C.M.: Sustainable IT outsourcing success: let enterprise architecture be
your guide. MIS Q. Exec. 5(4), 181–192 (2006)

67. Schmidt, C., Buxmann, P.: Outcomes and success factors of enterprise IT architecture
management: empirical insight from the international financial services industry. Eur. J. Inf.
Syst. 20(2), 168–185 (2011)

68. Selig, G.J.: Approaches to strategic planning for information resource management (IRM) in
multinational corporations. MIS Q. 6(2), 33–45 (1982)

69. Sherif, K., Zmud, R.W., Browne, G.J.: Managing peer-to-peer conflicts in disruptive
information technology innovations: the case of software reuse. MIS Q. 30(2), 339–356 (2006)

70. Shih, H.-P.: Technology-push and communication-pull forces driving message-based
coordination performance. J. Strateg. Inf. Syst. 15(2), 105–123 (2006)

71. Sikora, R., Shaw, M.J.: A multiagent framework for the coordination and integration of
information systems. Manag. Sci. 44(11), 65–78 (1998)

72. Slaughter, S.A., Levine, L., Ramesh, B., Pries-Heje, J., Baskerville, R.: Aligning software
processes with strategy. MIS Q. 30(4), 891–918 (2006)

73. Tan, J.C., Harker, P.T.: Designing workflow coordination: centralized versus market-based
mechanisms. Inf. Syst. Res. 10(4), 328–342 (1999)

74. Terwiesch, C., Loch, C.H., De Meyer, A.: Exchanging preliminary information in concurrent
engineering: alternative coordination strategies. Organ. Sci. 13(4), 402–419 (2002)

75. Thompson, J.D.: Organizations in action: social science bases of administrative theory.
McGraw-Hill, New York (1967)

76. Tsai, W.: Social structure of “Coopetition” within a multiunit organization: coordination,
competition, and intraorganizational knowledge sharing. Organ. Sci. 13(2), 179–190 (2002)

77. Van de Ven, A.H., Delbecq, A.L., Koenig Jr., R.: Determinants of coordination modes within
organizations. Am. Sociol. Rev. 41(2), 322–338 (1976)

78. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature
review. MIS Q. 26(2), 13–23 (2002)

79. Weigelt, C., Miller, D.J.: Implications of internal organization structure for firm boundaries.
Strateg. Manag. J. 34(12), 1411–1434 (2013)

80. Wiredu, G.O.: Understanding the functions of teleconferences for coordinating global
software development projects. Inf. Syst. J. 21(2), 175–194 (2011)

81. Xue, L., Ray, G., Gu, B.: Environmental uncertainty and IT infrastructure governance: a
curvilinear relationship. Inf. Syst. Res. 22(2), 389–399 (2011)

82. Zhou, Y.M.: Synergy, coordination costs, and diversification choices. Strateg. Manag. J.
32(6), 624–639 (2011)

A Literature Review of Coordination Mechanisms 233

Author Index

Abdulrab, Habib 181
Aier, Stephan 220
Almeida, João Paulo A. 181
Aveiro, David 50, 166

Babkin, Eduard 66
Brás, José 99
Brosius, Maximilian 220

De Bruyn, Peter 111, 126
Deen, Ron 35
Deryck, Marjolein 111, 141
Dvořák, Ondrej 111

Gouveia, Duarte 50
Guerreiro, Sérgio 99
Guizzardi, Giancarlo 181

Haki, M. Kazem 220
Hunka, Frantisek 151
Huysmans, Philip 141

Iijima, Junichi 3

Lekkerkerk, L.J. 199

Malyzhenkov, Pavel 66
Mannaert, Herwig 126
Mijs, Johan 35
Mráz, Ondřej 85

Náplava, Pavel 85
Neto, Ana 166

Oorts, Gilles 126
Op ’T Land, Martin 35

Pergl, Robert 18, 85
Pinto, Duarte 166
Pluijmert, Niek J. 74
Poletaeva, Tanja 181

Rossi, Fabrizio 66

Skotnica, Marek 18, 85
Suga, Tetsuya 3

van Kervel, Steven J.H. 18, 151
Verelst, Jan 111

Winter, Robert 220

	Preface
	Organization
	Contents
	Formalisms
	Formal Specification of DEMO Process Model and Its Submodel
	1 Introduction
	2 Literature Review
	2.1 Background Concepts
	2.2 Related Works

	3 Construction of Algebraic Structure
	3.1 PSD and Its Submodels
	3.2 Match Between a CM and a PM

	4 Algebra of PSDs
	4.1 Merge Operation on Sub-PSDs
	4.2 Preserved Match Between the OCD Merge and PSD Merge

	5 Conclusion and Future Research
	References

	A DEMO Machine - A Formal Foundation for Execution of DEMO Models
	1 Introduction
	2 Research Question
	3 Theories Used and Related Work
	4 DEMO Machine
	4.1 DEMO Model Definitions
	4.2 DEMO Enterprise Application Definitions
	4.3 DEMO Axiom Definitions
	4.4 DEMO Model Simulation

	5 Proof of Concept -- Volley Club
	5.1 DEMO Model
	5.2 DEMO Machine Model
	5.3 Volley Club Outside World Implementation
	5.4 Step by Step Execution

	6 Conclusions and Further Research
	References

	Standards and Laws
	Adding Quality of Information to the Ontological Model of an Enterprise
	1 Introduction
	2 Research Approach
	2.1 Problem Statement
	2.2 Proposed Method: Design Science

	3 Artefact Requirements
	4 Artefact
	4.1 Define Information Products from the Essential Model of the (or Part of the) Enterprise
	4.2 Determine the Relevant Quality of Information Characteristics Based on the Business Requirements of the Enterprise
	4.3 Model Information Quality Characteristics in the Ontology of the B and I-Organization of the Enterprise

	5 Artefact Demonstration and Evaluation
	5.1 Conclusion

	6 Main Finding and Further Research
	References

	DEMO/PSI Theory and the Law of the Land
	Abstract
	1 Introduction
	2 Literature Review
	3 Research Design
	4 Portuguese Civil Law
	4.1 Definitions in Portuguese Contract Law
	4.2 What Is the Content of a Contract?
	4.3 Who Is Who in Contracts
	4.4 How Contracts Are Executed?
	4.5 When – Temporal Aspects of Contracts

	5 European Common Sales Law (Proposal)
	5.1 Reaching a Contract – the “Contract Resolution”
	5.2 Withdrawal from Contract and Defects in Consent
	5.3 Obligations and Rights
	5.4 Remedies, Damages and Interest
	5.5 Termination and Restitution

	6 Conclusions
	Acknowledgments
	References

	The Perspectives of DEMO Application to COSO Internal Audit Framework Risks Mitigation
	Abstract
	1 Introduction
	2 COSO Framework and Its Characteristics
	3 Methodological DEMO-Based Proposal for COSO Improvement
	4 Results and Conclusions
	References

	VISI Revisited
	1 Introduction
	2 Research Approach
	3 Case Study of VISI Development and VISI Use in Dutch Infrastructure Construction Sector
	3.1 Introduction
	3.2 VISI Project
	3.3 Implementation of VISI

	4 Discussion and Conclusions
	References

	Business Processes
	Converting DEMO PSI Transaction Pattern into BPMN: A Complete Method
	1 Introduction
	2 Related Work - Improving BPM and BPMN
	2.1 Applying EET for Analysis of Existing BPMN Models of Business Processes
	2.2 Enhancing the Formal Foundations of BPMN by EET

	3 Analysis of DEMO and BPMN
	4 Converting DEMO into BPMN
	4.1 C-acts
	4.2 C-facts
	4.3 P-(F)acts
	4.4 Actors
	4.5 The Composition Axiom
	4.6 Revokes
	4.7 The Resulting BPMN Model
	4.8 The Execution

	5 Example -- Case Voley
	6 Discussion and Conclusions
	References

	DEMO Business Processes Design to Improve the Enterprise Business Continuity Plans
	1 Introduction
	2 Background
	3 Organizational Requirements
	3.1 The Case Study Description

	4 Outcome Learnings
	5 Conclusions/Future Work
	References

	Normalized Systems and Evolvability
	Investigating the Evolvability of Financial Domain Models
	1 Introduction
	2 Evolvability
	2.1 Normalized Systems
	2.2 Combinatorial Effect

	3 Finance Domain Model
	3.1 Establishment of the Domain Model
	3.2 Overview of the Domain Model
	3.3 Business Process Introduction

	4 Revisiting Evolvability of Domain Models
	4.1 Revealing Combinatorial Effects
	4.2 Insights in Exploring the Domain Model

	5 Related Work
	6 Conclusion
	References

	Exploring Design Aspects of Modular and Evolvable Document Management
	1 Introduction
	2 The Need for Evolvability and Variability of Documents
	3 Modular and Evolvable Documents
	3.1 Modular Structure of Evolvable Documents
	3.2 Exploring Cross-Cutting Concerns

	4 Attempts in Modular and Evolvable Document Management
	5 Design Aspects of Modular and Evolvable Documents
	5.1 Coupling and Ripple Effects
	5.2 Version Control
	5.3 Relative Sectioning
	5.4 Dynamic Cross-Referencing

	6 Modular and Evolvable Documents in Practice
	6.1 Decomposing Documents into Text Modules
	6.2 Document Versatility, Variability, and Evolvability

	7 Conclusion
	References

	Application of Enterprise Engineering to Lean Process Management: An Explorative Case Study
	1 Introduction
	2 Related Work
	2.1 Lean and Challenges
	2.2 Proposal: Purposeful Design with Enterprise Engineering

	3 Demonstration: Case Study
	3.1 Case Study Methodology
	3.2 Case Study Background
	3.3 Results

	4 Discussion
	5 Conclusion and Future Research
	References

	Ontologies
	The REA Model Expressed in a Generic DEMO Model for Co-creation and Co-production
	Abstract
	1 Introduction
	2 Ontological Foundations of REA and DEMO
	2.1 REA Ontology
	2.2 DEMO Enterprise Ontology

	3 The CC-CP Model
	3.1 Co-creation and Co-production Between an Enterprise and Its Stakeholders
	3.2 Ontological Completeness Quality Criteria of the CC-CP Model
	3.3 The CC-CP Factual Information Support for Accounting Systems
	3.4 The CC-CP Fact Model
	3.5 Conceptual Mapping of the CC-CP FACT Model to REA Model Concepts

	4 Benefits of the REA Model Represented by the DEMO CC-CP Model
	5 REA Model-Driven GAAP Compliant Systems and Theories
	6 Conclusion and Results
	Acknowledgements
	References

	SysPRE - Systematized Process for Requirements Engineering
	Abstract
	1 Introduction
	2 Knowledge Discovery Process and Demo Specification
	2.1 Knowledge Discovery
	2.2 Requirements Engineering
	2.3 PIF and CAP Analysis
	2.4 Transaction Result Table
	2.5 Object Fact Diagram

	3 Discussion and Conclusion
	Acknowledgments
	References

	Revisiting the DEMO Transaction Pattern with the Unified Foundational Ontology (UFO)
	Abstract
	1 Introduction
	2 The DEMO Transaction Pattern
	3 UFO and OntoUML
	3.1 OntoUML
	3.2 UFO-C: The Social Layer of UFO

	4 Ontological Analysis and Representation of the Transaction Pattern
	4.1 Transactions as Endurants
	4.2 Transactions as Events

	5 Applying the Transaction Pattern: A Case Study
	6 Final Considerations
	Acknowledgments
	References

	Organisation Design
	An OD-Pearl for the EE-Oyster
	Abstract
	1 Introduction
	2 Backgrounds and Basics of Lowlands SocioTechnical Systems Design
	2.1 Other OD-Approaches and Why L-STSD
	2.2 Model of an Organization
	2.3 Structure and Its Functions
	2.4 Contingency, Complexity and Challenges Shape Structure
	2.5 Division of Labour Influences Coordination Need
	2.6 Division of Labour and Quality of Work

	3 L-STSD Design Principles, Sequence, Parameters and Function Models
	3.1 Starting Points for (Re-)designing Structure for New Organizing
	3.2 An Overview of Lowlands-SocioTechnical Systems Design
	3.3 Step 4a the Production Structure Design Is Top-Down
	3.4 Step 4b the Control Structure Design Follows Bottom-up
	3.5 The U-Shaped Design Order of L-STSD Is Unique
	3.6 Step 5 Designing the Hard and Soft Systems Needed
	3.7 Step 6 Soft Factors like Behaviour, Leadership, and Culture
	3.8 Diagnosing and Designing a Structure Using Parameters
	3.9 Diagnosing and Designing a Structure Using Function Models
	3.10 Summarizing L-STSD

	4 Comparing EE and L-STSD
	4.1 Observed Commonalities
	4.2 Differences

	5 Conclusion
	Acknowledgements
	References

	A Literature Review of Coordination Mechanisms: Contrasting Organization Science and Information Sys ...
	Abstract
	1 Introduction
	2 Research Method
	3 Results
	3.1 Formal Mechanisms
	3.2 Informal Mechanisms

	4 Discussion
	5 Conclusion
	Acknowledgement
	References

	Author Index

