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Chapter 10
Cancer: Nurture and Nature

Romano Demicheli

Abstract The currently prevalent somatic mutation theory of carcinogenesis and 
metastases explicitly assumes that cancer is a cellular disease, i.e. a disease of the 
control of cell proliferation and/or cell differentiation. Accordingly, explanations 
should always be sought for at a gene and/or gene product level, regardless of the 
level of organization at which the phenomenon is observed. Such a reductionist 
approach characterized the century-old effort to find cancer cell singularities, absent 
in normal cells, without apparent success, however. More recently alternative views 
have been put forward, assuming that cancer is a tissue based disease involving 
disturbed interactions within the tissue architecture.

In this review, selected reports on normal tissue homeostasis and bone marrow 
contribution to both tumour cells and tumour stroma are reviewed. Regarding nor-
mal tissues, the existence of a complex homeostatic system actually involving the 
whole organism emerges. Regarding tumours, remarkable similarities with normal 
tissue activities are apparent, providing some evidence that tumours share many 
biological features and processes with normal tissues. The review supports the con-
cept that cancer is a tissue based disease and that its pathological nature may result 
from unbalanced/untimely activation of otherwise normal physiological processes.
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10.1  Introduction: Homeostasis Traits from Tissue Damage 
Repair

The early perception of cancer was substantially borrowed from the paradigms of 
bacterial infections [1–2]. Indeed, cancer was regarded as pathologic phenomenon 
occurring at cellular level, a genome-driven disease, where the accumulation of a 
sufficient number of alterations in key genes results in “cell transformation”. 
Transformed cells were viewed as aliens intruding a vulnerable idle microenviron-
ment. Cell transformation was believed to be an irreversible process: “Once a cancer 
cell, always a cancer cell”.

Yet, this paradigm was progressively challenged by a number of experimental 
and clinical findings, highlighting the crucial role of tumour stroma in carcinogen-
esis, tumour development and clinical behaviour and providing evidence that nor-
mal cells may display cancer-like behaviour while, conversely, cancer cells may 
regain normal cell traits [3–8]. The novel cancer image, where tumours look like 
pseudo-organ structures more than invading hordes, supported reasonable explana-
tions for clinical findings and suggested new concepts such as tumour dormancy 
and accelerated metastasis growth due to primary tumour removal [9–10]. It also 
advocated the occurrence of some kind of homeostatic effect of primary tumour 
upon distant metastases, apparently mimicking the organ homeostasis that succeeds 
the growth process. In this review, similarities between normal tissue and tumour 
behaviours will be examined by a parallel scrutiny of normal homeostatic mecha-
nisms and tumour relationships with the host organism. This survey further supports 
the concept that tumours share many biological processes with normal tissues, 
although these “normal” processes are often de-contextualized and result in patho-
logical outcome.

Seminal knowledge on tissue homeostasis emerged from investigations on dam-
age repair, where dramatic reawakening of the tissue building machinery is required. 
Both parallel processes between wound healing and morphogenesis [11] and the 
role of growth factors and cytokines [12] have been recognized, as well as the role 
of bone marrow (BM), which provides inflammatory mature cells to injured tissues. 
Furthermore, a number of recent reports, in both animals and humans, indicate that 
bone marrow also supplies cells capable of producing non-hematopoietic tissue. 
Since the nature of such cells as well as their denomination remain debated, they 
will be henceforth referred to as bone marrow-derived cells (BMDCs).

10.1.1  Animals

In animals, the contribution of BMDCs to epithelial and stromal cells at steady state 
conditions is detectable in several organs (skin, lung, liver, gastrointestinal trait), 
although at different frequencies, with maximum levels into the skin [13–15]. 
Accordingly, a few cells within the BM, a rare population that can be estimated to 
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represent about 0.001–0.01% of the BM nucleated cells [16], can originate in vivo 
non-hematopoietic tissue, a phenomenon that is enhanced in tissue damage repair.

Skin wound healing has been extensively investigated [14, 15, 17–21]. Locally, 
BMDCs increase early, peak after a week and then decrease to a stable level 
estimated to be 10–20% [15]. Most of them are spindle-shaped dermal fibroblast- 
like cells [15, 17, 19, 21] that produce type III collagen, not synthesized by skin- 
resident dermal fibroblasts [15]. A lower fraction originates epithelial cells [13, 14, 
18–20], which are detectable in epidermis, hair follicles, and sebaceous glands. 
Skin damage activates the release of chemokines from the injured site, which 
interact with BMDC receptors (e.g. CCL21/CCR7) and induce mobilization and 
local recruitment [17, 20, 22]. A study focused on the role of BMDCs in the local 
angiogenesis process concluded that they play a major role by paracrine mecha-
nisms without endothelial differentiation [22].

A positive correlation between tissue damage and BMDC homing with contribu-
tion to stromal and epithelial cells was ascertained in other organs, including lung 
and salivary glands [23–26].

10.1.2  Humans

In humans, the conversion of BMDCs into epithelial cells was observed in patients 
receiving BM or other organ transplantations from gender discordant donors.

In archival specimens, hepatocytes and cholangiocytes from BMDCs ranged 
from 4 to 43% [27], suggesting that hepatocytes and cholangiocytes derived from 
circulating BMDCs, which were able to replenish large numbers of hepatic 
parenchymal cells. In lung transplantations, recipient-derived epithelial cells were 
detected in bronchial epithelium of the transplanted organ [28]. A markedly higher 
degree of chimerism was observed in epithelial structures displaying signs of 
chronic injury, such as squamous metaplasia (24% versus 9.5%). Another report 
[29] confirmed chimerism in up to 6.6% of epithelial cells in bronchial and alveolar 
tissue, providing evidence that extrapulmonary precursor cells, putatively BMDCs 
[30], are able to contribute to pulmonary regeneration.

After BM transplantation, BMDCs were identified as differentiated cells in each 
of the parenchymal components of salivary glands: acini, ducts and stroma (0.65–
1.44%) [31]. Higher frequency of microchimerism (~10%) was found in the buccal 
mucosa of a few patients, suggesting higher BMDC contribution for tissues with 
higher turnover. A positive association between the proliferative activity and the 
BMDC epithelial commitment was observed in colonic mucosa as well [32], where 
BMD epithelial cells frequency was significantly higher in samples indicating non- 
specific colitis.

A remarkable investigation on the effect of skin injury as inducer of cell mobili-
zation from other body compartments in 44 patients with total body surface burn 
area of 30–60% and, for comparison, in 23 healthy subjects has been recently pub-
lished [33]. Cells expressing stem cell-associated markers, such as CD133, CD34, 
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and CXCR4 as well as small cells expressing profile markers of pluripotent cells 
(Oct-4+ Nanog+ SSEA-4+ CXCR4+ lin− CD45−) were detected. Changing serum 
concentrations of Stroma Derived Factor 1 (SDF-1), Hepatocyte Growth Factor 
(HGF) and Vascular Endothelial Growth Factor (VEGF) were measured. The mobi-
lization of putative stem cells increased significantly 5 days after skin injury, which 
may reflect the serum dynamics of chemoactive factors and the time needed to the 
cell pool amplification.

In conclusion, wound healing, far from being a local process, is basically a sys-
temic process involving complex homeostatic mechanisms that only recently are 
beginning to be understood.

10.2  Tumours: Wounds That Do Not Heal

10.2.1  Tumour Cells from Bone Marrow

It is well known that a few tumours have haematological origin (e.g. leukaemia). 
Yet, even non-haematological tumour cells may derive from BM cells. For instance, 
in recipients of sex mismatched BM, peripheral blood stem cell or organ 
transplantation, developing a successive solid cancer, BMDCs were found to 
contribute to tumour cells. In particular, in a few patients with oral squamous cell 
carcinoma, most, if not all, tumour cells were donor-derived [34–36], indicating that 
tumours were apparently generated by the transplanted BM cells. The contribution 
of BM to tumour cells was also detected, although less extensively (1–5%), in other 
tumours (lung adenocarcinoma, larynx squamous cell carcinoma, glioblastoma, 
Kaposi sarcoma, mucoepidermoid carcinoma of the parotid gland, breast cancer, 
papillary thyroid carcinoma and Barrett’s adenocarcinoma) [37–40].

A seminal investigation on the possible contribution of BMDCs to tumour cells 
was performed in murine gastric cancer development from Helicobacter infection 
[41]. After infection, rapid increase of inflammatory BMDCs within gastric tissue 
was observed, but there was no early engraftment and differentiation as epithelial 
cells. Engraftment was first seen later and, in chronically infected mice, a large 
population of BMDCs within the gastric mucosa expressed intestinal-type mucins 
and displayed phenotype of the metaplastic lineage. Epithelial dysplasia increased 
in severity over time and eventually resulted in carcinoma. All of the intraepithelial 
neoplasia cells arose from BM cells.

Somewhat different behaviour was observed for intestinal adenomas in female 
mice. BM derived columnar-like epithelial cells were detected in the adenomas of 
all small bowel and colon specimens at a rate of 0.02%. When animals were injected 
with murine lung cancer the contribution of BMDCs to lung tumours was nearly 
1%. In a parallel analysis of human histological specimens of colonic adenoma, 
skin cancer and squamous cell carcinoma of the lung, none of the skin cancer cells 
showed BMDC origin, 1–4% of the adenoma epithelial cells and 20% of the lung 
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cancer cells were from BMDCs. Authors propose that BM participates to neoplasia 
at the level of developmental mimicry, whereby BMDCs are called into a neoplastic 
environment where they respond to developmental cues and adopt phenotypes 
similar to the surrounding neoplastic epithelial cells [42].

In summary, BMDCs may develop as a constituent of tumour cell populations, 
generating, in some cases, the entire tumour mass, the same as they may accomplish 
in wound healing.

10.2.2  Tumour Stroma from Bone Marrow

Inflammatory cells infiltrating tumour bulk, once assumed to act to attenuate tumour 
development, were successively found to play roles in promoting progression of 
many types of cancer [43].

A number of reports evaluated the dynamics of BMDC homing and differentia-
tion in tumour stroma. In a human pancreatic cancer cell line transplanted in mice 
[44], BMDCs appeared early as inflammatory cells accounting for 13% of myofi-
broblasts and 25% of endothelial cells at 2 weeks. Later, percentages evolved to 
40% and 26% respectively, suggesting that BMDCs contribution dynamics is differ-
ent for endothelial cells and myofibroblasts. Differently, BMDC contribution to 
tumour endothelial cells appeared substantially lower (about 0.4% or less) in another 
study on spontaneous adenocarcinoma of the mouse prostate [45]. Detailed analysis 
of cell position revealed that while BMDCs were discernible in perivascular posi-
tion in both primary tumour and lung metastases none were at the luminal surface. 
BM was suggested to be a reservoir for cells that increase tumour angiogenesis via 
endocrine/paracrine mechanisms, while the tumour endothelium would be derived 
primarily from the local environment. BMDC contribution to angiogenesis was also 
comparatively analysed in ischemic retinas, Lewis lung carcinoma (LLC) and B16 
melanoma [46]. The spectrum of BM involvement was dependent on model system 
with SDF-1α as a key permissive trigger. In ischemic retinas, BMDCs provided 
long-term neovascularization and BMDCs expressing CXCR4 and CD133 
participated directly in blood vessel formation. In tumours, LLC had BM-derived 
neo-vessels (17%) and exhibited both increased SDF-1α serum levels and site- 
specific expression; whereas B16 melanoma did not show either site-specific 
SDF-1α expression or BM derived neo-vessels. B16 melanomas still contained little 
to no BM contribution when growing in an environment of elevated serum SDF-1α 
level, whereas blood vessels had a density similar to that of LLC tumours, suggesting 
that tumour neovascularization occurs through redundant mechanisms, possibly 
tumour type related.

BMDCs contribute considerably to carcinoma-associated fibroblasts (CAFs), 
which express α-smooth muscle actin (myofibroblasts). In mouse models of 
inflammation-induced gastric cancer, at least 20% of CAFs originated from BM and 
their recruitment was blocked by CXCR4 inhibition, while myofibroblasts expansion 
was reduced by TGF-β inhibition [47]. CAFs are likely to be a special phenotype 
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that BMDCs adopt after recruitment in neoplasias. Indeed, in chronic pancreatitis 
by caerulein and in carcinogenesis by DMBA [48], cancer-associated, but not 
pancreatitis-associated BMD stellate cells expressed the cancer related specific 
marker CELSR3, suggesting that BMDCs can adopt different phenotypes, 
conceivably responding to the different environmental signals.

Integrin α4β1 promoting the homing of BMDCs to neo-vasculature, tumour 
derived transforming growth factor β1 (TGF-β1) attracting BMSCs, and BMSC 
derived IL-17B attracting tumour cells, were suggested as mediators of tumour- 
stroma interactions [49, 50]. In another remarkable investigation, a human breast 
cancer cell line yielding vigorously growing tumour xenografts (labelled as 
“instigator”) was implanted in one flank of nude mice, while another indolent cell 
line (labelled as “responder”) was implanted into the contralateral flank [51]. 
Instigating tumours, even when small (0.08% of total body mass), facilitated the 
outgrowth of already-established, otherwise-indolent tumour cells located 
contralaterally. Release of soluble factors (e.g. osteopontin) enabled instigating 
tumours to communicate and perturb BM, the functional activation of which 
conveyed activated BMDCs to the stroma of responding tumours, fostering growth. 
This effect involved also micrometastases and, interestingly, a xenografted human 
tumour surgical specimen from colon cancer.

The notion that operative injury may worsen the prognosis of cancer patients was 
supported by a study on the effect of surgery (gastrotomy) on the course of LLC in 
mice [52]. Twelve days after operation, the tumour volume almost doubled in mice 
after gastrotomy with significant increase of BMDCs, microvessel density and 
proliferating cells, while the number of apoptotic cells was significantly reduced in 
comparison with controls. Interfering with the SDF-1/CXCR4 signalling pathway 
inhibited the recruitment of BMDCs and negated completely the acceleration in 
tumour growth after operation. The mobilization of BMDCs, however, could be 
different after different operative injuries, as this phenomenon was undetectable 
after hepatectomy.

In summary, BMDCs may play in tumours and in wound healing similar sup-
portive roles in the form of stroma cells that regulate the local “parenchymal” cell 
population by reacting to microenvironmental signals.

10.2.3  The Pre-metastatic Niche

More recently it was discovered that, before the arrival of tumour cells, adjustments 
occur in metastatic sites that make them conducive for successive metastasis 
development. This process results in a metastatic niche providing support to 
metastasis-initiating cells, by analogy with the physiological niches that support 
stem cells in healthy tissues. The local tissue tuning before tumour cell arrival has 
been labelled pre-metastatic niche and this cellular ‘bookmarking’ was first reported 
for lung metastases from LLC and B16 melanoma in mice [53]. Before tumour 
implantation, minimal BMDCs were observable in the lungs. By day 14 after 
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tumour implantation, but before the arrival of tumour cells, a remarkable cluster 
formation of BMDCs was detectable near terminal bronchioles and distal alveoli. 
On day 16, established BMDC clusters dictated the contours of future metastatic 
lesions. Individual tumour cells, associated with pre-existing BMDC clusters, were 
visible by day 18 and progressed to micrometastases by day 23. Intradermal 
injection of LLC cells resulted in BMDC cluster formation limited to the lung and 
liver with no clusters in other organs. In contrast, B16 melanoma tumour cells 
induced the formation of BMDC clusters in multiple tissues such as lung, liver, 
testis, spleen and kidney. Remarkably, pre-treatment with melanoma derived 
conditioned medium resulted in redirection of LLC metastasis to sites frequently 
observed in B16-melanoma. Implanted LLC tumour cells were associated with 
increased fibronectin expression at the lung pre-metastatic niche, compared with the 
baseline level. The fully formed pre-metastatic niche (VEGFR1+ BMDCs, fibroblasts 
and fibronectin) highly expressed SDF-1, creating a chemokine gradient attracting 
tumour cells that thereby developed a complete metastatic lesion.

Pre-metastatic changes preceding tumour seeding were observed in a mouse 
model of spontaneous lymph node metastasis, where sentinel lymph nodes were 
significantly enlarged before detectable metastasis, and were enriched in functional 
blood vessels, an effect absent in the next lymph nodal station, implying a selective 
mechanism [54]. Contrasting with cancerous related lymphadenopathy, the 
morphology of vessels in endotoxin induced lymphadenopathy was unchanged, 
suggesting nodal reaction by different modalities. In humans, the process of 
vascularisation in the metastatic versus non-metastatic versus non-cancerous 
inflamed axillary lymph nodes was consistent with findings in the animal model 
[54]. Of note, in patients with prostatic cancer, HSCs and cancer cells occupy just 
the same endosteal niche and compete with each other for niche occupancy on the 
osteoblast [55].

Factors involved in the pre-metastatic niche development and in the following 
cancer cell homing and survival include hypoxia-inducible factor-1 [56] and 
coagulation, which is required for the recruitment to distant sites of monocytes/
macrophages [57]. Focal vascular hyper-permeability involvement, with endothelial 
cell-focal adhesion kinase activity facilitating cancer cell homing to lungs, has been 
also observed [58]. A few reports point out the prominence of extracellular matrix 
components, such as tenascin [59] and periostin [60]. In particular, the role of 
periostin emerges from an elegant and detailed investigation on a mouse breast 
cancer model with spontaneous lung metastases [60]. Authors provide evidence that 
(i) the metastatic process is sustained by a subpopulation of tumour initiating cells 
(TICs), accounting for 3% of all tumour cells in both primary tumour and lung 
metastases, which are the only cancer cells able to benefit from periostin; (ii) the 
metastasis efficiency is determined by the stromal periostin production that is 
upregulated in response to the TGF-β released from cancer cells; (iii) periostin, in a 
feed-back interaction with Wnt ligands of TICs, boosts Wnt signalling activity that 
promote cell survival and metastatic colonization. VCAM-1 expression in breast 
cancer cells was also reported to provide survival advantage to cancer cells [61]. 
Taken together, these reports indicate that interactions of cancer cells with 
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extracellular matrix components of the metastatic niche, activating pro-survival 
tumour cell processes, like Wnt, Notch and PI3K pathways, are necessary in order 
to support the metastatic phase.

10.3  Components of the Homeostatic Process

BM is a source of cells directly supporting the homeostasis of tissues (in steady 
state conditions and after lesions) and able to originate cells from the three distinct 
germ-cell layers (ectoderm, mesoderm, and endoderm). Moreover they play a key 
role in tumour development. Trans-differentiation, cell fusion processes and non- 
hematopoietic primitive stem cells (SCs) in BM were hypothesized to explain such 
phenomena. Trans-differentiation and fusion have been questioned as main 
processes [62, 63], while several populations of non-hematopoietic SCs potentially 
able to differentiate into given cells in tissues have been described in the BM. In 
particular, a population of very small embryonic-like stem cells (VSELs) was 
identified, which are apparently a good candidate for a leading role in tissue 
homeostasis. VSELs have been firstly purified from murine BM and from several 
other adult murine organs (e.g., brain, liver, skeletal muscles, heart, and kidney) 
[64]. A corresponding population of small (4–7 μm) CD133+ Lin− CD45− cells that 
display embryonic-like morphology have been identified in human umbilical cord 
blood, in mobilized peripheral blood and in adult BM [65]. Human VSELs expressed 
Oct4 and Nanog in their nuclei and displayed the SSEA-4 antigen. The number of 
circulating VSELs increased during tissue or organ injuries (e.g., heart infarct, 
stroke, or acute colitis), as well as after administration of certain drugs mobilizing 
HSCs into peripheral blood (e.g., G-CSF) [66]. BM-derived VSELs displayed the 
ability to differentiate in  vivo into multiple mesenchymal lineages and generate 
osseous tissues. When injected into the hearts of mice that had undergone ischemia/
reperfusion injury, VSELs induced improved global and regional left ventricular 
systolic function and attenuated myocyte hypertrophy in surviving tissue [67].

Whatsoever such cellular performers may be, it is crucial to understand how they 
participate to the collective action by communicating with other participants in this 
process. Usually it was believed that soluble factors such as cytokines, chemokines, 
growth factors and bioactive lipids released from a given cell type and circulating 
through the whole organism are able to induce responses by other cells endowed 
with specific receptors. Recent research, however, is elucidating a much more 
complex and efficient communication system, the core of which is a busy trafficking 
of microvesicles.

Microvesicles (MVs), frequently observed by electron microscopy in the intersti-
tial space of tissues and for long time considered cellular debris, have been recently 
recognized as functionally relevant [68]. MVs are spherical membrane fragments con-
taining a cargo of cytosol including a distinct and definite combination of lipids, pro-
teins and nucleic acids (mRNA, miRNA and DNA), i.e. a non-random sample of the 
molecular repertoire of the originating cell [69]. MV surfaces express the adhesion 
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molecules of the cell of origin, allowing specific capture by target cells that recognize 
them, which may be modified by surface interaction [70]. Most important, MVs may 
induce epigenetic changes in target cells by transferring selected arrays of mRNA and 
miRNA associated with ribonucleoproteins. Transferred mRNA can be translated 
after entering the target cells [69]. For example, human endothelial progenitor cell-
derived MVs may activate an angiogenic program in recipient quiescent endothelial 
cells [71]. MVs not only mediate tissue-specific changes in mRNA by direct delivery 
of mRNA but also by induction of mRNA from the target cell [72]. Remarkably, some 
miRNAs are selectively accumulated within MVs released by adult human mesenchy-
mal SCs and absent in the cells after MV release, whereas others are retained within 
the cells and not secreted in MVs [73]. This suggests a regulated process of miRNA 
compartmentalization and secretion by MVs.

MVs may have a functional role for tumours. Exposing normal recipient cells to 
bioactive MVs constitutively shed by certain human cancer cells caused the recipient 
cells to acquire a transformed phenotype [74]. At pre-metastatic niche level, 
melanoma-released MVs induced expression of a network of interconnected 
extracellular matrix factors responsible for tumour cell recruitment, trapping and 
growth [75]. Tumour-initiating cells from a human renal cell carcinoma released 
MVs shuttling specific mRNAs and miRNAs that triggered angiogenesis and 
promoted the formation of a pre-metastatic niche in the lung [76]. Human lung 
cancer cells changed the genetic phenotype of human BM cells by inducing lung- 
specific mRNA by exposure to pelleted microvesicles [77]. Of interest, BM cells 
co-cultured with lung melanoma and sarcoma, expressed lung-specific genes, 
raising interesting possibilities of bidirectional cross talk between cancers and the 
normal host tissue. These findings once again suggest that cell structures are less 
stable than previously considered and that cell phenotype, including cancer pheno-
type, might be exportable.

10.4  Concluding Remarks

The above reported findings indicate that BM routinely provides a contribution of 
specific parenchymal cells to various tissues especially after tissue damage. 
Remarkably, the homing of BMDCs into the damaged tissue is associated, to some 
extent, with the emergence of gene expression patterns corresponding to phenotypes 
of stroma and parenchymal cells of the “invaded” tissue (e.g. myofibroblasts and 
keratinocytes in the skin) (Fig. 10.1). This phenotypic change apparently relies on 
dominant effects of the tissue microenvironment upon imported cells. This concept 
is strongly supported by a few focused investigations [78, 79].

Tissue homeostasis in a given organ is apparently a complex and very integrated 
system actually involving the whole organism. Indeed, progenitor cells with differ-
ent commitment (e.g., HSCs, MSCs and ESCs) in addition to pluripotent cells (e.g., 
VSELS) may reside in virtually all organs, among which BM is a main reservoir. 
When homeostasis alterations occur, signalling pathways (e.g. SDF-1/CXCR4) may 
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activate and, if needed, mobilize them. Activated SCs secrete a variety of growth 
factors, cytokines, chemokines and bioactive lipids that regulate their biology and 
orchestrate interactions with the surrounding microenvironment. In addition to solu-
ble factors, activated SCs also secrete MVs, conveying packaged signalling factors, 
including genetic information, which may change the phenotype of the target cells, 
locally or at distance. Thus, one can conceive that, while cellular populations may be 
relatively stable, transcriptional regulation, a key determinant of the phenotype of a 
particular cell, may shift between different cell types [80]. What remains stable and, 
if damaged, induces cellular conversions to re-achieve the original condition is 
apparently the whole tissue architecture.

In this “normal” landscape, some “hallmarks of cancer” actually appear as famil-
iar traits of normal cell populations. Angiogenesis is a current feature in tissues 
during physiological conditions and damage repair. The process we label as invasion 
is usually adopted by non-neoplastic cells that, mobilized from distant organs, enter 
target tissues. Tumour cell activities, underlying the metastatic process, basically 
appear as expression of the current cell trafficking network, with which they share 
molecular mechanisms (e.g. the SDF-1/CXCR4 axis). The tumour ability of creating 
the “tumour microenvironment” (Fig. 10.2) apparently parallels the ability of tissues 
of maintaining the “normal microenvironment” or creating the “repair 
microenvironment” (Fig.  10.1). Moreover, the metastatic development does not 
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Fig. 10.1 Outline of tissue damage repair. Tissue lesion induces release of signaling factors 
locally activating progenitor cells and, via blood circulation, reaching bone marrow where they 
activate and mobilize further progenitor cells quickly homing in the damaged area. Activated 
progenitor cells originate repair stroma cells (myofibroblasts and endothelial cells) and also 
epithelial cells, although at different percentages. Bone marrow derived inflammatory cells are 
also recruited in the wound (not reported in the schematic figure). The coordinated interaction of 
all cells results in the progressive tissue repair and the following long lasting tissue remodeling
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apparently diverge from such a general processing structure and is probably firmly 
related to inter-tissue connections (Fig. 10.3).

The recently proposed tumour hierarchical structure, including tumour stem/pro-
genitor cells and differential metastatic capacity, further supports the parallelism 
between tumour and tissue structures, including the presence of stem/progenitor 
cells at local level and the ability of recruiting stem/progenitor cells from other sites. 
Furthermore, tumour cell niches are comparable to normal cell niches and are 
sometimes identical to them, so that both tumour and normal stem cells compete for 
the same site. Local conducive changes allow for recruitment and homing of stem/
progenitor cells in both cases. Tumours, therefore, appear well integrated in the 
complex physiologic homeostatic network and it is difficult to refute the notion that 
tumours, far from being harsh invaders hijacking “normal” performances, share 
most traits with normal cells, although the normal (or normal-like) processes they 
use are often de-contextualized and result in pathological processes.

Most important, the central tumour hallmark, the genome instability, implies a 
paradigm of normality where lineage pathways are unidirectional and narrowly 
restricted, because of irreversible inactivation of genes that are required for alternate 
pathway selection. We are now discovering that not only normal cells could, at 
certain conditions, jump between lineages, but there are also specific ways to 
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Fig. 10.2 Outline of tumour actions underlying growth. Tumour presence induces release of sig-
nalling factors that activate local progenitor cells and, via blood circulation, reach bone marrow 
where they mobilize and activate further progenitor cells quickly homing in the tumour area. 
Activated progenitor cells originate tumour stroma cells (CAFs and endothelial cells) and also 
tumour cells, although at different percentages, while this ability is still undecided for local 
progenitor cells. Bone marrow derived inflammatory cells are also recruited in the wound (not 
reported in the schematic figure). The coordinated interaction of all cells results in the tumour 
further growth
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transfer genetic information between cells resulting in phenotypic change. Tumours, 
therefore, seem to lose the exclusivity for most of their typical traits and the notion 
could not be ruled out that their pathological nature results from unbalanced or 
untimely activation of otherwise normal physiological processes.
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