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Abstract We show that Lagrangian intermittency in fully developed turbulence
can be captured in terms of an ensemble of Gaussian velocity time series. This
is achieved by letting the individual ensemble members vary with respect to their
correlation function.We briefly discuss how this can be analytically captured in terms
of a suitably defined characteristic functional. Moreover, we present a numerical
implementation of the ensemble showing a continuous change from Gaussian to
non-Gaussian increment distributions for a decreasing time lag. In an outlook we
show first results on the application to data from direct numerical simulation.

1 Introduction

Studying Lagrangian tracer particles in homogeneous isotropic turbulence gives fun-
damental insight into the nature of turbulent flows as tracer particles naturally sample
the spatio-temporal complexity of fully developed turbulence. Among the simplest
statistical measures to quantify this complexity are probability density functions
(PDFs) of velocity increments. These PDFs display intermittency, i.e. they transition
from Gaussian behavior at large time lags to non-Gaussian behavior with decreasing
time lags. It is a central goal of statistical turbulence theory to explain this phe-
nomenon. To fully capture the multiscale statistics of turbulence, however, more
complex statistical quantities are needed. This, for example, includes joint statis-
tics of Lagrangian increment statistics on various time scales and joint statistics of
acceleration and velocity increments.

It is well known that dimensional analysis in the spirit of Kolmogorov 1941 phe-
nomenology [1, 2] fails to capture Lagrangian intermittency. Under the assumption
that the statistics depend only on the average rate of kinetic energy dissipation in the
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inertial range, the velocity increment PDFs turn out to be self-similar in scale. This
self-similarity can be broken by replacing the mean dissipation rate in the theory
with a fluctuating dissipation rate, which has been proposed by Kolmogorov and
Oboukhov [3, 4] in terms of the refined similarity hypothesis. Originally this theory,
nowadays known as K62, was derived for Eulerian statistics, but can also be applied
to Lagrangian statistics, cf. [5]. Another successful approach in capturing Lagrangian
intermittency is the multifractal framework [6, 7]. In its probabilistic interpretation,
anomalous scaling of structure functions is obtained by time-lag dependent super-
position of scaling laws.

In this paper, we present a general approach based on the characteristic functional
which contains all statistical information along a trajectory and in this sense pro-
vides any joint statistics of interest. Since Gaussian characteristic functionals can be
treated analytically, we generate non-Gaussian ensemble statistics by superimpos-
ing Gaussian characteristic functionals. From a conceptual point of view, our model
may be regarded as a generalization of the above-mentioned K62 and multifractal
approach as well as the work by Castaing et al. [8] who superimposedGaussian PDFs
with varying variance. In Sect. 2, an introduction to our model is given. In Sect. 3,
we show through a numerical evaluation of an ensemble of Gaussian trajectories
that this model is capable of producing intermittency. This proof of concept is the
essential part of this paper. As a next step, the model will be applied to turbulence
data from direct numerical simulation (DNS), preliminary results are presented in
Sect. 4.

2 An Ensemble of Gaussian Characteristic Functionals

The complete statistical information along a Lagrangian trajectory can be described
in terms of the characteristic functional

ϕ[α] =
〈
exp

⎛
⎝i

∞∫
−∞

dtα(t)u(t)

⎞
⎠

〉
, (1)

where the angular brackets denote an ensemble average. Equation (1) represents the
inverse Fourier transform of the probability density functional of u(t). Here, u(t) is
the velocity time series along a Lagrangian trajectory, and α(t) denotes the corre-
sponding Fourier transform variable, which also is a function of time. While it is not
possible to compute the average in (1) in the general case analytically, there exists an
analytical expression for a Gaussian u(t) [9]. Since the Lagrangian increment statis-
tics are highly non-Gaussian for small time lags, Gaussian characteristic functionals
cannot be used directly. Therefore, we consider an ensemble of Gaussian trajectories
which differ with respect to the dissipation rate ε. The underlying assumption is that
the velocity statistics of particles traversing regions of varying dissipation rates in
the flow field can be modeled by the velocity statistics of an ensemble of particles
where each particle travels through regions with a prescribed dissipation rate and
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simple Gaussian statistics. The characteristic functional of an ensemble of Gaussian
u(t) takes the form

ϕ[α] =
∞∫
0

dε P(ε)ϕG
ε [α] =

∞∫
0

dε P(ε) exp

⎛
⎝−1

2

∞∫
−∞

dt

∞∫
−∞

dt ′α(t)〈u(t)u(t ′)〉εα(t ′)

⎞
⎠ . (2)

The angular brackets with the subscript ε indicate an average over the respective
ensemble members (i.e. trajectories) with identical dissipation rates. It is assumed
that the mean velocity of the respective ensemble members is zero, i.e. 〈u(t)〉ε = 0.
The characteristic functional in (2) is determinedby thedistribution for the dissipation
rate P(ε) and the velocity correlation function 〈u(t)u(t ′)〉ε.

In order to ensure that the ensemble one-time velocity statistics preserveGaussian-
ity, we construct the ensemble such that each ensemble member has the same second
moment of velocity 〈u(t)2〉. By an appropriate choice of α, the characteristic func-
tional (2) can be projected to yield the desired joint statistics or multipoint statistics.
For example, one-time velocity statistics are derived by the choiceα(t) = α1δ(t − t1)
and evaluating the integrals in (2). This turns the characteristic functional into a char-
acteristic function ϕ(α1). Since the second moment of velocity is by construction
independent of ε, the ensemble velocity statistics are Gaussian:

ϕ(α1) =
∞∫
0

dε P(ε) exp

(
−1

2
〈u(t1)

2〉ε α2
1

)
= exp

(
−1

2
〈u(t1)

2〉α2
1

)
. (3)

In contrast, the second-ordermoments of acceleration and increment statistics explic-
itly depend on ε. With the choices α(t) = −β1

d
dt δ(t − t1) for acceleration statis-

tics and α(t) = μ1δ(t − t2) − μ1δ(t − t1) for increment statistics, the characteristic
functional (2) becomes the characteristic function for the acceleration and the velocity
increment, respectively:

ϕ(β1) =
∞∫
0

dε P(ε) exp

(
−1

2

〈(
d

dt1
u(t1)

)2
〉

ε

β2
1

)
, (4)

ϕ(μ1) =
∞∫
0

dε P(ε) exp

(
−1

2
〈ν2〉ε(τ ) μ2

1

)
, (5)

with the velocity increment v(τ ) = u(t1 + τ) − u(t1) and the time lag τ = t2 − t1.
Even though the respective ensemblemembers showGaussian acceleration and incre-
ment statistics, the ensemble statistics can becomenon-Gaussian by the superposition
of the Gaussian ensemble members with varying dissipation rates.

All time-lag dependence in (5) is contained in the second moment of the velocity
increment,while P(ε)does not dependon the time lag.Thismarks a difference toK62
and the multifractal approach where the distribution for the dissipation rate averaged
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over the time lag (K62), or the distribution for the scaling exponents (multifractal
approach), explicitly depends on the time lag. More detailed information on the
analytical background of superimposing Gaussian characteristic functionals can be
found in [10].

3 Numerical Implementation of an Ensemble of Gaussian
Trajectories

As we have seen throughout the previous section, intermittent increment statistics
can be constructed by an ensemble of Gaussian characteristic functionals with a dis-
sipation rate assigned to each ensemble member and subsequent averaging over a
distribution of dissipation rates.Here,we numerically create an ensemble ofGaussian
velocity trajectories uε(t) and evaluate velocity increment PDFs directly from the
trajectories as a proof of concept. By a superposition of Fourier modes with random
phases, we generate approximately Gaussian trajectories, cf. [11]. Since the veloc-
ity correlation 〈u(t)u(t ′)〉ε is given by the inverse Fourier transform of the energy
spectrum, we directly model the energy spectrum to determine the amplitude of the
Fourier coefficients. For each ensemble member, a dissipation rate ε is drawn from
a distribution P(ε). In the context of the K62 theory, a log-normal distribution for
the averaged dissipation rate has been proposed. Also for our model a log-normal
distribution is a plausible choice for the distribution for the kinetic energy dissipa-
tion rate. For the present numerical evaluation, we chose a distribution for ln(ε)with
the mean μln(ε) = −0.25 and the standard deviation σln(ε) = 1.3. Consequently, the
coefficients of the log-normal distribution do not depend on the time lag here. The
range for ε in the numerical implementation is the interval [0.05, 50] which covers
98.2% of the probability distribution. The ensemble consists of 200 members, the
number of Fourier modes is n = 500,000. Throughout the numerical implementation,
all variables and parameters are treated in a non-dimensionalized form. The periodic
domain has a size of T = 1 000π . Then, the velocity for a trajectory in the ensemble
is given by

uε(tl) =
n/2∑

k=−n/2+1

√
Eε(ω|k|)

2π

T
exp(iϕk) exp (iωk tl) , (6)

with ωk = 2πk
T , tl = l Tn and ϕk = −ϕ−k uniformly distributed in the interval [0, 2π ].

In order to guarantee a zeromean velocity, ϕ0 is randomly set to 0 orπ . In Lagrangian
turbulence it is observed that the velocity correlation function decays exponentially
which corresponds to a Lorentzian spectrum, cf. [12, 13]. We model the spectrum
including a viscous cut-off as

Eε(ωk) = 1

π

TL(ε)

1 + (ωkTL(ε))
2 〈u2〉 Aε exp

(−ωkτη(ε)
)
. (7)
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Fig. 1 Left Standardized PDFs for velocity increments obtained from the ensemble of Gaussian
trajectories. The curves are shifted vertically for clarity. The time lags are increasing from top
to bottom: {0.27, 1.07, 4.28, 17.12, 68.49, 273.96} τη〈ε〉. The Kolmogorov time scale τη〈ε〉 is
determined through the expectation value of the log-normally distributed ε. The dashed bottom
curve is a standardized Gaussian PDF as a reference which overlies the PDF for the largest time
lag. Right Comparison of standardized velocity increment PDFs from DNS data (solid lines) and
preliminary results of an evaluation of equation (8) (dashed lines) with an optimized P(ε). P(ε)

used in this example is chosen as a log-normal distribution where the mean μln(ε) and the standard
deviation σln(ε) of ln(ε) are fitted for a small (top curve) and a large (bottom curve) time lag yielding
μln(ε) = −2.8 and σln(ε) = 1.03. The curves are shifted vertically for clarity. The graphs are created
with matplotlib [14]

The factor Aε is determined such that the kinetic energy
∫ ∞
0 Eε(ω)dω = 1

2 〈u2〉 is
kept fixed to one for each ensemble member. The choice of ε determines the integral
time scale which we here define as TL(ε) = 1

2
〈u2〉
ε

and the Kolmogorov time scale
τη = (ν/ε)1/2 where we choose ν = 0.001.

Once the ensemble is numerically generated, arbitrary statistics can be obtained.
As mentioned above, we are interested in velocity increment PDFs as an example.
Equation (6) is used to compute velocity increments via vε(τ ) = uε(t + τ) − uε(t).
Wepresent the velocity increment PDFs in Fig. 1 on the leftwhich shows a continuous
transition from a Gaussian PDF for large time lags to a highly non-Gaussian PDF
for smaller time lags. This demonstrates that it is in principle possible to generate
intermittent increment statistics by an ensemble of Gaussian trajectories with varying
dissipation rates.

4 Outlook: Validation with DNS Results

The numerical proof of concept in Sect. 3 shows that an ensemble of Gaussian tra-
jectories captures intermittency qualitatively by model assumptions about the forms
of the underlying spectra and the distribution P(ε). The application to turbulence
DNS data is work in progress. In contrast to the procedure presented in the previous
section,we here take the Fourier transformof (5) as a starting point. Here, the velocity
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increment PDF is given by a superposition ofGaussian increment distributionswhich
vary in terms of their variances:

f (ν; τ) =
∞∫
0

dε P(ε)
1√

2π〈v2〉ε(τ )
exp

(
− v2

2〈v2〉ε(τ )

)
. (8)

We choose a lognormal distribution for P(ε) and obtain the mean and the standard
deviation of ln(ε) via an optimization procedure. The goal of the optimization pro-
cedure is to determine the parameters of P(ε) in (8) for a small and a large time lag
as a best fit to the respective increment distributions from DNS data.

To generate a test data set, a standard pseudo-spectral DNS at Reλ = 109 was run
in a quasi-stationary regime with a resolution of kMη ≈ 2 where kM is the maximum
wavenumber and η is the Kolmogorov length. 150,000 particles were placed in this
flow. The velocity of the particles was sampled along their trajectories. Lagrangian
increment statistics were then estimated from the DNS data.

Figure 1 on the right shows preliminary results for the comparison of the DNS
data to the superposition of Gaussian increment distributions which are weighted
according to an optimized log-normal distribution P(ε). The approach is in general
capable of reproducing the velocity increment PDF for a small and a large time
lag. We are currently extending the approach to represent Lagrangian increment
statistics across the full range of temporal scales and plan to explore the model with
respect to more general statistical quantities including joint statistics of velocities
and acceleration.
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