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Preface

The iTi has become an established biannual conference on turbulence research
taking place in the years between the ETC—(European Turbulence Conference)
and TSFP—(Turbulence and Shear Flow Phenomena) conferences. With 80 to 100
participants, the iTi conference places value on the discussions and personal con-
tacts in the location of the beautiful town of Bertinoro in Northern Italy close to
Bologna. It continues a tradition that has been started in Bad Zwischenahn/
Germany with the first edition of the conference in 2003. The size of the conference
allows to have no parallel sessions and gives time to special topics to be stressed.
The content-related focus areas of the conference are the interdisciplinary aspects of
turbulence, defining the abbreviation iTi—interdisciplinary Turbulence initiative.
iTi attracts scientist from the engineering, physics, and mathematics communities.

It has been a tradition of the iTi to organize a one-day workshop before the iTi
conference on a distinct theme out of the wide spectrum of turbulence research. The
present workshop was onHigh Reynolds number turbulent flows—A large-scale
infrastructure perspective. The 7th iTi in 2016 conference hosted 90 scientists from 15
different countries. In total, there were 78 contributions, fromwhich 50 were presented
as talks, with six invited talks, covering a wide range of aspects of current turbulence
research. Advances in the basics of understanding and modeling turbulence were
addressed as well as practical implications such as the control of turbulence.

The content of the 7th iTi conference is documented in this volume comprising
35 contributions. All contributions were thoroughly reviewed by external review-
ers, to whom we want to express our thanks for their valuable and important
contribution. Both the workshop and conference were sponsored by the European
High-performance Infrastructures in Turbulence (EuHIT). EuHIT is an international
scientific mobility programme for researchers engaged in turbulence research
(www.euhit.org).
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Based on the successful previous conferences, we will continue with this
initiative for subsequent years with the 8th iTi Conference planned for September
2018.

Stockholm, Sweden Ramis Örlü
Forlì, Italy Alessandro Talamelli
Darmstadt, Germany Martin Oberlack
Oldenburg, Germany Joachim Peinke
2017
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Part I
Theory



Emergence of Non-Gaussianity in Turbulence

Michael Wilczek, Dimitar G. Vlaykov and Cristian C. Lalescu

Abstract Fully developed turbulence is characterized by markedly non-Gaussian
statistics. Here, we discuss some aspects of the relation between non-Gaussianity,
the emergence of coherent structures and phase correlations in turbulence. Direct
numerical simulations of homogeneous isotropic turbulence are used to demonstrate
a fairly rapid emergence of non-Gaussian statistics from Gaussian initial conditions.

1 Introduction

One hallmark of fully developed turbulent flows is the intrinsic non-Gaussianity of
the velocity field. For example, the single-point probability density function (PDF)
of the velocity, which characterizes the large scales, remains close to Gaussian with
slightly sub-Gaussian tails [1, 2]. The PDFs of small-scale quantities such as the
vorticity, however, exhibit broad tails. This translates to the frequent occurrence of
extreme events and is a signature of small-scale coherent structures such as vortex
tubes or strain sheets. In comparison, Gaussian fields, whose multi-point statistics
are jointly Gaussian, appear largely structureless.

Velocity increment PDFs effectively interpolate between the small- and large-
scale statistics. Using them to probe turbulent velocity fields on increasing scales
reveals a breaking of statistical self-similarity: the PDFs change shape as a func-
tion of scale. This well-known phenomenon of intermittency is absent in Gaussian
fields, which are statistically self-similar. This motivates the question of how non-
Gaussianity and intermittency arise from the turbulent dynamics.

In the following we give a qualitative discussion on the relation between non-
Gaussian statistics and the emergence of coherent structures and phase correlations
in turbulence. In particular, we study the evolution of a turbulent flow from Gaussian

M. Wilczek (B) · D.G. Vlaykov · C.C. Lalescu
Max Planck Institute for Dynamics and Self-Organization,
Am Faßberg 17, 37077 Göttingen, Germany
e-mail: michael.wilczek@ds.mpg.de

© Springer International Publishing AG 2017
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4 M. Wilczek et al.

initial conditions by means of direct numerical simulations. Finally, we outline how
these insights may be useful to better understand and model intermittency in turbu-
lence.

2 Direct Numerical Simulations and Gaussian Initial
Conditions

We present direct numerical simulations (DNS) of statistically stationary homo-
geneous isotropic turbulence at a Taylor-based Reynolds number of Rλ ≈ 129. A
standard pseudo-spectral solver is used to simulate the Navier–Stokes equation in
the vorticity formulation in a periodic box with 5123 grid points at a resolution of
kMηK ≈ 1.67, where kM denotes the highest resolved mode and ηK the Kolmogorov
length. The flow is forced on the large scales by a term linear in the band-passed
vorticity (Lundgren forcing) [3, 4]. Time-stepping is performed with a third-order
memory-saving Runge–Kutta method [5].

To generate Gaussian initial conditions, a snapshot from the simulation is taken
from the statistically stationary regime. The Fourier coefficients u(k) are rotated in
the complex plane, u(k) → u(k) eiϕ(k), with statistically independent random phases
ϕ(k), which are uniformly distributed in [0, 2π ] for each k. Reality of the velocity
field is imposed by ensuring ϕ(k) = −ϕ(−k). As will be clarified in Sect. 4, the
resulting velocity field is close to Gaussian. Seventeen distinct realizations of ϕ(k)

are used, such that an ensemble of approximately Gaussian fields is obtained. These
fields are then taken as initial conditions for new DNSs, the results of which are
discussed in the following sections.

3 Emergence of Non-Gaussian Statistics

A qualitative impression of the DNS results with approximately Gaussian initial
conditions can be gained from Fig. 1, which shows visualizations of the velocity
and vorticity fields for three subsequent instances in time. The fact that Gaussian
initial conditions appear structureless is particularly evident in the vorticity visual-
izations.As theflowevolves under theNavier–Stokes dynamics, small-scale coherent
structures start to emerge rapidly. Already after ten Kolmogorov time scales (charac-
terizing the fastest turbulent dynamics) they can be clearly identified. The fine-scale
structure of the velocity field changes on a comparable time scale. However, its
large-scale structure changes only slowly. The difference between the two fields is
understood through a simple eddy turnover argument by considering that the velocity
is a large-scale and the vorticity a small-scale quantity.

Quantitatively, consider the single-point PDFs for the velocity and vorticity fields
(Fig. 2). The velocity PDF is initially close to Gaussian with slightly sub-Gaussian
tails. The deviations can be explained by the fact that the initial velocity field is steeper
than k−1, which leads to corrections to the behavior expected from a central limit
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Fig. 1 Snapshots of DNS velocity fields (top row) and vorticity fields (bottom row) at simulation
times of approximately 0, 10, 100 Kolmogorov time scales. Already after ten Kolmogorov time
scales small-scale vorticity structures have emerged, and they grow stronger over time. Also the
fine-scale structure of the velocity field changes, whereas large-scale features remain qualitatively
similar
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Fig. 2 One-point PDFs for velocity andvorticityfields. ThevelocityPDFs are slightly sub-Gaussian
throughout the evolution. The vorticity PDFs start out as Gaussian, but quickly deviate and settle
into a strongly non-Gaussian form

theorem argument [6]. As the field evolves from these initial conditions, the velocity
PDF varies slightly due to the temporal evolution of fluctuations, but remains very
close to Gaussian as expected from previous theoretical considerations [7]. Along
with the emergence of small-scale coherent structures, the vorticity PDF rapidly
develops heavy tails [8]. This nicely visualizes the common picture of turbulence, in
which small-scale coherent structures break statistical self-similarity and therefore
contribute to non-Gaussianity and intermittency.
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Fig. 3 Time evolution (in units of the Kolmogorov time τK ) of the normalized moments of the
velocity field (dash-dot) and the vorticity field (solid). While for the velocity field the values remain
slightly sub-Gaussian, the vorticity quickly exhibits strong non-Gaussianity. Gaussian values are
shown as dashed lines for reference

The emergence of non-Gaussian statistics from Gaussian initial conditions can
also be confirmed by studying moments of the velocity and vorticity fields as a
function of time, as presented in Fig. 3. As can be seen, the single-point moments of
the velocity field stay close to the Gaussian values. Consistent with the observations
of the vorticity PDF, the single-point vorticity moments rapidly depart from their
Gaussian initial values.

4 Phase Correlations

There is an intimate relation between Gaussianity and phase correlations. For a
Gaussian randomfield different Fouriermodes aremutually statistically independent.
One should note that this is a much stronger statement (as it pertains to all statistical
moments) than the fact that for homogeneous random fields the phases are uncorre-
lated (which concerns only second-order moments). As mentioned above, the oppo-
site also holds: A superposition of Fourier amplitudes with random phases results in
approximately Gaussian statistics under quite general conditions (see e.g. [9]). Thus
phase correlations are a signature of non-Gaussian statistics.

To explain the emergence of phase correlations, it is instructive to consider the
well-known Fourier representation of the Navier–Stokes equations for the amplitude
al(k, t) and the phase ϕl(k, t):

(
∂t + νk2

)
al(k) = 1

2

∑

m, n

Plmn(k)
∑

p+q=k

am(p)an(q) sin
[
ϕm(p) + ϕn(q) − ϕl(k)

]

−al(k) ∂tϕl(k) = 1

2

∑

m, n

Plmn(k)
∑

p+q=k

am(p)an(q) cos
[
ϕm(p) + ϕn(q) − ϕl(k)

]
.

(1)
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Fig. 4 Phases of one component of the velocity field in the kzηK = 0 plane. The left plot shows
the phases for one of the Gaussian initial conditions, while the right plot shows the phases for the
same velocity field after the quasi-stationary regime has been reached

Here, Plmn(k) = km Pln(k) + kn Plm(k) is a suitably definedprojection operator based
on Plm(k) = δlm − kl km

k2 [10]. It is interesting to note that the linear (viscous) termdoes
not impact the phase dynamics directly. In contrast, the nonlinear term couples phase
triads of Fourier coefficients which fulfill k = p + q. This coupled phase dynamics
then gives rise to correlations among phases.

Figure 4 shows the phases of a single velocity component in the kzηK = 0 plane.
The left panel corresponds to the close toGaussian initial conditions.By construction,
all of the phases are statistically independent. The right panel shows the phases
after approximately 76τK . As expected for turbulence, the phases are more or less
random, however there is a remarkable degree of visual coherence, especially at
smaller scales, with approximately equidistant striations visible in the “1 o’clock”
region of the quadrant.

5 Conclusion and Outlook

By investigating numerical simulations of fully developed turbulence from approx-
imately Gaussian initial conditions, we have seen that small-scale statistics (like
the vorticity PDF) rapidly transition to non-Gaussianity whereas the large scales
(exemplified by the single-point velocity PDF) remain close to Gaussian. In Fourier
space, this is accompanied by the emergence of phase correlations, which appear
more pronounced at smaller scales. Combining these two observations, our current
working hypothesis is that intermittency in turbulence can be interpreted in terms
of scale-dependent phase correlations. Due to the complexity of the Navier–Stokes
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equations, it remains a formidable task for future work to derive first-principle results
on such phase correlations.

Meanwhile, it may turn out to be useful to study toymodels. For example, onemay
consider the temporal evolution of a one-dimensional periodic field with the Fourier
representation u(x, t) = ∑

k a(k)ei[ϕ(k,t)+kx]. Assuming that the amplitudes remain
fixed in time, one can impose a phase dynamics reminiscent of the Navier–Stokes
dynamics (1):

ϕ̇(k) =
N∑

p=−N

ω(k, p) cos [ϕ(p) + ϕ(k − p) − ϕ(k)] (2)

whereω(k, p) = − ka(p)a(k−p)
a(k) are coupling coefficients depending on the prescribed

Fourier amplitudes. Note that this phase couplingmodel is even simpler than the one-
dimensional Burgers equation, as the amplitudes here are time-independent.We refer
to [11] for an analysis of the phase dynamics in the one-dimensionalBurgers equation.
First numerical results indeed confirm that the phase coupling model (2) displays
phase correlations which are more pronounced at smaller scales. As a consequence,
small-scale statistics of the resulting field in real space depart more strongly from
Gaussianity than large-scale statistics. Such toy models could also be useful in the
modeling of intermittency, their simplicity invitingmore direct analytical approaches.
It is interesting to note that the phase coupling model establishes a relation to the
field of non-locally coupled oscillators which are known to display a plethora of
dynamical states including phase synchronization, chaos and chimera states. It will
be exciting to see to which extent such concepts also apply to the phase dynamics of
turbulence.
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References

1. J. Jiménez,A.A.Wray, P.G. Saffman,R.S.Rogallo, The structure of intense vorticity in isotropic
turbulence. J. Fluid Mech. 255, 65–90 (1993)

2. A. Noullez, G. Wallace, W. Lempert, R.B. Miles, U. Frisch, Transverse velocity increments in
turbulent flow using the RELIEF technique. J. Fluid Mech. 339, 287–307 (1997)

3. T.S. Lundgren, Linearly forced isotropic turbulence in Annual Research Briefs (Center for
Turbulence Research, Stanford), pp. 461–473 (2003)

4. C. Rosales, C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence:
physical space implementations and convergence properties. Phys. Fluids 17(9), 095106 (2005)

5. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes. J. Comput. Phys. 77(2), 439–471 (1988)

6. J. Jiménez, Turbulent velocity fluctuations need not be Gaussian. J. Fluid Mech. 376, 139–147
(1998)

7. M. Wilczek, A. Daitche, R. Friedrich, On the velocity distribution in homogeneous isotropic
turbulence: correlations and deviations from Gaussianity. J. Fluid Mech. 676, 191–217 (2011)



Emergence of Non-Gaussianity in Turbulence 9

8. M. Wilczek, R. Friedrich, Dynamical origins for non-Gaussian vorticity distributions in turbu-
lent flows. Phys. Rev. E 80, 016316 (2009)

9. J.M. Bardeen, J.R. Bond, N. Kaiser, A.S. Szalay, The statistics of peaks of Gaussian random
fields. Astrophys. J. 304, 15–61 (1986)

10. R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid
Mech. 5(4), 497–543 (1959)

11. M. Buzzicotti, B.P. Murray, L. Biferale, M.D. Bustamante, Phase and precession evolution in
the Burgers equation. Eur. Phys. J. E 39(3), 34 (2016)



Percolation: Statistical Description
of a Spatial and Temporal Highly Resolved
Boundary Layer Transition

Tom T. B. Wester, Dominik Traphan, Gerd Gülker and Joachim Peinke

Abstract In this article spatio-temporally resolved particle image velocimetry data
of a flat plate’s boundary layer are shown. With this set up, it is possible to capture
the highly unsteady phase transition from laminar to turbulent state of the boundary
layer close to the surface. In the evaluation of the boundary layer data it is shown
that it is possible to link the laminar-turbulent phase transition to the (2+1)D directed
percolation universality class. This can be shown by the unique exponents of the
directed percolation class which will be extracted from the PIV data.

1 Introduction

The description of transition into turbulence has always been a challenging task.
Thirty years ago Pomeau was the first to describe the dynamics of laminar-turbulent
transition by a system of coupled oscillators [1]. Thereby he paved the way for
the statistical description of laminar-turbulent transition by the directed percolation
theory. This theory allows a simple description of complex phase transitions with
only three critical exponents. These exponents are unique for each universality class
of percolation, so the transition from a laminar to a turbulent flat plate’s boundary
layer may be ascribed to a known class.

Until the last decade it was not possible to provide experimental evidence to
show the spatio-temporal intermittency which occurs in the transition from laminar
to turbulent flow. Due to more accurate measurement techniques nowadays it is
possible to capture the transition with much higher temporal and spatial resolution.

This has led to more detailed investigations with respect to directed percolation
of different flow situations such as channel flow [2, 3], Couette flow [4], shear flows
[5–8] and fully turbulent flows [9]. All of them showpromising results, which support
the presumption of Pomeau.
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In contrast to the experiments mentioned, the evaluation presented in this article
is the first which is carried out on a flat plate’s boundary layer in an airflow and also
the first evaluation which uses PIV data as basis.

2 Experimental Setup and Methodology

The experiment is based on high speed stereoscopic particle image velocimetry (HS-
PIV). In order to investigate the boundary layer of the flat plate, a wind tunnel with
a closed test section is used (see Fig. 1). It has a cross section of 25 × 25 cm2 and
a length of 200 cm. The flat plate under investigation has a length of 100 cm. It is
positioned 30 cm downstream the wind tunnel nozzle at a height of 10 cm above the
bottom of the test section.

The experiment is performed at a velocity of u∞ = 11.5 m s−1 and a free stream
turbulence intensity below 0.3%. Due to the limited field of view (FOV) of the
PIV measurements it is necessary to induce perturbations into the boundary layer.
Therefore a small step of 0.1 mm height is placed 5 cm downstream the leading
edge. Hereby the transition area can be tuned so that its streamwise length fits into
the HS-PIV FOV.

The used HS-PIV system consisted of a high speed laser LDY 303 by Litron, light
sheet optics and two Phantom Miro M320S high-speed cameras which are used at
a reduced resolution of 1408 × 1048 px2 resulting in 154 × 126 PIV interrogation
windows. The light sheet is directed perpendicular to the inflow direction and illumi-
nates a plane parallel to the plate’s surface. The origin of the plane is located 5.8 cm
downstream of the leading edge. In focus the light sheet has a thickness of 1 mm and

25 cm

Flow

25 cm

Light sheet

200 cm

u = 11.5 m/s
TI < 0.3 %

Camera 2Camera 1 

x

z
y

Fig. 1 Experimental setup for HSPIV measurements of a flat plate’s boundary layer. The light
sheet is adjusted parallel to the flat plate’s surface in a region where the onset of the transition can
be captured
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its height above the plate’s surface is 1 mm. The boundary layer thickness estimated
by the Blasius equation is 2 mm at the point of measurement. Thus, the upper half
of the boundary layer is investigated in the PIV measurement.

With this set up a sampling rate of 1000 velocity fields per second is possible. The
velocity fields have a size of 6 cm in streamwise (x-direction) and 5 cm in spanwise
direction (y-direction) with a spatial resolution of 0.04 cm in each direction. In
total, 8250 velocity fields in three independent measurements are acquired. Each
measurement has a duration of 2.75 s, because of the limited internal camera storage.
Particle images are captured and processed using LaVision software DaVis 8.3.

3 Experimental Data

In the percolation theory only two states exist: a cell is either laminar (off) or turbulent
(on). For this reason, all velocity fields need to be binarized by a certain criterion. In
Fig. 2a snapshot of the velocity magnitude is plotted. Shown is the development of
the velocity along the local Reynolds number Rex = u(x)·x

ν
where x is the denoted

as the propagation length along the plate and the spanwise direction. The right hand
side shows the same velocity field, but binarized.

In order to binarize the data, a velocity threshold is used. Based on the velocity,
one can directly draw a conclusion on the state of the boundary layer. If the velocity
increases compared to the laminar boundary layer there must be a mixing between
the high energetic ambient flow and the low energetic boundary layer. This only
happens if the boundary layer becomes unstable and thus transitive and turbulent.

According to that, the interrogation cell is set to 0 (off) if u(x)TH and 1 (on) oth-
erwise. A parameter variation yielded uTH = 4 m s−1 as an appropiate threshold that
reflects turbulent structures for the givenmeasurement distance to the wall. However,
percolation exponents do only slightly depend on chosen velocity threshold.
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Fig. 2 Left Example of a measured velocity field. Right Binarized velocity field by a threshold of
uThresh = 4 ms−1
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Fig. 3 Scaling of turbulent fraction with Reynolds number Rex = u(x)·x
ν

in streamwise direction.
The measurement points are shown in bluewith error bars. The red curve represents a fit according
to (1). The inset shows the plot in logarithmic scale to emphasize the exponential behavior. Here,
the turbulent fraction is plotted against the reduced Reynolds number

The turbulent fraction ρ(Rex ) can be determined directly from the binarized data.
The turbulent fraction is the ratio of turbulent to laminar cells for each interrogation
window. For this reason, a two-dimensional turbulent fraction results for the PIVdata.
This two-dimensional turbulent fraction is averaged along the y-direction to obtain a
one-dimensional distribution. This distribution is plotted against the local Reynolds
number Rex in Fig. 3. The shown errorbars represent the standard deviation. The
inset of the figure shows the logarithmic illustration of the turbulent fraction over
the reduced Reynolds number Rex−Rec

Rec
. The turbulent fraction shows a monotonic

growth with increasing local Reynolds number. At the so called critical point the
turbulent fraction increases rapidly. This is typical for directed percolation and can
be described by the exponential relation between the turbulent fraction ρ(Rex ), the
local Reynolds number Rex and the critical point Rec shown in (1):

ρ(Rex ) = ρ0 ·
(
Rex − Rec

Rec

)β

. (1)

In this equation ρ0 is a constant factor and the exponent β is one of three unique
exponents of percolation theorywhich describes the increase of the turbulent fraction.

In percolation theory, Rec is the point where the phase transition between two
states happens. In our case, it is the point where the transition between laminar and
turbulent phase begins. In case of the experiment, this corresponds to the point at
which the turbulent fraction begins to grow strongly.

The fit with (1) results in a critical Reynolds number Rec = 18040 ± 380 and
the exponent βexp = 0.59 ± 0.04. In order to obtain the other two unique exponents
of percolation theory μ‖ and μ⊥ which describe the spatial and temporal spreading
behavior, the development of laminar clusters must be considered. Laminar cluster
are regions in the time development of the flow at Rec where laminar cells are
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Fig. 4 Left Histogram of laminar clusters in space. Red dashed line represents the theoretical
slope of (2+1)D directed percolation. Right Histogram of laminar clusters in time. Red dashed line
represents the theoretical slope of (2+1)D directed percolation

surrounded by turbulent cells. In percolation theory, the number (Ns,t ) of clusters of
a particular size (Ls,t ) scale with the following laws for space (2) and time (3):

Ns(Ls) ∝ Lμ⊥
s (2)

Nt (Lt ) ∝ L
μ‖
t . (3)

The histograms of the cluster sizes are shown in Fig. 4. On the left hand side, the
laminar cluster sizes in space, and on the right hand side, the cluster sizes in time
are shown. The red dashed lines show slopes of the theoretical cluster distribution in
(2+1)D directed percolation theory.

4 Discussion and Concluding Remarks

In the preceding chapter, the experimental results were presented. From the turbulent
fraction, the first unique exponent β is derived. This exponent is close to the the-
oretical exponent for (2+1)D directed percolation βtheo = 0.583. The other unique
exponents for the scaling behavior of the cluster sizes also follow the laws of (2+1)D
directed percolation visually. The cluster in space follow the law better than the
clusters in time. The small deviation could be a result of the limited temporal resolu-
tion. Another explanation is a limited size effect due to the limited FOV of the PIV
measurements.

All in all, the transition of the flat plate’s boundary layer can be described by the
(2+1)D directed percolation theory. The extracted exponents from the experiment
seem tomatch the theory. Therefore, the highly dynamic behavior of the transition can
be reduced to mainly three unique exponents and this phenomenon can be assigned
to one of the known percolation classes.
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5 Future Work

Since these first results are promising a validation is needed. Therefore, the turbulent
boundary layer of the flat plate will be investigated more detailed at different heights
and at different free stream velocities.

Furthermore, other transient flows such as channel flow or even more complex
flows such as airfoil boundary layers will be investigated. If it is possible to show that
transitions from laminar to turbulent flow belong to a universality class of percolation
this results could be used for computational fluid dynamic models to simulate the
transition in a more accurate way.
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The Key Role of Pressure in the Turbulence
Cascading Process

Patrick Bechlars and Richard D. Sandberg

Abstract This work revisits the cascading mechanism in turbulence from a novel
perspective on the scale transfer and highlights the key role of pressure within this
concept. The turbulent cascade is the core of all complexity in a turbulent flow. A
better understanding of this process is essential for complexity reducing turbulence
models that are essential for predictive simulations in engineering and the natural
sciences. Here, the significance of the pressure within the turbulence dynamics is
highlighted and it is shown how information about the pressure can be used to inter-
pret and explain certain features of a turbulent flow. It has been shown previously how
the presence of a wall affects the dynamics of turbulence. The present work explains
how these dynamics are linked to the cascading mechanism that drives turbulence.
The conclusions are believed to be transferable to other turbulent flows.

1 Introduction

Turbulence has been the subject of research for more than a century. In that time
significant advances had been made in the understanding of turbulent flows. Never-
theless, many details are still not understood well enough. Some of those aspects are,
e.g., the role of pressure and the multiple mechanisms that contribute to the energy
cascade transferring energy between the different scales of motion.

Gotoh and Nakano [1] investigated the role of pressure in turbulent flows by con-
ditioning homogeneous isotropic turbulence data obtained through direct numerical
simulation (DNS) with pressure. They summarized that the pressure is a key for
scaling the velocity structure functions and is important for some of their dynamics.
Wilczek and Meneveau [2] give a novel insight into the dynamics of the velocity
gradient tensor and discuss the role of pressure in these dynamics. However, the
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link to actual physical structures remains open in their work. This gap was recently
closed by Lawson and Dawson [3] who provided new insight into the arrangement of
turbulent structures and discussed some aspects of the role of pressure. Such insights
are particularly helpful for understanding the non-local effects within the turbulence
dynamics. Bechlars and Sandberg [4] have shown how the presence of a wall affects
the dynamics of turbulence and have highlighted that the understanding of the role
of pressure in the turbulence dynamics is crucial for a better understanding of tur-
bulence in general. In another work they have highlighted that there is a peak in
the frequency of occurrence of unstable vortical structures in the near-wall region
of a turbulent boundary layer (TBL) [5]. Further, their results suggest that a reverse
cascade might be present with the same flow regime of unstable vortical structures
in the entire TBL.

In this work we discuss the role of pressure as a stabiliser of vortical structures
and how it looses that ability in the near-wall region. By applying the critical point
concept introduced by Perry and Chong [6] as a condition on the transfer of energy
between different scales of motion, the suggestions of [5] about the reverse cascade
are supported. The physical mechanism for this process is hypothesised with similar
arguments about the pressure that are applied when describing the pressure as a
stabiliser. The results are based on the DNS data of a TBL [5].

The necessary background for the discussion about the pressure is given in Sect. 2.
The results are presented and discussed in Sect. 3 and conclusions are presented in
Sect. 4.

2 Method

For a general understanding about the role of pressure p it is helpful to consider
the inviscid form of the momentum transport equation in Lagrangian form, i.e. we
follow a fluid particle,

ρ
du
dt

= −∇ p. (1)

Here ρ is the density, u is the velocity vector and d
dt denotes the material derivative.

In this form the similarity of the momentum transport to the equation of motion
for a particle becomes obvious. For now we interpret a fluid particle as a particle
in motion that is governed by the single external force which is described by the
pressure gradient −∇ p. If we take the divergence of the incompressible momentum
equation, this leads to the equation that describes the Laplacian of pressure as a
function of the second velocity gradient tensor invariant Q = − 1

2 trace(AA) (with A
being the velocity gradient tensor)

− Δp = −2Q. (2)
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This is a Poisson equation and with a simplification, that the considered domain is
unbounded in R3 the general solution for this pressure Poisson equation is

p(x) =
∫∫∫

R3
−2Q(y)

1

4π

1

‖x − y‖dy. (3)

The assumption of the domain being unbounded is reasonable if turbulent structures
are discussed that are relatively small compared to their distance to thewall. In case of
getting closer to a wall a second convolution that incorporates the pressure boundary
condition needs to be added to the solution. The purpose of the current work is to
introduce the idea that pressure can be seen as a convolution of the fundamental
solution of the Poisson equation with−2Q. This means that the pressure can be seen
as a filtered version of the Q-field with the fundamental solution as filter kernel.
Hence, this assumption is acceptable for the initial observations in this work.

3 Results and Discussion

In the outer region of the TBL the pressure field aligns well with the vortical turbulent
structures as visually supported through Fig. 1, left. This arrangement is changed in
the near-wall region (Fig. 1, center, right) where the pressure iso-surfaces form a hull
around the turbulent structures, represented by the Q-criterion. This behaviour can
be explained by the pressure being a low-pass-filtered representation of the Q-field
as presented in (3). The pressure field represents dense clusters of single turbulent
structures, found in the near-wall region, as an enveloping larger structure. Further,
the pressure interacts visibly different with the wall than the velocity field. The
pressure structures create a clear foot at the wall, whereas the Q-structures do not
reach the wall.

This variation of alignment of the pressure and the Q-field across the TBL is
well quantified by the p.d.f. of the alignment between the gradient of the second

Fig. 1 Turbulent structures above the wall (dark grey) in a TBL are shown via iso-surfaces of
different levels of Q (shades of red) and pressure (shades of blue). The left image (y+ ≈ 115 − 370)
shows regions further away from the wall whereas the two images on the right (y+ ≈ 0 − 80) show
regions closer to the wall
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Fig. 2 Left P.d.f.s of the alignment of ∇ p and ∇Q for different wall-normal locations. Right Cross
sections of a schematic vortex shown via an iso-line of Q (red dashed) and p (blue dashed). The
centrifugal force acting on a fluid particle following the iso-lines is shown as red arrows and the
force applied by the pressure is shown as blue arrows. Right/top The vortex is free of any boundary
conditions. Right/bottom The vortex’ pressure field is affected by the wall. The most unstable
location is marked with a spark

velocity gradient tensor invariant Q and the pressure gradient (Fig. 2, left). Whereas
both vectors prefer a negative parallel alignment above y+ = 20 (neglecting some
discrepancies due to intermittency in the outer layer), they transition towards a pre-
ferred perpendicular alignment when approaching the wall. We know from literature
(e.g. [7]), that vortices have high values of Q in their core whereas the fluid is
swirling around this local maximum of Q. From the filtered character of pressure
(3) one can see that the vortex core carries a local pressure minimum as well, as
previously reported in the literature (e.g. [8]). In Fig. (2, right) the cross section of
a schematic vortex is shown via iso-lines of pressure as well as iso-lines of Q. The
red arrows (in direction of −∇Q) represent the centrifugal forces that are caused
by the vortical motion represented by Q and the blue arrows (in direction −∇ p)
represent the pressure forces due to the pressure minimum in the vortex core. In
the top image, one can see the forces that act in a vortex free from boundaries and
interactions. Going back to the particle idea we know that a moving particle does not
stay on a circular movement without forces acting on it. Equation (1) states that the
pressure force (blue) will act against the centrifugal force (red) and therefore keeps
the particle on its circular trajectory. This schematic view of vortices illustrates that
the pressure forces stabilize rotational motions and allow vortices to exist. On the
other hand, if we move towards a wall or in clusters of structures then we have shown
that this stabilising alignment of the pressure with the vortex is disturbed. This leads
to an enhanced breakup of vortices as illustrated in the bottom schematic, and was
previously [5] detected in the present TBL data.
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Fig. 3 Left Conditional averages of the energy transfer between large spatial scales and small spatial
scales based on a filter width of Δ+ = 30 at y+ ≈ 339, conditioned with the respective QR-states.
Right/top Schematic description of the backscatter mechanismwith Vortex tube (black). The arrows
indicate the stretching direction (yellow) and the direction of the pressure force (blue). Right/bottom
Q-iso-surfaces above a wall (grey) colored with energy transfer: LS to SS (red) versus SS to LS
(blue)

Another feature of turbulence that is influenced by pressure forces is a backscatter
mechanism that transfers energy, opposite to the direction of the net energy cascade,
from smaller spatial scales to larger spatial scales. Such a mechanism was identified
in the present TBL data by splitting the spatial scales into large scales (LS) and
small scales (SS) using a Gaussian filter with a filter width of Δ+ = 30, scaled with
wall-units. By conditioning the resulting energy transfer T between the separated
scales with the second and third velocity gradient tensor invariant Q and R (Fig. 3,
left) a mean energy transfer from SS to LS can be found for a part of the structures in
the regime of unstable vortical structures. This supports the suggestion made by [5]
that a potential backscatter mechanism can be found in this characteristic regime. A
definition of the structure types in the QR-space can be found in [6].

A hypothesis on how this backscatter mechanism physically acts is illustrated in
Fig. (3, right/top). The stretching mechanism that vortices are exposed to becomes
unstable after acting long enough on the vortex. In unstable regions the vortex is
not stretched further and the rotation rate decays (commonly described as vortex
breakup). The reduced rotation results in a local imbalance of pressure force and
centrifugal force at the breakup location. Therefore the still intact parts of the vortex
attract fluid due to the pressure forces caused by the remaining pressure minimum
in the core now being exposed to less rotational fluid that does not counteract this
force. This entrains fluid into the vortex core causing the formation of bulky ends
and hence larger spatial scale. Although a rigorous validation of this hypothesis is
still outstanding, a visual investigation of vortical structures in a TBL supports this
mechanism. In Fig. (3, right/bottom) a vortical structure is captured during the appar-
ent breakup process. The contours indicate that while the intact parts of the structure
transfer energy from LS to SS, the part going through the breakup mechanism trans-
fers energy from SS to LS and, hence, reflects a backscatter mechanism.
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4 Conclusions

This work has highlighted some significant aspects of the role of pressure in turbu-
lence dynamics and the cascading process in a wall-bounded flow.

The destabilising effect that the presence of a wall has on vortical structures are
explained by the miss-alignment of pressure and centrifugal forces within the struc-
tures. As potential reasons for this miss-alignment the dense clustering of structures
in the near-wall region as well as tendency of the pressure to interact with the wall
in a different way than the velocity field were highlighted.

Abackscattermechanism that transfers energy from smaller spatial scales to larger
spatial scales has been identified through a characteristic decomposition within the
regime of unstable vortical structures. It is hypothesised that this backscatter is caused
by the formation of bulky ends in those structures undergoing a breakup process. This
process is explained via the pressure balances in the vortical structures. The hypoth-
esis is confirmed visually, however, a rigorous elaboration remains outstanding.

As a general conclusion we want to emphasize that this work has highlighted that
the understanding of the behaviour and the role of pressure significantly contribute
to the understanding of turbulence. Further, it is believed that the findings for the
near-wall region can be be transferred to a good extend to other flow topologies with
densely packed turbulence such as strong free shear layers.
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Lagrangian Intermittency Based on an
Ensemble of Gaussian Velocity Time Series

Laura J. Lukassen and Michael Wilczek

Abstract We show that Lagrangian intermittency in fully developed turbulence
can be captured in terms of an ensemble of Gaussian velocity time series. This
is achieved by letting the individual ensemble members vary with respect to their
correlation function.We briefly discuss how this can be analytically captured in terms
of a suitably defined characteristic functional. Moreover, we present a numerical
implementation of the ensemble showing a continuous change from Gaussian to
non-Gaussian increment distributions for a decreasing time lag. In an outlook we
show first results on the application to data from direct numerical simulation.

1 Introduction

Studying Lagrangian tracer particles in homogeneous isotropic turbulence gives fun-
damental insight into the nature of turbulent flows as tracer particles naturally sample
the spatio-temporal complexity of fully developed turbulence. Among the simplest
statistical measures to quantify this complexity are probability density functions
(PDFs) of velocity increments. These PDFs display intermittency, i.e. they transition
from Gaussian behavior at large time lags to non-Gaussian behavior with decreasing
time lags. It is a central goal of statistical turbulence theory to explain this phe-
nomenon. To fully capture the multiscale statistics of turbulence, however, more
complex statistical quantities are needed. This, for example, includes joint statis-
tics of Lagrangian increment statistics on various time scales and joint statistics of
acceleration and velocity increments.

It is well known that dimensional analysis in the spirit of Kolmogorov 1941 phe-
nomenology [1, 2] fails to capture Lagrangian intermittency. Under the assumption
that the statistics depend only on the average rate of kinetic energy dissipation in the
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inertial range, the velocity increment PDFs turn out to be self-similar in scale. This
self-similarity can be broken by replacing the mean dissipation rate in the theory
with a fluctuating dissipation rate, which has been proposed by Kolmogorov and
Oboukhov [3, 4] in terms of the refined similarity hypothesis. Originally this theory,
nowadays known as K62, was derived for Eulerian statistics, but can also be applied
to Lagrangian statistics, cf. [5]. Another successful approach in capturing Lagrangian
intermittency is the multifractal framework [6, 7]. In its probabilistic interpretation,
anomalous scaling of structure functions is obtained by time-lag dependent super-
position of scaling laws.

In this paper, we present a general approach based on the characteristic functional
which contains all statistical information along a trajectory and in this sense pro-
vides any joint statistics of interest. Since Gaussian characteristic functionals can be
treated analytically, we generate non-Gaussian ensemble statistics by superimpos-
ing Gaussian characteristic functionals. From a conceptual point of view, our model
may be regarded as a generalization of the above-mentioned K62 and multifractal
approach as well as the work by Castaing et al. [8] who superimposedGaussian PDFs
with varying variance. In Sect. 2, an introduction to our model is given. In Sect. 3,
we show through a numerical evaluation of an ensemble of Gaussian trajectories
that this model is capable of producing intermittency. This proof of concept is the
essential part of this paper. As a next step, the model will be applied to turbulence
data from direct numerical simulation (DNS), preliminary results are presented in
Sect. 4.

2 An Ensemble of Gaussian Characteristic Functionals

The complete statistical information along a Lagrangian trajectory can be described
in terms of the characteristic functional

ϕ[α] =
〈
exp

⎛
⎝i

∞∫
−∞

dtα(t)u(t)

⎞
⎠

〉
, (1)

where the angular brackets denote an ensemble average. Equation (1) represents the
inverse Fourier transform of the probability density functional of u(t). Here, u(t) is
the velocity time series along a Lagrangian trajectory, and α(t) denotes the corre-
sponding Fourier transform variable, which also is a function of time. While it is not
possible to compute the average in (1) in the general case analytically, there exists an
analytical expression for a Gaussian u(t) [9]. Since the Lagrangian increment statis-
tics are highly non-Gaussian for small time lags, Gaussian characteristic functionals
cannot be used directly. Therefore, we consider an ensemble of Gaussian trajectories
which differ with respect to the dissipation rate ε. The underlying assumption is that
the velocity statistics of particles traversing regions of varying dissipation rates in
the flow field can be modeled by the velocity statistics of an ensemble of particles
where each particle travels through regions with a prescribed dissipation rate and
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simple Gaussian statistics. The characteristic functional of an ensemble of Gaussian
u(t) takes the form

ϕ[α] =
∞∫
0

dε P(ε)ϕG
ε [α] =

∞∫
0

dε P(ε) exp

⎛
⎝−1

2

∞∫
−∞

dt

∞∫
−∞

dt ′α(t)〈u(t)u(t ′)〉εα(t ′)

⎞
⎠ . (2)

The angular brackets with the subscript ε indicate an average over the respective
ensemble members (i.e. trajectories) with identical dissipation rates. It is assumed
that the mean velocity of the respective ensemble members is zero, i.e. 〈u(t)〉ε = 0.
The characteristic functional in (2) is determinedby thedistribution for the dissipation
rate P(ε) and the velocity correlation function 〈u(t)u(t ′)〉ε.

In order to ensure that the ensemble one-time velocity statistics preserveGaussian-
ity, we construct the ensemble such that each ensemble member has the same second
moment of velocity 〈u(t)2〉. By an appropriate choice of α, the characteristic func-
tional (2) can be projected to yield the desired joint statistics or multipoint statistics.
For example, one-time velocity statistics are derived by the choiceα(t) = α1δ(t − t1)
and evaluating the integrals in (2). This turns the characteristic functional into a char-
acteristic function ϕ(α1). Since the second moment of velocity is by construction
independent of ε, the ensemble velocity statistics are Gaussian:

ϕ(α1) =
∞∫
0

dε P(ε) exp

(
−1

2
〈u(t1)

2〉ε α2
1

)
= exp

(
−1

2
〈u(t1)

2〉α2
1

)
. (3)

In contrast, the second-ordermoments of acceleration and increment statistics explic-
itly depend on ε. With the choices α(t) = −β1

d
dt δ(t − t1) for acceleration statis-

tics and α(t) = μ1δ(t − t2) − μ1δ(t − t1) for increment statistics, the characteristic
functional (2) becomes the characteristic function for the acceleration and the velocity
increment, respectively:

ϕ(β1) =
∞∫
0

dε P(ε) exp

(
−1

2

〈(
d

dt1
u(t1)

)2
〉

ε

β2
1

)
, (4)

ϕ(μ1) =
∞∫
0

dε P(ε) exp

(
−1

2
〈ν2〉ε(τ ) μ2

1

)
, (5)

with the velocity increment v(τ ) = u(t1 + τ) − u(t1) and the time lag τ = t2 − t1.
Even though the respective ensemblemembers showGaussian acceleration and incre-
ment statistics, the ensemble statistics can becomenon-Gaussian by the superposition
of the Gaussian ensemble members with varying dissipation rates.

All time-lag dependence in (5) is contained in the second moment of the velocity
increment,while P(ε)does not dependon the time lag.Thismarks a difference toK62
and the multifractal approach where the distribution for the dissipation rate averaged
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over the time lag (K62), or the distribution for the scaling exponents (multifractal
approach), explicitly depends on the time lag. More detailed information on the
analytical background of superimposing Gaussian characteristic functionals can be
found in [10].

3 Numerical Implementation of an Ensemble of Gaussian
Trajectories

As we have seen throughout the previous section, intermittent increment statistics
can be constructed by an ensemble of Gaussian characteristic functionals with a dis-
sipation rate assigned to each ensemble member and subsequent averaging over a
distribution of dissipation rates.Here,we numerically create an ensemble ofGaussian
velocity trajectories uε(t) and evaluate velocity increment PDFs directly from the
trajectories as a proof of concept. By a superposition of Fourier modes with random
phases, we generate approximately Gaussian trajectories, cf. [11]. Since the veloc-
ity correlation 〈u(t)u(t ′)〉ε is given by the inverse Fourier transform of the energy
spectrum, we directly model the energy spectrum to determine the amplitude of the
Fourier coefficients. For each ensemble member, a dissipation rate ε is drawn from
a distribution P(ε). In the context of the K62 theory, a log-normal distribution for
the averaged dissipation rate has been proposed. Also for our model a log-normal
distribution is a plausible choice for the distribution for the kinetic energy dissipa-
tion rate. For the present numerical evaluation, we chose a distribution for ln(ε)with
the mean μln(ε) = −0.25 and the standard deviation σln(ε) = 1.3. Consequently, the
coefficients of the log-normal distribution do not depend on the time lag here. The
range for ε in the numerical implementation is the interval [0.05, 50] which covers
98.2% of the probability distribution. The ensemble consists of 200 members, the
number of Fourier modes is n = 500,000. Throughout the numerical implementation,
all variables and parameters are treated in a non-dimensionalized form. The periodic
domain has a size of T = 1 000π . Then, the velocity for a trajectory in the ensemble
is given by

uε(tl) =
n/2∑

k=−n/2+1

√
Eε(ω|k|)

2π

T
exp(iϕk) exp (iωk tl) , (6)

with ωk = 2πk
T , tl = l Tn and ϕk = −ϕ−k uniformly distributed in the interval [0, 2π ].

In order to guarantee a zeromean velocity, ϕ0 is randomly set to 0 orπ . In Lagrangian
turbulence it is observed that the velocity correlation function decays exponentially
which corresponds to a Lorentzian spectrum, cf. [12, 13]. We model the spectrum
including a viscous cut-off as

Eε(ωk) = 1

π

TL(ε)

1 + (ωkTL(ε))
2 〈u2〉 Aε exp

(−ωkτη(ε)
)
. (7)
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Fig. 1 Left Standardized PDFs for velocity increments obtained from the ensemble of Gaussian
trajectories. The curves are shifted vertically for clarity. The time lags are increasing from top
to bottom: {0.27, 1.07, 4.28, 17.12, 68.49, 273.96} τη〈ε〉. The Kolmogorov time scale τη〈ε〉 is
determined through the expectation value of the log-normally distributed ε. The dashed bottom
curve is a standardized Gaussian PDF as a reference which overlies the PDF for the largest time
lag. Right Comparison of standardized velocity increment PDFs from DNS data (solid lines) and
preliminary results of an evaluation of equation (8) (dashed lines) with an optimized P(ε). P(ε)

used in this example is chosen as a log-normal distribution where the mean μln(ε) and the standard
deviation σln(ε) of ln(ε) are fitted for a small (top curve) and a large (bottom curve) time lag yielding
μln(ε) = −2.8 and σln(ε) = 1.03. The curves are shifted vertically for clarity. The graphs are created
with matplotlib [14]

The factor Aε is determined such that the kinetic energy
∫ ∞
0 Eε(ω)dω = 1

2 〈u2〉 is
kept fixed to one for each ensemble member. The choice of ε determines the integral
time scale which we here define as TL(ε) = 1

2
〈u2〉
ε

and the Kolmogorov time scale
τη = (ν/ε)1/2 where we choose ν = 0.001.

Once the ensemble is numerically generated, arbitrary statistics can be obtained.
As mentioned above, we are interested in velocity increment PDFs as an example.
Equation (6) is used to compute velocity increments via vε(τ ) = uε(t + τ) − uε(t).
Wepresent the velocity increment PDFs in Fig. 1 on the leftwhich shows a continuous
transition from a Gaussian PDF for large time lags to a highly non-Gaussian PDF
for smaller time lags. This demonstrates that it is in principle possible to generate
intermittent increment statistics by an ensemble of Gaussian trajectories with varying
dissipation rates.

4 Outlook: Validation with DNS Results

The numerical proof of concept in Sect. 3 shows that an ensemble of Gaussian tra-
jectories captures intermittency qualitatively by model assumptions about the forms
of the underlying spectra and the distribution P(ε). The application to turbulence
DNS data is work in progress. In contrast to the procedure presented in the previous
section,we here take the Fourier transformof (5) as a starting point. Here, the velocity
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increment PDF is given by a superposition ofGaussian increment distributionswhich
vary in terms of their variances:

f (ν; τ) =
∞∫
0

dε P(ε)
1√

2π〈v2〉ε(τ )
exp

(
− v2

2〈v2〉ε(τ )

)
. (8)

We choose a lognormal distribution for P(ε) and obtain the mean and the standard
deviation of ln(ε) via an optimization procedure. The goal of the optimization pro-
cedure is to determine the parameters of P(ε) in (8) for a small and a large time lag
as a best fit to the respective increment distributions from DNS data.

To generate a test data set, a standard pseudo-spectral DNS at Reλ = 109 was run
in a quasi-stationary regime with a resolution of kMη ≈ 2 where kM is the maximum
wavenumber and η is the Kolmogorov length. 150,000 particles were placed in this
flow. The velocity of the particles was sampled along their trajectories. Lagrangian
increment statistics were then estimated from the DNS data.

Figure 1 on the right shows preliminary results for the comparison of the DNS
data to the superposition of Gaussian increment distributions which are weighted
according to an optimized log-normal distribution P(ε). The approach is in general
capable of reproducing the velocity increment PDF for a small and a large time
lag. We are currently extending the approach to represent Lagrangian increment
statistics across the full range of temporal scales and plan to explore the model with
respect to more general statistical quantities including joint statistics of velocities
and acceleration.
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Convection Velocity Variation as a Result
of Amplitude Modulation Phenomena

Artur Dróżdż and Witold Elsner

Abstract The paper discusses the method of convection velocity estimation in
turbulent boundary layer using its relationship with amplitude modulation mech-
anism. To verify this method the two-point correlation measurements using hot-wire
techniquewas applied in strong adverse pressure gradient flow for twoReynolds num-
bers. Additionally, streamwise velocity profiles weremeasured in the same locations.
It was shown that the changes in the convection velocity due to Reynolds number
and pressure gradient results from amplitude modulation mechanism. The convec-
tion velocity in the strong adverse pressure gradient region can be two times higher
than the mean velocity in the buffer layer.

1 Introduction

For the understanding physics of the turbulent boundary layer (TBL) the study of
the convection velocityUC of vortical structures is extremely important. It is known
that the transport velocity depends on the size of the individual structure, the stage
of their development and their location in the boundary layer [1]. The most com-
mon published research focuses on the study of small scale motion in zero pressure
gradient (ZPG) TBL [1–3]. Recent studies of Dróżdż and Elsner [4] indicate that

the UC in ZPG flow can be estimated using cross product term 3u+
L u

+2
S /u+2

3/2
of

decomposed skewness factor (S f ) calculated according to Mathis et al. [5], where
subscripts L and S denote the large and the small-scale components of the stream-
wise velocity fluctuations u, respectively. This term is also alternative measure of
amplitude modulation [5] resulting from the large-scale motion (LSM). As the LSM
becomes increasingly energetic at higher Reynolds numbers or with pressure gradi-
ent, their interaction with the inner small-scale motion is also enhanced [6–8]. This
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34 A. Dróżdż and W. Elsner

Table 1 Parameters of analyzed TBL profiles

Symbol PG case Re H uτ [m/s] Δx+ Δx+
max

� ZPG 6400 1.35 0.72 – –

◦ ZPG 10,200 1.32 0.37 – –

� APG 10,900 1.81 0.22 10 60

� APG 18,100 1.62 0.43 40 240

was confirmed by the decrease of S f in the flow subjected to favourable pressure
gradient (FPG) conditions and an adequate rise in the flow subjected to adverse pres-
sure gradient (APG) conditions, which was shown by Harun et al. [7]. Dróżdż [8]
suggests that because of hardly observed high and low speed regions the production
of small-scale turbulence in FPG can be considered rather as a random process. On
the other hand in the APG, the LSM enhances the production of the small-scale
turbulence, although only in high-speed regions. Therefore, it can be expected that
small-scale structures in APG flow have higher UC than the mean velocity [8].

In order to estimate the convection velocity US the following relation, based on
amplitude modulation skewness factor term, was proposed [4]:

U+
S = U+ + 3u+

L u
+2
S

u+2
3/2 C+ (1)

where U+ is the non-dimensional mean velocity and C+ is the non-dimensional
scale. The formula of convection velocity estimation using the proposed relation
was introduced and verified in the TBL under ZPG conditions. It was concluded that
the change of small-scale structuresUC can be the result of the amplitudemodulation
mechanism.

In the paper the verification of the proposed formula (1) using twopoint correlation
method in strong APG flows was presented. This was done by employing two hot-
wire probes separated by a given distance in the near wall region (see Table 1).

2 Test Section and Methodology

2.1 Test Section

The data comes from the experiment performed in the open circuit wind tunnel shown
in Fig. 1, where the TBL was developed along the flat plate, which was 6870 mm
long. The inlet rectangular channel with a length of 5.035 m located upstream the
proper test section has the triangular corner inserts to control corner vortices and two
pairs of suction gaps aimed to reduce boundary layers on the side walls. A slight
inclination of the upper wall helped to keep zero pressure gradient (ZPG) conditions
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Fig. 1 Test section geometry with correlation probes setup

at the inlet. The specially designed test section located at the end of the wind-tunnel
(see Fig. 1) is equipped with perforated wall. By playing with the suction flux it is
possible to generate strong pressure gradient conditions leading to separation on the
lower flat plate. The static pressure in the test section is increased by the throttling
on the outlet of the test section.

The velocity measurements were performed with hot-wire anemometry CCC
developed by Polish Academy of Science in Krakow. The analysis was conducted
basedonmeasurements of a single hot-wire probewith diameterd = 3µmand length
l = 0.4 mm (modified Dantec Dynamics 55P31). The acquisition was maintained at
frequency 25 kHz with minimum 30 s sampling records. For two point correlation
the pair of the same probes was used.

To have the verified the reference friction velocity uτ along the flow the fringe skin
friction (FSF) techniquewas also applied. The facility is equippedwith the computer-
controlled traversing system (in streamwise x and wall-normal y direction). The
traverse carriage was driven over the maximum wall displacement of 180 mm by a
servo motor with the step equals 0.01 mm and uncertainty of the drive step equals
0.001 mm. In the streamwise direction the drive step was equal 0.375 mm with the
uncertainty of the drive step equals 0.0375 mm.

2.2 Convection Velocity Estimation

The two-point correlation method employing two single hot-wire probes was used in
the present work. During the measurements the first probe was plugged in the wall.
The other probe was situated above the first one and shifted downstream the flow
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(see Fig. 1). The averaged value of UC was calculated from six streamwise probes
distances Δx on to the maximum probe distance Δxmax shown in Table 1. The
output voltage from two hot-wires were sampled simultaneously and the time shift
was obtained from conditionally averaged velocity signals processed using Wavelet
TransformAnalysis (WTA). Detection of the most dominant structure in the velocity
signal (setting properly time scale of the wavelet) gives the good representation of the
mean convection velocity. The analysis of velocity signal measured by downstream
traversing probe using first derivative of Gaussian function was performed. In order
to detect the accelerations and decelerations events in the signal the threshold level
was applied on the transformated signal. Local extrema of the transform was used
as detection time, while the maximum or minimum of wavelet transform was the
criterion splitting the rapid acceleration or the rapid deceleration detections. The
scale of the wavelet a was related to the scale of the dominant structure for which the
maximum number of detected events N occurs. The criterion of detection threshold
value applied on the wavelet transform was varied in order to obtain the high number
of detections (N > 4000). The high number of detections ensured the smooth phase-
averaged waveforms captured by the traversing probe which was the final result of
the procedure. It was averaged on the time detection of the acceleration (+) and
deceleration (−) events detected in velocity signal from downstream probe using the
following formula:

〈u(τ )〉± = 1

N±

N±∑

i=1

u(t±i + τ) (2)

where t is the detection time for i th detection, while τ is the phase time.
The Δτ shifts of phase-averaged events on stationary probe for consecutive Δx

shifts of traversing probe was used to calculate UC . The advantage of the method is
the undisturbed measurements on both probes since the traversing probe was always
downstream the plugged probe, which was also very close to the wall. Because
the number of accelerations and deceleration detections was different the weighted
averaging, depending on the number of positive and negative events, was introduce
in order to calculate mean convection velocity value.

3 Results

The convection velocity obtained from two-point correlation measurements was
used to verify the US calculated using cross-product term of the skewness factor,

(3u+
L u

+2
S /u+2

3/2
), where the cut-off timescale separating large- and small-scale sig-

nals was set on 200 viscous units. In order to verify the universality of the constant
C+ = 16.34 two Reynolds number in ZPG and in strong APG conditions were con-
sidered (Table 1). The pressure gradient parameter β = − δ∗U∞

u2τ

dU∞
dx = 17, where δ∗

is displacement thickness, and U∞ is free stream velocity.
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Fig. 2 Estimated convection
velocities US and literature
data values of UC for ZPG
conditions for analyzed cases
(Table 1)

Figure 2 presents the estimated profiles of UC (open points) using (1) in ZPG
flow. The profiles were compared to mean velocity profile (thin black line) and to
the data of Krogstad et al. [1] and Österlund [2]. It can be noticed that estimated UC

profiles are in satisfactory agreement with the literature data. The dependence ofU+
C

with Reynolds number is also observed as the amplitude modulation increases with
Reynolds number.

The estimated convection velocity for APG were compared with the measured
convection velocity using two-point correlation method and shown in Fig. 3. The
last data are shown with the error bars related to the uncertainty of the streamwise
traversing system. Additionally, the mean velocity profiles (black line) and log-law
profile (dotted line) were shown. As can be seen results agree well with the profiles

(a) (b)

Fig. 3 Estimated convection velocities US and measured UC for APG: Reτ ≈ 10,900 (a), Reτ ≈
18,100 (b)
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obtained according to (1). The convection velocity in the strong APG region can be
two times higher than the mean velocity in the buffer layer. It can be also noticed
that with the increase of Reynolds number the UC distribution is similar to the one
from ZPG conditions.

4 Conclusions

The convection velocity estimation based on the measure of amplitude modulation
was verified with the convection velocity obtained from two-point correlation in
the APG conditions. It was shown that the changes in the convection velocity due
to Reynolds number or pressure gradient result from amplitude modulation mech-
anism. Distributions of the convection velocity based on the measure of amplitude
modulation for both Reynolds numbers are in satisfactory agreement with the con-
vection velocity based on two-point correlation, which confirms the correctness of
C+ value estimated for ZPG conditions. The convection velocity in the strong APG
region can be two times higher than the mean velocity in the buffer layer.
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On the Turbulent Boundary Layer
with Wall Suction

Marco Ferro, Bengt E.G. Fallenius and Jens H.M. Fransson

Abstract An experimental analysis of the turbulent boundary layer subject to
wall-normal suction is carried out on a 6.4 m long perforated plate by means of
hot-wire anemometry. For this type of flow the scaling of the mean velocity and of
the other statistical quantities remains an open question and the amount of experi-
mental data available, especially regarding the fluctuating velocity components, is
scarce. The longer streamwise length of the present experimental apparatus compared
to the one used in the previous studies allows us to better investigate the development
of the boundary layer: it is shown that a turbulent asymptotic state with a constant
boundary-layer thickness, analogously to what happens for the laminar state, can be
closely approached experimentally and that its mean velocity profile exhibit a clear
logarithmic region.

1 Introduction

Wall-normal suction and blowing is a relative simple and very effective technique to
modify the behavior of a boundary layer. Suction has been used from the earliest days
of boundary-layer studies to delay boundary-layer separation [1], while blowing has
been explored as a possible technique to reduce friction-drag [2] and is commonly
used for cooling purposes on surfaces exposed to high temperatures such as gas-
turbine blades [3]. Despite the practical interests of boundary layerswithwall-normal
mass transfer and the numerous investigations on the topic, disagreements on the
scaling of the mean velocity profile and of the other velocity statistics persist even
for the simplified case of zero pressure gradient boundary-layer flow with uniform
blowingor suction. This paper focuses on the case of a two-dimensional zero-pressure
gradient flat-plate boundary layer with uniform wall-normal suction applied at the
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wall. Considering the laminar regime of such a flow, it has been experimentally
shown [4] that the boundary layer reaches an asymptotic state, invariant along the
streamwise direction. For this asymptotic state an analytical solution of the Navier–
Stokes equations exists and takes the exponential form

U/U∞ = 1 − eV0 y/ν, (1)

where V0 < 0 is the suction velocity, y the wall-normal coordinate,U the streamwise
velocity and ν the kinematic viscosity of the fluid.

The possibility of obtaining a turbulent asymptotic state with a constant boundary-
layer thickness, analogously to what happens for the laminar state, requires further
investigation since contradictory results can be found in the literature:Dutton [5] con-
cluded that there is just one suction rate Γ = 1000 · V0/U∞ for which an asymptotic
state can be observed, Black and Sarnecki [6] proposed that for every suction rate
(small enough to avoid relaminarization) an asymptotic state with Reθ = f (Γ ) can
be achieved, while Tennekes [7] suggested that no asymptotic state can be obtained
for suction rates lower than a certain threshold. More recently, a study by Bobke
et al. [8] presented large-eddy simulations results on turbulent asymptotic suction
boundary layers and raised doubts on the possibility of obtaining the asymptotic state
in a practically realizable experiment.

Different scalings of themean velocity profile have been proposed for the turbulent
boundary layerwith suction.As any other turbulent boundary layer flow, the turbulent
suction boundary layer can be divided in two regions, a viscous sublayer where
the viscous stress are prevalent and a turbulent layer where the Reynolds stresses
dominates. The asymptotic description of the viscous sublayer can be readily derived
as:

U+ = 1

V+
0

(
ey

+V+
0 − 1

)
, (2)

where the superscript + indicates normalization in viscous units. For the turbulent
region, instead, two different scalings have been proposed.

A bi-logarithmic law where the streamwise velocity is proportional to the squared
logarithm of the wall-normal coordinate has been derived using Prandtl’s momentum
transfer theory by a number of authors [6, 9–12] and more recently via analytical
methods [13]. The bi-logarithmic law can be expressed in the form

2

V+
0

(√
1 +U+V+

0 − 1

)
= 1

κ
ln y+ + B, (3)

the L.H.S. of which is sometimes referred to as pseudo-velocity. There is no agree-
ment on the numerical values of the parameters κ and B, which in general should be
considered function of the suction velocity, nevertheless a common choice among the
supporter of the bi-logarithmic scaling is to set κ to the value of the non-transpired
case.
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Other authors [5, 7, 8, 14] have instead proposed a logarithmic dependency of
the streamwise velocity on the wall-normal coordinate, analogously to what is found
for non-transpired boundary layers

U+ = A ln y+ + B, (4)

with the slope A and the intercept B of the line dependent on the suction level.

2 Experimental Setup and Data Reduction

The experiments were conducted in the MTL wind tunnel of the Odqvist Laboratory
of KTH Royal Institute of Technology. The experimental setup consists in a 6.4 m
long flat-plate, with a top surface made of titanium sheets with 60 µm laser-drilled
holes with centre-to-centre distance of 0.75 mm. The flat plate is installed in the
wind tunnel such that the test surface constitutes the wind-tunnel bottom floor. A
bleed slot between the wind-tunnel contraction and the plate leading edge allows the
development of a fresh boundary layer on the test plate. The flow is tripped with a
series of V-shaped embossing tapes, and is let develop on a non-transpired surface
for a certain downstream distance. After this initial length, uniform wall suction is
applied along the surface in the downstream direction. The streamwise component
of velocity has been measured with single wire hot-wire probes with an expected
accuracy of ±1%. The suction velocity is obtained measuring the pressure drop
across the sheet in combination with permeability measurement. The accuracy on
the permeability calibration and hence on the suction velocity is ±2% giving an
expected accuracy on the suction rate of ±3%. For the cases without suction, the
friction velocity uτ , used to normalize in viscous units, has been obtained from a fit
of the near-wall mean velocity data to the composite profile proposed in [15]. For
all the suction cases, instead, uτ has been obtained from Von-Kármán momentum
integral modified for mass-transfer

(
uτ

U∞

)2

= C f

2
= dθ

dx
− V0

U∞
, (5)

where dθ/dx was obtained from a second order polynomial fit through the measured
momentum thicknesses. Since for the reported experiments thefirst termof theR.H.S.
of (5) is at least one order of magnitude smaller than the second term, C f has the
same uncertainty as the suction rate.
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Fig. 1 Momentum-thickness Reθ evolution along the streamwise coordinate Rex for: a different
suction ratio and matching Reθs; bmatching suction ratio but different Reθs. Dashed line empirical
relation Reθ = f (Rex ) for canonical ZPG TBL from [16]

3 Results and Discussion

The evolution of the momentum thickness Reθ along the streamwise coordinate Rex
for different suction rates is illustrated in Fig. 1a. Reθs represents the boundary-layer
momentum thickness at the position where the suction starts to be applied. It should
be noted that for the largest suction rate (Γ = 4.21) relaminarization is observed.
For Γ = 3.38 the max-min variation around the mean of the measured momentum
thicknesses is limited to ±10% along the whole measurement domain, reducing to
±2% if just the last three measurement locations are considered (Δx ≈ 65 δ95). Even
though these observations suggest that a turbulent asymptotic state has been obtained,
caution should be exercised: Fig. 2, showing the mean and r.m.s. streamwise velocity
profiles for Γ = 3.38 at different streamwise position, illustrates that the boundary
layer undergoes a slow evolution along the streamwise direction at almost constant
momentum thickness. It is just towards the end of the domain that a streamwise
invariant mean velocity profile is obtained.

Figure 1b shows the effect of a variation of the non-transpired entry length for con-
stant free-stream velocity and suction rate. We notice how the boundary layer seems
to approach different thicknesses for different entry lengths, as already reported in
[5]. Even though a dependency of the asymptotic state might be discerned, additional
measurement are required prior to any firm conclusion.

Figure 3 shows turbulent suction profiles obtained at a fixed streamwise location
and different suction rates. We observe that a large portion of the profile exhibit a
clear logarithmic region for the mean streamwise velocity. For Γ = 3.00 and 3.38
the boundary layer profile do not present a wake region, and the logarithmic region
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Fig. 2 Evolution of the
inner-scaled mean and r.m.s.
streamwise velocity profile
along the streamwise
direction. Γ = 3.38 and
Reθs = 2600. The profile at
Rex = 1.25 × 106 is
measured on the
non-transpired initial length
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appears to extend almost until the free-stream, while for Γ = 2.19 a wake region
where the mean velocity departs from its logarithmic behavior can be observed. It
should anyway be noticed that for Γ = 2.19 the momentum thickness is monotoni-
cally increasing in the measurement domain, i.e. the boundary layer is still far from
its asymptotic state.

4 Conclusion and Outlook

Preliminary measurements on a newly built apparatus for studies on boundary layers
with mass transfer suggest that a turbulent asymptotic boundary layer state can be
experimentally obtained. The asymptotic profiles of mean streamwise velocity are
characterized by a clear logarithmic region extending almost until the free stream,
i.e. without a wake region. In order to assess the influence of the initial conditions
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on the asymptotic state and the dependency on the suction rate of the log-region
parameters a larger dataset is required. Efforts in this sense have been initiated and
new experiments are currently ongoing.
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DNS of Couette Flows With Wall
Transpiration up to Reτ = 1000

Stefanie Kraheberger, Sergio Hoyas and Martin Oberlack

Abstract We present a new set of direct numerical simulation data of turbu-
lent plane Couette flow with constant wall-normal transpiration velocity V0, i.e.
permeable boundary conditions, such that there is blowing on the lower side and
suction on the upper. Hence, there is no net change in flux to preserve periodic
boundary conditions in streamwise direction. Simulations were performed at
Reτ = 250, 500, 1000 with varying transpiration rates in the range of
V+
0 ≈ 0.03–0.07. Additionally, a classical Couette flow case at Reτ = 1000 is pre-

sented for comparison. Regarding the mean velocity profile, we found a consider-
ably extended logarithmic region with constant indicator function at κ = 0.77 as
transpiration increases. Turbulent intensities are observed to decrease with increas-
ing transpiration rate. Mean velocities and intensities collapse only in the cases
where the transpiration rate is kept constant, while they are largely insensitive to
friction Reynolds number variation. The statistics of these simulations can be down-
loaded from the webpage of the http://www.fdy.tu-darmstadt.de/fdy/fdyresearch/
dns/direkte_numerische_simulation.en.jsp Chair of Fluid Dynamics.

1 Introduction

Direct numerical simulation (DNS) is a fundamental tool for the study of wall turbu-
lence, and theonly available onewhenexperiments are difficult, or simply impossible,
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to perform. Focusing on turbulent channel flow, there has been a continuous increase
in Reynolds number of simulation of Poiseuille flows [4, 5]. Couette flows have
been less studied, as the study of this flow is much more computationally expen-
sive than turbulent Poiseuille flow. In the case of non-canonical boundary conditions
such as wall-normal transpiration, the bibliography for channel flow is considerably
reduced. For Poiseuille Transpiration Flow (PTF), the interest reader is referred to
[2]. In the present work, a new set of DNS of a plane CTF has been conducted
within a computational box of Lx = 8πh, Ly = 2h and Lz = 3πh, with spanwise
and streamwise periodicity. Details of the numerical procedure can be found in [1].
The streamwise, wall-normal, spanwise coordinates are x, y, and z and the corre-
sponding velocity components areU, V and W or, using index notation,Ui . Statis-
tically averaged quantities are denoted by an overbar, whereas fluctuating quantities
are denoted by lowercase letters, i.e. U = Ū + u. The flow is driven by a constant
velocity of the upper wall such that we have the boundary condition U (x, 0, z) = 0
andU (x, 2h, z) = Uw. The blowing-suction process is implemented through the fol-
lowing boundary condition at the two walls, V (x, 0, z) = V (x, 2h, z) = V0, where
V0 is the constant transpiration velocity. The nominal Reynolds numbers studied
are Reτ = 250, 500 and 1000, based on the mean friction velocity uτ and on the
channel half-width h. The mean friction velocity is defined as

uτ =
√
u2τb + u2τ s

2
, (1)

where the local friction velocities are uτb =
√

ν
∣∣∂yU ∣∣

b and uτ s =
√

ν
∣∣∂yU ∣∣

s . Here
and subsequently, subscripts b and s correspond to variables taken on the blowing
and the suction side, respectively.

Table 1 summarizes the parameters of the present simulations. The wall-normal
grid spacing is adjusted to keep the resolution at Δy = 1.5η and approximately
constant in terms of the local isotropicKolmogorov scaleη = (ν3/ε)1/4 for every Reτ

case. Inwall units,Δy+ varies from0.42 at thewall up toΔy+ � 7.2 at the centerline.
The resolution in Fourier Space for x and z is Δx+ ∼ 12.2 and Δz+ ∼ 6.13. The
case C00 is a pure turbulent Couette flow in a 16πh × 2h × 6πh computational
box used as a reference case. The transpiration velocity grows for the cases C02-
C20. Cases A15 and A12 were ran to study the effect of increasing Reτ keeping the
dimensionless parameters Uw/V0 and V+

0 approximately constant.
One of the measures used to asses that the code has run enough time to compute

accurate statistics, is to compute the total shear stress, which for the CTF reads
τb + V0Ū = ν dŪ

dy − uv, and, non-dimensionalized by uτb, yields

1 + V+b
0 Ū+b − dŪ+b

dy+b
+ uv+b = 0. (2)
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Table 1 Parameters of the simulations. Three different Reynolds numbers are given: Reτ is based
on the mean friction velocity and the channel half-width h and ReV0 is based on the transpiration
velocity V0 and h. The third column,Uw/V0, is the ratio between the velocity of the wallUw and V0,
which defines a Reynolds number usually employed for TASBL, see [3]. Next, the dimensionless
Uw and V0 are given in terms of the wall-velocity of the pure Couette case, UC00

w , and the mean
friction velocity uτ , respectively. Nx , Ny, Nz are the numbers of collocation points. The last column
denotes the computational time span during which flow statistics were taken. T is the computational
time spanned by those fields. Line shapes given in the second column are used to identify the cases
through all the figures of the paper

Case Line Reτ ReV0 Uw/V0 Uw/UC00
w V+

0 Nx Ny Nz UbT/Lx

C00 — ◦ — 1000 0 ∞ 1 0 6144 383 4608 6.1

C02 · · · · · · 1000 32 1243 1.382 0.0324 3072 383 2304 18.7

C05 – – – – 1000 50 685 1.907 0.0512 3072 383 2304 17.6

C10 — ·— 1000 60 492 2.741 0.0630 3072 383 2304 22.0

C20 1000 75 395 4.402 0.0710 3072 383 2304 19.05

A15 —�— 500 37.5 400 3.342 0.0703 1536 251 1152 24.9

A12 —�— 250 19 400 2.673 0.0695 768 251 576 60.6
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Fig. 1 Color online. Lines as in Table 1. a Deviation of (2) from zero given in error percentage of
the computation of the transpiration CXX cases. b Mean velocity profile scaled in outer (top-left,
Uw, h) and inner (bottom-right, uτs , y

+) scales. In both cases, the suction wall is on the left of the
figure. Blue thin solid line corresponds to viscous sublayer linear scaling law; red thin solid line
represents near-wall classical logarithmic scaling law

For the most unfavorable cases, i.e. Reτ = 1000, the verification can be seen in
Fig. 1a, where the deviation from 0 of the left hand side of (2) has been plotted. As
some of the terms of this equation can be large, the error has been normalized by the
absolute maximum value of the terms presented in (2). The deviation in all cases is
less than 0.08% of the maximum value.

Another important consequence of (2) is that evaluating it at the upper wall, we
obtain u2τ s − u2τb = V0Uw, linking friction velocities with the value of the transpira-
tion and the moving wall velocities.
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2 Statistics

The mean velocity profiles may be taken from Fig. 1b. This figure shows how tran-
spiration leads to the loss of symmetry even for small V+

0 , leading to increasingly
higher mean velocity gradients at the suction wall and lower gradients at the blowing
wall. In inner scaling, logarithmic behavior of the form Ū = 1/κ ln y+ + B can be
observed, though not at the classical coefficient of κ = 0.41 and B = 5.2 (e.g., see
[6]) but rather at κ = 0.77 and B = 8.6. For comparison, [3] observed κ = 0.89 and
B = 9.6 for a TASBL at U∞/V0 = 333.

Figure 2 shows the mean velocity profile in terms of the inverse of the
Kármán constant 1

κ
= y+s∂U+s/∂y+s . Apparently, with increasing transpiration

rate, the region where this term is almost constant increases drastically. In fact,
for the highest transpiration rate presented here, an approximately constant region
between y+s = 80 and y+s = 1000 can be observed. In the semi-logarithmic repre-
sentation Fig. 2b, it can be seen that the near-wall peak of the mean velocity in the
buffer layer is reduced as transpiration is increased. Mean velocities curves of the
second set of simulations (C20, A15 and A12) fall on top of each other, as the lower
Reynolds number cases A12 and A15 collapse onto the Reτ = 1000 curve. One of
the possible reasons for the greatly extended range of validity of the log-regionmight
be the value of uτ s which is ten times larger than the one for the classical Couette
flow.

In Fig. 3, the root-mean-square velocity fluctuations u′+
i = (

uiui
1/2)+

and uv′+ =
uv+ are presented for the different transpiration cases to be also compared to the pure
Couette case. It should bementioned that normalization is not trivial here, since there
are several velocity scales acting on the flow. Through the BC we have the external
scales Uw and V0, while internally we have the two friction velocities uτb and uτ s ,
which are all related by the global momentum balance u2τ s − u2τb = V0Uw.
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Fig. 2 Color online. Lines as in Table 1. Indicator function for the logarithmic layer, i.e. the inverse
of the von-Kármán-constant scaled with uτ s , a with dashed lines at κ = 0.41 and κ = 0.77, b in
semi-logarithmic plot. Suction wall is at the left side of the plots
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Fig. 3 Color online. Lines as in Table 1. Velocity fluctuation intensities of the CXX-cases a u′+s

and v′+s ; b w′+s and uv+s plotted over dimensionless distance from the suction wall in inner units
(y+s

s = (2 − y/h)uτ s/ν). c Velocity fluctuation intensities of C20 and the AXX-cases from top
to bottom u′+s , w′+s , v′+s and uv+s plotted over y+s

s . d Velocity fluctuation intensity u′+s of the
CXX-cases plotted over dimensional distance from the suction wall in outer units

As the effect of the suctionwall seems to dominate the flow rather than the blowing
effect, uτ s is chosen for normalization. The higher the transpiration rate V0, the lower
are the peaks observed for the fluctuations which can be taken from Fig. 3. In partic-
ular, uv+ is reduced considerably with increasing transpiration rate. For comparison,
uv+ ≈ −1 is observed in the channel center of classical Couette flow, see Fig. 3b and
[1]. The present observations show that the momentum transfer from the streamwise
to the wall-normal direction is reduced by transpiration. This kind of reduction of
turbulence in the flow is somehow unexpected since we add a wall-normal flow and
additionally, the local Reynolds number at the suction wall is relatively large. On the
other side, we could argue that together with the removal of fluid, suction removes
momentum from the flow. However, the latter argumentation fails in explaining the
effect which can be seen in Fig. 3d. Apart from the previously described phenom-
enon that an increasing transpiration rate leads to reduced fluctuation intensities, we
observe in Fig. 3d that this effect is stronger at the blowing wall, while close to the
suction wall, peaks remain higher.
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3 Conclusion

In conclusion, we have presented, for the first time, a set of turbulent plane Cou-
ette flow simulations extended by a wall-normal transpiration velocity. The main
importance of the present paper lies in the investigation of the effects due to tran-
spiration velocity and the search of the proper velocity scales to analyze and scale
the flow. In particular, we have the external velocities Uw and V0 extended by the
local friction velocities uτ s and uτb, although they are all interconnected by the mean
momentum (2).

The computations at the highest transpiration numbers, V+
0 = 0.07, collapse in

wall units for different Reynolds numbers, showing that V+
0 is the key parameter to

control the flow acting as an invariant. Regarding near-wall scaling, it is observed
that at the highest Reynolds number and the highest transpiration rate, the slope
constant of the log-law is equal to 0.77 representing an extremely long log region,
much longer than the one that can be observed in turbulent Poiseuille or Couette
flows at similar Reynolds numbers.
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Flow Structures and Momentum Transport
in Turbulent Rotating Plane Couette Flow

Takuya Kawata and P. Henrik Alfredsson

Abstract In turbulent plane Couette flow subject to spanwise anti-cyclonic system
rotation there exist both large-scale roll-cell structures that arises due to the Coriolis
instability and smaller-scale turbulence. The transport equations of the large-scale
and small-scale parts of the Reynolds stress are derived and we decompose the
flow field into its large- and small-scale parts using spatial low-pass filtering in
order to closely investigate the interaction between the roll cells and the small-scale
turbulence.

1 Introduction

Turbulent RPCF (rotating plane Couette flow shown in Fig. 1a) under anti-cyclonic
rotationmay become unstable due to the Coriolis force [3] where the instability gives
rise to streamwise-elongated roll-cell structures that take various forms depending
on the Reynolds number Re = Uwh/ν and the rotation number Ro = 2Ωzh/Uw [5].
Here ν is the kinematic viscosity of the fluid andUw, h, andΩz are defined in Fig. 1a.
In our earlier experimental investigations [2] we have observed that at high enough
Re and a low rotation rate around Ro ≈ 0.02 the momentum transport is especially
enhanced; the wall shear stress increases at Ro ≈ 0.02 and the mean velocity gra-
dient becomes negative at the channel centre. In this work we further analyse these
experimental data with a particular interest in the interaction between large- and
small-scale structures. By a spatial filtering the velocity field is decomposed into the
large- and small-scale parts, and the contributions to the Reynolds stress by each
component and the inter-component transport are investigated.
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Fig. 1 a Definition of rotating plane Couette flow (reproduced with permission from [4]) and
b the experimental apparatus (reproduced with permission from [1])

2 Experimental Data Sets and Analysis

The RPFC flow apparatus at KTH Mechanics, schematically shown in Fig. 1b,
was used for the experiments, where the velocity field was measured with stereo-
scopic particle-image velocimetry (stereo PIV) in the xz-plane at ten different y-
positions in the range−0.8 < y/h < 0.4. The Re–Ro range was 500 ≤ Re ≤ 2000,
0 ≤ ReRo ≤ 100. For further details the reader is referred to [2].

In the present analysis we first apply the Reynolds decomposition to the instan-
taneous flow field, i.e., ui = Ui + u′

i where Ui = ui and α indicates the averaged
value over the xz-plane and in time of an arbitrary quantity α. The fluctuating com-
ponent u′

i is further decomposed into a spatially low-pass-filtered part 〈u′
i 〉 and the

rest: u′′
i = u′

i − 〈u′
i 〉. Here we obtain 〈u′

i 〉 from a spatial low-pass filter in the x- and
z-directions with the same cutoff wavenumber kcutoff in both directions. Since there
is no overlapping wavenumber range between the filtered quantities and the rest,
their correlation is zero, i.e. 〈α′〉α′′ = 0. Hence, the Reynolds stress u′

i u
′
j is simply

decomposed as:

u′
i u

′
j = 〈u′

i 〉〈u′
j 〉 + u′′

i u
′′
j . (1)

The transport equation of each 〈u′
i 〉〈u′

j 〉 and u′′
i u

′′
j can be derived in a similar

manner as the transport equation of the ‘full’ Reynolds stress u′
i u

′
j [5], to become

(
∂

∂t
+Uk

∂

∂xk

)
〈u′

i 〉〈u′
j 〉 = PL

i j + GL
i j + Dt,L

i j + Dν,L
i j + φL

i j − εLi j − Tri j , (2)

(
∂

∂t
+Uk

∂

∂xk

)
u′′
i u

′′
j = PS

i j + GS
i j + Dt,S

i j + Dν,S
i j + φS

i j − εSi j + Tri j . (3)

Here Pi j , Gi j , Dν
i j , φi j , and εi j are the production, the Coriolis force term, the

viscous diffusion, the velocity pressure-gradient correlation term, and the viscous
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dissipation with the superscripts L and S indicating their large- and small-scale parts,
respectively. Dt,L

i j and Dt,S
i j are the large-scale and small-scale part of the turbulent

diffusion term:

Dt,L
i j = − ∂

∂xk

(
〈u′

i 〉〈u′
j 〉〈u′

k〉 + 〈u′
i 〉〈u′

j 〉u′′
k + u′′

i 〈u′
j 〉u′′

k + 〈u′
i 〉u′′

j u
′′
k

)
, (4)

Dt,S
i j = − ∂

∂xk

(
u′′
i u

′′
j u

′′
k + u′′

i u
′′
j 〈u′

k〉 + 〈u′
i 〉u′′

j 〈u′
k〉 + u′′

i 〈u′
j 〉〈u′

k〉
)

, (5)

and Tri j is an additional term that arises due to decomposing the fluctuating velocity:

Tri j = −u′′
i u

′′
k

∂〈u′
j 〉

∂xk
− u′′

j u
′′
k

∂〈u′
i 〉

∂xk︸ ︷︷ ︸
Tr Ii j

+〈u′
i 〉〈u′

k〉
∂u′′

j

∂xk
+ 〈u′

j 〉〈u′
k〉

∂u′′
i

∂xk︸ ︷︷ ︸
Tr IIi j

. (6)

The sum of (2) and (3) yields the full Reynolds stress transport equation, and
the interesting feature of these equations is that Tri j appears in both of them with
different sign, which indicates that Tri j represents a transfer between the large- and
small-scale parts of the Reynolds stress. Furthermore, the first two terms of Tri j ,
denoted as Tr Ii j , have the same sign as the production of u′′

i u
′′
j whereas the other

terms, denoted as Tr IIi j , are of the same sign as the 〈u′
i 〉〈u′

j 〉 production. This can
be interpreted that Tr Ii j represents the energy transfer from the large- to small-scale
structures, while Tr IIi j is transport in the other direction. In the next section the spatial
low-pass filtering is applied to experimental data, with focus on the energy transfer
term Tri j .

3 Results and Discussion

In order to investigate over which wavenumbers the energy transfer mainly takes
place, the scale interaction term of the turbulent kinetic energy was evaluated as
Trkt = 1

2Trii using various cutoff wavenumbers kcutoff and are presented in Fig. 2.
The evaluated Trkt is averaged across the channel (we used the eight measurement
planes in the range −0.8 < y/h ≤ 0 for averaging) and scaled by u3τ , and the black
dashed lines show the cutoff wavenumber kcutoff at which the integrated Trkt takes the
maximum value at each Ro. It should be noted that Trkt contains 18 terms (see 6), but
those associated with ∂/∂y cannot be evaluated based on the current stereo-PIV data,
except the terms with ∂〈v′〉/∂y and ∂v′′/∂y, which were obtained via the continuity
equation.

As shown in Fig. 2, at high Re significant positive energy transfer is indi-
cated roughly between kcutoff = 0.25 and 0.5 for Ro ≥ 0.02, and this length scale
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Fig. 2 The scale interaction term for the turbulent kinetic energy Trkt evaluated with various values
of cutoff wavenumbers and averaged across the channel. The values of kcutoff and Trkt values are
scaled by h and u3τ , respectively, and the black dashed line in each figure indicates the location of
the maximum value of Trkt at each Ro

corresponds to the spanwise spacing of the roll cells. It is also seen from the dashed
lines that at rotation rates close to Ro = 0 the maximum of the integrated Trkt is
located around kcutoff ≈ 1, i.e., the scale of the half channel width. In the follow-
ing analyses the spatial low-pass filtering is applied with those cutoff wavenumbers
presented by the black dashed line.

Figure 3 presents a snapshot of instantaneous velocity fields at the channel centre
at Re = 2000 for Ro = 0 and Ro = 0.02, as examples of the decomposition. At
Ro = 0 one can see somewhat coherent and streamwise-elongated structure in the
‘raw’ velocity field, and the filtering with cutoff wavenumber of kcutoff = 1 separates
this structure from much smaller-scale structure which looks random. Here 80% of
energy is found below kcutoff = 1. In the case of higher rotation rate Ro = 0.02,
while the cutoff wavelength is smaller (kcutoff = 0.225), the large-scale part of the
flowfield still retainsmore than 50%of the total turbulence kinetic energy and shows
a wavy-type roll-cell structure as presented in Fig. 3b.

In Fig. 4 the scale interaction term Trkt and −Tr12 averaged over the channel
are shown comparing the Tr I part and the Tr II part. For Re = 1500 and 2000 Trkt
rapidly increases with increasing Ro around Ro = 0.02. It is noteworthy that despite
the difference in sign between Tr Ik and Tr IIk (see 6) both of them are always positive,
indicating the energy transfer from the large scale to small scale, and the most of the
contribution is from Tr IIk .

On the other hand, for the interaction term of theReynolds shear stress−Tr12, Tr I12
and Tr II12 clearly show the energy transfer in different directions in contrast to Trkt :
the former is basically positive while the latter negative, and the overall net energy
transfer is negative for all Re–Ro cases, which means that the energy for −u′v′ is
basically transferred from the small to the large scales. It is an interesting fact that
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Fig. 3 Example of decomposed instantaneous velocity fields at Re = 2000: a Ro = 0, b Ro =
0.02. The colour indicates the streamwise velocity components and the black arrows show in-plane
velocity vector pattern. The arrow length of 2.5h corresponds to Uw and only 1/4 of all data points
are shown for the arrows for readability

the turbulent kinetic energy is transferred from the large to the small scales while the
net energy transfer of the shear component −u′v′ is in the opposite direction.

Next, the profiles of the large- and small-scale parts of the turbulent kinetic energy
and the Reynolds shear stress −u′v′ are shown in Fig. 5 together with their scale
interaction term Trk and −Tr12, comparing some different Ro cases at Re = 2000.
One can observe in Fig. 5a that at Ro = 0 the large-scale part of the turbulent kinetic
energy is far larger than the small-scale contribution, whereas they are comparable
at higher Ro cases. As shown in Fig. 5c at high rotation rates Tr IIk is significant in
the near wall region.

Figure 5b shows that for the Reynolds shear stress the large-scale part−〈u′〉〈v′〉 is
dominant for all Ro cases except Ro = 0.02, where the wall shear stress has a narrow
peak (see Fig. 15 in [2]). It is also shown that at high rotation rates the small-scale
part −u′′v′′ is partly negative in the near-wall region around y/h ≈ −0.7 and the
large-scale part −〈u′〉〈v′〉+ slightly exceeds unity there. Such profiles of −〈u′〉〈v′〉
and −u′′v′′ at high rotation rates are seen also at the other Re cases. In Fig. 5d one
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Fig. 5 Profiles of a the turbulent kinetic energy kt and b Reynolds shear stress −u′v′, and c, d
their scale interaction terms scaled by the wall unit at Re = 2000 and four different Ro cases: blue
Ro = 0; red Ro = 0.02; yellow Ro = 0.03; purple Ro = 0.045. The solid lines with circles and
the dotted lines with + present the large-scale and the small-scale parts, respectively, in the (a)
and (b), and in the (c) and (d) they show the Tr I and the Tr II part of each scale-interaction term,
respectively

can see that the energy transfer from the small to large scales by −Tr II12 is significant
in the near-wall region at high rotation rates, and this region indeed corresponds
to where the −u′′v′′ profile takes negative values. The somewhat strange profile of
Reynolds shear stress at high rotation rates is a consequence of the net energy transfer
from the small-scale to the large-scale motion.
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Towards a Physical Scale Decomposition
of Mean Skin Friction Generation
in the Turbulent Boundary Layer

Nicolas Renard and Sébastien Deck

Abstract A decomposition of mean skin friction generation in zero-pressure-
gradient boundary layers is presented, relying on an energy budget in an absolute
reference frame. It has a direct physical interpretation and emphasizes the impor-
tance of the production of turbulent kinetic energy in the logarithmic layer in mean
skin friction generation at very high Reynolds number. This leads to a new approach
to the scale decomposition of mean skin friction, illustrated using a Wall-Resolved
LES at Reθ = 13,000 obtained by the ZDES technique. The role of superstructures
is especially discussed.

1 Motivation and Theoretical Decomposition of Mean Skin
Friction Generation into Physical Phenomena in the
Boundary Layer

Because of its relation to drag, mean skin friction is essential for applied aerodynam-
ics. Its generation is enhanced by turbulent mixing [11], leading to the well-known
excess of mean skin friction of the turbulent boundary layer compared with the lami-
nar case at the same Reynolds number. In boundary layers at high Reynolds numbers
like in aerospace applications, experimental data unveiled superstructures, i.e. coher-
ent structures of streamwise wavelength close to 5–6δ. Evaluating their contribution
to mean skin friction requires to quantify the contribution of the turbulent fluctu-
ations as a function of their wall distance and wavelength. Moreover, interpreting
such an identity in terms of physical mechanisms is needed, which is all the more
complicated in the zero-pressure-gradient flat plate boundary layer case as the flow is
spatially developing. The FIK decomposition [6] does identify a turbulent contribu-
tion to mean skin friction, but its relation to the excess of friction is indirect because
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Fig. 1 Sketch of the usual and absolute frames of reference

of the spatial growth of the boundary layer [3], and the physical interpretation is not
straightforward [13].

The present study is based on another decomposition of mean skin friction first
introduced in [13] (where its detailed derivation is presented). This identity relies
on an energy budget in a reference frame where the power of mean skin friction
is non-zero (contrary to the usual wall-bound reference frame where skin friction is
missing in the energy budgets because the wall is not moving). The chosen ‘absolute’
reference frame is associated to the outer fluid undisturbed by the wall (Fig. 1), so
that the wall is moving at −U∞ along x in the absolute frame. The budget of mean
streamwise kinetic energy in the absolute frame KA = 1/2 〈uA〉2 (where uA = u–
U∞ is the streamwise velocity in the absolute frame) reads, assuming the boundary
layer hypothesis in the incompressible zero-pressure-gradient flat-plate boundary
layer:

DKA

Dt
︸ ︷︷ ︸

variation of KA
with boundary
layer growth

↪→C f,c(2)

= 〈uA〉 ∂

∂yA

(

τ

ρ

)

︸ ︷︷ ︸

power of viscous
and turbulent efforts

↪→C f,c(2)

= ∂

∂yA

(

〈uA〉 τ

ρ

)

︸ ︷︷ ︸

viscous and turbulent
diffusion of

KA

↪→C f (2)

−ν

(

∂ 〈uA〉
∂yA

)2

︸ ︷︷ ︸

direct dissipation
of KA

↪→C f,a(2)

+ 〈

u′
Av

′
A

〉 ∂ 〈uA〉
∂yA

︸ ︷︷ ︸

‘dissipation’ of KA
by turbulent kinetic
energy production

↪→C f,b(2)

(1)
with D

Dt
= 〈u〉 ∂

∂x + 〈v〉 ∂
∂y = ∂

∂tA
+ 〈uA〉 ∂

∂xA
+ 〈vA〉 ∂

∂yA
and τ

ρ
= ν ∂〈u〉

∂y − 〈

u′v′〉 =
ν ∂〈uA〉

∂yA
− 〈

u′
Av

′
A

〉

.

Integrating the budget of KA over thewall distance, assuming u = 0 (uA = −U∞)
at the smooth wall and non-dimensionalising the result leads to the following decom-
position of the mean skin friction coefficientC f = ν (∂ 〈u〉 /∂y)(y = 0)/

(

1/2U 2∞
)

:

C f = 2

U3∞

∫ ∞

0
ν

(

∂ 〈u〉
∂y

)2

dy

︸ ︷︷ ︸

C f,a

+ 2

U3∞

∫ ∞

0
− 〈

u′v′〉 ∂ 〈u〉
∂y

dy

︸ ︷︷ ︸

C f,b

+ 2

U3∞

∫ ∞

0
(〈u〉 −U∞)

∂

∂y

(

τ

ρ

)

dy

︸ ︷︷ ︸

C f,c

(2)
This indicates that in the absolute frame, the mean energy supplied by the wall to the
fluid (represented by C f ) is dissipated into heat (C f,a), ‘dissipated’ by production of
TKE (turbulent kinetic energy) (C f,b) and gained as mean streamwise kinetic energy
(C f,c). The direct contribution of turbulence, C f,b, is not associated with irreversible
entropy creation since it does not involve turbulent dissipation. Focused on TKE
production instead, it represents how turbulence interacts with the mean flow.
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2 Role of the Turbulent Kinetic Energy Production
in the Logarithmic Layer at High Reynolds Number

The decomposition of mean skin friction (2) is evaluated in Fig. 2 using DNS and
WRLES datasets [5, 14–16] and RANS simulations (from the ONERA boundary
layer code CLICET [1] with Jones & Launder [7] k–ε (JL) model and Michel et al.
[10] model) to assess the high Reynolds number trend. This indicates that C f,b (2)
is dominant at very high Reynolds numbers, whereas C f,c (2), associated with the
spatial growth of the boundary layer, is negligible for Reτ → ∞, as demonstrated
in [13] (contrary to the non-negligible third term of the FIK decomposition [6]
[3]). This is best understood in Fig. 3 where the integrands of each term of the
decomposition (2) are non-dimensionalised and pre-multiplied so that their semi-
logarithmic plot indicates the relative contribution to C f . Because of the Reynolds
invariance in the inner and outer layers, the dominant behaviour of C f,b is caused by
the plateau of pre-multiplied TKE production in the logarithmic layer broadening
with the Reynolds number (Fig. 3, detailed in [13]). Consequently, the generation of
C f at very high Reynolds number appears to be mostly driven by TKE production in
the logarithmic layer (this conclusion differs from the FIK identity but is consistent
with the observed importance of the logarithmic layer at high Reynolds numbers
[17]). To better understand how turbulence contributes to mean skin friction, the
study should focus on C f,b, i.e. on the total TKE production, whose decomposition
is attempted in the next section to identify the role of each layer and length scale.

Fig. 2 Evolution of the mean skin friction decomposition (2) with the Reynolds number (left).
ZDES profiles (see Sect. 3) at Reθ = 13, 000 (Reτ = 3600): mean velocity (solid line) compared
with experimental data by [4] (circles), u+

rms (dash–dotted line) compared with the model by [9],
[8] (squares) (right)
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Fig. 3 Pre-multiplied integrands of the terms of themean skin friction decomposition (2) (y+P+ =
−y+ 〈

u′v′〉+ ∂〈u〉+
∂y+ = −y/δ

〈

u′v′〉+ ∂〈u〉+
∂(y/δ) ).SymbolsDNS[15] at Reθ = 6500 (Reτ = 1989).Lines:

RANS simulations at Reτ = 2000, Reτ = 105 and Reτ = 106 (Michel et al. [10] model)

3 Scale Decomposition of Mean Skin Friction

According to the identity (2), the scale decomposition ofmean skin friction is focused
on decomposing the total TKE production [13]. However, the Reynolds number and
scale separation are limited by the numerical cost in DNS. We consider here Reθ =
13,000, for which no low-Mach-number boundary layer DNS dataset is available to
our knowledge, and use aWall-Resolved LES instead. This is acceptable because the
study is focused on the outer layer contribution and because of the dominant role of
the logarithmic layer at higher Reynolds numbers. The present WRLES is a Zonal
Detached Eddy Simulation (mode III) described and validated in the outer layer in
[3] (the ZDES hybrid RANS/LES technique is described in [2]). The profiles at Reθ

= 13,000 (Fig. 2) confirm the proper resolution of the outer layer. The evolution
of C f and of the terms of the identity (2) with the Reynolds number is correctly
predicted as well (Fig. 2). The streamwise velocity spectra indicate that very large
scale motions (much longer than 3δ) are resolved at Reθ = 13,000, corresponding
to superstructures which are missing at Reθ = 5200 in the same simulation (Fig.
4), suggesting that reaching at least the present Reynolds number is mandatory to
evaluate the contributionof superstructures,which is affordable thanks to theWRLES
approach. Because of the lack of scale separation at Reθ = 5200 where some inner-
scaled fluctuations can share their wavelengths with outer-scaled ones, isolating
the superstructures in Fourier space is not feasible. For this reason, the following
illustration of the scale decomposition is performed at Reθ = 13,000.

The scale decomposition of TKE production is obtained by estimating the
co-spectrum of the Reynolds shear stress from time signals, with a spectral eval-
uation of the convection velocity [12]. Because a WRLES is used instead of a DNS,
the emphasis is put on the outer layer and large scales, considering the cumulative
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Fig. 4 Reynolds number impact on the streamwise velocity spectra kxGuu(kx )/u2τ (left Reθ =
5200, right: Reθ = 13,000, reconstructed with a correlation-based convection velocity)

Fig. 5 Cumulative resolved
contribution to TKE
production C (y, λx ) (3) at
Reθ = 13, 000 predicted by
ZDES in WRLES mode
(together with kxGuu(kx )/u2τ
in black isolines)

resolved contribution to TKE production defined as follows:

C (y, λx ) =
∫ ∞
y − 〈

u′v′〉
res,[λx ;+∞[

∂〈u〉
∂y dy

∫ ∞
0 −〈u′v′〉 ∂〈u〉

∂y dy
(3)

where − 〈

u′v′〉
res,[λx ;+∞[ is the Reynolds shear stress induced by the resolved fluctu-

ations of wavelength larger than λx . The cumulative resolved contribution at Reθ =
13, 000 is plotted in Fig. 5, showing for instance C (y+ = 100, λx = 3δ) ≈ 0.19,
which means that the contribution of superstructures (λx > 3δ) in the outer layer
(y+ > 100) at Reθ = 13, 000 is approximately one fifth of the overall production
of TKE, i.e. these fluctuations contribute at this Reynolds number approximately
one fifth of C f,b (2), which is the dominant term in the decomposition of mean
skin friction when Reτ → ∞. However, the logarithmic layer still has a moderate
extent at Reθ = 13, 000. Because this layer plays an increasing role with Reτ and
since it contains the core of the superstructures, one may expect the contribution
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C (y+ = 100, λx = 3δ) to increase with Reτ , leading to a larger role of superstruc-
tures in mean skin friction at larger Reynolds numbers. Resolved datasets at higher
Reynolds numbers are needed to confirm this, providing a larger scale separation
than currently available from numerical simulations.

4 Outlook

A new approach to the scale decomposition of mean skin friction generation has
been presented, relying on an energy budget in an absolute reference frame. It has
a direct physical interpretation and emphasizes the importance of turbulent kinetic
energy production in the logarithmic layer inmean skin friction at very highReynolds
number. The potential of the approach coupled to spectral analysis has been illustrated
with a WRLES database obtained by the ZDES technique, showing a contribution
of the superstructures in the outer layer close to one fifth of the turbulent mean skin
friction term C f,b at Reθ = 13, 000 and the need for higher-Reynolds-number wall-
resolved databases to better understand the probably greater role of superstructures.
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Identifying Well-Behaved Turbulent
Boundary Layers

Carlos Sanmiguel Vila, Ricardo Vinuesa, Stefano Discetti, Andrea Ianiro,
Philipp Schlatter and Ramis Örlü

Abstract This paper presents a study focused on the development of zero-pressure-
gradient turbulent boundary layers (ZPG TBL) towards well-behaved conditions
in the low Reynolds-number range. A new method to assess the length required
for the ZPG TBL to exhibit well-behaved conditions is proposed. The proposed
method is based on the diagnostic-plot concept (Alfredsson et al., Phys. Fluids,
23:041702, 2011), which only requires mean and turbulence intensity measurements
in the outer region of the boundary layer. In contrast to the existing methods which
rely on empirical skin-friction curves, shape-factor or wake-parameter, the quantities
required by this method are generally much easier to measure. To test the method,
the evolution of six different tripping configurations, including weak, late and strong
overtripping, are studied in a wind-tunnel experiment to assess the convergence
of ZPG TBLs towards well-behaved conditions in the momentum-thickness based
Reynolds-number range 500 < Reθ < 4000.

1 Introduction

The problem of establishing canonical conditions in experiments with zero-pressure-
gradient (ZPG) turbulent boundary layers (TBLs) has become a relevant one since
it is known that there can be important differences in quantities such as the shape
factor H = δ∗/θ (where δ∗ and θ are the displacement and momentum thicknesses,
respectively) or in the skin-friction coefficient c f , due to a flawed experimental
design and/or an inadequate inflow and/or development length [10]. These problems
are not restricted to experimental studies since, as shown by Schlatter and Örlü [10],
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numerical simulations are also affected by inflow conditions and by the tripping
method. For this reason, recent studies such as the one by Marusic et al. [3] have
analyzed the effect of different tripping configurations and how the flow evolves
towards a canonical state. In their work, Marusic et al. [3] reported the effect of a
number of tripping configurations, ranging from aweak tripping to an overstimulated
case.

In the light of these findings, the need to establish criteria for the characterization
of canonical conditions has emerged as an important challenge. Comparisons of
experimental trends of the wake parameter Π and of H with the ones obtained from
numerical integration of composite profiles are currently used as a criterion to identify
well-behaved profiles [2], i.e., not affected by non-equilibrium effects present in the
initial development stages. Moreover, Schlatter and Örlü [10] established that TBLs
can be considered canonical for Reθ > 2000 if the transition is initiated prior to
Reθ = 300; using this criterion, good quantitative agreement in integral quantities
and higher-order moments between experiments and simulations was found. As a
result of the study performed by Marusic et al. [3], it was found that the effect of the
tripping mechanism was noticeable up to a streamwise distance of 2000 trip heights,
although this conclusion is only applicable to their particular set-up.

All of these methods share one common characteristic: they require extensive
measurements to discern whether the flow is canonical/well behaved. For this reason,
here we aim at establishing a method to assess the length required for the TBL to
exhibit well-behaved conditions, without the need to obtain velocity profiles or to
measure the friction velocity at several streamwise locations. Our proposedmethod is
based on the diagnostic-plot concept, which has been found to scale the outer layer
of TBL flows irrespective of Re [1, 8]. The method will be demonstrated based
on hot-wire anemometry measurements that have been performed in the Minimum
Turbulence Level (MTL) wind tunnel at KTHMechanics in which different tripping
configurations in a ZPG TBL were studied.

2 Experimental Setup

The measurements were performed in the MTL closed-loop wind tunnel located
at KTH Royal Institute of Technology in Stockholm. The tunnel has a 7 m long
test section with a cross-sectional area of 0.8 × 1.2 m2 with a streamwise velocity
disturbance level lower than 0.025% of the free-stream velocity. Measurements were
made in the turbulent boundary layer developing over a flat plate suspended 25 cm
above the tunnel floor under a zero-pressure-gradient condition that was established
through adjustment of the ceiling. All themeasurementswere performed at a nominal
free-stream velocity of 12 m/s. Six different tripping configurations were tested
using as a reference the cases studied numerically in Schlatter and Örlü [10], i.e. a
combination of weak, late, and strong trippings. The different tripping configurations
were placed spanning the full spanwise length of the plate, at streamwise locations
in the range 75 < x [mm] < 230 from the leading edge (see Table 1), corresponding
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Table 1 Specifications of the tripping configurations including location and respective symbol
coding for symbols. The embossed (DYMO) letter ‘V’ points into the flow direction and has a
nominal height of 0.3 mm

Tripping characteristics and location Symbol code Identification

DYMO ‘V’ @ 75 mm Red Weak tripping

DYMO ‘V’ @ 230 mm Green Late tripping

DYMO ‘V’ @ 75, 90, 110 mm and 5 mm square bar
@ 85 mm

Blue Strong overtripping

DYMO ‘V’ @ 90, 110 mm and 2.4 mm height turbulator Black Optimal 1

DYMO ‘V’ @ 90, 110 mm and 1.6 mm height turbulator Magenta Optimal 2

DYMO ‘V’ @ 90 mm Cyan Weak/late tripping

to the range 130 < Reθ < 260. A set of 4 streamwise locations was selected for
each tripping configuration with few additional stations to match Reθ , covering a
range of 500 < Reθ < 4000. Single-point streamwise velocity measurements were
performed by means of a single in-house hot-wire probe with a Platinum wire of 560
µm length and nominal diameter of 2.5 µm. These dimensions provided sufficient
spatial resolution to ensure meaningful comparisons of the higher-order turbulence
statistics. Care was taken to acquire sufficient measurement points within the viscous
sublayer and the buffer region in order to correct for the absolute wall position and
determine the friction velocity (as outlined in Örlü et al. [7]). The composite profile
byNickels [5] was used to obtain the free-stream velocityU∞ and the 99%boundary-
layer thickness δ99. Reynolds numbers and integral quantities were then computed
using the fitted composite profile.

3 Results and Discussion

Inner-scaled streamwise mean and variance profiles for the various trippings are
shown in Fig. 1a, where it can be observed that the near-wall region quickly adapts
to that of a canonical TBL [10]. On the other hand, strong variations are noticeable
in the outer layer, which indicates that this part of the boundary layer requires longer
development lengths to become independent of its specific tripping condition. In
particular, the strong-overtripping case shows an outer peak in the fluctuation profile
which is produced by the square bar used as a disturbance. In order to determine
which of the TBL profiles have reached a canonical state, the Reynolds-number
variation of the shape factor and the skin friction (expressed through the inner-scaled
free-stream velocityU+∞) for all tripping configurations is depicted in Fig. 2 together
with the correlations from [4, 6]. Postulating now that well-behaved TBL profiles
should scale in the diagnostic plot (as suggested in [1, 8]), the same data set is
shown in terms of the streamwise turbulence intensity u′/U versus the velocity ratio
U/U∞ inFig. 3.Excluding, under the aforementionedpremise, the profiles that donot
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(a) (b)

(c) (d)

Fig. 1 Inner-scaled a mean and b variance profile for the entire data set, and c, d same quantities
for the profiles that fulfill the diagnostic-plot scaling in the outer layer. See Table 1 for color code,
and Fig. 3 for diagnostic-scaling plots

(a) (b)

Fig. 2 a Shape factor H and b inner-scaled free-stream velocity U+∞ as function of Reθ for
various tripping configurations. Cases considered as well-behaved are further identified through
filled circles. Solid lines represent correlations from Monkewitz et al. [4] for H and from Nagib
et al. [6] forU+∞.Dashed lines are common measurement uncertainties, i.e., 3% and 2% in subplots
a and b, respectively

adhere to the scaling in the outer region, especially in the region 0.7 ≤ U/U∞ ≤ 0.9,
the diagnostic-plot concept provides a means to discern well-behaved TBLs; these
profiles are indicated through filled circles in Fig. 2 and their diagnostic scaling is
shown in Fig. 3b.
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Fig. 3 Streamwise mean U and r.m.s. u′ profiles plotted in diagnostic form for a the entire data
set and b only the profiles that follow the diagnostic-plot scaling, i.e., those identified through filled
circles in Fig. 2. The dashed line shows (within the shaded range) equation u′/U = α − βU/U∞,
with α = 0.280 and β = 0.245. The insets show the difference between the profiles in diagnostic
scaling and the diagnostic-curve fit, as a function of U/U∞

It can be observed that the profiles that satisfy the diagnostic-plot criterion are
exactly the ones that follow the reference U+∞ and H curves. This indicates that the
diagnostic-plot criterion described in [1] is an alternative method to assess whether
a particular boundary layer exhibits canonical ZPG TBL conditions. The real advan-
tage of the proposed method is shown, that no full velocity profile measurements,
integral quantities, or skin friction measurements are required. Instead a streamwise
scan within the outer region of the TBL (preferably through the region of linear
behavior in the diagnostic plot, i.e., the shaded area in Fig. 3) is sufficient to identify
the location after which the TBL adheres to the diagnostic-plot scaling. To test this
assumption, Fig. 4 shows the results of a streamwise scan in the tripping configura-
tion weak/late tripping (see Table 1) while keeping (through an iterative procedure)

Fig. 4 A methodology based on streamwise scans and diagnostic scaling, used to predict the
distance required for the ZPG TBL to exhibit well-behaved conditions. The method is illustrated
using the tripping configuration denoted as weak/late tripping. Solid lines correspond to the cases
of Fig. 3b. All the points are taken with an equidistant streamwise spacings of Δx = 50 mm, where
darker symbols indicate increasing streamwise distance



72 C. Sanmiguel Vila et al.

the probe within the velocity range 0.7 ≤ U/U∞ ≤ 0.9. From the color-coded mea-
surement points (from lighter to darker symbols, where darker indicates increasing
streamwise distance) it can be observed how the boundary layer undergoes transi-
tion to turbulence with the overshoot in turbulence intensity and then reaches the
diagnostic-plot reference curves. Hence, a simple streamwise scan easily diagnostic
fromwhich x-location on the TBL behaves in accordance with canonical ZPG TBLs.

Disclaimer Parallel to the present paper, a largely extended and more detailed study
has been published by Sanmiguel Vila et al. [9].
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Scaling of Adverse-Pressure-Gradient
Turbulent Boundary Layers in
Near-Equilibrium Conditions

Ricardo Vinuesa, Alexandra Bobke, Ramis Örlü and Philipp Schlatter

Abstract Well-resolved large-eddy simulations are used to study adverse-pressure-
gradient (APG) turbulent boundary layers (TBLs) under near-equilibrium conditions.
In particular,we focus on twonear-equilibriumcaseswhere the power-law freestream
velocity distribution is adjusted in order to produce long regionswith a constant value
of the Clauser pressure-gradient parameter β. In the first case we obtain an APG
TBL with a constant value of β � 1 over 37 average boundary-layer thicknesses,
and in the second one a constant value of β � 2 for around 28 average boundary-
layer thicknesses. The scaling law suggested by Kitsios et al. (Int J Heat Fluid Flow
61:117–128, 2016, [10]), proposing the edge velocity and the displacement thickness
as scaling parameters, was tested on the two constant-pressure-gradient parameter
cases. The mean velocity and Reynolds-stress profiles were found to be dependent
on the downstream development, a conclusion in agreement with classical theory.

1 Introduction

Turbulent boundary layers (TBLs) subjected to streamwise pressure gradients (PGs)
are of great importance in a wide range of industrial applications, including the flow
around a wing or inside a diffuser. Despite their relevance, the effects of PGs on
the characteristics of wall-bounded turbulence are still elusive. Part of the reason
for this lack of detailed knowledge of PG TBLs is the fact that there is no sys-
tematic approach towards characterizing the pressure gradient. Since the effect of
the pressure gradient on the TBL is closely related to its streamwise development,
it is important to define the concept of an equilibrium boundary layer: according
to the strict definition by Townsend [1], this condition requires the mean flow and
Reynolds-stress tensor profiles to be independent of the streamwise position x, when
scaled with appropriate local velocity and length scales. As also shown by Townsend
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[1] this condition is only satisfied by the sink flow, although it is possible to define a
less restrictive near-equilibrium condition when the mean velocity defectU∞ −U is
self-similar in the outer region, which in any case dominates at high Reynolds num-
bers. Townsend [1] and Mellor and Gibson [2] showed that these near-equilibrium
conditions can be obtained when the freestream velocity is prescribed by a power
law such that U∞ = C(x − x0)m , where C is a constant, x0 is a virtual origin and
m the power-law exponent. In particular, Townsend [1] showed that m has to be
in the range −1/3 < m < 0 in order to be in near-equilibrium conditions. An addi-
tional interesting conclusion is the fact that the widely studied zero-pressure-gradient
(ZPG) TBL [3, 4], driven by a constant freestream velocity, is a particular case of the
general near-equilibrium TBLs proposed by Townsend [1] and Mellor and Gibson
[2] where m = 0. In this respect, it is relatively common in the literature to refer
to “self-similar” boundary layers, where as discussed above the only case in which
complete self-similarity is observed is the sink flow. For instance, Skåre andKrogstad
[5] obtained an experimental APG TBL with a U∞ distribution given by a power
law, and with m = −0.23, which in principle would lead to near-equilibrium condi-
tions. Nevertheless, the authors described their boundary layer as a self-similar one,
therefore there is some discrepancy in the terminology and interpretation of PG TBL
data. This is motivated in part by the difficulties arising from setting up canonical
PG TBLs [6], as well as the impact of history effects on the local state of the TBL
[7, 8], which leads to additional difficulties in the interpretation of the results.

The focus of this study is on near-equilibrium APG TBLs, and more precisely
on the assessment of a particular scaling suggested by Kitsios et al. [9] for near-
equilibrium conditions. To that end, we consider the Clauser pressure-gradient para-
meterβ = δ∗/τwdP∞/dx ,where δ∗ is the displacement thickness, τw is thewall-shear
stress and P∞ is the freestream pressure, to quantify the pressure-gradient magni-
tude. Two well-resolved large-eddy simulations (LESs) of turbulent boundary layers
in near-equilibrium, and with significant regions of the domain were β is constant,
are analyzed. Note that the constant-β case can be considered as a canonical repre-
sentation of an APG TBL with a particular pressure-gradient magnitude. Other APG
TBLs exhibit very large variations in β, such as the TBL developing on the suction
side of a wing section [10], and APG TBLs in near-equilibrium conditions (i.e., with
freestream velocities given by a power-law distribution) do not necessarily lead to
a region of constant β [11]. Thus, in this study we focus on the particular case of
near-equilibrium APG TBLs with regions of constant β.

2 Numerical Setup

The downstream evolution of the APG TBLs was studied by means of well-resolved
large-eddy simulations (LESs). The pressure gradientwas imposed through the varia-
tion of the freestream velocity at the top of the domain, which was defined following
the near-equilibrium definition by Townsend [1], i.e., U∞(x) = C(x − x0)m . We
used the code SIMSON [12], which is based on a fully-spectral method with Fourier
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discretisation in streamwise and spanwise directions and on the Chebyshev-tau
method in the wall-normal direction. Using the approximate deconvolution
relaxation-term model [13] as a sub-grid scale (SGS) model as in Eitel-Amor et al.
[14], the resolution was chosen as Δx+ = 21.5, y+

max = 16.5 and Δz+ = 9.5 (where
x, y and z denote streamwise, wall-normal and spanwise coordinates, respectively),
with 12 points below y+ = 10. It is possible to obtain different near-equilibrium
boundary layers by varying the virtual origin x0 and the power-law exponent m. In
the present work we focus on two configurations: a first one, where a constant value
of β � 1 was achieved over a streamwise distance of 37δ99, and a second one in
which a region of constant β � 2 over 28δ99 was obtained. Note that δ99 is the 99%
boundary-layer thickness, which was computed through the procedure proposed by
Vinuesa et al. [15], and the overbar denotes the boundary-layer thickness averaged
over the region where β is observed to remain constant.

3 Results

The focus of this work is on obtaining a detailed characterization of the constant-
β cases, which will ultimately allow to assess pressure-gradient effects with pro-
gressively more complex history effects, given by the particular β(x) distribution.
One of the two cases under consideration exhibits a constant value of β � 1 in
the range 910 < Reθ < 3360, and the other one has a constant value of β � 2 in
the range 940 < Reθ < 4000. In Fig. 1 we show a schematic representation of the
constant β = 1 region, in comparison with the one obtained in the recent work by

Fig. 1 Sketch of the β = 1 APG TBL case showing the area where a constant value of
β was obtained, where δ∗

0 is the displacement thickness of the laminar inflow boundary layer.
Domain of interest with β = 1 extracted from the study by Kitsios et al. [9]. The extent of

the constant β = 1 regions are shown in both cases normalized with the averaged boundary-layer
thicknesses δ. The extent of the domain of interest from Kitsios et al.[9] is also represented in our
case
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Case β = 1: mean streamwise velocity profiles and selected Reynolds-stress tensor compo-
nents (31 profiles in the range 100 < x < 2, 300) non-dimensionalised by a, b uτ and �∗ = ν/uτ ,
and c, d Ue and δ∗. Indicates profiles in the area of constant β for U and 〈uu〉, whereas

denotes profiles where β is not constant. and denote profiles of 〈vv〉 and 〈ww〉
within the constant β region, whereas and correspond to profiles without constant
β. Average of collapsed profiles reported by Kitsios et al. [9] represented by . Case β = 2:
e mean streamwise velocity profiles (23 positions in the range 100 < x < 2, 300), and f selected
Reynolds-stress tensor components, with same scaling and color code as in c and d
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Kitsios et al. [9], also for a constant β = 1 case. Note that although Kitsios et al.
[9] explored higher Reynolds numbers than the ones considered here, the range over
which β is constant is 1.6 times larger in the present simulation, and the relative
Reynolds-number change is also larger.

Figure2a and b show the inner-scaled streamwise mean and velocity fluctuation
profiles corresponding to the β = 1 case, schematically discussed in Fig. 1. The pro-
files within the region of constant β = 1 are highlighted in the two panels through the
darker colors. An alternative scaling for these quantities was considered by Kitsios
et al. [9] based on the results from their simulation, in which the displacement thick-
ness δ∗ and the local edge velocity Ue were the characteristic length and velocity
scales. They observed an apparent collapse of the mean flow and the fluctuations in
their region of constant β, which as indicated in Fig. 1 corresponds to a streamwise
distance of around 23 average boundary-layer thicknesses δ.

The scaling proposed by Kitsios et al. [9] is applied to our data in Fig. 2c and d,
and as apparent no such collapse in any of the investigated quantities in our constant
β region, which spans a longer streamwise distance of 37δ (and exhibits a larger
increase in Re), is observable. One possible explanation for this discrepancy could
be that the scaling considered by Kitsios et al. [9] does not lead to self-similarity,
and since their constant β region is shorter than ours and their relative change in
Re is narrower, their streamwise development would be insufficient to reveal this
conclusion. The present data exhibits a clear Re trend, which is furthermore extended
through the higherRe data byKitsios et al. [9]. The failure of the scalingwould indeed
be in agreement with Townsend [1], since in principle the sink flow is the only flow
that can be described from the wall to the freestream in terms of a single similarity
variable in y. It is also interesting to note that recent particle image velocimetry (PIV)
experiments performed in a similar configuration to that of Kitsios et al. [9], carried
out by the same research group, also show Re-dependent profiles of the Reynolds-
stress tensor components [16]. These aspects are further explored by analyzing the
constant β = 2 case, over a streamwise distance of 28δ. A higher Reθ range is
reached in this case, which is more comparable to the one analyzed by Kitsios et al.
[9], albeit at a higher value of β. As seen from Fig. 2e and f, the scaling by Kitsios
et al. [9] does not lead to self-similarity in this case either. Also here a clear Re trend
is noticed, supporting the statements presented above, and also the validity of the
classic two-layer similarity, at least for the β range under consideration.

4 Conclusions

In the present work we investigated the scaling proposed by Kitsios et al. [9], in
which δ∗ and Ue are considered as length and velocity scales. Our results show that
this scaling does not lead to self-similar boundary layer profiles in the constant-β
region. This conclusion is in agreement with Townsend [1], who showed that the sink
flow is the only boundary layer exhibiting self-similarity. Although the current flat-
plate simulations established long constant-β regions, stronger streamwise constant
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pressure gradients at higher Reynolds numbers should be investigated in order to
characterise cases closer to wind-tunnel experiments and general applications.

Disclaimer: In parallel to the present paper, a largely extended and more detailed study based
on the present work has been published by Bobke et al. [17]
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Transitional and Turbulent Bent Pipes

Philipp Schlatter, Azad Noorani, Jacopo Canton,
Lorenz Hufnagel, Ramis Örlü, Oana Marin and Elia Merzari

Abstract We review a number of aspects of the transitional and turbulent flow in
bent pipes, obtained at KTH using the spectral-element code Nek5000. This flow,
sometimes also calledDean flow, is characterised by the appearance ofDean vortices,
which arise due to the action of the centrifugal force in the bend. We start with
reviewing recent stability analysis in the toroidal flow, and conclude that for all
curvatures δ > 0 an exponential instability is present at a bulk Reynolds number
of about 4000. Further increasing the Reynolds number lets the flow go through a
region with potential sub straight and sublaminar drag. An analysis using proper
orthogonal decomposition (POD) reveals that wave-like motions are still present in
the otherwise turbulent flow. Upon further increasing Re, the in-plane Dean vortices
lead to a modulation of turbulence depending on the azimuthal position. The flow is
then dominated by low-frequency so-called swirl-switching motion. This motion is
studied in both a periodic and spatially developing framework. Finally, the effect of
Dean vortices on Lagrangian inertial particles is studied.

1 Introduction

Theflow in bent pipes is an important natural extension of straight pipe flow, however,
significantly less studies are devoted to bent pipes as compared to their straight
counterparts. Due to the curvature, the azimuthal symmetry of the flow is broken,
and centrifugal forces lead to the appearance of a secondary flow, i.e. an in-plane
flow which manifests itself in the formation of two so-called Dean vortices. This
secondary flow is skew-induced, and appears for both laminar and turbulent flow.
The strength of these Dean vortices depends on the (bulk) Reynolds number ReD , the
curvature δ (usually defined as the ratio of pipe radius to the radius of the curvature),
and also the streamwise extent of the bend. The latter parameter distinguishes the
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flow in a torus (see e.g. [1]) from the one in spatially developing pipes, as for instance
the 90◦ bend [2]. A recent review of both experiments and simulations in bent pipe
configuration is provided in [3].

2 Numerical Setup

The fully resolved direct numerical simulations (DNS) are performed usingNek5000
[5], a high-order spectral-element code, in a similar way as discussed in e.g. [4, 6].
Special care has been taken to assure that the somewhat unusual spectral-element
discretisation with its non-equidistant point distribution even in homogeneous (peri-
odic) directions does not lead to any visible artifacts in the results. As an example,
Fig. 1 shows an in-plane cut of the streamwise vorticity atmoderate Reynolds number
Reτ = 1000 [4]; in this case the Reynolds number is based on the friction velocity
and pipe radius. The spectral-element mesh is Cartesian over the shown section, and
involves curved elements. Nevertheless, no discontinuities at the elemental bound-
aries are present in the solution, which is completely continuous even for the vorticity
which involves derivatives of the primary flow variables. This indicates that both the
chosen resolution (fixed in inner units for the various Reynolds numbers considered)
and the other details of the solver are suitable for accurate DNS of turbulent flows.

The diameter D = 2R is used to define the bulk Reynolds number ReD , which is
set to ReD = 11, 700 for most cases reported in this article, which corresponds in the
straight section to a friction Reynolds number of Reτ ≈ 360. To assure that no non-

Fig. 1 Colour visualisation
of the streamwise vorticity
ωz in a straight pipe at
Reτ = 1000 [4]. Even
though the mesh is
non-uniform across the
shown cut, no artifacts are
visible even in the flow
derivatives
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physical effects are incurred throughout the simulation via the artificial periodicity,
all shown torus simulations were performed in a pipe of total length of approximately
25R. The spatially developing bend is even longer with a total length of 25D.

The steady solutions and the stability analysis have been computed with PaStA,
an in-house developed software code written in primitive variables and based on the
finite element method (FEM, for details see [7]).

3 Stability and Transition

It has been known for a long time that the laminar flow in straight pipes does not
exhibit a linear instability at any “relevant” Reynolds number (even though there
is no formal proof as opposed to Couette flow). However, a similar analysis has
not been performed for pipes with curvature, even though some recent experiments
and simulations suggest a wave-like instability. Therefore, we started studying the
laminar flow in bent pipes [8], and confirmed that indeed the curvature and the
Reynolds number need to be considered independent parameters, and cannot be
collapsed into a single Dean number. In [9] we provide a complete linear stability
analysis, and found that for any pipe with curvature larger than zero exhibits a linear
instability at Re ≈ 4000; the corresponding stability diagram is shown in Fig. 2, and
is composed of a multitude of modes grouped in different families. Note that for
lower curvatures also subcritical transition, as observed in straight pipes, has been
observed, but is not shown in the diagram.

Fig. 2 Neutral curve in the δ − Re plane for δ ∈ [0.002, 1], see [9]. Each line corresponds to the
neutral curve of onemode. The neutral curve for the flow is formed by the envelope of the lines. Five
families (black and blue) and three isolated modes (green) are marked by labels. Symmetric modes
are indicated with continuous lines while antisymmetric modes are represented with dashed lines.
Note that the curves are not interpolated, i.e. they are segments connecting computed solutions with
�δ = O(10−3). The uncertainty on the Reynolds number is ±10−4
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Fig. 3 Turbulence in a bent pipe: The pictures show from left to right: Vortical structures in
the near-wall region, coloured with the streamwise velocity [6]; the wall-shear stress indicating
partial laminarisation at the inner bend [12]; particle distribution for inertial particles [11]. For all
simulations Reτ = 360, curvature δ = 0.1

4 Turbulent Flow in Bent Pipes

After the flow has undergone transition, a turbulent flow is established [6] which is
modulated by the in-plane Dean flow. This means that the turbulence at the outer
side of the bend is enhanced, and partial laminarisation is observed at the inner side
of the bend. A typical snapshot of such a turbulent flow at intermediate curvature
is shown in Fig. 3, showing the azimuthal dependence of turbulence. Motivated
by this inhomogeneity, we also studied inertial Lagrangian particles in bent pipes,
and concluded that a bend may have a crucial impact on the spatial distribution of
particles, see [10, 11]. For specific conditions there are regions, located in the centre
of the Dean vortices, that are never visited by any particle. This knowledge may be
important when designing probes that measure e.g. concentration.

It is intuitively clear that the drag induced by the flow in a bent pipe is generally
larger than in the straight counterpart at the same mass flux. However, there exists a
regime at comparably lowReynolds number and curvature, where this is not the case:
both sub-straight drag and sub-laminar drag could be established using our numerical
simulations [12]. It turns out that in these configurations the bend induces comparably
strong wave-like motion in the flow, which transports the energetic near-wall flow
towards the centre of the Dean vortices, thereby reducing the wall gradient.

5 Swirl Switching

The flow in bent pipes at high Reynolds number and sufficiently large curvatures has
been known to exhibit low-frequency oscillations, which may contribute to fatigue
of the structure [13]. This so-called swirl switching is the periodic dominance of one
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Fig. 4 Illustration of the swirl switching as an alternate dominance of one Dean vortex over the
other; shown are contours of the in-plane stream function for three time instants. The inner side of
the bend is on the left-hand side [1]

Dean cell over the other, and has been the subject of a number of recent (experimental)
papers. Using our simulation setup we wanted to study this so-called swirl-switching
phenomenon as well. We consider two different geometries, i.e. a toroidal pipe [1]
and a spatially developing pipe [2].

For the torus simulations, an analysis using proper orthogonal decomposition
(POD) revealed that the low-frequency oscillations characteristic of swirl switching
could be detected in the flow [1]; Fig. 4 shows a low-order reconstruction with the
50 most energetic modes. This result indicates that in order for swirl switching to
happen, no upstream straight section of the pipe is necessary, and only the bent part is
sufficient. However, in experiments only spatially developing bends are considered,
therefore we aimed at setting up a similar case in order to perform POD analysis on a
spatial bend as well, see Fig. 5. In order to generate a turbulent inflow for the spatially
developing bend, the synthetic eddy method [14] has been adapted to the current
setup. This choice was particularly important in order to avoid spurious frequencies
in the flow that would arise when using recycling conditions. Our experience with
the current inflow method is very good, and the flow can be considered a canonical
turbulent pipe flow already after 5 diameters downstream of the inflow. The POD
analysis performed on theDNSdata is classical; the only noteworthy aspect is that the
symmetry of the flow (mirror symmetry) is exploited in our decomposition. In order
to be able to compare to experiments,we have performed both 2D-POD (in cross-flow
planes) and 3D-POD. It turns out that we could exactly reproduce all modes found in
experiments using the 2D-POD technique. The fully three-dimensional POD modes
reveal that the swirl switching is essentially one travelling mode, originating in the
bend without connection to the inflowing turbulent flow. This finding highlights the
importance of using the full three-dimensional velocity snapshots in order to extract
correct modes, and thus an accurate low-order description of the phenomenon.



86 P. Schlatter et al.

Fig. 5 Setup of the spatially varying bent pipe for studying the swirl switching: The flow enters on
the top left, and is curved by 90◦ with curvature δ = 0.1 and 0.3. The colours indicate the amplitude
of the inplane streamfunction. The appearance of Dean vortices in the bend, and their subsequent
decay can clearly be appreciated
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Turbulent Pipe Flow Near-Wall Statistics

Tommaso Fiorini, Gabriele Bellani, Ramis Örlü, Antonio Segalini, P. Henrik
Alfredsson and Alessandro Talamelli

Abstract Results from the first experimental campaign in the Long Pipe facility
of the CICLoPE laboratory are reported. Single hot-wire profile measurements are
presented, taken from the wall up to one third of the pipe radius, with the friction
Reynolds number Reτ ranging from 6.5 × 103 up to 3.8 × 104. Measurements of
the pressure drop along the pipe are presented together with an estimation of its
uncertainty. Mean and variance of the streamwise velocity fluctuations are examined
and compared with the findings from other facilities. The amplitude of the inner-
scaled near-wall peak of the variance, after being corrected for spatial resolution
effects, shows an increasing trend with Reynolds number, in accordance with low
Reynolds number experiments and simulations.

1 Introduction

Turbulent pipe flow is one of the canonical wall flows, and it has been the object
of a multitude of studies over the years. Direct numerical simulations (DNS) and
experiments have progressively led to an improved understanding of wall turbulence,
but despite being intensively studied, many issues remain unresolved, such as the Re-
scaling of the variance profile (see [1–3]). Laboratory experiments continue to play an
essential role in the understanding of the physics of wall-bounded turbulence, since
DNS are still limited to low Re. TheCICLoPELong Pipe facility [4] aims at shedding
light on some of the open questions of wall turbulence. The facility is unique in its
kind, due to its very large dimensions, high Re can for the first time be reached while
still maintaining a sufficient spatial resolution to resolve all the scales of turbulent
motion with conventional hot-wire sensors. Spatial filtering is a great challenge in
experiments [5], and has been masking the true nature of turbulence at high Re.
Beside the resolution, the facility’s high degree of manufacturing tolerances and

T. Fiorini · G. Bellani · A. Talamelli (B)
DIN, Universita’ di Bologna, 47100 Forli’, Italy
e-mail: alessandro.talamelli@unibo.it

R. Örlü · A. Segalini · P.H. Alfredsson
Linné FLOW Centre, KTH Mechanics, 10044 Stockholm, Sweden

© Springer International Publishing AG 2017
R. Örlü et al. (eds.), Progress in Turbulence VII, Springer Proceedings
in Physics 196, DOI 10.1007/978-3-319-57934-4_13

89



90 T. Fiorini et al.

flow stability provide the possibility to carry out accurate and resolved experiments
at high Re, in a way that has so far not been possible in any other wall-turbulence
facility.

2 Experimental Setup

The Long Pipe facility in the CICLoPE laboratory is a closed-loop wind tunnel,
where at the end of the test section, a 111 m long carbon-fiber pipe, a fully developed
turbulent flow condition is reached. The pipe has an inner diameter of 901± 0.1 mm,
resulting in a length-to-diameter ratio of L/D ≈ 123. The dimension of the facility
is the result of the sizing process detailed in [4]. Thewind tunnel is also equippedwith
flow conditioning elements to ensure a good and stable flow quality; these include
a heat exchanger, a honeycomb, 5 screens, a settling chamber, and a convergent
with contraction ratio of 4; each of the six corners of the loop is also equipped with
turning vanes. The wind tunnel is driven by two-stage axial fans for a total power
of 480 kW, however for the present measurements only one fan was used and the
other was free running. For technical details about the final design of the facility and
its elements, the reader is referred to [6]. In Fig. 1 an overview of the facility with
its principal elements is shown. Hot-wire anemometry measurements are performed
close to the end of the test section at L/D = 122, as a part of the same experimental
campaign described in [4], but here a new hot-wire data-set with a shorter sensor
is shown. The data presented here are acquired with a custom-made boundary-layer
type probe, with a 1.2 µm diameter platinum wire soldered on stainless steel prongs;
the wire length is 0.25 mm in order to keep a wire aspect ratio of l/d ≈ 200. The
hot-wire is operated in constant-temperature mode via a Dantec Streamline system.
The sampling frequency is set to 60 kHz with an analog low-pass filter at 30 kHz
for all cases. Velocity calibration was performed ex situ in a DANTEC Streamline
90H02 external calibrator jet. The hot-wire probe is mounted on a traversing system
that consists of a hollow carbon-fiber airfoil that slides through the pipe wall (see
Fig. 2) and spans from the wall up to y/R ≈ 0.3; where y is the wall-normal distance
and R is the pipe radius. The probe is traversed via a stepper motor with a 5 µm
resolution step, while the relative position is obtained using a Renishaw Tonic T100x

(a)(b)

(c) (d) (e)

(g) (f)

Fig. 1 Overview of the Long Pipe flow loop. a Measuring station. b Round to rectangular shape
converter. c Heat exchanger. d Rectangular to round shape converter. e Axial fans. f Flow condi-
tioning unit (honeycomb, screens). g Convergent with contraction ratio 4
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Fig. 2 The traversing device used for the hot-wire measurements, described in Sect. 2. a CAD
drawing of the device. b Traversing as seen from outside the pipe, including the stepper motor
and optical encoder. c Traversing as seen from inside the pipe, showing the probe holder and sting
assembly

optical linear encoder with a 0.5 µm resolution. The mean centreline velocity is
measured with a Prandtl tube connected to a MKS Baratron 120AD differential
pressure transducer with a 1333 Pa range. The ambient pressure and temperature
inside the test chamber are acquired with a MKS Baratron 120A absolute pressure
transducer and a PT100 platinum thermoresistor, respectively. The pressure along
the pipe is acquired through 16 static pressure taps, with a hole diameter of 1 mm,
connected to a digital pressure scanner Initium with 2500 Pa range.

3 Pressure Drop Measurement

The pressure taps used to determine the pressure drop inside the pipe are located from
the hot-wire measuring station up to 70 m upstream, with a 5 m spacing between
each of them. To obtain the pressure gradient dp/dx and therefore the wall friction
τw, a least-square fitting is performed. In order to determine the region and number
of pressure taps to use, different linear fits of the data have been made starting from
the test section andmoving upstream using an increasing number of points for a wide
range of friction Reynolds number Reτ , where Reτ = uτ R/ν, with uτ denoting the
friction velocity and ν the kinematic viscosity of the fluid. To evaluate the quality
of those fits, their uncertainty can be computed, as shown in Fig. 3a. The more
measurement points are used, the less the fit is influenced by bias errors introduced
by single pressure taps; on the other hand, a local measure at the hot-wire station is
desired, and an overall lower uncertainty of the fit does not necessarily mean that
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Fig. 3 a Uncertainty on the linear fit used to determine dp/dx , as a function of the number of
pressure taps used for the fit. b Difference between the static pressure measured along the pipe and
the ambient pressure, where x indicates the axial distance from the start of the pipe. Dashed lines
indicate the linear fits obtained by using the last 6 points

the dp/dx at the hot-wire station is measured more accurately. Only relatively small
benefits are visible by adding more data points beyond the 6th–7th tap. It was thus
decided to compute the pressure gradient using the last 6 pressure taps corresponding
to the last 30 m of the pipe, to avoid any residual flow development effect. Static
pressure data points and corresponding linear fits calculated in this way are shown
in Fig. 3b for a range of Reynolds number.
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Fig. 4 a Inner-scaled mean velocity profile. Solid black line shows a logarithmic law with coef-
ficients given in the legend. b Inner-scaled streamwise velocity variance without any correction
applied
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4 Near-Wall Statistics

Single-wire velocity profiles were acquired with the traversing system described
in Sect. 2, the pressure drop was acquired and averaged for the duration of the
profile acquisition. A calibration was performed before and after each profile to
check for sensor drift. The mean velocity normalized with the friction velocity, U+,
is shown in Fig. 4a. The absolute wall position was retrieved by fitting the data
points for U+ < 10 using an analytical expression for the law of the wall [7]. The
friction velocity was obtained directly from the pressure drop as outlined in Sect.
3. Data collapse is satisfying with a slight deviation on the dataset at the lowest
Re, i.e. Reτ = 6.5 × 103, which might be related to insufficient calibration data
points for the lowest velocity range, or to the increased uncertainty in the pressure
drop determination. The normalized mean velocity profiles are shown together with
the linear relationship of the viscous sublayer and a reference logarithmic law with
coefficients κ = 0.395 and B = 4.40. It should be noted that an accurate analysis
of the mean velocity logarithmic region, its limits and the value of the coefficients
has yet to be performed, and the value of the coefficients given here are just for
reference. The coefficients of the log law also appear to differ slightly from what
is measured in [8], where different hot-wire data-sets from the same experimental
campaign are presented. Themeasured streamwise velocity variance normalizedwith
the friction velocity, u2+, is shown in Fig. 4b; data was then corrected using the semi-
empirical expression reported in [9] and the corrected variance is shown in Fig. 5a.
The corrected u2+, shows a clear trend in the magnitude of the near-wall peak with
increasingReynolds number, particularly visible at lower Reτ , as such confirming the
findings from channel and boundary layers [5, 10], while differing from observations
from the Princeton University/ONR Superpipe facility [11, 12]. The Re-trend of
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Fig. 5 a Inner-scaled streamwise velocity variance after being corrected with the scheme proposed
in [9] b Amplitude of the variance near-wall peak u2+|m , as a function of the friction Reynolds
number. × symbols represent data reported in [14], � symbols are the data from present measure-
ments whereas the coloured symbols show the same data corrected for spatial averaging using [9]
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the amplitude of the near-wall peak is given in Fig. 5b together with some results
measured in the KTH pipe facility [13, 14]. As far as the ‘second peak’ observed
in other pipe flow experiments [11, 12, 15, 16] and predicted in [17] is concerned,
the present results cannot confirm its presence, as no clear peak is visible up until
the highest Reynolds number investigated here (Reτ = 3.8 × 104). Nevertheless, it
should be noted that in the Superpipe measurements, at these Reynolds number, such
a peak has only started to appear and is still quite ‘subtle’ in appearance.
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High Reynolds Number Experimental
Facilities for Turbulent Pipe Flow at NMIJ

Noriyuki Furuichi, Yoshiya Terao and Yoshiyuki Tsuji

Abstract In this paper, we report on high Reynolds number and highly accurate
experimental facilities for turbulent pipe flow established by the National Metrology
Institute of Japan (NMIJ). One of the facilities, called the High Reynolds number
actual flow facility (Hi-Reff), is capable of handling a maximum bulk Reynolds
number of ReD = 2.0 × 107. Themost remarkable feature of this facility is its highly
accurate flow rate measurements. The expanded uncertainty of the volumetric flow
rate is estimated as 0.040–0.10%. Such a low flow rate measurement uncertainty
contributes to extremely accurate estimations of inner-scale variables such as friction
velocity. This paper presents the details and advantages provided by thisNMIJ facility
in relation to turbulent pipe experiments.

1 Introduction

High Reynolds number experiments for wall-bounded flows have contributed to
the clarification of numerous turbulent characteristics, especially the universality of
the profiles of mean and turbulent statistics. For pipe flows, Nikradse [1] performed
experiments in the high Reynolds number region at 1930s, and recent experiments by
Superpipe at Princeton University [2] and the Center for International Collaboration
on Long Pipe Experiments (CICLoPE) at Bologna [3] are well known. In general,
high Reynolds number experiments involve numerous issues including straight pipe
length, surface roughness, spatial resolution, and measurement accuracy. To date,
however, there have been neither experiments nor experimental facilities capable of
handling all issues related to high Reynolds numbers.

NationalMetrology Institute of Japan (NMIJ) established the high Reynolds num-
ber flow facility in 2009 as a part of national standard for water flow rates in Japan [4].

N. Furuichi (B) · Y. Terao
National Institute of Advanced Industrial Science and Technology (AIST), National Metrology
Institute of Japan (NMIJ), 1-1-1 Umezono, Tsukuba, Japan
e-mail: furuichi.noriyuki@aist.go.jp

Y. Tsuji
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

© Springer International Publishing AG 2017
R. Örlü et al. (eds.), Progress in Turbulence VII, Springer Proceedings
in Physics 196, DOI 10.1007/978-3-319-57934-4_14

95



96 N. Furuichi et al.

This facility has achieved a maximum bulk Reynolds number of ReD = 2.0 × 107

with an expanded uncertainty level of 0.040–0.10% (k = 2) for the volumetric flow
rate. In terms ofwhat this very lowflow rate uncertaintymeasurement brings to highly
accurate inner-scale variables such as the friction velocity, the primary advantage of
this facility is its ability to handle sophisticated turbulent pipe flow experiments.
In fact, using this facility, the authors have already performed highly accurate fric-
tion factor and velocity profile experiments, the results of which have been already
published in our previous paper [5]. However, in that paper, the specifications of
the experimental facility used for our turbulent flow experiments were not eluci-
dated. Accordingly, in this paper, the details and advantages provided by the above
mentioned NMIJ facility for turbulent experiments will be presented.

2 Experimental Facility at NMIJ

An overview of the facility at NMIJ is shown in Fig. 1 and pictures of the facility are
shown in Fig. 2. This facility is located in the Tsukuba North Site of the National
Institute of Advanced Industrial Science and Technology (AIST) as shown in Fig 2a.
The facility is approximately 200 m long and 50 m wide. To facilitate experiments
over a wide range of standard flow rates, this facility incorporates several flow loops
and weighing tanks with capacities from 10 kg to 50 t. For turbulent pipe flow exper-
iments, two facilities are available; one is Hi-Reff, and the other, which is equipped
with both overflow head and weighing tanks, is called the water flow facility. The
working fluid of these facilities is water. Both facilities are equipped with important
specifications and capabilities that facilitate turbulent pipe flow experiments such as
a long straight pipe, high flow rate stability, and high temperature and water pressure
stability. The most remarkable facet of both facilities, which provides an advantage
over other experimental facilities, is their highly accurate flow rate measurements.
This is achieved via the same static gravimetric method that is generally used for the
flow meter calibrations.

Reference
Flowmeters

Prover system

Reservoir
Tank (1200 t)

Test Line (50 m) 5 t weighing
tank

50 t weighing
tankOver Flow

Head Tank

(b)
(c) (d)

(e)

Test Line (40 m)

(f)

Fig. 1 Overview of NMIJ water flow facility. The arrows labeled with letters correspond to the
pictures shown in Fig. 2
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2 High Reynolds number experimental facilities: a overview of entire facility. The facilities
are located in the center of the figure. b Rear view of Hi-Reff. c Hi-Reff feed pumps and pressure
tank. d Hi-Reff Reference flow meters section. e Hi-Reff test line. f Water flow facility test lines

Circulation
Pumps

Reference
Flowmeters

Test Line (200 mm 600 mm)

Heat
Exchanger

Pressure
Tank

40,000

Thermometer
Pressure
Gage

Control Valve

Fig. 3 Flowchart of Hi-Reff at NMIJ

The Hi-Reff flowchart is shown in Fig. 3. This facility is located outdoors and
almost all of the piping is covered with insulation, as shown in Fig. 2b. Flows are
fed to the test lines by the circulation pumps, which are shown in Fig. 2c. Since
the maximum flow rate of each pump is 0.83 m3/s, simultaneous operation of the
four circulation pumps can generate water flows up to 3.33 m3/s in the test line.
The straight length of the test line is approximately 40 m (100D for DN400, 67D
for DN600) and the available pipe diameters range from 200 to 600 mm. Figure 2e
shows a photo of the Hi-Reff test line taken from the downstream side. The bulk
velocity in the pipe depends on the pipe diameter and can be as high as 18 m/s. As
stated in the experimental pipe example discussed in our previous paper, the pipe
roughness is 0.25 µm and the roundness is less than 25 µm [5].
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Control Valve

Control Valve

Thermometer

Pressure Gage

Fig. 4 NMIJ water flow facility flowchart

By using the boiler and the heat exchanger, the temperature is controllable from
20 to 75 ◦C at a stability within ±0.1 ◦C, even though almost all of this portion of
the facility is located outside and thus exposed to the environment. In addition, line
pressure is controlled from 0.2 to 0.4 MPa by the pressure tank, and at a stability
level better than 0.001 MPa. The maximum Reynolds number based on the bulk
velocity is ReD = 2.0 × 107, while the friction velocity is Reτ = 3.0 × 105. The
flow rate is given by the reference flow meters (Fig. 2d), which are calibrated by
the static gravimetric method. The expanded uncertainty of the volumetric flow rate
is estimated to be 0.10% with the coverage factor k = 2. For a schematic of the
uncertainty estimation, refer to the previous paper [4].

The water flow facility flowchart is shown in Fig. 4. Here it can be seen that the
facility consists of a reservoir tank with a 1200 t capacity, a 30 m-high overflow
head tank with a 150 t capacity, three test lines, and two weighing tanks. Chiller and
filter systems are installed to regulate the temperature stability and water density.
The flow is fed to the test lines from the overflow head tank. The maximum flow
rate is 0.83 m3/s, and test piping is available in various diameters from 100 to
400 mm. The straight pipe length is 50 m (125D for DN400). The pipe roughness
is less than 0.1 µm and roundness is less than 10 µm [5]. Water temperature is
maintained at approximately 20 ◦C and the line pressure is kept less than 0.24 MPa,
depending on flow rate. The maximum Reynolds number is ReD = 2.6 × 106 and
Reτ = 4.7 × 104. At the downstream end of the test lines, the weighing tanks are
installed. The volumetric flow rate expanded uncertainties with k = 2 are estimated
to be 0.060 and 0.042% for the 50 and 5 t weighing tank systems, respectively.

The experimental range of the NMIJ facilities, presented by the viscous length
and the Reynolds number, is shown in Fig. 5. Since the pipe diameter of the NMIJ
facilities is changeable, as mentioned earlier, the shaded and hatched areas show the
available range. This figure shows the wide availability range and high potential for
high Reynolds number experiments provided by the NMIJ facilities.
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Fig. 5 Experimental/applicable range plotted against the viscous length scale and the fric-
tion Reynolds number. White triangle CICLoPE (D = 900 mm) [3], black triangle Superpipe
(D = 129 mm) [2], black rectangular CoLaPipe (D = 190 mm) [6], white rectangular Laufer
(D = 254 mm) [7], Diamond Nikuradse (D = 100 mm) [1], bold circles Furuichi (D = 100 and
387 mm) [5],Gray shaded area available range of Hi-Reff (D = 200–600 mm),Diagonally hatched
area available range of the water flow facility (D = 100–400 mm)

3 Uncertainty for the Measurement of Friction Factor

In this section, an uncertainty analysis for the friction factor is presented to show the
advantage provided by low uncertainty flow ratemeasurements. The relative standard
uncertainty in the friction factor measurement is given by the following,
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where, λ is the friction factor,Δp is the differential pressure,D is the pipe diameter,
ρ is the density of water, q is the volumetric flow rate and L is the length between
the two pressure taps. In this experiment, the differential pressure is measured as the
average value from a set of four wall taps that are installed at the same streamwise
position.

The uncertainty budget for the previous experiments [5] is shown in Table 1. In
our previous experiments, pipes with different diameters (D = 387 and 100 mm)
were used. The results clearly showed that the dominant uncertainty sources are the
differential pressure and flow rate measurements. The uncertainty in the differential
pressure measurement is primarily due to the uncertainty of the digital manometer
and pressure deviation among the taps located at the same position. Here, it should
be noted that the uncertainty contribution to the flow rate measurement is large,
even though NMIJ facilities are capable of producing low uncertainty levels. This
indicates, obviously, that the NMIJ facilities have a significant advantage in terms of
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Table 1 Budget sheet for the measurement of friction factor

Uncertainty Uncertainty

Uncertainty source D = 387 mm (%) D = 100 mm (%)

Differential pressure 0.401 0.401

Pipe diameter 0.162 0.125

Density of water 0.005 0.005

Flow rate 0.400 0.152

Tap distance 0.008 0.008

Expanded uncertainty (k = 2) 1.18 0.89

the accuracy when conducting turbulent pipe flow experiments in comparison with
other facilities.

4 Summary

In this paper, details of the experimental facility at NMIJ, including Hi-Reff (which
boasts a maximum Reynolds number of ReD = 2.0 × 107) were reported. The most
remarkable feature of the facility is its highly accurate 0.040–0.10% flow rate mea-
surement capability, from which the highly accurate friction factor measurement
(estimated to be 0.89–1.18%) has been achieved. From these factors, we can con-
clude that these NMIJ facilities have high potential for use as bases for turbulent pipe
flow experiments.
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Wavenumber Dependence of Very
Large-Scale Motions in CICLoPE
at 4800 ≤ Reτ ≤ 37,000

Emir Öngüner, El-Sayed Zanoun, Tommaso Fiorini,
Gabriele Bellani, Amir Shahirpour, Christoph Egbers
and Alessandro Talamelli

Abstract The present work aims at investigating the very large-scale structures
of turbulent pipe flow in CICLoPE at high Reynolds numbers. According to recent
studies, some open questions remain to be answered to identify accurate sizes of these
turbulent structures in pipe flow. The CICLoPE facility has been therefore utilized,
providing an opportunity to approach high Reynolds number flows with high enough
resolution in terms of the viscous length scale, allowing us to investigate the behavior
of such turbulent structures. Meandering structures, usually referred as VLSM (very
large-scale motions), have been identified with claimed extension up to 20R, where
R is the pipe radius.

1 Introduction

Characterization of turbulence structures in pipe flows at high Reynolds numbers are
of vital importance with respect to the Reynolds stresses and the turbulent kinetic
energy production. Recently, there has been an increasing interest in observing and
understanding of the large organized vortex clusters forming large-scale and very
large-scalemotions (LSMandVLSM).Nevertheless, a solid definition of their nature
and vivid understanding of their evolutions are still progressing. Therefore, this study
is mainly focusing on clarifying the nature of the VLSM as well as describing and
identifying them in quantitative manner.
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Recent investigations of fully developed turbulent pipe flows, e.g. Bailey et al.
[1] and Bosenberg et al. [2] showed that identification of the LSM and the VLSM in
pipes are still under progressing and it might be concluded that there is still a lack
of a complete and common definition for scales of those structures, in particular,
at very high Reynolds numbers. Therefore, a quantitative measure of the Reynolds
stresses and the energy production associatedwith such scales are indeed to be clearly
defined.

An experimental attempt by Guala et al. [3] suggested a value of 2 for the nor-
malized wavenumber kx R as a separator between the range of VLSMs and LSMs. It
is clearly observable that according to the domain dividing method in premultiplied
power spectra, the wavenumbers are converted to wavelengths independently. This is
the reason why the results are shown separately for LSM and VLSM, in [3]. The line
of separation is corresponding to a wavelength of πR, which is slightly longer than
the accepted mean length of a turbulent bulge. They also found that the streamwise
energetic modes can extend up to 12–14 pipe radii and 4–5 times longer than the
length of a turbulent bulge and referred to these modes as very large-scale motions
(VLSM). More recently, [4] used the whole premultiplied spectra and the observable
peaks obtained to determine the wavenumbers for each radial location. The only
difference to [3] was that structures were compared according to their dimensionless
wavenumbers. On the other hand, [2] and [4] followed another method by associating
the highest peaks in the power spectra to a possible turbulent structure.

2 Objectives and Measurements

The measurements in CICLoPE facility aim at investigating one-dimensional energy
spectra over awide range of Reynolds number. Considering similar facilities, Cottbus
Large Pipe (CoLaPipe) [5, 6] covers a range of 103 ≤ Reτ ≤ 17 × 103 with large
enough viscous length scales (10 ≤ �∗ ≤ 300), and the Princeton/ONR Superpipe
with approximately 3 × 103 ≤ Reτ ≤ 105 working range, however, having much
smaller size of the viscous length scales (0.5 ≤ �∗ ≤ 30). Here Reτ is called the
shear Reynolds number and defined as Reτ = Ruτ /ν, where uτ is the wall friction
velocity, R is the pipe radius and ν is the kinematic viscosity of the fluid. The
CICLoPE covers a region defined by 5 × 103 ≤ Reτ ≤ 37 × 103 and sizes of viscous
scales (10 ≤ �∗ ≤ 100).

It is worth noting that the energy distribution in wavenumber domain helps to
understand the behavior and structures of turbulence. In pre-multiplied spectra, the
signature of the coherent motions can be easily observed where the spectral peaks,
i.e. inner as well as outer spectral peaks, in near-wall and outer regions, respectively,
provide evidences for the location of the maximum energy production and the energy
content per wavenumber, see [4]. It was stated by [4] that the location, magnitude and
wavelength of these spectral peaks are still open issues. Following the Kolmogorov
scaling laws, i.e. k−1

x and k5/3x and their dependence on the Reynolds number provide
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also inputs about the universal behaviour of the energy spectrum in smaller and larger
length scales at different wall-normal positions.

The mean pressure gradient along the CICLoPE pipe test section was monitored
using pressure taps equally-spaced and distributed along the pipe section. Utilizing
the mean pressure gradient obtained, the wall shear stress and consequently the wall
friction velocity are determined. In order to obtain turbulence statistical quantities,
instantaneous velocity field is resolved using thermal anemometer. The most com-
mon thermal anemometry used to obtain information on time-averaged and fluctuat-
ing velocities is the hot-wire anemometry (HWA), working in constant temperature
mode. Further processing of the HWA time trace data acquired, i.e. the statistical and
spectral quantities, were carried out in order to assess the behavior of the CICLoPE
turbulent pipe flow. It is worth noting here that only naturally generated turbulence
was considered in this piece of work.

In order to compare the CICLoPE data with those from the CoLaPipe, a common
shear Reynolds number range 4,800 ≤ Reτ ≤ 17,000 is considered for a viscous
length scale approximately �∗ ≤ 100, see Fig. 1 in [5]. The main goal is to scale the
turbulent spectra at different Reynolds numbers andwall-normal positions to identify
the signs of any possible LSMs and VLSMs. Spectral peak locations at inner and
outer regions were studied for each Reynolds number. Within this context the size
effect of the three different facilities (incl. Superpipe) on the spatial development of
turbulent structures can be clarified in further studies. Similar measurements have
been already conducted by Princeton team [2, 4].

3 Results and Discussions

Figure 1 shows thepremultiplied spectra normalizedby the shear velocity (kxΦuu/u2τ )
at the lowest and highest Reynolds number cases in the CICLoPE facility. A good
collapse is observed for kx R < 3 (Fig. 1a), and for kx R < 2 (Fig. 1b), in particular for
y/R < 0.3 at Reτ = 4800 and Reτ = 37,000, respectively. The first peaks of pre-
multiplied power spectra at various wall-normal locations seem to appear for similar
normalized wavenumber. The first peak of spectra is considered as an evidence of the
VLSM which is originating at lower wavenumbers. The magnitudes of the VLSM
peaks are observed to decreas at higherwall-normal positions in good agreementwith
[4] whichmight be attributed to the decay of the total momentum transport as thewall
distances increases beyond the outer limit of the inertial sublayer y/R > 0.15. In
order to find the peaks of the energy spectra and estimate the wavenumber peak loca-
tion the methodology adopted by [2] was followed. To reduce the scatter in the data a
Gaussian window is applied to smooth the existing plots. Figure 1 shows significant
differences in magnitudes of premultiplied spectra as observed in DNS results of [7]
in comparison to [4]. CICLoPE delivers a viscous length scale (�∗ = ν/uτ ) of 10.1
µm where Superpipe reaches only 1.7 µm at Reτ = 37,000. For this reason scaling
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Fig. 1 Spectra with varying wall-normal distances at Reτ = 4800 (left) and Reτ = 37,000 (right)

Fig. 2 Inner scaling of
spectral peak locations of
VLSMs for
4800 ≤ Reτ ≤ 37000

of kxΦuu with various uτ in two facilities may deliver different magnitudes at the
same shear Reynolds numbers.

Utilizing the viscous length scale �∗, the wavenumber kx was normalized yielding
k+
x = kxν/uτ and then presented versus the normalized wall distance, (y+ = yuτ /ν)
in Fig. 2. Figure 2 illustrates a monotonic decrease of the VLSM peaks up to the
inner limit of the inertial sublayer (y+ ≈ 3 × 102), reaching an almost asymptotic
behavior along the inertial sublayer for various Reynolds numbers. The normalized
wavenumber k+

x values corresponding to the same positions are shifted at higher y+
values due to increasing the shear velocity with increasing the Reynolds number.

Spectral peak locations in outer coordinates, i.e. scaled with R, show an inter-
esting trend in agreement with the Superpipe data described in [2]. The normalized
wavenumber decreases monotonically along the wall distance 0.001 ≤ y/R ≤ 0.05.
On the other hand, at higher wall-normal distances, i.e. y/R ≤ 0.05 which is close to
the inner limit of the inertial sublayer, the normalized wavenumbers (kx R) values are
coming close to each other, and therefore, start to stabilize for all Reτ till reaching the
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Fig. 3 Outer scaling of
spectral peak locations of the
VLSMs for
4800 ≤ Reτ ≤ 37000

pipe centerline. One might observe from Fig. 3 that the VLSMs are about kx R ≈ 3.6
(λx/R ≈ 1.75) which seem to be smaller than sizes expected according to [8] and
[3]. In addition to different non-dimensionalized structure lengths, Figs. 2 and 3 show
also some discrepancies according to results of [4]. One particular reason regard-
ing the differences for inner and outer scaling can be addressed to unequal viscous
conditions and different pipe radii. One should state that the inner diameter ratio of
CICLoPE and Superpipe (DCICLoPE/DSuperpipe = 6.97 ≈ 7) is corresponding to the
ratio of non-dimensionalizated wavelenghts of VLSMs in both facilities which are
originating at similar wavenumbers: (λx/RSuperpipe) / (λx/RCICLoPE) ≈ 14/2 = 7. It
is obvious that a scaling of dimensionalized structure lengths with a smaller R will
provide larger non-dimensionalized wavelengths than a larger R. For this reason
higher kx R values in outer scaling in CICLoPE (Fig. 3) may lead to much smaller
non-dimensionalized VLSM lengths in comparison to Superpipe and also [8] and
[3].

4 Conclusions and Future Work

The current study confirms the importance of the very large-scale structures in
understanding of high Reynolds number wall turbulence. The premultiplied spectra
showed good collapse for kx R < 3, in particular, for high enough Reynolds number.
A monotonic decrease of the VLSM peaks within the wall layer was observed up
to the inner limit of the inertial sublayer. On the contrary, an asymptotic behavior
along the inertial sublayer was reached for various Reynolds numbers. Existing data
of the Superpipe will be compared with CoLaPipe and CICLoPE in terms of their
premultiplied spectra (kxΦuu/u2τ ) and wavenumber dependences of VLSM & LSM
peaks. The normalization & scaling procedures of the turbulent structure lengths at
different high Reynolds numbers pipe flow facilities with friction veloctiy (uτ ) and
various diameters (DSuperpipe = 0.129m, DCoLaPipe = 0.19m, DCICLoPE = 0.9m)
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will be reviewed again considering the smaller non-dimensionalized wavelengths
obtained in CICLoPE than those reported earlier in literature.
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Streamwise Auto-Correlation Analysis
in Turbulent Pipe Flow Using Particle
Image Velocimetry at High Reynolds
Numbers

Emir Öngüner, El-Sayed Zanoun and Christoph Egbers

Abstract This preliminary study focuses on determining the lengths of turbulent
pipe flow structures at Reb ≈ 60, 000 and 140, 000 using auto-correlation analysis in
streamwise direction considering velocity fluctuations, where Reb is the Re-number
based on bulk velocity. These structures are usually represented in terms of wave-
lengths λ or wavenumbers k. The current investigations on such turbulent structures
including both large-scale motions (LSM) and very large-scale motions (VLSM)
showed that the streamwise extension of these structures is highly dependent on the
Reynolds number. Hence, the Cottbus large pipe (CoLaPipe) as a high Reynolds
number test facility is being used to understand the physical processes and dynamics
of such structures. These turbulence structures have been investigated using particle
image velocimetry (PIV) to validate and compare earlier results obtained utilizing
hot-wire anemometry (HWA).

1 Introduction

It has been recently observed that the sizes of turbulence structures can reach even
20R along the pipe axis, where R is the pipe radius, and are highly dependent on the
Reynolds number [4, 5]. According to [1, 2, 6] some open questions remain unsettled
for identifying accurate sizes of the large-scale motions (LSM) and very large-scale
motions (VLSM). The theory of [2] claimed sizes of LSMs as λLSM = 2R − 3R and
VLSMs as λVLSM = 8R − 16R using hot-wire anemometry at high frequencies in
turbulent pipe flow. The estimated turbulent structure lengths in these studies have
been calculated regarding one dimensional spectral analysis and temporal develop-
ment. One should also consider that these investigations were based on similar pipe
geometry; e.g. [2]: Di = 127mm, [1]: Di = 127mm, [6]: Di = 129mm, where Di
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is the inner diameter of pipe. The current study is targeting at using a non-intrusive
measurement method, i.e. PIV, to scan a large domain of pipe section having larger
diameter, Di = 190mm, in fully developed turbulent state at Reb = 60, 000 and
140,000 to focus on spatial development of the large-scale structures.

2 Facility Description and Measurements

The CoLaPipe is providing an opportunity to approach higher Reynolds numbers,
60, 000 ≤ Reb ≤ 1, 000, 000, with high enough resolution, 10 ≤ �∗ ≤ 300, where
�∗ is the viscous length scale. The pipe test section is made out of acrylic glass,
having inner pipe diameter of Di = 190 ± 0.23 mm with deviation less than 0.12%.
The total length of the suction side, L = 28 m, provides a test section with a length-
to-diameter ratio of x/Di ≈ 148. Further informations about the pipe facility and
wall-layer measurements using conventional probes can be found in [3, 8].

Preliminary PIV measurements have been performed between x/Di = 91-101
in collaboration with LaVision GmbH which covers 2m of pipe test section, i.e.
approximately a domain of 20R. 4 Imager sCMOS cameras with 2560×2160 pixels
(provided by LaVision) with a standard Nd:YAG double-pulse laser with f = 15 Hz
and λ = 532 nm have been used to cover this area with an acquisition frequency
of f = 15 Hz (Fig. 1). All cameras have been synchronized to obtain simultaneous
data. Calibration has been performed using a self-made calibration pattern which is
inserted through the 2 m-pipe segment before the measurements. Standard fog fluid
is used with aerosol generator to produce smoke particles. It should also be noted
that to avoid anymacro-cracks on acrylic glass surface, any kind of seedingmaterials
with alcohol is to be renounced. For each case investigated, 100 snapshots have been
taken. For post-processing only approx. 14R segment was taken into account due
to stitching problems of the last camera. In terms of viscous wall unit, 64,276 mm
distance between two vectors is delivering the first point at y+ ≈ 110, which can be
considered as a low resolution study for this preliminary experiment.

3 Results

To apply auto-correlation function, the streamwise velocity fluctuations over 14R
pipe segment at various wall-normal locations (y/R) were considered. For each
y/R, all instantaneous velocity data were taken where the mean velocity of each
y/R location is subtracted from these values. As seen in Fig. 2, which shows a
correlation curve corresponding to only a single PIV snapshot, after applying the
correlation method some periodic behaviors can be observed. The first point in the
velocity domain is taken as a reference point and the neighbor points are correlated
with this reference point. It can be easily observed from the figure that by moving
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Fig. 1 Schematic of streamwise PIV arrangement in CoLaPipe using four sCMOS cameras, at
Reb ≈ 60, 000

Fig. 2 The behavior of correlation coefficients over the 14R pipe domain at Reb ≈ 60, 000 (y/R =
0.2) in a single PIV snapshot

in streamwise direction the correlation coefficient is decreasing but at some points
repeated peaks can be distinguished.

A contour map illustrated in Fig. 3 exposes the variation of the streamwise cor-
relations Ruu at y/R = 0.2 at lower Reynolds number case in a time-space plot. By
checking all 100 streamwise PIV data, it should be noted that not all snapshots are
delivering consistent velocity behavior which shows a periodic correlation. Figures4
(Reb ≈ 60, 000) and 5 (Reb ≈ 140, 000) show the average distance between those
correlation peaks (normalized by pipe radius) regarding all 100 snapshots. These
repeated periodic distances are considered as signs of turbulent structures. Amoving-
average-function is applied to eliminate noises to capture the peaks properly. For
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Fig. 3 Contour map showing variation of the streamwise correlation coefficients Ruu with 100
PIV-snapshots along 14R pipe domain at y/R = 0.2 and Reb ≈ 60, 000

Fig. 4 Estimated mean structure lengths (L) normalized by R at Reb ≈ 60, 000 of streamwise
velocity fluctuations at various wall-normal locations over 100 snapshots

each snapshot the distances of visible peaks for a specific wall-normal location are
calculated and the average values are presented in Figs. 4 and 5. According to this
method, mean structure lengths of 1.6 and 2.5R can be observed for Reb ≈ 60, 000
and Reb ≈ 140, 000 respectively.
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Fig. 5 Estimated mean structure lengths (L) normalized by R at Reb ≈ 140, 000 of streamwise
velocity fluctuations at various wall-normal locations over 100 snapshots

4 Future Work

High-speed PIV measurements with higher acquisition frequency and larger number
of snapshots are essential to have amore precise analysis for determining the length of
the structures in fully developed pipe flow.Alternatively, instead of usingmulti-point-
correlation in a wall-normal line, applying a two-point-correlation in streamwise
and spanwise directions will be implemented to investigate the spatial extend of
correlated motions within the measurement plane. It should also be noted that the
outer scaling factor R of the previous studies is widely used for facilities with similar
pipe diameters. The effect of larger pipe diameters should be taken into account by
normalization with R to determine the proper lengths of the large-scale structures.
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Subgrid-Scale Model with Structural Effects
Incorporated Through the Helicity

Nobumitsu Yokoi and Akira Yoshizawa

Abstract Byanalogywith theReynolds-averaged turbulencemodel, a subgrid-scale
(SGS) model of turbulence with structural effect incorporated through the helicity is
proposed. The SGS helicity implemented into the SGS stress is expected to suppress
“too dissipative” properties of the Smagorinsky-type model applied to turbulence
with coherent structures. Three types of helicity SGS models (two-, one-, and zero-
equation models) are constructed depending on how many equations for the SGS
statistical quantities should be solved in addition to the grid-scale (GS) momentum
equation.

1 Introduction

Large-eddy simulation (LES) provides a powerful tool for investigating the real-
world unsteady inhomogeneous turbulence at huge Reynolds numbers. Since the
unresolved or subgrid-scale (SGS) components in LESs represent only small por-
tion (smaller scales) of the flow components as compared with the turbulence of
the Reynolds-averaged simulations, it is expected that the SGS model in the LESs
can be much simpler than the counterpart in the Reynolds-averaged simulations.
One of the simplest possible models is the eddy-viscosity type one, where the SGS
stress τ i j ≡ uiu j − uiu j is expressed in terms of the grid-scale (GS) velocity strain
si j (≡ ∂u j/∂xi + ∂ui/∂x j ) as

τ
i j
D = −νSs

i j
D , (1)
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Table 1 Smagorinsky constant CS and vortical structures

Flow types CS Vorticity structure

Isotropic 0.18 Weak

Mixing layer 0.15 Intermediate

Wall 0.10 Strong

where f denotes the grid-scale (GS) or filtered component of f , and Ai j
D(≡ Ai j −

δi j A��/3) is the deviatoric part of any tensorA = {Ai j }. Here, νS is the SGS viscosity,
whose expression in the Smagorinsky model is given by

νS = (CSΔ)2s (2)

with the filter width Δ, the model constant CS, and s ≡
√

(si j )2/2.
The classical Smagorinsky model is known to be “too dissipative” when it is

applied to a turbulent flow with persistent flow structures. This is typically seen in
situations where the Smagorinsky constant CS has to be adjusted from flow to flow
as shown in Table 1. It follows from (2) that the effective viscosity with the value of
CS = 0.18 optimised for the homogeneous isotropic turbulence is more than three
times too dissipative if it is applied to wall turbulence (where the optimised value is
0.10).

This need of constant adjustment is one of the major drawbacks of the classical
Smagorinsky model for the SGS viscosity, as well as the lack of self-adaptation
(namely, the SGS viscosity should vanish in the region where the flow is fully
resolved, and decay correctly in the near wall region). These problems have been
dissolved in the dynamic procedure, where the Smagorisky coefficient is dynami-
cally estimated through the flow properties represented by the grid-scale (GS) veloc-
ity strain and with consecutive application of two filters. However, even with the
dynamic procedure, it is recognised that the Smagorinsky model is too dissipative
if it is applied to a flow with coherent structures, and implementation of such struc-
ture effects into the SGS model is important [1]. Actually, the stream-wise vorticity
structures are ubiquitously observed not only in the near wall region but also in the
mixing-layer turbulence with a large-scale velocity shear [2, 3] (Table 1).

This situation suggests that structural informationof turbulence such as the stream-
wise vorticity should be incorporated into the SGS modelling. Since such a vorticity
in turbulence is directly related to the turbulent helicity, it is of importance to consider
how to implement the effects of helicity into the SGS modelling.
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2 Helicity

The local density of the turbulent helicity is defined by the correlation between the
velocity fluctuation u′ and vorticity fluctuation ω′(= ∇ × u′) as H ≡ 〈u′ · ω′〉(〈· · ·〉:
ensemble average). The effects of helicity in inhomogeneous turbulence have been
analytically investigated [4]. On the basis of the analytical Reynolds-stress expres-
sion, a turbulencemodel in terms of one-point statistical quantitieswas constructed as

〈u′i u′ j 〉D = −νTS
i j
D + ηT

[
(∇H)iΩ j

∗ + (∇H) jΩ i
∗
]
D , (3)

where Si j (= ∂U j/∂xi + ∂Ui/∂x j ) is themean velocity strain-rate tensor, andΩ∗(=
Ω + 2ωF) is the mean absolute vorticity [Ω(= ∇ × U): mean relative vorticity, ωF:
angular velocity]. The transport coefficients in (3) are modelled as

νT = K τ = CνK
2/ε, ηT = �2τ = CηK

4/ε3, (4)

where K (= 〈u′2〉/2) is the turbulent energy, ε is its dissipation rate (τ : eddy turnover
time, �: length scale of energy-containing eddy, Cν and Cη: model constants). The
Reynolds-stress expression (3) indicates that the inhomogeneous helicity coupled
with the mean absolute vorticityΩ∗ may counter-balance with the eddy viscosity νT,
and contribute to the sustainment of large-scale structures by effectively suppressing
the enhanced momentum transport by turbulence [4]. Recently it has also been con-
firmed by direct numerical simulations (DNSs) of helically forced turbulence that a
global flow can be generated by this inhomogeneous helicity effect [5].

3 Subgrid-Scale Modelling

With a filtering procedure, any field quantity f is divided into the grid-scale (GS)
component f and subgrid-scale (SGS) component f ′′ as f = f + f ′′. The equation
of the GS velocity u is written as

(
∂

∂t
+ u · ∇

)
u = −∇ p − ∇ · τ + ν∇2u, (5)

where p is the GS pressure and τ = {τ i j } is the SGS stress tensor. In order to alleviate
the problem of model-constant adjustment in the classical Smagorinsky model (1),
we implement the effects of helicity into the SGS modelling. There have been some
attempts to implement the effects of helicity into the SGS modelling of the helical
turbulence [6, 7]. Here, we directly extend the expression for the Reynolds-stress
expression (3) to the SGS stress as
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τ
i j
D = −νSs

i j
D + (Γ i

Sω j
∗ + Γ

j
S ωi

∗)D (6a)

= −νSs
i j
D + ηS[(∇HS)

iω j
∗ + (∇HS)

jωi
∗]D, (6b)

where ω∗(= ω + 2ωF) is the GS absolute vorticity.
On the analogy of the Reynolds-averaged model, the transport coefficients asso-

ciated with s = {si j } and ω∗, νS and Γ S, should be expressed in terms of the SGS
energy and helicity, respectively. Depending on how to express them, the models are
classified into three categories, two-, one-, and zero-equation models.

Two-Equation Model

The most straightforward approach is to introduce the SGS energy and helicity, KS

and HS, defined by
KS = (u2 − u2)/2, (7)

HS = u · ω − u · ω, (8)

and examine the spatiotemporal evolution of them. These quantities represent the
statistical properties of unresolved or SGS motions. The transport coefficients in
the SGS stress, νS and Γ S, are expressed in terms of KS and HS as well as
Δ (the largest scale of the unresolved scales of motion): νS = νS{Δ, KS} and
ΓS = ΓS{Δ, KS, HS} = ηS{Δ, KS}∇HS. And the SGS energy dissipation rate εS
is expressed also in terms of Δ and KS as εS = εS{Δ, KS}. In this case, the transport
coefficients in (6) are expressed as

νS = CSΔK 1/2
S , ηS = CηSΔ

2(Δ/K 1/2
S ) = CηSΔ

3K−1/2
S . (9)

In addition to the GS momentum equation (5) with (6), we solve the equations of the
SGS energy KS and the SGS helicity HS. The KS equation is given by

(
∂

∂t
+ u · ∇

)
KS = −τ ab ∂ub

∂xa
− εS + ∇ · TS (10)

with the dissipation rate εS and the transport rate TS of the SGS energy defined by

εS = CεSK
3/2
S /Δ, TS = (νS/σS)∇KS, (11)

where CεS and σS are model constants. On the other hand, the equation of the SGS
helicity is given by

(
∂

∂t
+ u · ∇

)
HS = −τ ab ∂ωb

∂xa
+ ωa ∂τ ab

∂xb
− εHS + ∇ · (KSω + THS) , (12)

where the dissipation and transport rates of HS, εHS and THS, are modelled as
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εHS = CεHHS/(KS/εS) = CεHεSHS/KS, THS = (νS/σHS)∇HS (13)

with CεH and σHS being the model constants.
In the framework of the two-equation model, two transport equations of the SGS

quantities, KS (10) and HS (12), have to be simultaneously solved with the GS
momentum equation (5).

One-Equation Model

In order to construct a simpler model, however, the number of the equations need to
be reduced with some additional assumptions. We retain HS as a SGS field quantity
and solve the HS equation since the evolution of SGS helicity is less known than
the counterpart of the SGS energy. On the contrary, the KS equation is simplified by
assuming a local equilibrium between the production and dissipation rates of KS.
All quantities are to be expressed in terms of Δ, s and HS, without resorting to KS.
In the framework of one-equation model, we use εS = εS{Δ, s}, νS = νS{Δ, s}, and
Γ S = Γ S{Δ, s, HS} = ηS{Δ, s}∇HS.

We assume the local equilibrium of the SGS energy, i.e., the production rate of
KS is balanced by the dissipation rate εS in (10) as

− τ i j ∂u
j

∂xi
� εS. (14)

We approximate the SGS stress τ i j by (1) and the SGS energy dissipation rate εS by
(11), with eliminating KS by (9). Then (14) reads

νSs
2 = (CεS/C

3
νS)ν

3
S/Δ

4, (15)

which immediately gives us the Smagorinsky model of the SGS viscosity as (2) with
CS = (C3

νS/CεS)
1/4. In this case, the SGS energy KS, its dissipation rate, εS, and the

helicity-related coefficient ηS are expressed as

KS = (νS/CνSΔ)2 = CKSΔ
2s2, (16)

εS � −τ i j ∂u
j

∂xi
� νSs

2 = (CSΔ)2s3, (17)

ηS = CηSΔ
3K−1/2

S = CHSΔ
2/s (18)

with CKS = (CεSCνS)
−1/2 and CHS = CηSC

1/2
εS /C1/2

νS .
In this one-equation model, in addition to the GS momentum equation (5), the

SGS helicity equation (12) should be solved with THS (13) and

εHS = CεHHS/s
−1 = CεHHSs. (19)
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Zero-Equation Model

The Smagorinsky model is one of the simplest possible SGS models, which has no
additional equations other than the GS momentum equation (zero-equation model).
In order to construct a model as simple as the Smagorinskymodel, we further assume
the local equilibrium of the SGS helicity, i.e., the production rate of the SGS helicity
is balanced with its dissipation rate εHS. In this case, from (12) we have

− τ ab ∂ωb

∂xa
+ ωa ∂τ ab

∂xb
� εHS. (20)

Under this local equilibrium condition for the SGS helicity production rate with the
SGS helicity dissipation rate (13), HS can be estimated as

HS = 1

CεHs
εHS �

[
νSs

i j ∂ω j

∂xi
− ωi ∂

∂x j
νSs

i j + 2

3
(ω · ∇) KS

]
, (21)

where the SGS stress (6) has been used with KS (16), HS (21), νS (2), and ηS (18).

4 Discussion

We proposed a SGS model with the structural effects incorporated through the SGS
helicity. In this model, effects of coherent structures in turbulence are taken into
account through the terms of the inhomogeneous helicity which couples with the
GS absolute vorticity in (6). If these terms work as a counter-balancer to the SGS
viscosity term, as was already confirmed in the context of the Reynolds-averaged
model, “too dissipative” properties of the Smagorinsky model might be alleviated.
In this scenario, the Smagorinsky constant should be fixed to CS = 0.18 (optimised
for isotropic turbulence) for any kind of turbulent flows, and the effects of vortical
structures would effectively suppress the momentum transport without resorting to
any constant adjustment. The validation of this scenario can be accomplished only
through applications of the model to several kinds of turbulent flows.

It is worthwhile for remarking the following point. In the present zero-equation
model, the SGS helicity is expressed in terms of the GS quantities as in (21). This
estimate is based on the local equilibrium assumption (20), which is not necessarily
the case depending on the flow configurations. The validity of (21) is under inves-
tigation with the aid of direct numerical simulations (DNSs) of a rotating stratified
turbulence. If the estimate (21) is reasonably well, we can use the zero-equation
model. If not, we should use the one- or two-equation model.
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Fractional Turbulence Models

Peter W. Egolf and Kolumban Hutter

Abstract In this article we propose to generalize Reynolds shear stresses in local
zero-equation turbulence models to nonlocal and fractional forms. In the well-
accepted general method, starting with a Kraichnanian convolution-integral as
Reynolds shear stress, different weighting functions are possible candidates to
serve this purpose; e.g. the Liouville weighting function leads to the left-handed
Riemann–Liouville fractional derivative and the Heaviside distribution to a mean
velocity difference, respectively a differencequotient. Therefore, thisweighting func-
tion transforms the first gradient (the one in the eddy diffusivity) of Prandtl’s 1925
mixing-length model to an eddy diffusivity with a mean velocity difference and,
thereby, directly leads to the (modified) Prandtl shear-layer model of 1942. Prandtl’s
intuitive development—which is in agreement with fractional calculus—does not
serve as a proof of correctness, but is a welcome coincidence. By further follow-
ing Prandtl’s intuition and applying the Heaviside distribution also to the remaining
driving gradient, yields the Difference-Quotient Turbulence Model (DQTM), which
was discovered by other means and had been published by Egolf in 1991. As a result,
it becomes clear that the DQTM is a natural nonlocal extension of Prandtl’s models
and contains a special case of a simple fractional derivative, namely a difference
quotient, which stands for the highest possible nonlocality and minimum calculation
time to solve a turbulent flow problem.

1 A Brief Introduction to Fractional Dynamics

Fractional calculus is attributed to De l’Hôpital, Leibniz, Riemann and Liouville
(see e.g. [1]) with its roots going back to the end of the 17th century. For a long
period of time it was exclusively attracting pure mathematicians to study fractional
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differentiation, integration and differential equations [1, 2]. With the development of
fractal geometry by Richardson and Mandelbrot [3], also fractal dynamics and ther-
modynamics [4] was developed and e.g. the connections between fractal dimensions
and the orders of fractional derivatives were revealed [5]. Furthermore, in the last
three decades, it was discovered that fractional calculus is the adequate tool to solve
complex problems with memory effects and nonlocalities, scale-free self-similar
processes, systems with non-Gaussian and long-range statistics (e.g. Lévy walks),
non-Newtonian dynamics, non-equilibrium thermodynamics and dynamical phase
transitions. Einstein demonstrated that Brownian motion leads straight-forwardly to
a linear diffusion equation. Therefore, it is not astonishing that Lévy statistics, which
is also adequate to model intermittency in turbulence, produces an anomalous diffu-
sion equationwith fractional derivatives [5]. From this point of view, it becomes clear
that turbulent eddy diffusion may be successfully modeled by fractional Reynolds
stresses [6].

2 A Theoretical Prologue

Turbulent flows fluctuate in space and time. This fact led scientists already at the
end of the nineteenth century to apply statistical methods to describe ‘turbulence’.
Reynolds’ [7] idea was to decompose a physical quantity ξ into an average 〈ξ 〉 and
its fluctuation ξ ′,

ξ = 〈ξ 〉 + ξ ′. (1)

Substituting all physical quantities, in the decomposition of (1), into the Navier–
Stokes equations (NS) and additionally averaging the full equation, on the basis
that turbulent motions are quasi-steady chaotic processes, the Reynolds-Averaged
Navier–Stokes (RANS) equations for incompressible fluids are derived (see [8, 9])

∂〈�v〉
∂t

+ div(〈�v〉 ⊗ 〈�v〉) + 1

ρ
grad〈p〉 − 1

ρ
div〈TD〉 + 1

ρ
div〈TR〉 = 0, div〈�v〉 = 0,

(2a,b)

where �v = (u1, u2, u3) denotes the 3-d velocity field, p the scalar pressure field, 〈TD〉
the averaged dissipation tensor and 〈TR〉 a tensor, created by the averaging process,
called Reynolds stress tensor. In Cartesian components, and by now denoting the
average of the nine occurring scalar tensor elements by an overbar, 〈TR〉 takes the
form (see e.g. [8])

〈TR〉 = 〈�v′ ⊗ �v′〉 =
⎛
⎜⎝

u ′2
1 u ′

1u ′
2 u ′

1u ′
3

u ′
2u ′

1 u ′2
2 u ′

2u ′
3

u ′
3u ′

1 u ′
3u ′

2 u ′2
3

⎞
⎟⎠ . (3a,b)
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Because this tensor is symmetric, six new unknown second-order correlations appear
in the well-defined problem, without delivering transparently six additional equa-
tions. For further insight in the methods of solving this closure problem, consult
e.g. work by Kraichnan [10]. Here we concentrate only on the lowest-order method,
namely that of describing second-order byfirst-ordermoments. This procedure closes
the system of equations. The analogy between the tensors 〈TD〉 and 〈TR〉 led Saint
Venant, Boussinesq and Prandtl, in analogy to the molecular kinetic theory of ideal
gases and diffusion theory, to make the following local Fick-type parameterization
[11]

τ21 = −ρu′
2u′

1 = εm
∂ ū1

∂x2
. (4a,b)

Notice that for a simple shear flow,with streamwise coordinate x1 and spanwise coor-
dinate x2, this single second-order correlation is the only one of importance for the
description of e.g. simple turbulent shear, Couette and Poiseuille flows. The quantity
εm (index m for momentum) is not a material property; it is a model parameter that
may depend on space and velocity coordinates, called eddy diffusivity.

3 Prandtl’s Mixing-Length and Shear-Layer Model

The eddy diffusivities of Prandtl’s mixing-length model of 1925 [11] and of his
shear-layer model of 1942 [12] are

εm = ρσχ2
2

∣∣∣∣
∂ ū1

∂x2

∣∣∣∣ , εm = ρσχ2(ū1max − ū1min). (5a,b)

The quantity σ is a constant and χ2 is a (large) characteristic length of the flow in the
flow-transverse x2-direction. The {min,max}-velocities are defined by the equations

ū1α (x1) = α
x2

{ū1(x1, x2)} = ū1(x1, x2α), α ∈ {min,max} , (6a–d)

in which x2min and x2max are implicitly defined as those x2-positions at fixed x1,
where ū1 reaches a minimum and maximum, respectively.

By removing in (5b) the index max, the modified Prandtl shear-layer model [6]
is obtained, which shows the following now also x2-coordinate dependent eddy
diffusivity

εm = ρσχ2 (ū1 − ū1min) (7)

and is a substantial improvement compared to the eddy diffusivities (5a,b). It is well
known that the eddy diffusivity must vanish toward the edge of a turbulent domain,
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e.g. toward a wall, where the no-slip boundary condition requires that ū1 = 0, a
condition which is now fulfilled, because there ū1 = ū1min.

4 A Recipe to Transform Local to Nonlocal Operators

The concept of generalizing nonlocally the derivative operators in (4b) or/and (5a) is
now briefly outlined by presenting some results reported by Herrmann [13]. Let us
consider a position of a mass point object in space described by x(t). To this end, the
velocity defined by the (Weierstrass) derivative is modified to be two-fold, namely

u(t) = dx

dt
= lim

τ→0

x(t) − x(t ± τ)

τ
, (8a,b)

where 0 ≤ τ < ε and ε is a small positive real number. It is necessary to have infor-
mation of the position of this object at a time t − τ or t + τ , respectively. In this
definition τ < ε, ε → 0. Therefore, the velocity is an epsilon- or zero-nonlocal quan-
tity, respectively, or simply a local quantity. Even if for mathematically sufficiently
continuous functions the two definitions lead to the same quantitative result, the first
definition requires information backward in time (or in the past) and the second one
forward in time (or in the future). Notice that the second case violates causality.

It is also possible to define the derivative by an integral operator

u(t) = d

dt
x(t) = 2

∞∫

0

δ(τ )u (t − τ) dτ ,

∞∫

−∞
δ(t) f (t)dt = f (0) , (9a–c)

where, because of causality reason, we restrict ourselves only to the backward deriv-
ative. The symbol δ(t) denotes the Dirac distribution (generalized function) with
the property (9c). For a definition of the Dirac distribution (see e.g. Gelfand and
Shilov [14]) numerous functions ω (λ, τ ) are candidates, as long as they are every-
where differentiable and also obey the following power-law attenuation requirement:
limt→∞ ω (λ, t) = O

(|t |−n
)
,∀n > 0. These functions are also called test functions.

With the argument |t | /λ ideal candidates are, for example, the exponential, the Airy,
the sine function, etc. (see Table 1). Then it follows for a smooth parameter λ ≥ 0,
independent of the particular test function, that

δ (t) = lim
λ→0

ω (λ, t) . (10)

In a straightforward manner, we substitute (10) into (9b) to obtain

d

dt
x(t) = 2 lim

λ→0

∞∫

0

ω (λ, t) u (t − τ) dτ . (11)
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Table 1 Weighting functions listed by their name, definitionω and normΩ (a selection from [13]).
In this article the two gray underlaid weighting functions are proposed to be applied

At this point our intention is to introduce higher nonlocality by dismissing the
limit λ → 0. In this generalization, we no longer require (10) to be fulfilled. With
these generalizations, a nonlocal derivative is obtained

Ônonlocal [ f (t)] = 1

Ω

∞∫

0

ω (λ, τ) Ôlocal
[
ŝ− (τ ) f (t)

]
dτ , (12a–c)

ŝ− [ f (t)] = f (t − τ) ,
1

Ω

∞∫

0

ω (λ, τ)dτ =: 1,

where the first-order derivative was replaced by a more general operator Ô , and ŝ−
denotes the negative shift operator, obeying the rule (12b), and Ω the normalization
factor defined by (12c).

Notice that not all operators commute with the shift operator. Equation (12a) is
a clear instruction how from a local a nonlocal operator can be created, namely by
applying four rules R1–R5 (see also in [13]):

(R1) Starting with the local operator Ôlocal ,
(R2) Choosing the appropriate shift operator, in our case ŝ−(τ ),
(R3) Choosing the appropriate weighting function ω with its corresponding norm
Ω ,
(R4) To produce the nonlocal convolution operator
(R5) To integrate over the appropriate domain.
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5 Nonlocalization of Operators and Nonlocal Turbulence
Models

The rules (R1)–(R4) in Sect. 4 are an efficient tool to generalize local turbulence
models to different nonlocal counterparts. The entire method shall now be applied
in some examples, a pure mathematical one and four physical examples considering
nonlocal turbulence modeling.

5.1 Liouville Fractional Derivative

We choose a commuted Eq. (12a) that is also presented in [13]

Ônonlocal [ f (t)] = 1

�
Ôlocal

⎡
⎣

∞∫

0

ω (λ, τ) ŝ− (τ ) f (t) dτ

⎤
⎦ (13)

and consider the Liouville weight ω (λ, τ) = τλ−1(0 < λ < 1), norm Ω = � (λ)

(see Table 1), the first-derivative and the negative shift operator ŝ−. This transforms
(13) to

d

dt

∣∣∣∣ f (t)
nonlocal

= 1

� (λ)

d

dt

∣∣∣∣
∞∫

0
local

τλ−1 f (t − τ) dτ . (14)

By substituting λ = 1 − α and ξ = t − τ , it follows that

d

dt

∣∣∣∣ f (t)
nonlocal

= 1

� (1 − α)

d

dt

∣∣∣∣
t∫

−∞
local

(t − ξ)−α f (ξ) dξ =: L Dα
+ f (t). (15)

L Dα+ f (t) is the left-handed Riemann–Liouville (RL) fractional derivative (see [13]).
In this fractional derivative α is its real-number order.

5.2 Two Transformation Rules from Locality to Nonlocality

For quasi-steady turbulent shear flows, in analogy to the time dependent version
(15), a spatially dependent expression of the transformation equation is applied to
ū1 (x1, x2)
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d

dx2

∣∣∣∣ū1 (x1, x2)
nonlocal

= 1

� (1 − α)

d

dx2

∣∣∣∣
x2∫

−∞
local

(x2 − ξ)−α ū1 (x1, ξ) dξ =: L Dα+ū1 (x1, x2) ,

(16a,b)

where, by a comparison of (16a)with (15), the analogue time-space quantities should
become clear. Furthermore, the definition of the occurring RL fractional derivative
is defined by (16b).

The same process applied to a Heaviside distribution as weighting ‘function’
(Table 1) leads to

d

dx2

∣∣∣∣u1 (x1, x2)
nonlocal

=
∫ ∞
−∞ θ

(
λ, x2 − x ′

2

) ∂u1(x1,x ′
2)

∂x2′ dx ′
2∫ ∞

−∞ θ
(
λ, x2 − x ′

2

)
dx ′

2

=
∫ x2max

x2
∂u1
∂x2′

(
x1,x ′

2

)
dx ′

2∫ x2max

x2
dx ′

2

(17a–c)

= u1max (x1) − u1 (x1, x2)

x2max − x2
.

The carrier domains of the Heaviside distributions in the eddy diffusivity and the
up-gradient driving term are discussed in [15]; the second leads to (17c). If in a
turbulence model the mixing lengthχ2 is e.g.χ2 = (x2max − x2), then the difference
quotient simplifies to a mean velocity difference.

5.3 Four New Nonlocal and Fractional Turbulence Models

Now the above two generalized operators are systematically applied to create new
nonlocal turbulence models. To this end, the derivatives in the local turbulence mod-
els are replaced by (16b), (17c) or its simplification, respectively. Then Prandtl’s
Nonlocal Mixing-Length Turbulence Model is:

Model 1 u ′
2u ′

1(x1, x2) = −σχ2
2

∣∣
L Dα

+ū1(x1, x2)
∣∣

L Dα
+ū1(x1, x2). (18)

Furthermore, Prandtl’s Modified Nonlocal Shear-Layer Turbulence Model takes the
form:

Model 2 u ′
2u ′

1(x1, x2) = −σχ2 [ū1(x1, x2) − ū1min(x1)]L Dα+ū1(x1, x2). (19)

Note that it looks as if Prandtl already would have applied our second fractional
calculus transformation method (17c) in his eddy diffusivity development from 1925
(5a) to 1942 (5b)! However, this was hardly the case; moreover, it demonstrates an
extremely high intuitive strength of this leading scientist of aerodynamics. A third
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possibility would be created by a local zero-equation turbulence model that at early
times (1920s), was not proposed, but follows in a natural manner from a systematic
consideration

Model 3 u ′
2u ′

1(x1, x2) = −σχ2
2 L Dα+ū1(x1, x2)

ū1max (x1) − ū1 (x1, x2)

x2max − x2
. (20)

The fourth and last proposed model is the Difference-Quotient Turbulence Model

Model 4 u ′
2u ′

1(x1, x2) − σχ2 [ū1 (x1, x2) − ū1min (x1)]
ū1max (x1) − ū1 (x1, x2)

x2max − x2
.

(21)

This closure was discussed by Egolf and Weiss (e.g. see [15]). They wrote: “Today,
in turbulence research, we have some conceptual understanding of such an approach
[Eq. (17a)], even though a detailed mathematical derivation from basic equations
is, to our knowledge, yet to be found. In our opinion a modeling of turbulence by
Lévy walks and the fractal-β model [16], together with the present article, give a
very satisfying explanation for the application of convolution integral models as
they were proposed e.g. in non-Newtonian fluid dynamics (rheology) and turbulence
research; at that time being rather empirical. However, the application of two dif-
ferent weighting functions to develop a nonlocal Reynolds shear stress is not very
realistic. Therefore, the first and fourth presented model must ought to be favored.
With the argument of Prandtl’s intuitive development of a mean-velocity-difference
eddy diffusivity, finally a preference must be given to the DQTM. In [17]) for four
elementary turbulent shear flows in 12 figures excellent agreement is demonstrated
between model results, based on the DQTM, and measurements. This model also
reveals a critical phenomenon [16–18].
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A Framework for the Assessment
and Creation of Subgrid-Scale Models
for Large-Eddy Simulation

Maurits H. Silvis, Ronald A. Remmerswaal and Roel Verstappen

Abstract We focus on subgrid-scale modeling for large-eddy simulation of
incompressible turbulent flows. In particular, we follow a systematic approach that
is based on the idea that subgrid-scale models should preserve fundamental proper-
ties of the Navier–Stokes equations and turbulent stresses. To that end, we discuss
the symmetries and conservation laws of the Navier–Stokes equations, as well as
the near-wall scaling, realizability and dissipation behavior of the turbulent stresses.
Regarding each of these properties as a model constraint, we obtain a framework that
can be used to assess existing and create new subgrid-scale models. We show that
several commonly used velocity-gradient-based subgrid-scale models do not exhibit
all the desired properties. Although this can partly be explained by incompatibilities
between model constraints, we believe there is room for improvement in the proper-
ties of subgrid-scale models. As an example, we provide a new eddy viscosity model,
based on the vortex stretching magnitude, that is successfully tested in large-eddy
simulations of turbulent plane-channel flow.

1 Introduction

TheNavier–Stokes equations form a very accurate model for fluid flows. This model,
however, does not form a tractable model, because in general not enough computa-
tional power is available to predict the behavior of practical turbulent flows with it.
We therefore focus on large-eddy simulation, which aims at predicting the large-scale
behavior of turbulent flows. In large-eddy simulation, the large scales of motion in a
flow are explicitly computed, whereas small-scale motions are modeled.
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In the current work, we address the question of how to construct subgrid-scale
models for these small-scale motions in turbulent flows. To answer this question, we
follow a systematic approach based on the idea that it is desirable that subgrid-scale
models are consistent with the physical and mathematical properties of the Navier–
Stokes equations and the turbulent stresses. These properties can therefore be seen
as requirements for subgrid-scale modeling and we will use them to assess existing
and construct new subgrid-scale models.

The structure of this paper is as follows. In Sect. 2we describe several properties of
the Navier–Stokes equations and turbulent stresses, and we discuss their importance.
This leads to a framework of model requirements that, in Sect. 3, is used to analyze
the properties of existing subgrid-scalemodels. Finally, in Sect. 4 we give an example
of a new eddy viscosity model that can be derived from the model constraints and
we test it in large-eddy simulations of turbulent plane-channel flow.

2 Model Constraints for Large–Eddy Simulation

In large-eddy simulation, the large-scale behavior of incompressible turbulent flows
is described by the filtered incompressible Navier–Stokes equations [15],

∂ ūi
∂t

+ ∂

∂x j
(ūi ū j ) = − 1

ρ

∂ p̄

∂xi
+ ν

∂2ūi
∂x j∂x j

− ∂

∂x j
τi j ,

∂ ūi
∂xi

= 0. (1)

The turbulent stresses, τi j = uiu j − ūi ū j , are not solely expressed in terms of the
filtered velocity field and therefore have to be modeled. In what follows we will
discuss a number of fundamental properties of the Navier–Stokes equations and the
turbulent stresses that lead to constraints for this modeling process. More detailed
information about these properties and the resulting constraints for subgrid-scale
models can be found in previous work [16].

Symmetries of the Incompressible Navier–Stokes Equations The incompressible
Navier–Stokes equations are form invariant under several coordinate transforma-
tions [11, 12]. Such transformations, or symmetries, play an important role because
they ensure that the description of fluids is the same in all inertial frames of reference.
They also relate to conservation and scaling laws [13]. Speziale [18], Oberlack [11,
12] and Razafindralandy et al. [13] therefore argue that it is desirable that these
symmetries are preserved by subgrid-scale models. We distinguish invariance under
the time (S1) and pressure (S2) translations, the generalized Galilean transformation
(S3), rotations and reflections (S4), scaling transformations (S5), two-dimensional
material frame-indifference (S6) and time reversal (S7) [11, 12].

Conservation Laws Even though the incompressible Navier–Stokes equations
are inherently dissipative, they obey several conservation laws. In particular, we
have conservation of generalized linear momentum (C1), conservation of angular
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momentum (C2) and conservation of an infinite hierarchy of vorticity-related quan-
tities (C3) [3]. Conservation laws should not be violated by subgrid-scale models.

Near-Wall Scaling of the Turbulent Stresses Using numerical simulations,
Chapman and Kuhn [2] have revealed the near-wall scaling of the time-averaged
turbulent stresses. Focusing on wall-resolved large-eddy simulations, we would like
to make sure that modeled stresses exhibit the same near-wall scaling behavior (N).
In particular, the desired scaling of an eddy viscosity is νe = O(x32), where x2 rep-
resents the wall-normal coordinate. This ensures that dissipative effects due to the
model fall off quickly enough near solid boundaries.

Realizability of the Turbulent StressesVreman et al. [23] showed that, for positive
spatial filters, the turbulent stress tensor, τi j , is realizable, i.e., it has no negative
eigenvalues. As these eigenvalues can be interpreted as (partial) energies, it seems
desirable that subgrid-scale models exhibit realizability (R) as well.

Production of Subgrid-Scale Kinetic Energy Subgrid-scale models generally
increase the dissipation of large-scale kinetic energy, i.e., the transport of energy
from large to small scales of motion. We now focus on this process, which is also
referred to as the production of subgrid-scale kinetic energy.

Vreman’s RequirementsVreman [22] showed that the production of subgrid-scale
kinetic energy due to the true turbulent stresses is zero for certain (laminar) flows. He
therefore argues that the production due to subgrid-scale models should also be zero
for these flows (P1a). On the other hand, subgrid-scale models should not turn off
in regions of flows where turbulence occurs (P1b). This ensures that subgrid-scale
models are neither overly nor underly dissipative.

Nicoud et al. Requirements On the basis of physical grounds, Nicoud et al. [10]
reason that certain flows cannot be maintained if energy is transported to subgrid
scales. They therefore see it as a desirable property that the modeled production of
subgrid-scale kinetic energy vanishes for these flows. In particular, they require that
a model’s production of subgrid-scale kinetic energy vanishes for all two-component
flows (P2a) and for the pure axisymmetric strain (P2b). Note that requirement P2a
is not compatible with P1b, because the latter requires that certain two-component
flows have a nonzero production of subgrid-scale kinetic energy [16].

The Second Law of Thermodynamics In turbulent flows, energy can be transported
from large to small scales (forward scatter) and vice versa (backscatter). The second
law of thermodynamics requires that the net transport is of the former type (P3) [13].

Verstappen’s Requirements Verstappen [20] argues that large-eddy simulation is
ultimately aimed at predicting large-scale flow dynamics, independent of small-scale
motions. Therefore, subgrid-scale models have to cause scale separation. This can
be achieved by ensuring that subgrid-scale models are sufficiently dissipative, such
that they counterbalance the convective production of small-scale kinetic energy
and dissipate any kinetic energy (initially) contained in small scales of motion (P4).
Requirements P4 and P2b cannot be satisfied at the same time, because the former
requires a nonzero dissipation for the axisymmetric strain [16].
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3 Analysis of Existing Subgrid-Scale Models

With the list of fundamental properties of Sect. 2, we obtain a framework that can be
used to assess the behavior of subgrid-scale models. Table1 provides a summary of
the analysis of some commonly used velocity-gradient-based subgrid-scale models.

Velocity-gradient-based subgrid-scalemodels automatically preserve certain sym-
metries (S1–S4). Scaling invariance (S5), however, is usually violated because of
the use of the local grid size as characteristic length scale [11, 13]. The dynamic
procedure [5] may restore scaling invariance [1, 11, 13]. The importance of two-
dimensional material frame-indifference (S6) is disputed [12], while time reversal
invariance (S7) is generally not regarded as a desirable property of subgrid-scale
models [1]. The three conservation laws (C1–C3) are trivially preserved for sym-
metric subgrid-scalemodels appearing in the form ∂/∂x j τ

mod
i j . Realizability (R) does

not pertain to traceless subgrid-scale models, including the eddy viscosity models
studied here.

Table 1 Summary of the properties of several subgrid-scale models. The properties considered are
S1–4: time, pressure, generalizedGalilean, and rotation and reflection invariance; S5: scaling invari-
ance; S6: two-dimensional material frame-indifference; S7: time reversal invariance; C1: conser-
vation of generalized linear momentum; C2: conservation of angular momentum; C3: conservation
of vorticity-related quantities; N: the proper near-wall scaling behavior; R: realizability; P1a: zero
subgrid dissipation for laminar flow types; P1b: nonzero subgrid dissipation for nonlaminar flow
types; P2a: zero subgrid dissipation for two-component flows; P2b: zero subgrid dissipation for the
pure axisymmetric strain; P3: consistency with the second law of thermodynamics; P4: sufficient
subgrid dissipation for scale separation

S1–4 S5a S6 S7a C1 C2 C3 Na R P1a P1b P2a P2b P3 P4

Smagorinsky
[17]

Y N Y N Y Y Y N N Y N N Y Y

WALE [9] Y N N N Y Y Y Y N Y N N Y Y

Vreman [22] Y N N N Y Y Y N N Y N N Y Y

σ [10] Y N Y N Y Y Y Y Y N Y Y Y N

QR [20] Y N Y N Y Y Y N Y N Y N Y N

S3PQR [19] Y N Yb Nb Y Y Y Y Yb Yb Yb N Yb Yb

AMD [14] Y N Y N Y Y Y N Y N Y N Y Y

Vortex
stretching

Y N Y N Y Y Y Y Y N Y Y Y N

Gradient
[4, 6]

Y N N Y Y Y Y N Y Y N Y N N

EASSM [7] Y N N N Y Y Y N Y N Y N N Y
a The dynamic procedure [5] may restore these properties [1, 11, 13]
b Depending on the value of the model parameter and/or the implementation
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The general view that we obtain from Table1 is that existing subgrid-scale models
do not satisfy all the desired properties. This can partly be understood from incompat-
ibilities betweenmodel constraints, especially the different dissipation requirements,
and from difficulties with satisfying scale invariance. We do, however, believe that
there is room for improvement in the properties of subgrid-scale models that are
based on the velocity gradient.

4 Example of a New Subgrid-Scale Model

The framework of model constraints can also be used to create new subgrid-scale
models. For example, we previously derived the vortex-stretching-based (VS) eddy
viscosity model [16],

τ
mod,dev
i j = −2(CVSδ)

2
√
2tr(S̄2)

(
tr(S̄2Ω̄2) − 1

2 tr(S̄
2)tr(Ω̄2)

−tr(S̄2)tr(Ω̄2)

)3/2

S̄i j . (2)

Here, CVS is a model constant, whereas δ denotes the characteristic length scale of
the large-eddy simulation. S̄ and Ω̄ represent the rate-of-strain and rate-of-rotation
tensors, i.e., the symmetric and asymmetric parts of the velocity gradient, ∂ ūi/∂x j .
The quantity 4(tr(S̄2Ω̄2) − 1

2 tr(S̄
2)tr(Ω̄2)) is the (squared) vortex stretching mag-

nitude [19], which corrects for the dissipation behavior and the near-wall scaling of
the Smagorinsky model.

Figure1 shows results of large-eddy simulations of turbulent plane-channel flow
obtained using the vortex-stretching-based eddy viscosity model. These simula-
tions were performed using an incompressible Navier–Stokes solver that employs
a symmetry-preserving finite-volume discretization on a staggered grid [21]. A 643

grid was used that was stretched in the wall-normal direction. The value of the model
constant, CVS ≈ 0.58, was obtained by matching the average model dissipation with
that of the Smagorinsky model [10, 19]. The mean velocity in the near-wall region
is predicted remarkably well for this CVS. Also the location of the peaks in the
Reynolds stresses and the behavior of the stresses in the center of the channel is pre-
dicted well. The underpredicted center line velocity and the over- and undershoots in
the Reynolds stresses seem to be common deficiencies of eddy viscosity models. All
in all, these encouraging results show how new subgrid-scale models with built-in
desirable properties can be constructed.
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Fig. 1 a Mean velocity
profile and b diagonal
deviatoric Reynolds stresses
compensated by the average
model contribution, as
obtained from large-eddy
simulations of turbulent
plane-channel flow at
Reτ ≈ 590 on a 643 grid.
Simulations were performed
without a subgrid-scale
model (dotted line) and with
the vortex-stretching-based
eddy viscosity model
(dashed line) of (2) with
CVS ≈ 0.58. Results from
direct numerical simulations
(DNS) [8] are shown as
reference (solid line). All
quantities are shown in wall
units

(a)

(b)
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Towards an Improved Subgrid-Scale Model
for Thermally Driven Flows

Riccardo Togni, Andrea Cimarelli and Elisabetta De Angelis

Abstract The effect of the filtering on the resolved and subgrid dynamics of turbu-
lent Rayleigh–Bénard convection (RBC) is studied a priori using a Direct Numerical
Simulation dataset. To this end, the velocity and temperature fields, split into resolved
and subgrid components by a spectral cutoff filter, are analyzed with the filtered tur-
bulent kinetic energy and temperature variance budgets. At small filter lengths, the
resolved processes correspond to the exact ones except for the decreases of the dissi-
pations which, in turn, are balanced by the sink actions of the subgrid scales. At large
filters lengths, the resolved dynamics depletes close to the walls and the effect of
the subgrid scales drifts from purely-dissipative to a more complex behaviour. This
study highlights the possibility that eddy-viscosity and diffusivitymodels, commonly
employed in large-eddy simulation of RBC, does not work well for large filter widths
and that alternative closures should be considered.

1 Introduction

Turbulent flows relevant in Nature and technology are still out of reach of Direct
Numerical Simulations (DNS) due to the immense number of degrees of freedom
that need to be solved. However, the steady increase of computational power during
the last years gave a boost to a different approach, namely the Large Eddy Simulation
(LES), which represents a good compromise between DNS and the solution of the
Reynolds-averaged Navier–Stokes (RANS) in terms of accuracy and cost. The basic
philosophy of LES is to compute the large, energy-carrying scales and to model the
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effect of the small, more universal ones. For this purpose, the governing equations
are filtered, the unclosed terms arising from non-linearity are parameterized using
filtered quantities and the system is solved numerically [1].

The filter length separates the large, resolved scales from the small, subgrid ones,
thus it represents a crucial parameter in LES as it determineswhich dynamics is going
to be captured andwhich one should be accounted by the subgrid-scale (SGS)model.
The main goal of this work is to investigate a priori the effect of the filter length on
the resolved and subgrid dynamics of turbulent Rayleigh–Bénard convection (RBC).
The system is a classic paradigm of natural convection and it consists of a fluid layer
between two infinite plates, heated from below and cooled from above [2]. Following
the classic a priori approach, the velocity and temperature fields obtained from DNS
are split into resolved and subgrid components by applying a spectral cutoff filter
along the wall-parallel directions [3]. The resulting dataset is analyzed via filtered
turbulent kinetic energy and temperature variance budgets to assess the two distinct,
but closely related, effects of the filter length on LES results, namely the capability
to capture the real dynamics and the role of the subgrid scales.

We refer to a DNS dataset of turbulent RBC obtained by solving the Boussinesq
equations with a pseudo-spectral method. The momentum, continuity and temper-
ature budgets are non-dimensionalized using the height of the fluid layer H , the
temperature difference between the lower and the upper plates �Θ and the free-fall
velocityU f = √

gα�ΘH , where g is the gravitational acceleration and α is the ther-
mal expansion coefficient. The computational domain is a rectangular cell of sizes
8 × 8 × 1 along the wall-parallel directions x , y and the wall-normal one z, where
the Cartesian coordinate system is centered at the lower plate with the z-axis pointing
in the direction opposite to the gravity acceleration. Periodic boundary conditions
are imposed at the sidewalls whereas isothermal and no-slip boundary conditions are
used on the horizontal plates. The DNS is conducted at a moderate Rayleigh number,
Ra = 1.0 × 107, and for Prandtl number (Pr ) equal to 0.7 [4]. Three filter lengths
are considered in this study, �∗

F = 7.7, 16.7 and 25.5, where the asterisk denotes
the normalization with respect to the volume-averaged Kolmogorov length scale. It
is also worth remarking that the smallest filter length corresponds to two-times the
thermal boundary layer thickness δθ based on the slope of the average temperature
profile Θ , i.e. δθ = 0.5/(dΘ/dz)|z=0.

2 Analysis of Filtered Budgets

The budgets of filtered turbulent kinetic energy 〈k〉 = 0.5〈uiui 〉 and filtered temper-

ature variance 〈θ2〉 are in order

− d
〈
kw

〉

dz
− d 〈w̄ p̄〉

dz
+

√
Pr

Ra

d2
〈
k
〉

dz2
+ 〈

wθ
〉 − 〈ε〉 − d 〈τi3ui 〉

dz
− 〈

εsgs
〉 = 0, (1)
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(a) (b) (c)

Fig. 1 a (Main panel) production and (inset) dissipation of unfiltered and filtered turbulent kinetic
energy versus z. b (Main panel) inertial, (inset) pressure and viscous transports of unfiltered and
filtered turbulent kinetic energy versus z. c (Main panel) average subgrid dissipation and (inset)
SGS transport versus z. Different lines and symbols correspond to: unfiltered quantities (symbols),
�∗
F = 7.7 (dashed line), �∗

F = 16.7 (dot-dashed line) and �∗
F = 25.5 (dotted line). In the inset of (b),

the unfiltered pressure and viscous transports are denoted with circles and diamonds respectively

−
d

〈
θ
2
w

〉

dz
+ 1√

Pr Ra

d2
〈
θ
2
〉

dz2
− 2

〈
wθ

〉 dΘ

dz
− 〈χ〉 − 2

d
〈
q3θ

〉

dz
− 〈

χsgs
〉 = 0, (2)

where 〈·〉 denotes the ensemble average, ui , p, θ are the filtered (or resolved) fluctu-
ating velocity, pressure and temperature fields, ε = √

Pr/Ra
(
∂ui/∂x j

) (
∂ui/∂x j

)

and χ = 2
[(

∂θ/∂xi
) (

∂θ/∂xi
)]

/
√
Pr Ra are respectively the pseudo-dissipation of

filtered turbulent kinetic energy and the dissipation of filtered temperature variance,
εsgs = −τi j Si j and χsgs = −2qi Qi are the subgrid dissipations, Si j is the resolved
strain-rate tensor, Qi is the resolved gradient of θ , τi j = uiu j − uiu j is the SGS
stress tensor and qi = uiθ − uiθ is the SGS heat flux.

The terms of the equations can be categorized into sources/sinks (viz. the pro-
ductions 〈wθ〉 and −2〈wθ〉dΘ/dz, the average dissipations 〈ε〉 and 〈χ〉, the aver-
age subgrid dissipations 〈εsgs〉 and 〈χsgs〉) and transports along z (viz. inertial
−d〈kw〉/dz, −d〈θw〉/dz, viscous (

√
Pr/Ra)d2〈k〉/dz2, (1/

√
Pr Ra)d2〈θ2〉/dz2,

pressure −d〈w̄ p̄〉/dz and SGS transports −d〈τi3ui 〉/dz, −2d〈q3θ〉/dz).
As can be seen in the main plot of Figs. 1a and 2a, the depletion of the resolved

productions with respect to the unfiltered counterparts is negligible for �∗
F = 7.7,

it increases monotonically with �∗
F and it is always peaked in the near-wall region

around z = 0.05. The insets in Figs. 1a and 2a reveal that the resolved average
dissipations are very small in the core of the flow (z � 0.05) and almost independent
from the filter length in the near-wall region (z � 0.02) for large �∗

F , which means
that dissipations occur entirely at subgrid level away from the boundary whereas the
resolved scales are the most dissipative ones next to the wall.

As well as resolved productions and dissipations, resolved transports overlap the
unfiltered counterparts when �∗

F = 7.7, see Figs. 1b and 2b. The component which
seems to be more affected by the increase of �∗

F is the inertial transport, whereas
viscous and pressure contributions barely deplete with respect to the unfiltered refer-
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(a) (b) (c)

Fig. 2 a (Main panel) production and (inset) dissipation of unfiltered and filtered temperature
variance versus z. b (Main panel) inertial and (inset) viscous transports of unfiltered and filtered
temperature variance versus z. c (Main panel) average subgrid dissipation and (inset) SGS trans-
port versus z. Different lines and symbols correspond to: unfiltered quantities (symbols), �∗

F = 7.7
(dashed line), �∗

F = 16.7 (dot-dashed line) and �∗
F = 25.5 (dotted line)

ences.More in details, the energy and temperature variance convected from the region
around z = 0.05 (−d

〈
kw

〉
/dz < 0 and −d

〈
θw

〉
/dz < 0) to sustain the core and the

near-wall region (−d
〈
kw

〉
/dz > 0 and −d

〈
θw

〉
/dz > 0) is especially subjected to

depletion. This phenomenon is possibly related to the difficulty encountered by wide
filters in capturing the dynamics of the coherent structures which populate RBC, the
so-called the thermal plumes. Indeed, these structures have a diameter comparable to
the thermal boundary layer thickness and they carry most of the turbulent fluctuation
throughout the domain [5].

The average subgrid dissipations 〈εsgs〉 and 〈χsgs〉, represented in the main plots
of Figs. 1c and 2c, are non-negative at every z and for all �∗

F considered in this study,
meaning that subgrid scales behave, on average, as sinks of turbulent kinetic energy
and temperature variance. The shape of the profiles change quite evidently passing
from small to large �∗

F and this alteration is marked in 〈χsgs〉 where a minimum
appears around z = 0.05. The subgrid transports are negligible in comparison with
the resolved ones for �∗

F = 7.7 whereas they become relevant for �∗
F = 16.7 and

�∗
F = 25.5. The SGS redistribution and the corresponding inertial transports have

similar profiles for �∗
F = 16.7 and �∗

F = 25.5, i.e. the subgrid scales, apart from
extracting a net amount of turbulent kinetic energy and temperature variance from
the resolved ones (〈εsgs〉 > 0, 〈χsgs〉 > 0), transport resolved fluctuations from the
transitional layer towards the bulk and the near-wall region.

3 Discussion and Final Remarks

The analysis of the filtered budgets reveals that the mechanisms of turbulent RBC,
namely production, dissipation and transport of velocity and temperature fluctu-
ations, are perfectly captured by filter lengths which are comparable to �∗

F = 7.7.
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This observation can be reasonablymotivated by the important role played by thermal
plumes in the self-sustained cycle of turbulence and by the fact that these structures
present a characteristic diameter of the order of the thermal boundary layer thickness.
This first result establishes somehow aminimum resolution requirement that the LES
should satisfy in order to be well-resolved. Furthermore, since the thermal boundary
layer thickness is defined as δθ = 0.5/(dΘ/dz)|z=0 = 0.5/Nu and the Nusselt num-
ber Nu can be estimated from Ra and Pr by means of several and accurate scaling
laws [6], the minimum resolution is known a priori.

For small filter lengths, i.e. �∗
F < 7.7, the only role of the subgrid scales is to

drain a certain amount of resolved turbulent kinetic energy and temperature variance
and to dissipate it. However, as the filter length increases, a non-negligible part
of the production and of the transports start to involve also the subgrid scales, as
can be seen from the depletion of the resolved terms plotted in Figs. 1a,b and 2a,b.
Hence, the subgrid dynamics is nomore characterized only by dissipation but also by
inhomogeneous processes which modulate the profiles of the subgrid dissipations.
In particular, we see from the inspection of the main plot in Fig. 2c that

〈
χsgs

〉

exhibit a clear minimum for �∗
F > 7.7 in correspondence of the maximum depletion

region (z ≈ 0.05) due to the combined effect of production and transport occurring
at subgrid level. In parallel, the SGS redistribution effects become important when
�∗
F > 7.7 due to the active role of subgrid scales in transporting resolved turbulent

kinetic energy and temperature variance.
In conclusion, while classic eddy-viscosity and diffusivity models are arguably

successful in reproducing the energy and temperature variance exchange between
large, inhomogeneous scales and small, purely-dissipative ones, they probably fail
in case of very large filter due to the complex dynamics of subgrid scales [7]. Further
studies will be devoted to the a priori assessment of Smagorsinky-like models for
RBCand, eventually, to the development of improvedSGSmodels capable to account
for the production and transport mechanisms occurring at subgrid level.
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Integral Formula for Determination
of the Reynolds Stress in Canonical
Flow Geometries

Tae-Woo Lee and Jung Eun Park

Abstract We present a theoretical framework for solving for the Reynolds stress
in turbulent flows, based on fundamental physics of turbulence transport. Results
thus far indicate that the good agreement between the current theoretical results
with experimental and DNS (direct numerical simulation) data is not a fortuitous
coincidence, and in the least the current approach is the best hypothesis available
in canonical flow geometries. The theory leads to simple and correct expressions
for the Reynolds stress in various flow geometries, in terms of the root variables,
such as the mean velocity, velocity gradient, turbulence kinetic energy and a viscous
term. The applications for this theory are construction of effective turbulence models
based on correct physics, and potentially augmenting or replacing turbulence models
in simple flows. However, as the method is thus far proven only for relatively simple
flow geometries, and implications and nuances for full, three-dimensional flows need
to be further examined.

1 Introduction

Turbulence is considered one of the most difficult problems in fluid physics, or some
say, physics in general. It is also quite important as many issues of practical concern,
such as weather, aerodynamics, combustion flows and many industrial processes
depend on turbulence, and much work has been done on finding some adequate
approximations so that immediate problems of turbulent flows can be solved (we
do not attempt to list the vast literature in this area). As finding the entire absolute
(mean + fluctuations) velocity field is quite difficult, or as some argue an overflow of
information, here we focus on finding the Reynolds stress as a function of the root
turbulence parameters, such as the mean velocity and its gradient, turbulence kinetic
energy, in particular its longitudinal component, and also a viscous term.
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2 Mathematical Formulation and Results

We start from the Reynolds-averaged Navier–Stokes (RANS) equation. Here, we
omit the bar above u′2, u′v′, etc, for simplicity, and take the fluctuation parameters
to be time-averaged. Figuring out how the Reynolds stress is related to the mean
and other root turbulent parameters has been the topic of numerous studies, for quite
some time. However, we notice that the decomposition, u = U + u′ that leads to the
Reynolds stress term, is necessary only in the absolute coordinate frame. If we move
or displace the control volume at themean speed of the flow (see Fig. 1) then themean
velocity drops out of the momentum equation. That is, RANS is greatly simplified
in the relative coordinate frame, or for a control volume moving at the local mean
velocity of the fluid. Therefore, the x-momentum equation, for an incompressible
boundary-layer flow, becomes:

∂u′

∂t
+ ∂u′2

∂x
+ ∂(u′v′)

∂y
= − 1

ρ

dp′

dx
+ ν

∂2u′

∂y2
(1)

If the timemean of the fluctuating velocity does not vary appreciably in time, then
we can write a “steady-state” momentum equation, and solve for the gradient of the
Reynolds stress.

∂(u′v′)
∂y

= −∂u′2

∂x
− 1

ρ

dp′

dx
+ ν

∂2u′

∂y2
(2)

In conventional calculations, the x-derivatives would have been set to zero for
fully-developed flows, and we would be left with a triviality. However, we note that
(1) and (2) have been written for a control volume which is moving along with the
mean flow velocity, as shown in Fig. 1, for a boundary-layer flow as an example. For
a flow over a flat plate, the boundary layer grows due to the “displacement” effect.
The mass is displaced due to the fluid slowing down at the wall, as is the momentum,
and it turns out other turbulence parameters as well. The boundary layer thickness
grows at a predictable rate, depending on the Reynolds number. Thus, if one rides
with the fluid moving at the mean velocity, one would see a change in the all of
the turbulence properties, as illustrated in Fig. 1. This displacement effect can be
mathematically expressed as:

Fig. 1 A schematic
illustration of the concept of
the theory
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∂

∂x
= C1U

∂

∂y
(3)

I.e., the fluid parcel will see a different portion of the boundary layer in the
y-direction, and how much difference it will see depends on how fast the fluid is
moving along in the boundary layer. Thus, the mean velocity, U , appears as a mul-
tiplicative factor in (3). C1 is a constant that depends on the Reynolds number. Sim-
ilarly, the gradient of the pressure fluctuation will not be zero in general. However,
this term is expected to be significant only for compressible flows, so we omit this
term from further analysis in this phase of the work. In (2), we now have a simple
integrable expression to find the Reynolds stress, after using (3). If we integrate by
parts, we obtain:

u′v′ = −C1

[
Uu′2 − c

∫ y

0

dU

dy
u′2dy

]
+ νm

∂u′

∂y
(4)

νm is the modified kinematic viscosity.
Figure 2 shows a comparison of the Reynolds stress as calculated by (4), with

DNS results for fully-developed channel flows [1, 2]. Iwamoto et al. [1, 2] have
performed DNS, Reτ =110–650, where Reτ is the Reynolds number based on the
friction velocity and channel half-width. The entire data set from the DNS is avail-
able on their website [2], including the mean velocity, turbulent fluctuating velocity
components, and various moments of their products. We input the necessary root tur-
bulence parameters into (4), and compare with the Reynolds stress from DNS. The
agreement is nearly perfect at low Reynolds numbers in Fig. 2, which gives some
confidence that we have captured the true physics of turbulent transport, and that the
results are not a fortuitous coincidence. The departure at higher Reynolds numbers,
as the solution starts to overshoot the DNS data as y approaches the centerline, is due
to the displacement effect disappearing near the centerline. Recall that this theory
is based on the moving control volume “seeing” a relatively different part of the
boundary layer. However, at the centerline there is no displacement effect as all the
profiles must be symmetric. One way to impose this kind of symmetry boundary
condition is to force the constant C1 to be proportional to the velocity gradient. For
example,

C1 = C0

⎛
⎜⎝

(
∂U
∂y

)
(

∂U
∂y

)
y=0

⎞
⎟⎠

m

(5)

Figure 3 shows the comparison of the Reynolds stress obtained from the integral
formula (4) with experimental data of DeGraaf and Eaton [4]. In that work, data on
various turbulence quantities and the Reynolds stress (all normalized by the friction
velocity) are provided, and also various scaling approaches tested with the data, in
a well-designed experiment for flows over a flat plate with zero pressure gradient.
The Reynolds number based on the momentum thickness (Reθ ) ranged from 1430
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Fig. 2 Comparison of the
Reynolds stress in boundary
layer flows over a flat plate
[3]. Lines are theoretical
results, using (2). Data
symbols: circle
(Reτ= 110), diamond (150),
square (300), triangle (400)
+ (650)

Fig. 3 Comparison of the
Reynolds stress in boundary
layer flows over a flat plate.
The data (symbols) are for
Reθ = 1430 ~31000 [4].
Lines represent current result
(4)

to 31,000 [4]. In (2), we use their measured parameters, U and u′2, and input them
into (2). Gradients of U and u′2 are calculated from the experimental data. As the
experimental data are discontinuous, and at times hard to transcribe, there are some
fluctuations and potential errors in the final calculations of the Reynolds stress,
particularly close to the wall where the gradients are very steep and the data points
all clustered. We can nonetheless input the root parameters into (4) to compute
accordingly, and compare with the measured Reynolds stress as in Fig. 3. In spite of
dealing with discontinuous experimental data and their gradients, the comparison of
(4) result with experimentally observed Reynolds stress is in general quite good.

For axi-symmetric jets, (4) is only slightly modified:

u′v′ = −C1

[
Uuz

′2 − c
∫ r

0

dU

dr
uz

′2dy
]

+ νm

(
∂uz

′

∂r
+

∫ r

0

1

r

∂uz
′

∂r
dr

)
(6)
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Fig. 4 Reynolds stress in
axi-symmetric jets [3]. The
experimental data (symbols)
are from [5]

Theonly difference from (4) is the secondviscous termdue to the secondderivative
in the radial direction. Comparison with experimental data ofWygnanski and Fiedler
[5] again produces good agreement in Fig. 4, after applying trajectory correction
using (5). This correction is important for jet flows, as the streamlines diverge with
increasing z, and therefore the trajectory of the control volume displacement relative
to the streamlines must be accounted for through (5). However, this jet divergence
is a well-characterized phenomena and m = 1 in (5) leads to good agreement with
available data as shown in Fig. 4. For internal axi-symmetric flows (pipe flows), the
above formula appears to track the Reynolds stress reasonably well near the wall, but
undergoes a strong deviation, similar to high Reynolds number cases in Fig. 2. The
reason is that the displacement effect is quite strong in pipe flows, as the cumulative
effect through the integral term builds radially inward, in comparison to building up
from channel wall as in rectangular coordinates.

3 Concluding Remarks

We have shown a theoretical framework for solving for the Reynolds stress in tur-
bulent flows, based on fundamental physics of turbulence transport. Results thus far
indicate that the good agreement between the current theoretical and experimen-
tal/DNS (direct numerical simulation) data is not a fortuitous coincidence, and that
the Reynolds stress is governed by the conservation of momentum principle in the
moving coordinate frame, as are all macroscopic objects. The theory leads to sim-
ple and correct expressions for the Reynolds stress in various flow geometries, in
terms of the root variables, such as the mean velocity, velocity gradient, streamwise
turbulence kinetic energy, and a viscous term. However, as the method is thus far
proven only for relatively simple, canonical flow geometries, and implications and
nuances for full, three-dimensional flows need to be further examined. In that regard,
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would this method be useful in computing three-dimensional turbulent flows? That
is a question that is being thought of at this time. The fact that u′v′ is calculated using
u′2 is relatively easy to implement in computational applications as the turbulent
kinetic energy can be related to u′2, assuming isotropy, or an equation for u′2 can be
numerically solved in conjunction with (4). For simple flows, the displacement effect
could be treated with (5). Extensions to fully three-dimensional flows will require
the displacement effect to be parameterized, which may not be a simple matter. On
the other hand, it was considered difficult to parameterize the Reynolds stress even
in simple flows, for quite some time.

In summary, (5) illustrates the relatively simple (and perhaps radical, by conven-
tional standards, physics of Reynolds stress production and distribution. The leading
term on the RHS of (5) is the dominant term, and is modulated by the viscous term
near the wall where again the gradient is extremely high. The integral term reduces
the magnitude of the Reynolds stress, particularly at large y locations, where there
would otherwise be some deviations. Thus, the turbulent “momentum” or kinetic
energy is transported by the mean velocity (the first term on the RHS of (5)), the
integral term “displaces” this excess transport term, and the viscous effect dampens
the high transport term in region(s) of steep gradients. Therefore, the integral formula
contains the “forces and balances” involved in the Reynolds stress production and
distribution. Finally, this approach is a unique development in turbulence theory, and
is set apart from the Lagrangian statistical approach [6] which is used as data extrac-
tion tool for mixing and dispersion properties and for stochastic and pdf modeling
of turbulence. The term “integral” is used in data analysis (e.g. [7]); however, this
bears no relation to the current method.
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AMatrix-Free Incompressible DG Algorithm
for the Simulation of Turbulent Flows

Andrea Crivellini, Matteo Franciolini and Alessandra Nigro

Abstract The paper deals with an efficient implementation of a discontinuous
Galerkin solver for the simulation of incompressible turbulent flows. The artifi-
cial compressibility flux approach is employed for space discretization, while a
Rosenbrock-type Runge–Kutta scheme coupled with a matrix-free linear solver is
used for the implicit time integration. The code has been here applied to solve the tur-
bulent Rayleigh–Bénard convection at different Rayleigh numbers. The results prove
the reliability of the proposed solution strategy and its suitability for the Implicit
Large Eddy Simulation of turbulent flows.

1 Introduction

In recent years discontinuous Galerkin (DG) methods have emerged as one of the
most promising high-order discretization techniques for CFD. DG methods have
been successfully applied to the simulation of turbulent flows by solving the incom-
pressible and compressible Reynolds Averaged Navier–Stokes (RANS) equations.
Thesemethods can easily achieve high-order accuracy on arbitrarily shaped elements
and are perfectly suited to hp-adaptation techniques, as well as to parallel computing.
Moreover, DG methods show numerical properties suitable for Implicit LES (ILES)
of turbulent flows [1, 2]. In fact, the dissipation of the numerical scheme behaves
like a spectral cut-off filter, which mimics the role of a subgrid-scale (SGS) model.
However, the development of an efficient time integration strategy is still a challenge.
On one hand, there exist in literature a variety of algorithms which are implicit and
are typically tuned for stiff problems. On the other, the same algorithms may not be
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enough computationally efficient for the DNS/LES of turbulence. Within this con-
text, the use of the explicit time stepping appears a reliable choice for compressible
solvers since the time scales of the turbulent structures are typically small. However,
for incompressible solvers, a fully-explicit time stepping strategy cannot be easily
adopted since the incompressibility constrain should be fulfilled, and therefore the
use of an implicit time integration can still be convenient. Unfortunately, the high
CPU-time needed for the evaluation of the Jacobian matrix (it costs up to 290 times
a single residual evaluation for a P6 approximation) and the large amount of memory
required for its storage (its size scales approximately as k6, where k is the order of
DG polynomial approximation Pk) hold back the application of this strategy for the
simulation of turbulence. To overcome these problems, the present work introduces
an approach based on a four stage, order three ROSI2PW Linearly Implicit Rosen-
brock Runge–Kutta scheme [3] coupled with a matrix-free GMRES solver [4]. The
efficiency of the proposed method and its accuracy have been verified solving the
Rayleigh–Bénard convection at Prandtl number equal to 0.7 and different Rayleigh
numbers (Ra).

2 The Matrix-Free Algorithm

TheBoussinesq governing equations are discretized using the discontinuousGalerkin
method described in [5, 6]. Here a matrix-free GMRES solver is employed to avoid
the need of the storage of the Jacobian matrix. This algorithm approximates the
matrix–vector products of the linear system

[
M
Δt

+ ∂R(Un)

∂U

]
ΔU = −R(Un)

using a numerical differentiation based on a double evaluation of the residual vector

P
[
M
Δt

+ ∂R(Un)

∂U

]
ΔU = P

M
Δt

ΔU + P
(
R(Un + hΔU) − R(Un)

h

)
,

where U is the vector of degrees of freedom (DoF), M is a modified global mass
matrix with null entries corresponding to the pressure DoF, Δt is the time step size,
R(U) is the residual vector, h is a numerical perturbation and P is the preconditioner.
In this work a cheap and memory saving element-wise block-Jacobi preconditioner
is employed. This approach becomes reliable as the time step decreases and the
grid stretching at the wall is not excessive. The evaluation of this preconditioner
costs nearly three times less than the incomplete LU factorization, ILU(0), of the
full Jacobian matrix and, in terms of memory requirements, the resulting scheme is
comparable to an explicit scheme. The CPU-time is further reduced via a lagging
procedure for the preconditioner, which becomes more effective as the time step size
decreases. Moreover, in order to avoid over solving the linear system, the relative
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tolerance of the solution is adaptively set one order lower than the solution accuracy
in time, which is estimated using the embedded Runge–Kutta scheme.

3 Results

The computational domain employed is characterised by an aspect ratio L/H = 8,
where L is the wall length and H is the distance between the two walls. Table1
shows the computational details of various solutions obtained. The numbers of DoF
employed are at least one order of magnitude lower than those of reference DNS [7],
therefore the computations should be considered as ILES, apart from Case 1, at the
lowest Rayleigh number, which is a DNS. Consistency relations, introduced in [7,
9], have been calculated on the entire domain and are reported in the table. It can be
seen that as the resolution increases, enhancing the order of polynomial expansion or
the grid size, the values become consistent with the numerical DNS reference NuR

from [7]. An experimental correlation, Nuexp = 0.125Ra0.303Pr0.25 from [8], has
been also evaluated to confirm further the quality of the Implicit LES solution where
the DNS data were not available. Clearly, it is more convenient, for what regards
the number of DoF, to raise the polynomial order instead of the grid size (see, for
instance, Cases 7 and 11 of Table1). Note that for a well resolved simulation all
the different definitions of the Nusselt number should be equivalent. However, since
Nu1, Nu2 and Nu4 involve the components of the gradients, which are one order
less accurate, they are slower than Nu3 to reach convergence.

Figure1 shows the computed turbulent statistics using the time-space average
operator 〈·〉π , which deals with quantities averaged on planes parallel to the walls.
The DG-ILES solution fits well the DNS data despite having a number of DoF
orders of magnitude lower than the reference, DoFR. In particular, as the order k
of the polynomial approximation Pk increases, the amount of numerical dissipation
decreases, thus the peaks of fluctuation are described with a higher accuracy thanks
also to the growth of the cut-off frequency of the scheme. This behaviour can be
observed in Fig. 2 showing the power spectral density of the kinetic energy and
temperature for the cases at Ra = 106. The spectra have been obtained using the time
series of the variables in a probe point at z = H/2, inside the bulk region. Clearly, the
resolvedmaximumfrequency becomes broader by increasing the order of polynomial
approximation (see, for instance, the blue and black solid lines of Fig. 2). However,
due to the favourable spectral properties of the scheme, the resolved part of the inertial
range remains more or less unaffected by the numerical resolution and fits very well
the−5/3 (Kolmogorov scaling) and the−7/5 (Bolgiano scaling) laws for the kinetic
energy and the temperature, respectively. These spectra are in agreement with those
reported in [9]. A comparison between the solutions obtained at different time step
sizes was performed raising eight times theΔt value (red and black lines of Fig. 2). It
is clear that the resulting spectra are nearly superimposed both in the inertial range and
in the dissipative range, where an additional numerical dissipation, although being
very small, can be noticed. This result proves the computational benefits of using
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Fig. 1 Turbulent statistics of the Rayleigh–Bénard convection: Ra = 105 (24×24×8 mesh ele-
ments), Ra = 106 (16×16×8 mesh elements), Ra = 107 (32×32×16 mesh elements) and
Ra = 108 (72×72×36 mesh elements). Reference DNS data symbols: kinetic energy fluctua-
tions 〈k′〉π (squares), vertical velocity fluctuations 〈w′2〉π (circles) and temperature fluctuations
〈θ ′2〉π (gradients), from [7]. DG-ILES solutions at P3 (dashed lines), P4 (dash dotted lines), P5
(long dashed lines) and P6 (solid lines)

a high-order implicit time integration strategy. This is particularly true for an ILES
computation where there exists a cut-off frequency due to the under-resolved space
discretization. It isworth noting that in Fig. 2 themaximumfrequencyof theΔt = 0.4
spectrum is limited by the sampling frequency 1/Δt and could be increased using
a dense-output algorithm for the implicit Runge–Kutta scheme. With this method,
in fact, it is possible to evaluate an accurate solution within a time step. Note also
that for Δt > 0.4 we observed a significant reduction of the accuracy and stability
problems.

The developed solution strategy shows several advantages. First of all the high-
order implicit time-stepping allows the use of very large time step sizes without
introducing a significant dissipation to the one provided by the spatial discretization
(see, in addition, the computed Nusselt number of Cases 7, 8, 9 and 10 of Table1).
Moreover, it reduces the memory footprint of the code (the saving is about 66% for a
P6 approximation), and it allows a considerable CPU-time reduction if compared to
a standardMatrix-Based algorithm, especially when the system is not ill conditioned
(i.e. at small Δt). Regarding the last point, we can report that for the Case 7 of
Table1, the proposed approach saves about 84% of the CPU-time while for Case 10,
characterized by the largest time step size here employed, the saving is still 33.3%.
Finally, our implementation proves to be efficient and to scale optimally on highly
parallel systems. For example, the full (starting from a trivial initial condition and
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Fig. 2 Power spectral density of the Rayleigh–Bénard convection: Ra = 106 (20×20×10 mesh
elements), kinetic energy E (left) and temperature θ (right)

up to the non dimensional time t = 200) Ra = 108 computation, involving more
than 5.2 × 107 DoFs, is accomplished in less than one day using 68 Intel Xeon
processors (1224 cores).

4 Conclusions

A matrix-free incompressible DG-ILES solver has been here applied to the solution
of the Rayleigh–Bénard convection problems. Thanks to the favourable properties of
the DG discretization, the code proves to be perfectly suited to the ILES of turbulent
flows. The computed turbulent statistics and Nusselt numbers fits very well the refer-
ence DNS data and, for a fixed number of DoF, the quality of the solutions improves
as the order of polynomial approximation raises. Consistently, the cut-off frequency
of the scheme also increases, as it can be seen from the power spectral density of
the solutions in the turbulent bulk region. Moreover, the high-order implicit time
integration scheme allows the use of very large time steps without adding a notable
numerical dissipation in the large scale motions, which are solved with an accuracy
comparable with the one obtained at smaller time steps. The computational efficiency
of the code has been further improved by the use of the matrix-free approach and
of a lagged element-wise preconditioner. Future works will be devoted to assess the
proposed solution strategy for the simulation of incompressible turbulent flows on
complex geometries.
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Measurement of Turbulent Spatial Structure
and Kinetic Energy Spectrum—Part 1:
Convection Record Method

Preben Buchhave and Clara M. Velte

Abstract A novel exact temporal to spatial mapping for point measurements in tur-
bulence has been developed. The spatial record is obtained based on the instantaneous
velocity magnitude, u = |u|, creating an exact mapping between the sampling inter-
val, Δt , and the spatial record counterpart, Δs, through the relation Δsn = unΔtn . n
indicates the sample number in a measurement sequence. Summation of the consec-
utive streakline elements, Δs, corresponding to the convection distance of the fluid,
results in a spatial “convection record”. The exact mapping applies to all flows, since
it is based on the instantaneous velocitymagnitude, thereby incorporating all relevant
aspects of the flowdynamics. Even high intensity non-equilibrium spatial records can
be measured using this mapping, which is most straightforwardly applied using laser
Doppler anemometry measurements. Computer simulated high intensity LDA data
demonstrate the technique. The method will also be demonstrated on measurements
in a round turbulent jet in part 2.

1 Introduction

The spatial structures of velocity fluctuations in turbulent flows are of great inter-
est for theoretical understanding of turbulence and for realistic turbulence models
for technological applications. Presently, there is particular interest in the statistical
properties of unsteady and non-equilibrium turbulent flows where the classical Kol-
mogorov picture of a fully developed, equilibrium turbulence does not apply. Such
flows may be either non-stationary or inhomogeneous and highly turbulent, which
means that the traditional “Taylor’s frozen turbulence hypothesis” cannot be used to
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accurately convert the measured temporal record to a spatial one. In the following,
we briefly describe the new time-to-space method (for a more detailed description,
see [1]).

2 The New Time-to-Space Method

The traditional Taylor’s Hypothesis is based on the assumption that the spatial fine-
scale turbulent velocity structure is transported past the measurement point by the
local mean velocity so quickly that the small scales do not have time to change,
“so that an unchanging pattern of turbulent motion is swept past a stationary probe”
(Taylor [2]). The temporal velocity record, t , can then be converted to a spatial one,
sT H , by means of the measured local mean velocity in the average flow direction,
u1(x0, t) say, by the formulas

ΔsT H,n = u1(x0, t)Δtn (sampling intervals) (1)

and

sT H,n =
n∑

n′=1

u1(x0, t)Δtn′ (spatial record) (2)

where x0 is the location of the measurement point, Δtn is the n’th temporal sampling
interval and Δsn is the n’th spatial sampling interval. The velocity samples are the
same measured ones, ui (sn) = ui (sn), where i = {x, y, z} indicates the measured
velocity component, but the sampling intervals are different.

This method runs into problems when the turbulence intensity is greater than
approximately 45%, a fact that was recognized early on [3–10] and studied in numer-
ous publications over the years [4, 6, 8, 11–17]. The main problem is that the small
spatial velocity structures are swept past the measurement point by the large, fluc-
tuating convection velocity, which means that the temporal power spectrum cannot
simply be converted to a spatial one by the scaling given by (2).

Our new method converts a temporal record into a spatial record, which we may
name the “convection record”, since it is based on the summation of small streak
line elements, each corresponding to the convection distance of the fluid, Δs, during
the temporal sampling interval, Δt , caused by the magnitude of the instantaneous

velocity vector, un = |un| =
√
u2x + u2y + u2z , see Fig. 1. The spatial seeding density

should in practice approach the Nyquist sampling rate to avoid excessive noise in
the spectrum. The insert shows the measurement volume, i.e. the volume in the flow
from which Doppler signals are received. ΔA is the measurement cross section as
seen from the flow direction and Δs is the spatial sampling interval.
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Fig. 1 The instantaneous
streak line element through
the measuring volume

The n’th convection distance element is given by

Δsn = unΔtn (sampling intervals) (3)

and the spatial record is given by

sn =
n∑

n′=1

un′Δtn′ . (sampling record) (4)

The new spatial record now reflects the transport of spatial structures through the
measuring volume, independent of the turbulence intensity. The velocity samples are
the same, ui (sn) = ui (sn), but the new spatial record now shows the true distance
between spatial structures as they are convected past the measurement point.

In our work, we are particularly interested in the turbulence spectrum of the
measured velocity component, ux . The temporal and spatial energy spectra are given
by (formulas provided without residence time weighting for clarity)

Fux ( f ) = 1

T
ũx ( f )ũ

∗
x ( f ) where T =

N−1∑

n=0

Δtn is the temporal record length

(5)
and

ũx ( f ) =
N−1∑

n=0

e−i2π f tn ux (tn)Δtn (6)

is the Fourier transform of the velocity component, ux (t). The spatial energy spectra
are likewise given by

Fux (k) = 1

L
ũx (k)ũ

∗
x (k) where L =

N−1∑

n=0

Δsn is the spatial record length (7)
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and

ũx (k) =
N−1∑

n=0

e−i2πksn ux (sn)Δsn (8)

is the Fourier transform of the velocity component, ux (s).
Note, that the Fourier transform must be computed by discrete Fourier transform

(DFT) since the sampling intervals are not equidistant. Moreover, in LDA mea-
surements, the temporal sampling is a random (Poisson) process since the sampling
times (arrival times, tn) are determined by the arrival of seed particles to the measure-
ment point. Thus, the transit times or residence times, δtr , must be measured along
with the arrival times and velocities to allow correction of the velocity—sampling
rate correlation (also called velocity bias) by the residence time weighting method
[18–21].

Themethod relies on the knowledge of themagnitude of the instantaneous velocity

vector, un = |un| =
√
u2x + u2y + u2z . However, with an LDA instrument that mea-

sures the residence time, the three velocity components need not be measured as the
velocity magnitude can be estimated from knowledge of the measurement volume
dimension in the flow direction, dMV (measuring volume assumed spherical), and
the residence time:

un = dMV

δtn
. (9)

Then the spatial record can be computed:

sn =
n∑

n′=1

dMV

δtn′
Δtn′ =

n∑

n′=1

dMV

δtn′
(tn′ − tn′−1) (10)

wherewe have assumed the sampling rate so high thatwe can accept the time between
samples as the sampling interval.

Since the spatial record, sn , is one dimensional, and since the velocity vector is
always in direction of sn , the energy spectrum of un represents the total kinetic energy
spectrum computed with a single, one-dimensional DFT.

Fu(k) = 1

L
ũ(k)ũ∗(k) (11)

The final spectra are found as block averages of e.g. 100 records to reduce variance.
The biggest source of variance in the final spectrum is the random sampling. The
fluctuations in the particle path through the MV also cause variance in the spectral
estimate, but this effect is smaller than the one due to random sampling.
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3 LDA Simulation Results

To demonstrate the method, we performed laser Doppler anemometry (LDA) simu-
lations based on a von Kármán spectrum (see yellow curve in RHS Fig. 2) [22]. This
theoretical spectrum was fitted to a power spectrum from LDA measurements in a
round turbulent jet, acquired at the centerline in the developed region (30 jet exit
diameters downstream).

The spatial von Kármán spectrum was used as a filter to create a simulated turbu-
lent velocity field that was sampled using a Poisson process to mimic the sampling
process of the LDA. The spatial sampling bypasses the issue of velocity-sample
rate bias and therefore a pure Poisson sampling without velocity modulation could
be implemented. These fluctuations were convected through the simulated LDA
measuring volume by a three-dimensional large scale Gaussian velocity field, to pro-
duce spatially and temporally varying convection velocities. The resulting turbulence
intensity of the total signal was 54%. An average streamwise velocity of 1 ms−1 and
a record length of 1 s was chosen to obtain a direct correspondence in the scaling of
the spatial and temporal spectra.

The resulting randomly sampled time record produces an aliased time spectrum,
Fig. 2 LHS. Residence time weighting has been implemented to avoid the velocity-
sample rate bias inherent in LDA measurements [20]. The mapping back to spatial
spectra is shown in Fig. 2 RHS using the convection record proposed herein as well as
the classical Taylor’s frozen field hypothesis. It is clear that the convection spectrum
restores the von Kármán spectrum even in the presence of large temporal and spatial
fluctuations, while Taylor’s hypothesis is not able to restore in particular the small
scales.

Fig. 2 Spectra of the von Kármán turbulence convected past the LDAmeasuring volume by a large
low frequency Gaussian fluctuation. Left: Blue The temporal spectrum. Right: Yellow The original
vonKármánmodel spectrum.Dark red The spatial spectrum restored.Light red The spatial spectrum
restored by the conventional Taylor’s hypothesis



168 P. Buchhave and C.M. Velte

4 Conclusions

The concept of convection records has been introduced and applied to computer
simulations of LDA measurements from an LDA measurement in a turbulent round
jet. The classical mapping of Taylor fails at the high turbulence intensity simulated,
54%, while the convection spectra are correctly mapped between space and time.
This mapping may be implemented in any flow and can provide spatial spectra, cor-
relations etc. even in inhomogeneous flows if the flow is stationary. Non-equilibrium
flows of high turbulence intensities, where Taylor’s hypothesis cannot be accurately
invoked, is one of the central useful flows identified for implementing this method.

References

1. P. Buchhave, C.M. Velte, Conversion of measured turbulence spectra from temporal to spatial
domain. in Whither Turbulence and Big Data in the 21st Century? (Springer International
Publishing, 2017), pp. 343–362

2. G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. Lond., Ser. A 164, 476 (1938)
3. C.C. Lin, On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equations. J.

App. Math. 10, 295 (1953)
4. J.L. Lumley, Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids

8, 1056 (1965)
5. M.J. Fisher, P.O.A.L. Davies, Correlation measurements in a nonfrozen pattern of turbulence.

J. Fluid Mech. 18, 97–116 (1964)
6. J.C. Wyngaard, S.F. Clifford, Taylor’s hypothesis and high frequency turbulence spectra. J.

Atm. Sci. 34, 922 (1977)
7. A.S. Gurvich, Influence of the temporal evolution of turbulent inhomogeneities on frequency

spectra. Atmos. Ocean. Phys. 16, 231–237 (1980)
8. R.A. Antonia, N. Phan-Thien, A.J. Chambers, Taylor’s hypothesis and the probability density

functions of temporal velocity and temperature derivatives in a turbulent flow. J. Fluid Mech.
100, 193 (1980)

9. J.W. Deardorff, G.E. Willis, Investigation of the frozen-turbulence hypothesis for temperature
spectra in a convectively mixed layer. Phys. Fluids 25, 21–28 (1982)

10. J.C. Kaimal, R.A. Eversole, D.H. Lenschow, B.B. Stankov, P.H. Kahn, J.A. Businger, Spectral
characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci. 39, 1098–
1114 (1982)

11. G. Heskestad, A generalized Taylor hypothesis with application for high Reynolds number
turbulent shear flows. J. Appl. Math. 32, 735 (1965)

12. H. Tennekes, Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech.
67, 561 (1975)

13. W.C.Thacker,A transformation relating temporal and spatial spectra of turbulent kinetic energy.
Boulder, Colo. : Dept. of Commerce, National Oceanic andAtmospheric Administration, Envi-
ronmental Research Laboratories, Atlantic Oceanographic and Meteorological Laboratories,
Miami, Florida (1977)

14. F.H. Champagne, The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 78, 67
(1978)

15. K.B.M.Q. Zaman, A.K.M.F. Hussain, Taylor’s hypothesis and large-scale coherent structures.
J. Fluid Mech. 112, 379 (1981)

16. J. Mi, R.A. Antonia, Corrections to Taylor’s hypothesis in a turbulent circular jet. Phys. Fluids
6, 1548 (1994)



Measurement of Turbulent Spatial Structure and Kinetic Energy Spectrum … 169

17. E. Gledzer, On the Taylor hypothesis corrections for measured energy spectra of turbulence.
Physica D 104, 163 (1997)

18. P. Buchhave, Errors and correction methods in turbulence measurements with the LDA. PhD
Dissertation, State University of New York at Buffalo (1979)

19. C.M. Velte, Characterization of vortex generator induced flow. PhD Dissertation, Technical
University of Denmark (2009)

20. C.M. Velte, W.K. George, P. Buchhave, Estimation of burst-mode LDA power spectra. Exp.
Fluids 55, 1674 (2014)

21. P. Buchhave,W.K.George, J.L. Lumley, Themeasurement of turbulencewith the laser-Doppler
anemometer. Ann. Rev. Fluid Mech. 11, 443 (1979)

22. P. Buchhave, C.M. Velte, Reduction of noise and bias in randomly sampled power spectra. Exp
Fluids 56, 79 (2015)



Measurement of Turbulent Spatial Structure
and Kinetic Energy Spectrum—Part 2:
Convection Record Measurements

Clara M. Velte, Preben Buchhave and Azur Hodžić

Abstract A novel exact temporal to spatial mapping for point measurements in
turbulence has been applied to various flow conditions existing in a round turbu-
lent jet. The conditions range between equilibrium and non-equilibrium as well as
mid to high turbulence intensities. The exact mapping applies to all flows, including
high intensity non-equilibrium flows, since it is based on the instantaneous velocity
magnitude, thereby incorporating all relevant aspects of the flow dynamics. Devel-
opment of the jet turbulence along the stream, from non-equilibrium to equilibrium,
is observed. In the developed region of the jet, Taylor’s hypothesis is tested and the
spectra using the novel exact mapping is validated with excellent agreement against
directlymeasured spatial spectra in amapped similarity space using PIV. Themethod
is observed to produce the expected results even at turbulence intensities of the order
of 450%.

1 Introduction

In the recent developments in turbulence research, focus has lately been directed
towards non-equilibrium flows. These flows do not follow the classical Kolmogorov
picture of a universal equilibrium range in which the smallest scales can be regarded
to adapt instantly to surrounding conditions and therefore be considered in a state
of (quasi-) equilibrium. Taylor’s frozen field hypothesis has typically been invoked
for measuring spatial records from temporal records. Unfortunately, this low-order
mapping is known to fail in particular for the most interesting high-intensity flows.
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In this article, we describe the application of a new method (see part 1 or [1]
for more details) for converting temporal records acquired at a fixed measurement
point with a laser Doppler anemometer (LDA) to a spatial record reflecting the
transport or convection of spatial structures past themeasuring point. Thismapping is
completely general and can therefore be applied to any flow, whether time dependent,
inhomogeneous or even transitional.

Since the velocity data are acquired at a single point, the flowfield does not have to
be homogeneous to allow computation of statistical quantities such as correlations,
spectra and structure functions. However, in order that spectra may be computed
from the temporal record, the flow must be stationary within the measured temporal
record length.

2 Measurements

Measurements were performed in two separate experiments with two identical round
jets in air with exit diameter D = 10mm, one using an LDA [2] and the other using
a particle image velocimeter (PIV) [3, 4], see [5, 6] for a detailed description of the
flow facility. The turbulent jet is an ideal test bed for exploration of turbulence in both
non-equilibrium and equilibrium regions since it is well known theoretically as well
as from experiments (see e.g. Hinze 1992 [7]). Moreover, the logarithmicmapping of
velocity components along the jet axis allows PIV measurements to be performed in
two local homogeneous directions [8].We used an in-house LDA (Fig. 1), designed to
give high spatial resolutionwith a near sphericalmeasurement volume (with diameter
dMV = 200µm) and high S/N using separate emission optics and receiving optics
at 90◦ to each other. We used digital sampling with a high sample rate (4 channels
up to 2GS/s per channel) and high resolution (12–14 bits). Processingwas performed
with highly transparent and flexible software to allow optimum adjustment of filter

Fig. 1 Jet experiment
showing jet orifice, LDA
sender and LDA receiver
positioned at an angle.
Measurements in the current
study were made with the
detector positioned at 90◦ to
the laser beams
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settings and velocity validation. The whole system is optimized for highest possible
S/N to allow measurements of spectra with high dynamic range. The far-field PIV
measurements were obtained from the data of [3, 4] where the experimental setup
is described in detail. The data was sampled using a two-component PIV in the
longitudinal direction of the jet with two Dantec FlowSense EO 16MPix cameras
and a pixel pitch of 7.4µm. 60mm Nikon lenses were used with an aperture of
f = 2.8. The two cameras were combined to extend the total view of the far-field
reducing the effect of windowing on the spectra. The LDA and PIV measurements
were performed at Re = 20,000. The LDA spectra were based on 100 records with
a 1 s record length and an average sampling frequency of approximately 5000 S/s.
The PIV measurements from [3, 4] were based on 11,000 independent realizations
in the developed region interval x = 30 − 100D.

3 Developed Jet Region

Figure2a shows spatial spectra measured in the developed region x = 30 − 100D.
These spectra are obtained from PIV measurements where the similarity scaling

Fig. 2 Measured spectra from the fully developed region of the turbulent jet at x = 30D at different
radial positions (heavy to light color increasing distance from axis). All spectra are normalized
with their respective mean square values for the sake of comparison. a Spatial spectra from PIV
measurements. b Temporal spectra measured with LDA. c Spatial spectra obtained by invoking
Taylor’s hypothesis. d Spatial spectra from the same LDA data, converted with the new method
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from [8] is applied in order to map the field to similarity coordinates. The coordinate
transformation imposes homogeneity in the streamwise direction of the flowallowing
one-dimensional spatial spectra to be extracted at each radial position in similarity
space. The PIV spectra are normalized by their respective mean square energies,
indicating that the spatial structure is uniform across the jet in this interval of the
developed region.

Figure2b showsLDA temporal spectra, acquired at x = 30D, at radial coordinates
r = 0, 13, 26, 39, 52mm, normalized to u′2

x = 1. These spectra show the effect of
the convection as the energy is shifted to higher frequencies closer to the axis where
the average convection velocity is highest. Invoking Taylor’s hypothesis to obtain the
spatial energy spectra and again normalizing the spectra by their mean square values,
Fig. 2c, reveal that the computed spectra do not collapse to the same form in regions
of high turbulence intensity, deeming Taylor’s hypothesis inappropriate particularly
in the outer parts of the jet. In the outermost radial position, corresponding to two jet
half-widths, the turbulence intensity is about 450%. The spatial spectra in Fig. 3d,
computed by the convection record result in a near perfect collapse of the curves
using the same LDA data, in agreement with the spatial spectra directly measured
using PIV in Fig. 2a. This demonstrates the validity of the new conversion method,
even at 2.5 times the jet-half width, where the signal displays high intermittency and
turbulence intensity.

4 Non-equilibrium Jet Region

Figure3 shows measurements with LDA in two regions of the jet, where equilibrium
of the turbulent cascade has not developed. The spectra in Fig. 3a, b are measured at
x = 15D and Fig. 3c, d show spectra measured at x = 10D. The temporal spectra
show the expected displacement due to the increasing velocity as we approach the
axis. However, the spatial spectra do not collapse as we saw in the fully developed
region. We also note that the shapes of the spectra are not similar, revealing subtle
differences in the spatial structure of the velocity at different radial positions. Note-
worthy is perhaps also the fact that the general tendency at x = 15D is still a slope
of −5/3 as expected only in the fully developed jet. The even less developed spec-
tra displayed in Fig. 3c, d show the same features, perhaps even more pronounced.
However, these spectra do not show a frequency range with a constant slope.

These measurements are only preliminary, and we plan to make more detailed
studies of the non-equilibrium regions of the turbulent jet involving also structure
functions and dissipation measurements using the new spatial conversion method.
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Fig. 3 Temporal spectra (blue) and spatial spectra (red) from non-equilibrium regions of the tur-
bulent jet measured with LDA at various radial positions. a, b Temporal and spatial spectra using
the new conversion method measured at x = 15D. c and d same measured at x = 10D

5 Conclusions

A new temporal-to-spatial record conversion method not hampered by the approxi-
mations inherent in Taylor’s Hypothesis has been applied to LDA measurements in
a round, turbulent jet in air. The LDA measurements are compared to direct spatial
spectra measurements in an identical jet using PIV and a homogenizing similarity
mapping. Both temporal spectra based on the randomly sampled temporal records
and spatial spectra from spatial records converted both by the new method and by
the traditional Taylor’s Hypothesis were computed. The PIV measurements show
that the spatial spectra measured in the fully developed region of the jet when nor-
malized to the same mean square value are identical. The spectra computed from
spatial records converted from the temporal LDA records show near perfect collapse
in agreement with the PIV spectra when the newmethod is used. Taylor’s Hypothesis
provides collapsing spectra only in regions with turbulence intensity less than 45%
while failing totally in the outer region of the jet.

Measurements were also conducted with LDA in regions nearer to the exit, where
the turbulence is not fully developed. Interesting features due to the non-equilibrium
were revealed. These measurements cannot be made with PIV because the flow
cannot be considered locally homogeneous and thus statistical results do not have any
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physical meaning. Hot-wire measurements cannot be made accurately because of the
high turbulence intensity. LDA measures temporal records that can be converted by
Taylor’sHypothesis or byour newmethod.Our results show that only our newmethod
provides identical spatial spectra as expected from PIV data when applied to the fully
developed region of the jet. This leaves LDA the only option for measurements in
the high turbulence intensity regions of the non-equilibrium parts of the jet, where
local homogeneity cannot be expected.
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Comparison of the Development of a Wind
Turbine Wake Under Different Inflow
Conditions

Ingrid Neunaber, Jannik Schottler, Joachim Peinke and Michael Hölling

Abstract We present a wind tunnel study of a model wind turbine wake with regard
to different inflow conditions. The aim is to examine the influence of intermittent
flows on the wake. For this, a regular grid that produces non-intermittent inflow and
an active grid that creates intermittent inflows have been used. As a reference case,
also laminar inflow conditions were examined. The development of the centerline
turbulence intensity andmean velocitywith increasing distance from thewind turbine
was investigated, and an influence of the different characteristic features of turbulence
on the wake recovery was found. The results expand and partially contradict previous
results.

1 Introduction

Turbulence is shown to have amajor influence on thewind energy conversion process.
As wind energy converters are usually built in wind farms, not only the atmospheric
turbulence influences the machines, but also the turbulence that develops behind
the wind energy converters. To optimize the wind farm layout and to design wind
energy converters according to the surrounding conditions, profound knowledge
of the wind turbine wake and its development is important. A first step towards a
proper description is to scrutinize the development of the velocity mean v̄ and the
standard deviation σv, which has already been done in several CFD, laboratory and
field studies. Here, a study based on wind tunnel experiments is presented, where
the focus is on the examination of the influence of different turbulent inflows on the
development of the wake of a load-controlled model wind turbine.

In the past, several laboratory studies of wakes of model wind turbines exposed
to turbulent inflow conditions have been carried out. In [1], the wake of a model
wind turbine in two different turbulent boundary layers is examined, namely, the
influence of a rough and a smooth boundary layer on different quantities in the wind
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turbine wake at various downwind positions are compared, and wake profiles are
studied. They conclude that the inflow turbulence is beneficial for the recovery of the
velocity deficit in the wake (in the following called wake recovery). In comparable
studies like e.g. [2], the effect that turbulent inflow leads to a faster wake recovery is
confirmed.

Above-mentioned studies come to the general conclusion that the inflow turbu-
lence has an influence on the wake. However, in many studies, including [1, 2],
the inflow turbulence is only specified by mean value and standard deviation. Conse-
quently, the intermittency,which is one important feature of the atmosphericwind (cf.
[8]) and which could be related to an increased wind turbine failure rate [7], is often
not accounted for in the layout and discussion of experiments. The term intermit-
tency refers to the gustiness of a flow, and it can be characterized by the probability
density function (PDF) p(δv(τ )) of velocity increments δv(τ ) = v(t + τ) − v(t).
This description takes into account the velocity fluctuations over a time lag τ . Here,
it should be pointed out that the time lag τ or, respectively, the corresponding spa-
cial scale obtained by the use of Taylor’s hypothesis of frozen turbulence, plays an
important role for the wake structure if these scales are within those that determine
the wake structure, i.e. the size of the rotor or the size of the chord of the blades.

The aim of this paper is to examine the influence of intermittency on the wake.
For this, the impact of two fundamentally different turbulent inflows, one with inter-
mittent and one with non-intermittent features on the relevant scales, is examined
experimentally. In Sect. 2, the experimental setup is presented. Section3 shows the
resultswhich are directly discussed. Finally, in Sect. 4, a conclusion closes this article.

2 Experimental Setup

The setup is presented in Fig. 1. A model wind turbine with rotor diameter D =
58 cm and tip speed ratio λ = 7.2 is installed in a closed-loop wind tunnel with open
test-section [6]. The measurements of the wake are carried out with seven hot-wire
probes aligned in an array that is traversed along the centerline up to a distance of
X/D = 4.65. The sampling frequency is fs = 20 kHz, and a low-pass filter with a
cut-off frequency of 10 kHz is used.

To create the above-mentioned different turbulent inflows, a regular and an active
grid are used. The regular grid (mesh size of 4.4 cm) creates on the scales of the rotor
non-intermittent, i.e. Gaussian, turbulence, while the active grid is capable of creating
respective intermittent flows (cf. e.g. [8]): Several vertical and horizontal axes with
diamond-shaped flaps can be rotated, and a motion pattern of all axes allows to
create customized turbulent flows [3]. In this experiment, we use a motion protocol
that recreates typical statistical characteristics of free field wind data, rescaled to
wind tunnel dimensions. As a third reference case, a quite laminar inflow is used.

For the two turbulent inflow conditions, the PDFs of velocity increments are
plotted in Fig. 2 for different time lags τ . The PDFs are normalized to the standard
deviations of the increment time series, στ , and they are shifted vertically for clarity.
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Fig. 1 Top-view of the setup: The model wind turbine is placed in different turbulent flows created
by a regular and an active grid. The wind tunnel with outlet (80 × 100) cm2 is operated with an
open test section. A hot-wire array with seven probes is used to traverse the centerline of the wake

Fig. 2 PDF of velocity
increments for different time
lags τ . τ = 0.0055 s
corresponds to the chord
length at approximately 50%
of the radius, τ = 0.04 s
corresponds to the rotor
radius and τ = 0.12 s
corresponds to 1.5 D. The
PDFs are shifted vertically
for clarity
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The standard deviations of the active grid στ,act are for the chosen τ twice the value
of the regular grid’s standard deviations στ,reg . The corresponding spatial scales are
chosen to match the turbine geometries: 1.5D corresponds to τ = 0.12 s ≈ 0.87 m,
0.5D corresponds to τ = 0.04 s ≈ 0.28 m and the chord length at approximately
50% of the radius corresponds to τ = 0.0055 s ≈ 0.04 m. It can clearly be seen
that the regular grid produces Gaussian statistics, whereas the active grid creates
intermittent statistics on our selected scales.

Themean inflowvelocities and turbulence intensities T I = σ/v̄ of the free inflows
(i.e.without turbine) at rotor position are presented inTable1.Thevalues are averaged
over all seven sensors. In the following, the velocities are used as reference and
normalization inflow velocities. As the mean wind speeds are set by a constant
wind tunnel motor control voltage, the inflow velocity varies for the different inflow
conditions.
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Table 1 Mean averaged velocities v̄0 and turbulence intensities T I0 = σ0/v̄0 of the different inflow
conditions at rotor position (no turbine, thus the index 0)

Laminar Regular grid Active grid

v̄0/m/s 7.56 7.28 8.07

T I0/% 1.36 6.72 12.81

3 Results and Discussion

In the following, the downstream evolution of the normalizedmean velocity v̄/v̄0 and
turbulence intensity T I/T Ipeak in the wake are shown and discussed with regard to
the inflow conditions (cf. Fig. 3a, b).

The mean velocity drops as expected due to the pressure gradient caused by the
turbine. At X/D ≈ 2, the wake recovery starts. An influence of the inflow turbulence
is visible: In case of the laminar and the intermittent inflow, themaximumwake deficit
and the recovery are comparable. The maximum wake deficit in case of the non-
intermittent inflow is significantly higher, but the wake recovery appears to be faster,
although T I0,reg is roughly half of T I0,act . Therefore, contradictory to other studies,
we find that a higher turbulence degree in the inflow conditions does not necessarily
lead to a faster recovery of the mean wind speed. The statistic characteristics of the
inflow turbulence on turbine-related scales seem to play an additional role in the
wake development.

In Fig. 3b, the development of the turbulence intensity overX/D is shown. Inspired
by [4], the turbulence intensity is normalized to the respective peak turbulence

Fig. 3 Development of the wind turbine wake’s normalized mean velocity (a) and to the peak tur-
bulence intensity normalized turbulence intensity (b) for different inflow conditions. The quantities
are plotted logarithmically over X/D. The turbulence intensity is displayed in a log-log plot and a
power law T I/T IPeak = α · (X/D)−β is fitted
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Table 2 Fit parameters of the TI’s power law fit T I/T IPeak = α · (X/D)−β

Laminar Regular grid Active grid

α ± Δα 2.87 ± 0.12 5.21 ± 0.38 3.23 ± 0.20

β ± Δβ 1.37 ± 0.04 1.87 ± 0.07 1.45 ± 0.07

χ2
PL 0.00015 0.00028 0.00037

intensity T Ipeak in an attempt to collapse the curves. It can be seen that the tur-
bulence intensity peaks around X/D≈ 2 and then decays. As publications as [5] have
shown a power law decay of the velocity deficit, which is directly linked to the tur-
bulence intensity, a power law T I/T IPeak = α · (X/D)−β was fitted to the decay
region. The fit parameters and the mean square residuals χ2 can be found in Table2.
The low values of χ2 indicate that the power law fit shows a good agreement.

To our knowledge, we are the first ones to connect the turbulence decay to classical
wakedecaydescriptionmethods and to investigate also the evolutionof the turbulence
intensity. In analogy to the behavior of the mean velocity, β is similar in case of the
laminar and the intermittent inflow, but differs in case of non-intermittent inflow. As
a consequence of the higher decay exponent, in case of the non-intermittent inflow,
the turbulence intensity decays faster, and thus the decay curve even crosses the other
curves. This indicates that the intermittent turbulence counteracts the beneficial faster
turbulence decay in case of Gaussian inflow turbulence.

4 Summary and Conclusion

We presented a study of the influence of different inflow conditions on the devel-
opment of a wind turbine wake. Hot-wire measurements have been carried out at
different positions along the streamwise axis up to X/D = 4.65.

The evolution of the mean velocity at centerline is shown to be dependent on the
statistical characteristics of the inflow turbulence. While the wake recovers similarly
for laminar and intermittent inflow conditions, the wake recovery in case of non-
intermittent turbulence is faster, although the inflow turbulence was significantly
lower compared to the intermittent case.

The decay of the turbulence intensity can be approximated by a power law fit
after peaking around X/D ≈ 2. Similar to the mean velocity, the inflow conditions
also affect the turbulence decay. The turbulence intensity decays faster in case of
non-intermittent inflow although having the lower inflow turbulence degree.

Both analyses suggest that on turbine scales intermittent turbulence counteracts
the recovery of the mean velocity and the decay of the turbulence intensity. Whether
this trend is conserved at larger distances X/D has to be further examined.

In conclusion, an influence of different characteristic features of the inflow turbu-
lence on the wake of a model wind turbine could be shown. Therefore, a description
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of the inflowwithmean velocity and turbulence intensity is not sufficient, and experi-
ments in turbulent inflows have to be designed carefully to gain profound knowledge
in cases of turbulence generation in turbulent surroundings.
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Germany.
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The Development of Packets of Hairpin
Vortices in Laminar Channel Flows in
Response to Localized Disturbances

Jun-De Li

Abstract We report the responses of laminar channel flows to localized distur-
bances at different Reynolds numbers and initial perturbation amplitudes by using
direct numerical simulations (DNS). It is found that, when the Reynolds number and
the local perturbation are above some critical values, the local disturbance generates
a strong and long low speed streak among many weaker ones together with a pair of
streamwise vortices next to the strong low speed streak. The spatiotemporal devel-
opment of the flow structures shows that the first hairpin vortex appears above and at
the middle of the strong low speed streak and several secondary hairpin vortices then
appear behind and ahead of the primary hairpin vortex, and thus forming a packet
of hairpin vortices. It is found that the hairpin vortices seem to be generated by the
Kevin–Helmhotz type instability, and some of the hairpin vortices are formed from
pairing two adjacent smaller hairpin vortices generated from the roll up of shear
layer near the streamwise vortex pair. It is also found that the variance of the vertical
velocity is a better indicator for showing the start of nonlinear effect.

1 Introduction

Bypass transition from laminar flow to instabilities and turbulence under the localized
three-dimensional disturbance has long been considered [1] as an alternative to the
two-dimensional Tollmien–Schlichting (TS)waves, and has been studied extensively
both numerically and experimentally [2–4]. It is generally believed that for a laminar
shear flow constrained by at least one solid wall, when the Reynolds number and the
amplitude of the localized disturbance are above their respective critical values, a
transient energy growth due to the “lift-up” effect [5] will generate sufficient ampli-
tude in fluctuating velocity to trigger the nonlinear development of the disturbances
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and result in the transition to turbulence. The growth of the disturbance is generally
measured using the fluctuation energywhich includes contributions from all the three
velocity components. The indication of nonlinear triggering is normally provided by
the fact that this energy grows faster and would not decay in a full simulation (or
measurements) than that from a linearised analysis (simulation). In this paper, we
will show that this fluctuation energy (or the streamwise velocity variance) may not
be a sensitive indicator for identifying the start of such nonlinear effect.

In [4], the development of the laminar channel flow fields under localized distur-
bances was investigated and it was found that with large enough initial perturbations,
the flow development reaches the stage of a small turbulent spot after a relatively
short time. The appearance of the spot has been considered as a precursor for the
fully developed turbulence. It was shown in [4] that due to strong nonlinearity, the
flow develops some streamwise vortex whose breakdown results in a rollup process.
Although it was conjectured that this rollup process produces some lambda vortex
structures similar to that from the secondary instability process [6], the detailed rollup
process and its consequence are not clear. Here the detailed vortex structures from
this process are looked in details. It seems that a vortex packet consisting of several
hairpin vortices formed sequentially can be developed and the overall structures is
similar to the packet of hairpin vortices in fully turbulent channel flows as found
in [7]. This shows that the formation of packet of hairpin vortices may be a common
feature for laminar to turbulence transition and fully developed turbulence.

2 Direct Numerical Simulation

The DNS simulations were based on the well-known KMM scheme [8] and the spec-
trally accurate Galerkinmethodwith basis functions consisting of several Chebyshev
polynomials and satisfying the homogeneous boundary conditions for the normal to
the wall vorticity and velocity, respectively. This method results in better conditional
numbers numerically in comparison with the collocation method commonly used.
The disturbances are axisymmetrical jet flows normal to themeanflowand are similar
to that used in [4].

ψ = 1

2
ε f (y)r2e−(r/ l)2 (1)

(u, v,w) = (− x

r2
ψy,

1

r
ψr ,− z

r2
ψy) (2)

f (y) = (1 + y)p(1 − y)q (3)

Here (x, y, z) and (u, v,w) are the streamwise, normal and spanwise coordinates and
velocities, respectively, and r2 = x2 + z2. The initial perturbations were specified by
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setting p = 2, q = 5 and l = 1 with various ε. This perturbation is stronger near the
y = −1 wall than that near the other wall, and thus the perturbation is asymmetrical
with respect to the center of the channel. In this work, the length scales, velocities and
time have been normalized by the channel half height h, centreline velocityUcl of the
laminar parabolic velocity and h/Ucl , respectively. The simulations were conducted
by using periodical boundary conditions in the streamwise and spanwise directions
with Lx = 16π and Lz = 8π , and for a non-dimensional time up to T = 50. The
number of nodes used were 256 × 97 × 256 and the skew-symmetrical form of the
nonlinear terms was used to minimize the aliasing errors.

3 Results

Simulations were conducted for Re = 1,000 − 6,000 with ε = 0.02 and for ε =
0.002 − 0.04with Re = 3,000. It is found that, for ε = 0.02, the perturbation energy
e = 1/2(< u2 > + < v2 > + < w2 >) increases with time at a faster rate as Re
increases. Here < f 2 >= ∫ Lx

0

∫ Lz

0

∫ 1
−1 f 2dxddzdy at a given time is the total vari-

ance of f . The simulation time was not long enough to see the decay of the energy,
but in general < v2 > decreases with time. For ε = 0.02 and Re = 6,000, the ver-
tical variance < v2 > shows a dramatic increase with time after an initial decrease.
This is an indication of the start of the transition. For Re = 3,000, it is found that
perturbation energy increases faster with increasing ε, and at ε = 0.04 the vertical
variance shows no sign of decrease after T = 5 as shown in Fig. 1b.

Figure1 shows the development of e and < v2 > for the linear and full responses
to the initial perturbation ε = 0.04 at Re = 3,000. The linear responsewas simulated
by setting the nonlinear terms to zero (after the N-S equations were linearized around
the laminar velocity profile) and is almost identical to that from the full response for
the very small initial perturbation ε = 0.002. Figure1a shows that the development
of the perturbation energy e from the full response closely follows that from the
linear response for T < 10 and the departure from the linear response for T > 10
indicates the effect from non-linearity. On the other hand, Fig. 1b shows that the
nonlinear effect becomes important for< v2 > from T ≈ 5, much early than that for
e. In [4], it was also noticed that the signs of nonlinearity were first seen in the normal
velocity and later in the other velocities through the forcing by the normal component.
In the literature, especially in theoretical analysis, it has been a common practice to
use the growth of perturbation energy as an indicator for the appropriateness of
linear approximation. The results in Fig. 1 show that, in analysing the instability and
transition of wall shear flows, the development of the vertical velocity may be a more
appropriate indicator for identifying the start of the nonlinear effect.

One possible reason for this early nonlinear effect for the vertical velocity could
be due to the large magnitude difference in the streamwise and vertical velocities.
Figure1 shows that, after the initial development, the magnitude of the streamwise
velocity variance (the contribution to e is mainly from < u2 >) is one order of
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Fig. 1 Development of energy (a) and variance of vertical velocity (b) for linear responses and full
responses including the nonlinearity. Re = 3,000 and ε = 0.04

magnitude higher than that of the vertical velocity, and it is expected that its contri-
bution to the nonlinear terms in the vertical momentum equation will be large.

The spatiotemporal development of the flow structures for Re = 3,000 and ε =
0.04 was followed by creating movies based on velocity contours and isosurfaces
based on vortex identification criteria Q = 0.1. It is found that the local disturbance
generates a long and strong low speed streak among many weaker ones, and a pair of
long streamwise vortices next to the strong low speed streak. This pair of vortices first
appears at T ≈ 3.2 almost vertically and becomes gradually stretched and elongated
in the streamwise direction as their heads close to the centre of the channel moving
downstream faster than their tails near the solid wall. The two streamwise vortices
are close to each other and away from the wall downstream, further apart and close
to the wall upstream, thus showing a small inclination to the wall. The first hairpin
vortex appears above and at the middle of the strong low speed streak at T ≈ 31 (this
time depends on the Q value used for the current simulation). This is the primary
vortex (the third hairpin vortex from the right in Fig. 2, between 30 < x < 32) as
identified in [7]. Several secondary hairpin vortices then appear sequentially behind
and ahead of the primary hairpin vortex, and thus forming a packet of hairpin vortices
as shown in Fig. 2 at T = 45. This packet is similar to that found in [7] which were
simulated from a fully turbulent channel flow with initial perturbations based on
linear stochastic estimation of extremeReynolds shear stress eventswithin the second
quadrant. This shows that hairpin vortex packet can be formed in turbulent flows and
in transition.
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Fig. 2 Packet of hairpin vortices at T = 45, Re = 3,000 and ε = 0.04: a side view; b top view.
The vertical scale has been stretched by a factor of 8

However, it is found that the “tongues” found in [7] are a natural part of the
long streamwise vortex pair accompanied the low speed streak (as can be seen from
the downstream part of Fig. 2b), rather than being generated after the appearance
of the primary hairpin vortex. It is also found that the hairpin vortices are probably
generated by the Kevin-Helmhotz type instability of the strong low speed streak,
rather than by pinching-off the initial streamwise vortex due to the self induction of
the Ω shaped hairpin vortex ahead. This conclusion was based on the observations
that each individual hairpin vortex was first formed by a rolling up of the shear layer
on top of the low speed streak and the waviness of the initial streamwise vortex pair
as can be seen from Fig. 2a (especially that between 20 < x < 25). The induction of
the primary hairpin vortex also cannot explain the two hairpin vortices generated at
its downstream (the two vortices from the right).

It is also found, from Fig. 2b, that for the hairpin vortex behind the primary one,
small hairpin vortices were formed first near each leg of the initial streamwise vortex
and paired together as they grow bigger while being convected downstream. Only
the two hairpin vortices ahead of the primary one were formed directly without
undergoing the pairing process. Inspection shows that the strong low speed streak is
not a simple long blob of low speed fluid, rather it has two separate legs next to the
two streamwise vortices, the two legs join together downstream. This again suggests
that the formation of hairpin vortices is strongly associated with the local strong
shear layer around the low speed streaks.
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4 Discussion and Conclusions

The present simulations were conducted using symmetrical initial conditions with
respect to z = 0 and periodic boundary conditions in the spanwise direction. Because
of these, the packet of hairpin vortices are symmetrical. In real flows, perturbations
will in general be non-symmetrical and boundary conditions non-periodical. These
will result in asymmetrical structures. However, it is believed that the physical mech-
anisms for the formation of the hairpin vortices (unsymmetrical ones) are similar to
those from the current simulations. The strong similarities between the packet of
hairpin vortices from the current simulations using laminar base flow and that in [7]
based on mean turbulent velocity profile shows that the formation of these structures
may be a common feature for transition and fully developed turbulence in wall shear
flows. However, it should also be noted that the wavepackets in the present simula-
tions and those of [7] are long lasting and this could be because clean backgrounds
have been used in both simulations. With a fluctuating turbulent background, the
results in [9] show that hairpin vortices exist but are short lived.

Acknowledgements The author has benefited greatly from the discussions on instability and tran-
sition with Prof. C.B. Lee of Peking University, China.
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Very Large-Scale Feature of Transitional
and Turbulent Channel Flows: Dependence
on Facilities

Shun Horii, Yoshiyuki Sagawa, Makoto Miyazaki
and Masaharu Matsubara

Abstract A recent investigation revealed that a low frequency peak in premultiplied
energy spectra due to turbulent patch passes in a transitional channel flow continues
in a low Reynolds number but turbulent flow. In this study, to denial that a peculiar
vibration of the facilities causes this low frequency peak, hot-wire measurements
were performed. Spectral energy distributions obtained in different air channel flow
facilities clearly confirm very large-scale feature at low Reynolds number and its
independence from peculiarities of the facilities. A flow visualization experiment
conducted in a water channel illustrates that a cluster of characteristic streaks forms
into a inclined stripe whose shape is similar to a turbulent patch in a transitional
channel flow. The streamwise and spanwise sizes of the cluster are in agreement
with length scales estimated from the energy spectral and a spanwise correlation
of the streamwise velocity. The similarity to the turbulent patch and continuity of
the low-frequency peak from the transitional Reynolds number infer that the very
large-scale feature relates to the intermittency in the transitional flow in terms of its
maintenance and occurrence mechanism.

1 Introduction

Turbulent flows at high Reynolds number contain vortical structures of wide-range
scales that extend over several orders of magnitude. While the smallest scale has
been surveyed for half a century, it has been simply believed that geometry of a flow
limits the largest scale like stirred water in a glass. It is questionable which dimension
of flow geometry, whose length, width and height are very different such as pipe or
channel flows, restricts the largest scale of flow.

It is well known that there exist large-scale features in boundary layer and pipe
and channel flows at high Reynolds number. Kim and Adrian [1] observed a low-
frequency plateau in spectral distribution of the streamwise velocity fluctuation
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obtained by hot-wire measurements in a pipe flow. The length scale corresponding
to the low frequency is 14 pipe radii, so then it was named very large-scale motions
(VLSMs). Rake hot-wire measurements done by Monty et al. [2] in pipe and channel
flows revealed the low frequency features have structure of meandering low-velocity
streaks whose length scale is 25 radii or half channel widths. Hutchins and Marusic
[3] performed rake-wire and single-wire experiments in a boundary layer and the
velocity spectra demonstrates that the contribution of the superstructures, whose
streamwise scale is 6 δ (δ is a boundary layer thickness), to the turbulence inten-
sities increases with Reynolds number. The result with the rake-wire probe shows
very long meandering features that have 20 δ streamwise length. They claimed that
this meandering makes the peak length of the spectra smaller than the scale directly
obtained by rake-wire or PIV experiments. Monty et al. [4], however, asserted that
from velocity spectral distributions mapped in the wall-normal direction there exist
VLSMs only in channel and pipe flows, not in a boundary layer.

In most of these investigations, the low frequency peak becomes unclear with
decrease of Reynolds number, so that it is deemed that the large-scale features is
regarded as a characteristic phenomenon at very high Reynolds number. Against this
presumption, Seki and Matsubara [5] made hot-wire measurements for transitional
and turbulent channel flow at low Reynolds number. In a transitional flow, they found a
low-frequency peak in premultiplied energy spectra, which is due to turbulent patches
passing through. It is surprising that the low-frequency peak which corresponds to
streamwise length 25 d still exists even in a fully turbulent state, at Re = 2660.
Reynolds number is defined as Re = Ub d/ν, where Ub is bulk velocity, d is channel
width and ν is kinematic viscosity. An extended investigation [6] confirmed that a
low frequency peak in premultiplied energy spectra continues up to Re = 4000. This
fact suggests strong relation between turbulent patches in a transitional flow and very
large-scale features in a turbulent flow. However, one can doubt that the spectral peak
and plateau are from specific characters of the experimental facility, such as mean
velocity fluctuation induced by a blower. In order to clear up the doubt, hot-wire
experiments in two different air channel facilities has been conducted. Furthermore,
the spanwise correlation measurements and flow visualization were performed for
determination of spanwise length and structure of the large-scale feature.

2 Experimental Setup

Small and large channel facilities were employed for the hot wire measurements.
The small one is the same that Seki et al. [5] and Matsubara et al. [6] used. The wall
distance d is 5.1 mm. Two tripping rods of 0.5 mm diameter are mounted on the
entrance section walls 100 mm downstream from the outlet of the nozzle, so that
the flow becomes fully developed turbulence 1000 mm downstream at the end of
the entrance section. In the expansion section, the distance between the channel end
walls is gradually widened from 190 to 260 mm in the 1000 mm length, so that the
channel Reynolds number Re drops to 73%. This Re drop was for investigation of
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the relaminarizing channel flow and it is unnecessary for experiments on a turbulent
flow. The measurements are performed at a 50 d downstream position from the outlet
of the expansion section of 2800 mm length.

The other channel facility is much larger; the channel length and width are 17.35 m
and 25 mm, respectively. The aspect ratio is 40. Two 2 mm diameter rods are fixed
440 mm downstream from the nozzle, and they trip the flow to turbulence. Realiz-
ing the seamless channel walls, the main part of the channel is made of 0.35 mm-
thickness stainless plates of 16.9 m length and 1 m width. The aluminum angle
members support the two plates for keeping them flat. The hot-wire measurements
are made at the 130 mm upstream position from the channel outlet.

A constant-temperature hot-wire anemometer is used for the streamwise veloc-
ity measurements. Its sensor is made of a platinum wire of 2.5 µm diameter and
1 mm length. An analog/digital converter acquires the voltage from the hot wire
anemometer with a sampling frequency of 20 kHz. The sampling time is 300 s for
velocity spectral measurements, and 180 s for the correlation experiments. For the
spanwise correlation measurements, two hot wires are independently mounted on
moving devices, and the closest distance in the measurements is measured by a ruler
to an accuracy of 0.5 mm.

For flow visualization experiments, a recirculated water channel facility is used.
This facility has 8 m total streamwise length. The channel walls are made of glass
and the channel width is 7.1 mm. A 0.9 mm diameter rod is mounted on one of the
walls as a tripping wire at 220 mm downstream from entrance section. The spanwise
distance is widened from 360 to 580 mm in expansion section so that Reynolds
number is dropped to 62%. The aspect ratio is 82 in the 4550 mm test section. Flakes
of pearl particles are used as tracer. The photographs are taken by a digital camera
4200 mm downstream from the outlet of the expansion section. In this study, x is
streamwise direction, y is wall-normal direction and z is spanwise direction.

3 Result and Discussion

Figure 1 shows the premultiplied spectral of the streamwise velocity fluctuation at
Re = 2800. The dimensional frequency f and the power spectral density Φ are nor-
malized with d and Ub as f ∗ = f d/Ub and Φ∗ = Φd/Ub. The inverse number of
f ∗ corresponds to a length scale in unit of d. Although the high frequency peak
moves to higher frequency with distance from the wall, the low frequency bump
around 0.03 < f ∗ < 0.05 almost stays at the same frequency for y/d = 0.3 and
0.5. The equivalent streamwise length scale of these bumps are from 20 to 30 d.
Except small peaks around f ∗ = 0.01 for the large channel, the spectra distribu-
tions of the small and large channels are in good agreement, indicating that the very
large-scale feature is an inherent phenomenon in a turbulent channel flow. The peaks
around f ∗ = 0.01 might be from a peculiarity of the large channel facility. Two-point
correlation was measured in the small channel in order to investigate the spanwise
scale of the very large-scale feature. Dash lines shown in Fig. 2 are the correlation
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Fig. 1 The premultiplied
spectral diagram of the
streamwise velocity
fluctuation measured in
small and large facilities.
The dash lines and the solid
lines are results from the
small and large channels,
respectively. The frequency
region in 0.03 < f ∗ < 0.05
is highlighted
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Fig. 2 Spanwise correlation
of the streamwise fluctuation
at center of the small channel

coefficient of the streamwise velocity fluctuation, Ruu′ , and Δz is distance between
two hot-wire probes. Although there is a little variation, they are close to zero
except the negative correlation around Δz/d = 1. To extract contribution of the
large-scale feature, band-pass filtering (BPF) for 0.03 < f ∗ < 0.05 was employed.
At Re = 2600, the correlation coefficient after the BPF begins from higher positive
value, then it takes the minimum around Δz/d = 4. The minimum value is much
lower than the unfiltered correlation. Assuming that this minimum corresponds to
half spanwise wavelength of the very large-scale feature, it is estimated at eight
channel widths. This spanwise length scale is also estimated at Re = 3000. For Re
= 4000, the coefficient has the minimum around Δz/d = 3.



Very Large-Scale Feature of Transitional and Turbulent Channel … 193

0 0.1 0.2 0.3 0.4 0.5

0.1

1  

10 

100

0

20

40

60

80

100

(a) Small channel.
y/d


∗

0 0.1 0.2 0.3 0.4 0.5

0.1

1  

10 

100

0

20

40

60

80

100

(b) Large channel.
y/d

Fig. 3 Contour maps of streamwise velocity premultiplied spectra density at Re = 2800. The color
variation represents the spectra density. The white lines are of (1)

Figure 3 shows contour maps of premultiplied spectra of the streamwise velocity
fluctuation measured in both facilities at different distance from the wall, y. The non-
dimensional wavelength λ∗ is estimated from the frequency f as λ∗ = Um/( f d),
where Um is a local mean velocity. Both contour maps have the highest peaks near
the wall that indicates turbulent motion is the most energetic there. There exist two
ridges of long and short wavelength, and the very large-scale feature still presents
even far from the wall. The scale of the long wavelength is λ≈10–20 d, which is
longer than the wavelength of superstructures in boundary layer, λ≈6 δ asserted by
Hutchins and Marusic [3]. The white dash lines represent the peak position of Very
Large-Scale Motion (VLSM) estimated by Monty et al. [4] defined as

λ∗ = 23

2

(2y

d

)3/7
. (1)

Ridges, or plateaus, of the long wavelength in both facilities are slightly larger than
the VLSM line.

Results of flow visualization conducted in a water channel facility to observe
shape of the very large-scale feature are shown in Fig. 4. The flow direction is from
left to right. In Fig. 4a, at Re = 1500, the turbulent patches indicate that the flow is
in a transitional state. The turbulent patches are oblique and the streamwise length
is several times larger than the channel width. Characteristic streak structures are
also observed downstream and on sides of the patches. In Fig. 4b at Re = 2600 the
flow is filled of turbulence. It was confirmed by Seki and Matsubara [5] from the
analysis of velocity fluctuation data that this Reynolds number is the lowest for fully
turbulent flow. Even in the fully turbulent state, a characteristic oblique region marked
in a red circle is observed. This region contains streak structures whose streamwise
and spanwise scales are slightly larger than those of the turbulent structure in other
regions. Approximately, the streamwise spanwise sizes of the region are 20 and 10 d,
respectively. These sizes correspond with the length scales estimated by the energy
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(a) Re = 1500. (b) Re = 2600.

Fig. 4 Flow visualization in water channel. The frame size is 31 d × 41 d. In b, very large-scale
feature is circled in red

spectra and the spanwise correlation in the air channel facilities and they are the same
order of magnitude of those of the turbulent patches in a transitional channel flow
as seen in Fig. 4a. Furthermore, Matsubara et al. [6] found that the low-frequency
spectral peak due to turbulent patch continues as a bump even in fully turbulent
states. These facts imply that the very large-scale feature in turbulent flow relates to
the turbulent patch in the transitional flow in terms of maintenance and occurrence
mechanisms.

4 Conclusions

The low-frequency plateau in the energy spectra is confirmed in a turbulent chan-
nel flow at low Reynolds number independently of the experimental facilities. The
energy spectra and the spanwise correlation indicate that the very large-scale feature
has 20–30 d streamwise and 8 d spanwise scales, which are similar size of the char-
acteristic oblique region containing the large streak structures observed in the flow
visualization. These results infer that the turbulent patch in a transitional channel
flow is relevant to the very large-scale feature in turbulent flow with regard to their
maintenance and occurrence mechanisms.

References

1. K.C. Kim, R.J. Adrian, Very large-scale motion in the outer layer. Phys. Fluids 11(2), 417–422
(1999)

2. J.P. Monty, J.A. Stewart, R.C. Williams, M.S. Chong, Large-scale features in turbulent pipe and
channel flows. J. Fluid Mech. 589, 147–156 (2007)

3. N. Hutchins, I. Marusic, Evidence of very long meandering features in the logarithmic region
of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)



Very Large-Scale Feature of Transitional and Turbulent Channel … 195

4. J.P. Monty, N. Hutchins, H.C.H. Ng, I. Marusic, M.S. Chong, A comparison of turbulent pipe,
channel and boundary layer flows. J. Fluid Mech. 632, 431–442 (2009)

5. D. Seki, M. Matsubara, Experimental investigation of relaminarizing and transitional channel
flows. Phys. Fluids 24, 124102 (2012)

6. M. Matsubara, S. Horii, Y. Sagawa, Y. Takahashi, D. Saito, Very-large-scale fluctuations in
turbulent channel flow at low Reynolds number. Int. J. Heat Fluid Flow 62B, 593–597 (2013)



Part VI
Miscellaneous Topics



Turbulence Structure Analysis of DNS Data
Using DMD and SPOD: Mixing Jet
and Channel Flow

Abouelmagd Abdelsamie, Gábor Janiga, Cheng Chi
and Dominique Thévenin

Abstract The objectives of this work are to analyze and investigate the turbulence
structures in a channel flow and in a mixing jet using DynamicMode Decomposition
(DMD) and Snapshot Proper Orthogonal Decomposition (SPOD). The analyzed data
have been generated by Direct Numerical Simulation at high Reynolds numbers. In
the channel flow, the occurrence of turbulent superstructures is mainly examined.
The jet case is employed to investigate mixing in a turbulent jet flow. In both cases,
DMD and SPOD analysis are compared to test their performance concerning the
analysis of complex flows and to highlight the complementarity between these two
approaches.

1 Fundamentals of SPOD and DMD

In principle, SPOD and DMD are designed to defined the coherent structure of
turbulence but in two different ways. In the following, the basic equations for each
of them are defined.

In SPOD, each signal (here, flow velocity) can be decomposed into temporal a
and spatial parts φ,

u(xi , t j ) = u j =
M∑

m=1

am(t j )φm(xi ), (1)
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where the eigenfunctions φm are called spatial modes, and am are the temporal co-
efficient. The φm and am are completely determined after solving the eigenvalue
problem and obtaining the corresponding eigenvalues λ, and eigenvectors [2].

The basics of DMD is to assume that the snapshots are generated by a linear,
discrete time model,

u j+1 = Au j , (2)

It is assumed that the snapshots become linearly dependent for an increasing num-
ber of snapshots, so that snapshot uN can be constructed by a linear combination
of all previous snapshots. Following [7], an eigenvalue problem can be derived.
With computing the eigenvalues λ̃ and eigenvectors ṽi , the DMD modes and tem-
poral amplitudes can be obtained [4]. In DMD, the eigenvalues and eigenvectors
are complex numbers. The frequency fi and growth (or decay) rate σi of DMD are
obtained by logarithmic mapping of the eigenvalues; fi = �[ln(λ̃i )]/(2πΔt), and
σi = �[ln(λ̃i )]/Δt .

Themain difference between SPOD andDMD is that SPOD is based on an energy
ranking of orthogonal structures computed from a correlation matrix of the snapshot.
This leads to two possible drawbacks: (1) The energy content is not necessarily
the correct measure to rank the flow structures; (2) Valuable information may be
lost since only second-order statistics are used as a basis for the decomposition.
Additionally, POD allows mixing between scales and frequency at each mode; while
DMD separately provides one growth rate and frequency for each mode. In DMD,
the dynamicmodes are non-orthogonal; they can be sorted by frequency, growth rate,
or mode norm. SPOD and DMD also differ in the computational requirements. For
the following examples, it has been found that computing the DMD decomposition
is six times slower than for POD.

2 Numerical Settings

Direct Numerical Simulations (DNS) have been conducted to simulate two different
cases: (1) turbulent flow in a square-shaped channel with bulk Reynolds number of
20,000 in a domain of size H × 20H × H , where H is the height of the channel; this
domain was discretized with about 400 million grid points. (2) mixing of hydrogen
with air in a turbulent jet flow at a jet Reynolds number of 2 600, simulated with
about 70 million grid points in a domain of size 7.5d j × 30d j × 7.5d j , where d j is
the jet diameter. All simulations have been performed with the in-house DNS code
“DINO” [1]. The results of these DNS have been then analyzed with the in-house
Python script called PyPODe [2]. PyPODe has been coded on top of the modred-
1.0.2 package [6] and contains bothDMD [7] and SPOD [8] algorithms. Figure1, top,
bottom show exemplary 2D-planes of velocity magnitude in the turbulent channel
and the iso-volume of mixture fraction in the jet, respectively.
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Fig. 1 Top: 2D cuts showing instantaneous velocity magnitude in the turbulent channel flow.
Bottom: Iso-volume of instantaneous mixture fraction in the turbulent jet

3 Results and Analysis

In this section, the analysis of jet flow and turbulent channel flow using both of POD
and DMD will be discussed. In the following, the first mode (which represents the
mean value) is removed and not included in the spectrum or to show the spatial
modes.
Jet flow As in many turbulent mixing process, the turbulent jet has three different
ranges of scales responsible for the entire turbulence dynamics [3]: (1) Smallest
scales that are responsible for molecular mixing; (2) Large scale flow structures
describe the entrainment stage that is responsible for the engulfment of large pockets
of irrotational fluid species into the turbulent flow region; (3) Intermediate range of
scales, which is responsible for the subsequent kinematic stirring process responsible
for the large interfacial surface generation between the mixing species. Figure2, left
shows the eigenvalue (spectrum) of SPOD versus number of modes. From this figure
it is obvious that the first modes (most energetic modes) are the most dominant,
with a rapid energy decrease (exponential decay). By comparison, the logarithmic
mapping of the DMD eigenvalues can be represented as growth (decay) rate versus
frequency, as seen in Fig. 2, right. In this figure, the numbers represent the numbering
of the modes and are not ordered; one could sort them based on the frequency
in order to identify the most dominant modes. Figure3 shows the iso-surfaces of
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Fig. 2 Modal spectrum of the mixing jet case. Left: eigenvalue of SPOD. Right: spectrum of DMD

the spatial modes: top row is the SPOD; bottom row is the DMD. From the first
five modes (Fig. 3a–e and h–l) in both SPOD and DMD, it is clear that the most
dominant structures appear in the original shear layer andprogressively extend toward
the transition region. The first four modes are quite similar in topology, while the
fifth mode shows difference between SPOD and DMD; in DMD (Fig. 3l) broader
structures appear at the head of the jet, which may have been lost in SPOD (Fig. 3e)
due to its intrinsic limitation to second-order. Figure3f, m illustrate that SPOD and
DMD show qualitatively intermediate modes. At high frequency in DMD, Fig. 3n
shows the fastest and smallest structure revealed by the dynamics modes. It still
shows a similar structure to the largest mode in SPOD (Fig. 3g), even if it is known
that this one can not be directly interpreted in terms of a physical structure.

As conclusion, the SPOD, which is computationally six times faster than DMD, is
able to extract properly the most energetic modes and their corresponding coherent
structures. In case the interest is set on low-order structures or on specific frequency
regions, DMD will probably be the proper choice.

Channel flow In very long turbulent channel flow at high Reynolds numbers (Re
≥ 20 000), long meandering velocity fluctuations with both positive and negative
streamwise velocity are sometimes observed [5]. These velocity fluctuations appear
in the log-law and lower wake regions of the turbulent boundary layer and are named
superstructures. In the present work, possible superstructures are tracked with SPOD
and DMD.

As usual the spectrum of modal decomposition should be presented first (Fig. 4,
left, right). Again, the first dominant spatial modes could be represented isolately
based on the given spectrum. Figure5 shows that SPOD (Fig. 5, left), and even more
DMD(Fig. 5, right) reveal the presence of very longmeandering velocity fluctuations,
with both positive and negative streamwise velocity. These might be superstructures,
in agreement with the definition of [5]. However, it is in this case difficult to find a
qualitative similarity between the POD and DMD modes. This is attributed to the
fact that the number of snapshots employed for the analysis is not sufficient. In our
future work, a larger number of snapshots must be taken into account. From these
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(a) m=1 (b) m=2 (c) m=3 (d) m=4 (e) m=5 (f) m=30 (g) m=46

(h) m=3 (i) m=7 (j) m=21 (k) m=31 (l) m=15 (m) m=23 (n) m=27

Fig. 3 Iso-surfaces of the spatial modes in themixing jet, colored by the sign of streamwise velocity
(positive or negative); each mode is normalized by its local maximum. Red and blue iso-surfaces
represent the values of 0.5 and −0.5, respectively. Top: SPOD. Bottom: DMD

Fig. 4 Modal spectrum of the channel flow case. Left: eigenvalue of SPOD. Right: spectrum of
DMD

preliminary results, it appears that DMD might play an essential role to follow the
dynamics of superstructures; SPOD can probably only be used for very energetic
superstructures.

4 Conclusion

Turbulent structures and mixing in a long turbulent channel flow and in a mixing
jet have been investigated with both SPOD and DMD modal decomposition meth-
ods. It has been found that in the mixing jet case, both SPOD and DMD deliver
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(a)
m=1

(b)
m=2

(c)
m=3

(d)
m=4

(e)
m=19
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m=21

(g)
m=1

(h)
m=3

(i)
m=5

(j)
m=7

(k)
m=9
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Fig. 5 Iso-surfaces of the spatial modes in the channel flow close to the wall (part of the domain),
colored by the sign of streamwise velocity (positive or negative); each mode is normalized by its
local maximum value. Red and blue iso-surfaces represent the values of 0.5 and −0.5, respectively.
Left POD. Right DMD

qualitatively very similar information concerning dominant structures and modes.
In the turbulent channel flow at high Reynolds number, DMD seems to be more
suitable for identification and tracking of possible superstructures. However, it is
found in both cases that SPOD computations are about six times faster than the cor-
responding DMD analysis. As a final conclusion, SPOD and DMD should probably
be retained as complementary methods for the same analysis, taking advantage of
both approaches.
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Signature of a Cubical Canopy on the Spatial
Dynamics of an Atmospheric
Boundary Layer

Jérémy Basley and Laurent Perret

Abstract The present work investigates the influence of the plan density of a
cube-based canopy on the coherent structures developing in the roughness sub-layer
of an atmospheric boundary layer. Stereo Particle Image Velocimetry is employed
using a large field of view in a horizontal plane, so as to identify both the large mean-
dering structures of the boundary layer and the dynamics associated with the wake
of the canopy. Pre-multiplied two-dimensional spectra show wall-normal velocity
fluctuations are constrained by the pitch of the canopy.

1 Context

Recent results obtained for high-Reynolds number boundary-layers over smooth-
walls have shed light on the nature of the coupling between the near-wall turbulence
and the large-scales of theflowdeveloping above [6].Concurrently, attention has been
devoted to the structure of atmospheric boundary layer flows developing over urban
or vegetation canopies, demonstrating similarities between smooth- and rough-wall-
bounded flows. In particular, the presence of streaky patterns of low- and high-speed
regions, of ejections and sweeps associated to the hairpin model and the organization
of hairpin vortices in packets have been evidenced [4].

Due to the nature of the roughness elements, urban-like canopy flows are char-
acterized by a strong multi-scale character both in space and time. This leads to a
dramatic alteration of the near-wall cycle of turbulence, accompanied by complex
inter-scale interactions between the canopy and the boundary layer flows [2]. Recent
studies focus on the effect of canopy frontal or/and planar densities on the roughness
sub-layer (see the extensive parametric study [7]). The direct numerical simulations
(DNS) conducted in [3] have shown that the characteristic length scales within the
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roughness sub-layer increase with the canopy height but only a single plan density
was studied (25%). The case of a sparse cubical canopy (12.5% plan density) was
treated by Lee an co-workers: low-speed streaks are drastically shortened due to the
separation/wake at the tip of the cubes, while friction velocity remains basically con-
stant with the periodicity of the canopy [5]. The present experimental work focuses
specifically on the effect of canopy periodicity on the length scales and extend to
higher Reynolds numbers not yet accessible to DNS.

2 Experiments

A turbulent boundary layer (thickness δ ∼ 1m) develops over a 20m long fetch of
staggered cubes (h = 50mm high) in an atmospheric wind-tunnel, yielding high
Reynolds numbers Reδ = u∗δ/ν = 25,000 (Reh = 1250). The external velocity
is set to Ue =5.8m/s. There is a weak streamwise pressure gradient dP/dx =
−0.37Pa/m for the canopy coverage β = 25%, with negligible impact on the bound-
ary layer development. Details on the characterisation of the facility can be found in
[2].

Three different plan densities, 6.25, 25 and 44.4%, respectively, are investigated
to determine the influence of the canopy horizontal length scales on the dynamics of
the roughness sub-layer. Figure1 sketches the canopies along with the pitch of the
patterns.

Measurements were conducted using three-component two-dimensional Stereo
Particle Image Velocimetry (SPIV) in a horizontal plane at z = 1.5h within the
roughness sub-layer (Fig. 2). The region of interest extends over about 11h × 10h (or
0.55δ × 0.5δ) with about 20 × 12 vectors/h2 (32 × 32 pixel windows), to encompass
both the largest scales of the flow and the obstacle-induced coherent structures. For
each configuration, five series of 2100 velocity fields were acquired at fspiv = 7Hz.
These 10,500 samples correspond to about 9000 turnover times (δ/Ue) while the
sampling frequency offers a (minimal) overlap of two successive fields.

Constant-temperature hot-wire measurements were also performed downstream
of the SPIV field using a 5µm-diameter 1.25mm-long hot-wire probe (DANTEC-

Fig. 1 Top view of the three canopy staggered distributions, with the flow coming from the left.
The hatched region represents the periodic pattern for each case
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Fig. 2 Side-view of the experimental set-up for stereo-PIV hot-wire-synchronised measurements

100 102
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Fig. 3 Left power spectra Eu for all three canopy configurations. SPIV data are compared to
synchronised hot-wire data using Taylor’s hypothesis. Right SPIV snapshot for canopy β = 25%.
Colors represent fluctuating velocity u′ normalised bymeanflow u, while solid, respectively dashed,
black lines depict positive, resp. negative, contours of Reynolds wall-normal shear stress u′w′

55P11). Streamwise velocity time-series were acquired for an overall duration
of 100min, that is about 35,000 turnover times, at sampling frequency fhw =
10kHz. SPIV and hot-wire data are compared using Taylor’s hypothesis on hot-wire
time series in Fig. 3, where resulting spectra match quite well for a range of
0.4 < λx/h < 11. SPIV starts low-pass filtering velocity fluctuations below λx ∼
0.4. Each velocity field ui (x, y)—Fig.3—is ensemble averaged (〈·〉) and decom-
posed as

ui (x, y) = 〈u〉(x, y) + u′
i (x, y) = (〈u〉 + u′

i )ex + (〈v〉 + v′
i )ey + (〈w〉 + w′

i )ez,
(1)
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3 Analysis

The power spectra depicted in Fig. 3 show remarkable resemblance between the three
canopy densities. This points out that the streamwise velocity component alone does
not provide any specific features depending on the canopy density. Since u′ dynamics
ismainly governed by elongated super-structures stretching far beyond the roughness
sub-layer, those very large structures are indeed expected to scale on the boundary
layer thickness δ rather than any near-wall scales.

On the other hand, two features of the spatial dynamics can be strongly influenced
by the canopy. First, the wall-normal velocity fluctuations w′ represent the wall-
normal exchanges between near wall and inertial regions of the boundary layer. In
particular Q2 and Q4 quadrants of shear stress u′w′ are related to ejections and
sweeps, respectively (Fig. 3). Second, the swirling stress λs

ci [1] may identify wake
dynamics generated by the cubical canopy.

In the following, the focus is on the spatial dynamics of these two quantities. To
that aim, two-dimensional power spectral densities are computed from the 10,500
snapshots and then ensemble averaged, for all three canopies. The 95% confidence
intervals estimated using a normal distribution are within the thickness of the plot
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Fig. 4 Pre-multiplied two-dimensional spatial power spectral density (PSD) for wall-normal veloc-
ity fluctuation w′. Top spanwise-integrated streamwise PSD and right, streamwise-integrated span-
wise PSD. The three canopy densities are shown: β = 6.25% in blue (squares and filled contours),
β = 25% in red (thick lines) and β = 44.4% in green (dashed lines). Colored circles mark the
energy peaks and straight lines highlight the pitch for the three canopies



Signature of a Cubical Canopy on the Spatial Dynamics … 209

0.3 0.5 1 2 3 5 10

0.3

0.5

1

2

3

5

10

0.3 0.5 1 2 3 5 10

20

40

60

80

20 40 60 80

0.3

0.5

1

2

3

5

10

Fig. 5 Pre-multiplied two-dimensional spatial power spectral density (PSD) for swirling strength
λsci signed by out-of-plane vorticity. See caption of Fig. 4 for details

lines. Note that only the length scales associated with the fluctuating (and advected)
dynamics are investigated: the sample averaged field is removed prior to spectral
analysis so that its spatial distribution does not influence the results.

Wall-normal exchanges are characterised by fluctuating velocity component w′
through Reynolds shear stresses u′w′ and v′w′. The results are therefore similar for all
three quantities. Figure4 depicts the energy spectra of w′. It shows unambiguously
that the energy peak is shifted depending on the periodicity of the canopy pattern,
though the correspondence is less strict for the sparse canopy (6.25%). This suggests
that the cube spacing induces a confinement effect on the length scales of the sweeps
and ejections.

The eddy dynamics is investigated using the same spectral analysis applied to
vorticity-signed swirling strength λs

ci . Results are plotted in Fig. 5. Contrarily to
what was seen for w′-related quantities, λs

ci spectrum does not exhibit any significant
change with the canopy coverage β: the peak of energy is located around (λx , λy) =
(0.6h, 0.7h) for the three canopies. Such a length scale is consistent with wake
dynamics from the canopy. Furthermore, the spectrum associated with β = 6.25% is
less energetic than the other two cases. This also points to wake-induced structures:
a lower density of cubes corresponds to fewer wakes but does not change the length
scales associated with shed eddies. Nevertheless more insight would be required to
ascertain the nature of these eddies.
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4 Concluding Remarks

Stereo PIV measurements have been performed in a high Reynolds turbulent bound-
ary layer over three urban canopies of different plan densities. Length scales associ-
ated withw′-related fluctuations in the roughness sub-layer closely correspond to the
canopy pattern periodicity for the three cases. That implies that sweeps and ejections
are constrained by the cube spacings of the canopy. On the contrary eddy length
scales remain constant equal to a fraction of h, regardless of the canopy periodicity.
Ongoing work concerns the distribution of eddies relatively to the large meandering
structures of the boundary layer.
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Near and Far-Field Analysis of an
Axisymmetric Fractal-Forced Turbulent Jet

Massimiliano Breda and Oliver R.H. Buxton

Abstract In this paper, the role of the initial conditions in affecting the flow physics
in the near-field, and the evolution towards self-similarity, of an axisymmetric turbu-
lent jet is examined. The near-field large scale coherent structures are manipulated
with the aid of noncircular geometries, such as square and fractal exits. Planar PIVand
hot-wire anemometry are deployed to study the flow both spatially and temporally.
Despite the significant alteration of the near-field flow physics due to the different
exit geometries, it is found that the evolution towards self-similarity is comparable
between all jets. Moreover, non-equilibrium dissipation is found between 24 and
26 equivalent diameters De downstream of the jet exit where mean velocity and
Reynolds stresses are self-similar, suggesting the microscales of the flow take much
further than previously thought to regain the classical scaling laws.

1 Introduction

The aim of this paper is to investigate how the initial conditions affect the evolu-
tion of an axisymmetric jet towards a self-similar state. This topic has been previ-
ously analysed, however contrasting conclusions were reached. Antonia and Zhao
[2] showed that axisymmetric jets with a fully developed and a top-hat mean veloc-
ity exit profile reached self-similarity after the same streamwise distance. George
[3] stated that the initial conditions could affect growth and spreading of a jet, but
not the self-similar scalings. In order to achieve a further insight in this topic, non-
circular geometries are used to affect the near-field coherent structures. The latter
are responsible for the development of an axisymmetric jet through the entrain-
ment of background fluid into the turbulent stream. The rate of entrainment, which
describes the exchange of momentum, energy and various properties between the
irrotational surrounding flow and the jet stream, is strongly affected by large scale
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(engulfment) and small scale processes (nibbling). Hence, noncircular geometries
are used to affect the near-field development of the jet’s large scale coherent struc-
tures, the so called Kelvin–Helmholtz (K–H) vortices, and to verify how different
near-field entrainment rates and mixing properties affect the jet evolution towards
the far-field. Previous studies on the effect of noncircular geometries on entrainment
andmixing byGutmark andGrinstein [5], amongst others, have observed that a com-
bination of corners and large wetted perimeter was highly beneficial for combustion
since it allowed combining an increased intensity of small-scale turbulence at the
corners (and hence an improved small scale mixing), with the coherent structures
at the flat-sides. Moreover, Shakouchi and Iriyama [9] observed that a large wetted
perimeter, such as for their petal nozzle, was highly beneficial for mixing. Hence,
the properties of a square and fractal exit, which allows maximising the number of
corners and the wetted perimeter for a given open area, are compared to a round jet.

The same fractal geometry has been previously studied on axisymmetric wake
generators. In the near-field, a break-up of the large scale coherent structures and a
reduction of the shedding energy was observed by Nedić et al. [7]. As previously
mentioned, the near-field of an axisymmetric jet also contains coherent structures;
hence it will be verified if a similar breaking-up of these coherent structures occurs
there. Further downstream, the initial conditions also proved to strongly affect the
wake’s evolution towards the self-similar state. Antonia and Pearson [1] verified that
the mean dissipation rate of wakes was strongly dependent on the initial conditions.
Nedić et al. [8] found non-equilibriumdissipation in the near-field and up to a distance
significantly far away from the wake generator, where self-similar profiles were
observed. Non-equilibrium dissipation, as detailed by Vassilicos [12], is found in
regions where the inter-scale energy transfer is not instantaneously in equilibrium
with the dissipation rate. The classical Kolmogorov theories require Cε, as in (1), to
be a constant, however when non-equilibrium dissipation is present Cε is observed
to be a function of ReG and of the local Reynolds number Reλ(x) as in (2).

Cε ≡ εL

u′3 ∼ constant (1)

Cε ≡ εL

u′3 ∼ Re1/2G

Reλ

�= constant Reλ �= constant (2)

Here, ε is the dissipation, L the integral length scale, λ the Taylor microscale,
Reλ the Taylor Reynolds number and u′ the root-mean-square of the streamwise
velocity fluctuations. Non-equilibrium dissipation was also found for square and
fractal grids, as detailed by Hearst and Lavoie [6], where it was shown Cε varied
according to (2) for an extensive region of space, starting from very close to the grid
until it transitioned back to the classical Cε ∼ constant . Despite the evidence of
non-equilibrium dissipation combined with large scale self-similar profiles, in the
self-similar regions of an axisymmetric jet the momentum flux is constant and hence
Reλ should not vary. Therefore it is not expected to find signs of non-equilibrium
dissipation in the self-similar state, as in other shear flows. The first part of this
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paper will focus on assessing how the exit geometries effect the near-field coherent
structures. It will be then followed by an analysis of entrainment and mixing. The
entrainment rate will then be compared between the jets, calculating the entrainment
parameter α as in [11].

α = − δm

2γm
+ Q

2M1/2

∂

∂x
(ln γm) (3)

This equation takes into account various parameters, such as turbulence production
(δm), energy flux (γm), momentum flux (M) and volume flux (Q). Here, due to the
limited size of the experiment, the integration between 0 and∞ for some parameters
is approximated by integrating up to the radial location at which the radial velocity
v is less than 1% of the streamwise centreline velocity, i.e. v < 0.01ucl .

The last part of the paper will focus on dissipation and self-similar scalings. Hot-
wire anemometry and 2D planar PIV are performed to study the flows both spatially
and temporarily.

2 Methodology

The study is performed in a jet facility at Imperial College London, where the jet exits
a nozzle with a sharp, top-hat mean velocity profile. Three different orifices (round,
square and fractal, with fractal dimension D f = 1.5 and 3 iterations) with identical
exit open area are attached to the nozzle exit, as shown in Fig. 1. The fractal geometry
was chosen to be the same as for the wake generator in Nedić et al. [8], which was
shown to reduce the energy content of the large scale coherent structures. PIV was
performed across the jet centreline between 0 and 23 equivalent diameters De at
ReG = 3,000 (exit velocity Ue = 2.98m/s) and ReG = 10,000 (Ue = 9.93m/s).
In total, 1,500 images were acquired per jet configuration. The field of view was
9 De × 6.7 De. An interrogation window of 16×16 pixels was used to process the

(a) Round (b) Square (c) Fractal

Fig. 1 Jet exits
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images, with a 50% overlap, leading to a vector spacing of 0.03 De. The noncircular
exits were studied both across the minor and the major axes.

De = √
Exit Area Ue = Volumetric f low rate

Exit Area
ReG = UeDe

ν
(4)

Following the preliminary results, highly resolved planar PIV (12×12 interrogation
window, 50% overlap and spatial resolution of 3–4 Kolmogorov lenghtscale η) to
investigate the velocity gradients was performed at various streamwise locations x
in the near field (x/De from 2 to 5), in the intermediate field (x/De from 12 to 15,
where the mean velocity starts becoming self-similar for all jets) and in the far field
(x/De from 23 to 26, where the Reynolds stresses become self-similar). The testing
campaign was concluded with single hot-wire anemometry in the near, intermediate
and far-field at a 100kHz of sampling rate, which was subsequently low-pass filtered
at 30kHz. A last set was measured in the far-field at ReG = 31,000.

3 Results and Discussions

The two point correlation between the radial velocity component v in the stream-
wise direction x was analysed to investigate how the exit geometry affected the K–H
vortex rings, as shown in Fig. 2a. It is shown that the fractal geometry suppresses
the negative decorrelation, which is usually associated with the vorticity of the large
scales, suggesting they have been broken-up. This is found up to 5 De, where the
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Fig. 2 Two point correlation at the shear layer (defined as the peak of 〈u′2〉1/2) at 3 De as a function
of increasing streamwise distance ζ (a) and jet entrainment (b)
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Fig. 3 Spreading rate ∂r1/2/∂x of the various jets

fractal jet regains the decorrelation, even though it is significantly reduced in com-
parison to the other jets. The energy spectra calculated from the hot-wire data showed
a reduced shedding energy and a less energetic spectrum for the fractal jet across
the whole frequency range, compared to the round jet, whilst the square jet was
less energetic than the round jet at low frequencies only. The autocorrelation of the
streamwise fluctuation signal also showed a lack of periodicity in the oscillations,
further confirming the break-up of coherent structures.

The different geometries also significantly affected entrainment and mixing. As
shown in Fig. 2b, the calculated entrainment coefficient α is significantly reduced
for the fractal case, while it is the highest for the round jet. In terms of mixing, at
ReG = 3,000, the round jet also has the highest spreading rate ∂r1/2/∂x , suggestive
of a more rapid mixing, while the noncircular geometries have comparable values,
as shown in Fig. 3a. At ReG = 10,000, all jets have a comparable spreading rate
(Fig. 3b), however due to the different location of the virtual origin resulting from the
different initial conditions, the round jet is always the widest at the same streamwise
location. It is therefore shown that the break-up of the coherent structures caused
by the fractal geometry reduces the overall near-field entrainment and mixing, even
though at a high enough Reynolds number the spreading rate is unaffected by the
initial conditions. This point was also hypothesised by Townsend [10]. Moreover, in
the near-field, the fractal jet shows a significantly reduced Reynolds shear stress.

The study is concluded with an analysis on the self-similar scaling exponents of
the jets, to verify how the different initial conditions have affected them. Both the
mean centreline velocity and jet half-width are expected to vary with a specific power
law of x . Experimentally, it is found that all of the jets have the same macroscopic
scaling exponents concerning centreline velocity and jet half-width. From the highly
resolved PIV data, it is found for all jets that in the far field both mean velocity and
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Fig. 4 Cε and Reλ at ReG = 31,000 in the self-similar regime

Reynolds stresses are self-similar, however the local Reynolds number Reλ has a
decreasing trend, rather than being constant as it is expected from the classical theory,
while the dissipation decreases more slowly than the expected ε ∼ x−4. Moreover,
it is estimated that Reλ > 100 for all the jet cases.

As explained byGoto andVassilicos [4], this is theminimum Reλ after which non-
equilibrium dissipation appears. At ReG = 31,000, Reλ is found to be greater than
500. At this Reynolds number, Cε is a function of Re

1/2
G /Reλ and Reλ is decreasing

as a function of x (Fig. 4). This indicates the presence of non-equilibrium dissipation
for all the jet types between 24 and 26 De, where both mean velocity and Reynolds
stresses are self-similar. Hence, it is shown that dissipation and the microscales of
the flow take much longer than mean velocity and Reynolds stresses to regain the
self-similar scalings and this is the case for both circular and noncircular jets.

4 Conclusions

This paper has explored the effect of initial conditions on the near-field flow physics
and into the evolution of an axisymmetric turbulent jet, through the manipulation the
near-field coherent structures with noncircular geometries. This has been achieved
comparing different orifices with the same open area. It was shown that the large
scale structures are suppressed by the fractal exit, while they are maintained for
the square jet. Entrainment is shown to be reduced by the noncircular geometries
and the round jet is proven to have the highest mixing and spreading rate for the
same exit area. Moreover, in the near-field, the fractal geometry is shown to reduce
fluctuations and turbulent kinetic energy significantly compared to square and round
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jet. However, in the intermediate and far-fields the behaviour of the jets is found
comparable.Moreover, at ReG = 10,000, the jets shows comparable spreading rates,
even though the break-up of the coherent structures moves the jet virtual origin to a
streamwise location further upstream. Non-equilibrium dissipation was also found
in the self-similar region of the three jets, suggesting on one side that the evolution of
an axisymmetric jet is independent of the initial conditions, but on the other that the
microscales of the flow present signs of the initial conditions whilemean velocity and
Reynolds stresses are self-similar. Since usually the distance from the jet exit to reach
self-similarity is evaluated based on the Reynolds stresses, it is shown this criteria
is insufficient to reach the complete self-similarity of the scales of an axisymmetric
turbulent jet.
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Study of Energetics in Drag-Reduced
Turbulent Channel Flows

Davide Gatti, Maurizio Quadrio, Andrea Cimarelli, Yosuke Hasegawa and
Bettina Frohnapfel

Abstract Changes in integral power budgets and scale energy fluxes as induced
by certain active flow control strategies for turbulent skin-friction drag reduction
are studied by performing Direct Numerical Simulation of turbulent channels. The
innovative feature of the present study is that the flow is driven at Constant total
Power Input (CtPI), which is a necessary enabling choice in order to meaningfully
compare a reference unmanipulated flow with a modified one from the energetic
standpoint. Spanwise wall oscillation and opposition control are adopted as model
strategies, because of their very different control input power requirements. The
global power budget show that the increase of dissipation of mean kinetic energy
is not always related to drag reduction, while the preliminary analysis of the scale
energy fluxes through the generalized Kolmogorov equation shows that the space-
and scale properties of the scale energy source and fluxes are significantly modified
in the near-wall region, while remain unaltered elsewhere.

1 Introduction

An important choice needs to be taken when setting up direct numerical simulations
(DNS) of turbulent channel flows, regarding how the flow is driven through the
channel. Two classic possibilities are to drive the flowat constant flow rate (CFR) or at
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constant pressure gradient (CPG). While the different choices yield similar turbulent
statistics for canonical flows [7], the main difference being, for instance, in the tails
of the probability density function of wall shear stress, they have crucial implications
on statistics of drag-reduced turbulent flows. For instance, with CFR drag reduction
manifests as a reduction of friction but as an increase of bulk velocity with CPG. In
neither case, the power transferred to the flow remains constant upon application of
drag-reducing control nor so does the rate of production and dissipation of turbulent
kinetic energy. Since the uncontrolled and drag-reduced flows differ energetically,
it is difficult, if not impossible, to address the physics of drag reduction techniques
from the energetic standpoint.

In this work, we exploit the recently-proposed constant total power input (CtPI)
approach [4], in which the power transferred to the flow through pumping and impo-
sition of a control is kept constant, to address how drag-reduction obtained via several
wall-based strategies modifies energetic properties of turbulent channel flows. First,
the effect of the control on the integral production and dissipation of mean and turbu-
lent kinetic energy are computed [9]. Then, starting from the generalized form of the
Kolmogorov equation [2, 6], the scale energy fluxes simultaneously occurring in the
space of scales and in the physical space of wall-turbulent flows are preliminary stud-
ied to highlight differences among controlled drag-reduced and unmodified flows.

The structure of the paper is as follows. Section2 describes the numerical method
and procedures, as well as the control strategies adopted in the present study. In
Sect. 3 themain results are presented and discussed,while Sect. 4 contains concluding
remarks.

2 Numerical Method

Direct numerical simulation (DNS) of turbulent channel flows driven at CPI have
been performed at a power-based Reynolds number, kept constant across all cases, of
ReΠ = UΠh/ν = 6500, corresponding in the reference unmanipulated channel to
Reτ = uτh/ν = 199.7 and Reb = Ubh/ν = 3176.8. In the previous definitions,UΠ

is the bulk velocity of a laminar driven at the given power, uτ andUb are respectively
the friction and the bulk velocity, h the channel semi-height and ν is the kinematic
viscosity. Two active flow control strategies for turbulent skin-friction drag reduction,
which require a control power inputΠc in order to be applied, have been considered,
namely the spanwise-oscillating wall ([8]) and the oppoition control [1]. In such
cases, the calculations are performed while keeping a Constant total Power Input
(CtPI) [3] in time. The total power input Πt is defined as the sum of the control
power input Πc and the pumping power Πc, so that active control requires a fraction
γ = Πc/Πc of the total power to be spent for applying the control instead of directly
pumping the flow.

The two control strategies of the present study (Fig. 1) have been selected due
to their very different input power requirements, yielding different values of γ . The
ocillating-wall forcing requires a significant amount of energy to operate, while
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Fig. 1 Sketch of the two control strategies addressed in the present work. Left opposition control
[1]. The wall-normal velocity is sensed at wall-parallel plane located a distance yp from the wall
and fed back at the wall as blowing and suction with opposite sign, so as to damp near-wall quasi
streamwise vortices. Right spanwise wall oscillations [8]

the opposition control, which enforces a distributed vertical velocity v at the wall
opposing the same component at a plane located at a prescribed wall distance yp,
requires minimal control power. The control parameters have been set in order to
maximize the control performance, which in the CtPI framework means to maximize
the increase in bulk mean velocity Ub (thereby decreasing the wall shear stress
τw) at a fixed total power Πt . This choice corresponds to an oscillating period of
T+ = 125.5 and a maximum spanwise wall velocity of about W+

w = 4.5 for the
oscillatingwall, and to a detection plane located at y+

p = 13 for the opposition control.
Hereinafter, the superscript + denotes quantities that have been nondimensionalized
by the actual friction velocity and kinematic viscosity. In these configurations, the
oscillating wall achieved Reτ = 186.9 and Reb = 3268 with a γ = 0.098, while the
opposition control achieved Reτ = 190.5 and Reb = 3474 with the much smaller
γ = 0.0035.

The employed DNS solver is the one developed by Luchini and Quadrio [5],
which uses a mixed spatial dicretization with Fourier series expansion in the two
homogeneous span- and streamwise direction and fourth-order explicit compact finite
differences in thewall-normal direction. The computational domain has a streamwise
length of Lx = 4πh and a spanwise width of Lz = 2πh. 256 Fourier modes are used
to expand the velocity in the streamwise and spanwise direction before dealiasing
(additional modes are added for avoiding aliasing), while the velocity is discretized
in the wall-normal direction with 256 unevenly spaced points, in order to improve
the resolution in the near-wall region. The corresponding spatial resolutions before
dealiasing in viscous wall units are Δx+ = 9.8, Δz+ = 4.9, Δy+

min = 0.47 at the
wall and Δy+ = 2.59 at the channel centerline.

The governing equation are advanced in timewith implicit temporal discretization
for the viscous term and a third-order low-storage Runge-Kutta explicit scheme for
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the nonlinear terms. The time step is chosen to yield an averaged value of theCourant-
Friedrichs-Levy number of 1.1. The calculations start from an initial condition where
the flow is statistically stationary for the specific case and are advanced for about
25,000 viscous time units. For the oscillating-wall case, 200 field are saved for each
of 8 different oscillation phases, for a total of 1600 flow fields.

3 Results

Table1 summarizes the volume integrals of the inbound and outbound energy fluxes,
normalized by the total power input Πt . The flow is fed a pumping power Πp and
possibly a control input power Πc, whose sum is by constraint constant. The flow
dissipates the total power input directly as dissipation of the mean kinetic energy
or via production of turbulent fluctuations as dissipation of turbulent kinetic energy.
At the present low value of the Reynolds number, 59% of the total input power is
dissipated directly by themean flow, while the remaining 41% is “wasted” to produce
turbulent kinetic energy and then dissipated as turbulent dissipation. When control is
appliedwithin theCtPi framework, all the global energy fluxes change in awaywhich
strongly depends on the type of control considered or, in particular, on the control-to-
total power ratio γ . In the case of the oscillating wall, for instance, 10% of the total
power is used for applying the control, while only the remaining 90% is available
for pumping. Nonetheless, the control results into an increase of the mean bulk
velocity compared to the uncontrolled flow, which highlights how well the spanwise
forcing class of control strategy performs, despite the high power requirement. The
dissipation of mean kinetic energy decreases with the oscillating wall, in spite of
the fact thatUb is increased, while the turbulent dissipation, which also accounts for
the 10% of control input power considered as purely temporal velocity fluctuations,
increases. The very opposite trend is observed for the opposition control, for which
the dissipation of the mean kinetic energy is increased to 64% while the turbulent
dissipation decreased to 36%.

Closer insights into the physics of such control techniques for turbulent drag
reduction can be obtained by analysing the Kolmogorov equation generalized for
anisotropic flows with mean shear. A detailed discussion of such equation is out of
the scope of the present manuscript and the interested reader is demanded to the

Table 1 Integral power budget for the uncontrolled and controlled channels. MKE and TKE are
abbreviations for Mean and Turbulent Kinetic Energy respectively. All values are given in fraction
of the total power Πt

Reference Oscillating wall Opposition control

Pumping power Πp 1.0 0.90 0.995

Control input power Πc 0.0 0.10 0.005

MKE dissipation φ 0.59 0.54 0.643

TKE dissipation ε 0.41 0.46 0.357
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Fig. 2 Definition of the
velocity difference, required
to compute the second-order
structure function. See text

discussion by Cimarelli, De Angelis and Casciola [6]. In the following we will dis-
cuss only the budget of the second order structure function 〈δu2〉 = δuiδui , where
δui is the velocity difference (Fig. 2) between two points that are separated in space
by a vector r and whose midpoint is located at the point Xc. The angular brackets
denote space and time averaging. In a channel flow, the second order structure func-
tion depends only on the three components ri of the vector r and on the wall-normal
coordinate Yc of the midpoint Xc. The second order structure function can be inter-
preted, according to its definition, as the amount of fluctuation energy at a scale ri
and at the spatial position Yc and therefore will be called hereinafter scale energy. In
the following only the properties only spanwise separations rz and the wall-normal
position Yc will be addressed.

Figure3 shows the maps of scale energy source term, positive when scale energy
is produced and negative when dissipated, as colour maps. The vector field shows the
fluxes of the scale energy in the Yc − rz plane while the solid lines represent some
field lines which originate at the singular point of the vector field. Only the near wall

0 0.2 0.4 0.60

0.1

0 0.2 0.4 0.60

0.1

0 0.2 0.4 0.60

0.1

a) uncontrolled

b) opposition control

c) spanwise wall oscillations

Fig. 3 Scale energy source map for an uncontrolled channel flow (a), for a channel modified by
opposition control (b) and by spanwise wall oscillations (c). In all cases the total power is kept
constant
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region for the uncontrolled channel and for the channel manipulated via opposition
control and spanwise wall oscillations are represented. Clearly, the morphology of
scale energy production and dissipation is structurally modified by the control, also
in this non trivial case in which the total power input to the system is kept constant.
In the oscillating wall case, the peak scale-energy production decreases strongly and
is located further from the wall compared to the reference case. The vertical shift of
the peak scale energy production is observed also for the opposition control case.
The presence of a wall vertical velocity causes the appearance of an intermediate
region of positive scale energy production, located between the wall and the peak
production. This intermediate region strongly modifies the morphology of the scale
energy fluxes in the near-wall region.

4 Conclusions

Theconstant total power input (CtPI) approach is found to be anecessary and enabling
step to address control-induced modifications of the energy transfer rates in turbulent
flows without incurring in biases related to particular choice of scaling and normal-
izations of the results. The present study shows that no trivial general pattern can
be found between the change of the global energy transfer rate and successful drag
reduction, which in the CtPI results in an increase of bulk velocity compared to an
unmanipulated flow. If the control input power is not accounted for in the turbulent
dissipation, successful control results into a reduction of turbulent kinetic energy
dissipation but not necessarily into an increase of mean kinetic energy dissipation.

The generalized Kolmogorov equation is a powerful tool to address the physics
of turbulent drag reduction strategies from the energetic standpoint. The present
preliminary results show a significant control-induced modification of both the scale
energy production and scale energy fluxes in the near-wall region. Further analysis
is required, considering all possible scale separations other than spanwise, to link
the present evidence with fundamental properties of turbulent drag reduction.
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Evolution of Vortex Formation in the Wake
of Thin Flat Plates with Different
Aspect-Ratios

Arman Hemmati, David H. Wood and Robert J. Martinuzzi

Abstract The effect of aspect-ratio (AR) on the formation and interaction of vortical
structures in the wake of normal thin flat plates is examined at Re = 1200 using an
infinite span (2D) plate and rectangular plates (AR = 1.0, 1.6 and 3.2). The vortex
shedding frequency significantly increased for AR = 3.2 compared to the 2D plate,
while it dropped for AR = 1.6 and 1.0. The lowest frequency of vortex shedding
was observed for AR = 1.0. Shear layers rolled to form vortices closer to the plate
leeward surface at higher AR. The mean recirculation length was longer for the 2D
plate compared to rectangular and square plates. The interaction of shear layers
originating at the edges of the rectangular plates led to the formation of vortex loops
in the wake. The wake appeared less organized for the lower AR plate (1.6) with
a higher turbulence energy compared to AR = 3.2. The magnitude of turbulence
kinetic energy was lowest at AR = 3.2 and it increased with decreasing AR. The
mean drag coefficient was ≈2 for the 2D plate and ≈1 for AR = 1, which suggested
major differences in the wake structures.
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1 Introduction

The formation and interactionof vortices in thewakeof thinflat plates have significant
implications on the fluctuating forces acting on the plate [2]. Thus, understanding the
strength of vortex structures, their shedding process and their interactions in the wake
is of great interest for various industrial applications including wind engineering,
solar panel installations and propulsion performance of sharp-edge propeller fins.
The most recent direct numerical simulations (DNS) of the flow past an infinite
span normal thin flat plate [2] at Reynolds number of Re = 1200 and 2400 identified
three distinct vortex shedding regimes based on the size and variation of lift and drag,
organization of vortices, and periodicity of the vortex shedding. These regimes were
identified as M, L and H for periods of moderate, low and high drag, respectively.
Earlier studies [4, 6] had determined the existence of these regimes at a lower (250)
and higher (18000) Re, respectively. However, these studies provided contradicting
descriptions of the regimes due to qualitative nature of their identification [2].

The effect of side-edge vortices on the organization of the wake and the vortex
shedding process for a thin normal flat plate of AR = 3.2 was investigated using
DNS at Re = 1200 [3]. It was determined that the interaction of shear layers on four
edges of the plate led to pre-mature detachment of vortices from shorter edges of the
plate due to a secondary induced flow caused by the shedding of main roller vortices
originating from the longer edges. This is referred to as the vortex “peel-off”, which
resulted in the formation of vortex loops in the wake [3]. Compared to the 2D plate
wake, high AR rectangular plates had a smaller turbulence kinetic energy, a shorter
mean recirculation length, and a larger vortex shedding frequency. Despite studying
the differences in the vortex shedding mechanism between 2D and 3D plates [3],
there has been no studies looking at the implications of AR on the vortex formation
process for 3D plates.

This study looks at the effect of aspect-ratio on global flow variables, formation
and interaction of vortices as well as the organization of the wake by comparing the
flow past two rectangular (AR = 3.2 and 1.6), a square (AR = 1.0) and an infinite
span (2D) thin flat plate, all placed normal to a uniform flow at Re = 1200. AR = 1.6
is typical of a modern photovoltaic (PV) module, 3.2 of an array of PV modules,
and 1 is the lowest AR that needs investigating. The reason is that in the absence
of significant Reynolds number effects, the flow over a flat plate of a certain AR
will be identical to that of a plate of 1 /AR. Description of the numerical simulations
are discussed in Sect. 2, followed by presentation of the results in Sect. 3. The main
concluding remarks are discussed in Sect. 4.

2 Problem Description

The three-dimensional Navier–Stokes and continuity equations were solved using
DNSatRe = hU0/ν = 1200,whereU0 is the freestreamvelocity, h is the plate chord,
and ν is air viscosity. The second order backward Euler and the central difference
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methodwere used for temporal and spatial discritizationof theflowfield, respectively.
An iterative Strongly Implicit Procedure (SIP) was used following the temporal
discritization to solve the Poisson equation.

The computational domain extended 25h in the streamwise (x) direction with the
inlet placed at x = −5h, and 16h in the chordwise (y) and spanwise (z) directions.
Three stationary flat plates with the thickness of the smallest spatial grid was placed
normal to the incoming uniform flow at the origin (x = y = z = 0) for each of the
three simulations. The inlet boundary was uniform streamwise velocity (u = U0

and v = w = 0) with zero pressure gradient. The side boundaries were assigned the
freestream condition, and the boundary condition on plate surfaces was no-slip wall.
The outlet boundary was assigned the Neumann outflow condition. The momentum
component residual of 10−6 was used as the convergence criteria per timestep. The
temporal grid was uniform and set small enough so that the convective (CFL) and
diffusive numbers were maintained below 0.6.

Three unsteady simulations were completed using two rectangular plates with
aspect-ratios (AR = h/w) 3.2 and 1.6, as well as a square plate (AR = 1) representing
different arrays of PV modules. One can find more details about the simulations and
verification of the results in comparison to existing numerical and experimental
studies at [1].

3 Results and Discussion

The global flow parameters: vortex shedding Strouhal number (St = fsh/U0), mean
recirculation length (Lw), and mean drag (Cd), are compared for the four cases in
Table1. These results demonstrate that the rectangular plates and the square plate
have a significantly lower mean drag compared to the 2D plate, while the drag
remains unchanged with changing AR for the rectangular plates. The behavior of
Cd with respect to AR for rectangular plates is consistent with recent experimental
studies [5]. Moreover, the vortex shedding frequency decreases with decreasing AR.
St = 0.317 for AR = 3.2 and it decreases to 0.146 for the square plate (AR = 1).
Compared to the 2D plate, however, St drops significantly at higher AR (3.2), but it
gradually drops to comparable values for the square plate. The variation of St and Lw
with changing AR is an indicator of the effect of AR on the vortex shedding process.

Table 1 The comparison of
global flow variables in the
wake of plates with different
AR

AR St Cd Lw

2D [2] 0.158 2.13 2.7

3.2 [3] 0.317 1.16 1.6

1.6 0.186 1.15 2.6

1.0 0.146 1.14 3.35
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Fig. 1 The spectra of chordwise velocity fluctuations for different plate AR

The velocity spectra for AR = 3.2, 1.6 and 1 are shown in Fig. 1. Comparing
spectral peaks for AR = 3.2 and 1.6, it is apparent that the vortex shedding has
a lower frequency and is less energetic (in the frequency domain) at a lower AR.
Moreover, there is only a single spectral peak identified at all locations in the wake
of AR = 3.2, an example of which is presented in Fig. 1 associated with the dominant
vortex shedding frequency. Although the same observations were valid forAR = 1.6,
but the energy levels of the peak and Stwere both lower than that of AR = 3.2. Thus,
there was a single shedding process for the rectangular plates. For AR = 1, however,
therewere energetic spectral peaks at either edges of the platewith comparable energy
levels. There was also a second peak equaling the sum of the peaks determined at
the two edges of the plate. Since this phenomenon was only observed at the plate
corners, it could imply that there are two separate vortex shedding processes for the
square plate.

The profiles of streamwise velocity along the wake centerline in Fig. 2 show
smaller Lw for the higher AR plates, the velocity deficit inside the base vortex reduces
with theAR. Moreover, themean streamwise velocity asymptotically approaches that
of the freestream for all three cases. The vorticity generation rate is observed to be
similar for the three AR. Consequently, the strength of the shed vortices is expected
to be inversely proportional to St. This observation is consistent with the increased
entrainment at lower and higher values of the turbulence kinetic energy (k) observed
for lower AR. The magnitude of k along the wake centerline (Fig. 2) is an indicator of

Fig. 2 The mean streamwise velocity and turbulence kinetic energy along the wake centerline
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Fig. 3 The schematics of vortex shedding for AR = 1.6 (left), and contours of chordwise velocity
for AR = 1.6 (right- top) and AR = 1.0 (right-bottom)

the changes on vortex formation process. First, the plateau of k at 0.8 < x < 1.2 for
AR = 3.2, which was attributed to a region of recurring vortex “peel-off” in previous
studies [3], appears to shrink for the lower AR plate (1.6). Second, the magntidue
of maximum k increases with reducing AR with the maximum k occurring for the
square plate. Thus, the level of turbulence, which may be associated with more
complex wake and vortex shedding, coincided with longer mean recirculation length
and lower vortex shedding frequency. Third, the rate at which k rises to its maximum
value for each AR is identical following the aforementioned plateaus for AR = 3.2
and 1.6, while the rate at which k drops following the end of the mean recirculation
bubble is also similar for all AR. However, unlike the mean streamwise velocity, the
asymptotic approach of all cases towards 0 is not at the same streamwise location.

The iso-surface plot of the λ2 criterion for AR = 1.6 along with the contours of
mean chordwise velocity and streamlines in Fig. 3 confirm that (1) there are 4 side-
edge vortices formed in the wake, and (2) main vortex rollers are shed from longer
edges while pre-mature structures are detached from shorter edges, as previously
hypothesized for AR = 3.2 [3]. However, the contours of AR = 1 were different
than those of the rectangular plates with side-edge-vortices missing and a change on
the wake axis far downstream the plate at x = 5h. This suggested a very different
vortex shedding process for the square plate compared to the rectangular plates,
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which were dominated by shedding of main vortex rollers from longer edges and
side vortex “peel-off” from shorter edges [3].

This study is the first of its kind to evaluate the impact of AR on wake structures
and vortex formation processes that had been previously investigated for AR = 3.2
[3] and 2D [2] plates positioned normal to the flow. It provided the first examination
of the wake of a normal square flat plate.

4 Conclusions

The effect of aspect-ratio on formation and interaction of vortex structures in the
wake of 3D normal flat plates was investigated at Re = 1200 using DNS. Comparing
plates with AR =3.2, 1.6 and 1.0, the mean drag coefficient was monotonic with AR.
There were significant differences in the shear layer extension prior to roll-up (vortex
formation length), mean recirculation length and the vortex shedding frequency for
different AR. Despite delays on the detachment of vortices for AR = 1.6, the vortex
shedding mechanism remained the same for AR = 1.6 and 3.2, in which case shear
layers on longer edges of the plate dominated the vortex roll-up followed by “peel-
off” of vortices from the shorter edges. However, the vortex formation and shedding
for the square plate (AR = 1.0) was completely different from that of the rectangular
plates. The wake turbulence intensified as the AR decreased. The square plate had
the largest maximum turbulence kinetic energy along the wake centerline.
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Structure of Turbulence in a Flow Around
a Rectangular Cylinder

Adriano Leonforte, Andrea Cimarelli and Diego Angeli

Abstract The behaviour of the flow over a finite blunt plate with square leading
and trailing edge corners at moderate Reynolds number is studied by means of a
Direct Numerical Simulation. The chord-to-thickness ratio of the plate is 5 and the
Reynolds number is Re = U∞ · D/ν = 3 × 103 whereU∞ and D are the free-stream
velocity and the thickness, respectively. The flow separates at the leading edge corner
developing in a strong free-shear. The flow reattaches on the solid surface upstream
the trailing edge and evolves in typical large-scale shedding beyond it. To the authors
knowledge, this is the first time that high-fidelity three-dimensional data are produced
to analyze in detail the flow features of such a system. Preliminary results on the flow
topologywill be presented in thiswork. In particular, the streamlines of themean flow
and the instantaneous three-dimensional turbulent structures via λ2 vortex criterion
will be examinated.

1 Introduction

Rectangular cylinders appear in several engineering configurations, ranging from
civil engineering, such as long-span bridge decks or high-rise buildings, to auto-
motive engineering. As its chord-to-thickness ratio is varied from zero to infinity,
the rectangular cylinder encompasses the range of bluff bodies from a flat plate
normal to the flow, to a square cylinders, and, finally, to a flat plate parallel to
the flow [8]. A detailed study on the unsteady behaviour of separating and reat-
taching flow was presented by Cherry et al. [2]. Two main types of instabilities
are involved: the Kelvin-Helmholtz instability present in the leading edge shear
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layer and the large-scale shedding after the trailing edge. Furthermore, a series of
interacting mechanisms from the impingement region to the free-shear layer are
observed and found to be at the basis of the transition to turbulence. A detailed
investigation into the nature of two-dimensional and three-dimensional turbulent
structures can be found in Hourigan et al. [3] and Sasaki and Kiya [6]. However, a
clear picture of the self-regeneration turbulent mechanisms is still missing and needs
a further assessment. Concerning the wake, a large-scale vortex shedding is present
and has been studied by many researchers. Among others, Nakamura et al. [4] and
Ohya et al. [5] by using both experiments and simulations, observed an interesting
feature, i.e. that the Strouhal number based on plate length was approximately equal
to 0.6n, where n is an integer which represents the number of vortices simultaneously
present on the plate and, hence, is related with the length of the rectangular prism’s
chord. Despite the large interest on the flow configuration and the lack of clarity
on the physics behind the transition to turbulence, at present no Direct Numerical
Simulations (DNS) at sufficiently high Reynolds number has been performed. In
contrast with experiments, a DNS approach would allow us to have access at the
multi-dimensional features determining the transition to turbulence in such a flow.
Actually, an attempt to investigate the nature of this complex flow via DNS was
proposed in the past. Tamura et al. [7] approached the problem by means of a finite
difference technique at high Reynolds number equal to 104. However, the grid reso-
lution adopted was not fine enough to capture the smallest scales of motion. Hence,
the simulation reported appears to be more an implicit Large Eddy Simulation than
a DNS. More recently Hourigan et al. [3] proposed a more accurate analysis through
the spectral-element method. However, the DNS data reported are concerning very
low Reynolds numbers, namely Re = 350 and Re = 400, where a fully developed
turbulent state at this Reynolds numbers is not achieved.

The lack of an accurate DNS database at sufficiently large Reynolds numbers is
at the basis of the present work. Indeed, our aim is to present for the first time high-
fidelity data for such a flow at moderate Reynolds number. A preliminary analysis of
these data in terms of mean flow feature and turbulent structures will be presented.
This study represents the first attempt towards a complete understanding of the self-
sustaining mechanism of turbulence in such a flow configuration.

2 Numerical Approach

We performed a well-resolved DNS for the flow around a plate with chord-
to-thickness ratio 5. The considered Reynolds number is Re = U∞D/ν = 3 × 103

whereU∞ is the free-stream velocity and D is the thickness of the rectangular cylin-
der. The dimensions of the rectangular plate are (Lx , Ly, Lz) = (5D, D, 5D) and the
size of the domain is (Dx ,Dy,Dz) = (112D, 50D, 5D). The continuity andmomen-
tum equations are discretized by a finite volume method [9] through central schemes
in space and a backward Euler scheme in time both accurate at the second order.
The PISO algorithm is employed for solving the pressure–velocity linked equations.
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A flat velocity profile U∞ without any superimposed disturbance is applied at the
inlet, periodic boundary conditions are imposed in the spanwise direction while in
the vertical directions and in the outlet freestream boundary conditions are applied.
The mesh is made up of structured hexahedral blocks, about 1.5 × 107 volumes,
with different spanwise resolution, changing in a stepwise manner from Nz = 9
(far from the body) to Nz = 144 (close to the body). The corresponding resolu-
tion is (Δx+,Δy+

min,Δz+) = (6.1, 0.31, 5.41) where (·) denotes the average in the
streamwise direction and the superscript + stands for non-dimensionalization in vis-
cous units. Statistics are computed after the initial transient taking advantage of the
statistical stationarity of the flow field in time, by means of N = 317 samples, the
statistical homogeneity in the spanwise direction and at last the symmetries in the
vertical direction.

3 Results

In the following, we report a preliminary analysis of the DNS data set in terms of
single-point statistics and identification of turbulent structures.

In Fig. 1 the behaviour of the mean flow (U, V, 0) in the (x − y)-plane is shown
with streamlines. The sharp leading edge corner fixes the position for the separation
of the incoming undisturbed flow. The separated flow is found to reattach, on average,
before the trailing edge. Hence, a large recirculating bubble takes place, green lines
of Fig. 1, extending in the streamwise and vertical directions up to x/D ≈ 3.65 and
y/D ≈ 0.5, respectively. At the reattachment point, two boundary layers take origin,
one propagating upstream and the other towards the trailing edge. The last one finally
detaches at the trailing edge and develops in the wake. The mean dimensions of the
wake vortex are highlighted in Fig. 1 with cyan lines. The reverse boundary layer is
firstly subjected to a favorable gradient pressure near the reattaching zone, see Fig. 2
where the wall-profiles of the pressure and friction coefficients are reported. Then,
by further moving upstream, for x/D < 1.8, the strong favorable pressure gradient
reverses, see againFig. 2.As a consequence, the reverse boundary layer detaches, thus
leading to a secondary recirculating bubble, rotating counterclockwise, extending for
0.4 < x/D < 1.4 and 0 < y/D < 0.08, see red lines in Fig. 1.
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Fig. 1 Streamlines of the mean flow (U, V, 0) in the (x − y)-plane
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Fig. 2 Pressure coefficient at the wall (black lines) and skin friction coefficient (red lines) along
the streamwise direction

Fig. 3 Identification of turbulent structures via λ2 = −2 colored by u (streamwise velocity)

The complex physical features characterizing the separated and reattaching flow
can be highlighted by analysing the structures that the instantaneous velocity field
takes in the different regions of the flow. To this aim, in Fig. 3, the regions where
the second largest eigenvalue (λ2) of the tensor Sik Sk j + ΩikΩk j is negative, are
shown with iso-surfaces colored by the magnitude of the streamwise velocity for a
value λ2 = −2. Here, Si j and Ωi j are the symmetric and antisymmetric part of the
velocity gradient tensor. As shown in Fig. 3, the sharp corner at the leading-edge
fixes the location of the boundary layer detachment of the incoming flow. In the
very first part of the shear layer, x/D < 0.3, the flow is laminar, then the spatially
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evaluated in the shear layer (left) and in the wake (right)

developing shear layer grows and, through instability and transitional phenomena
breakdown to turbulence. The Kelvin-Helmholtz instability develops first, leading to
the formation of two-dimensional spanwise vortices. Then transition to turbulence
takes place for x/D > 0.5. Under the effect of the mean shear, still strong at this
streamwise location, perturbations of the flowfield lead to the lift up and stretching of
the primary spanwise vortices, thus forming hairpin-like structures. These sparsely
distributed structures, grow, evolve and decay into multi-scale turbulent fluctuations.
The statistical footprint of this turbulent motion can be exploited by means of the
time-spectrum of the vertical velocity φ

1D− f
vv . As shown in the left-hand plot of

Fig. 4, the amplified turbulent structures in the shear layer are characterized by a
well-defined time scale corresponding to a Strouhal number, St = f D/U∞ ≈ 1.3
where f is the frequency. Some of these fluctuations move back through the reverse
boundary layer, see the blue isosurface in Fig. 3. These structures moving upstream
toward the leading edge are firstly stretched in the streamwise direction due to the
re-acceleration imposed by the pressure field, then after passing the mean primary
vortex core, for x/D < 1.8, they start to decelerate, due to an adverse pressure
gradient. This adverse pressure gradient leads also to a partial re-orientation of vortex
tubes from the streamwise direction to the spanwise one. A deeper study of these
structures is required, since, they take part of the feedback mechanism triggering
the leading-edge shear layer. Concerning the boundary layer moving downstream
towards the trailing edge, the relatively small turbulent structures are encompassed
by oscillatory large scale motions reminiscent of the laminar von Kármán instability.
Indeed, as shown in the right-hand plot of Fig. 4, the time-spectrum is filled up by
the developed multi-scale structures of the trailing edge but, at the same time, a well-
defined peak at small frequency relative to the large-scale shedding, St = 0.14, is
also present.
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4 Conclusions

In summary, given the lack of high-fidelity numerical data, we performed a DNS of
the flow around a rectangular cylinder with chord-to-thickness ratio equal to 5 for
Re = 3 × 103. The statistical analysis of these data will be used as a benchmark for
the scientific community studying this canonical flow [1] and will provide useful
insights on the more general physics of self-sustaining turbulence in separated and
reattaching flows. Here, we reported preliminary results in terms of mean velocity
field and time-spectra. These statistical quantities clearly identify and characterize the
main recirculating bubble and the secondary one in terms of length and time scales.
On the other hand, the analysis of the turbulent structures reveals the presence of
streamwise vortices and high- and low-speed streaks as a result of the presence of
hairpin-like structures in the leading-edge free-shear layer.
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Application of Sponge Boundary Conditions
to Large-Eddy Simulation of Multiple
Thermal Plumes

Chandra Shekhar Pant and Amitabh Bhattacharya

Abstract While numerically simulating multiple thermal plumes, instabilities arise
at the inflow/outflow/convective (IOC) boundaries due to the inability of IOC bound-
ary conditions to effectively advect the flow structures out of the computational
domain. To address this issue, Large Eddy Simulation of multiple thermal plumes
is carried out with a novel viscous sponge layer, recently formulated by Pant and
Bhattacharya (Comput Fluids 134:177–189, 2016, [5]). We validate our results with
available literature, and we also present the effect of sponge layer on vortex rings
(produced by thermal bubbles) traveling at an oblique angle to the outflow boundary.
It is concluded from this study that the sponge layer does not appreciably affect the
vortex rings outside the layer. The vortex rings do get smoothened out inside the
sponge layer, which ensures a smooth convective outflow velocity for the eddies,
and leads to stable LES of thermal plumes.

1 Introduction

Pure multiple thermal plumes commonly exist in both natural and industrial processes.
Interaction of multiple jets/plumes can be seen as a simplified model for interacting
atmospheric clouds. In the context of deep clouds, Baines and Keffer [1] experi-
mentally studied multiple jets of air at ambient temperature. Kaye and Linden [4]
experimentally studied interaction of two axi-symmetric turbulent plumes and pro-
posed a model. Recently, Cenedese and Linden [2] studied the dynamics of the
two coalescing plumes and proposed a net (or “effective”) entrainment constant for
the multiple plumes. Numerical simulation of multiple plumes remain challenging
because of the inadequacy of the proper boundary conditions. In this manuscript
we performed Large Eddy Simulation (LES) of multiple plumes using the sponge
boundary condition proposed by Pant and Bhattacharya [5]. To illustrate the effect
of the viscous sponge layer on the flow structures, we also present results on isolated
vortex rings impinging the sponge layer at an angle.

C.S. Pant · A. Bhattacharya (B)
Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
e-mail: bhattach@gmail.com

© Springer International Publishing AG 2017
R. Örlü et al. (eds.), Progress in Turbulence VII, Springer Proceedings
in Physics 196, DOI 10.1007/978-3-319-57934-4_34

239



240 C.S. Pant and A. Bhattacharya

2 Flow Domain, Governing Equations and Viscous Sponge
Layer Formulation

A cuboidal computational domain is used, with dimension of Lx × Ly × Lz .
Figure 1a shows the two dimensional schematic of the computational box. The com-
plete non-dimensional equations for velocity field u, pressure P and temperature, T
used in this work are given as:

∇ · u = 0 (1)
∂u
∂t

+ u · ∇u = −∇P + (Ri)T j − ∇ · σ t + bs (2)

∂T

∂t
+ u · ∇T = − ∇ · Q (3)

Here, Ri = βΔT refers to the Richardson number, which is used to couple tempera-
ture and velocity evolution equations. j is the unit vector in the positive y direction,
σ t is the stress tensor due to unresolved turbulent scales and Q is the heat flux vector.
Terms σ t and Q are modeled using standard Smagorinsky-Lilly model [6]. bs is the
body force due to artificial viscosity in the sponge, given by:

bsi = H(x)νs 1

h1h2h3

[
∂

∂ξ1

(
h2h3

h1

)
∂vi
∂ξ1

+ ∂

∂ξ3

(
h1h2

h3

)
∂vi
∂ξ3

]
(4)

the term H(x) is 1 inside the sponge layer and 0 outside the domain, νs is the artificial
viscosity. This novel sponge layer formulation allows a discontinuous jump in vis-
cosity, so that the flow structures get dissipated inside the sponge layer. The detailed
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Fig. 1 a Schematic of computational domain. Time contour plots corresponding to case A1 of
b average vorticity, 〈ω3〉, and c average temperature field 〈T 〉(x) normalized with respect to tem-
perature at x = 2Lx/5, z = Lz/2 (x = 2Lx/5, z = Lz/2 refers to the location of one of the hot
patch at the bottom of computational domain)
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formulation and solution procedure is explained in [5]. In this manuscript we assume
that the flow has infinite Reynolds number, therefore Richardson number (Ri) is the
only the free non-dimensional parameter.

3 Results

3.1 Simulation of Multiple Plumes

Two hot patches (T = 1) are introduced at the bottom of domain to simulate multiple
thermal plumes, as shown in the Fig. 1a. No penetration boundary condition is used
for the velocity field on the bottom plane (y = 0). The other boundary conditions are
same as that explained in [5]. Two set of simulations (cases A1 and A2) are performed
with different sponge layer viscosity νs . The parameters of the simulations are given
in Table 1. In Fig. 2, the volume averaged kinetic energy is plotted against time for
case A1 and A2, and it appears that both the simulations are stable for a long time.
The contour plots of vorticity and normalized temperature field averaged in time
are shown in Fig. 1b and c respectively. The intermixing between the two plumes
and irrotationality of ambient velocity field is clearly evident from Fig. 1b. Figure 1c
clearly shows that two thermal plumes develop independently until the axial distance
of 10. Thereafter, the two thermal plumes start interacting with each other, and,
beyond a certain height, become indistinguishable. These features of different flow
regimes have been characterized by Cenedese and Linden [2].

Table 1 Simulation parameters for multiple thermal plume

Case Lx × Ly × Lz Nx × Ny × Nz νs

A1 30 × 50 × 30 113 × 190 × 113 0.02

A2 30 × 50 × 30 113 × 190 × 113 0.05

Fig. 2 Volume averaged
kinetic energy
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Fig. 3 Variation of volume
flux and ratio of entrainment
coefficient with axial
distance
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The total volume flux of two plumes (Q) and ratio of entrainment coefficients
αeff /α of the present LES simulations are validated against the analytical results of
Cenedese and Linden [2] (shown in Fig. 3). Here F is the combined buoyancy flux
for two plumes, α is the entrainment for single plume and αeff is the net entrainment
rate coefficient for the two interacting plumes. Unlike the analytical results, the ratio
αeff /α is significantly larger than 1 for y < 20 (y is the axial distance), which could
be due to the relatively small value of y/D (D is the diameter of the patch). However,
for y > 20, the agreement between simulation and analysis is reasonably good.

3.2 Effect of the Sponge Layer on Flow Structures

The LES of multiple thermal plumes is numerically stable, mainly due to the
smoothening of flow structures near the convective outflow boundary. To illustrate
the effect of the sponge layer on flow structures, we have carried out LES simulations
of a thermal bubble, which then gives rise to a disintegrating vortex ring. The initial
temperature field inside the bubble is spherically symmetric, with radius rc = 1.25,
centered at (xc, yc, zc) = (40, 1.25, 5). The initial temperature field is adapted from
[3] and given by:

T =
{

0, r > rc
A[1 + cos(π × r/rc)], r ≤ rc

where, r = √
(x − xc)2 + (y − yc)2 + (z − zc)2 and A = 0.5.

Acceleration due to gravity has been tilted by 45 degrees to −g(i + j)/
√

2 for
these cases, so that the bubble impinges at an angle to the sponge layer. Velocity at
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Table 2 Simulation parameters for vortex ring-sponge layer interactions

Case Lx × Ly × Lz Nx × Ny × Nz

B1 80 × 20 × 10 400 × 150 × 100

B2 80 × 40 × 10 400 × 300 × 100
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Fig. 4 Contour plot of vorticity ω3 for case B1 at z = Lz/2: a, c, e, g and for case B2: b, d, f, h.
Snapshots at the same row correspond to exactly the same time instant for both cases. A reference
line has been drawn at y = 15, indicating the starting point of the top sponge layer in case B1

the bottom wall is set zero. Neumann boundary condition is used for top and lateral
boundaries. The value of Ri is set 0.25. Table 2 lists the size of the computational
box for the case B1 and case B2. The domain height Ly of case B1 is half that of
case B2, and, correspondingly, the sponge layer height is 5, ranging from y = 15 to
y = 20, which is again half compared to the case B2 (sponge height is 10, extends
from y = 20 to y = 30). The domain in lateral and tangential directions is same
for both cases. The grid resolution for both the cases is same. The iso-contours of
vorticity at same time instants are compared for case B1 and case B2. These plots are
shown before and after the penetration of vortex ring into the sponge layer y = 15
(Fig. 4). For case B1, outside the sponge layer (i.e. for y < 15) the flow structures
look identically similar to case B2 (where, effectively, sponge layer is not present).
At the same time, the sponge layer ensures that the flow structures are smooth near
the convective outflow boundary, leading to stable simulations.
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4 Conclusion

We have demonstrated that the novel viscous sponge layer scheme by [5] leads to sta-
ble LES for multiple plumes, allowing for long simulations over which statistics can
be gathered. We found reasonable agreement of the net entrainment rate coefficient
with analytical expressions by [2]. However, a taller computational domain may be
needed to improve the agreement. The sponge layer formulation can be useful for
LES of atmospheric flows, where multiple thermal plumes often interact with each
other.

Acknowledgements AB acknowledges support from I.I.T. Bombay seed grant (Project Code
12IRCCSG020) for this work.
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Heat Transport in Horizontal and Inclined
Convection

Olga Shishkina

Abstract Wediscuss three classical paradigmatic systems of thermally drivenflows:
Rayleigh–Bénard convection,where a fluid is confined between a heated bottomplate
and a cooled top plate, horizontal convection, where the fluid is heated at one part of
the bottom and cooled at some other part, and vertical convection, where the fluid is
confined between two differently heated isothermal vertical plates. Rayleigh–Bénard
and vertical convection can be also considered as limiting cases of so-called inclined
convection. For these systemswe study how the heat andmomentum transport, which
is represented by the Nusselt number and Reynolds number, scales with the main
governing parameters of the system, which are the Rayleigh number and Prandtl
number. We show that different boundary conditions generally lead to different scal-
ing diagrams in the Prandtl–Rayleigh plane. For laminar vertical convection the
scalings can be derived from the boundary layer equations, see Shishkina (Phys Rev
E 93:051102, 2016, [8]). In the case of horizontal convection, the scalings can be
derived from the analysis of the boundary-layer and bulk contributions of the kinetic
and thermal dissipation rates, see Shishkina et al. (Geophys Res Lett 43:1219–1225,
2016, [5]). Here we summarize some previous results and discuss the applicability
of the developed theory to global ocean circulation.

1 Introduction

Thermally driven flows are ubiquitous in nature. The classical paradigmatic systems
to study such flows are Rayleigh–Bénard convection (RBC) [1, 2], where a fluid is
confined between a heated bottom plate and a cooled top plate, horizontal convection
[3–6], where the fluid is heated at one part of the bottom and cooled at some other part,
and vertical convection, where the fluid is confined between two differently heated
isothermal vertical plates [7–9] (see Fig. 1). Rayleigh–Bénard and vertical convection
can be also considered as limiting cases of so-called inclined convection [13].
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Fig. 1 Sketches of a vertical convection cell, Rayleigh–Bénard convection (RBC) cell and
horizontal convection cell. The direction of the acceleration due to gravity g is shown with the
arrow

The mean characteristics of the thermally driven flows are determined by the
Rayleigh number Ra ≡ αgΔL3/(κν), the Prandtl number Pr ≡ ν/κ , and the cell
geometry. Here ν denotes the kinematic viscosity, κ the thermal diffusivity, α the
isobaric thermal expansion coefficient of the fluid, g the acceleration due to gravity
and Δ ≡ T+ − T− > 0 with T+ and T− the temperature of, respectively, the heated
and cooled plates. In RBC the reference distance L equals the distance between
the heated/cooled plates, while in horizontal convection it is equal to the length of
the cell, and in vertical convection it equals the width of the plates. How the mean
convective heat and momentum transport, which is measured, respectively, by the
Nusselt number (Nu) and Reynolds number (Re), scale with Ra and Pr is one of
the main issues in studies of thermally driven flows.

2 Inclined and Vertical Convection

A principle difference between the setups in RBC and in vertical convection is in
the direction of the gravity vector, which is parallel to the isothermal surfaces of the
container in the case of vertical convection and is perpendicular to them in RBC.
This leads to different global flow structures and to different dependences on Ra and
Pr of the Reynolds number Re and mean heat flux, described by the Nusselt number
Nu, in the cases of RBC and vertical convection [8, 10, 11].

Measurements in long cylinders filled with low-Prandtl-number fluids show that
the convective heat transfer between the heated and cooled parallel surfaces of the
container is most effective neither in a standing position of the cylinder (as in RBC,
with a cell inclination angle β = 0), nor in a lying position (as in vertical convec-
tion, β = 0.5π ), but in an inclined container, for a certain intermediate value of the
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Fig. 2 Isosurfaces of the instantaneous temperature for 20 values, equidistantly distributed between
the temperature of the cooled plate and that of the heated plate, in inclined convection for Ra = 109,
Pr = 1 and the aspect ratio 1 of a cylindrical container. The case β = 0 corresponds to Rayleigh–
Bénard convection, the case β = 0.5π to vertical convection
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inclination angleβ, 0 < β < 0.5π , see, e.g., [12].Moreover, these experiments show
that in the case of small Pr (Pr � 1) and relatively large Ra (Ra > 109), any tilt
β, 0 < β ≤ π/2, of the cell leads to an increase of Nu, compared to that in the RBC
case (β = 0).

For afixed Ra, Pr andgeometry of the container, the global flowstructure depends
strongly on the inclination angle β (see Fig. 2 for Ra = 109, Pr = 1 and also [13]
for other Ra and Pr ). Thus, for Ra = 109 and Pr = 1, in RBC (β = 0) the flow is
turbulent, while in the case of vertical convection (β = π/2) for the same Ra and Pr
one obtains almost steady flow, with hardly visible oscillations in the corners near
the isothermal plates (Fig. 2).

In contrast to RBC, in vertical convection there are no exact formulas for the
time and volume averaged kinetic dissipation rate εu and thermal dissipation rate εθ

that relate these quantities with Ra, Nu and Pr [9]. This restricts the applicability
of the Grossmann and Lohse theory [10, 11] in the case of vertical convection. On
other hand, in vertical convection, in contrast to RBC, themomentum boundary layer
equation for the velocity component along the isothermal plate involves the buoyancy
term [8, 14]. This allows to derive the scalings of Nu and Re with Ra and Pr , at
least for laminar boundary layers and for limiting cases of Pr → ∞ and Pr → 0.
Thus, one derives for laminar vertical convection [8]:

Nu ∼ Pr1/4Ra1/4, Re ∼ Pr−1/2Ra1/2 for Pr � 1,

Nu ∼ Pr0Ra1/4, Re ∼ Pr−1Ra1/2 for Pr � 1.

In [8] these theoretical results were found to be in excellent agreement with direct
numerical simulations (DNS) for Ra from 105 to 1010 and Pr from 10−2 to 30. The
transition between the regimes was found to be at Pr around 10−1.

Preliminary DNS for transitional and turbulent vertical convection for higher Ra
show a larger exponentϒ in the scaling Nu ∼ Raϒ , i.e.ϒ > 1/4. In these turbulent
regimes the Nusselt number is independent of Pr for large Pr and grows with
increasing Pr as Nu ∼ Prϒ for small Pr .

3 Horizontal Convection

For horizontal convection systems, in [5] a theoreticalmodel for the heat andmomen-
tum transport scalings with Rayleigh number was suggested, which is an extension
of the Grossmann and Lohse theory [10, 11] to the case of horizontal convection.
A full diagram of the scaling regimes for the Nusselt- and Reynolds number scalings
with Ra and Pr is given in [6]. The scaling regimes include in particular the Rossby
scaling [15] (with the scaling exponent 1/5 in the Nu-vs. Ra scaling) and the ultimate
scaling [16] (with the exponent 1/3).
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The balance of the boundary-layer and bulk contributions to the time- and volume
averaged kinetic and thermal dissipations rates was analysed in [17]. In the theory
[5] it is assumed that within the turbulent regimes in horizontal convection, the bulk
contributions should dominate. Although in the cases, studied in [17], the absolute
boundary-layer contributions to the mean dissipations rates were found to prevail
the bulk contributions, it was shown in [17] that the boundary-layer contributions
gradually decrease with increasing Ra as soon as the horizontal convection flows
become fluctuating. Further, in [18] the existence of the regimes I and I ∗ and the
scalings within these regimes was proved by means of direct numerical simulations.

With respect the applicability of the developed theory to the global ocean circu-
lation one can comment the following. From the oceanography [16, 19] it is known
that in the planetary-scale ocean circulation there exists an equator-to-pole heat flux
F of about

F ≡ SρcpκΔ

L
Nu ≈ 2 × 1015 W.

The representative geometrical characteristics and fluid properties of water in the
ocean can be roughly estimated as follows: the area S ∼ L2/2, the length L ∼ 107 m,
the temperature drop Δ ∼ 10 K, the acceleration due to gravity g ∼ 10 m/s2, the
densityρ ∼ 103 Kg/m3, the specific heat capacity cp ∼ 4 × 103 J/(KgK), the thermal
diffusivity κ ∼ 10−7 m2/s and the kinematic viscosity ν ∼ 10−6 m2/s. In terms of
the dimensionless quantities, this heat flux is equivalent to the Nusselt number of
order 108, while the Rayleigh number is about 1031. Note, that the Rossby scaling,
if extended to Ra ∼ 1031, gives an estimate of the Nusselt number, which is at most
of order 106 (for Pr ≈ 10), and therefore, it cannot explain the 2 petawatts global
horizontal heat flux in the ocean.

Using the theory [5, 6], one can give a possible explanation of the huge equator-to-
pole heat flux. Indeed, for sufficiently large Pr andmoderate Ra, the Nusselt number
should grow as Nu ∼ Ra1/4. For Pr ≈ 10, which is a rough estimate of the Prandtl
number in the ocean, one can take an estimate Nu ≈ 0.14 Ra1/4, which is in good
agreement with the simulation results. The scaling Nu ∼ Ra1/4 should smoothly
change to the ultimate scaling Nu ∼ Ra1/3 as soon as the boundary layers become
turbulent. The latter will happen when the shear Reynolds number will exceed a
critical value of Res ≈ 400 [20], which corresponds to a certain critical Rayleigh
number Racr . Since Res ∼ Re1/2 and themean kinetic dissipation rate in the ultimate
regime is estimated as (ν3/L4)Re3 and as (ν3/L4)RaPr−2 [5], the critical Rayleigh
number for the transition to the ultimate regime in horizontal convection for Pr ≈ 10
can be then estimated as Racr ∼ 4 × 1017. Assuming that at the critical Rayleigh
number, the scaling with the exponent 1/4 matches the scaling with the exponent
1/3, one can estimate the unknown prefactor in the ultimate scaling as 0.005. The
resulting formula Nu ∼ 0.005Ra1/3 leads to the Nusselt numbers of order 108 at the
Rayleigh numbers of order 1031. Thus, theoretically, horizontal convection due to
surface heating/cooling in the ocean can be responsible for the 2 petawatts equator-
to-pole heat flux in the ocean.
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