
A Lightweight Approach for Estimating Probability
in Risk-Based Software Testing

Rudolf Ramler1(✉), Michael Felderer2, and Matthias Leitner2

1 Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

rudolf.ramler@scch.at
2 Department of Computer Science, University of Innsbruck,

Technikerstrasse 21a, 6020 Innsbruck, Austria
{michael.felderer,matthias.leitner}@uibk.ac.at

Abstract. Using risk information in testing is requested in many testing strat‐
egies and recommended by international standards. The resulting, widespread
awareness creates an increasing demand for concrete implementation guidelines
and for methodological support on risk-based testing. In practice, however, many
companies still perform risk-based testing in an informal way, based only on
expert opinion or intuition. In this paper we address the task of quantifying risks
by proposing a lightweight approach for estimating risk probabilities. The
approach follows the “yesterday’s weather” principle used for planning in
Extreme Programming. Probability estimates are based on the number of defects
in the previous version. This simple heuristic can easily be implemented as part
of risk-based testing without specific prerequisites. It suits the need of small and
medium enterprises as well as agile environments which have neither time nor
resources for establishing elaborated approaches and procedures for data collec‐
tion and analysis. To investigate the feasibility of the approach we used historical
defect data from a popular open-source application. Our estimates for three
consecutive versions achieved an accuracy of 73% to 78% and showed a low
number of critical overestimates (<4%) and few underestimates (<1%). For prac‐
tical risk-based testing such estimates provide a reliable quantitative basis that
can be easily augmented with the expert knowledge of human decision-makers.
Furthermore, these results also define a baseline for future research on improving
probability estimation approaches.

Keywords: Risk-based testing · Risk assessment · Probability estimation · Defect
prediction · Test management · Software testing

1 Introduction

Risk-based testing is a testing approach which considers risks related to a software
product as the guiding factor to support decisions in all phases of the test process [1].
As the recently published international standard for software testing, ISO/IEC/IEEE
29119 [2] explicitly involves risks as an integral part of the testing process, there is
increasing demand for methodological support on risk-based testing.

© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 115–128, 2017.
DOI: 10.1007/978-3-319-57858-3_9



In general, a risk is an event that may possibly occur and, if it occurs, it has negative
consequences. Risks are determined by the two factors probability and impact. The
factor probability describes the likelihood that the negative event, e.g. a software failure,
occurs and impact characterizes the cost if the failure occurs in operation. Assessing the
risk exposure of a software feature or component requires estimating both factors.
Impact can usually be derived from the business value associated to the feature defined
in the software requirements specification. Probability is influenced by the implemen‐
tation characteristics of the feature or component as well as the usage context in which
the software system is applied.

Identifying and estimating risks is a core activity in risk-based testing. Nevertheless,
we observed that many companies do not follow established approaches. In a study on
risk-based testing we investigated the daily practice of software testing in several large
and small companies [3, 4]. Especially small and medium enterprises do not systemat‐
ically estimate risks and, if they do, they mostly rely on expert opinion. While expert
opinion is a valuable source for risk information, experts seem to underestimate the
probability of risks and may produce contradicting as well as misleading estimates [5].

In this paper we present a lightweight approach to estimating the risk probability in
risk-based software testing and its evaluation. The application context mainly considered
in this paper is functional testing, although the approach may as well be applied for
testing a wide spectrum of functional and non-functional properties of a software system.
The emphasis of the approach is on being lightweight, i.e., simple in its design and simple
in its application. The aim of this paper is to explore “the simplest thing that could
possibly work” [6]. Hence, the approach can easily be implemented as part of risk-based
test strategy development in small and medium enterprises as well as in agile environ‐
ments without specific prerequisites.

The remainder of this paper is structured as follows. Section 2 summarizes the
underlying approach to risk-based test strategy development. Section 3 presents the
lightweight approach to risk probability estimation. Section 4 provides an initial eval‐
uation of the probability estimation approach. Finally, Sect. 5 concludes the paper and
highlights directions of future research.

2 Background: Risk-Based Testing and Test Strategy Development

Many testing processes (e.g., [7, 8]) as well as standards (e.g., [2]) recommend the use
of risk information in software testing. Several risk-based approaches for software
testing have been proposed such as by Bach [9], Amland [10], and van Veenendaal [11].
Furthermore, comprehensive frameworks and guidelines for risk management as well
as for risk-based testing have been developed in context of software security; prominent
examples are the Risk Management Framework (RMF) [12] and the OWASP Testing
Guide [13]. These approaches implement or are accompanied by various different ways
for assessing risks [14–17].

In the remainder of this section we describe a previously presented, empirically
evaluated process for risk-based test strategy development [18] as one example of how
probability and impact values may be determined and used in practice. It is an essential

116 R. Ramler et al.



first step when introducing risk-based testing in an organization [19] to establish a risk-
based test strategy that anchors risk-orientation as basis for all testing activities in the
entire software lifecycle. The process has been evaluated as part of a research transfer
project for introducing risk-based testing in five small and medium software develop‐
ment companies.

In general, a test strategy describes how testing is organized and performed on the
different test levels [20]. The usually rather generic strategy has to be refined for its
implementation in context of a specific project or product iteration. The refinement
results in a concrete test approach that defines the different types of testing that need to
be performed, the test and quality assurance techniques to be applied, and the coverage
and exit criteria used for tacking the progress and determining test completion.

Figure 1 provides an overview of the overall process for risk-based test strategy
development. It consists of different steps, which are either directly related to the risk-
based test strategy development (shown in bold font) or which are used to establish the
preconditions (shown in normal font) for the process by linking test strategy develop‐
ment to the related processes (drawn with dashed lines) of defect management, require‐
ments management and quality management.

Fig. 1. Probability estimation in risk-based test strategy development [18]. The highlighted steps
relate to risk probability estimation as explored in this paper.

A Lightweight Approach for Estimating Probability 117



The process for risk-based test strategy development comprises seven core steps,
which are as follows. In the first step, risk items, which are the basic elements associated
with risks and mapped to test objects, are defined. They can be derived from established
structures used in defect and requirements management. In the second step, for each risk
item probability values are estimated which express their likelihood of defectiveness.
For probability estimation, one can use data from defect classification [21] that captures
and enhances the relevant data obtained from defect management. In the third step, for
each risk item impact values are estimated which express the consequences of risk items
being defective [22]. As the impact is closely related to the expected value of the
components for the user or customer, requirements management is a main source of data
for impact estimation. In the fourth step, risk values are computed from the estimated
probability and impact values. The computed risk values can be used to group risk items,
for example, according high, medium and low risk. In the fifth step, the spectrum of risk
values is partitioned into risk levels, which comprise a further level of aggregation. The
purpose of distinguishing different risk levels is to define classes of risks such that all
risk items associated to a particular class are considered equally risky and as a conse‐
quence are subject to the same intensity of quality assurance and test measures. In the
sixth step, the test strategy is defined on the basis of the different risk levels. For each
risk level the test strategy describes how testing is organized and performed. Distin‐
guishing different levels allows testing with different rigorousness in order to adequately
address the expected risks. In the seventh step, the test strategy is refined to match the
characteristics of the individual components of the software system (i.e., risk items).

The highlighted steps are related to risk probability estimation relevant for the
approach further explored in this paper. Probability estimation is a core step in the risk-
based test strategy development process to estimate risk values. As mentioned before,
experts seem to underestimate the probability of risks and may produce contradicting
as well as misleading estimates [5]. However, risk probabilities can be estimated based
on historical defect data collected from previous releases or related projects. To support
also less mature enterprises in applying defect data-based risk probability estimation, a
lightweight approach is required.

3 Approach for Risk Probability Estimation

To improve risk estimation in context of small and medium enterprises, we recommend
combining expert opinion with quantitative data from the systems’ development history
[18]. Figure 1 illustrates the different steps of a risk-based testing approach. It includes,
first, the estimation of the factors probability and impact for each risk item.

In the context of testing the probability value expresses the likelihood of defective‐
ness of a risk item, i.e., the likelihood that a fault exists in a specific module that may
lead to a failure. Most companies maintain a defect management system for reporting
failures, tracing failures to faults and documenting their resolution. These systems
capture the defect history of a software system and can serve as basis for deriving data
for estimating future risk probabilities [18].

118 R. Ramler et al.



Modeling the usually complex relationship between software faults and resulting
failures [20] requires considerable effort and a consistent data set that may not be avail‐
able in practice. In contrast, projects in small and medium organizations are often
following an on-demand, agile approach. Our lightweight approach has been inspired
by the “yesterday’s weather” principle used for planning in Extreme Programming [23].
It is a simple rule used in effort estimation, e.g., for estimating the amount of work a
team can complete in a sprint. Instead of a complex estimation approach the rule suggests
to use the amount of work completed in the previous sprint as estimate for the next sprint.
This estimate is not meant to replace human judgement but to provide a quantitative
basis that can be easily adjusted by including the knowledge and experience of human
decision-makers. The benefit of this rule-based approach is its simplicity and widespread
applicability.

In our approach we follow the same principle. Probability estimates are derived from
defect counts of the previous version. In short, components with a high defect count in
the last version are estimated to be likely defective in the next version and, vice versa,
components that were already free of defects in the last version are still considered to
be defect-free. Estimates based on defect counts are usually mapped to probability levels
(e.g., high, medium and low), which are used to construct risk matrices that are the basis
for the subsequent testing activities as shown in Fig. 2.

Fig. 2. Risk-based testing approach.

Extrapolation from defect counts provides a fast and easy way to estimate risk prob‐
abilities. However, the approach is based on the assumption of a continuous process and
environment that keeps influence factors on risks stable over consecutive versions.
Therefore, the estimates are adjusted by expert opinion to include knowledge about
disruptive events in the development process, in testing or in the usage of the software
system [24]. Human judgement is also used to decide about boundary cases and new
components where no historical records are available.

A Lightweight Approach for Estimating Probability 119



4 Evaluation

We demonstrate the feasibility and explore the limits of the proposed lightweight esti‐
mation approach by applying it in context of the open-source project jEdit1. The tool
jEdit is a widely used and mature programmer’s text editor with – according to the
project’s description – hundreds of person-years of development behind it. It is written
in Java and has been released as free software with full source code. The project jEdit
has been subject to a previous study on defect prediction by Jureczko and Madeyski [25].
As part of their study the data has been made publically available and can be obtained
from the OpenScience tera-PROMISE repository2.

The data is used to illustrate and evaluate the approach of estimating the risk prob‐
ability for source code files. In particular, we use available data in terms of defect counts
per file from a “known” version n to make estimates for the next version n + 1. As
described above, the estimates express the risk probability of a particular file containing
defects according to the categories high/medium/low. A detailed analysis is provided
by the following sub-sections.

• In Subsect. 4.1 we explore the distribution of defects in each individual studied
version. We show that in each version there are a small number of highly defective
files, a moderate number of files with a few defects, and a large number of defect-
free files. We exploit this Pareto-like distribution for classifying the files as high,
medium or low defective.

• In Subsect. 4.2 we compare the distribution of defects between versions and show
that files with a high/low number of defects in version n usually also have a high/low
number of defects in the next version n + 1. This trend is observable over consecutive
versions and builds the foundation for making reliable estimates.

• In Subsect. 4.3 we estimate the high/medium/low probability of files being defective
based on defect counts obtained from their previous version. We evaluate the results
by computing the accuracy of the estimates (classification) as well as the number of
overestimates and underestimates. Accuracy ranges from 73% to 78%, while critical
underestimates are less than 1% and critical overestimates remain below 4%.

• In Subsect. 4.4 we discuss the threats to validity of our evaluation.

4.1 Versions and Defect Distributions

In our study we analyze four versions of jEdit (3.2.1, 4.0, 4.1, and 4.2), which are related
to a continuous period of development of about three years. In this time interval the code
base has steadily grown, from 129 KLOC (272 Java files) in version 3.2.1 to 171 KLOC
(367 Java files) in version 4.2. In the same time the number of defects has been reduced
from 382 to 106 defects (Table 1).

1 http://www.jedit.org/
2 http://openscience.us/repo/defect/ck/jedit

120 R. Ramler et al.

http://www.jedit.org/
http://openscience.us/repo/defect/ck/jedit


Table 1. Key measures of the studied versions of jEdit.

Version LOC Files Defects Avg.
defects/file

Max
defects/file

Defect-free
files

3.2.1 128,883 272 382 1.40 45 67%
4.0 144,803 306 226 0.74 23 75%
4.1 153,087 312 217 0.70 17 75%
4.2 170,683 367 106 0.29 10 87%

In each version a Pareto-like distribution of defects to files can be observed. The top
10% of defective files contain 71% / 77% / 74% / 90% of the defects in each of the studied
versions. The histograms in Fig. 3 show the distribution of files per number of defects.
In each version there are a large number of defect-free files (0 defects), a moderate
number of files with only a few defects (1 to 3 defects) and a small number of files with
many defects (4 or more defects). In the following, we can exploit this information for
classifying files as low, medium or high defective.

Version 3.2.1 Version 4.0

Version 4.1 Version 4.2

Fig. 3. Number of files per defect count for each version.

4.2 Defective Files in Consecutive Versions

Although the studied application is growing over time and undergoes many modifica‐
tions, a large share of the files (75% to 89%) can be traced from one version to the next.
These files are present in version n as well as in version n + 1. In this section we explore
if we can take advantage of the relationship these files share over consecutive versions
to make reliable estimates.

The underlying assumption is that files that have a large number of defects in one
version will also have many defects in the next version and, vice versa, files that do not

A Lightweight Approach for Estimating Probability 121



have any defects will stay defect-free. The overall number of defects changes over time
and so does the number of defects per file. However, we are mainly interested if the
overall relationship in terms of high/medium/low number of defects stays the same. We
first investigate our assumption by charting the cumulative gain in terms of defects over
all files in version n + 1 when ordering them according to their defectiveness in version
n. Figures 4, 5 and 6 show the respective gain charts (lift plot [26]).

The x-axis of the gain chart depicts the number of files subject to testing. The y-
axis shows the cumulative percentage of total defects that can be found in testing
when a particular ordering of the files is applied. The optimal ordering (green curve)
is what one gets when sorting the files according to their actual number of defects in
version n + 1. It represents the best way of ordering the files for testing. However, the
actual numbers are unknown at the time of testing and this ordering can only be
determined from an ex-post view on the data. At the time of testing one has to rely
on estimates. In the worst case such estimates are equal to guessing, which would
correspond to a random ordering of the files (gray dotted 45-degree diagonal line).
In our approach the estimation is based on the defect numbers of the previous version
n. These numbers are already known when testing for version n + 1 is going to start
and can therefore be used for prioritization, i.e., ordering the files (blue line) accord‐
ingly. If several files in version n have the same number of defects, their ordering for
version n + 1 cannot be determined. Without any further information for making
estimates one has to assume a random ordering for these files. The different possible
combinations result in range defined by the curves best estimate and worst estimate
(green/red dashed lines).

0%

25%

50%

75%

100%

0 100 200

optimal

best estimation

worst estimation

random

estimation

Fig. 4. Cumulative gain in version 4.0 based on the number of defects in 3.2.1. (Color figure
online)

122 R. Ramler et al.



Concerning our assumption, we can make the following observations. First, the steep
initial growth of the estimate curve shows that files with a high number of defects in
version n are usually also containing a high number of defects in version n + 1. Second,

0%

25%

50%

75%

100%

0 100 200 300

optimal

best estimation

worst estimation

random

estimation

Fig. 5. Cumulative gain in version 4.1 based on the number of defects in 4.0. (Color figure online)

0%

25%

50%

75%

100%

0 100 200 300

optimal

best estimation

worst estimation

random

estimation

Fig. 6. Cumulative gain in version 4.2 based on the number of defects in 4.1. (Color figure online)

A Lightweight Approach for Estimating Probability 123



the long tails of the curves are due to the many defect-free files in all versions. Third,
the gap between the tails of the curves best estimate and worst estimate indicates that
some defects have been introduced in version n + 1 to previously defect-free files of
version n.

In general, the ordering based on our estimation provides a substantial improvement
over guessing. For version 4.0 (Fig. 4) the resulting ordering would allow finding about
75% of the defects after testing only 20% of the files, and more than 90% defects can be
found after testing 50% of all files. Similar findings can be derived from all three gain
charts (Figs. 4, 5 and 6). Hence, these findings provide a useful basis for making esti‐
mates and they confirm the feasibility of the proposed estimation approach.

4.3 Estimating Probability Classes

An exact ordering of the files is not required for developing a risk-based test strategy as
initially described in Sect. 2. It is usually sufficient to associate the different files or parts
of the system to risk probability classes such as high/medium/low probability of being
defective. In this section we evaluate the feasibility of estimating probability classes
based on the number of defects associated with a file as investigated in the previous
Sect. 4.2. The classification used in the following is based on the findings from Sect. 4.1,
where we explored the defectiveness of the files per version as high = ≥4 defects,
medium = 3 to 1 defects, low = 0 defects.

Figures 7, 8 and 9 show the confusion matrix that result from estimating probability
classes for the three versions 4.0, 4.1 and 4.2. Estimated numbers are shown on the x-
axis of the confusion matrix and actual numbers are shown on the y-axis. Thus, the
matrix for version 4.0 can be read as follows. The first row shows that out of the 11 files
(4%) in version 4.0 with an actual high defectiveness, 10 were correctly estimated to
have a high probability of being defective and 1 was underestimated as having a medium
probability of being defective although being highly defective. In contrast, the first
column shows that in total 33 files (12%) were estimated to have a high probability of
being defective. Out of these 10 files (4%) are actually highly defective, 13 (5%) have
a medium and 10 (4%) a low actual defectiveness. Thus, 10 files were classified correctly
and 23 were overestimated.

high medium low high medium low

high 10 1 0 11 high 3.8% 0.4% 0.0% 4.2%

medium 13 23 15 51 medium 4.9% 8.7% 5.7% 19.2%

low 10 33 160 62 low 3.8% 12.5% 60.4% 23.4%

33 57 175 265 12.5% 21.5% 66.0% 100%

estimated estimated

ac
tu
al

ac
tu
al

Fig. 7. Confusion matrix for estimates of version 4.0.

124 R. Ramler et al.



Various performance measures can be computed from the confusion matrix to eval‐
uate the estimates. In the following we look at (1) accuracy as well as the number of (2)
overestimates and (3) underestimates.

Accuracy is defined as the percentage of correct classifications over all classifica‐
tions. In the confusion matrix the correct estimates can be found in the three diagonal
cells from the top left (estimated high and actual high) to the bottom right (estimated
low and actual low). The correct estimates in our study led to an accuracy of 72.8% in
version 4.0, 78.4% in version 4.1, and 75.6% in version 4.2.

Overestimates are defined by the percentage of classifications where the estimated
classification is higher than the actual classification. In the confusion matrix the over‐
estimates can be found in the three cells on the lower left (estimated high/medium and
actual medium/low). For the three versions 4.0, 4.1 and 4.2 the overestimates are 21.1%,
10% and 19.6%. Overestimates (“false alarms”) mean that files are subject to more
rigorous testing than actually considered necessary. From the perspective of a risk-based
approach, overestimation may lead to a waste of time and resources. Furthermore, in
terms of “false alarms” they reduce the confidence in the estimates. These problems are
particularly critical for files that were estimated to have a high probability of being
defective yet they were found to actually have a low defectiveness. Only a small number
of critical overestimates were produced: 3.8% for version 4.0, none (0%) for version 4.1,
and 2.1% for version 4.2.

high medium low high medium low

high 9 6 2 17 high 3.1% 2.1% 0.7% 5.8%

medium 5 29 26 60 medium 1.7% 10.0% 8.9% 20.6%

low 0 24 190 77 low 0.0% 8.2% 65.3% 26.5%

14 59 218 291 4.8% 20.3% 74.9% 100%

ac
tu
al

ac
tu
al

estimated estimated

Fig. 8. Confusion matrix for estimates of version 4.1.

high medium low high medium low

high 4 2 1 7 high 1.4% 0.7% 0.3% 2.4%

medium 8 15 11 34 medium 2.7% 5.2% 3.8% 11.7%

low 6 43 201 41 low 2.1% 14.8% 69.1% 14.1%

18 60 213 291 6.2% 20.6% 73.2% 100%

estimated estimated

ac
tu
al

ac
tu
al

Fig. 9. Confusion matrix for estimates of version 4.2.

A Lightweight Approach for Estimating Probability 125



Underestimates are defined by the percentage of classifications where the estimated
classification is lower than the actual classification. In the confusion matrix the under‐
estimates can be found in the three cells on the top right (estimated low/medium and
actual medium/high). In the three versions 6%, 11.7% and 4.8% of the misclassified files
are underestimates. Underestimation means that defective files do not get enough atten‐
tion and, thus, defects may be missed in testing. Again, we consider underestimates as
especially critical if the files that actually have a high defectiveness were estimated as
low defective. A very low number of files have been seriously underestimated: none
(0%) in version 4.0, 0.7% in version 4.1, and 0.3% in version 4.2.

4.4 Threats to Validity

The prerequisite for applying the proposed approach is a complete and consistent record
of defects mapped to files for each release over an extended period of time. Reliable,
high-quality defect data is also a major factor for the validity of our evaluation. We
therefore selected a publically available data set that has been used in a previous, rigor‐
ously reviewed empirical study on defect prediction [25].

Defect severity has not been considered in our study. The analyzed defect data does
not include severity ratings of individual defects. In our initial approach [18] we
suggested using severity ratings to weight defects, which provides the possibility to
adjust the ordering if several files have the same number of defects. However, for the
large share of files found to be defect-free the estimation will not change. One may even
decide to ignore defect severities when estimating risk probabilities as this information
is included in the impact side of risk that has to be included in a next step of the risk-
based testing process (which is outside the scope of this study).

The approach relies on information derived from the files in the previous version.
This information is not available for new files. In our initial approach we considered all
new files relevant for testing, implicitly assuming a high probability of being defective.
However, in our study we found that most new files are actually defect-free and the
remaining ones only have few defects. Therefore our initial assumption seems to be too
pessimistic and it produces overestimates.

The discussed threats affect the validity of the evaluation, in particular, its construct
and internal validity. Concerning external validity it is clear that a generalization from
only one studied case is limited as in any case study research [27]. The main goal of our
study was to demonstrate the feasibility of the approach, which we were able to show
in the selected case. Furthermore, the studied system can be considered representative
for long-running projects developing desktop applications. However, further replica‐
tions are necessary to validate our findings in different contexts.

5 Conclusion and Future Work

Estimating risk probabilities is an important step in risk-based testing. However, this
step is often performed in an informal way, based on expert opinion and intuition rather
than on quantitative data. One of the reasons is the lack of availability of such data in

126 R. Ramler et al.



projects performed in small and medium enterprises or in agile environments. These
projects neither have the time nor the resources for establishing additional procedures
for data collection and analysis. Similarly, sophisticated risk estimation procedures are
out of scope for these projects.

In this paper we therefore proposed a lightweight approach for estimating the risk
probability in risk-based software testing following the “yesterday’s weather” principle.
Probability estimates are based on defect numbers from the preceding version.
Simplicity of the estimation approach is of foremost concern. It is intended to be easily
implemented as part of risk-based test strategy development in small and medium enter‐
prises without specific prerequisites. The only required source of information is defect
data from previous versions, which can usually be derived from existing defect data‐
bases.

To investigate the feasibility of the approach we performed an evaluation on the
popular open-source application jEdit. We used historical defect data to estimate the
defect probability of files for three consecutive versions. Our estimates achieve an accu‐
racy of 73% to 78%. Furthermore, they resulted in a low number of critical overestimates
(less than 4%) and only a few underestimates (less than 1%). The results show that the
approach is capable to satisfy the requirements suggested for applying defect prediction
as basis for risk-based testing [28].

In this paper our focus was on a lightweight estimation technique with the goal to
find the simplest approach that could possibly work. As part of future work we will
investigate strategies to improve the estimation approach and to increase its accuracy
while still keeping it simple. Our aim is to include easy-to-compute process metrics and
product metrics to augment the probability estimates based on defect data.

Acknowledgments. This work has been supported by the COMET Competence Center program
of the Austrian Research Promotion Agency (FFG), and the project MOBSTECO (FWF P 26194-
N15) funded by the Austrian Science Fund.

References

1. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw. Tools
Technol. Transf. 16(5), 559–568 (2014)

2. ISO/IEC/IEEE 29119-2:2013 Software and systems engineering – Software testing – Part 2:
Test processes. International Organization for Standardization, Geneva (2013)

3. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry. Int. J. Softw.
Tools Technol. Transf. 16(5), 609–625 (2014)

4. Felderer, M., Ramler, R.: Risk orientation in software testing processes of small and medium
enterprises: an exploratory and comparative study. Software Qual. J. 24(3), 519–548 (2016)

5. Ramler, R., Felderer, M.: Experiences from an initial study on risk probability estimation
based on expert opinion. In: Joint Conference of the 23rd International Workshop on Software
Measurement and the Eighth International Conference on Software Process and Product
Measurement (IWSM-MENSURA), pp. 93–97. IEEE (2013)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(2000)

A Lightweight Approach for Estimating Probability 127



7. Spillner, A., Rossner, T., Winter, M., Linz, T.: Software Testing Practice: Test Management:
A Study Guide for the Certified Tester Exam ISTQB Advanced Level. Rocky Nook, Santa
Barbara (2007)

8. Black, R.: Advanced Software Testing. Guide to the ISTQB Advanced Certification as an
Advanced Test Manager, vol. 2. Rocky Nook, Santa Barbara (2009)

9. Bach, J.: James Bach on risk-based testing: how to conduct heuristic risk analysis. Softw. Test.
Qual. Eng. (STQE) Mag., 23–28, November/December 1999

10. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software testing
including a financial application case study. J. Syst. Softw. 53(3), 287–295 (2000). Elsevier

11. van Veenendaal, E.: The PRISMA Approach. Uitgeverij Tutein Nolthenius, The Netherlands
(2012)

12. CERT: Risk Management Framework (RMF). United States Computer Emergency Readiness
Team, US-CERT, July 2013

13. OWASP: Testing Guide Ver. 4, Open Web Application Security Project, September 2014
14. Kontio, J.: Risk management in software development: a technology overview and the Riskit

method. In: 21st International Conference on Software Engineering. ACM (1999)
15. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: A risk assessment framework for software

testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 292–308.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8_21

16. Herrmann, A.: The quantitative estimation of IT-related risk probabilities. Risk Anal. 33(8),
1510–1531 (2013)

17. Vose, D.: Risk Analysis: A Quantitative Guide. Wiley, Hoboken (2008)
18. Ramler, R., Felderer, M.: A process for risk-based test strategy development and its industrial

evaluation. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS,
vol. 9459, pp. 355–371. Springer, Cham (2015). doi:10.1007/978-3-319-26844-6_26

19. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes. Software
Qual. J. 22(3), 543–575 (2014)

20. ISTQB: Standard glossary of terms used in software testing. Version 2.1 (2010)
21. Felderer, M., Beer, A.: Using defect taxonomies for testing requirements. IEEE Softw. 32(3),

94–101 (2015)
22. Gitzel, R., Krug, S., Brhel, M.: Towards a software failure cost impact model for the customer:

an analysis of an open source product. In: 6th International Conference on Predictive Models
in Software Engineering (PROMISE). ACM (2010)

23. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley Professional, Boston
(2001)

24. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic risk assessment
for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD 2012. LNBIP, vol.
94, pp. 159–180. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27213-4_11

25. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to
defect prediction. In: 6th International Conference on Predictive Models in Software
Engineering (PROMISE). ACM (2010)

26. Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco (2005)

27. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering:
Guidelines and Examples. Wiley, Hoboken (2012)

28. Ramler, R., Felderer, M.: Requirements for integrating defect prediction and risk-based
testing. In: 42nd Euromicro Conference on Software Engineering and Advanced Applications.
IEEE (2016)

128 R. Ramler et al.

http://dx.doi.org/10.1007/978-3-662-45231-8_21
http://dx.doi.org/10.1007/978-3-319-26844-6_26
http://dx.doi.org/10.1007/978-3-642-27213-4_11

	A Lightweight Approach for Estimating Probability in Risk-Based Software Testing
	Abstract
	1 Introduction
	2 Background: Risk-Based Testing and Test Strategy Development
	3 Approach for Risk Probability Estimation
	4 Evaluation
	4.1 Versions and Defect Distributions
	4.2 Defective Files in Consecutive Versions
	4.3 Estimating Probability Classes
	4.4 Threats to Validity

	5 Conclusion and Future Work
	Acknowledgments
	References


