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Abstract. Risk treatment is an important part of risk management, and
deals with the question which security controls shall be implemented in
order to mitigate risk. Indeed, most notably when the mitigated risk is
low, the costs engendered by the implementation of a security control
may exceed its benefits. The question becomes particularly interesting if
there are several countermeasures to choose from.

A promising candidate for modeling the effect of defensive mecha-
nisms on a risk scenario are attack–defence trees. Such trees allow one
to compute the risk of a scenario before and after the implementation of
a security control, and thus to weigh its benefits against its costs.

A naive approach for finding an optimal set of security controls is
to try out all possible combinations. However, such a procedure quickly
reaches its limits already for a small number of defences.

This paper presents a novel branch-and-bound algorithm, which skips
a large part of the combinations that cannot lead to an optimal solution.
The performance is thereby increased by several orders of magnitude
compared to the pure brute–force version.

Keywords: Attack-defence tree · Return On Security Investment ·
Optimal defences · Risk treatment optimisation · Branch and bound
algorithm

1 Introduction

Several risk methodologies exist [1] that assist the risk assessor in identifying
and handling risk, by providing exhaustive libraries of risk scenarios and/or
defensive mechanisms. Those methodologies require organisations to conduct
a risk assessment, which permits them to identify the risks that have to be
mitigated. However, they do not prescribe in detail how organisations should
put such a process into practise, leaving them enough freedom to choose an
approach that fits their needs and requirements. There are several frameworks
(such as ISO/IEC 27005 [2], IT-Grundschutz [3], MAGERIT [4] or EBIOS [5])
and commercial tools (such as TRICK Service1) that assist stakeholders in taking
1 www.itrust.lu/products.
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decisions for putting security controls in place. As for research, Attack–Defence
Trees [6] constitute a visual and very intuitive technique for analysing a risk
scenario in greater detail. They are a generalisation of ordinary attack trees [7]:
The latter encode, in a tree structure, how an attack (the root node) can be
achieved through intermediary attacks (its child nodes), so each branch adds
further refinement the parent attack – see Fig. 1 for an example. In contrast,
attack–defence trees also include the defensive mechanisms used to mitigate
these attacks. More precisely, the associated defence nodes are appended as
specially marked nodes to the attack nodes they protect from. These defences
again face attacks on their own, which try to disable the countermeasures. In fact,
attack–defence trees adopt the game-theoretic concept of two players, opponent
and proponent, who alternately try to defeat each other [8]. Figure 2 depicts a
simple attack–defence tree.

Recent research work by Gadyatskaya et al. [9] shows how attack–defence
trees can be combined with existent libraries (such as ISO/IEC 27002 [10]) to
determine the security controls an organisation shall implement. Indeed, when a
given set of controls is implemented, it will reduce the overall risk, but also comes
at a certain cost. Or, in other words, every selection of countermeasures comes
with a certain return after a certain investment. However, if the investment
outweighs the return, it is not sensible to mitigate the risk in the first place.
The related optimisation problem consists in finding those controls that have
the best return on investment.

Fig. 1. A sample attack tree depicting the possible reasons of hardware failure.

Fig. 2. A sample attack–defence tree, extending the example in Fig. 1. The dashed
nodes are defence nodes.
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The authors semi-automatically embed the security controls from ISO/IEC
27002 [10] as defence nodes into an existing attack tree. A simple brute-force pro-
gram then iterates over all possible combinations of implementing those security
controls, trying to find the strategy which maximises the return on investment.
They have also developed a tool, ADTop, to demonstrate the work flow described
in their paper. However, such an approach is very resource-intensive, and thus
only works for very small input data. In this paper, we improve on their work
and propose a faster and memory-saving algorithm for finding the set of security
controls that minimises both risk and the security costs in an optimal way.

Other authors have proposed similar approaches and algorithms. Dewri et al.
[11] propose a genetic algorithm that optimises a multi-objective function tak-
ing into account the attack probability and the implementation costs. However,
they model defensive mechanisms as objects that mitigate an attack completely,
which is far from reality. In contrast, Roy et al. [12] propose a model based
on attack–defence trees and express the added-value of implementing a secu-
rity control as return-on-investment, taking into account the risk reduction and
the implementation costs. They propose a branch-and-bound algorithm, but it
requires that at least one countermeasure is selected for each attack, which may
not be necessarily sensible if the risk associated to that attack is already low.

This paper is organised as follows. Section 2 introduces the optimisation prob-
lem and the underlying model. Section 3 presents and deliberates the algorithm,
as well as its performance. A real-world case study is used to substantiate the
need for the algorithm in Sect. 4. A conclusion is drawn in Sect. 5.

2 The Optimisation Problem

2.1 Attack–Defence Trees

An attack–defence tree is defined [13] as a tree graph consisting of two kinds of
nodes:

– attack nodes, characterised by a name and a success probability p ∈ [0, 1];
– defence nodes, characterised by a name, an effectiveness e ∈ [0, 1] and a cost

c ≥ 0.

The parameters have the following meaning:

– The success probability expresses the likelihood that the attacker succeeds
in accomplishing the attack. If the node is a leaf, the success probability is
part of the input. Otherwise, it is computed according to the rules defined
below.

– The effectiveness expresses the degree (as a factor) to which the counter-
measure reduces the attack probability. The value 0 indicates that it is entirely
useless, 1 represents complete mitigation of the attack. The effectiveness is
part of the input.

– The cost is expressed in financial terms and represents the cost engendered
by the implementation of the defence. The cost is also part of the input.
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The root node of an attack–defence tree is always an attack goal. Attack
nodes can have subordinated attacks (that add more refinement) and defences
(that defend against this attack). Defence nodes can only have subordinated
attacks (that weaken the countermeasures).

For simplicity, this paper does not consider counter-attacks against defences.
Thus, in the following, defences are assumed to have no subordinate child nodes.

Moreover, the set of child attacks can be ‘disjunctive’ or ‘conjunctive’, mean-
ing that the parent attack consists of achieving any or all of the child attacks,
respectively. Similarly, the set of child defences can be ‘disjunctive’ or ‘conjunc-
tive’, meaning that any or all of the defences are required to protect from the
attack, respectively.

All attacks and defences in the tree are assumed to be independent. This
assumption is made to simplify the computations, and might not reflect reality.
To take dependencies into consideration, more general models have to be con-
sidered, such as Bayesian networks – these are out of the scope of this paper,
though.

2.2 Multi-purpose Defences

A defence can protect from several attacks, though possibly with a different
effectiveness. For instance, digital e-mail signatures prevent content manipula-
tion by third parties in a very effective fashion. At the same time, they verify
the sender’s identity and defend against impersonation attacks. However, the
effectiveness is a bit lower in this case, since the recipient cannot be entirely sure
that the sender is the real person he expected, for the latter could hack himself
into that person’s computer.

In this paper, defences are allowed to protect from multiple attacks, possibly
with different effectiveness values. That is, if one decides to implement such a
defence, and thus include it into the attack–defence tree, it will be appended to
all applicable attacks.

2.3 Rules of Calculation

For an attack α, let p(α) denote its success probability. For a defence δ, let c(δ)
denote its cost, and e(δ) its effectiveness.

When no defence mechanisms are present, and assuming that all attacks in
the tree are independent, the following basic probability rules hold for a non-leaf
attack node α.

p(α) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

i

p(i) ifα is conjunctive

1 −
∏

i

(1 − p(i)) ifα is disjunctive,
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where i iterates over all child attack nodes of α. If a defence δ is in place, by
definition of the effectiveness, it reduces the success probability by a factor

1 − e(δ).

Similarly, if a set of defences Δ is in place, the success probability will be reduced
by 1 − e(Δ), where

e(Δ) :=

⎧
⎪⎪⎨

⎪⎪⎩

∏

δ∈Δ

e(δ) ifΔ is conjunctive

1 −
∏

δ∈Δ

(1 − e(δ)) ifΔ is disjunctive,

assuming that defences reduce the success probability independently from each
other. So in summary, if a set Δ is implemented for an attack α, the recursive
computation rule is given by

p(α) = (1 − e(Δ)) ·

⎧
⎪⎪⎨

⎪⎪⎩

∏

i

p(i) ifα is conjunctive

1 −
∏

i

(1 − p(i)) ifα is disjunctive.
(1)

The recursion ends at the leaf nodes, for which the probability is fixed and part
of the input.

2.4 Optimisation Problem

Implementing a defence δ reduces the success probability, but also comes at a
cost c(δ). It is not a-priori obvious whether it is profitable to implement a specific
defence, because it could be wiser to select one or several others that come at a
lower cost. The problem thus consists in finding those defences that reduce the
success probability by a decent amount, but still come at a reasonably low cost.

In order to solve this multivariate optimisation problem, the Return On Secu-
rity Investment (ROSI) is chosen as score function. It is defined as

ROSI := impact · (initial probability − final probability)
︸ ︷︷ ︸

return (risk reduction)

− sum of costs,
︸ ︷︷ ︸

investment

where ‘initial’ and ‘final’ are understood to be before and after the implementa-
tion of all defences. A strategy is said to be optimal if it maximises the ROSI.
Note that there are many ways to define the ROSI (see e.g. [14]); this definition
was chosen because of its intuitive meaning and its simplicity.

Formally, denote the set of all available defences by D. An assignment is a func-
tion x : D → {0, 1} which states whether each defence δ shall be implemented
(x(δ) = 1) or not (x(δ) = 0). The ROSI can mathematically be expressed as

ROSI(x) := I · (P0 − P(x)) −
∑

δ∈D

x(δ) · c(δ), (2)
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where I is the (constant) impact of the risk scenario, P(x) is the success prob-
ability of the attack–defence tree after implementing all defences with x(·) = 1,
and P0 is the (constant) success probability of the attack–defence tree (thus
without any defences). The probabilities are calculated using the formula given
in Sect. 2.3. The optimisation problem then reads as

Find x : D → {0, 1} (3)
that maximises ROSI(x).

3 Branch and Bound Algorithm

The optimisation problem can be solved in several ways. One possibility would
be to turn ROSI(x) as defined in Eq. (2) into a linear function and apply standard
linear programming algorithms [15] on it. Such an approach has been proposed
and described by Roy et al. [12]. While this technique works in theory, the size
of the linear program exceeds the practical limits of feasibility very quickly. For
the case study presented in Sect. 4 below, the linear program would have a size
of 216 variables.

The proposed algorithm is given in Algorithm 1 and basically enumerates all
possible combinations of applying defences. However, it skips all sets of combi-
nations that are known not to contain any solutions. Note that it will never skip
a valid combination; this is proved below. The algorithm is invoked with Dp := ∅
and an empty map x : ∅ → {0, 1}. The attack–defence tree T , the set of defences
D and the effectiveness values e remain constant throughout the algorithms.

Note that if it was not for lines 1–3, Algorithm 1 were just a recursive brute-
force algorithm that tries out all possible ways of selecting defences. The inno-
vation (and performance optimisation) lies in the lines 1–3.

The idea is to skip a recursion step whenever it is known that it cannot yield
a viable combination of selecting defences. The skip criterion in line 1 originates
from the following observation. Equation (1) reveals that whenever a defence is
added to the attack–defence tree, the success probability of any attack node will
either decrease or at least remain the same. In particular, the same is true for
the global success probability of the tree.

Note that whenever the algorithm enters a recursion step, all non-processed
defences are set to ‘unselected’; this is assured by the start condition and line 16.
Thus, all later (i.e. deeper) recursion steps will end up with a lower or equal
overall success probability for the attack–defence tree. By consequence, once the
probability is no longer sufficiently reduced to cover the costs (i.e., once a defence
is no longer profitable), it will not be profitable for all later combinations, either.
Which means that all subsequent combinations are known to be invalid a-priori,
so they can be skipped.

3.1 Performance

The performance gain depends on the structure of the attack–defence tree. A
stress test was conducted on a tree consisting of 81 nodes and 90 defences, each
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Algorithm 1. Branch and bound algorithm BnBa

Input: Attack–defence tree T with attack nodes A
Input: Set of defences D
Input: Effectiveness values e : A × D → [0, 1]
Input: Set of already processed defences Dp ⊆ D
Input: Partial selection strategy x : Dp → {0, 1}
Output: Selection strategy xopt that maximises ROSI(·)
1: if there is δ ∈ Dp that is no longer profitable (cf. Algorithm 2) then
2: abort current recursion step
3: end if

4: if Dp = D then
5: v ← ROSI(x)
6: if v is largest ROSI seen so far then
7: xopt ← x
8: end if
9: else

10: δ ← any defence not in Dp

11: Dp ← Dp ∪ {δ}
12: ’ Try selecting the defence
13: x(δ) ← 1
14: BnBa(T, D, e, Dp, x)

15: ’ Try not selecting the defence
16: x(δ) ← 0
17: BnBa(T, D, e, Dp, x)

18: ’ Remove δ again; this allows the re-use of Dp among all recursive calls
19: Dp ← Dp \ {δ}
20: end if

of which is applied to every attack. The resulting attack–defence tree has thus
81 · 90 = 7290 defence nodes. Note that in a concrete case, not every defence
would be applicable for every attack, and by consequence, the problem would
be simpler. The effectiveness values e : A × D → [0, 1] were chosen randomly.

If one comments out lines 1–3 in Algorithm 1, one obtains a pure brute-
force algorithm that tries out all 290 combinations. Executing it for the first
220 combinations took 107.42 s in our implementation; so it would need 1.27 ·
1023 s (4 · 1015 years) to finish. On contrast, the optimised variant terminated
within 895 s (15 min), having evaluated only 1, 748, 272 combinations (which is
approximately a 10−21 part).

Algorithm 1 can be implemented in such a way that it uses constant memory
in the course of its execution. This can be achieved by using a stack data
structure for Dp and a fixed-size array for x; both Dp and x are shared among
all recursive calls of the algorithm. In our implementation the memory usage
was approximately 20 MiB for the tree described above.
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Algorithm 2. Determine if a defence is profitable
Input: Defence δ
Input: Cost c(δ) of defence δ
Input: Impact I of risk scenario
Input: Partial selection strategy x : Dp → {0, 1}
Output: true if δ is profitable, false otherwise

1: if x(δ) = 0 then
2: return true
3: else
4: ’ Extend x to all of D
5: x(δ′) ← 0 for all δ′ ∈ D \ Dp

6: x(δ) ← 0
7: v0 ← ROSI(x)

8: x(δ) ← 1
9: v1 ← ROSI(x)

10: ’ δ is profitable iff the residual risk is lower when δ is implemented
11: if v1 · I + c(δ) < v0 · I then
12: return true
13: else
14: return false
15: end if
16: end if

The tests were conducted on a standard laptop with a i7-6700HQ processor
(2.6 GHz). Our implementation of the algorithm ran on a single core, although
it can be modified in such a way that it supports multi-threading, as well.

4 Case-Study

The methodology presented in [9], together with the new Algorithm 1, is used
to determine those ISO 27002 [10] security controls that have the largest added-
value for the ‘ÉpStan’ project.

ÉpStan, which is short for Épreuves Standardisées (standardised exams), is
Luxembourg’s national programme to monitor the quality of the educational
system of secondary school. To achieve this, standardised exams are conducted
in selected classes all over the country, and the results are analysed to spot topics
that are not well covered by the school programme.

Since the tests are meant to rate the educational system, rather than the
individual students’ performance, the results should under no circumstances be
linked to the individuals. There are four parties involved in the process:

– The Government provides the standardised exams.
– The schools organise and conduct the exams.
– The University of Luxembourg is responsible for evaluating the results.
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– itrust consulting acts as a trusted third party and pseudonymisation service
between the Government and the University of Luxembourg. Its role is to
assure that neither of them can link results to an individual student. This
is achieved by issuing a pseudonym for each student, which is used by the
schools to exchange the exam results with the University. itrust consulting
never obtains any exam result.

The process is designed in such a way that neither the University, nor the
Government, nor itrust consulting can link exam results to individual students.
Although every entity only knows part of the necessary information, an attacker
could get (legally or not) data from multiple entities, and reconstruct the link
between result and student.

A brainstorming session led to the identification of an exhaustive list of attack
scenarios, all of which have been encoded in an attack tree consisting of 81 attack
nodes. Figure 3 shows a small excerpt.

C1 - Partial theft coming from external

Get results

Get report Get student input

Get student input
legally

Get student input
illegally

Get real ID

Real ID
publically available

Get mapping

Get pseudonym -
real ID mapping

Establish pseudonym
with real ID mapping

Get pseudonym
with real ID mapping

illegally

Combine two
mappings

Fig. 3. An excerpt of the attack tree for the risk scenario where an attack can link
exam results to a student.

The second step consisted in determining the ISO 27002 [10] controls that
reduce the success probability of some of the identified attacks. In total 16 con-
trols were retained. Moreover, the effectiveness was estimated in a brainstorming
process for each of the retained defences and each of the applicable attacks. The
resulting effectiveness matrix e : A × D → [0, 1] had 58 non-zero values and is
depicted in Table 1.

ADTop (see [9]) required 54.2 s and over 1 GiB of memory to find the optimal
attack–defence tree. A C# implementation of Algorithm 1 proposed the same
set of defences within 0.36 s, having tried out 12,496 combinations (19% out
of the 216 possible). The memory usage was 20 MiB. An excerpt of the full
attack–defence tree is depicted in Fig. 4.
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Table 1. An excerpt of the effectiveness matrix, which has (16 defences × 81 attacks).
Values indicated are in %.

Out of the original 16 defences, the following 9 have been proposed for imple-
mentation by the algorithm.

– Handling of assets (Sect. 8.2.3)
– Password management system (Sect. 9.4.3)
– Physical security perimeter (Sect. 11.1.1)
– Capacity management (Sect. 12.1.3)
– Management of technical vulnerabilities (Sect. 12.6.1)
– Restrictions on software installation (Sect. 12.6.2)
– Network controls (Sect. 13.1.1)
– Confidentiality or non-disclosure agreements (Sect. 13.2.4)
– Access control policy (Sect. 9.1.1)
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This solution reduces the success probability of the global attack from 29% to
6.5% and has a ROSI of 10031 EUR.

5 Conclusion

Gadyatskaya et al. [9] have shown how attack–defence trees can be used to
model risk reduction engendered by a library of security controls. Since the
implementation of defensive mechanisms comes at a cost, it is not a prori clear
which controls to prefer over which ones. The authors determine the optimal
defence strategy by literally processing all combinations of selecting security
controls and computing the Return On Security Investment (ROSI) for each of
them.

The tool presented in [9], ‘ADTop’, reaches its feasible limits at 16 defences.
However, any pure brute-force program would have a practical limit of 40
defences. Indeed, if an evaluation of a single combination takes 1 ms, then iterat-
ing over all 240 combinations will already take approximately 13 days (growing
exponentially with the number of defences).

This paper improves on the latter work by presenting a memory-efficient algo-
rithm which skips some of the unnecessary computations. This method experi-
mentally decreases the running time of the algorithm on large trees (81 attacks,
90 defences) from several hundred years to several hours. While the technique
works specifically for the ROSI function, it can be generalised to other, similar
score functions, as well.

The improved algorithm has been applied in a case study in order to highlight
the performance boosts. The case study deals with determining the optimal set
of ISO 27002 countermeasures that shall be implemented for a pseudonymisation
service, and uses an attack–defence tree consisting of 81 attacks and 16 unique
defences. Compared to ‘ADTop’, the new algorithm reduces the memory usage
from over 1 GiB to 20 MiB, and the execution time from nearly a minute to less
than a second.
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