
Jürgen Großmann
Michael Felderer
Fredrik Seehusen (Eds.)

 123

LN
CS

 1
02

24

4th International Workshop, RISK 2016
Held in Conjunction with ICTSS 2016
Graz, Austria, October 18, 2016, Revised Selected Papers

Risk Assessment and
Risk-Driven Quality
Assurance

Lecture Notes in Computer Science 10224

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jürgen Großmann • Michael Felderer
Fredrik Seehusen (Eds.)

Risk Assessment and
Risk-Driven Quality
Assurance
4th International Workshop, RISK 2016
Held in Conjunction with ICTSS 2016
Graz, Austria, October 18, 2016
Revised Selected Papers

123

Editors
Jürgen Großmann
Fraunhofer FOKUS CC SQC
Berlin
Germany

Michael Felderer
Department of Computer Science
Universität Innsbruck
Innsbruck
Austria

Fredrik Seehusen
SINTEF ICT
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-57857-6 ISBN 978-3-319-57858-3 (eBook)
DOI 10.1007/978-3-319-57858-3

Library of Congress Control Number: 2017938161

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Increased connectivity and software complexity lead to an ever-growing demand for
techniques to ensure software quality, dependability, reliability, and security. The risks
that software systems do not meet their intended level of quality can have a severe
impact on vendors, customers, and even society at large. The precise understanding of
risks has become one of the cornerstones of critical decision-making within complex
social and technical environments.

Traditional approaches for ensuring system quality address risk implicitly rather
than systematically. However, there is a growing interest in enhancing traditional
approaches for ensuring system quality by taking risk systematically into account. For
instance, in traditional test approaches, test planning and prioritization are often based
on an implicit notion of risk; systems, functions, or modules, which are known to be
critical, are tested more intensively than others. However, taking risk systematically
into account allows for a more rigorous prioritization process that is better documented,
less dependent on human guesswork, and more easily supported by tools.

The RISK Workshop series has emerged as a high-profile series of events that
discusses innovative work in the areas of software risk assessment, testing, and the
combination thereof. We have been able to look back on four successful years, in
which we have been involved in different conferences and initiated a fruitful exchange
between scientists from academia as well as from industry.

This volume contains the proceedings of the 4th International Workshop on Risk
Assessment and Risk-Driven Quality Assurance (RISK 2016) held in October 2016 in
Graz, Austria, in conjunction with the 28th International Conference on Testing
Software and Systems (ICTSS). RISK 2016 brought together researchers from Europe
who study, develop, and evaluate innovative techniques, tools, languages, and methods
for risk assessment and risk-driven quality engineering. During the workshop, the
participants discussed 11 peer-reviewed contributions tackling challenges of assessing
and managing safety, security, and reliability risk, and in particular the intersection
between these areas. The workshop was structured into three sessions on Security Risk
Management, Security Risk Analysis as well as Risk-Based Testing.

We would like to take this opportunity to thank the people who have contributed to
the RISK 2016 workshop and helped make it a success. We want to thank all authors
and reviewers for their valuable contributions, and we wish them a successful con-
tinuation of their work in this area.

March 2017 Jürgen Großmann
Michael Felderer
Fredrik Seehusen

Organization

RISK 2016 was organized by Fraunhofer FOKUS, SINTEF Digital, and the University
of Innsbruck.

Organizing Committee

Jürgen Großmann Fraunhofer FOKUS, Germany
Michael Felderer University of Innsbruck, Austria
Fredrik Seehusen SINTEF Digital, Norway

Program Committee

Jürgen Großmann Fraunhofer FOKUS, Germany
Fredrik Seehusen SINTEF Digital, Norway
Michael Felderer University of Innsbruck, Austria
Ina Schieferdecker TU Berlin/Fraunhofer FOKUS, Germany
Ketil Stølen SINTEF Digital, Norway
Ruth Breu University of Innsbruck, Austria
Ron Kenett KPA Ltd. and University of Turin, Italy
Sardar Muhammad Sulaman Lund University, Sweden
Markus Schacher KnowGravity Inc., Switzerland
Alessandra Bagnato Softeam, France
Kenji Taguchi AIST, Japan
Zhen Ru Dai University of Applied Science Hamburg, Germany
Per Håkon Meland SINTEF Digital, Norway
Luca Compagna SAP Labs, France
Jörn Eichler Fraunhofer AISEC, Germany
Bruno Legeard Femto-ST, France
Xiaoying Bai Tsinghua University, China

Contents

Security Risk Management

Business Driven ICT Risk Management in the Banking Domain
with RACOMAT . 3

Johannes Viehmann

Towards Transparent Real-Time Privacy Risk Assessment of Intelligent
Transport Systems. 11

Gencer Erdogan, Aida Omerovic, Marit K. Natvig,
and Isabelle C.R. Tardy

Check Your Blind Spot: A New Cyber-Security Metric for Measuring
Incident Response Readiness . 19

Benjamin Aziz, Ali Malik, and Jeyong Jung

Security Risk Analysis

Quantitative Information Security Risk Estimation Using Probabilistic
Attack Graphs . 37

Pontus Johnson, Alexandre Vernotte, Dan Gorton, Mathias Ekstedt,
and Robert Lagerström

Fast and Optimal Countermeasure Selection for Attack Defence Trees 53
Steve Muller, Carlo Harpes, and Cédric Muller

An Assessment of Security Analysis Tools for Cyber-Physical Systems 66
Laurens Lemaire, Jan Vossaert, Bart De Decker, and Vincent Naessens

Supporting Risk Assessment with the Systematic Identification, Merging,
and Validation of Security Goals. 82

Daniel Angermeier, Alexander Nieding, and Jörn Eichler

Risk-Based Testing

Design Decisions in the Development of a Graphical Language
for Risk-Driven Security Testing. 99

Gencer Erdogan and Ketil Stølen

A Lightweight Approach for Estimating Probability in Risk-Based
Software Testing . 115

Rudolf Ramler, Michael Felderer, and Matthias Leitner

http://dx.doi.org/10.1007/978-3-319-57858-3_1
http://dx.doi.org/10.1007/978-3-319-57858-3_1
http://dx.doi.org/10.1007/978-3-319-57858-3_2
http://dx.doi.org/10.1007/978-3-319-57858-3_2
http://dx.doi.org/10.1007/978-3-319-57858-3_3
http://dx.doi.org/10.1007/978-3-319-57858-3_3
http://dx.doi.org/10.1007/978-3-319-57858-3_4
http://dx.doi.org/10.1007/978-3-319-57858-3_4
http://dx.doi.org/10.1007/978-3-319-57858-3_5
http://dx.doi.org/10.1007/978-3-319-57858-3_6
http://dx.doi.org/10.1007/978-3-319-57858-3_7
http://dx.doi.org/10.1007/978-3-319-57858-3_7
http://dx.doi.org/10.1007/978-3-319-57858-3_8
http://dx.doi.org/10.1007/978-3-319-57858-3_8
http://dx.doi.org/10.1007/978-3-319-57858-3_9
http://dx.doi.org/10.1007/978-3-319-57858-3_9

Gaining Certainty About Uncertainty: Testing Cyber-Physical Systems
in the Presence of Uncertainties at the Application Level 129

Martin A. Schneider, Marc-Florian Wendland, and Leon Bornemann

Risk Management During Software Development: Results of a Survey
in Software Houses from Germany, Austria and Switzerland 143

Michael Felderer, Florian Auer, and Johannes Bergsmann

Author Index . 157

VIII Contents

http://dx.doi.org/10.1007/978-3-319-57858-3_10
http://dx.doi.org/10.1007/978-3-319-57858-3_10
http://dx.doi.org/10.1007/978-3-319-57858-3_11
http://dx.doi.org/10.1007/978-3-319-57858-3_11

Security Risk Management

Business Driven ICT Risk Management in the Banking
Domain with RACOMAT

Johannes Viehmann(✉)

Fraunhofer FOKUS, Berlin, Germany
Johannes.Viehmann@fokus.fraunhofer.de

Abstract. Bringing business risk management and technical security risk
management together is one of the major challenges banks currently struggle with
in order to increase their resilience against cyber security threats. This short paper
presents a systematic approach for such an integrated security risk management
which is currently developed in cooperation with a system-relevant bank. The
approach uses well known methods and existing standards, it takes advantage of
knowledge databases and available generic domain specific models. A first case
study has just started. With tool support and especially with a high level of auto‐
mation the presented approach might become applicable even for large banks.

Keywords: Risk assessment · Security · Business process simulation · Banking

1 Introduction

For banks, managing risks is a vital part of their core business. Whenever they give
credit or invest in some business, there is no guarantee that they will get in return what
they expect. Banks evaluate both the opportunities and the risks in order to limit their
losses and to maximize their profit.

While giving a credit for example has an immanent business risk that the debtor will
not be able to repay the loan, there are also operational and technical risks which could
cause losses. For example if the credit agreement would be manipulated or lost, that
could cause substantial problems. Since today nearly the entire business of banks
depends on modern information and communication technology, banks have to defend
themselves and their stakeholders especially against cyber security threats.

Eventually in contrast to other organizations in different market sectors, banks are
absolutely aware that they have to manage their business risks, their operational and
technical risks. Banks do invest significant amounts of money and effort to analyze and
treat their security risks, for instance by having redundant backup data centers to prevent
that important services become unavailable. Besides their very own interest in doing so,
banks are also legally required to manage their risks carefully and to implement certain
safeguards.

Since the recent financial crises, even new and stricter international regulations have
been initiated in order to prevent future credit- and banking crises, e.g. Basel III [10].
Additionally there are national laws like the German banking act KGW [11].

© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 3–10, 2017.
DOI: 10.1007/978-3-319-57858-3_1

2 The Problems, Challenges and Related Work

Cooperating with a system-relevant bank in a German BMBF funded research project
has revealed that banks do have a strong business risk management and they also have
established advanced technical cyber security management capabilities. Nonetheless, it
is still challenging for banks to assess the consequences technical issues might have for
their core business processes – especially when it comes to indirect, mid-term and long-
term consequences. Judging how much banks should invest in their cyber security
becomes incredible difficult if little is known about the economic impact.

There are a few academic publications about cyber security risk management in
combination with process models, e.g. [12, 13], but they do not specify an applicable
way to analyze how exactly technical incidents interact with the business models. In
Jakoubi et al. [14] describe concepts to model effects of technical scenarios on business
processes. Nonetheless, methods and tools for technical cyber risk management
combined with business risk management which are applicable for large organizations
like system relevant banks are still not existing.

This short paper shows ongoing research and development efforts to close precisely
the gap between business risk management and technical cyber security risk manage‐
ment – especially for the banking domain.

3 Methods and Concepts

Risk management as defined in ISO 31000 [2] includes both risk assessment and risk
treatment. Risk assessment means to identify, analyze and evaluate risks while risk
treatment tries to reduce risks at least so far that they become acceptable. Risks are events
having unwanted consequences. Such incidents in the core banking business processes
might directly lead to financial losses for a bank. Unwanted incidents in the ICT typically
harm the confidentiality of information, the integrity of data or the availability of serv‐
ices. Costs are not obvious. Before facing the challenges to analyze more indirect conse‐
quences and especially to quantify the ICT risks for banks with monetary values, it makes
sense to take a look at the basic risk assessment techniques.

There are already lots of established risk assessment methods and concepts that are
also suitable for assessing risks in the banking domain. On the technical side, for instance
fault tree analysis (FTA) [7], event tree analysis ETA [8], Failure Mode Effect (and
Criticality) Analysis FMEA/FMECA [6] or CORAS [1] are popular. The result of the
technical risk assessment with any of these methods will be a risk model containing
unwanted incidents (events, failures, faults) with some likelihood estimates for their
occurrence and information about potential consequences.

For analyzing the consequences, e.g. the CORAS method suggests an asset analysis.
After identifying the assets and stakeholders, the effect of the identified incidents can
be modeled. This could already build a bridge from the pure technical events to non-
technical, economical effects.

But how exactly should it be done? The method suggested in traditional risk assess‐
ment methods for the asset analysis is an expert hearing, a workshop. This may be well

4 J. Viehmann

enough for risk assessment in small organizations. If the task is to assess a large organ‐
ization having very complicated business processes like a system relevant bank, analysts
will eventually get lost without more advanced techniques.

For identifying incidents and for analyzing likelihoods systematically, there are
many established concepts and methods that make the analysts life way easier. Using
existing risk related databases like check lists for example helps to make sure to cover
all already known vulnerabilities, weaknesses and threat scenarios without overlooking
any of them. Likelihood values of base incidents like faults or failures are not necessarily
only expert estimates or experience values from literature. It is eventually possible to
apply objective analytical techniques like security testing for instance and to approxi‐
mate the observed behavior with likelihood notations. Likelihoods of dependent inci‐
dents can be calculated automatically by tools if the dependency relations between the
events are modeled correctly.

Similar techniques could help to analyze the business consequences. Leaving the
technical level does not mean that systematic objective analysis is not feasible at all.

3.1 Business Simulation Using Models Created with Domain Specific Catalogues

The potential negative economic effects for stakeholders are not limited to loosing assets
the stakeholders previously owned. If some of its IT services become unavailable for
instance, a bank will neither generate revenue nor profit with these services that do not
work properly until they are repaired and fully functional again. So it is not an asset the
stakeholders already own that is harmed. Instead the negative economic consequences
are lost business opportunities. The bank generates less revenue and less profit.

One idea that comes to mind for analyzing the economic potential under certain
conditions is to use event simulations on business process models. Such business simu‐
lations could help to study the expected negative effects of unwanted technical incidents.
First of all a simulation can be used to assess the opportunities in terms of expected
revenue or profit for the case that the IT works perfectly. The expected revenue or benefit
in scenarios with temporary disturbances of the involved services can be analyzed in
other simulations. This allows analysts to calculate the expected overall financial losses
in the simulated time period as the difference between the expected values in the optimal
case and in the cases with disturbances.

The business simulations themselves are event simulations and computers can
execute them efficiently once they are modeled properly. However, creating appropriate
models for the business processes which are detailed enough and contain all dependen‐
cies as well as conditions needed to perform correct event simulations is not a trivial
task. Also, it must be possible to systematically introduce the immediate effects of tech‐
nical incidents identified and analyzed in a technical risk assessment into those event
simulations at the business level so that realistic behavior can be observed.

To optimally support the task of creating such business models, it makes sense to
use existing information and knowledge as far as such information is available. If an
organization does not yet have complete high quality models for its core business
processes, then eventually some domain specific but otherwise generic models can be
used as a starting point.

Business Driven ICT Risk Management 5

The BIAN standard [3] offers generic business models for the banking domain. Its
exemplary business scenarios are indeed at least a good starting point for analyzing the
core business of banks because using the generic BIAN models as a starting point might
help to avoid human errors. The BIAN business scenarios are given as sequence
diagrams which are very high level and abstract. It is necessary to adapt them carefully
to reflect the real world implementations in a specific bank. This task involves some
serious effort. It requires excellent knowledge and a certain amount of manual work –
but definitely less than starting from scratch. There is an entire BIAN guide for adapting
and applying the BIAN standard for a specific bank [9] (Fig. 1).

Fig. 1. Overall risk assessment process

In order to simulate events on the business level, the BIAN sequence diagrams are
eventually not detailed enough. For instance, they do not cover session management or
rollback behavior if something goes wrong. Modelling processes with more details and
behavior for unwanted circumstances as sequence diagrams is probably not the best
choice. Sequence diagrams with many alternatives tend to get very confusing. BPMN
[4] might be more appropriate to model the more detailed adapted flows.

Additionally, for the assessment of opportunities (and afterwards for the assessment
of risks), the business process model must contain information about the economic
impact of the process. That requires at least to specify how often the process is executed
within a certain time period and how much revenue or profit is generated in the average
each time the process is completed successfully. Both the frequency and the average
monetary values might change over time. During the night the frequency of banking
transactions might be significantly lower, for example. At the end of each month and
especially of each year, frequencies might generally be higher. Hence, these values
should be specified as functions over the time.

Risk evaluation is only possible for specific stakeholders: One might accept risks
others will not take. Therefore, stakeholders should be added to the business model. For
each opportunity, it should be specified how big the share for each stakeholder is. Each
stakeholder may have his own limits which losses of revenue or profit he would accept.
Sometimes the acceptance will be in relation to regular investments and expenses which
occur within the same time period. Eventually it makes sense to approximate these
regular costs within the same business simulation.

3.2 Modelling the Bridge Between Technical Incidents and Business Processes

In risk assessment, analysts are primarily interested in the cases that something goes
wrong. Therefore, it is necessary to add unwanted behavior and failure paths to the
business model. In this paper, the focus is on analyzing consequences of technical
unwanted incidents in the IT infrastructure of a system relevant bank.

6 J. Viehmann

Creating one single large business model that contains also the technical risk assess‐
ment would lead to unmanageable complexity. In fact even creating a business model
that contains multiple business processes might already be confusing.

Instead, the technical risk assessment and the business risk management should both
try to use multiple but small models, only coupled in a loose, flexible way. The basic
idea to make it nevertheless possible to analyze all the business consequences is to
reproduce just some unwanted technical incidents within multiple high level business
event simulations. More precisely the events must be reproduced in the simulation of
each business processes that might be affected by the technical incidents. The otherwise
independent event simulations on the business level must reflect how the unwanted
incidents from the technical risk assessment change business flows.

Of course, therefore it is necessary to somehow connect the various business models
with the technical risk assessment artifacts. The BIAN standard describes banking busi‐
ness in a service oriented way with distinct abstract building blocks called Service
Domains. Even if banks do not implement everything in a service oriented fashion, this
service oriented perspective allows to model isolation levels precisely.

To make it possible to map technical events occurring in some component on Service
Domains on which the events might have an effect, it must be modeled how each abstract
Service Domain is implemented within the bank. Hence, it is necessary to model, which
specific building blocks (e.g. actors, software instances and hardware system) provide
the functionality and capabilities the Service Domain describes.

Analyzing the impact of technical incidents will only work if the model reflects
where each specific technical building block is used – it can be in many different Service
Domains. Having two separate systems does not imply that the incidents on the different
systems are statistically independent. If the systems both have installations of the same
software program for example, they will have both all the vulnerabilities of that program.
Clearly it is important to identify any reused concepts and techniques (i.e. roles,
programs, hardware types) as separate specific building blocks.

Using a strict taxonomy for the classification of the specific building blocks and the
concept of creating a single bill of materials containing each of these blocks exactly
once should help to avoid errors which would lead to models having incorrect depend‐
encies (Fig. 2).

The technical incidents identified and analyzed for the building blocks within each
Service Domain must somehow be propagated into the business models of processes
using these Service Domains. Looking closer at the nature of the incidents might give
a first hint: Most unwanted incidents for IT systems violate confidentiality, integrity or
availability. These three categories of technical consequences indicate already how the
business risk model could be affected:

In case of reduced availability, dependent business processes will not work as
expected. Timeouts might occur and eventually rollbacks have to be performed to keep
data consistent. Incoming requests may be rejected. The business simulations can be
used to quantify the missed business opportunities with monetary values.

In case of damaged integrity or authenticity, typically assets the stakeholders previ‐
ously already owned could be harmed as a direct economic consequence.

Business Driven ICT Risk Management 7

In case of lost confidentiality, the most immediate monetary consequences are likely
legal consequences: Fines by regulatory bodies and compensation payments for example
to customers whose privacy was violated.

Because the banking domain is a highly regulated market sector, significant penalties
and compensations might also occur for violated availability or integrity.

In any case, there can be more indirect consequences, especially if the incidents
reoccur frequently. Reputation might be damaged and customers could be lost.

3.3 Assessing Legal Risks and Reputation Risks

For analyzing potential legal consequences, business simulations can only help to
approximate the expected circumstances of a potential case. Laws and regulations
provide eventually ranges for the possible penalties.

An even better source for coming up with numbers for the fines to expect is probably
experience from the past – if there have been similar cases and if any experience is
already available at all. The fines banks had to pay in a real world cases are a good
indicator for how the laws and regulations will actually be applied.

Banking business is all about trust. The reputation that money given to a bank is in
good hands, that it is safe, accessible and that it hopefully even generates profit is vital
for any bank. If the cyber security of a bank is corrupted, that might cause damage to
the reputation. This might make it more difficult to attract new customers and eventually
some who are customers will look for another bank to do their business.

To assess changes of the reputation and the monetary effects caused by such
changes is more difficult. Besides questioning people, one can try to learn from past
incidents, once again. However, it is hard to observe the mid-term and long-term
consequences since other factors could overlap and data from other banks will most
likely be unavailable.

Fig. 2. Excerpt of the taxonomy developed for the bill of materials which are building blocks

8 J. Viehmann

3.4 Advanced Stakeholder Analysis for Risk Evaluation

Calculating expected losses per time period and comparing these values with the costs
stakeholders would eventually accept is a sound approach for the risk evaluation. A
simple asset analysis, as it is suggested for example in the CORAS method [1], will not
work for a system relevant bank. The complex banking business requires to distinguish
between property, opportunities, fines and reputation. Missed opportunities and espe‐
cially fines in the highly regulated banking domain are for instance the major reason
why availability is such a crucial issue for banks. We suggest to do an intense stakeholder
analysis that distinguishes carefully between these four categories of consequences.
Table 1 summarizes how the technical incidents hint to the consequences and how
expected monetary values can be approximated.

Table 1. Artifacts in the advanced consequences and stakeholder analysis

Property Opportunity Legal Reputation
Caused by technical
incidents harming

Integrity Availability, also
integrity

Confidentiality, also
availability and
integrity

Anything
catastrophic or
frequently occurring

Methods to
approximate
monetary values

Expert hearing Business process
simulation

Study fines and
compensations e.g.
in the past

Question customers,
try to learn from
history

Difficulty to come up
with good numbers

Easy Moderate Moderate Hard

Limit of costs (worst
case)

Value of asset Expenses plus lost
potential profit

None None (because it is
long term)

4 Tool Support and Application

While transferring technical incidents into a business risk assessment could eventually
be done manually without specialized tools, the event simulations themselves and calcu‐
lating overall costs will for sure require adequate tool support. The transferring and all
modeling might of course benefit from domain specific tool support, too.

RACOMAT [5] is a tool for ISO 31000 conform risk management having built-in
support for event simulations. For risk assessment in the banking domain, a domain
specific plug-in for RACOMAT has been developed. The plug-in supports the task to
adapt and apply models from the BIAN standard, e.g. by creating extended BPMN
models preserving the Service Domain structure from the exemplary sequence diagrams
semi-automatically. It can extend the model to enable event simulations with default
timeout behavior. Taking benefit of CMDB systems, the tool helps to create a catalogue
of specific building blocks structured by the building block taxonomy. Modeling rela‐
tions to Service Domains becomes straight forward with the plug-in.

With the help of the RACOMAT tool and the banking domain specific plug-in, for
selected business scenarios and technical incidents, the methods and concepts are
currently applied in cooperation with a system relevant bank and a data center provider
under realistic conditions as a first case study and as a proof of concept. The first goal
is to show that RACOMAT can model and simulate historic cases realistically.

Business Driven ICT Risk Management 9

5 Conclusion and Future Work

Due to the complexity of banking business and its massive dependency upon modern
ICT, bringing together a technical low level risk management and high level business
risk management requires a new systematic approach and tool support. The methods,
concepts and tools outlined here may be a step in that direction. That said, more research
is required especially to improve scalability.

Some of the ideas presented here are specific for the banking domain, e.g. using
BIAN. But it should be possible to develop similar solutions for other domains, using
other catalogues of generic business models.

References

1. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS Approach.
Springer, Heidelberg (2011)

2. International Standards Organization: ISO 31000:2009(E), Risk management – Principles and
guidelines (2009)

3. BIAN e.V.: The BIAN Service Landscape Version 4.5, Frankfurt am Main (2016)
4. Tjoa, S.: A formal approach enabling risk-aware business process modeling and simulation.

IEEE Trans. Serv. Comput. 4, 153–166 (2011). doi:10.1109/TSC.2010.17
5. Viehmann, J., Werner, F.: Risk assessment and security testing of large scale networked systems

with RACOMAT. In: Seehusen, F., Felderer, M., Großmann, J., Wendland, M.-F. (eds.) RISK
2015. LNCS, vol. 9488, pp. 3–17. Springer, Cham (2015). doi:10.1007/978-3-319-26416-5_1

6. Bouti, A., Kadi, D.A.: A state-of-the-art review of FMEA/FMECA. Int. J. Reliab. Qual. Saf.
Eng. 1, 515–543 (1994)

7. International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (1990)
8. International Electrotechnical Commission: IEC 60300-3-9 Dependability management –

Part 3: Application guide – Section 9: Risk analysis of technological systems – Event Tree
Analysis (ETA) (1995)

9. Rackham, G.: 2015. Banking Industry Architecture Network BIAN - How-to Guide v4:
Applying the BIAN Standard, Frankfurt am Main (2016). https://bian.org/assets/bian-
standards/bian-service-landscape-4-0/. Accessed 21 Mar 2016

10. Basel Committee on Banking Supervision 2016: Compilation of documents that form the
global regulatory framework for capital and liquidity. https://www.bis.org/bcbs/basel3/
compilation.htm. Accessed 30 Dec 2016

11. Kreditwesengesetz in der Fassung der Bekanntmachung vom 9. September 1998 (BGBl. I S.
2776), das durch Artikel 5 des Gesetzes vom 23. Dezember 2016 (BGBl. I S. 3171) geändert
worden ist. https://www.gesetze-im-internet.de/kredwg/BJNR008810961.html. Accessed 30
Dec 2016

12. Mock, R., Corvo, M.: Risk analysis of information systems by event process chains. Int. J.
Crit. Infrastruct. 1, 247 (2005). doi:10.1504/IJCIS.2005.006121

13. Gjære, E.A., Meland, P.H.: Threats management throughout the software service life-cycle.
Electron. Proc. Theor. Comput. Sci. 148, 1–14 (2014). doi:10.4204/EPTCS.148.1

14. Jakoubi, S., Tjoa, S., Quirchmayr, G.: Rope: a methodology for enabling the risk-aware
modelling and simulation of business processes. Presented at the ECIS 2007, AIS (2007)

10 J. Viehmann

http://dx.doi.org/10.1109/TSC.2010.17
http://dx.doi.org/10.1007/978-3-319-26416-5_1
https://bian.org/assets/bian-standards/bian-service-landscape-4-0/
https://bian.org/assets/bian-standards/bian-service-landscape-4-0/
https://www.bis.org/bcbs/basel3/compilation.htm
https://www.bis.org/bcbs/basel3/compilation.htm
https://www.gesetze-im-internet.de/kredwg/BJNR008810961.html
http://dx.doi.org/10.1504/IJCIS.2005.006121
http://dx.doi.org/10.4204/EPTCS.148.1

Towards Transparent Real-Time Privacy Risk
Assessment of Intelligent Transport Systems

Gencer Erdogan(B), Aida Omerovic, Marit K. Natvig, and Isabelle C.R. Tardy

SINTEF Digital, Oslo, Norway
{gencer.erdogan,aida.omerovic,marit.k.natvig,isabelle.tardy}@sintef.no

Abstract. There are many privacy concerns within Intelligent Trans-
port Systems (ITS). On the one hand, end-users are concerned about
their privacy risk exposure, while on the other hand, ITS providers need
to claim privacy awareness and document compliance with regulations
or otherwise face devastating fines. One approach to address these con-
cerns is to use methods specifically developed to assess privacy risks of
ITS. The literature lacks such methods, and the complex and dynamic
nature of ITS introduces challenges that need to be properly addressed
when assessing privacy risks. The main challenges are related to real-time
assessment of privacy risks to (1) inform end-users about exposed privacy
risks, and (2) help providers asses privacy-compliance risks. We propose
a method to privacy risk assessment addressing these challenges. The
method is exemplified on an ITS-example. The initial results indicate
feasibility of the method and propose directions for future work.

Keywords: Privacy risk assessment · Intelligent Transport Systems ·
Real-time risk assessment

1 Introduction

Intelligent Transport Systems (ITS) are systems in which information and com-
munication technologies are applied in the field of road transport, including
infrastructure, vehicles and users, and in traffic management and mobility man-
agement, as well as for interfaces with other modes of transport [2].

There are many privacy risks within ITS solutions due to the wide-spread
data recording, exchange of data between systems, and monitoring/tracking of
persons and vehicles [7,11]. Much of this data originates from connected persons
and connected things associated with persons (e.g. connected vehicles). Thus,
ITS may directly or indirectly compromise the identity of persons, their loca-
tion, plans, and activities. Moreover, service providers in general have to fulfill
strict privacy requirements defined by the recent EU Regulation 2016/679 [3],
which also requires the citizen’s right to a transparent view into the processing
of personal data as well as related privacy risks (Article 12). Non-compliance
with this regulation, which applies from May 2018 will, according to the regula-
tion, result in fines up to 20 million EUR, or in the case of an undertaking,
c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 11–18, 2017.
DOI: 10.1007/978-3-319-57858-3 2

12 G. Erdogan et al.

up to 4% of the total worldwide annual turnover of the preceding financial
year [3]. In light of these privacy concerns, there is a need for additional measures
to ensure sufficient and adequate safeguards to the user’s privacy [11]. One mea-
sure is to use methods specifically developed to assess privacy risk of ITS, which
are essential for an ITS service provider to be able to claim privacy awareness
and to document compliance with regulations.

However, the literature lacks methods specifically to assess privacy risks of
ITS, and the complex and dynamic nature of ITS introduces challenges that
need to be properly addressed when assessing privacy risks [1]. In this short
paper, we first outline needs and challenges within privacy risk assessment of
ITS (Sect. 2). Based on this, we describe our initial method in the context of
an example (Sect. 3). Finally, we discuss to what extent our current method is
feasible with respect to the needs and challenges, before we conclude (Sect. 4).

2 Needs and Challenges

In order to identify needs and challenges within privacy risk assessment of ITS,
we conducted an empirical study in terms of identifying state of the art, carrying
out a case study on ITS, and carrying out interviews and a workshop together
with experts in the field. The empirical study is documented in a publicly avail-
able technical report [1]. In this section, we summarize those findings.

In general, end-users make use of ITS services to get assistance in traffic,
as well as to plan and carry out journeys. ITS providers, on the other hand,
collect data from end-users through ITS services, which monitor and track end-
users, to manage the traffic with the main goal to provide better and more
useful services. However, very often data is collected, processed, and stored in
a manner completely oblivious to the end-user and not in accordance with laws
and regulations [8]. Thus, within ITS, end-users are exposed to privacy risks,
while ITS providers are exposed to privacy-compliance risks.

Due to the highly dynamic and complex ecosystem of ITS services, end-users
need to be informed and be aware of exposed privacy risks in real-time, and
based on that decide whether or not to use the service in question.

ITS providers need to obtain a privacy risk picture of their services in real-
time, and to properly assess compliance with respect to privacy laws and regu-
lations – in particular compliance with the recent EU Regulation 2016/679 [3].

Privacy risks are in general assessed by making use of general Privacy Impact
Assessment (PIA) methods typically based on standards such as ISO 27005,
NIST SP 800-30, ISO 29100, and ISO 22307, and are mainly developed and
carried out at a governmental level [13]. These methods are often too generic and
carried out at a high-level of abstraction, and they need to be specialized towards
ITS services. To the best of our knowledge, there are two domain-specific PIA
methods for ITS services [4,9]. These approaches are useful for assessing privacy
risk of ITS services at business level, but they lack two important features. First,
they do not facilitate real-time privacy risk assessment of ITS services. Second,
they mainly facilitate privacy risk assessment from the provider point of view,

Towards Transparent Real-Time Privacy Risk Assessment of ITS 13

and do not include assessment from the end-user point of view. To summarize,
there is need for practically useful computerized methods for real-time privacy
assessment of ITS services to:

– Inform end-users about exposed privacy risks caused by ITS services.
– Help ITS providers assess privacy-compliance risks of their services.

3 Initial Method: Example-Driven Feasibility Study

3.1 Method

The main target group of our method is risk managers of ITS providers. Risk
assessment is carried out by risk managers to identify, estimate, and evaluate
privacy risks end-users may be exposed to. However, end-users and developers
are also target groups of the method in the sense that they contribute to the
risk assessment by answering a set of questions, and benefit from the assess-
ment results. Risk managers are interested in discovering privacy-compliance
risks. End-users are interested in exposed privacy risks caused by ITS services.
Developers are interested in privacy risks caused by design decisions.

Our method follows a model-based indicator-driven risk assessment approach.
We use the term model in the meaning of graphical/diagrammatic model that
captures the privacy risk picture and that supports the calculation of risk-levels
based on likelihood and consequence. To this end, we use the CORAS [6] risk
modeling language to create privacy risk models. The risk estimation in our
method is based on real-time data captured by ITS services, such as the num-
ber of times specific parking lots are used, whether electric charging services
are in use, the number of times an end-user uses a travel-planning app, etc.,
as well as information collected from end-users and developers. We collectively
refer to such information as indicators and differentiate between three kinds of
indicators: real-time ITS indicators (RT), end-user indicators (EU), and devel-
oper indicators (D). End-user and developer indicators are obtained through
questionnaires answered by end-users and developers, respectively. This infor-
mation is obtained periodically or on a one-time basis. As illustrated in Fig. 1,
the method consists of four steps.

Fig. 1. Method for privacy risk assessment of ITS.

In Step 1, we identify privacy risks by analyzing the target ITS system based
on its description with respect to certain privacy assets (e.g. identity of end-
users), and develop a model that captures the identified privacy risks. As part of

14 G. Erdogan et al.

this step we also identify a likelihood scale in terms of frequency intervals, a con-
sequence scale describing the impact by which the privacy of end-user is harmed,
and a risk evaluation matrix based on the likelihood and consequence scales (see
Fig. 4). We define the likelihood scale as {Rare, Unlikely, Possible, Likely, Cer-
tain} and associate each value to a corresponding frequency interval. For exam-
ple, the likelihood Possible may be defined as frequency interval [10,50 〉:1w,
which means “from and including 10 to less than 50 times per week.” We define
the consequence scale as {Insignificant, Minor, Moderate, Major, Catastrophic}
and describe each consequence value. The output of this step is a privacy risk
model expressed in CORAS [6].

In Step 2, we identify indicators relevant to the risk model. All indicators are
defined as questions about a particular fragment of the risk model, and attached
to the relevant fragment. The questions are formulated in such a way that the
answers are used to support risk estimation (see Fig. 3 for examples). Indicators
are categorized either as EU, D, or RT. The output of this step is the same
privacy risk model as in Step 1, but now updated with indicators.

In Step 3, we first answer the questions posed by the indicators, and then we
use the answers as a basis to estimate the likelihood as well as the consequence
of identified privacy risks. The output of this step is the same privacy risk model
as in Step 2, but now updated with risk estimates.

In Step 4, we evaluate the identified privacy risks by mapping the risks to the
predefined risk matrix with respect to their likelihood and consequence estimates.
As illustrated in Fig. 4, risks are grouped in five levels horizontally on the matrix
where Very low is the lowest risk level and Very high is the highest risk level.
The risk level is identified by mapping the underlying color to the column on
the left-hand side of the matrix. The output of this step is the risk assessment in
terms of the matrix including identified risks and their risk level. This output is
used by the risk manager to evaluate compliance with privacy-related laws and
regulations, provide developers with details about privacy risks at design level
(captured by risk models), and inform end-users about exposed privacy risks.

3.2 Applying the Method on an ITS Example Case

Our view of ITS is in line with the envisaged transition from the multitude of
different transport services to the interconnected Mobility as a Service (MaaS)
where “a customer’s major transportation needs are met over one interface and
are offered by a service provider” [5,10]. Figure 2a illustrates an example of an
ITS system (a simplified version of the example in [1]), while Fig. 2b illustrates
a use-case we consider in this example.

Assume an end-user has installed an app named Travel Companion App on
the smartphone which enables the user to plan and book multimodal journeys.
The user searches on a door-to-door journey using this app. The app sends this
request to the MaaS, which in turn requests information from various transport
service providers, such as car sharing, public transport etc., in order to con-
struct possible journey routes. Assume now that the MaaS suggests the following
journey: (1) take car sharing to the train station, (2) take the train to the city
center, (3) take a city bike and bike to your final destination.

Towards Transparent Real-Time Privacy Risk Assessment of ITS 15

Fig. 2. (a) Simplified example of an ITS system. (b) A use-case in the ITS system.

Step 1. Let us say we are interested in identifying privacy risks with respect
to the asset identity of end-user (A1). Figure 3 shows a risk model capturing
one possible privacy risk UI1 that may compromise the identity of the end-user.
This may be caused by a set of threat scenarios (TS1, TS2, TS3, and TS4)
initiated by the Travel Companion App (T1). The threat scenarios TS1, TS2,
and TS3 are scenarios in which the Travel Companion App shares with the MaaS
the end-user’s location, age, and exercise habits, respectively. These data may be
aggregated by the MaaS and shared with advertisement partners (TS4), which in
turn causes the risk UI1. In this example, we define the following likelihood scale
{Rare=[0,5 〉:1w, Unlikely=[5,10 〉:1w, Possible=[10,20 〉:1w, Likely=[20,70 〉:1w,
Certain=[70,∞〉:1w}. For the purpose of the example we only define consequence
Major as “personally identifiable information exposed.”

Step 2. Figure 3 shows six indicators (gray note-icons) identified for the risk
model. Indicators RT1, RT2, RT3, and RT4 are identified for threat scenarios
TS1, TS2, TS3, and TS4, respectively. RT1, RT2, and RT3 are based on the

Fig. 3. Privacy risk model for the example use-case in Fig. 2b.

16 G. Erdogan et al.

rationale that when the Travel Companion App is used, then certain information
about the end-user required by the service is transmitted to the MaaS. Moreover,
the MaaS aggregates this information to help advertisement partners construct
customized advertisements for each end-user. Thus, the rationale for indicator
RT4. In addition to RT3, we have identified indicator D1 for threat scenario TS3.
Indicator D1 is included to help assess a more correct frequency for TS3 because
it is a question directed to developers. Indicator EU1 is attached to the relation
going from UI1 to the asset identity of end-user. Based on the answer provided by
the end-user for EU1 we may assess the consequence of UI1. This is because some
end-users may be willing to provide their identity in order to receive customized
advertisements. In that case the consequence of UI1 is reduced.

Step 3. As illustrated in Fig. 3, indicator RT1 returns estimate [5,10 〉:1w, which
means that threat scenario TS1 occurs with likelihood Unlikely according to the
predefined likelihood scale. Similarly, we see that the likelihood of TS2 is Rare
based on indicator RT2. TS3, however, is estimated to likelihood Possible. This
is because the answer to indicator D1 is Yes, and based on this we choose to
increase the likelihood from Rare (in the case where only RT3 is considered for
TS3) to likelihood Possible. Assuming TS1, TS2, and TS3 are separate, we find
out the likelihood of TS4 by adding the likelihoods of TS1, TS2, and TS3 [6],
which gives [15,35 〉:1w. We also need to add the frequency provided by RT4. This
results in frequency [20,45 〉:1w, which means that TS4 occurs with likelihood
Likely. Thus, UI1 has likelihood Likely. The answer to indicator EU1 is No.
Based on this, we choose to estimate the consequence of UI1 as Major.

Step 4. Based on Step 3, we see that the privacy-risk UI1 occurs with likelihood
Likely, and has a Major consequence on asset identity of end-user. We map this
to the risk matrix and see that UI1 has risk level High (see Fig. 4).

Fig. 4. Privacy risk evaluation matrix.

Towards Transparent Real-Time Privacy Risk Assessment of ITS 17

4 Discussion and Conclusion

In this section, we first discuss to what extent our method is feasible w.r.t. the
needs and challenges pointed out in Sect. 2, before we conclude.

Inform end-users about exposed privacy risks caused by ITS services.
The risk evaluation matrix (Fig. 4) is the final output of our method and is
provided to the end-user. The matrix contains the identified privacy risks, their
likelihood, their consequence, as well as their risk level. The risk descriptions
provide an explanation to the end-user about the exposed privacy risks. The
likelihood and consequence scales on the matrix show the end-user the like-
lihood and consequence for each exposed privacy risk. The risk-level column
provides the risk level of each identified risk plotted in the matrix. Based on this
information the end-user is informed about exposed privacy risks as well as their
risk level in a transparent manner. This is transparent in the sense that the risk
assessment is carried out by the ITS service provider and made available to the
end-user. We do not describe the risk levels because the risk acceptance criteria
may vary among end-users. Finally, the EU indicators not only support the risk
assessment, but also inform the end-user about user-specific information taken
into account in the risk assessment.

Help ITS providers assess privacy-compliance risks of their ser-
vices. Our method is mainly developed to carry out risk assessment on behalf of
end-users with respect to privacy-related assets important to end-users, such as
identity (example in Sect. 3.2). Laws and regulations such as the EU Regulation
2016/679 [3] mainly consist of requirements specifically focused on the privacy of
end-users that providers must fulfill. Thus, to this end, our approach is useful for
assessing privacy-compliance risks that address requirements focused on the pri-
vacy of end-users. Moreover, the usage of indicators in the risk models helps the
ITS providers to link risks to privacy-specific laws and regulations in one model.

Real-time privacy risk assessment. Our current (initial) approach is sup-
ported by the necessary foundation for tool support and automation. CORAS [6]
is supported by formal rules to calculate risks, and we may use existing guide-
lines [12] to schematically translate CORAS risk models into executable algo-
rithms. Based on input provided by the indicators, the algorithms may assess the
privacy risks captured by the risk models. We are confident that this envisioned
solution for tool-support is feasible as we have in fact taken part in implementing
a similar approach in a framework for real-time cyber-risk assessment developed
by the WISER-project [12]. However, although indicator-driven real-time assess-
ment do exist within cybersecurity [12], this is yet an unexplored area within the
domain of privacy assessment of ITS [1], and as future work we plan to inves-
tigate how real-time information may be obtained from ITS to support privacy
risk assessment.

In conclusion, there is need for practically useful support for real-time privacy
assessment of ITS services to (1) inform end-users about exposed privacy risks
caused by ITS services, and (2) help ITS providers assess privacy-compliance

18 G. Erdogan et al.

risks of their services. In this short paper, we provide an initial method for a
transparent real-time privacy risk assessment of ITS addressing the aforemen-
tioned needs. The innovative contribution of the paper is integration of indicators
in the privacy assessment. If valid and reliable, the indicators are expected to
facilitate the capturing of relevant changes in privacy issues so that end-users and
ITS providers can timely be informed. We currently claim that the approach is
ITS-specific since we so far have only evaluated it on the ITS domain. Generality
of the approach will depend on results of future evaluations on other domains.
The evaluation so far indicates that our approach is one step at the right direc-
tion. A natural part of further evaluation would be to assess the effectiveness of
our approach w.r.t. needs of the stakeholders.

Acknowledgments. This work has been conducted as part of the PrivacyAssess-
ment@SmartCity project funded by SINTEF, as well as the WISER project (653321)
funded by the European Commission within the Horizon 2020 research and innovation
programme.

References

1. Erdogan, G., Omerovic, A., Natvig, M.K., Tardy, I.C.R.: Needs and challenges con-
cerning privacy risk management within Intelligent Transport Systems. Technical
report A27830, SINTEF (2016)

2. European Parliament. Directive 2010/40/EU (2010)
3. European Parliament. Regulation (EU) 2016/679 (2016)
4. Friginal, J., Guiochet, J., Killijian, M.-O.: Towards a privacy risk assessment

methodology for location-based systems. In: Stojmenovic, I., Cheng, Z., Guo, S.
(eds.) MindCare 2014. LNICSSITE, vol. 131, pp. 748–753. Springer, Cham (2014).
doi:10.1007/978-3-319-11569-6 65

5. Hietanen, S.: MaaS-the new transport model? Eurotransport Mag. 12(2), 2–4
(2014)

6. Lund, M.S., Solhaug, B., Stølen, K.: Analysis, Model-Driven Risk: The CORAS
Approach. Springer, Heidelberg (2011)

7. Psaraki, V., Pagoni, I., Schafer, A.: Techno-economic assessment of the potential of
intelligent transport systems to reduce CO2 emissions. IET Intel. Transport Syst.
6(4), 355–363 (2012)

8. Pultier, A., Harrand, N., Brandtzæg, P.B.: Privacy in mobile apps: measuring
privacy risks in mobile apps. Technical report A27493, SINTEF (2016)

9. Ren, D., Du, S., Zhu, H.: A novel attack tree based risk assessment approach for
location privacy preservation in the VANETs. In: Proceedings of IEEE Interna-
tional Conference on Communications (ICC 2011), pp. 1–5. IEEE (2011)

10. Spickermann, A., Grienitz, V., von der Gracht, H.A.: Heading towards a multi-
modal city of the future? Multi-stakeholder scenarios for urban mobility. Technol.
Forecast. Soc. Chang. 89, 201–221 (2014)

11. Vandezande, N., Janssen, K.: The ITS directive: more than a timeframe with pri-
vacy concerns and a means for access to public data for digital road maps? Comput.
Law Secur. Rev. 28(4), 416–428 (2012)

12. WISER: Cyber risk modelling language and guidelines, preliminary version. Tech-
nical report D3.2, WISER (2016)

13. Wright, D., de Hert, P.: Privacy Impact Assessment. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-319-11569-6_65

Check Your Blind Spot: A New Cyber-Security
Metric for Measuring Incident Response

Readiness

Benjamin Aziz1(B), Ali Malik1, and Jeyong Jung2

1 School of Computing, University of Portsmouth, Portsmouth, UK
{benjamin.aziz,ali.al-bdairi}@port.ac.uk

2 Institute of Criminal Justice Studies, University of Portsmouth, Portsmouth, UK
jeyongj@gmail.com

Abstract. This paper presents some ideas on defining and implement-
ing a new Cyber-security risk metric for measuring the readiness of organ-
isations, in terms of the availability of their resources, in dealing with
new attack incidents launched against their infrastructures whilst recov-
ering from ongoing incidents. Our new metric, the Mean Blind Spot, is
defined as the average interval between the recovery time of an exist-
ing incident and the occurrence time of a new incident. It is therefore
designed to capture those time intervals where the organisation is most
vulnerable due to possible lack of available resources. We present an
approach for implementing our new metric using open data on security
incidents available from the VERIS community dataset.

1 Introduction

In the context of computing and Cyber systems, measuring risk means choosing
an aspect of vulnerability that may exist in a system to investigate, such as
its resistance to threats or its exposure to attack incidents. The unit by which
risk is measured is usually called the risk metric. For example, to measure the
frequency at which security attacks occur in some system, one may adopt a risk
metric that represents the mean time across these occurrences. Using metrics is
a good method for both the quantification of IT risks and reflection of business
needs [10]. They are used as objective grounds when an organisation needs to
make a decision on its strategy or resource distribution in relation to its IT
infrastructure.

Cyber-security risk metrics provide an insight for organisations into the
resilience of their IT infrastructure against attacks carried out from over the
Internet. As a result, they also give an indication of the cost that may be incurred
from the aftermath recovery of such attacks and the cost needed in the future to
defend against them. In literature, there have been several efforts that attempt
to define and collect such Cyber security-related metrics, examples of which
include [4,7,11]. And despite recent surveys (e.g. [12]) that question the validity
and usefulness of quantified security, we agree more with the view by [3] that
c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-57858-3 3

20 B. Aziz et al.

past data are still relevant to new security incidents and that despite the fact
that the road ahead may bend with human whim and technological advance, . . . it
does not appear to bend too sharply too often. Therefore having some idea of the
quantitative aspects of security is better than none.

We introduce in this paper a new Cyber-security metric, which we term the
Mean Blind Spot metric. The new metric is based on the concept of a blind spot,
which represents the time interval between the moment of occurrence of a new
security incident and the moment at which an existing incident has been fully
recovered. As such, a blind spot reflects the notion of readiness of an organisa-
tion or its IT security team to deal with new security incidents as they occur
while dealing with the recovery from existing ones. Such readiness assumes that
the deployment of resources to the recovery of incidents can only contribute
positively to that recovery. Although our new metric does not identify the cause
of a problem nor suggest a solution for the cause, it can work as objective evi-
dence when an IT manager argues for more organisational support or resources
to secure their infrastructure. We define an implementation of this metric in an
open-source community dataset.

The rest of the paper is structured as follows. In the next Sect. 2, we review
related work including the collection of Cyber-security and network security risk
metrics defined in [4,7,11]. In Sect. 3, we give a quick background on a couple
of closely related Cyber-security metrics and demonstrate their definitions with
a simple running example. In Sect. 4, we introduce our new metric, the Blind
Spot, and discuss its rationale and definition, including some variations that
represent higher-level views of the problem of blind spots. In Sect. 5, we present
our implementation using the VERIS dataset. Finally, in Sect. 6, we conclude
the paper and give directions for future work.

2 Related Work

As the dependence on ICTs of an organisation increases, it is important that
information security is integrated into business strategies. Many studies [5,6,9]
suggest that senior management should discuss IT agendas and issues as business
matters. However, top decision-makers are not familiar with IT terms but with
business language. If information security issues are not explained in business
terms, it may be hard to gain support from senior managers. Generally, there
needs to be two things in place to aid the understanding of senior managers. The
first is the quantification of IT issues and responsive measures. When security
risks and countermeasures are quantified, it becomes much easier to calculate
business impact resulting from IT issues. The second relates IT issues to business
goals and objectives, where IT agendas reflect needs of businesses [5].

Many attempts have been made to suggest standardised Cyber-security met-
rics for organisations. Each study has a different approach. As an international
body of the UN, the Telecommunication Standardisation sector of the Interna-
tional Telecommunication Union (ITU-T) published Cyber-security indicators
of risk [11], which included not only technical factors but also human factors

Check Your Blind Spot: A New Cyber-Security Metric 21

as well. Indicators such as “security training and education” and “personnel
security” were adopted to reduce human errors or intended behaviours in an
organisation.

On the other hand, the Center for Internet Security (CIS) metrics [4] focus
mostly on technical and business factors without consideration of human factors.
The CIS defined in [4] seven metrics that are directly related to the overall inci-
dent management process, ranging from incident detection to incident recovery.
We adopt two such technical metrics defined in [4] as the basis for our work here.

Criticising past metrics as “labour intensive” and “subjective”, Lippman
et al. [7] argued that continuous risk assessment based on a data-driven app-
roach was necessary to reflect the constantly changing nature of threats. The
metrics proposed in [7] are of complex mathematical nature and hence their
applicability is questionable. Chew et al. [2] suggest three types of metrics used
differently depending on the purpose and nature of a metric. Implementation
metrics are intended to measure the extent at which security policies are imple-
mented. Secondly, effectiveness/efficiency metrics measure how well security ser-
vices are delivered. Lastly, impact metrics aim to measure impacts of security
incidents on a business.

One could argue that the work presented here involves the second type of
metrics, since the aim of the work is to define metrics that measure the readi-
ness of an IT department within an organisation when facing incidents over
time. Measuring the readiness of security services allows for the diagnoses of an
organisation on its capability of handling unexpected incidents.

Payne [8] suggested seven key steps to establishing a security metrics pro-
gramme. One of them is to establish benchmarks and targets. Setting bench-
marks is useful when evaluating success or failure of current security controls [1].
There should be some criteria for benchmarks. Too simplistic metrics may not be
appropriate for being regarded as benchmarks because they are naturally intu-
itive or self-explanatory. Thus, creating an advanced metric based on basic ones
is a good practice that we adopt in our approach. Also, metrics for benchmarks
need to be used for driving improvements for existing practices. It means that
they have actual impact on IT or business management.

In our case, we adopt a widely used large community dataset called VERIS
[13] as our benchmark on which we implement our new incident readiness met-
rics. After a benchmark is adopted in an organisation, there is no hard and fast
rule as to choosing a reference point for the benchmark. The choice of acceptable
levels for our metrics will depend on organisational context.

3 Background

Literature has numerous metrics related to Cyber security (e.g. [4,7,11]). We
give here an overview of two such closely related metrics defined in [4], which
we use later as part of the definition of our new set of metrics. We also give
an overview of a widely-used security incident vocabulary and dataset known as
VERIS, which we use as a benchmark reference for the implementation of our
new metrics.

22 B. Aziz et al.

3.1 Mean Time Between Security Incidents

The Mean Time between Security Incidents (MTBSI) metric is described in [4] as
a metric for calculating the mean time between occurrences of security incidents
in some organisation’s IT infrastructure. This type of operational metrics can
be defined by the following formula:

MTBSI = (
n−1∑

i=1

(Date of Occurence(incidenti+1)−

Date of Occurence(incidenti)))/(n − 1) (1)

where n is the total number of recorded incidents. As a result, there would be only
n−1 intervals between any n incidents. We consider the unit of measurement of
the MTBSI metric to be time, e.g. hours, days, weeks etc. The following Table 1
shows an example of 10 incidents recorded with the dates and times of their
occurrences.

Table 1. An example of incident occurrence dates and times

Incident number 1 2 3 4 5

Date of occurrence 01.06 01.06 01.06 01.06 01.06

Time of occurrence 12:10 12:50 14:00 14:56 18:30

Incident number 6 7 8 9 10

Date of occurrence 01.06 02.06 02.06 02.06 02.06

Time of occurrence 18:35 07:20 09:20 12:30 19:40

To calculate the MTBSI for this example, we evaluate Eq. (1) above:

MTBSI = (40+70+56+214+5+765+120+190+430)
9 = 210 min.

This means that, on average, there are 3.5 h separating the occurrence of any
two incidents.

3.2 Mean Time to Incident Recovery

The second widely-used metric for measuring Cyber security is the Mean Time
to Incident Recovery (MTIR), which reflects the mean time needed from the
moment an incident occurs to the moment it is recovered.

This type of operational metrics can be defined using the following formula
from [4]:

MTIR = (
n∑

i=1

(Date of Recovery(incidenti)−

Date of Occurence(incidenti)))/n (2)

Check Your Blind Spot: A New Cyber-Security Metric 23

where n is the total number of recorded incidents. We take the unit of mea-
surement for MTIR again to be time, e.g. hours, days, weeks etc. Note that we
divide over n since the number of recoveries is the same as the number of inci-
dents occurring. For example, in the following Table 2, we have again the same
10 incidents recorded from Table 1, but this time also with their dates and times
of recovery.

Table 2. An example of incident occurrence/recovery dates and times

Incident number 1 2 3 4 5 6 7 8 9 10

Date of occurrence 01.06 01.06 01.06 01.06 01.06 01.06 02.06 02.06 02.06 02.06

Time of occurrence 12:10 12:50 14:00 14:56 18:30 18:35 07:20 09:20 12:30 19:40

Date of recovery 01.06 01.06 01.06 01.06 01.06 01.06 02.06 02.06 02.06 03.06

Time of recovery 13:55 14:40 19:30 19:05 20:10 21:30 11:10 13:50 15:50 00:15

To calculate MTIR for this example, we evaluate Eq. (2) above:

MTIR = (105+110+330+249+100+175+230+270+200+275)
10 = 204.4 min.

This means that each incident takes on average about 3 h and 24 min to recover.

3.3 VERIS

The Vocabulary for Event Recording and Incident Sharing (VERIS) [13] is a
dataset and schema capturing a set of metrics for describing security incidents.
It is currently considered a leading provider of open quality information in the IT
security domain and provides a framework that organisations can use to collect
and share information on security incidents in a responsible and anonymous
manner, with the aim of constructing a ground on which researchers and experts
in the IT security industry can cooperate to learn from their experiences. We use
the dataset provided in VERIS, known as VCDB [14], as a benchmark on which
we implement our new blind spot-based metrics defined in the next sections.

The VERIS schema itself consists of five general sections, containing descrip-
tions of the security incidents in the VERIS dataset. These five categories are
as follows:

– Incident Tracking : this section contains general information about the inci-
dents, for example, the source identity, summary of the incident and whether
the incident is related to other incidents.

– Victim demographies: this section contains information related to the organ-
isation being affected by the incident, for example, its country of operation,
number of employees, revenue and industry type.

– Incident description: this section contains information related to the question
of “who did what to what (or whom) with what result”.

24 B. Aziz et al.

– Discovery and response: this section contains information related to the inci-
dent’s timeline, its discovery method, root causes, corrective actions etc.

– Impact assessment : this last section contains information on loss categorisa-
tion and estimation, impact rating and so on.

For the purpose of this paper, we are mainly interested in one kind of infor-
mation; namely time to containment. This is the closest in nature to the MTIR
metric described above, and appears under the “Discovery and response” section
of information. In VCDB, this metadata appears as timeline.containment. The
available meaningful values for the timeline unit for this metadata include sec-
onds, minutes, hours, days, weeks, months, years and never. Other values are
NA and unknown, but we do not consider these to be useful.

The significance of the VERIS dataset lies in the fact that it is a community-
based dataset. This means that its data are collected from a wide range of indus-
tries and varied over different types and sizes of organisations. This renders it
more interesting and with wider applicability than datasets generated in single
organisations.

4 The Mean Blind Spot Metric

Our new incident readiness metrics rely on a concept we call the Blind Spot (BS).
A BS is the time interval between the moment a new security incident occurs
and the last moment the previous security incident was recovered, as shown in
Fig. 1. In its worse case, a BS represents the time when an organisation has to
start recovery from a new incident whilst still recovering from an earlier one. We
consider this metric to be an indication to the readiness of an organisation to
encounter new incidents and a measure of the vulnerability organisations may
face in such situations where not enough resources are available to recover from
security incidents.

Note at this stage that, for the sake of simplicity, we do not consider part of
this model the scenario when two incidents arrive exactly at the same moment in

Fig. 1. A Blind Spot

Check Your Blind Spot: A New Cyber-Security Metric 25

time (i.e. when Date of Occurence(incidenti) =Date of Occurence(incidenti+1)).
This is justified since later during the VERIS-based implementation part, we
replace this difference in arrival time with the MTBSI metric (and again assume
that MTBSI > 0).

We can average out this difference in occurrence times of new incidents and
the recovery times of older ones in terms of the Mean Blind Spot (MBS) metric
as follows:

MBS = (
n−1∑

i=1

(Date of Occurrence(incidenti+1)−

Date of Recovery(incidenti)))/(n − 1) (3)

The unit of measurement for the MBS metric is time, e.g. hours, days, weeks
etc. The mean is calculated over n− 1, as there are only n− 1 blind spots for n
number of recorded incidents, as shown in Fig. 2.

Fig. 2. n− 1 Chain of Blind Spots

There are a couple of important assumptions this definition relies on:

– The definition assumes a first-come-first-serve model of scheduling incidents
to recovery resources, or in other words, incident i is scheduled for recovery
before incident i + 1. This is important for the blind spot time area to be
a true one, otherwise it will contain the idle time that an incident spends
waiting in the scheduling queue.

– The second assumption relies on the fact that all the recovery resources will
contribute positively to all the occurring security incidents. In reality, this
may not always be the case. Some resources may require some time to become
positive contributors to the reduction of the recovery time for an incident. In
fact, some resources may only have negative contribution to the recovery of
an incident. This situation is depicted in Fig. 3, where we only assume Type
1 resources in our model.

Let’s consider how the MBS metric works through an example. The following
Table 3 shows again our 10 security incidents with their occurrence and recovery
times, but this including also their blind spot times.

26 B. Aziz et al.

Fig. 3. Resources Contribution to Incident Recovery

Table 3. An example showing blind spots

Incident number 1 2 3 4 5 6 7 8 9 10

Occurrence date 01.06 01.06 01.06 01.06 01.06 01.06 02.06 02.06 02.06 02.06

Occurrence time 12:10 12:50 14:00 14:56 18:30 18:35 07:20 09:20 12:30 19:40

Recovery date 01.06 01.06 01.06 01.06 01.06 01.06 02.06 02.06 02.06 03.06

Recovery time 13:55 14:40 19:30 19:05 20:10 21:30 11:10 13:50 15:50 00:15

Blind spot interval −65 −40 −274 −35 −95 590 −110 −80 230 -

Note that for the last incident, there is no blind spot time as no incidents
are recorded after that. For this example, we can calculate MBS as follows:

MBS = (((−65) + (−40) + (−274) + (−35) + (−95) + 590 + (−110)+
(−80) + 230))/9 = 13.44 min.

A positive value (as in this case) for the MBS metric is good, since it indicates
that there is a positive time margin between, on average, the occurrence and
recovery of incidents. However, a negative value would signal no such margin
exists and that incidents’ recovery stages are overlapping. This may further have
implications on an organisation’s capability to cope with the speed of occurrence
of security incidents since recovery from earlier incidents is, on average, slow.

We next discuss one variant of this metric, which incorporates an organisa-
tion’s appetite for blind spots.

4.1 An Approximated MBS

A first variation of the MBS metric that we introduce is an approximated one,
which can be calculated directly using the MTIR and MTBSI metrics discussed
earlier. We call this variation the Approximate MBS (AMBS) metric. The general
formula for the AMBS metric is as follows:

Check Your Blind Spot: A New Cyber-Security Metric 27

AMBS =
MTIR

MTBSI
(4)

The intuition behind this metric is that it gives some sense of how large the
difference is between recovery and incident occurrence intervals as captured by
the MTIR and MTBSI metrics, respectively. Therefore, it provides a quick way
of understanding the effect of the blind spot problem. If, on average, recovery
intervals are smaller than incident occurrence intervals, then this ratio would be
less than one, which is good for the organisation. If, on the other hand, the ratio
is one or more, it means that the occurrence intervals are at least as large as the
recovery ones, on average, which is bad for the organisation.

Consider again the example of the previous section. We calculated that
MTIR = 204.4 min/interval and that MTBSI = 210. Therefore, one can cal-
culate AMBS = 204.4/210 = 0.973. This value, enforces the conclusion arrived
at by the calculation of the MBS metric that on average, in the case of our
example, blind spots do not pose a problem in terms of overall time they last.
As we see later in Sect. 5, this metric also gives an indication as to the maximum
number of incidents an organisation may be recovering from in any one moment
in time.

4.2 Ratio of Blind Spots Metric

The Ratio of Blind Spots (RBS) metric is not, strictly speaking, based on the
MBS metric but more fundamentally based on the concept of a blind spot.
In order to define RBS, we first define a Blind Spot Appetite (BSA) value,
which represents the maximum blind spot time an organisation or an IT team
is willing to tolerate. For example, a BSA value might be –60 min, meaning that
the organisation is willing to tolerate scenarios where recovery from an existing
incident overlaps the occurrence of a new one in a maximum of one hour.

The ratio BS/BSA therefore represents a measure of how far a blind spot is
from the appetite value. A value of BS/BSA = 1 or less means that the blind spot
is within the acceptable range and a value of more than 1 means that the blind
spot is unacceptable. For simplicity, we approximate all the values of BS/BSA
< 0 to 0, since in this case these have the same meaning as to when BS/BSA =
0. Returning to the example of the previous section, we calculate the BS/BSA
values for each blind spot as shown in Table 4.

Based on the BS/BSA ratio, one can define the new RBS metric as follows,
in terms of the cardinality of a multiset (bag) of all those ratios who’s value is
over 1:

Table 4. Example showing the ratio BS/BSA

Incident number 1 2 3 4 5 6 7 8 9 10

Blind Spot interval −65 −40 −274 −35 −95 590 −110 −80 230

BS/BSA ratio 1.08 0.67 4.57 0.58 1.58 0 1.83 1.33 0

28 B. Aziz et al.

RBS =
card({|y where (y = BS/BSA) ∧ (y > 1)|})

n − 1
× 100% (5)

The RBS metric hence captures the percentage of the ratio of all the BS/BSA
elements, which are over 1, over the overall number of blind spots. Unlike MBS,
it does not rely on a mean-based calculation, but represents more the percentage
of “risky” blind spots in an organisation or an IT team. In our example, RBS =
card({1.08, 4.57, 1.58, 1.83, 1.33})/9×100% = 56%. This means that, despite the
fact that MBS is on average positive, 56% of blind spots are risky.

5 Method Implementation Using VERIS

In this section, we propose a practical approach for implementing our new metrics
using the VERIS dataset (VCDB) [14]. This implementation will allow organ-
isations to obtain some idea of their level of readiness in dealing with blind
spots, without the need for much precise information about their own security
incidents.

5.1 Implementing the MBS Metric

Our first implementation provides a measurement function for new organisations
to assess their level of readiness based on two pieces of information: First their
MTBSI metric values and second the time to containment metric in the VERIS
dataset. Note that here we parameterise by MTBSI since VERIS, despite its rich
collection of incident metadata, does not specify whether two incidents belong
to the same organisation and in what temporal order they occur.

We define the signature of the blind spot readiness measurement function, f ,
as follows:

f : Time → Percentage (6)

which takes in a time unit expressing the MTBSI for the particular organisation,
and returns a percentage number expressing the level of blind spot readiness for
that organisation. This is the compliment of the percentage of incidents that
are deemed to be risky with respect to the information provided by the VERIS
dataset, in the sense that there is high likelihood that the organisation may not
be prepared to contain them in good time.

Our definition of f is constrained by two aspects of the VERIS dataset: First,
there are no timeline information across the reported incidents, which means that
it is not possible to conclude, given two incidents, what their sequence is. Second,
no concrete timeline data is given; only time units (e.g. hours, days, weeks, etc.)
As a result, our implementation relies on the relationship between the lengths of
the MTIR (i.e. time to containment) and MTBSI metrics when deciding whether
a blind spot exists or not.

Figure 4 depicts the relationship between a blind spot and the MTIR and
MTBSI metrics. In the absence of concrete dates/times marking the start and

Check Your Blind Spot: A New Cyber-Security Metric 29

Fig. 4. Relationship between a Blind Spot and MTIR, MTBSI

recovery points of incidents, we consider MTBSI as the metric describing the uni-
form time difference between consecutive incident occurrences, and MTIR as the
metric describing the uniform time between the start and recovery times of inci-
dents. As a result, an MTIR value that extends beyond MTBSI is in a blind spot
area, and one that does not is not. As a consequence of the lack of precise informa-
tion on incident occurrence and recovery times in VERIS, one can only implement
MBS as the difference between MTBSI and MTIR (i.e. implementation(MBS) =
MTBSI − MTIR). This is reasonable since the definition of a blind spot between
two incidents i and i + 1 is such that Date of Occurrence(incidenti+1) −
Date of Recovery(incidenti). However, we can arrive at this by per-
forming (Date of Occurrence(incidenti+1) − Date of Occurrence(incidenti)) −
(Date of Recovery(incidenti)−Date of Occurrence(incidenti)), which is the dif-
ference between MTBSI and MTIR, assuming a uniform value for all incidents.
Therefore, our implementation function f relies on this difference, and can be
defined in the following manner:

f(MTBSI) = (100% −
n∑

i=1

(percentage(ci))) where ci ≥ time unit(MTBSI)

where c represents the time unit (i.e. seconds, minutes, hours, days etc.)
for the Discovery-to-Containment stage in the timeline of events, and hence
percentage(c) is the percentage of all incidents where the time to containment
metric has been reported to be in that specific time unit. On the other hand, n
represents the number of time units that are larger or equal to the MTBSI’s time
unit, as returned by the auxiliary function time unit. For example, if MTBSI = 15
hours/incident interval, then time unit(MTBSI) = hours and n = 6, where the
six time units in this case would be {hours, days, weeks,months, years, never}.
We enumerate these as c1, . . . , c6. Note here that we also include the hours time
unit, in order to err on the safe side. We also exclude those incidents with a
“NA” or “unknown” values. Finally, i ranges over n.

30 B. Aziz et al.

Table 5. Percentages of incidents for each time unit of the time to containment metric
(VERIS, 2013 Quarter 4)

Time unit Seconds Minutes Hours Days Weeks Months Years Never

Percentage (%) 2.17 5.07 42.03 29.00 7.97 7.97 2.17 3.62

Considering the 2013Q4 version of the dataset, we have the following per-
centages of incidents for each time unit of the time to containment metric, as
shown in Table 5.

These numbers are based on a dataset size of 2476 incidents. Going back to
the example above of MTBSI = 15 hours/incident interval, one can calculate f
as follows:

f(15 hours/incident interval) = (100 − ∑6
i=1(percentage(ci))%

where ci ≥ time unit(15 hours/incident interval)
= (100 − (percentage(hours) + percentage(days)+

percentage(weeks) + percentage(months)+
percentage(years) + percentage(never)))%

= (100 − (42.03 + 29 + 7.97 + 7.97 + 2.17 + 3.62))%
= 7.24%

This means that the organisation, according to its reported MTBSI value of 15
hours/incident interval, will only be fully ready in 7.24% cases of security inci-
dents based on the data provided in the VERIS dataset. In 92.76% of cases, the
organisation may/would struggle to cope with new security incidents according
to the blind spot readiness metric. On the other hand, if for example the MTBSI
was 15 weeks instead, then the above value returned by f would rise to 78.27%.

5.2 Implementing the AMBS Metric

The second implementation we introduce will simply be an implementation of
the AMBS metric. Recall that the AMBS metric is simply dividing the length
of the MTIR metric by the length of the MTBSI metric, as depicted in Fig. 5.

Fig. 5. A depiction of the ratio of MTIR to MTBSI

Check Your Blind Spot: A New Cyber-Security Metric 31

In addition to showing the ratio of the two metrics, it turns out that this def-
inition can be used to estimate the minimum and maximum number of incidents
that an organisation will have to deal with at any one time. One can deduce this
fact from considering that the start of every MTBSI period signals the start of
a new security incident. Therefore, if one was to fix a time frame within which
one could count the number of MTBSI periods, then this would also imply the
number of incidents within that time frame.

The latter case of the maximum number of incidents is particularly of interest
from an incident readiness point of view, as it provides the management team
some idea of the scale of resources required to tackle such events. The minimum
number, on the other hand, will provide an indication of what level of resource
relaxation the organisation can reach.

We start first by defining the following auxiliary function, faux2:

faux2(MTBSI, c) = {|�min(c)/MTBSI�, �max(c)/MTBSI�|}
which returns a multiset (bag) of two elements. These elements are the minimum
and maximum number of incidents the organisation will be recovering from at
any one time, corresponding to its specific value of MTBSI and the time unit, c, of
the time-to-containment metric (i.e. the MTIR metric) as defined in VERIS. The
MTBSI value is necessary here, so this has to be supplied by the organisation.
However, the time unit c is ranged over all the meaningful time units defined in
VERIS (i.e. days, hours, weeks etc.).

We calculate these numbers as the ceiling (“the gallows”) ratio between the
minimum and maximum values we approximate for c as explained below and
the supplied value for MTBSI. This is needed since we consider that a fraction
of an incident is safer approximated to a whole incident (i.e. next integer up).

We next explain how min(c) and max(c) are defined. Since c itself is only a
time unit due to the lack of concrete date/time information on VERIS-recorded
incidents, we require a 2-point time value concretisation of this abstract time
unit. We do this based on the following ranges (assuming a month is 4.35 weeks):

range(seconds) = [1 s, 60 s)
range(minutes) = [1 min, 60 min)
range(hours) = [1 h, 24 h]
range(days) = [1 day, 7 days)
range(weeks) = [1 week, 4.35 weeks)
range(months) = [1 month, 12 months)
range(years) = [1 year, ∞ years)
range(never) = [∞ years, ∞ years]

Note that we do not consider the case of “never”, since this will result in
dividing ∞ by MTBSI, which returns an infinite number of incidents. Since c
effectively provides a time window within which the maximum and minimum
number of incidents are approximated, providing an infinite time window will
naturally lead to an infinite number of minimum and maximum incidents. We
do not consider this information meaningful for understanding an organisation’s

32 B. Aziz et al.

readiness in tackling those periods of time when number of incidents is at its
maximum.

Let’s consider now an example of how faux2 works. We assume that we are
calculating the function for the case of c = Weeks, then we need to consider the
following two points in time: At week 1 and at week 4.35. This is because any
less than 1 week the metric would turn to a daily time unit and any more than
4.35 weeks the metric would turn into months. If the organisation provides a
value for MTBSI = 18 days = 2.57, then this means that

faux2(18 Days,Weeks) = {|�1/2.57�, �4.35/2.57�|} = {|1, 2|}
On the other hand, if MTBSI was to drop to 1 day (i.e. 0.143 week), then

the number of incidents would increase:

faux2(1 Day,Weeks) = {|�1/0.143�, �4.35/0.143�|} = {|7, 31|}
Our function then for generating an AMBS estimation from the VERIS

dataset would pair each of these two values with the percentage of incidents
the c time unit occurs in VCDB:

f2(MTBSI, c) = (faux2(MTBSI, c), percentage(c)) (7)

Therefore, for the case of c = Weeks, we have that percentage(Weeks) = 7.97%
from [13], and hence f2(18 Days,Weeks) = ({|1, 2|}, 7.97%) whilst for the case of
f2(1 Day,Weeks) = ({|7, 31|}, 7.97%). The meaning of these pairs is to provide
an approximate percentage (in this case 7.97%) of the likelihood of the maxi-
mum/minimum incident number estimations being true, with reference to the
data provided in VCDB and the selected c time unit. If the selected c time unit
was changed, say to Days, the pair would become (for the case of MTBSI =
18 days) ({|1, 1|}, 29%).

6 Conclusion and Future Work

We presented in this paper a new risk metric, called the blind spot, for expressing
Cyber incident recovery readiness in organisations and IT departments. The
new metric represents the gap in time between the recovery (or containment) of
existing incidents and the occurrence of new incidents. We postulate that the
longer the gap, the more vulnerable the organisation or IT department will be
to lack of resources in tackling new incidents, hence the relationship with the
concept of incident response readiness. Furthermore, we defined three variants of
this new metric: the Mean Blind Spot, the Approximated Mean Blind Spot and
the Ratio of Blind Spots metrics. We demonstrated how these metrics can be
implemented over an open source large dataset containing information on Cyber
security incidents, namely the VERIS dataset.

The significance of the VERIS dataset lies in the fact that it is community-
driven, where data are collected from a variety of organisations in a wide range
of industries covering small, medium and large size organisations. This ensures

Check Your Blind Spot: A New Cyber-Security Metric 33

that the implementation of the new metrics is applicable to the wider commu-
nity. However, we plan in the future to further validate the new metrics based on
empirical data obtained from specific case studies for IT teams and organisations.
Such specific case studies produce more accurate results, despite their scope of
applicability. The application of real empirical data to this metric may expose
more (specific) benefits and drawbacks for the new metrics, possibly suggesting
ways to refine our initial conceptual model. Such studies will also help incor-
porate new factors or new metadata into the current model, particularly since
the characteristics of Cyber security incidents vary over time also depending on
the context. Therefore, the refinement of the metric can yield more benefits for
organisations.

References

1. Black, P.E., Scarfone, K., Souppaya, M.: Cyber security metrics and measures.
In: Voeller, J.G. (ed.) Wiley Handbook of Science and Technology for Homeland
Security, Chap. 5, pp. 1–15. Wiley, London (2008)

2. Chew, E., Swanson, M., Stine, K., Bartol, N., Brown, A., Robinson, W.: Perfor-
mance measurement guide for information security. Technical report 800–55 Revi-
sion 1, National Institute of Standards and Technology, July 2008

3. Hoo, K.J.S.: How Much is Enough? A Risk-Management Approach to Computer
Security (2000)

4. The Center for Internet Security: CIS Security Metrics v1.1.0, November 2010
5. Kayworth, T., Whitten, D.: Effective information security requires a balance of

social and technology factors. MIS Q. Executive 9(3) (2012). http://ssrn.com/
abstract=2058035

6. Kwon, J., Ulmer, J.R., Wang, T.: The association between top management
involvement and compensation and information security breaches. J. Inf. Syst.
27(1), 219–236 (2013). http://dx.doi.org/10.2308/isys-50339

7. P-Lippmann, R., Riordan, J.F., Yu, T.H., Watson, K.K.: Continuous security met-
rics for prevalent network threats: introduction and first four metrics. Technical
report ESC-TR-2010-099, Massachusetts Institute of Technology (2012)

8. Payne, S.C.: A guide to security metrics. Technical report SANS Security Essentials
GSEC Practical Assignment, Version 1.2e, Escal Institute of Advanced Technolo-
gies, Inc. (The SANS Institute), June 2006

9. von Solms, B., von Solms, R.: From information security to. business security?
Comput. Secur. 24(4), 271–273 (2005)

10. Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L.: Security metrics guide
for information technology systems. Technical report 800–55, National Institute of
Standards and Technology, July 2003

11. International Telecommunication Union: A Cybersecurity indicator of risk to
enhance confidence and security in the use of telecommunication/information and
communication technologies. Technical report X.1208, International Telecommu-
nication Union (2014)

12. Verendel, V.: Quantified security is a weak hypothesis: a critical survey of results
and assumptions. In: Proceedings of the 2009 Workshop on New Security Para-
digms Workshop, NSPW 2009, pp. 37–50. ACM, New York (2009)

13. VERIZON: The Vocabulary for Event Recording and Incident Sharing (VERIS).
http://veriscommunity.net/, Accessed 21 Nov 2016

14. VERIZON: VERIS Community Database. http://vcdb.org/, Accessed 21 Nov 2016

http://ssrn.com/abstract=2058035
http://ssrn.com/abstract=2058035
http://dx.doi.org/10.2308/isys-50339
http://veriscommunity.net/
http://vcdb.org/

Security Risk Analysis

Quantitative Information Security Risk
Estimation Using Probabilistic Attack Graphs

Pontus Johnson1, Alexandre Vernotte1(B), Dan Gorton2, Mathias Ekstedt1,
and Robert Lagerström1

1 KTH Royal Institute of Technology, Stockholm, Sweden
{pontusj,vernotte,mekstedt,robertl}@kth.se

2 Foreseeti AB, Stockholm, Sweden
dan.gorton@foreseeti.com

Abstract. This paper proposes an approach, called pwnPr3d, for quan-
titatively estimating information security risk in ICT systems. Unlike
many other risk analysis approaches that rely heavily on manual work
and security expertise, this approach comes with built-in security risk
analysis capabilities. pwnPr3d combines a network architecture modeling
language and a probabilistic inference engine to automatically generate
an attack graph, making it possible to identify threats along with the
likelihood of these threats exploiting a vulnerability. After defining the
value of information assets to their organization with regards to confi-
dentiality, integrity and availability breaches, pwnPr3d allows users to
automatically quantify information security risk over time, depending on
the possible progression of the attacker. As a result, pwnPr3d provides
stakeholders in organizations with a holistic approach that both allows
high-level overview and technical details.

Keywords: Quantitative risk analysis · Attack graphs · Threat
modeling · Network security · Information security

1 Introduction

ICT systems have become an integral part of business and life. At the same time,
these systems have become extremely complex, often hosting thousands of soft-
ware applications, databases, operating systems, servers, processes, data, and
more. In these complex systems-of-systems exist numerous vulnerabilities wait-
ing to be exploited by potential threat actors [27,30]. Examples include power
grids being shut down1, smart cars taken2, and financial institutions being hit
by server side [20] and denial of service attacks. This trend has been overseen
by responsible authorities who step up the minimum requirements for risk man-
agement [5], including requirements of recurring risk analysis [7,8]. However,
government action is slowed down by multiple contrasting figures concerning
1 http://www.cnn.com/2016/02/03/politics/cyberattack-ukraine-power-grid/.
2 http://money.cnn.com/2012/09/27/technology/bank-cyberattacks/.

c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 37–52, 2017.
DOI: 10.1007/978-3-319-57858-3 4

http://www.cnn.com/2016/02/03/politics/cyberattack-ukraine-power-grid/
http://money.cnn.com/2012/09/27/technology/bank-cyberattacks/

38 P. Johnson et al.

the impact of cyber attacks, which in turn makes it hard to identify new cost-
effective security policies [2]. Thus, the ability to measure security is becoming a
top priority in most organizations today. One example of this trend is the World
Economic Forum (WEF) paper “Partnering for Cyber Resilience Towards the
Quantification of Cyber Threats” published in January 2015 [9]. WEF acknowl-
edge that cyber risk is increasingly viewed as key element of enterprise risk man-
agement and is requesting industry-specific risk models to, for example, enable
cyber risk transferring.

In the individual organizations, there are many stakeholders which are inter-
ested in the management of the IT landscape and its security [11]. For some of
the stakeholders, a system overview is just about enough, while others require
details. So far this is also mirrored in the commonly employed tools, e.g. Visio
and PowerPoint for C-level management and vulnerability scanners for network
administrators. These solutions tend to focus either on providing a holistic view
of the system without any connection to the actual details, or on a small part
of the system, thus neglecting the bigger picture. Hence, there is a need for
holistic approaches that also consider technological details [29]. However, most
approaches available are driven by manual labor and require a high level of
expertise, which in information security is both expensive and hard to come
by [26].

pwnPr3d [18] (for Pwn3 Prediction, pronounced [p"@UnprId]) is an attacker-
centric threat modeling technique for automated threats identification and
quantification based on network modeling. As opposed to most other similar
approaches, pwnPr3d integrates reusable analysis capability. Instead of relying
on human expertise to analyze a model and decide whether it is secure or not,
pwnPr3d can automatically perform this analysis. That is, the security expertise
is built into the model. In its analysis, pwnPr3d generates probability distrib-
utions over the Time To Compromise (TTC) for each asset in the system, and
estimates information security risk as a probability distribution of the system-
wide cost of security failure. As a result, pwnPr3d provides the various stake-
holders of an organization with a cyber security evaluation of their systems that
is tailored to their concerns.

This paper introduces an extension to pwnPr3d’s meta-modeling architecture
that allows for automated quantitative information security risk estimation. A
new modeling entity, called Information, makes it possible for users to define
the atomic cost of security breaches (namely, confidentiality, integrity and avail-
ability breaches) regarding a particular piece of information. Then, a dedicated
algorithm, directly integrated into the TTC calculation, computes the global
quantitative information security risk depending on the possibilities presented
to the attacker. The end result is a cumulative frequency distribution of the
increasing cost impact of security breaches over time. The remainder of this
paper is structured as follows: Sect. 2 presents related work focusing on other
modeling approaches more or less similar to pwnPr3d. Then, Sect. 3 introduces

3 Pwn is originally a misspelling of the word own, in information security signifying
the compromise of a computer system.

Quantitative Information Security Risk Estimation 39

the two top layers of pwnPr3d’s modeling architecture. Next, Sect. 4 describes
the quantitative estimation calculation of information security risk. Section 5
exemplifies the use of pwnPr3d through a motivating example. Finally, Sect. 6
concludes the paper.

2 Related Work

Several methodologies center on identifying and quantifying the security risks
present on a system or system-of-systems [1,6,21,23]. These methodologies typ-
ically break down risk analysis and assessment into several activities, and pro-
vide guidance on how to efficiently perform each activity. For instance, The
Australian/New Zealand Standard AS/NZS 4360 [6] sets out a risk manage-
ment process that consists of six stages: Establish the context, identify the risks,
analyse the risks, evaluate the risks, and finally treat the risks. The NIST SP 800-
30 Risk Assessment Framework [23] proposes a more detailed process composed
of nine stages, typically isolating the identification of threats and vulnerabili-
ties. OCTAVE [1] consists of a three-phase risk assessment strategy that the
evaluation team must follow to extract appropriate mitigation strategies. Some-
times, a textual or graphical language is involved to provide further guidance.
CORAS [21], which follows the process defined in [6], models threat scenarios as
directed acyclic graphs whose nodes and edges are weighted, i.e. assigned with
likelihood values (e.g., probabilities, frequencies, or intervals of these).

A common drawback of these methodologies is that they tend to consider
threats as independent events and thus do not include their potential conditional
dependencies in the risk estimation. Moreover, they do not provide automated
analysis, and this activity remains to be done manually.

Many approaches propose to assess the cyber security of systems and net-
works by modeling probabilistic attack graphs. A popular approach is to exploit
the output from network vulnerability scanners to model attack graphs. Mul-
Val [14] derives logical attack-graphs by associating the vulnerabilities extracted
from scans with a probability derived from their CVSS score, which express how
likely an attacker is to exploit them successfully. NAVIGATOR [4] consider iden-
tified vulnerabilities as directly exploitable by the attacker (given that he has
access to the vulnerable system). The TVA tool [24] models networks in terms
of security conditions and uses a database of exploits as transitions between
these security conditions. Another widespread solution for the representation
of attack graphs and the computation of attack probabilities is Bayesian Net-
works [10,28,31]. In [10], the authors translate “raw” attack graphs obtained
with the TVA-tool into dynamic Bayesian networks, and convert CVSS scores
of vulnerabilities to probabilities. Similarly, the authors in [31] rely on CVSS to
model uncertainties in the attack structure, the actions of the attacker and the
triggering of alerts. In [28], the authors use Bayesian attack graphs to estimate
the security risk on network systems and produce a security mitigation plan
using a genetic algorithm. Similar to pwnPr3d in ambition is P2CySeMoL [13],
which is a probabilistic relational model (PRM) with the purpose to estimate
the cyber security of enterprise-level system architectures.

40 P. Johnson et al.

These approaches are efficient at evaluating the cyber security of systems in
terms of threat and vulnerability identification, likelihood and severity. However,
they mainly focus on the technical aspects of threats and vulnerabilities, while
remaining business-value-neutral. Furthermore, most of them are either manual
or they indirectly rely on vulnerability scanners that, as stated above, have dis-
putable vulnerability detection rates.

Noel et al. [25] propose to measure security risk of networks using attack
graphs. The analysis takes into account associated network operational costs
and attack impact costs, making it possible to combine the likelihood of an
attack, its projected cost and the mitigation cost. However, the attack graph
modeling and the calculation remain manual.

3 pwnPr3d’s Meta-modeling Architecture

pwnPr3d is an attacker-centric threat modeling approach that allows for auto-
mated threat identification and quantification based on a model of the network
under analysis, by combining a network architecture modeling language and a
probabilistic inference engine. The language couples the assets of a network with
attack steps that define how these assets can be compromised and what the pos-
sible consequences on the other assets are. Thus, based on a network model
instance, pwnPr3d automatically generates an attack graph based on the nature
of its assets and their relations. The attack graph is analyzed by considering the
entry point of the attacker in the network, i.e. one or several attack steps defined
as successful attempts. In addition, pwnPr3d also allows probability distributions
over the Time To Compromise (TTC) for attack steps by quantifying the attack
step (conditional) dependencies. Such quantitative data can be collected from
various sources including surveys and studies such as [12,19]. pwnPr3d enables
to automatically identify and quantify a broad set of threats, covering most of
the STRIDE classification [16].

Based on a network model instance, pwnPr3d automatically generates an
attack graph and analyzes it by considering the entry point of the attacker in
the network, i.e. one or several attack steps defined as successful attempts. The
likelihood L of assets being compromised is obtained by quantifying the attack
step (conditional) dependencies and deducing probability distributions over the
Time To Compromise (TTC) for attack steps. Such quantitative data can be
collected from various sources including surveys and studies such as [12,19]. The
cost impact I of a security incident on an information asset is defined by the
users. For each asset, three types of security incident are considered: confiden-
tiality, integrity and availability breaches. As a result, pwnPr3d quantitatively
estimates information security risk R over time, depending on the calculated
progression of the attacker.

pwnPr3d’s modeling language is designed as a closed meta-modeling archi-
tecture, similarly to MOF [22], which offers multiple benefits when it comes to
system and network modeling. One the one hand, it provides separation of con-
cerns making it possible to capture the attack graph theory in the lower layers
of the meta-model, and spreads to the higher layers. The end goal is that end

Quantitative Information Security Risk Estimation 41

users only model the assets and their relations, while all attack graph logic is
encapsulated in lower layers. On the other hand, it allows a high flexibility in
terms of introducing new types of assets and vulnerabilities. Components can be
modeled with great level of detail for reuse as encapsulated wholes. For example,
an operating system can be modeled as a composition of sub-components (appli-
cations, user accounts, network interfaces), themselves represented as a compo-
sition of sub-components. Modeling with much details enables a broad coverage
of attacks, both between components and within the internals of a component.
This ultimately leads to the creation of standard component libraries containing
specific products (e.g., a Netgear wgr614 router).

The next sections present the terminology and modeling concepts of
pwnPr3d. Only the first two layers are described, in order to keep the presenta-
tion concise.

3.1 Layer-0: Assets and Attack Graph Theory

The main purpose of Layer-0 is to couple the components of an IT infrastructure
and the attack surface of the attacker. It defines the attack graph theory, i.e. the
possible progression of the attacker through attack steps, as well as TTC calcu-
lation. The metamodel of Layer-0 is depicted in Fig. 1. Its main three entities
are described below.

Fig. 1. Layer-0 metamodel

Asset is the class that ties together the logic of pwnPr3d. It is the class that later
instantiate the core constituents of the system and the network, such as soft-
ware, hardware and information. Such constituents can be related to one another
through the AssetRelationship entity (e.g., to represent a physical connection
between two computers). This is following standard object oriented modeling
approaches.

Attacker represents a malicious actor that threatens the security of the system
by compromising assets. In pwnPr3d, the Attacker entity defines the starting
point of the attack. It can be connected to any AttackStep entity; such connec-
tions denote the source of the attack vectors. These particular attack steps thus
always have a TTC that evaluates to 0.

42 P. Johnson et al.

Attack steps are actions conducted by an attacker to compromise an asset. As
such, each attack step in pwnPr3d is associated to the asset it targets. Attack
steps are related to one another through the AttackStepRelationship entity form-
ing an attack graph. The derives link binds one or several AttackStepRelationship
entities to an AssetRelationship entity. This is a key feature of pwnPr3d as it
defines the attack graph construction theory in Layer-0, which spreads to the
higher layers of the language. It thus allows for the automatic derivation of
the attack graph from the behavioral relationships between assets. It is further
explained in Sect. 3.2.

pwnPr3d models attack graphs as edge-weighted directed graphs where nodes
represent attack steps, a subset of these nodes denotes the starting points(s) of
attack, directed edges defines the possible progression of the attacker in the
modeled system through the successful attempt of attack steps, and an edge
weight function defines the probability distribution over time that an attacker
will successfully attempt an attack step (i.e. TTC). Two kinds of attack steps are
introduced in pwnPr3d: attack step minimum asmin and attack step maximum
asmax, in order to specify the possible prerequisites of an attack step e.g., that
the attacker needs access as well as the proper privileges in order to compro-
mise a system. These two specializations echo the AND and OR gates that are
generally used in previous works, although they have been adapted in pwnPr3d
to enable the probabilistic inference of attack steps’ TTC. Thereby, the attacker
can attempt an asmin only if s/he has successfully attempted at least one of
the attack step’s parents, similarly to an OR gate. In case of several parents
being compromised, the attack step’s TTC will be computed with its parent’s
lowest TTC. If the attack step is an asmax, the attacker must have successfully
attempted all of the attack step’s parents before being able to attempt it, simi-
larly to an AND gate. The attack step’s TTC will be computed with its parent’s
highest TTC, as the approximation of true AND TTC. This approximation is a
worst case, as an attacker typically will require longer time than so.

It should be noted that prerequisite relationships between attack steps should
not be mistaken for direct causality. There is no guarantee that an attack will
succeed as it is dependant upon a multitude of factors. The imperfect nature
of exploits is one. The skill set of the attacker is another. Therefore, the edges
outgoing an attack step define the possibilities that are presented to an attacker
upon successful compromise of the attack step.

Calculation of TTC follows a two-steps process:

1. Each edge of the attack graph is “concretized” by getting a sample from its
TTC probability distribution. The sampled value becomes the weight of the
edge and represents the TTC of the edge’s target attack step, given that the
attacker has successfully attempted the edge’s source attack step;

2. An adapted version of Dijkstra’s shortest path algorithm calculates the small-
est TTC value for each attack-step, depending on its ancestry. More con-
cretely, we use Dial’s Approximate Buckets implementation [3].

Quantitative Information Security Risk Estimation 43

This process is performed N times (e.g., 500 times), and each attack step
keeps track of the TTC values it has been assigned with. The end result is a
frequency distribution of the successful attempt of an attack step over time.

3.2 Layer-1: Network and System-Specific Logic

Layer-1 introduces the network and system-specific logic for the attack graph
generation, the various threat types that can be identified in a network, and
loss calculation from CIA breaches. It uses Layer-0 as a meta-model and all the
classes introduced in this layer are instances of the Asset entity, and each Asset
instance contains its own set of attack steps.

Fig. 2. The Layer-1 model including classes, class relationships, attacks steps and their
dependencies. The containing entities are Asset instances, and the contained entities
are attack steps related to their owning asset. Attack steps with dashed lines symbolize
asmin and solid lines asmax. Solid edges represent behavioral associations (AssetRela-
tionship instances), and dashed edges define the possible progression of the attacker
from one attack step to another (AttackStepRelationship instances). (Derive associa-
tions are not represented in the figure.)

While Layer-0 encapsulates the attack graph theory, Layer-1 encapsulates the
attack graph logic, i.e. how to derive the attack graph from an object model. Each
Layer-1 entity owns a set of attack-steps that relate to one another, and each
relationship between two entities derives a particular set of AttackStepRelation-
ships. Hence, users must only instantiate the four entities (Agent, Identity, Data,
Vulnerability) and their relationships, when creating a Layer-1 object model.

44 P. Johnson et al.

The model of Layer-1, depicted in Fig. 2, consists of four Assets instances,
discussed below. For each entity, we describe its nature, its relationships with
the other entities, and the attack step edges that its relationships derive.

Identities are authorization concepts that specify the restriction rules enforced
in the system. Their core purpose in pwnPr3d is to specify the required privileges
to read and write Data, control an Agent, exploit a Vulnerability. For example,
only administrators are allows to read a particular file, say /etc/passwd/.

The identity entity has one attack step: compromisedmin. If the attacker
compromises an identity (e.g., via credentials disclosure), s/he “assumes” this
identity and gains all privileges that this identity represents on the network.

Identities have four different relationship types. First, an identity can be
authorized to access an agent. At the attack step level this leads to the deriva-
tion of an edge from identity.compromise to agent.authorize. Second, an identity
can authenticate as another identity (e.g., the admin of a system also has user
privileges). By compromising this identity, the attacker also gains the privi-
leges from the authenticated identity. This relationship derives an edge from
administrator.compromise to user.compromise. Third, An identity can be autho-
rized to read and/or write data. Such a relationship derives an edge between
identity.compromise to datum.authorizedRead and/or datum.authorizedWrite.
Lastly, an identity can be authorized to exploit a vulnerability e.g., an attacker
must gain user privileges on a system to exploit a vulnerability. An authorize
relationship leads to the derivation of an edge from identity.compromise to vul-
nerability.authorized.

Agents represent any active entity in the network: software, hardware, or people.
An agent has four attack steps: (i) accessmin (the attacker has logical access
to the agent so that it is reachable), (ii) authorizedmin (the attacker has the
capability to control the agent), (iii) compromisemax: the attacker has fully
assumed and taken over the agent, and (iv) denyServicemin: the attacker is
preventing the agent from working properly, aka a Denial-of-Service (DoS). Both
access and authorized are parents of compromise, which specifies that in order
to compromise an agent, the attacker must have logical access to it and the
necessary privileges.

An agent may require another to function properly e.g., an OS requires a
network interface to send data over the network. If the attacker was to perform
a DoS attack on the network interface, the operating system would no longer be
able to communicate. Therefore, an attack step edge is derived, from denyService
of the required agent to denyService of the requiring agent. Agents may also use
one another e.g., the network interfaces of a switch and a host use one another to
exchange data. Two attack step edges are derived: one from agentA.compromise
to agentB.access, and one from agentB.compromise to agentA.access.

Moreover, an agent may require data to function properly, e.g., in order to cal-
culate the fastest route between two places, data about both places must be avail-
able. Hence an edge is derived from denyService of the datum to denyService of

Quantitative Information Security Risk Estimation 45

the agent. Agents may also own data, e.g., a database server contains sensitive
data. When the attacker compromises an agent that owns data, s/he gains logi-
cal access to the data. If s/he DoS the agent, the data can no longer be accessed.
Two attack step edges are derived: (1) from agent.compromise to datum.access,
and (2) from agent.denyService to datum.denyService.

Lastly, an agent may contain a vulnerability, denoting when an asset holds a
bug. If the attacker compromises the agent, s/he gets access to the vulnerability.
Therefore, this attack sequence is represented by an edge from agent.compromise
to vulnerability.access.

Data represents any form of information: files, transportation messages, com-
mands, credentials, encryption, etc.

The Data entity has six attack steps: (i) accessmin (the attacker has log-
ical access to the datum but still cannot read/write), (ii) authorizedReadmin

(the attacker has authorization to read the datum), (iii) authorizedWritemin

(the attacker has authorization to write the datum), (iv) compromiseReadmax

(the attacker can read the datum), (v) compromiseWritemax (the attacker
can write the datum), and (vi) denyServicemin (the attacker denies access to
the datum). access and authorizedRead are parents of compromiseRead, and
access and authorizedWrite are parents of compromiseWrite: the attacker can
read (respectively write) a datum if s/he has logical access to it and has gained
read (respectively write) privileges. Such privileges can typically be obtained
from the compromising of an identity (e.g. identity spoofing), or by exploiting a
vulnerability that directly bypasses the access restriction.

A special kind of datum in pwnPr3d is credentials and encryption keys. These
are represented through the authenticate relation to Identity. If an attacker suc-
ceeds with compromiseRead on a datum, s/he also compromises all the identities
that the datum authenticates. Note that due to a lack of space, only a simplified
representation of data is presented. An aspect that is omitted is the capability
of encapsulating data to represent network messages and encrypted files.

Vulnerabilities represent flaws in the implementation or design of a system:
they constitute loopholes in the rule set represented by the other assets, associa-
tions and relations. In pwnPr3d, the possible prerequisites and consequences of a
vulnerability exploit are modeled rather than how the vulnerability is exploited.
The fact that not all vulnerability exploits result in successful compromises is
captured with the probabilities in the attack step relations. Moreover, the exis-
tence of a vulnerability may be uncertain. It may be the case for instance that
the administrator has secured his system even though the manufacturer has not
published a patch yet. The uncertainty of a vulnerability existence is represented
as a probability distribution, which further influence the calculation of TTC.

The Vulnerability entity has three attack steps: (i) accessedmin (the attacker
has logical access to the vulnerability), (ii) authorizedmin (the attacker has
gained the necessary privileges to exploit the vulnerability), and (iii) exploitmax

(the attacker can exploit the vulnerability).

46 P. Johnson et al.

Both access and authorized are parents of exploit: the attacker needs access
to the vulnerability and the necessary privileges in order to exploit the vulnera-
bility. For instance, an attacker might only be able to install a firmware rootkit
if s/he is (remotely) connected to the targeted system and has user privileges.

Vulnerabilities can be exploited to spoof an identity for escalation of privi-
leges, i.e. compromise it through another identity. A spoof relationship leads to
the derivation of an edge from exploitmax to the attack step compromisedmin

from the spoofed identity. A vulnerability exploit can also allow an attacker to
read (respectively write, i.e. data tampering) a datum (i.e. information disclo-
sure), given logical access. Two edges are derived from this relationship: from
vulnerability.exploit to datum.read and to datum.write. Finally, a vulnerability
exploit can authorize access to an agent, aka bypass the restriction in place.
Hence, an edge is derived from vulnerability.exploit to agent.authorized. Lastly,
a vulnerability when exploited can allow an attacker to DoS the agents that
contain it. An edge is derived from vulnerability.exploit to agent.denyService.

4 Extension for Quantitative Information Security
Risk Estimation

Information security risk is defined in ISO/IEC 27005 as “the potential that a
given threat will exploit vulnerabilities of an asset or group of assets and thereby
cause harm to the organization.”, that is measured “in terms of a combination
of the likelihood of an event and its consequence” [17]. Formally speaking, the
risk R is obtained from the product of the likelihood L of a security incident
occurring times the impact I it will have on the organization (R = L ∗ I).

In the previous section, we described how pwnPr3d automatically computes
the likelihood of attacks in term of time to compromise: The likelihood L of
assets being compromised is obtained by quantifying the attack step (condi-
tional) dependencies and deducing probability distributions over the Time To
Compromise (TTC) for attack steps. In this section, we propose an extension to
pwnPr3d’s class model that enables users to assign the cost value I of a security
incident to information assets, reflecting the cost impact of a security incident on
the corresponding asset. For each asset, three types of security incident are con-
sidered: confidentiality, integrity and availability breaches. As a result, pwnPr3d
quantitatively estimates information security risk R over time, depending on the
calculated progression of the attacker. This extension, as depicted in Fig. 3, con-
sists of the introduction of a new Layer-1 element that represents information
assets.

Information is considered immaterial, and as such has no direct relationship
with agents, identities nor vulnerabilities. It can only indirectly relate to these
through a Data entity that represents the information. The Data entity repre-
sents the format (e.g., XML), and the Information entity represents its meaning
and its value. Hence, when an identity has read privileges on a datum, it has
by extension read privileges on the information itself. Furthermore, information
may be represented by multiple data stored in different places (e.g., the enter-
prise performs regular back-ups of a database).

Quantitative Information Security Risk Estimation 47

Fig. 3. Relationship between Data and Information

The Information entity can be compromised according to three attack steps,
matching the CIA triad:

– compromiseConfidentialitymin: the attacker has gained logical access to one
of the data that represent the information with read privileges, which gives
him the possibility to access the information.

– compromiseIntegritymax: the attacker has gained logical access to one of the
data with write privileges, he can therefore compromise the integrity of the
information.

– compromiseAvailabilitymax: the attacker has made all the data representing
the information unavailable to their surroundings (e.g., through denial of
service), hence compromising the information’s availability. Because this is
a direct technical consequence, the TTC of the attack step edge between
data.denyService and compromiseAvailability is set to 0.

compromiseIntegrity and compromiseAvailability are asmax, since Infor-
mation can be present in a system in multiple places. Therefore, if the attacker
compromises one of the representing data, technically the information is still
available/coherent. Contrariwise, compromiseConfidentialitymin is an asmin

because it only takes the attacker to attempt compromiseRead on one of the
representing data to compromise the information confidentiality.

Each information instance must be valued with three attributes that express
the cost impact of Confidentiality, Integrity and Availability breaches. The type
of cost is reliant on the type of the attack step, i.e. compromiseConfidentiality
relates to Confidentiality cost, compromiseIntegrity to Integrity cost, and com-
promiseAvailability to Availability cost. It is the users responsibility to quantify
the cost impact of CIA breaches for each information instance. Indeed, eval-
uating such costs is an onerous and very speculative task that involves many
factors [15]. One may consider immediate losses as well as delayed losses, includ-
ing time sensitivity, impact on the stock market, cost of asset recovery, and so
on. Deciding which factors should be considered and to what extent is a real
challenge and as a result, the quantification might be quite inaccurate, regard-
less of the employed evaluation methodology. To palliate this inaccuracy, impact
costs are defined as probability distributions. In the next section, for instance,
costs are quantified using truncated normal distributions. Another option would

48 P. Johnson et al.

be to use beta distributions, to model the variable level of confidence within
the distribution. Note that, in this paper, we do not provide insights on how
to calculate individual impact costs and how to derive probability distributions
from them (as it is well discussed in the literature). Instead, the focus is solely
on how these cost are aggregated w.r.t the attack-graph analysis.

The calculation of quantitative information security risk is directly integrated
into the TTC calculation algorithm. Before each TTC calculation, all the prob-
ability distributions over CIA cost impacts are sampled. After each TTC calcu-
lation, the successfully attempted attack steps that are owned by Information
entities are inspected to collect tuples composed of the TTC value of the attack-
step and the sampled cost impact of the owning Information entity. Tuples are
then ordered based on their TTC value (from soonest to latest), and their asso-
ciated cost impact are cumulated: the cumulative cost of a given tuple is the
sum of its initial cost and the cumulative cost of its predecessor. Once the TTC
calculation algorithm has been executed N times, the obtained N collections of
tuples are merged and distributed in time bins. The end result is a cumulative
frequency distribution of the increasing cost impact of CIA breaches over time,
depending on the progression of the attacker in the network. Users are presented
with a cumulative histogram featuring the 5, 50, and 95 percentiles.

5 Motivating Example

Applying pwnPr3d on the test enterprise network involves the design of a topol-
ogy model that comprises all the components and assets of the network, how
they connect to one another, what the various access restrictions (e.g. firewall
rules) are, what the value of information assets is, as well as the introduction
of one (or several) attacker(s). Of course, the goal of full threat analysis and
security risk calculation automation is only achieved when complex classes have
been defined and grouped in component libraries ultimately made available to
end users (e.g., someone needs to define how Windows 10 is constructed). Once
the appropriate classes are available, pwnPr3d can be used for the evaluation of
different design scenarios. However, high-level components and product libraries
are out of the scope of this paper, the focus being on the core layers of pwnPr3d
and its extension that makes it possible to compute global information security
risk. Hence, it should be noted that the motivating example presented below
does not reflect how end users would model their enterprise network.

Consider a snippet of a heavily simplified software development enterprise
network. It is composed of a Windows 10 client host that has two level of privi-
leges: guest and user. To get user privileges, one must know the associated cre-
dentials. The windows 10 client host is connected to a Linux server host, which
stores all the source code created within the enterprise. With user privileges on
the Windows 10 client host, one has access to the home folder related to the user
account, and admin privileges on the Linux server host. Finally, the Windows
10 client host has a known (fictional) vulnerability that, if exploited, gives the
attacker authorzed read on the user credentials of the host. In this example, the

Quantitative Information Security Risk Estimation 49

Fig. 4. pwnPr3d model of the test network, with sampled impact costs of CIA breaches

goal is to measure the possible progression of the attacker and the corresponding
estimation of information security risk given that the s/he has logical access to
the Windows 10 client host, with guest privileges. It is defined in the model
with two startingPoint relations from the attacker to the concerned objects.
The pwnPr3d object model for this example is depicted in Fig. 4, designed using
pwnPr3d’s layer 1 meta-model.

Because the attacker has logical access to the Windows host with guest priv-
ileges, the host is considered compromised. Therefore, the attacker can now
exploit the vulnerability in ordeer to obtain read authorization on the user cre-
dentials. If performed, the attacker has the possibility to become User on the
Windows host. Since credentials are data, a cost of 9800 has been set in case of a
confidentiality breach, which gets marked as “reached”. The attacker also gets to

50 P. Johnson et al.

(a) (b)

Fig. 5. pwnPr3d result: frequency distribution over the time to compromise code source
data (a) and quantitative information security risk estimation of the test network (b)

possibility to read and write data in the user’s home folder, and if performed, the
associated breaches cost are also marked as “reached”. Furthermore, by being
User on the Windows host, the attacker can move laterally and compromise the
Linux server with admin privileges. If so, the attacker has the possibility to get
read/write permissions on the source code. Again, if performed, further security
cost is marked as “reached”.

Figure 5 shows the results produced by pwnPr3d for the test network. As pre-
sented in (a), a frequency distribution over the time to compromise is computed
for each attack step that has been successfully attempted by the attacker. In this
example, the average TTC read access on the code source data is approximately
6 days. The combination of TTC from all the attack steps that are related with
information assets with the impact cost of these assets is then collected and pre-
sented to users in the form of an histogram, as depicted in (b), representing the
increasing security risk over time. The 5th and 95th percentiles are impact cost
distributions for each time span (a time span being a tenth of day). For example,
at day 6 in the figure, the impact cost of the 5% lowest cost calculations tops
at around $2000. It means that, if there were 1000 calculations, ranked from
lowest overall impact cost to higher overall impact cost after 6 days, the 5th
percentile is the overall impact cost of the 50th lowest calculation. Similarly, the
95th percentile is the overall impact cost of the 50th highest calculation.

6 Conclusions

pwnPr3d is an attacker-centric probabilistic threat modeling technique for auto-
mated risk identification and quantification based on a topology model of the
system under analysis. The components of the system, depending on their nature
and how they relate to one another, are automatically coupled with attack steps
that define how these assets can be compromised: the threat analysis is built-in
and no security expertise is required from the users. An attack graph is calcu-
lated from the topology model and populated with probability distributions over
the Time To Compromise (TTC) on each of its attack steps, thus defining the

Quantitative Information Security Risk Estimation 51

likelihood of the identified threats to exploit a vulnerability. Once users have
defined the value of information assets to their organization, pwnPr3d automat-
ically computes a quantitative estimation of information security risk over time,
depending on the calculated progression of the attacker.

Future work is directed toward two research directions: (i) the extension of
the language to include complex components and products for users to simply
instantiate, and (ii) the extension of risk analysis to tangible assets in order to
improve its overall accuracy and precision. Furthermore, a thorough experimen-
tation on real-life systems is ongoing to validate the approach.

Acknowledgments. The work presented in this paper has received funding from the
European Unions Seventh Framework Programme for research, technological develop-
ment and demonstration under grant agreement no. 607109 as well as the Swedish Civil
Contingencies Agency (MSB) through the research centre on Resilient Information and
Control Systems (RICS).

References

1. Alberts, C.J., Dorofee, A.: Managing Information Security Risks: The OCTAVE
Approach. Addison-Wesley Longman Publishing Co., Inc. (2002)

2. Armin, J., Thompson, B., Ariu, D., Giacinto, G., Roli, F., Kijewski, P.: 2020 cyber-
crime economic costs: No measure no solution. In 10th International Conference
on Availability, Reliability and Security (ARES), pp. 701–710. IEEE (2015)

3. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory
and experimental evaluation. Math. Program. 73(2), 129–174 (1996)

4. Chu, M., Ingols, K., Lippmann, R., Webster, S., Boyer, S.: Visualizing attack
graphs, reachability, and trust relationships with navigator. In: Proceedings of
the 7th International Symposium on Visualization for Cyber Security, pp. 22–33.
ACM (2010)

5. European Commission. Towards a general policy on the fight against
cyber crime (2007). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?
uri=CELEX:52007DC0267. Accessed 5 March 2017

6. Cooper, D.: The australian and new zealand standard on risk management, as/nzs
4360: 2004. Tutorial Notes: Broadleaf Capital International Pty Ltd, pp. 128–151
(2004)

7. ECB. Recommendations for the security of internet payments (2015).
https://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpay
mentsoutcomeofpcfinalversionafterpc201301en.pdf, Accessed 5 March 2017

8. FFIEC. Supplement to authentication in an internet banking environment (2011).
https://www.fdic.gov/news/news/financial/2011/fil11050.pdf. Accessed 5 March
2017

9. W. E. Forum. Industry agenda. partnering for cyber resilience - towards the
quantification of cyber threats, January 2015. http://www3.weforum.org/docs/
WEFUSA QuantificationofCyberThreats Report2015.pdf. Accessed 5 March 2017

10. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic Bayesian network. In: Proceedings of the 4th ACM Workshop on Quality
of Protection, pp. 23–30. ACM (2008)

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52007DC0267
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52007DC0267
https://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf
https://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf
https://www.fdic.gov/news/news/financial/2011/fil11050.pdf
http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf
http://www3.weforum.org/docs/WEFUSA_QuantificationofCyberThreats_Report2015.pdf

52 P. Johnson et al.

11. Goodyear, M., Goerdel, H.T., Portillo, S., Williams, L.: Cybersecurity management
in the states: The emerging role of chief information security officers. Available at
SSRN 2187412 (2010)

12. Holm, H.: A large-scale study of the time required to compromise a computer
system. IEEE Trans. Dependable Secure Comput. 11(1), 2–15 (2014)

13. Holm, H., Shahzad, K., Buschle, M., Ekstedt. M.: P cysemol: predictive, probabilis-
tic cyber security modeling language. IEEE Trans. Dependable Secure Comput.
12(6), 626–639 (2015)

14. Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S.R., Singhal,
A.: Aggregating vulnerability metrics in enterprise networks using attack graphs.
J. Comput. Secur. 21(4), 561–597 (2013)

15. Hoo, K.J.S.: How much is enough? A risk management approach to computer
security. Stanford University Stanford, Calif (2000)

16. Howard, M., LeBlanc, D.: Writing secure code, 2nd edn. (2002)
17. E. ISO. Iec 27005: 2011 (en) information technology-security techniques-

information security risk management switzerland. ISO/IEC (2011)
18. Johnson, P., Vernotte, A., Ekstedt, M., Lagerström, R.: pwnpr3d: an attack-graph-

driven probabilistic threat-modeling approach. In: 11th International Conference
on Availability, Reliability and Security (ARES). IEEE (2016)

19. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process
based on attacker behavior. IEEE Trans. Softw. Eng. 23(4), 235–245 (1997)

20. Kaspersky. The great bank robbery: Carbanak cybergang steals $1bn from 100
financial institutions worldwide (2015). http://usa.kaspersky.com/about-us/
press-center/press-releases/2015/great-bank-robbery-carbanak-cybergang-
steals-1-billion-100-fina. Accessed 5 March 2017

21. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS
Approach. Springer Science & Business Media, Heidelberg (2010)

22. Meta object facility (MOF) 2.5 core specification (2015). http://www.omg.org/
spec/MOF/2.5/

23. S. NIST. 800–30. Risk management guide for information technology systems, pp.
800–30 (2002)

24. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in
topological vulnerability analysis. In: Conference For Homeland Security, CATCH
2009. Cybersecurity Applications Technology, pp. 124–129, March 2009

25. Noel, S., Jajodia, S., Wang, L., Singhal, A.: Measuring security risk of networks
using attack graphs. Int. J. Next Gener. Comput. 1(1), 135–147 (2010)

26. Nyanchama, M.: Enterprise vulnerability management and its role in information
security management. Inform. Syst. Secur. 14(3), 29–56 (2005)

27. Ponemon Institute. Cost of cyber crime report (2013)
28. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using

Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74
(2012)

29. Soomro, Z.A., Shah, M.H., Ahmed, J.: Information security management needs
more holistic approach: a literature review. Int. J. Inf. Manage. 36(2), 215–225
(2016)

30. Verizon. Data breach investigations report (2014)
31. Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber

security analysis. In: 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 211–220. IEEE (2010)

http://usa.kaspersky.com/about-us/press-center/press-releases/2015/great-bank-robbery-carbanak-cybergang-steals-1-billion-100-fina
http://usa.kaspersky.com/about-us/press-center/press-releases/2015/great-bank-robbery-carbanak-cybergang-steals-1-billion-100-fina
http://usa.kaspersky.com/about-us/press-center/press-releases/2015/great-bank-robbery-carbanak-cybergang-steals-1-billion-100-fina
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/MOF/2.5/

Fast and Optimal Countermeasure Selection
for Attack Defence Trees

Steve Muller1,2,3(B), Carlo Harpes1, and Cédric Muller1

1 itrust consulting s.à r.l., Niederanven, Luxembourg
{steve.muller,harpes,cedric.muller}@itrust.lu

2 University of Luxembourg, Luxembourg City, Luxembourg
3 Telecom Bretagne, Cesson-Sévigné, France

Abstract. Risk treatment is an important part of risk management, and
deals with the question which security controls shall be implemented in
order to mitigate risk. Indeed, most notably when the mitigated risk is
low, the costs engendered by the implementation of a security control
may exceed its benefits. The question becomes particularly interesting if
there are several countermeasures to choose from.

A promising candidate for modeling the effect of defensive mecha-
nisms on a risk scenario are attack–defence trees. Such trees allow one
to compute the risk of a scenario before and after the implementation of
a security control, and thus to weigh its benefits against its costs.

A naive approach for finding an optimal set of security controls is
to try out all possible combinations. However, such a procedure quickly
reaches its limits already for a small number of defences.

This paper presents a novel branch-and-bound algorithm, which skips
a large part of the combinations that cannot lead to an optimal solution.
The performance is thereby increased by several orders of magnitude
compared to the pure brute–force version.

Keywords: Attack-defence tree · Return On Security Investment ·
Optimal defences · Risk treatment optimisation · Branch and bound
algorithm

1 Introduction

Several risk methodologies exist [1] that assist the risk assessor in identifying
and handling risk, by providing exhaustive libraries of risk scenarios and/or
defensive mechanisms. Those methodologies require organisations to conduct
a risk assessment, which permits them to identify the risks that have to be
mitigated. However, they do not prescribe in detail how organisations should
put such a process into practise, leaving them enough freedom to choose an
approach that fits their needs and requirements. There are several frameworks
(such as ISO/IEC 27005 [2], IT-Grundschutz [3], MAGERIT [4] or EBIOS [5])
and commercial tools (such as TRICK Service1) that assist stakeholders in taking
1 www.itrust.lu/products.

c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 53–65, 2017.
DOI: 10.1007/978-3-319-57858-3 5

www.itrust.lu/products

54 S. Muller et al.

decisions for putting security controls in place. As for research, Attack–Defence
Trees [6] constitute a visual and very intuitive technique for analysing a risk
scenario in greater detail. They are a generalisation of ordinary attack trees [7]:
The latter encode, in a tree structure, how an attack (the root node) can be
achieved through intermediary attacks (its child nodes), so each branch adds
further refinement the parent attack – see Fig. 1 for an example. In contrast,
attack–defence trees also include the defensive mechanisms used to mitigate
these attacks. More precisely, the associated defence nodes are appended as
specially marked nodes to the attack nodes they protect from. These defences
again face attacks on their own, which try to disable the countermeasures. In fact,
attack–defence trees adopt the game-theoretic concept of two players, opponent
and proponent, who alternately try to defeat each other [8]. Figure 2 depicts a
simple attack–defence tree.

Recent research work by Gadyatskaya et al. [9] shows how attack–defence
trees can be combined with existent libraries (such as ISO/IEC 27002 [10]) to
determine the security controls an organisation shall implement. Indeed, when a
given set of controls is implemented, it will reduce the overall risk, but also comes
at a certain cost. Or, in other words, every selection of countermeasures comes
with a certain return after a certain investment. However, if the investment
outweighs the return, it is not sensible to mitigate the risk in the first place.
The related optimisation problem consists in finding those controls that have
the best return on investment.

Fig. 1. A sample attack tree depicting the possible reasons of hardware failure.

Fig. 2. A sample attack–defence tree, extending the example in Fig. 1. The dashed
nodes are defence nodes.

Fast and Optimal Countermeasure Selection for Attack Defence Trees 55

The authors semi-automatically embed the security controls from ISO/IEC
27002 [10] as defence nodes into an existing attack tree. A simple brute-force pro-
gram then iterates over all possible combinations of implementing those security
controls, trying to find the strategy which maximises the return on investment.
They have also developed a tool, ADTop, to demonstrate the work flow described
in their paper. However, such an approach is very resource-intensive, and thus
only works for very small input data. In this paper, we improve on their work
and propose a faster and memory-saving algorithm for finding the set of security
controls that minimises both risk and the security costs in an optimal way.

Other authors have proposed similar approaches and algorithms. Dewri et al.
[11] propose a genetic algorithm that optimises a multi-objective function tak-
ing into account the attack probability and the implementation costs. However,
they model defensive mechanisms as objects that mitigate an attack completely,
which is far from reality. In contrast, Roy et al. [12] propose a model based
on attack–defence trees and express the added-value of implementing a secu-
rity control as return-on-investment, taking into account the risk reduction and
the implementation costs. They propose a branch-and-bound algorithm, but it
requires that at least one countermeasure is selected for each attack, which may
not be necessarily sensible if the risk associated to that attack is already low.

This paper is organised as follows. Section 2 introduces the optimisation prob-
lem and the underlying model. Section 3 presents and deliberates the algorithm,
as well as its performance. A real-world case study is used to substantiate the
need for the algorithm in Sect. 4. A conclusion is drawn in Sect. 5.

2 The Optimisation Problem

2.1 Attack–Defence Trees

An attack–defence tree is defined [13] as a tree graph consisting of two kinds of
nodes:

– attack nodes, characterised by a name and a success probability p ∈ [0, 1];
– defence nodes, characterised by a name, an effectiveness e ∈ [0, 1] and a cost

c ≥ 0.

The parameters have the following meaning:

– The success probability expresses the likelihood that the attacker succeeds
in accomplishing the attack. If the node is a leaf, the success probability is
part of the input. Otherwise, it is computed according to the rules defined
below.

– The effectiveness expresses the degree (as a factor) to which the counter-
measure reduces the attack probability. The value 0 indicates that it is entirely
useless, 1 represents complete mitigation of the attack. The effectiveness is
part of the input.

– The cost is expressed in financial terms and represents the cost engendered
by the implementation of the defence. The cost is also part of the input.

56 S. Muller et al.

The root node of an attack–defence tree is always an attack goal. Attack
nodes can have subordinated attacks (that add more refinement) and defences
(that defend against this attack). Defence nodes can only have subordinated
attacks (that weaken the countermeasures).

For simplicity, this paper does not consider counter-attacks against defences.
Thus, in the following, defences are assumed to have no subordinate child nodes.

Moreover, the set of child attacks can be ‘disjunctive’ or ‘conjunctive’, mean-
ing that the parent attack consists of achieving any or all of the child attacks,
respectively. Similarly, the set of child defences can be ‘disjunctive’ or ‘conjunc-
tive’, meaning that any or all of the defences are required to protect from the
attack, respectively.

All attacks and defences in the tree are assumed to be independent. This
assumption is made to simplify the computations, and might not reflect reality.
To take dependencies into consideration, more general models have to be con-
sidered, such as Bayesian networks – these are out of the scope of this paper,
though.

2.2 Multi-purpose Defences

A defence can protect from several attacks, though possibly with a different
effectiveness. For instance, digital e-mail signatures prevent content manipula-
tion by third parties in a very effective fashion. At the same time, they verify
the sender’s identity and defend against impersonation attacks. However, the
effectiveness is a bit lower in this case, since the recipient cannot be entirely sure
that the sender is the real person he expected, for the latter could hack himself
into that person’s computer.

In this paper, defences are allowed to protect from multiple attacks, possibly
with different effectiveness values. That is, if one decides to implement such a
defence, and thus include it into the attack–defence tree, it will be appended to
all applicable attacks.

2.3 Rules of Calculation

For an attack α, let p(α) denote its success probability. For a defence δ, let c(δ)
denote its cost, and e(δ) its effectiveness.

When no defence mechanisms are present, and assuming that all attacks in
the tree are independent, the following basic probability rules hold for a non-leaf
attack node α.

p(α) =

⎧
⎪⎪⎨

⎪⎪⎩

∏

i

p(i) ifα is conjunctive

1 −
∏

i

(1 − p(i)) ifα is disjunctive,

Fast and Optimal Countermeasure Selection for Attack Defence Trees 57

where i iterates over all child attack nodes of α. If a defence δ is in place, by
definition of the effectiveness, it reduces the success probability by a factor

1 − e(δ).

Similarly, if a set of defences Δ is in place, the success probability will be reduced
by 1 − e(Δ), where

e(Δ) :=

⎧
⎪⎪⎨

⎪⎪⎩

∏

δ∈Δ

e(δ) ifΔ is conjunctive

1 −
∏

δ∈Δ

(1 − e(δ)) ifΔ is disjunctive,

assuming that defences reduce the success probability independently from each
other. So in summary, if a set Δ is implemented for an attack α, the recursive
computation rule is given by

p(α) = (1 − e(Δ)) ·

⎧
⎪⎪⎨

⎪⎪⎩

∏

i

p(i) ifα is conjunctive

1 −
∏

i

(1 − p(i)) ifα is disjunctive.
(1)

The recursion ends at the leaf nodes, for which the probability is fixed and part
of the input.

2.4 Optimisation Problem

Implementing a defence δ reduces the success probability, but also comes at a
cost c(δ). It is not a-priori obvious whether it is profitable to implement a specific
defence, because it could be wiser to select one or several others that come at a
lower cost. The problem thus consists in finding those defences that reduce the
success probability by a decent amount, but still come at a reasonably low cost.

In order to solve this multivariate optimisation problem, the Return On Secu-
rity Investment (ROSI) is chosen as score function. It is defined as

ROSI := impact · (initial probability − final probability)
︸ ︷︷ ︸

return (risk reduction)

− sum of costs,
︸ ︷︷ ︸

investment

where ‘initial’ and ‘final’ are understood to be before and after the implementa-
tion of all defences. A strategy is said to be optimal if it maximises the ROSI.
Note that there are many ways to define the ROSI (see e.g. [14]); this definition
was chosen because of its intuitive meaning and its simplicity.

Formally, denote the set of all available defences by D. An assignment is a func-
tion x : D → {0, 1} which states whether each defence δ shall be implemented
(x(δ) = 1) or not (x(δ) = 0). The ROSI can mathematically be expressed as

ROSI(x) := I · (P0 − P(x)) −
∑

δ∈D

x(δ) · c(δ), (2)

58 S. Muller et al.

where I is the (constant) impact of the risk scenario, P(x) is the success prob-
ability of the attack–defence tree after implementing all defences with x(·) = 1,
and P0 is the (constant) success probability of the attack–defence tree (thus
without any defences). The probabilities are calculated using the formula given
in Sect. 2.3. The optimisation problem then reads as

Find x : D → {0, 1} (3)
that maximises ROSI(x).

3 Branch and Bound Algorithm

The optimisation problem can be solved in several ways. One possibility would
be to turn ROSI(x) as defined in Eq. (2) into a linear function and apply standard
linear programming algorithms [15] on it. Such an approach has been proposed
and described by Roy et al. [12]. While this technique works in theory, the size
of the linear program exceeds the practical limits of feasibility very quickly. For
the case study presented in Sect. 4 below, the linear program would have a size
of 216 variables.

The proposed algorithm is given in Algorithm 1 and basically enumerates all
possible combinations of applying defences. However, it skips all sets of combi-
nations that are known not to contain any solutions. Note that it will never skip
a valid combination; this is proved below. The algorithm is invoked with Dp := ∅
and an empty map x : ∅ → {0, 1}. The attack–defence tree T , the set of defences
D and the effectiveness values e remain constant throughout the algorithms.

Note that if it was not for lines 1–3, Algorithm 1 were just a recursive brute-
force algorithm that tries out all possible ways of selecting defences. The inno-
vation (and performance optimisation) lies in the lines 1–3.

The idea is to skip a recursion step whenever it is known that it cannot yield
a viable combination of selecting defences. The skip criterion in line 1 originates
from the following observation. Equation (1) reveals that whenever a defence is
added to the attack–defence tree, the success probability of any attack node will
either decrease or at least remain the same. In particular, the same is true for
the global success probability of the tree.

Note that whenever the algorithm enters a recursion step, all non-processed
defences are set to ‘unselected’; this is assured by the start condition and line 16.
Thus, all later (i.e. deeper) recursion steps will end up with a lower or equal
overall success probability for the attack–defence tree. By consequence, once the
probability is no longer sufficiently reduced to cover the costs (i.e., once a defence
is no longer profitable), it will not be profitable for all later combinations, either.
Which means that all subsequent combinations are known to be invalid a-priori,
so they can be skipped.

3.1 Performance

The performance gain depends on the structure of the attack–defence tree. A
stress test was conducted on a tree consisting of 81 nodes and 90 defences, each

Fast and Optimal Countermeasure Selection for Attack Defence Trees 59

Algorithm 1. Branch and bound algorithm BnBa

Input: Attack–defence tree T with attack nodes A
Input: Set of defences D
Input: Effectiveness values e : A × D → [0, 1]
Input: Set of already processed defences Dp ⊆ D
Input: Partial selection strategy x : Dp → {0, 1}
Output: Selection strategy xopt that maximises ROSI(·)
1: if there is δ ∈ Dp that is no longer profitable (cf. Algorithm 2) then
2: abort current recursion step
3: end if

4: if Dp = D then
5: v ← ROSI(x)
6: if v is largest ROSI seen so far then
7: xopt ← x
8: end if
9: else

10: δ ← any defence not in Dp

11: Dp ← Dp ∪ {δ}
12: ’ Try selecting the defence
13: x(δ) ← 1
14: BnBa(T, D, e, Dp, x)

15: ’ Try not selecting the defence
16: x(δ) ← 0
17: BnBa(T, D, e, Dp, x)

18: ’ Remove δ again; this allows the re-use of Dp among all recursive calls
19: Dp ← Dp \ {δ}
20: end if

of which is applied to every attack. The resulting attack–defence tree has thus
81 · 90 = 7290 defence nodes. Note that in a concrete case, not every defence
would be applicable for every attack, and by consequence, the problem would
be simpler. The effectiveness values e : A × D → [0, 1] were chosen randomly.

If one comments out lines 1–3 in Algorithm 1, one obtains a pure brute-
force algorithm that tries out all 290 combinations. Executing it for the first
220 combinations took 107.42 s in our implementation; so it would need 1.27 ·
1023 s (4 · 1015 years) to finish. On contrast, the optimised variant terminated
within 895 s (15 min), having evaluated only 1, 748, 272 combinations (which is
approximately a 10−21 part).

Algorithm 1 can be implemented in such a way that it uses constant memory
in the course of its execution. This can be achieved by using a stack data
structure for Dp and a fixed-size array for x; both Dp and x are shared among
all recursive calls of the algorithm. In our implementation the memory usage
was approximately 20 MiB for the tree described above.

60 S. Muller et al.

Algorithm 2. Determine if a defence is profitable
Input: Defence δ
Input: Cost c(δ) of defence δ
Input: Impact I of risk scenario
Input: Partial selection strategy x : Dp → {0, 1}
Output: true if δ is profitable, false otherwise

1: if x(δ) = 0 then
2: return true
3: else
4: ’ Extend x to all of D
5: x(δ′) ← 0 for all δ′ ∈ D \ Dp

6: x(δ) ← 0
7: v0 ← ROSI(x)

8: x(δ) ← 1
9: v1 ← ROSI(x)

10: ’ δ is profitable iff the residual risk is lower when δ is implemented
11: if v1 · I + c(δ) < v0 · I then
12: return true
13: else
14: return false
15: end if
16: end if

The tests were conducted on a standard laptop with a i7-6700HQ processor
(2.6 GHz). Our implementation of the algorithm ran on a single core, although
it can be modified in such a way that it supports multi-threading, as well.

4 Case-Study

The methodology presented in [9], together with the new Algorithm 1, is used
to determine those ISO 27002 [10] security controls that have the largest added-
value for the ‘ÉpStan’ project.

ÉpStan, which is short for Épreuves Standardisées (standardised exams), is
Luxembourg’s national programme to monitor the quality of the educational
system of secondary school. To achieve this, standardised exams are conducted
in selected classes all over the country, and the results are analysed to spot topics
that are not well covered by the school programme.

Since the tests are meant to rate the educational system, rather than the
individual students’ performance, the results should under no circumstances be
linked to the individuals. There are four parties involved in the process:

– The Government provides the standardised exams.
– The schools organise and conduct the exams.
– The University of Luxembourg is responsible for evaluating the results.

Fast and Optimal Countermeasure Selection for Attack Defence Trees 61

– itrust consulting acts as a trusted third party and pseudonymisation service
between the Government and the University of Luxembourg. Its role is to
assure that neither of them can link results to an individual student. This
is achieved by issuing a pseudonym for each student, which is used by the
schools to exchange the exam results with the University. itrust consulting
never obtains any exam result.

The process is designed in such a way that neither the University, nor the
Government, nor itrust consulting can link exam results to individual students.
Although every entity only knows part of the necessary information, an attacker
could get (legally or not) data from multiple entities, and reconstruct the link
between result and student.

A brainstorming session led to the identification of an exhaustive list of attack
scenarios, all of which have been encoded in an attack tree consisting of 81 attack
nodes. Figure 3 shows a small excerpt.

C1 - Partial theft coming from external

Get results

Get report Get student input

Get student input
legally

Get student input
illegally

Get real ID

Real ID
publically available

Get mapping

Get pseudonym -
real ID mapping

Establish pseudonym
with real ID mapping

Get pseudonym
with real ID mapping

illegally

Combine two
mappings

Fig. 3. An excerpt of the attack tree for the risk scenario where an attack can link
exam results to a student.

The second step consisted in determining the ISO 27002 [10] controls that
reduce the success probability of some of the identified attacks. In total 16 con-
trols were retained. Moreover, the effectiveness was estimated in a brainstorming
process for each of the retained defences and each of the applicable attacks. The
resulting effectiveness matrix e : A × D → [0, 1] had 58 non-zero values and is
depicted in Table 1.

ADTop (see [9]) required 54.2 s and over 1 GiB of memory to find the optimal
attack–defence tree. A C# implementation of Algorithm 1 proposed the same
set of defences within 0.36 s, having tried out 12,496 combinations (19% out
of the 216 possible). The memory usage was 20 MiB. An excerpt of the full
attack–defence tree is depicted in Fig. 4.

62 S. Muller et al.

Li
nk

 e
xa

m
 r

es
ul

ts
 to

 s
tu

de
nt

G
et

 r
es

ul
ts

G
et

 r
ep

or
t

C
re

at
e

re
po

rt
G

et
 r

ep
or

t l
eg

al
ly

G
et

 r
ep

or
t i

lle
ga

lly

S
te

al
 r

ep
or

t f
ro

m
 U

L
or

 T
ea

ch
er

N
et

w
or

k
at

ta
ck

E
nt

er
 fa

ci
lit

ie
s

A
tta

ck
 o

w
ne

r
S

et
 9

H
an

dl
in

g
of

 a
ss

et
s

(1
)

C
on

fid
en

tia
lit

y
or

 n
on

-d
is

cl
os

ur
e

ag
re

em
en

ts
 (

2)
A

cc
es

s
co

nt
ro

l p
ol

ic
y

(1
)

H
um

an
 e

rr
or

 b
y

U
L

or
 T

ea
ch

er
P

hy
si

ca
l s

ec
ur

ity
 p

er
im

et
er

 (
3)

C
on

fid
en

tia
lit

y
or

 n
on

-d
is

cl
os

ur
e

ag
re

em
en

ts
 (

4)

G
et

 s
tu

de
nt

 in
pu

t

G
et

 r
ea

l I
D

G
et

 m
ap

pi
ng

G
et

 p
se

ud
on

ym
 -

 r
ea

l I
D

 m
ap

pi
ng

C
om

bi
ne

 tw
o

m
ap

pi
ng

s

S
et

 1

F
ig
.
4
.
A

n
ex

ce
rp

t
o
f
th

e
a
tt

a
ck

–
d
ef

en
ce

tr
ee

w
it

h
se

cu
ri

ty
co

n
tr

o
ls

a
p
p
en

d
ed

.

Fast and Optimal Countermeasure Selection for Attack Defence Trees 63

Table 1. An excerpt of the effectiveness matrix, which has (16 defences × 81 attacks).
Values indicated are in %.

Out of the original 16 defences, the following 9 have been proposed for imple-
mentation by the algorithm.

– Handling of assets (Sect. 8.2.3)
– Password management system (Sect. 9.4.3)
– Physical security perimeter (Sect. 11.1.1)
– Capacity management (Sect. 12.1.3)
– Management of technical vulnerabilities (Sect. 12.6.1)
– Restrictions on software installation (Sect. 12.6.2)
– Network controls (Sect. 13.1.1)
– Confidentiality or non-disclosure agreements (Sect. 13.2.4)
– Access control policy (Sect. 9.1.1)

64 S. Muller et al.

This solution reduces the success probability of the global attack from 29% to
6.5% and has a ROSI of 10031 EUR.

5 Conclusion

Gadyatskaya et al. [9] have shown how attack–defence trees can be used to
model risk reduction engendered by a library of security controls. Since the
implementation of defensive mechanisms comes at a cost, it is not a prori clear
which controls to prefer over which ones. The authors determine the optimal
defence strategy by literally processing all combinations of selecting security
controls and computing the Return On Security Investment (ROSI) for each of
them.

The tool presented in [9], ‘ADTop’, reaches its feasible limits at 16 defences.
However, any pure brute-force program would have a practical limit of 40
defences. Indeed, if an evaluation of a single combination takes 1 ms, then iterat-
ing over all 240 combinations will already take approximately 13 days (growing
exponentially with the number of defences).

This paper improves on the latter work by presenting a memory-efficient algo-
rithm which skips some of the unnecessary computations. This method experi-
mentally decreases the running time of the algorithm on large trees (81 attacks,
90 defences) from several hundred years to several hours. While the technique
works specifically for the ROSI function, it can be generalised to other, similar
score functions, as well.

The improved algorithm has been applied in a case study in order to highlight
the performance boosts. The case study deals with determining the optimal set
of ISO 27002 countermeasures that shall be implemented for a pseudonymisation
service, and uses an attack–defence tree consisting of 81 attacks and 16 unique
defences. Compared to ‘ADTop’, the new algorithm reduces the memory usage
from over 1 GiB to 20 MiB, and the execution time from nearly a minute to less
than a second.

Acknowledgements. This work was supported by the Fonds National de la
Recherche, Luxembourg (project reference 10239425) and the European Commis-
sion’s Seventh Framework Programme (FP7/2007-2013) under grant agreement num-
ber 318003 (TREsPASS).

References

1. Giannopoulos, G., Filippini, R., Schimmer, M.: Risk Assessment Methodologies for
Critical Infrastructure Protection, Part i: A State of the Art. Publications Office
of the European Union, Luxembourg (2012)

2. International Organization for Standardization, ISO/IEC 27005 - information tech-
nology - security techniques - information security risk management (2011)

3. Bundesamt für Sicherheit in der Informationstechnik (BSI), IT-Grundschutz

Fast and Optimal Countermeasure Selection for Attack Defence Trees 65

4. Amutio, M.A., Candau, J., Mañas, J.: Magerit-version 3, methodology for infor-
mation systems risk analysis and management, book I - the method, Ministerio de
administraciones públicas (2014)

5. Secrétariat général de la défense nationale, Ebios-expression des besoins et identi-
fication des objectifs de sécurité (2004)

6. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–defense trees. J.
Logic Comput. 24(1), 55 (2014). doi:10.1093/logcom/exs029

7. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
8. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and

two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17197-0 17

9. Gadyatskaya, O., Harpes, C., Mauw, S., Muller, C., Muller, S.: Bridging two worlds:
reconciling practical risk assessment methodologies with theory of attack trees. In:
Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp.
80–93. Springer, Cham (2016). doi:10.1007/978-3-319-46263-9 5

10. International Organization for Standardization, ISO/IEC 27002 - information tech-
nology - security techniques - code of practice for information security management
(2013)

11. Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using
multi-objective optimization on attack tree models of networks. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, pp. 204–
213. ACM (2007)

12. Roy, A., Kim, D.S., Trivedi, K.S.: Scalable optimal countermeasure selection using
implicit enumeration on attack countermeasure trees. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pp. 1–12. IEEE
(2012)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol.
6561, pp. 80–95. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19751-2 6

14. Gordon, L.A., Loeb, M.P.: The economics of information security investment. ACM
Trans. Inform. Syst. Secur. (TISSEC) 5(4), 438–457 (2002)

15. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming, vol. 28.
Addison-Wesley Reading, MA (1973)

http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.1007/978-3-642-17197-0_17
http://dx.doi.org/10.1007/978-3-319-46263-9_5
http://dx.doi.org/10.1007/978-3-642-19751-2_6

An Assessment of Security Analysis Tools
for Cyber-Physical Systems

Laurens Lemaire(B), Jan Vossaert, Bart De Decker, and Vincent Naessens

Department of Computer Science, KU Leuven, IMinds-DistriNet, Leuven, Belgium
{laurens.lemaire,jan.vossaert,bart.dedecker,

vincent.naessens}@cs.kuleuven.be

Abstract. Cyber-Physical Systems are heavily used in today’s world.
However, their security leaves much to be desired. Attacks such as the
Stuxnet worm and the Ukrainian Grid Hack have shown that compro-
mising these systems can have disastrous consequences.

It follows that additional methods for assessing the security of these
systems must be explored. To this end, several tools have been developed.
In this paper, five existing tools that examine the security of cyber-
physical systems are presented. The input models and feedback of these
tools are then compared with each other. A real life case study has been
modelled in all five tools to achieve this. Two versions of this case study
are implemented, one with a DMZ in the network and one without. The
five tools are evaluated and their strengths and weaknesses for assessing
the security of cyber-physical systems are analysed.

Finally, additional methods for the security assessment are touched
upon, and we discuss how they can be used together with the tools.

Keywords: Cyber-physical systems · Security assessment · CSET ·
ADVISE · CyberSAGE · CySeMoL · FAST-CPS

1 Introduction

Cyber-Physical Systems (CPS) are networks of interacting elements with physi-
cal input and output. A CPS usually comprises various remote field sites where
a certain process is taking place. Each field site consists of sensors and actuators,
controlled locally by a PLC, RTU, or similar device. These remote sites are con-
nected to a centralized control network where operators can remotely monitor
and control the processes.

These processes are often of critical nature. Examples of CPS include power
stations, nuclear reactors, waste water treatment facilities, wind turbines, traffic
lights, and many more. It is easy to see that a failure in any of these systems could
have disastrous consequences. Therefore, the security of these systems should be
paramount. Unfortunately, most of these systems contain legacy equipment that
was not designed with security in mind [10,24].

In the past these CPS were isolated, and the only security concern was phys-
ical access to the site. Nowadays, due to the evolution of IT, these systems are
c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 66–81, 2017.
DOI: 10.1007/978-3-319-57858-3 6

An Assessment of Security Analysis Tools for Cyber-Physical Systems 67

connected to company networks, and by extension the internet. This means they
are easier to use, but also easier to attack. As a result, they have been attacked
more frequently in the past years. Famous examples include the Maroochy Shire
sewage spill in Australia [2], and the Stuxnet worm in Iran [6,16]. The former
caused 800.000 L of raw sewage to spill into local parks and rivers, the latter was
used to sabotage the fuel enrichment plant of Natanz in Iran [9]. More recently,
the Ukrainian grid was hacked which caused hundreds of thousands of people to
lose power for several hours [3,27].

It is clear that the security of these systems is not yet sufficient. Tools have
been developed to help analyse the security of CPS. This paper will investigate
some of them and make a comparison.

1.1 Contribution

This paper presents five tools that help analyse the security of cyber-physical
systems. One tool, the Cyber Security Evaluation Tool (CSET), is developed
by Homeland Security. The other four tools are the Cyber Security Modeling
Language (CySeMoL), the Adversary View Security Evaluation (ADVISE), the
Framework for the Analysis of Security in CPS (FAST-CPS), and the Cyber
Security Argument Graph Evaluation tool (CyberSAGE). These are developed
by research initiatives. To the best of our knowledge, no other CPS security
analysis tools exist that can be tested.

All tools are introduced, and then they are used to evaluate a real case study.
Their input models are compared to each other, and the feedback they produce
is compared as well.

The case study is based on the dam of Nisramont in Belgium. We model
this case study with two different architectures, based on the architectures of
Figs. 5-1 and 5-3 in the National Institute of Standards and Technology (NIST)
Special Publication 800-82 guide [22].

Additional security methodologies are briefly touched upon at the end. The
pros and cons of all tools and methods are investigated, and a conclusion is
drawn with regards to optimally securing a cyber-physical system.

1.2 Outline

The paper is structured as follows. Section 2 introduces the case study and both
architectures. In Sect. 3, the five tools are introduced and used to model both
architectures of the case study. In Sect. 4, the tools are compared to each other.
Section 5 contains some other methodologies that can be used for the security
assessment of CPS. Finally, Sect. 6 concludes the paper.

2 Case Study

In this section we present the case study that will be modelled in the tools. It
should be noted that they have different input models, hence not all details of

68 L. Lemaire et al.

the case study will be modelled in all tools. For instance, process parameters
and invariants are only modelled in FAST-CPS.

The case study is based on the dam of Nisramont in Belgium. The industrial
process in Nisramont monitors the water level of a lake and keeps it constant. A
sensor is used to measure the water level, and this info is passed on to a Schneider
Electric PLC of type Premium. An industrial PC with the Vijeo Citect SCADA
package is used locally to monitor the process. The control network is connected
with the offices in Verviers from where remote control is possible. The process
data is also stored in the data historian located in these offices. A data historian
is an application that logs time-based process data.

We model two different architectures in each tool, based on the architectures
of Figs. 5-1 and 5-3 in the NIST SP 800-82 guide [22]. The first architecture
only contains the two network zones described above: the control network and
the corporate network. The second architecture adds a DMZ between these two
network zones where the historian is located. We will test whether the tools
produce different results in these different architectures.

Some tools model the users in the system. We will include one operator who
has access to the control network, and one employee who works in the Verviers
office. There will also be an outside attacker. In case studies where attacker
goals have to be specified, the attacker will attempt to gain access to the data
historian.

3 Tools

Here the five tools are introduced, and their input model and feedback are dis-
cussed when modelling the case study.

3.1 CSET

Homeland Security has created CSET, the Cyber Security Evaluation Tool [8].
This tool checks compliance of a system with a chosen standard through a ques-
tion and answer method. There are 24 standards the user can choose between.
Once a standard has been chosen, the tool generates a list of questions that will
assess system compliance with the given standard.

CSET also has a diagram feature where the user can model the network
topology of their system. The tool then gives warnings in order to assist the user
in finding a better network architecture. From this diagram, the user can also
generate a list of questions from a standard, but only questions related to the
components in the system. Hence this feature helps in condensing the big list of
questions.

Both architectures of the case study were implemented in CSET. The input
model of this tool focuses mainly on network architecture. Process information,
users, and attackers cannot be modelled. It is also not possible to add properties
of components or communication channels. The feedback of both architectures

An Assessment of Security Analysis Tools for Cyber-Physical Systems 69

Fig. 1. The DMZ architecture modelled in CSET

was the same, the inclusion of a DMZ did not change anything. The tool dis-
played 2 warnings, as can be seen in Fig. 1. Warning 1 said that the corporate
network should have an IDS or IPS in-line to confirm that the firewall FW-13 is
configured correctly, and warning 2 recommends the use of yet another firewall
as there is a connection on one side to an external network.

CSET is easy to use and it has by far the most components in its panel,
allowing you to accurately model your system. Unfortunately the feedback is
lacking, the main aim of the tool is to facilitate compliance with standards, not
assessing the security of a system.

3.2 ADVISE

ADVISE [13] determines which way an attacker is most likely to go about attack-
ing a system. The tool has been added to the Möbius framework [7] to make use
of its modelling formalisms and solution techniques.

Modelling the case study in ADVISE is done from the point of view of the
attacker. First the user must decide what the attacker goals are. For instance, in
this case study there could be five different attacker goals: Reading the data from
the historian, corrupting the data from the historian, changing PLC instructions,
forwarding unauthorized PLC code, and compromising the control server. Next,
the user adds the attack steps that the attacker must complete before the goals
are reached. For example, to reach the read data goal node, the attacker must
perform the attack step Access Data Historian.

70 L. Lemaire et al.

Fig. 2. Attack steps and prerequisites modelled in ADVISE

Each attack step is then assigned further prerequisites. There are three pos-
sible types: access to networks or workstations, required attacker skills, and
knowledge such as passwords. The result of an attack step can be an attacker
goal, or increased access/knowledge for the attacker. For instance, prerequisites
of the Access Data Historian step could be Application Server Access, Data His-
torian Access, etc. The attack steps resulting in these access rights are Hack
Application Server, and Hack Data Historian, and the prerequisites for these
involve certain attacker skills. Part of the input for our case study is shown in
Fig. 2. Circles denote knowledge, squares are access, and triangles are skills. The
ovals are the goal nodes.

When the user has mapped out all the attack steps, he now has to model
the adversary. This includes specifying the attacker’s initial knowledge/access
and the attacker proficiency in all skills. The user also indicates how much the
attacker cares about detection versus pay-off, and the relative importance of the
different goals.

The result is an Attack Execution Graph (AEG). The AEG represents poten-
tial attack steps against the system. ADVISE automatically generates an exe-
cutable model that represents how the adversary is likely to attack the system.
Once the attack execution graph is modelled, the user can run the framework to
determine which attacker goals will be reached with what probability. It is also
shown how many time steps the attacker will need to reach his goal. This type
of model-based security analysis distinguishes itself from attack trees in the fact
that it allows for time-ordered sequences of events. Attack trees do not contain
a notion of time. Other system security analysis techniques exist that employ
adversary-based analysis. For instance MORDA [5] and NRAT [25]. However,
neither of these is designed for state-based analysis. The adversary attack deci-
sion represented in these methods is a one-time selection of a full attack path.
In contrast, ADVISE models step-by-step decisions, in which the outcome of
previous attack step decisions impacts the adversary’s subsequent decisions.

An Assessment of Security Analysis Tools for Cyber-Physical Systems 71

For the case study, two different attack execution graphs were modelled. The
DMZ architecture adds an extra access domain (the DMZ), and two additional
attack steps. Several attackers were modelled, with different preferences towards
detection and goals. A highly-skilled adversary, who cared more about reaching
the goal rather than remaining undetected, was able to eventually read the
data with probability 1. In the DMZ architecture, this took more time steps
to accomplish, but otherwise there were no differences. Changing the pay-off of
the attack goals resulted in other attacks succeeding. If the detection preference
weight was increased accordingly, no attacker goals were reached.

To use ADVISE, the user requires quite a bit of security knowledge. Building
the attack execution graph from scratch is not trivial. The user must know how
an attacker would go about breaching their network beforehand. The attacker
also has to be given certain properties, such as his skill level at exploiting VPNs,
hacking control servers through an HMI, hacking data historians, etc. Assigning
accurate values to these skills is hard to do. Furthermore, each attack step needs
to be given a percentage chance of detection. Finding the “correct” values for
these probabilities is not possible, hence a big part of the attack execution graph
works on assumptions.

3.3 CyberSAGE

CyberSAGE [23] is similar to ADVISE in terms of output. The user will have to
specify a workflow of the threat agent, and the result will show probabilities of
the attacker reaching his goal and his attack steps. However, the tool is easier to
use as the attack steps are fixed and there are less attacker variables to decide on.

To generate the resulting argument graph, the user needs to provide four
pieces of input. First there is the workflow graph which specifies the actions of
the attacker. There is a list of 19 possible actions the user can choose from,
including send command, physical access, inject malicious messages, and so on.
The user has the possibility to add additional actions in the rules engine. An
example workflow of a threat agent who attempts to gain access to a historian
is shown in Fig. 3.

Next, the user models the system components and networks. This is largely
similar to the diagram feature of CSET, with the exception that components
can have various properties regarding authentication, access control, encryption,
etc. Less components are available, but the user can add his own components
and properties to the palette.

Finally, the user must model the attacker. The attacker attributes include
his skills, his intention, his access to the system, and his resources. There are
less parameters than in ADVISE, but this is not necessarily a bad thing, the
essentials are there.

The final element of input is the rules engine. A default rules file is supplied
with each CyberSAGE instance. The user has the option to edit this and tweak
with the probabilities, or add additional attacker actions.

Both architectures of the test case were modelled, and it was tested whether
two attackers were able to read the data in the historian: an insider and an

72 L. Lemaire et al.

Fig. 3. A workflow modelled in CyberSAGE

outsider with the same level of IT skills. As expected, the insider could access
the data of the historian with probability 1 in both architectures. This is due
to the fact that the insider has physical and logical access. Interestingly, the
outsider has the same probability of reading the data in both architectures:
0.897. The DMZ does not appear to change the outcome. When changing all
the component properties of the firewall between the corporate network and the
DMZ, the probability does not change. CyberSAGE is still under development,
perhaps the component properties do not yet affect the probability.

CyberSAGE is easier to work with than ADVISE. Less security knowledge is
required, and the user does not have to define the probabilities of detection for
each step. The tool is fully customizable to suit the user’s needs. Properties of
the components in the system diagram do not seem to affect the outcome yet.

3.4 CySeMoL

CySeMoL [20,21] provides the same kind of feedback as the two previous tools,
e.g. the probability of an attacker reaching some attack goals in a system. How-
ever, in CySeMoL both the attacker and the attacker goals are fixed, the user
cannot change them. For their attack probabilities, CySeMoL assumes that the
attacker is a penetration tester who only has access to public tools.

Using CySeMoL does not require security expertise from the user. He just
has to model his system according to the Probabilistic Relational Model (PRM)
employed by CySeMoL. The PRM specifies a theory on how attributes in the
model depend on each other. The theory used in CySeMoL is based on logical
relations, experimental research in the security domain, and domain experts’
judgement.

A PRM can be used to perform two types of analysis. The first method can
produce values for the expected economic losses for the architecture. This analy-
sis considers the probability that different attack scenarios will be attempted

An Assessment of Security Analysis Tools for Cyber-Physical Systems 73

and the expected loss if they succeed. A second method uses a subset of the
PRM template and calculates reachability values for different attack paths, as
in attack graphs. CySeMoL uses the second type of analysis.

Compared to other tools that employ methods based on attack graphs, such
as NETSPA [14,15], MulVAL [18], or the TVA-tool [17], CySeMoL analyses
a wider range of attack types and security measures. For instance, it has the
capability to model attacks such as password cracking, social engineering, and
DoS attacks, which the other tools do not.

When modelling the network architecture, the available components on the
palette do not include typical CPS components, but rather a general Operat-
ingSystem block that can be used for all PLCs, HMIs, and so on. These can then
be connected with the relevant ApplicationServer or ApplicationClient compo-
nents. Each component has a fixed number of attributes linked to it, for instance
the ApplicationClient component has an attribute HasAllPatches which the user
can change to false or true. Modelling a CPS in CySeMoL is not as straightfor-
ward as with the other tools, but there are several tutorials available.

When modelling the case study in CySeMoL, the attacker was given direct
access to his own PC, an OperatingSystem object, which was connected to the
internet. The internet is connected to the corporate network, which is connected
to the control network. Both networks are then modelled in more detail than the
previous tools, including software of components, users, social zones, data flows,
and more. Firewalls separate all networks. When calculating the probabilities,
the attacker can access the corporate network with probability 0.02 and the
control network and DMZ with probability 0.0. Hence in the first architecture he
can access the data historian with probability 0.02, and in the second architecture
he cannot access it.

CySeMoL only considers one type of attacker, which decreases its applicabil-
ity. Compared to ADVISE and CyberSAGE, the returned probability of gaining
access to the data historian is very different, the lack of attacker customiza-
tion may be a cause. The advantage is that the user needs no security expertise
to use CySeMoL, only the system has to be modelled, much like CSET. For
experienced users, the Class Modeller can be downloaded to change CySeMoL’s
metamodel and configure the probabilities and default properties of components.
The research group that worked on CySeMoL is currently working on a successor
where the user will be able to choose between attackers of various strength.

3.5 FAST-CPS

FAST-CPS [11,12] provides a different kind of feedback than the other tools.
Here the user will model the entire system in the UML-based visual modeling
language SysML. This includes information about the process, the system, the
users, the products, and the attacker. IDP3, a logic-based framework [4,26], will
then report vulnerabilities in the system model. The logic theory which will
find these vulnerabilities is based on component vulnerability databases, the
Scadastrangelove Github [1] containing CPS components with known default

74 L. Lemaire et al.

passwords, and security best practices extracted from various standards, guide-
lines, and academic papers.

The feedback of FAST-CPS is twofold. First the components with known
component vulnerabilities or known default passwords will be listed. Then the
logic will evaluate a set of queries related to the normal behaviour of the system
and let the user know whether this is impacted. For instance, the user must
model a permission matrix showing which users should be able to perform certain
operations on parameters. If the component vulnerabilities result in additional
or fewer permissions, these will be reported as system vulnerabilities.

When modelling the case studies in FAST-CPS, both architectures yield the
same component vulnerabilities. The Schneider Electric Premium PLC is listed
on the Scadastrangelove Github, meaning anyone can authenticate himself to
the PLC if the factory passwords have not been changed. Furthermore, the
Vijeo Citect Historian and HMI are both listed in the ICS CERT vulnerability
database. The historian is vulnerable to a buffer overflow, which could cause a
DoS, while an attacker with access to the HMI could abuse XML entities with
URLs to gain access to confidential data. The latter two vulnerabilities have
patches available that can fix them.

In terms of system vulnerabilities, both architectures report that users may
not be able to read the historian, despite having permission to do so, as a result of
the buffer overflow vulnerability. No differences exist between both architectures
in terms of feedback.

In order to use FAST-CPS, a user does not need extensive knowledge of CPS
security. The process is mostly automated, the only steps to take are to create a
complete inventory of the system, and then to model it. To create this inventory,
a scanning tool such as CyberLens could be used, or the operator could consult
blueprints or other resources. Afterwards, the tool can be run and the user no
longer has to interfere. The feedback differs from other tools, listing component
vulnerabilities that are present in the system and the system vulnerabilities they
may cause. There are no probabilities involved. As such, the attacker model is
less detailed than the one in ADVISE and CyberSAGE, no attacker skills or
goals are modelled.

4 Comparison of Tools

In this section we will compare the different tools with each other. We first
consider the input model and then the feedback the tools return.

4.1 Input Model

Here we compare which parts of a cyber-physical system are modelled in the
different tools. We also include whether the tools have customizable rules and
whether the user is assumed to have security expertise. A general overview can
be found in Table 1. All tools except ADVISE require the user to model the
system. Which elements of the system are modelled differ from tool to tool,

An Assessment of Security Analysis Tools for Cyber-Physical Systems 75

Table 1. Input model comparison.

Tool System Attacker Customisable Security

model model rules expertise

CSET X

ADVISE X X

CyberSAGE X X X X

CySeMoL X X

FAST-CPS X X X

this is examined in the next paragraph. Similarly, the final table in this subsec-
tion shows the attacker info that is modelled in the different tools. CSET does
not include an attacker, and in CySeMoL the attacker is predetermined and
the user does not have to change his properties. CyberSAGE, CySeMoL, and
FAST-CPS can be customized. The former two have fixed probabilities attached
to certain properties, the user can edit these to their liking. In FAST-CPS, the
user can add component vulnerabilities as new ones appear on the ICS CERT or
Scadastrangelove listings. Finally, only ADVISE and CyberSAGE require secu-
rity expertise from the user. In both tools, the user must construct a workflow
for the attacker. Hence the user should be aware how an attacker is most likely
going to attack their system.

Table 2. System model comparison.

Tool Components & channels Data flow Users Process Software

CSET X

CyberSAGE X

CySeMoL X X X X

FAST-CPS X X X X X

Table 2 shows which elements of the system that are modelled in the four
tools that require a system model as input. All tools include a list of compo-
nents and the communication channels between them. CySeMoL and FAST-CPS
attach further properties to these channels, for instance the data flow that comes
through them, the protocols that are used, etc. Both in CySeMoL and FAST-
CPS, the users of the system are modelled too, albeit for different purposes. In
CySeMoL, a modeller can place the attacker in the same social zone as a legiti-
mate user, in which case the risk of social engineering increases. In FAST-CPS,
the system also investigates whether regular users can carry out their tasks when
certain component or system vulnerabilities are present. Process information is
only required for FAST-CPS. This includes process invariants, parameters, sen-
sors and actuators. The system will check whether the parameters can only be

76 L. Lemaire et al.

Table 3. Attacker model comparison.

Tool Knowledge Access Skills Goal Considerations

ADVISE X X X X X

CyberSAGE X X X

FAST-CPS X X

read by the users who are authorized to do so, and whether the process invariants
can be abused to modify certain parameters. Finally, the software of the com-
ponents is modelled in CySeMoL and FAST-CPS only. This includes operating
systems of workstations, authentication info of programs, etc.

Table 3 compares the three tools that require an attacker to be modelled.
ADVISE and FAST-CPS consider the knowledge of the attacker, meaning pass-
words and other login tokens the attacker might possess. All three tools consider
the access level of the attacker, but they do this in different ways. CyberSAGE
asks whether the attacker has physical or logical access to the system as a whole.
FAST-CPS has the user specify components the attacker has physical access to,
network access is inferred from this info and the attacker knowledge. ADVISE
can have access as a prerequisite or a result of an attack step, the attacker
is given an initial set of access variables. The attacker skills are modelled in
ADVISE and CyberSAGE, they help compute the probability of success of cer-
tain actions. In CyberSAGE, the user must choose between low/medium/high,
in ADVISE an actual value between 0 and 1000 must be assigned. Both tools also
contain the attacker goals, it is the probability of reaching this goal that will be
computed. FAST-CPS does not include attacker skills or goals. Finally, ADVISE
takes additional factors in consideration such as the attacker’s priorities: does
he care more about remaining undetected, cost of the attack, or achieving goals
with high pay-off? As a result, detection rates, attack step costs, and goal pay-off
must also be modelled.

4.2 Feedback

The feedback of the tools was already largely touched upon in Sect. 3, we will
summarise it here. CSET’s diagram feature aims to assist users with their net-
work architecture. The feedback focuses on firewall placement, network zones,
intrusion detection systems, internet access points, etc. It will alert the user to
possible vulnerabilities in their architecture. This is quite limited, combining it
with one of the other tools is advised.

ADVISE, CyberSAGE and CySeMoL all return the probability of an attacker
reaching some goal. In the former two, the attackers and the goals can be cus-
tomized, in CySeMoL these are both fixed. CySeMoL’s feedback is mainly cen-
tred around reachability of components in the network. ADVISE and Cyber-
SAGE can contain a larger variety of attacker goals. What’s interesting is that
these tools gave a very different percentage chance for the attacker to access

An Assessment of Security Analysis Tools for Cyber-Physical Systems 77

the data historian. In ADVISE, the probability was 1 for both architectures, in
CyberSAGE it was 0.897 for both architectures, and in CySeMoL it was 0 for
the DMZ architecture and 0.02 for the other. This is due to a combination of
reasons. First of all, we modelled a skilful attacker in both ADVISE and Cyber-
SAGE, while the skills of the attacker are predetermined in CySeMoL. Perhaps
the attacker is modelled too weak. Secondly, the system model in CySeMoL was
more in-depth, including firewalls, operating systems, software, authentication,
etc. In ADVISE, there is no system model, and in CyberSAGE it is still quite
basic. Changing the properties of components in the CyberSAGE system model
also did not have an effect on the final probability. Presumably the probability of
an attacker actually breaching the historian in the DMZ is somewhere between
0.897 and 0, and the feedback of these tools must be taken with a grain of salt.

FAST-CPS returns the component vulnerabilities in the CPS, and the result-
ing system vulnerabilities they may cause. This is feedback that the previous
three tools do not provide, hence it could be used together with one of them.
FAST-CPS could first identify component vulnerabilities, these could then be
taken into account when modelling the attacker workflow or system properties
in order to get a more accurate probability of attack.

Table 4. Runtime comparison. The given number is the average of fifty timed runs. The
measurements were performed on a Dell Latitude E6530 with an Intel Core i7-3740QM
CPU at 2.7 GHz

ADVISE CyberSAGE CySeMoL FAST-CPS

Runtime 19.56s 5.63s 11.12s 3.36s

Finally, Table 4 contains a runtime comparison of four tools. Feedback of
CSET appears instantaneously when adding new elements to a system diagram,
hence it is not included. The other tools finish fairly quick. The case study
was of a fully functional system with corporate network included. Of course,
it is possible to have much larger systems with hundreds of remote field sites.
Whether the tools would still finish in reasonable time then remains to be tested.

5 Other Methods for Security Assessment

There are other ways to analyse the security of cyber-physical systems, they will
be discussed here and briefly contrasted with the tools.

5.1 Audits

A popular way of assessing the security of a system is to perform a security
audit. An audit can be performed on two levels: high-level risk assessment, and
low-level technical assessment. When performing a technical assessment, one of

78 L. Lemaire et al.

the first steps is to create an inventory of the customer’s environment (should
this be non existing), or in case there is one provided, check whether the cur-
rent inventory is correct and complete. Tools like nessus, nmap, CyberLens or
network monitoring tools can help here. Once established, the components of
the inventory are sometimes assigned a criticality level. Then, various technical
scans can be used against these components to verify their vulnerability and
security level. These can include penetration tests, intrusion tests, scans, etc.
Whilst doing these, the assessor assumes the role of an attacker. Both external
and internal attackers can be considered, as well as disgruntled employees. Tests
are not only logical in nature, the assessor can also go on site to verify the phys-
ical access of the system and environment. During this physical walk-through,
the inventory will be completed with missing information and/or systems.

A downside of security audits is that they offer a one-time snapshot of the
CPS security. Security should be a continuous process. If new vulnerabilities are
discovered, or components are changed, the system should be re-evaluated. With
the tools, this is easy to do, with an audit not so much.

However, auditors can offer excellent feedback on how to improve system
security. This is one of the biggest advantages over the tools, which only help
to identify issues, but do not offer solutions. Audits are performed by security
experts who can immediately suggest improvements or fixes.

5.2 Standards and Guidelines

Another alternative is to use standards and guidelines and analyse the secu-
rity of the system yourself. A first issue here is to choose which standard your
system will comply with. In most European countries, there are no compliance
regulations yet and the user can choose between dozens of standards. In North
America, systems in the energy sector have to comply with the NERC CIP stan-
dard. Penalties for non-compliance vary from country to country, but can include
fines, sanctions, or other actions against covered entities.

A second point is that the standards are not always optimal. A paper by
Schlegel et al. investigates the security of the IEC 62351 standard [19], and finds
a few guidelines that they disagree with. Standards and guidelines also do not
look at component vulnerabilities.

Finally, going through a standard that is hundreds of pages long will take
some time, and requires some security knowledge from the reader. However, this
is where CSET can come in handy. If the chosen standard is part of CSET, the
tool will check compliance of the system with the chosen standard through a
question and answer method. At the end of the evaluation, it will display which
recommendations of the standard that the system did not comply with, but it
will not offer solutions.

5.3 Intrusion Detection/Prevention Systems

A final security measure we will consider in this paper is Intrusion Detection/
Prevention Systems (IDS/IPS). These systems identify malicious activity, log

An Assessment of Security Analysis Tools for Cyber-Physical Systems 79

information about this activity, attempt to block/stop it, and report it. A dis-
tinction can be made between host based and network based intrusion detection
systems (HIDS/NIDS). It should be noted that these systems can not always be
deployed on industrial networks due to the high availability requirements.

Various intrusion detection methods exist. Blacklisting, also called signature
detection, is often used. It works by having a collection of attack signatures and
scanning the network to see if these signatures are found, and then taking the
appropriate action. The opposite approach is white listing, where only certain
protocols or applications are allowed, and all other traffic is blocked. Anomaly
detection is somewhat less strict, aiming to determine the normal network activ-
ity and acting when unusual activity takes place. These latter two methods are
the only way to stop zero-day attacks. Hence it is always recommended to run an
IDS/IPS on your system in combination with other security analysis measures.

6 Conclusion

This paper compares five security analysis tools for cyber-physical systems. The
tools are CSET, ADVISE, CyberSAGE, CySeMoL and FAST-CPS. The five
tools are used to evaluate the security of a case study: the Nisramont dam in
Belgium. The input models and the feedback of the tools are compared to each
other, and also with other security assessment methodologies. For both the input
model and the feedback, there are fairly big differences between the tools, but no
tool comes out superior to the others. In order to adequately protect the security
of your system, a combination of tools and methodologies is advised.

6.1 Future Work

Three tools return the probability of an attacker reaching attack goals. In our
case study, the returned probabilities for a specific attack vary wildly between
the tools. Further investigation is required to understand why this is the case.
An overall strategy for securing CPS which combines the presented tools and
methodologies in this paper will be developed.

Acknowledgements. Research funded by a PhD grant of the Agency for Innovation
by Science and Technology in Flanders (IWT).

The CyberSAGE software, used by the authors, was developed by the “Integrative
Security Assessment of Smart Grid Cyber Infrastructure” project, and is jointly owned
by the Illinois Pte ADSC and The Agency for Science Technology and Research in
Singapore.

References

1. Hardcoded passwords list (2016). https://github.com/scadastrangelove/SCADA
PASS/blob/master/scadapass.csv

2. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study-
maroochy water services, Australia (2008)

https://github.com/scadastrangelove/SCADAPASS/blob/master/scadapass.csv
https://github.com/scadastrangelove/SCADAPASS/blob/master/scadapass.csv

80 L. Lemaire et al.

3. Assante, M.: Confirmation of a coordinated attack on the Ukrainian power
grid (2016). https://ics.sans.org/blog/2016/01/09/confirmation-of-a-coordinated-
attack-on-the-ukrainian-power-grid

4. Bogaerts, B., De Cat, B., De Pooter, S., Denecker, M.: The IDP framework refer-
ence manual (2012)

5. Evans, S., Wallner, J.: Risk-based security engineering through the eyes of the
adversary. In: Proceedings from the Sixth Annual IEEE SMC Information Assur-
ance Workshop, IAW 2005, pp. 158–165. IEEE (2005)

6. Falliere, N., Murchu, L., Chien, E.: W32.Stuxnet Dossier (2011). http://www.
symantec.com/content/en/us/enterprise/media/security response/whitepapers/
w32 stuxnet dossier.pdf

7. Ford, M.D., Keefe, K., LeMay, E., Sanders, W.H., Muehrcke, C.: Implementing the
advise security modeling formalism in möbius. In: 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1–8.
IEEE (2013)

8. Homeland Security, H.C.C.: Cset: Cyber security evaluation tool (2014)
9. Langner, R.: To kill a centrifuge: a technical analysis of what stuxnet’s creators

tried to achieve (2013)
10. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-

national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

11. Lemaire, L., Lapon, J., De Decker, B., Naessens, V.: A SysML extension for security
analysis of industrial control systems. In: Proceedings of the 2nd International
Symposium for ICS & SCADA Cyber Security Research, p. 1 (2014)

12. Lemaire, L., Vossaert, J., Jansen, J., Naessens, V.: Extracting vulnerabilities in
industrial control systems using a knowledge-based system. In: Proceedings of the
3rd International Symposium for ICS & SCADA Cyber Security Research, p. 1
(2015)

13. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based
security metrics using adversary view security evaluation (advise). In: 2011 Eighth
International Conference on Quantitative Evaluation of Systems (QEST), pp. 191–
200. IEEE (2011)

14. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M.,
Cunningham, R.: Validating and restoring defense in depth using attack graphs.
In: IEEE Military Communications Conference, MILCOM 2006, pp. 1–10. IEEE
(2006)

15. Lippmann, R., Scott, C., Kratkiewicz, K., Artz, M., Ingols, K.W.: Network security
planning architecture. US Patent 7,194,769, 20 March 2007

16. Matrosov, A., Researcher, S.V., Rodionov, E., Analyst, R., Harley, D.: Stuxnet
Under the Microscope (2011)

17. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in
topological vulnerability analysis. In: Cybersecurity Applications & Technology
Conference For Homeland Security, CATCH 2009, pp. 124–129. IEEE (2009)

18. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security
analyzer. In: USENIX security (2005)

19. Schlegel, R., Obermeier, S., Schneider, J.: Assessing the security of IEC 62351. In:
Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security
Research, pp. 11–19. British Computer Society (2015)

20. Sommestad, T., Ekstedt, M., Holm, H.: The cyber security modeling language: a
tool for assessing the vulnerability of enterprise system architectures. IEEE Syst.
J. 7(3), 363–373 (2013)

https://ics.sans.org/blog/2016/01/09/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid
https://ics.sans.org/blog/2016/01/09/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

An Assessment of Security Analysis Tools for Cyber-Physical Systems 81

21. Sommestad, T., Ekstedt, M., Nordström, L.: A case study applying the cyber
security modeling language (2010)

22. Stouffer, K., Lightman, S., Pillitteri, V., Abrams, M., Hahn, A.: Guide to industrial
control systems (ICS) security (2015)

23. Vu, A.H., Tippenhauer, N.O., Chen, B., Nicol, D.M., Kalbarczyk, Z.: CyberSAGE:
a tool for automatic security assessment of cyber-physical systems. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 384–387. Springer, Cham
(2014). doi:10.1007/978-3-319-10696-0 29

24. Wang, E.K., Ye, Y., Xu, X., Yiu, S., Hui, L., Chow, K.: Security issues and chal-
lenges for cyber physical system. In: Proceedings of the 2010 IEEE/ACM Inter-
national Conference on Green Computing and Communications & International
Conference on Cyber, Physical and Social Computing, pp. 733–738. IEEE Com-
puter Society (2010)

25. Whiteman, B.: Network risk assessment tool (NRAT). IA Newsl. 11(1), 4–8 (2008)
26. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system

for an extension of classical logic. In: Proceedings of the 2nd Workshop on Logic
and Search, pp. 153–165 (2008)

27. Zetter, K.: Inside the cunning, unprecedented hack of Ukraine’s power
grid (2016). http://www.wired.com/2016/03/inside-cunning-unprecedented-hack-
ukraines-power-grid/

http://dx.doi.org/10.1007/978-3-319-10696-0_29
http://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
http://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

Supporting Risk Assessment
with the Systematic Identification, Merging,

and Validation of Security Goals

Daniel Angermeier(B), Alexander Nieding, and Jörn Eichler

Fraunhofer AISEC, Garching near Munich, Germany
{daniel.angermeier,alexander.nieding,joern.eichler}@aisec.fraunhofer.de

Abstract. Assessing security-related risks in software or systems engi-
neering is a challenging task: often, a heterogeneous set of distributed
stakeholders creates a complex system of (software) components which
are highly connected to each other, consumer electronics, or Internet-
based services. Changes during development are frequent and must be
evaluated and handled efficiently. Consequently, risk assessment itself
becomes a complex task and its results must be comprehensible by all
actors in the distributed environment. Especially, systematic and repeat-
able identification of security goals based on a model of the system under
development (SUD) is not well-supported in established methods. Thus,
we demonstrate how the systematic identification, merging, and valida-
tion of security goals based on a model of the SUD in a concrete imple-
mentation of our method Modular Risk Assessment (MoRA) supports
security engineers to handle this challenge.

Keywords: Risk assessment · Security goals · Model-based · Security
engineering · Method

1 Introduction

In software and systems engineering, security risk assessment determines the
quality of security risk management for a system under development (SUD)
and thus the SUD’s protection against threat actors. However, security risk
assessment is a challenging task: Modern software is often developed by a het-
erogeneous set of distributed stakeholders and many of the resulting systems
consist of several devices or software components which are highly connected to
each other, consumer electronics, or Internet-based services. Frequently changing
requirements during development increase the complexity even further and must
be evaluated and handled efficiently with respect to limited resources. Conse-
quently, security risk assessment also constitutes a complex task. The resulting
work products must be comprehensible by all stakeholders in the distributed
environment to facilitate risk management, including the correct design and
implementation of security controls. Identification of protection needs for the

c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 82–95, 2017.
DOI: 10.1007/978-3-319-57858-3 7

Supporting Risk Assessment with the Systematic Identification 83

assets of an SUD is one of the key challenges within the application of any secu-
rity risk assessment method and vital to the validity and comprehensibility of
the results. Considering frequent changes the systematic and repeatable deter-
mination of protection needs have to complemented by complementary thoughts
for their evolution. Hence, systematic procedures for merging and validation of
protection needs are of high interest.

We developed the method Modular Risk Assessment (MoRA) [6] to tackle
these challenges. Our method features a modular structure, supports a unified
method framework, well-defined work products as interfaces between activities,
and different guidelines as well as catalogs to implement the method in a spe-
cific domain and environment. MoRA determines the protection needs based
on security goals, represented by the combination of a security goal class (e.g.,
confidentiality, integrity, availability) with an asset of the SUD (e.g., confiden-
tiality of the asset “patient data” in the context of a medical system). In this
publication, we present procedures on how to systematically determine, merge,
and validate security goals and thus protection needs for an SUD. These proce-
dures are integrated as guidelines in MoRA. As a running example, we will use
a health care system in which (authenticated) practitioners can query relevant
patient data (e.g., blood types, allergies) from a cluster of database servers.

Threat
What circumstance or

incident threatens
the security goal?
Eavesdropping on

transmission of
patient data

Asset
Which asset is to be

protected?
Patient data

Security goal class
Which property is

relevant for
IT security?

Confidentiality

Security goal
Which of the asset’s

properties are
relevant?

Confidentiality of
asset „patient data“

threatens

categorized
by

defines properties
worthy of protection

Security control
What is done to

counter the threat?
End-to-end
encryption

protects

addresses

Fig. 1. Overview and examples for security engineering terms

84 D. Angermeier et al.

To support a consistent terminology Fig. 1 illustrates key terms for this pub-
lication and their relations to each other. The terms are depicted in rectangular
boxes, along with an example for each term at the bottom of each box.

The remainder of this publication is structured as follows: In Sect. 2, we
elaborate on related work. Section 3 provides a short summary of our method
MoRA as background for this publication. A description of the aforementioned
guidelines supporting the systematic identification, merging, and validation of
protection needs based on a hierarchical model of the SUD follows in Sect. 4. We
conclude in Sect. 5.

2 Related Work

Several standards and publications for the assessment and the management of
information security risks exist. ISO 31000 [9] in combination with ISO 27005 [10]
form a framework for the management of risks with a focus on information secu-
rity. However, these standards do not explicate guidelines for the identification
of important work products, such as security goals and threats. The standards
BSI 100-1 [2], BSI 100-2 [3], and 100-3 [4] by the German Federal Office for Infor-
mation Security provide a baseline protection approach for IT systems. These
standards are quite specific on the identification of assets and protection needs,
but focus on the operation of traditional IT systems and information security
management systems (ISMS) as opposed to the development of IT systems. The
standard ISO/IEC 15408 [8] (also known as “Common Criteria”, CC) supplies a
framework to facilitate comparable evaluations regarding the sufficiency of coun-
termeasures which minimize information security risks to assets. The “Common
Methodology for Information Technology Security Evaluation” (CEM) [1] com-
plements the ISO/IEC 15408 defining a minimum set of actions to be performed
in an evaluation. While supplying normative guidelines on the implementation
of the method, a procedure for the security problem definition (e.g., the identi-
fication of assets and the protection needs) is not in the scope of the Common
Criteria.

CORAS [12] is a model-driven approach to risk analysis and consists of
three artifacts: a language, a tool, and a method. The language represents a
customized, diagrammatic language for risk modeling, using annotated graph-
ical symbols and relations. The accompanying tool provides a editor to create
CORAS diagrams. The CORAS method is divided into eight steps. The first four
steps establish a common understanding of the SUD, serving as a basis for the
subsequent risk identification. The identification of concrete risks and the estima-
tion of their risk levels as well as the determination of appropriate risk treatment
is the subject of the last four steps. The identification of assets takes place in a
customer presentation of the SUD: the scope and assumptions are documented
and assets are identified using diagrams such as class, collaboration, or activity
diagrams. These diagrams serve as input for CORAS diagrams, which are com-
pleted by adding possible threats and risks. Although this approach unites the
knowledge of the application and security domain in a customer presentation,

Supporting Risk Assessment with the Systematic Identification 85

no systematic and repeatable procedure for the identification of protection needs
is provided.

Islam et al. [7] adopt the results of the HEAVENS project to establish a risk
assessment framework for automotive embedded systems. The workflow of the
proposed framework is defined by its core activities: At first, the relevant parts
of the system under evaluation are defined using system models and data flow
diagrams. Using this model, the identified architectural and data elements are
then combined with each of the threat categories of the “STRIDE approach to
threat modeling” [11,18]. As a result, the framework provides a list of assets
and associated threats, each of the threats threatening one or several security
goal classes (e.g., integrity). The following risk assessment process supports the
prioritization of those threats. By combining the estimate of a threat’s likeli-
hood of occurrence (“threat level”) and the expected loss of a realized threat
(“impact level”), the “security level” is determined. This approach may how-
ever lead to redundancy, as each asset/threat pair is estimated individually and
relationships between security goals or threats are not explicitly covered. As a
result, maintaining consistency of the estimations might be challenging.

Another well-known approach to risk assessment is MITRE’s approach
“Threat Assessment & Remediation Analysis” (TARA) [22]. TARA focuses on
the identification, estimation and scoring of risks and countermeasures in IT
systems. TARA can optionally use the output of other methods to determine
protection needs, but does not systematically identify assets itself. Therefore,
the TARA approach can be used to identify and estimate threats on security
goals identified by methods like the one presented in this paper.

As another example, Weldemariam et al. [21] propose a methodological
approach to procedural security analysis. After building and reasoning on an
extended system model, possible attacks are identified and related to affected
assets and their properties (e.g., their value to the organization), analyzed, and
evaluated to produce sets of security requirements, which establish a certain
level of protection. This approach however features a high grade of formalism
regarding the documentation of assets and threats and is, consequently, very
demanding in terms of depth of analysis and respective effort.

With concern to security requirements elicitation, Souag et al. developed a
generic security ontology [19]. By evaluating the ontology in comparison to exist-
ing security ontologies used in security requirements engineering, the authors aim
to establish an ontology as complete as possible. The introduced concepts and
their relations are similar to those of MoRA, especially “security criteria” can be
compared to MoRA’s security goals. In combination with axioms and attributes,
concepts and relations are used to store knowledge in a formal way. A query lan-
guage (SQWRL [16]) uses predefined rules to reason on the knowledge base and
guides the requirements engineer through the security requirement elicitation
process. No functions for the systematic identification, merge, or validation of
security criteria are given, but the formal representation of the ontology provides
a suitable source for further development of such rules.

86 D. Angermeier et al.

A few publications and surveys compare methods which focus on or con-
tain security requirements engineering. Tondel et al. [20] as well as Salini and
Kanmani [17] note, that not every approach incorporates steps to validate
(intermediate) results. Additionally, a lack of standardized validation methods
is identified. Combining the results of the surveys and the previously intro-
duced standards, methods, and frameworks it can be noted, that a number of
approaches support the identification of security goals (or similar concepts, e.g.
“security criteria” (SQUARE [13]), “security objectives” (Mellado et al. [14]),
or “security constraints” (Secure Tropos) [15]) but in general do not define sys-
tematic guidelines regarding the identification, merge or validation of security
goals, or only employ a generic approach for validation.

3 Background: Modular Risk Assessment

MoRA features four core activities in its method framework : “Document SUD”,
“Determine Protection Needs”, “Analyze Threats”, and “Analyze Risks”, each
supported by a set of guidelines and domain-specific preparative work products.
These work products are created in preparative activities for MoRA’s applica-
tion in a specific domain. MoRA relies on an assessment model and a set of
catalogs to homogenize assessments within the domain of application. Thus, the
assessment model and the catalogs represent a common basic understanding of
all stakeholders regarding critical aspects of risk assessment. In the following,
we present an instantiation of our method, which has been successfully applied
in practice, as described in [6].

An assessment model contains means and parameters how to estimate
impacts of violations of security goals as well as required attack potentials to
execute attacks or to overcome security controls. For example, to support impact
estimation, a list of damage criteria maps potential damages (e.g., “loss of 10.000
– 50.000 $”) to damage potentials (e.g., “moderate”). This helps focus impact
estimation on domain facts (“is the damage between 10.000 and 50.000 $?”)
instead of personal opinions (“I think the damage is moderate”). This particu-
lar approach is inspired by the standard BSI 100-2. The aforementioned catalogs
entail generalized but pre-evaluated elements used in the method, such as threats
and controls. Their purpose is to aid the analyst in the process of determining
what to protect, how to attack the elements in need of protection and how to
protect the SUD against it.

The activity Document SUD provides the basis for MoRA’s approach, where
security engineers and domain experts decompose the SUD (functions, data,
components, and connections). The resulting model of the SUD include relations
between its elements, forming a graph: elements can be refined into sub-elements
of the same kind. Functions describe behavior and functionality provided by the
SUD and require data, components, and their connections to be executed. Con-
nections link components to each other. Finally, data is stored on components or
transmitted using these connections. For example, a hardware component can
be decomposed into a CPU, persistent memory and other components. If neces-
sary, components (including their connections) and data can be further refined

Supporting Risk Assessment with the Systematic Identification 87

into lower levels of granularity. Following these strategies, this activity creates a
unified representation for the SUD which supports both tracing of changes and
systematic identification of security goals and threats. Existing controls in the
SUD are documented along with related assets (e.g., the asset “secret key” for
the control “AES encryption”). Existing documentation, such as requirement
specifications, data flow diagrams, or component diagrams, may serve as input
for this activity.

In our healthcare example, the analyst adds the components, data elements,
and connections shown in the component diagram in Fig. 2 to the model of
the SUD. The new elements encompass the components “PC”, “clinic”, “data-
base server”, and “hard disk drive”, along with the relations “component hard
disk drive is part of component database server” and “component database
server is part of component clinic”. Likewise, the analyst adds the connection
between component “PC” and component “database server” and the data ele-
ment “patient data” to the model of the SUD. The link between the data element
“patient data” and all components and connections which interact with this data
element expands the model further. Finally, the analyst maps these new elements
to the previously documented function “patient data retrieval”. This results in
the SUD model depicted in Fig. 3.

The next activity, Determine Protection Needs, systematically identifies secu-
rity goals for the SUD, based on its model. Additionally, potential damages
caused by a violation of security goals are estimated using the assessment model.
For example, “confidentiality of data patient data” in the introduced medical sys-
tem handling patient data represents a security goal, as a violation results in loss
of privacy. Section 4.1 elaborates on our approach in detail.

Once the security goals are identified, we switch from the domain expert’s
to the security expert’s perspective to identify potential threats to the SUD’s
security goals in the activity Analyze Threats. Again, a systematic approach
is applied: For all security goals, we identify threats based on the model of the
SUD and a catalog of possible threats. To identify applicable threats, we consider
the security goal’s class and its relation to the model of the SUD. Evaluating
the likelihood of an attack incorporates the estimation of the required attack
potential to execute a threat. This estimation is based on the combination of a

Fig. 2. Exemplary component diagram for the documentation of architectural elements

88 D. Angermeier et al.

Fig. 3. SUD model for the healthcare example. The “supports” relations from com-
ponents and connections to the function “Patient Data Retrieval” are summarized by
dashed arrows to avoid cluttering of lines in the figure.

set of risk factors such as required expertise, time, knowledge, etc. This approach
originates from the Common Methodology for Information Technology Security
Evaluation and its application can be simplified through estimates taken from
associated predefined threat classes.

Identifying security goals and threats separately yields an important benefit:
the model of the SUD and the security goals provide solid ground based on the
domain experts’ knowledge of the SUD and its environment, while threats are
identified based on experience from the security domain. All aspects (i.e., SUD,
goals, and threats) can be updated independently at first and necessary changes
can be propagated systematically in consequence.

Finally, we assess risks based on the estimated attack potentials for identified
threats (potentially mitigated by selected controls) and the damage potentials of
affected security goals in the activity Analyze Risks, according to the assessment
model.

4 Guidelines for the Determination of Protection Needs

In this section, we expand the approach to determine protection needs as
described in Sect. 3 by showcasing selected guidelines, which have been applied

Supporting Risk Assessment with the Systematic Identification 89

in multiple risk analysis projects. We present techniques to identify, merge and
validate security goals with the aim to document the protection needs of a given
SUD as complete, concise, and redundancy-free as possible with respect to the
model of the SUD.

4.1 Systematic Identification of Security Goals

To achieve a broad coverage of the protection needs with respect to the model of
the SUD, we combine each element of the model (functions, data, components)
with each of the security goal classes taken from the assessment model (e.g.,
confidentiality, integrity, availability). This approach results in potential security
goals such as “confidentiality of data patient data”, which may also include
typically irrelevant results, such as “confidentiality of data public key”. For each
identified potential security goal, we determine damage potentials by assigning
damage criteria, i.e., possible damages resulting from a violation of the security
goal. E.g., the violation of the confidentiality of a data element may cause “loss
of privacy” and “financial damage up to 10.000 $”. In this example, “loss of
privacy” and “financial damage up to 10.000 $” represent damage criteria, which
are defined in the assessment model along with assigned damage potentials, such
as “Low”, “Moderate”, and “High”. All potential security goals with non-zero
damage potential represent actual security goals, i.e., properties of the SUD that
require protection. Thus, we implicitly identify elements of the SUD as assets
by identifying the security goals (cf. also [5]).

In combination with the security goal classes, the relationships between the
elements of the SUD also imply relationships between the security goals. For
example, the integrity of a function depends on the integrity of data elements
required by the function as well as on the integrity of components processing
the function. Thus, MoRA is able to make recommendations for dependencies
between security goals and consequently the inheritance of single damage cri-
teria or whole damage potentials for security goals based on their relations to
previously estimated security goals. For example, the security goal A: “availabil-
ity of component database server” supports the security goal B: “availability
of data patient data”, as the data “patient data” is stored on the component
“database server”. Thus, security goal A inherits the damage criteria “delayed
medical treatment” and “inappropriate medical treatment” of security goal B.

Additionally, security controls influence the model of the SUD and the secu-
rity goals and vice versa. On one hand, security controls may introduce new
assets into the SUD, such as cryptographic keys for encryption. Consequently,
these new assets may lead to the creation of additional security goals, such as
“confidentiality of data secret key”. On the other hand, these security goals in
turn influence their related controls, e.g., violation of “confidentiality of data
secret key” weakens the control “AES encryption”. This helps to track the influ-
ence of threats on security controls identified in the activity Analyze Threats.

Thus, this guideline helps derive the security goals and their relations from
known information, namely the SUD, the security goal classes, the damage crite-
ria, security controls, and the MoRA method itself. Consequently, the results are

90 D. Angermeier et al.

traceable, comprehensible, and systematically identified. Furthermore, changes
to the SUD can easily be traced and integrated into the risk assessment.

4.2 Merging Security Goals

The approach for a systematic identification of security goals introduced in
Sect. 4.1 strives to produce a complete set of security goals with respect to the
model of the SUD. Therefore, the approach possibly yields a large set of secu-
rity goals, which may be hard to comprehend for further analysis. Likewise, an
analyst not following this approach may come up with a similarly large set of
security goals, which may additionally contain redundancy. To provide a better
understanding of the protection needs and to avoid redundancy, it is possible
to reduce the number of identified security goals by merging them into more
comprehensible security goals. This guideline introduces a gradual procedure to
aggregate security goals with respect to their attributes, namely the security
goal classes, the referenced architectural or contextual element of the SUD, and
the estimated damage criteria.

First, the method merges redundant security goals: if the security goal class
and the referenced SUD-Element match for two security goals, these can be
merged into a single security goal with all damage criteria of the original security
goals, as showcased in Fig. 4.

Fig. 4. Merge of redundant security goals (where DCX represents a damage criterion
from the assessment model)

Iterating on that, the approach for merging security goals can be gradually
expanded. For this step, we use the following relations between elements of the
SUD model as documented in the activity Document SUD (cf. Section 3):

– Refinement: Elements of the SUD model may refine other elements of the
same type, e.g., the component “storage device” refines the component “data-
base server”.

Supporting Risk Assessment with the Systematic Identification 91

– Function mapping: The SUD model documents which components and data
elements are necessary for the implementation of specific functions, creating a
relation between those component/data elements and functions. For example,
the component “database server” is necessary for the function “patient data
retrieval”.

– Data Processing: The SUD model documents, which data elements are
processed (transmitted, received, stored) by components, creating a relation
between the component and the data element. For example, the component
“database server” stores and transmits the data “patient data”.

For two security goals with accordingly related elements of the SUD and an
identical set of damage criteria, the method proposes a single merged security
goal, containing all of the initial inputs. As this represents a heuristic approach,
the analyst has to carefully consider if a merge changes the semantics of the
security goals, especially if the security goal classes differ. An example of a merge
based on model relations is shown in Fig. 5. The dependency of the security
goal “availability of component database server” on the security goal “integrity
of component hard disk drive” hints at a likely valid merge, given that the
estimated damage criteria for these security goals are identical, as unavailable
and manipulated patient data may both cause delayed or inappropriate medical
treatment in this example.

Fig. 5. Merge of security goals with related model elements (refinement).

In an additional step, the method proposes to merge elements with matching
security goal classes and identical sets of damage criteria, as showcased in Fig. 6.
This aims to improve the comprehensibility of the protection needs by grouping
similar security goals. However, the analyst must carefully consider the proposed
merges regarding semantic correctness and provide meaningful labels for the

92 D. Angermeier et al.

Fig. 6. Merge of security goals with related model elements (data processing).

merged security goals. As in the step described above, the dependencies between
security goals indicate likely valid merges.

Finally, the analyst is free to merge any security goals, regardless of security
goal class, estimated damage criteria, or type of SUD element. Although the
method is able to operate on these security goals, it does not propose any merge
except those defined above.

4.3 Validation and Tracing of Security Goals

The aim of this guideline is to enable all stakeholders to comprehend, reproduce,
and validate the protection needs based on the SUD model, the assessment
model, and the catalogs - even if the analyst did not follow any of the guidelines
of MoRA for the creation or merging of security goals.

The method checks for discrepancies between potential security goals and
documented security goals (which includes potential security goals explicitly dis-
carded by the analyst). For example, the security goal “availability of component
database server, hard disk drive” covers the potential security goals “availability
of component database server” and “availability of component hard disk drive”.
Consequently, the method does not report a discrepancy in this case. An ele-
ment of the SUD model without a documented security goal for each security
goal class hints at one of the following possible reasons: the analyst may have
missed a security goal, the SUD model may be incorrect (assuming that each
model of the SUD serves a purpose and thus has at least one security goal, an
element without any security goals seems unlikely), or the element may serve
a structuring purpose, making it only indirectly relevant for the analysis. For
example, the component “clinic” houses multiple instances of the component
“database server” on an isolated network. Consequently, no security goals for
the component “clinic” are documented for the analyzed SUD. However, if the
analyst did not document this decision explicitly, the method proposes potential
security goals for all security goal classes and the component “clinic”.

Supporting Risk Assessment with the Systematic Identification 93

The modeled relations between SUD elements are utilized to validate the
dependencies between security goals. If a relation between SUD elements exists
(cf. Section 4.2, Refinement, Function Mapping, Data Processing), then missing
dependencies between security goals for these SUD element are reported by the
validation. This validation step also considers the respective security goal classes.
Vice versa, dependencies between security goals that cannot be deduced from
the model of the SUD hint at missing relations in the model or errors regarding
the dependencies between security goals and should be checked by the analyst.

The method validates the merged security goals according to the rules defined
in Sect. 4.2. Any merged security goals deviating from the rules are highlighted
for manual inspection.

The control catalog documents additional assets required for the implemen-
tation of controls, such as a trusted root certificate for signature validation. For
each introduced control, the method checks whether these required assets are
part of the SUD model and whether security goals based on these assets are
documented in the protection needs, including their influence on controls. Thus,
the method hints at missing assets or security goals.

The method supports change management, tracing, and the comprehensibil-
ity of security goals and their attributes. Changes can be traced, as all security
goals are mapped to elements of the modeled SUD. Therefore, consequences
of changes to the model can be traced to affected security goals. This limits
the number of security goals to be examined or adjusted for each change. For
example, if the component “database server” in our exemplary healthcare sys-
tem is replaced with the new component “external cloud service”, the security
goals for the component “PC” remain unaffected. Likewise, the damage crite-
ria for the security goals of the data element “patient data” remain unchanged.
However, the method detects the previously documented dependency of “avail-
ability of data patient data” on the security goal “availability of component data-
base server” as affected by the change, as the latter security goal contains the
replaced component “database server”. All documented security goals along with
their estimated damage criteria are rooted in the application domain. Therefore,
domain experts can understand and validate documented security goals. For
example, the damage criteria “delayed medical treatment” and “inappropriate
medical treatment” are assigned to the security goal “availability of function
retrieve patient data”. As the method also documents dependencies between
security goals, more technical security goals, such as “availability of compo-
nent hard disk drive” become more comprehensible, even for people without
IT-related background. Finally, as security goals are explicitly related to ele-
ments of the SUD, tracing of security goals in later stages of risk assessment
(e.g., risk analysis) is supported. For example, the modeled relations between
security goals and the model of the SUD can help determine the set of security
goals affected by a threat acting on an element of the same model of the SUD.

94 D. Angermeier et al.

5 Summary and Conclusion

After a brief summary of our MoRA security risk analysis method, we introduced
three practical guidelines for the determination of protection needs. In the first
guideline, we showed how to identify security goals systematically, based on
MoRA’s modeling technique for the system under development and an assess-
ment model tailored to the application domain. In the second guideline, we
described how to merge security goals systematically to achieve a more com-
prehensible and manageable set of security goals as input for later stages of
the security risk analysis by applying rules operating on the properties of the
documented security goals and model of the SUD. In the third guideline, we
presented rules operating on the same properties in order to validate the docu-
mented security goals regarding correctness and completeness with respect to the
model of the SUD. For all guidelines, we presented examples where we applied
the guidelines to a simple fictitious healthcare system.

This method and the presented guidelines have been applied in several indus-
trial development projects. Our experiences show that MoRA’s systematic and
guided approach induces a good understanding of the subject matter and pro-
duces reproducible and comprehensible assessment results. For example, we and
a security expert from the application domain independently conducted two
security risk analyses of the same SUD. Both analyses produced similar sets of
identified risks with similar estimates. However, one identified risk was estimated
substantially more critical in our analysis. Owing to our method, we could easily
trace and explain the difference: we incorrectly assumed that the analyzed SUD
contained business-critical data. Since this was explicitly selected as a damage
criterion for one of the affected security goals, it was straightforward to identify
this discrepancy and resolve it based on knowledge from the application domain.

A formal description and documentation of the application of our method in
appropriate development projects constitutes a task for future work.

References

1. Board, C.C.E.: Common Methodology for Information Technology Security Eval-
uation – Version 3.1 – Revision 4. Evaluation methodology (2012)

2. BSI. Standard 100-1: Managementsysteme für Informationssicherheit (ISMS).
Bonn: Bundesamt für Sicherheit in der Informationstechnik (2008)

3. BSI. Standard 100-2: IT-Grundschutz Vorgehensweise. Bonn: Bundesamt für
Sicherheit in der Informationstechnik (2008)

4. BSI. Standard 100-3: Risikoanalyse auf der Basis von IT-Grundschutz. Bonn: Bun-
desamt für Sicherheit in der Informationstechnik (2008)

5. Eichler, J.: Model-based Security Engineering for Electronic Business Processes.
PhD thesis, Technische Universität München (2015)

6. Eichler, J., Angermeier, D.: Modular risk assessment for the development of secure
automotive systems. In: 31. VDI/VW-Gemeinschaftstagung Automotive Security
(2015)

Supporting Risk Assessment with the Systematic Identification 95

7. Islam, M.M., Lautenbach, A., Sandberg, C., Olovsson, T.: A risk assessment frame-
work for automotive embedded systems. In: Proceedings of the 2nd ACM Interna-
tional Workshop on Cyber-Physical System Security, pp. 3–14. ACM (2016)

8. ISO/IEC. 15408-1: Information technology – security techniques – evaluation cri-
teria for IT security – part 1: Introduction and general model (2009)

9. ISO/IEC. 31000: Risk management – principles and guidelines (2009)
10. ISO/IEC. 27005: Information technology – security techniques – information secu-

rity risk management (2011)
11. Kohnfelder, L., Garg, P.: The threats to our products. Microsoft Interface,

Microsoft Corporation (1999)
12. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS

Approach. Springer Science & Business Media, Heidelberg (2010)
13. Mead, N.R., Stehney, T.: Security quality requirements engineering (SQUARE)

methodology, vol. 30. ACM (2005)
14. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based secu-

rity requirements engineering process for the development of secure information
systems. Comput. Stan. Interfaces 29(2), 244–253 (2007)

15. Mouratidis, H., Giorgini, P., Manson, G.: When security meets software engineer-
ing: a case of modelling secure information systems. Inf. Syst. 30(8), 609–629
(2005)

16. O’Connor, M., Das, A.: SQWRL: a query language for OWL. In: Proceedings of
the 6th International Conference on OWL: Experiences and Directions, vol. 529,
pp. 208–215. CEUR-WS.org (2009)

17. Salini, P., Kanmani, S.: Survey and analysis on security requirements engineering.
Comput. Electr. Eng. 38(6), 1785–1797 (2012)

18. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
19. Souag, A., Salinesi, C., Mazo, R., Comyn-Wattiau, I.: A security ontology for

security requirements elicitation. In: Piessens, F., Caballero, J., Bielova, N. (eds.)
ESSoS 2015. LNCS, vol. 8978, pp. 157–177. Springer, Cham (2015). doi:10.1007/
978-3-319-15618-7 13

20. Tondel, I.A., Jaatun, M.G., Meland, P.H.: Security requirements for the rest of us:
a survey. IEEE Softw. 25(1), 20–27 (2008)

21. Weldemariam, K., Villafiorita, A.: Procedural security analysis: a methodological
approach. J. Syst. Softw. 84(7), 1114–1129 (2011)

22. Wynn, J., Whitmore, J., Upton, G., Spriggs, L., McKinnon, D., McInnes, R.,
Graubart, R., Clausen, L.: Threat assessment & remediation analysis (TARA):
Methodology description version 1.0. Technical report, DTIC Document (2011)

http://dx.doi.org/10.1007/978-3-319-15618-7_13
http://dx.doi.org/10.1007/978-3-319-15618-7_13

Risk-Based Testing

Design Decisions in the Development
of a Graphical Language for Risk-Driven

Security Testing

Gencer Erdogan1(B) and Ketil Stølen1,2

1 Department for Software and Service Innovation,
SINTEF Digital, Oslo, Norway

{gencer.erdogan,ketil.stolen}@sintef.no
2 Department of Informatics, University of Oslo, Oslo, Norway

Abstract. We have developed a domain-specific modeling language
named CORAL that employs risk assessment to help security testers
select and design test cases based on the available risk picture. In this
paper, we present CORAL and then discuss why the language is designed
the way it is, and what we could have done differently.

Keywords: Risk-driven security testing · Model-based testing · Secu-
rity risk assessment · Domain-specific modeling language

1 Introduction

Security testers face the problem of determining tests that are most likely to
reveal severe security vulnerabilities. To address this challenge, we have devel-
oped a domain-specific modeling language that employs risk assessment to help
security testers select and design test cases based on the available risk picture [5].
Our language (CORAL) supports a model-based approach to risk-driven security
testing as defined in [2]. The approach is model-based in the sense that graphical
models are actively used throughout the whole testing process to support the
various testing tasks and activities, and to document the test results.

The intended users of CORAL are security testers. In this paper, we first
present CORAL, and then we discuss why the language is designed the way it is,
and what we could have done differently. In particular, we motivate our design
decisions by discussing five main areas typically considered when developing
or evaluating a modeling language: domain appropriateness, comprehensibility
appropriateness, participant appropriateness, modeler appropriateness, and tool
appropriateness [15]. With respect to what we could have done differently, we
discuss alternative design decisions and their consequence in terms of graphical
versus textual representations, risk annotations versus tables, choice of modeling
notation, CORAL versus attack trees, and CORAL versus formal methods.

The reminder of this paper is organized as follows. In Sect. 2 we present
the CORAL language followed by a small example. In Sect. 3 we motivate our
c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 99–114, 2017.
DOI: 10.1007/978-3-319-57858-3 8

100 G. Erdogan and K. Stølen

design decisions in context of the five areas mentioned above. In Sect. 4 we discuss
alternative design decisions and their consequence. Finally, in Sect. 5 we conclude
the paper.

2 The CORAL Language

As shown in Fig. 1, the graphical notation of CORAL is mainly based on the
graphical notation of UML sequence diagrams [21]. The graphical icons used to
represent risk-related information are based on corresponding graphical icons
in the CORAS risk analysis language [17]. With respect to testing concepts,
CORAL uses stereotypes from the UML Testing Profile [20]. The constructs
in CORAL are grouped into five categories: diagram frame, lifelines, messages,
risk-measure annotations, and interaction operators. In the following, we explain
each category.

Diagram Frame: The diagram frame is the frame in which a sequence diagram
is modeled. A sequence diagram in CORAL may represent the system under
test, its environment, as well as threat scenarios that the system under test and
its environment are exposed to. The diagram frame is graphically equivalent to
the diagram frame in UML used to represent sequence diagrams [21]. Similar
to UML, we use the keyword sd in a pentagon in the upper left corner of the
diagram frame to denote that the diagram is a sequence diagram.

Lifelines: According to UML, a lifeline represents an individual participant in
an interaction [21]. As illustrated in Fig. 1, we distinguish between five different
lifelines: general lifeline, deliberate threat lifeline, accidental threat lifeline, non-
human threat lifeline, and asset lifeline.

The general lifeline is graphically equivalent to a lifeline used in UML
sequence diagrams. In CORAL, a general lifeline is used to model the system
under test, as well as the environment interacting with the system under test.
The name of the lifeline is placed inside the rectangle of the lifeline as illustrated
in Fig. 1, and the naming convention is equivalent to the naming convention of
lifelines in UML.

The lifelines representing threats are used to model threats that may initiate
threat scenarios, which in turn may cause security risks in the system under
test. Inspired by CORAS [17], we distinguish between three kinds of threats:
deliberate threat, accidental threat, and non-human threat. A deliberate threat
is a human threat that has malicious intents. An accidental threat is also a human
threat, but this threat is different in the sense that it does not have malicious
intents. The non-human threat is a threat that may be anything else except a
human. For example, a power failure in a server hall may cause problems with
respect to the availability of a system.

In practice, the distinction between a human threat and a non-human threat
is sometimes not straight forward. For example, if a hacker exploits a security
bug in a source code in order to attack a system, then the threat is the hacker.
On the other hand, if the security bug lies dormant in the source code and is

Design Decisions: Graphical Language for Risk-Driven Security Testing 101

Fig. 1. CORAL graphical notation.

triggered at some point during system execution, then the threat is the bug in the
source code, that is, a non-human threat. In other words, the distinction between
a human threat and a nonhuman threat depends on the viewpoint from which
a threat is regarded. The name of a threat is placed below the icon representing
the threat as illustrated in Fig. 1.

The name of a threat typically represents a threat profile which is described
by the tester. A threat may be named, for example, “hacker” (deliberate threat),
“database administrator” (accidental threat), or “computer virus” (non-human
threat).

In CORAL, risk assessment is carried out with respect to security assets we
want to protect. Security assets are represented by the asset lifeline shaped as a
moneybag, and the asset name is placed below the moneybag icon. Examples of
security assets are “availability of customer data” or “integrity of bank transac-
tions”. What is meant by “customer data” and “bank transactions” has to be
described by the tester.

Messages: According to UML, a message defines a particular communication
between lifelines of an interaction [21]. UML distinguish between complete, lost
and found messages. Complete messages have both a sender and a receiver life-
line. A lost message has a sender lifeline, but not a receiver lifeline. A found mes-
sage has a receiver lifeline, but not a sender lifeline. The graphical notation for
these messages are different. However, lost and found messages are often unneces-
sary and are used in rare situations [25]. Furthermore, UML categorize complete
messages into synchronous and asynchronous messages. The synchronous and

102 G. Erdogan and K. Stølen

asynchronous messages have different graphical notations. A synchronous mes-
sage is used to call an operation, and the lifeline transmitting a synchronous
message always expects a responding message. An asynchronous message, on
the other hand, is used to send a signal which may or may not be responded.
Synchronous messages are therefore syntactically more strict than asynchronous
messages because they require a corresponding response message for each oper-
ation call. However, at a logical level, sending a signal and calling an operation
are similar. Both types of messages involve a communication from a sender to a
receiver [25].

In CORAL we are interested in expressing complete interactions between two
lifelines. Moreover, because synchronous and asynchronous messages are similar
at a logical level, it is not necessary to express both in CORAL. For this reason,
we choose to treat all messages as asynchronous messages. The graphical notation
for messages in CORAL are therefore based on the graphical notation for the
asynchronous message in UML. As illustrated in Fig. 1, we distinguish between
five messages in CORAL: general message, new message, altered message, deleted
message, and unwanted incident message.

The general message is graphically equivalent to the asynchronous message
in UML, and it is used to model the expected behavior between lifelines rep-
resenting the system under test and its environment, that is, the interaction
between general lifelines (recall that general lifelines are used to model the sys-
tem under test and its environment). The signature of a message, that is, the
content of a message, is placed above the arrow representing the message. Sig-
natures are written using the same convention as given for messages in UML.
In addition, we represent the risk related information, in the signatures, using a
red-colored, bold, and italic font to distinguish between the expected behavior
and the risk-related information.

New, altered, deleted and unwanted incident messages are used in combina-
tion to represent threat scenarios. A new message is a message initiated by a
threat. This may be a deliberate human threat, an accidental human threat, or
a non-human threat. A new message is represented by a red triangle which is
placed at the transmitting end of the message. An altered message is a message
in the system under test that has been altered by a threat to deviate from its
expected behavior. Altered messages are represented by a triangle with red bor-
ders and white fill. A deleted message is a message in the system under test that
has been deleted by a threat. Deleted messages are represented by a triangle with
red borders and a red cross in the middle of the triangle. Finally, an unwanted
incident message is a message modeling that an asset is harmed or its value is
reduced. Unwanted incidents are represented by a yellow explosion sign.

Risk-Measure Annotations: Risk-measure annotations are used to annotate
messages for the purpose of estimating and evaluating security risks. As illus-
trated in Fig. 1, we distinguish between three kinds of risk-measure annotations:
frequency, conditional ratio, and consequence.

The frequency annotation represents either the frequency of the transmis-
sion or the frequency of the reception of a message. The graphical notation of a

Design Decisions: Graphical Language for Risk-Driven Security Testing 103

frequency annotation is equivalent to the graphical notation of a comment gen-
erally used in UML [21]. The connector on the frequency annotation is attached
on either the transmission-end or the reception-end of a general, new, or altered
message. It may also be attached on the transmission-end of an unwanted inci-
dent message to convey how often an unwanted incident harms a certain security
asset. A frequency annotation may not be attached on a deleted message because
the message represents a complete deletion. That is, if a message is deleted, then
it is not transmitted and therefore not received. It therefore does not make sense
to estimate how often a message is not received, given that it is not transmit-
ted. A message is either deleted, or it is not. Also, in the context of testing,
we are interested in testing the messages that may cause the deletion of other
messages. The frequency is written inside the comment frame, in terms of an
interval followed by a time unit, as illustrated in Fig. 1.

The conditional ratio annotation represents the ratio by which a message is
received, given that it is transmitted. Conditional ratios may be attached on
general, new, or altered messages, and may not be attached on deleted messages
because they represent complete deletion. In addition, conditional ratios may
not be attached on unwanted incidents because their purpose is to model that
an asset is harmed or reduced in value.

The consequence annotation represents the impact an unwanted incident has
on an asset. Thus, consequences may therefore be attached only on unwanted
incident messages.

Interaction Operators: In sequence diagrams, messages may be combined in
rectangles containing special keywords in order to convey a particular relation-
ship between the combined messages. The rectangle encapsulating the messages
is referred to as a combined fragment, while the keyword is referred to as an inter-
action operator. An interaction operator specifies the operation that defines the
semantics of the combination of messages [21]. As illustrated in Fig. 1, CORAL
makes use of four interaction operators inherited from UML: potential alterna-
tives (keyword alt), referred interaction (keyword ref), parallel execution (key-
word par), and loop (keyword loop). All interactions in sequence diagrams are
by default encapsulated within an implicit combined fragment that makes use of
an interaction operator named weak sequencing (keyword seq). The seq operator
is the implicit composition mechanism of interactions. However, because the seq
operator is always implicitly included in all sequence diagrams, it is generally
not modeled explicitly. The reader is referred to UML for further information
on interaction operators [21].

2.1 Example-Driven Explanation of the CORAL Approach

We carry out risk-driven security testing in three consecutive phases: test plan-
ning, security risk assessment, and security testing. The method takes as input
a description of the system to test, and provides a test report as output. The
description may be in the form of system diagrams and models, use case docu-
mentation, source code, executable versions of the system, and so on.

104 G. Erdogan and K. Stølen

In Phase 1 we prepare the system model, identify security assets to be pro-
tected, define frequency and consequence scales, and define the risk evaluation
matrix based on the frequency and consequence scales.

In Phase 2 we carry out risk modeling in three consecutive steps. First, we
identify security risks by analyzing the system model with respect to the security
assets, and then we identify threat scenarios that may cause the security risks.
Second, we estimate frequency and consequence of the identified risks by making
use of the predefined frequency and consequence scales, respectively. Third, we
evaluate the risks with respect to their frequency and consequence estimates and
select the most severe risks to test.

In Phase 3 we conduct security testing in three consecutive steps. First, for
each risk selected for testing we select its associated threat scenario and specify
a test objective for that threat scenario. To obtain a test case fulfilling the
test objective, we annotate the threat scenario with stereotypes from the UML
Testing Profile [20] according to the test objective. Second, we carry out security
testing with respect to the test cases. Finally, based on the test results, we write
a test report.

The example in Fig. 2 is a small fragment taken from an industrial case study,
which is thoroughly documented in [4]. The system under test is a feature in a
web-based e-business application designed to deliver streamlined administration
and reporting of all forms of equity-based compensation plans. The feature is
named Exercise Options and it is used for buying shares in a company.

Phase 1 (test planning): We modeled Exercise Options from a black-box
perspective by observing its behavior. That is, we executed Exercise Options
using a web browser, observed its behavior, and created the model based on
that (Fig. 2a). Together with the system owners we decided to focus on security
risks that may be introduced via the application layer. Thus, the threat profile is
someone who has access to Exercise Options, but who resides outside the network
boundaries of the service provider. We identified security assets by consulting the
system owners. The security asset identified for Exercise Options was integrity
of data.

We also defined a frequency scale and a consequence scale together with
the system owner. The frequency scale consisted of five values (Certain, Likely,
Possible, Unlikely, and Rare), where each value was defined as a frequency inter-
val. For example, the frequency interval for likelihood Possible was [5,20 〉:1y ,
which means “from and including 5 to less than 20 times per year”. The conse-
quence scale also consisted of five values (Catastrophic, Major, Moderate, Minor,
and Insignificant), where each value described the impact by which the security
asset is harmed. For example, consequence Major with respect to security asset
integrity of data was defined as “the integrity of customer shares is compro-
mised”. The scales were also used to construct a 5×5 risk evaluation matrix
used to evaluate risks in Phase 2.

Phase 2 (security risk assessment): We identified security risks by analyzing
the model in Fig. 2a with respect to security asset integrity of data. We did this
by first identifying unwanted incidents. Then we identified alterations that have

Design Decisions: Graphical Language for Risk-Driven Security Testing 105

Fig. 2. (a) Black-box model of Exercise Options. (b) Threat scenario.

to take place in the messages in order to cause the unwanted incidents. Finally
we identified messages initiated by the threat which in turn could cause the
alterations.

Let us consider a threat scenario for the black-box model of Exercise Options.
Assume that a malicious user attempts to access an administrative feature by
altering certain parameters in the HTTP request sent to Exercise Options. The
malicious user could achieve this, for example, by first intercepting the request
containing the message continue(exerciseMethod) using a network proxy tool
such as OWASP ZAP [22], and then altering the parameter exerciseMethod in
the message as an attempt to access other features in the system. This alteration,
could in turn give the malicious user access to an administrative feature. This
unwanted incident occurs if the alteration is successfully carried out, and Exercise
Options responds with an administrative feature instead of the expected message
exerciseRequestConfirmation. Thus, the unwanted incident may occur after the
reception of message exerciseRequestConfirmation (Fig. 2a). The resulting threat
scenario is shown in Fig. 2b.

In order to estimate how often threat scenarios may occur, in terms of
frequency, we based ourselves on knowledge data bases such as OWASP [22],
reports and papers published within the software security community, as well as
expert knowledge within security testing. We see from Fig. 2b that the malicious
user successfully alters the parameter exerciseMethod with frequency [20,50〉:1y.
Given that parameter exerciseMethod is successfully altered and transmitted,
it will be received by Exercise Options with conditional ratio 0.8. The condi-
tional ratio causes the new frequency [16,40〉:1y for the reception of message
continue(adminSysFeat). This is calculated by multiplying [20,50〉:1y with 0.8.

106 G. Erdogan and K. Stølen

Given that message continue(adminSysFeat) is processed by Exercise Options, it
will respond with an administrative feature. This, in turn, causes the unwanted
incident (security risk) to occur with frequency [16,40〉:1y. The unwanted inci-
dent has an impact on security asset integrity of data with consequence Moderate.
Having identified and estimated a set of risks, we evaluated the risks by plotting
them into the predefined risk evaluation matrix with respect to their frequency
and consequence.

Phase 3 (security testing): Based on the risk evaluation we chose to test
the risk in Fig. 2b. The test objective for this threat scenario was defined as:
“Verify whether the malicious user is able to access an administrative feature by
changing parameter exerciseMethod into a valid system parameter”. Based on
this test objective, we annotated the threat scenario with the stereotypes SUT,
TestComponent, ValidationAction, and Verdict as defined in the UML Testing
Profile [20]. The resulting test is illustrated in Fig. 3. The security tester takes
the role as “malicious user” in the test case. We carried out the test manually
by following the interaction in Fig. 3, and used the OWASP Zed Attack Proxy
tool [22] to intercept the HTTP requests and responses.

Fig. 3. Security test w.r.t. the threat scenario in Fig. 2b.

3 Why We Designed CORAL as We Did?

There are five main areas to consider when developing or evaluating a modeling
language: domain appropriateness, comprehensibility appropriateness, partici-
pant appropriateness, modeler appropriateness, and tool appropriateness [15].
Organizational appropriateness may also be considered [15], but this is outside
the scope of this paper because CORAL is not developed for a specific organi-
zation. Thus, in the following, we elaborate on why we designed CORAL as we
did with respect to the first five aforementioned areas.

Design Decisions: Graphical Language for Risk-Driven Security Testing 107

3.1 Domain Appropriateness

Domain appropriateness relates the modeling language to the domain it tar-
gets [15]. The purpose is to evaluate expressiveness of the language in relation to
the domain. This also includes considering whether the language miss any con-
structs (construct incompleteness), and whether the language expresses anything
that is not in the domain (construct excess).

CORAL employs constructs that are well known within the domain of testing,
security, and risk assessment. The conceptual foundation of CORAL is leading
international standards. Concepts related to testing are based on the software
testing standard ISO 29119 [12] and the UML Testing Profile [20]. Concepts
related to security are based on the information security standard ISO 27000 [10].
Concepts related to security risk assessment are based on the information secu-
rity risk management standard ISO 27005 [11]. Moreover, the graphical nota-
tion of CORAL is based on UML sequence diagrams, which are among the top
three modeling languages within the model-based testing community [19], and
often used for testing purposes [27]. In addition, constructs inherited from UML
sequence diagrams are annotated with risk-related information such as threat,
unwanted incident, and security asset, which in turn brings security risk assess-
ment to the work bench of testers without the burden of a separate risk analysis
language. The CORAL process of risk assessment involves security risk model-
ing. The resulting risk models are used as a basis for designing and subsequently
executing security tests.

The above standards and guidelines consist of a large number of concepts
relevant for their respective domains. When developing CORAL we selected
and related concepts which we found necessary for security testers to carry out
risk-driven security testing. Security testers may carry out a complete run of
risk-driven security testing using constructs provided in CORAL. This is backed
up by an empirical evaluation in which we discovered that CORAL is effective
in terms of producing valid risk models and identifying security tests [4].

3.2 Comprehensibility Appropriateness

Comprehensibility appropriateness relates the language to the social actor inter-
pretation [15]. This is often evaluated with respect to design principles referred
to as semiotic clarity, perceptual discriminability, complexity management, cog-
nitive integration, visual expressiveness, dual coding, and graphic economy [18].

Each graphical symbol in CORAL is designed to represents only one semantic
construct in the language. For example, the graphical icon shaped as a human
with “devil horns” represents a deliberate threat, and may not be used to repre-
sent accidental threats or non-human threats, and so on. Moreover, each semantic
construct in CORAL is represented by only one graphical symbol. For example,
an unwanted incident is only represented by the unwanted incident message, and
may not be represented by other messages. This means that CORAL fulfills the
principle of semiotic clarity [18].

108 G. Erdogan and K. Stølen

The principle of perceptual discriminability states that different symbols
should be clearly distinguishable from each other. To achieve this we employ
distinct shapes and colors. Although the conditional ratio symbol and the con-
sequence symbol are rectangular, they are easily distinguishable because con-
ditional ratios may be assigned to general, new, and altered messages, while
consequences are assigned only to unwanted incident messages. In addition, con-
ditional ratios are always represented as nonnegative real numbers, while conse-
quences are always represented textually. However, the new, altered, and deleted
messages are similar in the sense that they all have a triangular shape at the
transmission end, but they are distinguishable with respect to the coloring inside
the triangles. In our experience, CORAL risk models typically contain a greater
number of new messages compared to the number of altered and deleted mes-
sages. In some cases, particularly in large risk models, this makes it somewhat
difficult to spot the altered/deleted messages. We may mitigate this by using
different shapes at the transmission end on new, altered and deleted messages.
However, the reason why we use triangles (in combination with the color red) is
to support semantic transparency, which is discussed in Sect. 3.3.

With respect to the principle of complexity management, our experience
shows that the ref construct is sufficient to manage the complexity of CORAL
risk models [3–5]. Because of its modular property, the ref construct may also be
used to support cognitive integration, i.e., to support integration of information
from different diagrams. Although the information in a ref construct is limited to
abstract descriptions of the referred interaction, it is sufficient for constructing
high-level risk models, which are useful to obtain an overview of the various
threat scenarios and their relationships. Thus, in CORAL we may divide complex
risk models into simpler risk models, as well as compose high-level risk models,
by making use of the ref construct.

The principles of visual expressiveness and dual coding refer to the usage
of the full range and capacities of visual variables, and the usage of text to
complement graphics, respectively. To achieve this we use a red colored, bold,
and italic font to highlight the risk-related information (text) on messages. This
comes in addition to symbols that are distinguishable with respect to shape and
color. Based on our experience, this convention is useful for new and altered
messages, as well as unwanted incidents. The text on new messages is always
formatted as risk-related information because these messages are initiated by
threats. The text on altered messages is formatted as risk-related information
when highlighting the alteration in the message. This could be part of the text
or the complete text on the altered message. The text on unwanted incidents
are always formatted as risk-related information because they represent that
assets are harmed or reduced in value. This formatting strengthens the visual
expressiveness and helps security testers keep track of and distinguish between
risk-related and non risk-related information on the messages.

The principle of graphic economy states that the number of different graphi-
cal symbols should not exceed 6 in order to be cognitively manageable. However,
if a language consists of more than 6 symbols, which is the case in CORAL,

Design Decisions: Graphical Language for Risk-Driven Security Testing 109

then one can deal with graphic complexity by increasing visual expressiveness.
As explained above, to achieve this we format text to complement the graphics,
which in turn strengthens the visual expressiveness. In particular, we position
the symbols representing new, altered, deleted, and unwanted incident messages
so that they are horizontally aligned with the message, as well as correctly ori-
ented with respect to the message direction. These two visual variables give an
additional increase to the visual expressiveness [18].

3.3 Participant Appropriateness

Participant appropriateness relates the participant knowledge to the lan-
guage [15]. This is often evaluated with respect to the design principle referred
to as semantic transparency [18].

The principle of semantic transparency states that symbols should use visual
representations whose appearance suggests their meaning. To achieve this, we
base the risk-related symbols used in CORAL on corresponding symbols used in
the CORAS risk analysis language [17]. The graphical symbols in CORAS have
been empirically shown to be cognitively effective [8], and these concepts are
also commonly used in security testing [23], which is why we use similar symbols
in CORAL.

3.4 Modeler Appropriateness

Modeler appropriateness relates the language to the knowledge of the one doing
the modeling [15]. This is often evaluated with respect to the design principle
referred to as cognitive fit [18].

The principle of cognitive fit states that the language should use different
visual dialects for different tasks and audiences. CORAL is mainly to be used
by security testers, for the purpose of risk-driven security testing. This implies
that CORAL must provide concepts and a corresponding graphical notation
necessary to carry out security risk assessment, as well as security testing. As
discussed above, we provide this by basing CORAL on state of the art stan-
dards and guidelines. However, this also means that CORAL requires testers
to be familiar with security risk assessment. Security testers usually have this
required background, because they often have to carry out activities related to
security risk assessment, such as creating security abuse/misuse cases, perform-
ing architectural risk analysis, and building risk-driven security test plans [23].

3.5 Tool Appropriateness

Tool appropriateness relates the language to the interpretation from the technical
audience (tools) [15]. A prerequisite for tool interpretation is that the language
must have a syntax and semantics that are formally defined. CORAL is accom-
panied by an abstract syntax as well as a schematically defined natural-language
semantics [3]. Testers may use the abstract syntax in order to create risk models
that are syntactically correct, and the natural-language semantics in order to
clearly and consistently document, communicate and analyze risks.

110 G. Erdogan and K. Stølen

4 What We Could Have Done Differently?

This section discusses what we could have done differently with respect to the
design of CORAL.

4.1 Graphical Versus Textual

A model may be either two-dimensional or one-dimensional1. A graph is two-
dimensional while text is one-dimensional. CORAL is obviously two-dimensional.
A one-dimensional alternative would be to replace the UML diagrams by actual
code and the specific graphical annotations of CORAL by textual annotations.
One argument in favor of such an approach is that it would be sufficient for the
tester to know the source-code language. However, the price to pay would be no
abstraction. The tester would have to create a mental model of how security risks
are caused including the chain of events and how they may affect the system to
test, and based on that describe the risk picture. Moreover, the tester would have
to read through code from top to bottom to capture details such as unwanted
incidents, frequencies, conditional probabilities, consequences and so on.

Using UML sequence diagrams we cover a scenario that occurs multiple times
in the source code by a single diagram. Moreover, UML sequence diagrams cap-
ture the interaction between independent actors and processes in a manner not
possible using source code. Finally, UML sequence diagrams allow us to describe
the behavior of human actors including working procedures as well as threat
behavior.

Finding the right balance between text and graphics in annotations is non-
trivial. As argued in [6], text labels are often preferred over graphical means.
Hence, finding the right balance is essential. The recently completed EMFASE
project arrived at similar conclusions [1].

4.2 Risk Annotations Versus Tables

An alternative to the CORAL approach of representing risk-related information
on top of sequence diagrams is to document the risk-related information sepa-
rately using tables. The most commonly used table-based risk assessment app-
roach is Hazard and Operability (HazOp) analysis [9]. Many risk-driven testing
approaches use table-representations inspired from HazOp analysis [2]. HazOp
makes use of guide words to identify risks, their causes, as well as possible treat-
ments. Figure 4 illustrates a typical HazOp table in which we represent the threat
scenario in Fig. 2b.

Tables may also be regarded as two-dimensional because a cell in the table
can be identified by pairs of row and column headings. Moreover, tables present
all information consistently with respect to the headings. This guides the reader
to the relevant information in a structured manner. Finally, information in tables

1 A model may of course also be three-dimensional, but that is not relevant in this
paper.

Design Decisions: Graphical Language for Risk-Driven Security Testing 111

Fig. 4. HazOp table representing the threat scenario in Fig. 2b.

are generally presented as text. This removes the need to interpret semantics of
graphical symbols when looking for certain information.

CORAL is based on the hypothesis that it is advantageous to annotate
risk information on the locations where it belongs in a style corresponding to
the underlying modeling language. For example, the transmission frequency of
message continue(adminSysFeat) in Fig. 2b is attached to the transmission-end
of the message, while the reception frequency is attached to the reception-
end. Moreover, a particular location in the diagram may convey more than
one kind of information. For example, the transmission-end of message con-
tinue(adminSysFeat) in Fig. 2b simultaneously conveys that the message is a
new message, that the transmission occurs with frequency [20, 50〉:1y, and that
it is transmitted by Network tool. This information would normally be found in
separate columns in a table.

On the other hand, whether tables are better than graphs or the other way
around is far from obvious [16]. The answer depends probably on the context of
use and the complexity of the information to be presented.

4.3 Sequence Diagrams Versus Other UML Representations

The graphical notation of CORAL could have been based on modeling languages
other than UML sequence diagrams. According to Dias-Neto et al. [19], the
three most common modeling notations (not including UML sequence diagrams)
used in model-based testing are UML state machines/finite state machines, class
diagrams, and use-case diagrams.

State machines are specifications of sequences of states that an object or an
interaction goes through in response to events during its life, together with its
responsive effects [21]. These sequence of states correspond to events that occur
chronologically on a particular lifeline in CORAL. In principle, it is possible to
represent the same risk-related information as in CORAL using state machines.
The advantage of sequence diagrams when compared to state machines is that we
may easily isolate particular scenarios without having to consider the behavior
for other scenarios. This is very much in the spirit of testing and an important
reason for the development of sequence diagram notation.

Class diagrams capture the static view of a system as a collection of declar-
ative (static) model elements with contents and relationships [21]. To this
end, class diagrams are useful to describe the structure of the system to test.

112 G. Erdogan and K. Stølen

However, the kind of dynamic behavior that CORAL address cannot be specified
using class diagrams.

Use-case diagrams show the relationships among actors and use cases within
a system [21]. Their high-level nature is useful for capturing high-level threat
scenarios a system may be exposed to. A threat can be modeled as an actor,
while a high-level scenario corresponds to use-case. Misuse cases [26] is a well-
known notation based on use-case diagrams used to capture high-level threat
scenarios. However, in the context of testing, high-level threat scenarios are only
useful as a starting point to design detailed security tests. CORAL addresses the
latter, that is, designing detailed security tests.

4.4 CORAL Versus Attack Trees

The annotation of sequence diagrams may be thought of as augmenting the
sequence diagrams with an attack tree on which there is a huge literature [14].
CORAL allows the representation of sequential conjunction [13] and disjunction,
but not ordinary conjunction, for which we have not seen any real need. Instead
of embedding the CORAL annotations within the sequence diagrams we could
of course used attack trees in addition to sequence diagrams in the same way
as some approaches to risk-driven testing use tables in addition to the system
documentation. However, as for tables, we think intended users benefit from an
integrated approach.

4.5 CORAL Versus Formal Methods

CORAL is supported by an abstract textual syntax formalized in EBNF [3]. The
semantics of CORAL is defined by a schematic translation of any syntactically
correct CORAL expression into English sentences. The target audience of the
natural-language semantics is security testers, and the purpose is to help testers
clearly and consistently document, communicate and analyze security risks.

Although formal in the sense described above, CORAL is not formal in the
classical meaning of formal methods. This would require a mathematical seman-
tics as well as a formalization of the natural-language expressions used to anno-
tate CORAL diagrams. A mathematical semantics would indeed be useful, not
to replace the natural-language semantics which targets the users of CORAL,
but to allow tool and method developers building on CORAL prove soundness
of the rules and heuristics.

Formalizing the natural-language expressions would on the other hand be
counter-productive. We believe it is a strength of CORAL that security testers
freely can augment their diagrams without being constrained by formal concerns.

To summarize, a formal semantics would be beneficial and we hope to provide
this in the future, for example, based on STAIRS [7] or probabilistic STAIRS [24]
for sequence diagrams. Formalizing the natural-language expressions would prob-
ably alienate the CORAL approach from its intended users, namely security
testers.

Design Decisions: Graphical Language for Risk-Driven Security Testing 113

5 Conclusion

In this paper we have presented the CORAL language for risk-driven security
testing, motivated some of the major design decisions on which it builds, and
discussed what we could have done differently with respect to the design of the
language.

The target audience of CORAL is security testers. We have tried to explain
why we think CORAL is comprehensible to security testers and why it is appro-
priate to use for risk-driven security testing.

With respect to what we could have done differently we considered various
alternatives and their impact on CORAL. In particular, we discussed why we
decided to develop CORAL as a graphical language instead of augmenting code,
why we embed risk-related annotations in sequence diagrams instead of using
separate tables or attack trees, why we do not build on other UML notations
instead of sequence diagrams, and why formalizing the natural-language expres-
sions in CORAL diagrams is counter-productive.

Acknowledgments. This work has been conducted as part of the EMFASE project
funded by SESAR Joint Undertaking (SESAR WP-E project, 2013–2016) managed
by Eurocontrol, and the AGRA project (236657) funded by the Research Council of
Norway under the BIA research programme.

References

1. Empirical Framework for Security Design and Economic Trade-Off (EMFASE)
(2016). https://securitylab.disi.unitn.it/doku.php?id=emfase. Accessed 21 Apr
2016

2. Erdogan, G., Li, Y., Runde, R.K., Seehusen, F., Stølen, K.: Approaches for the
combined use of risk analysis and testing: a systematic literature review. Int. J.
Softw. Tools Technol. Transfer 16(5), 627–642 (2014)

3. Erdogan, G., Refsdal, A., Stølen, K.: Schematic Generation of English-prose
Semantics for a Risk Analysis Language Based on UML Interactions. Technical
report A26407, SINTEF Information and Communication Technology (2014)

4. Erdogan, G., Stølen, K., Aagedal, J.Ø.: Evaluation of the CORAL approach for
risk-driven security testing based on an industrial case study. In: Proceedings of
the 2nd International Conference on Information Systems Security and Privacy
(ICISSP 2016), pp. 219–226. SCITEPRESS (2016)

5. Erdogan, G.: CORAL: A Model-Based Approach to Risk-Driven Security Testing.
Ph.D. thesis, University of Oslo (2015)

6. Grøndahl, I.H., Lund, M.S., Stølen, K.: Reducing the effort to comprehend risk
models: text labels are often preferred over graphical means. Risk Anal. 31(11),
1813–1831 (2011)

7. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Softw. Syst. Model. 4(4), 355–357 (2005)

8. Hogganvik, I., Stølen, K.: A graphical approach to risk identification, motivated
by empirical investigations. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.
(eds.) MODELS 2006. LNCS, vol. 4199, pp. 574–588. Springer, Heidelberg (2006).
doi:10.1007/11880240 40

https://securitylab.disi.unitn.it/doku.php?id=emfase
http://dx.doi.org/10.1007/11880240_40

114 G. Erdogan and K. Stølen

9. International Electrotechnical Commission. IEC 61882, Hazard and Operability
studies (HAZOP studies) - Application guide (2001)

10. International Organization for Standardization. ISO/IEC 27000: 2009(E), Informa-
tion technology - Security techniques - Information security management systems
- Overview and vocabulary (2009)

11. International Organization for Standardization. ISO/IEC 27005: 2011(E), Infor-
mation technology - Security techniques - Information security risk management
(2011)

12. International Organization for Standardization. ISO/IEC/IEEE 29119–1: 2013(E),
Software and system engineering - Software testing - Part 1: Concepts and defini-
tions (2013)

13. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack
trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). doi:10.1007/
978-3-319-18467-8 23

14. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: Dont miss the forest for the attack trees. Comput. Sci. Rev. 13–14, 1–38
(2014)

15. Krogstie, J.: Model-Based Development and Evolution of Information Systems - A
Quality Approach. Springer, London (2012)

16. Labunets, K., Li, Y., Massacci, F., Paci, F., Ragosta, M., Solhaug, B., Stølen,
K., Tedeschi, A.: Preliminary Experiments on the Relative Comprehensibility of
Tabular and Graphical Risk Models. In: Fifth SESAR Innovation Days, pp. 1–7.
SESAR WPE (2015)

17. Lund, M.S., Solhaug, B., Stølen, K.: Analysis, Model-Driven Risk: The CORAS
Approach. Springer, Heidelberg (2011)

18. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779
(2009)

19. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies (WEASELTech 2007), pp. 31–36. ACM (2007)

20. Object Management Group. UML Testing Profile (UTP), version 1.2: formal/2013-
04-03

21. Object Management Group. Unified Modeling Language (UML), version 2.5:
formal/2015-03-01

22. Open Web Application Security Project (2016). https://www.owasp.org/index.
php/Main Page. Accessed 20 Apr 2016

23. Potter, B., McGraw, G.: Software security testing. IEEE Secur. Priv. 2(5), 81–85
(2004)

24. Refsdal, A., Runde, R.K., Stølen, K.: Stepwise refinement of sequence diagrams
with soft real-time constraints. J. Comput. Syst. Sci. 81(7), 1221–1251 (2015)

25. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Boston (2005)

26. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1), 34–44 (2005)

27. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)

http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-319-18467-8_23
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page

A Lightweight Approach for Estimating Probability
in Risk-Based Software Testing

Rudolf Ramler1(✉), Michael Felderer2, and Matthias Leitner2

1 Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

rudolf.ramler@scch.at
2 Department of Computer Science, University of Innsbruck,

Technikerstrasse 21a, 6020 Innsbruck, Austria
{michael.felderer,matthias.leitner}@uibk.ac.at

Abstract. Using risk information in testing is requested in many testing strat‐
egies and recommended by international standards. The resulting, widespread
awareness creates an increasing demand for concrete implementation guidelines
and for methodological support on risk-based testing. In practice, however, many
companies still perform risk-based testing in an informal way, based only on
expert opinion or intuition. In this paper we address the task of quantifying risks
by proposing a lightweight approach for estimating risk probabilities. The
approach follows the “yesterday’s weather” principle used for planning in
Extreme Programming. Probability estimates are based on the number of defects
in the previous version. This simple heuristic can easily be implemented as part
of risk-based testing without specific prerequisites. It suits the need of small and
medium enterprises as well as agile environments which have neither time nor
resources for establishing elaborated approaches and procedures for data collec‐
tion and analysis. To investigate the feasibility of the approach we used historical
defect data from a popular open-source application. Our estimates for three
consecutive versions achieved an accuracy of 73% to 78% and showed a low
number of critical overestimates (<4%) and few underestimates (<1%). For prac‐
tical risk-based testing such estimates provide a reliable quantitative basis that
can be easily augmented with the expert knowledge of human decision-makers.
Furthermore, these results also define a baseline for future research on improving
probability estimation approaches.

Keywords: Risk-based testing · Risk assessment · Probability estimation · Defect
prediction · Test management · Software testing

1 Introduction

Risk-based testing is a testing approach which considers risks related to a software
product as the guiding factor to support decisions in all phases of the test process [1].
As the recently published international standard for software testing, ISO/IEC/IEEE
29119 [2] explicitly involves risks as an integral part of the testing process, there is
increasing demand for methodological support on risk-based testing.

© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 115–128, 2017.
DOI: 10.1007/978-3-319-57858-3_9

In general, a risk is an event that may possibly occur and, if it occurs, it has negative
consequences. Risks are determined by the two factors probability and impact. The
factor probability describes the likelihood that the negative event, e.g. a software failure,
occurs and impact characterizes the cost if the failure occurs in operation. Assessing the
risk exposure of a software feature or component requires estimating both factors.
Impact can usually be derived from the business value associated to the feature defined
in the software requirements specification. Probability is influenced by the implemen‐
tation characteristics of the feature or component as well as the usage context in which
the software system is applied.

Identifying and estimating risks is a core activity in risk-based testing. Nevertheless,
we observed that many companies do not follow established approaches. In a study on
risk-based testing we investigated the daily practice of software testing in several large
and small companies [3, 4]. Especially small and medium enterprises do not systemat‐
ically estimate risks and, if they do, they mostly rely on expert opinion. While expert
opinion is a valuable source for risk information, experts seem to underestimate the
probability of risks and may produce contradicting as well as misleading estimates [5].

In this paper we present a lightweight approach to estimating the risk probability in
risk-based software testing and its evaluation. The application context mainly considered
in this paper is functional testing, although the approach may as well be applied for
testing a wide spectrum of functional and non-functional properties of a software system.
The emphasis of the approach is on being lightweight, i.e., simple in its design and simple
in its application. The aim of this paper is to explore “the simplest thing that could
possibly work” [6]. Hence, the approach can easily be implemented as part of risk-based
test strategy development in small and medium enterprises as well as in agile environ‐
ments without specific prerequisites.

The remainder of this paper is structured as follows. Section 2 summarizes the
underlying approach to risk-based test strategy development. Section 3 presents the
lightweight approach to risk probability estimation. Section 4 provides an initial eval‐
uation of the probability estimation approach. Finally, Sect. 5 concludes the paper and
highlights directions of future research.

2 Background: Risk-Based Testing and Test Strategy Development

Many testing processes (e.g., [7, 8]) as well as standards (e.g., [2]) recommend the use
of risk information in software testing. Several risk-based approaches for software
testing have been proposed such as by Bach [9], Amland [10], and van Veenendaal [11].
Furthermore, comprehensive frameworks and guidelines for risk management as well
as for risk-based testing have been developed in context of software security; prominent
examples are the Risk Management Framework (RMF) [12] and the OWASP Testing
Guide [13]. These approaches implement or are accompanied by various different ways
for assessing risks [14–17].

In the remainder of this section we describe a previously presented, empirically
evaluated process for risk-based test strategy development [18] as one example of how
probability and impact values may be determined and used in practice. It is an essential

116 R. Ramler et al.

first step when introducing risk-based testing in an organization [19] to establish a risk-
based test strategy that anchors risk-orientation as basis for all testing activities in the
entire software lifecycle. The process has been evaluated as part of a research transfer
project for introducing risk-based testing in five small and medium software develop‐
ment companies.

In general, a test strategy describes how testing is organized and performed on the
different test levels [20]. The usually rather generic strategy has to be refined for its
implementation in context of a specific project or product iteration. The refinement
results in a concrete test approach that defines the different types of testing that need to
be performed, the test and quality assurance techniques to be applied, and the coverage
and exit criteria used for tacking the progress and determining test completion.

Figure 1 provides an overview of the overall process for risk-based test strategy
development. It consists of different steps, which are either directly related to the risk-
based test strategy development (shown in bold font) or which are used to establish the
preconditions (shown in normal font) for the process by linking test strategy develop‐
ment to the related processes (drawn with dashed lines) of defect management, require‐
ments management and quality management.

Fig. 1. Probability estimation in risk-based test strategy development [18]. The highlighted steps
relate to risk probability estimation as explored in this paper.

A Lightweight Approach for Estimating Probability 117

The process for risk-based test strategy development comprises seven core steps,
which are as follows. In the first step, risk items, which are the basic elements associated
with risks and mapped to test objects, are defined. They can be derived from established
structures used in defect and requirements management. In the second step, for each risk
item probability values are estimated which express their likelihood of defectiveness.
For probability estimation, one can use data from defect classification [21] that captures
and enhances the relevant data obtained from defect management. In the third step, for
each risk item impact values are estimated which express the consequences of risk items
being defective [22]. As the impact is closely related to the expected value of the
components for the user or customer, requirements management is a main source of data
for impact estimation. In the fourth step, risk values are computed from the estimated
probability and impact values. The computed risk values can be used to group risk items,
for example, according high, medium and low risk. In the fifth step, the spectrum of risk
values is partitioned into risk levels, which comprise a further level of aggregation. The
purpose of distinguishing different risk levels is to define classes of risks such that all
risk items associated to a particular class are considered equally risky and as a conse‐
quence are subject to the same intensity of quality assurance and test measures. In the
sixth step, the test strategy is defined on the basis of the different risk levels. For each
risk level the test strategy describes how testing is organized and performed. Distin‐
guishing different levels allows testing with different rigorousness in order to adequately
address the expected risks. In the seventh step, the test strategy is refined to match the
characteristics of the individual components of the software system (i.e., risk items).

The highlighted steps are related to risk probability estimation relevant for the
approach further explored in this paper. Probability estimation is a core step in the risk-
based test strategy development process to estimate risk values. As mentioned before,
experts seem to underestimate the probability of risks and may produce contradicting
as well as misleading estimates [5]. However, risk probabilities can be estimated based
on historical defect data collected from previous releases or related projects. To support
also less mature enterprises in applying defect data-based risk probability estimation, a
lightweight approach is required.

3 Approach for Risk Probability Estimation

To improve risk estimation in context of small and medium enterprises, we recommend
combining expert opinion with quantitative data from the systems’ development history
[18]. Figure 1 illustrates the different steps of a risk-based testing approach. It includes,
first, the estimation of the factors probability and impact for each risk item.

In the context of testing the probability value expresses the likelihood of defective‐
ness of a risk item, i.e., the likelihood that a fault exists in a specific module that may
lead to a failure. Most companies maintain a defect management system for reporting
failures, tracing failures to faults and documenting their resolution. These systems
capture the defect history of a software system and can serve as basis for deriving data
for estimating future risk probabilities [18].

118 R. Ramler et al.

Modeling the usually complex relationship between software faults and resulting
failures [20] requires considerable effort and a consistent data set that may not be avail‐
able in practice. In contrast, projects in small and medium organizations are often
following an on-demand, agile approach. Our lightweight approach has been inspired
by the “yesterday’s weather” principle used for planning in Extreme Programming [23].
It is a simple rule used in effort estimation, e.g., for estimating the amount of work a
team can complete in a sprint. Instead of a complex estimation approach the rule suggests
to use the amount of work completed in the previous sprint as estimate for the next sprint.
This estimate is not meant to replace human judgement but to provide a quantitative
basis that can be easily adjusted by including the knowledge and experience of human
decision-makers. The benefit of this rule-based approach is its simplicity and widespread
applicability.

In our approach we follow the same principle. Probability estimates are derived from
defect counts of the previous version. In short, components with a high defect count in
the last version are estimated to be likely defective in the next version and, vice versa,
components that were already free of defects in the last version are still considered to
be defect-free. Estimates based on defect counts are usually mapped to probability levels
(e.g., high, medium and low), which are used to construct risk matrices that are the basis
for the subsequent testing activities as shown in Fig. 2.

Fig. 2. Risk-based testing approach.

Extrapolation from defect counts provides a fast and easy way to estimate risk prob‐
abilities. However, the approach is based on the assumption of a continuous process and
environment that keeps influence factors on risks stable over consecutive versions.
Therefore, the estimates are adjusted by expert opinion to include knowledge about
disruptive events in the development process, in testing or in the usage of the software
system [24]. Human judgement is also used to decide about boundary cases and new
components where no historical records are available.

A Lightweight Approach for Estimating Probability 119

4 Evaluation

We demonstrate the feasibility and explore the limits of the proposed lightweight esti‐
mation approach by applying it in context of the open-source project jEdit1. The tool
jEdit is a widely used and mature programmer’s text editor with – according to the
project’s description – hundreds of person-years of development behind it. It is written
in Java and has been released as free software with full source code. The project jEdit
has been subject to a previous study on defect prediction by Jureczko and Madeyski [25].
As part of their study the data has been made publically available and can be obtained
from the OpenScience tera-PROMISE repository2.

The data is used to illustrate and evaluate the approach of estimating the risk prob‐
ability for source code files. In particular, we use available data in terms of defect counts
per file from a “known” version n to make estimates for the next version n + 1. As
described above, the estimates express the risk probability of a particular file containing
defects according to the categories high/medium/low. A detailed analysis is provided
by the following sub-sections.

• In Subsect. 4.1 we explore the distribution of defects in each individual studied
version. We show that in each version there are a small number of highly defective
files, a moderate number of files with a few defects, and a large number of defect-
free files. We exploit this Pareto-like distribution for classifying the files as high,
medium or low defective.

• In Subsect. 4.2 we compare the distribution of defects between versions and show
that files with a high/low number of defects in version n usually also have a high/low
number of defects in the next version n + 1. This trend is observable over consecutive
versions and builds the foundation for making reliable estimates.

• In Subsect. 4.3 we estimate the high/medium/low probability of files being defective
based on defect counts obtained from their previous version. We evaluate the results
by computing the accuracy of the estimates (classification) as well as the number of
overestimates and underestimates. Accuracy ranges from 73% to 78%, while critical
underestimates are less than 1% and critical overestimates remain below 4%.

• In Subsect. 4.4 we discuss the threats to validity of our evaluation.

4.1 Versions and Defect Distributions

In our study we analyze four versions of jEdit (3.2.1, 4.0, 4.1, and 4.2), which are related
to a continuous period of development of about three years. In this time interval the code
base has steadily grown, from 129 KLOC (272 Java files) in version 3.2.1 to 171 KLOC
(367 Java files) in version 4.2. In the same time the number of defects has been reduced
from 382 to 106 defects (Table 1).

1 http://www.jedit.org/
2 http://openscience.us/repo/defect/ck/jedit

120 R. Ramler et al.

http://www.jedit.org/
http://openscience.us/repo/defect/ck/jedit

Table 1. Key measures of the studied versions of jEdit.

Version LOC Files Defects Avg.
defects/file

Max
defects/file

Defect-free
files

3.2.1 128,883 272 382 1.40 45 67%
4.0 144,803 306 226 0.74 23 75%
4.1 153,087 312 217 0.70 17 75%
4.2 170,683 367 106 0.29 10 87%

In each version a Pareto-like distribution of defects to files can be observed. The top
10% of defective files contain 71% / 77% / 74% / 90% of the defects in each of the studied
versions. The histograms in Fig. 3 show the distribution of files per number of defects.
In each version there are a large number of defect-free files (0 defects), a moderate
number of files with only a few defects (1 to 3 defects) and a small number of files with
many defects (4 or more defects). In the following, we can exploit this information for
classifying files as low, medium or high defective.

Version 3.2.1 Version 4.0

Version 4.1 Version 4.2

Fig. 3. Number of files per defect count for each version.

4.2 Defective Files in Consecutive Versions

Although the studied application is growing over time and undergoes many modifica‐
tions, a large share of the files (75% to 89%) can be traced from one version to the next.
These files are present in version n as well as in version n + 1. In this section we explore
if we can take advantage of the relationship these files share over consecutive versions
to make reliable estimates.

The underlying assumption is that files that have a large number of defects in one
version will also have many defects in the next version and, vice versa, files that do not

A Lightweight Approach for Estimating Probability 121

have any defects will stay defect-free. The overall number of defects changes over time
and so does the number of defects per file. However, we are mainly interested if the
overall relationship in terms of high/medium/low number of defects stays the same. We
first investigate our assumption by charting the cumulative gain in terms of defects over
all files in version n + 1 when ordering them according to their defectiveness in version
n. Figures 4, 5 and 6 show the respective gain charts (lift plot [26]).

The x-axis of the gain chart depicts the number of files subject to testing. The y-
axis shows the cumulative percentage of total defects that can be found in testing
when a particular ordering of the files is applied. The optimal ordering (green curve)
is what one gets when sorting the files according to their actual number of defects in
version n + 1. It represents the best way of ordering the files for testing. However, the
actual numbers are unknown at the time of testing and this ordering can only be
determined from an ex-post view on the data. At the time of testing one has to rely
on estimates. In the worst case such estimates are equal to guessing, which would
correspond to a random ordering of the files (gray dotted 45-degree diagonal line).
In our approach the estimation is based on the defect numbers of the previous version
n. These numbers are already known when testing for version n + 1 is going to start
and can therefore be used for prioritization, i.e., ordering the files (blue line) accord‐
ingly. If several files in version n have the same number of defects, their ordering for
version n + 1 cannot be determined. Without any further information for making
estimates one has to assume a random ordering for these files. The different possible
combinations result in range defined by the curves best estimate and worst estimate
(green/red dashed lines).

0%

25%

50%

75%

100%

0 100 200

optimal

best estimation

worst estimation

random

estimation

Fig. 4. Cumulative gain in version 4.0 based on the number of defects in 3.2.1. (Color figure
online)

122 R. Ramler et al.

Concerning our assumption, we can make the following observations. First, the steep
initial growth of the estimate curve shows that files with a high number of defects in
version n are usually also containing a high number of defects in version n + 1. Second,

0%

25%

50%

75%

100%

0 100 200 300

optimal

best estimation

worst estimation

random

estimation

Fig. 5. Cumulative gain in version 4.1 based on the number of defects in 4.0. (Color figure online)

0%

25%

50%

75%

100%

0 100 200 300

optimal

best estimation

worst estimation

random

estimation

Fig. 6. Cumulative gain in version 4.2 based on the number of defects in 4.1. (Color figure online)

A Lightweight Approach for Estimating Probability 123

the long tails of the curves are due to the many defect-free files in all versions. Third,
the gap between the tails of the curves best estimate and worst estimate indicates that
some defects have been introduced in version n + 1 to previously defect-free files of
version n.

In general, the ordering based on our estimation provides a substantial improvement
over guessing. For version 4.0 (Fig. 4) the resulting ordering would allow finding about
75% of the defects after testing only 20% of the files, and more than 90% defects can be
found after testing 50% of all files. Similar findings can be derived from all three gain
charts (Figs. 4, 5 and 6). Hence, these findings provide a useful basis for making esti‐
mates and they confirm the feasibility of the proposed estimation approach.

4.3 Estimating Probability Classes

An exact ordering of the files is not required for developing a risk-based test strategy as
initially described in Sect. 2. It is usually sufficient to associate the different files or parts
of the system to risk probability classes such as high/medium/low probability of being
defective. In this section we evaluate the feasibility of estimating probability classes
based on the number of defects associated with a file as investigated in the previous
Sect. 4.2. The classification used in the following is based on the findings from Sect. 4.1,
where we explored the defectiveness of the files per version as high = ≥4 defects,
medium = 3 to 1 defects, low = 0 defects.

Figures 7, 8 and 9 show the confusion matrix that result from estimating probability
classes for the three versions 4.0, 4.1 and 4.2. Estimated numbers are shown on the x-
axis of the confusion matrix and actual numbers are shown on the y-axis. Thus, the
matrix for version 4.0 can be read as follows. The first row shows that out of the 11 files
(4%) in version 4.0 with an actual high defectiveness, 10 were correctly estimated to
have a high probability of being defective and 1 was underestimated as having a medium
probability of being defective although being highly defective. In contrast, the first
column shows that in total 33 files (12%) were estimated to have a high probability of
being defective. Out of these 10 files (4%) are actually highly defective, 13 (5%) have
a medium and 10 (4%) a low actual defectiveness. Thus, 10 files were classified correctly
and 23 were overestimated.

high medium low high medium low

high 10 1 0 11 high 3.8% 0.4% 0.0% 4.2%

medium 13 23 15 51 medium 4.9% 8.7% 5.7% 19.2%

low 10 33 160 62 low 3.8% 12.5% 60.4% 23.4%

33 57 175 265 12.5% 21.5% 66.0% 100%

estimated estimated

ac
tu
al

ac
tu
al

Fig. 7. Confusion matrix for estimates of version 4.0.

124 R. Ramler et al.

Various performance measures can be computed from the confusion matrix to eval‐
uate the estimates. In the following we look at (1) accuracy as well as the number of (2)
overestimates and (3) underestimates.

Accuracy is defined as the percentage of correct classifications over all classifica‐
tions. In the confusion matrix the correct estimates can be found in the three diagonal
cells from the top left (estimated high and actual high) to the bottom right (estimated
low and actual low). The correct estimates in our study led to an accuracy of 72.8% in
version 4.0, 78.4% in version 4.1, and 75.6% in version 4.2.

Overestimates are defined by the percentage of classifications where the estimated
classification is higher than the actual classification. In the confusion matrix the over‐
estimates can be found in the three cells on the lower left (estimated high/medium and
actual medium/low). For the three versions 4.0, 4.1 and 4.2 the overestimates are 21.1%,
10% and 19.6%. Overestimates (“false alarms”) mean that files are subject to more
rigorous testing than actually considered necessary. From the perspective of a risk-based
approach, overestimation may lead to a waste of time and resources. Furthermore, in
terms of “false alarms” they reduce the confidence in the estimates. These problems are
particularly critical for files that were estimated to have a high probability of being
defective yet they were found to actually have a low defectiveness. Only a small number
of critical overestimates were produced: 3.8% for version 4.0, none (0%) for version 4.1,
and 2.1% for version 4.2.

high medium low high medium low

high 9 6 2 17 high 3.1% 2.1% 0.7% 5.8%

medium 5 29 26 60 medium 1.7% 10.0% 8.9% 20.6%

low 0 24 190 77 low 0.0% 8.2% 65.3% 26.5%

14 59 218 291 4.8% 20.3% 74.9% 100%

ac
tu
al

ac
tu
al

estimated estimated

Fig. 8. Confusion matrix for estimates of version 4.1.

high medium low high medium low

high 4 2 1 7 high 1.4% 0.7% 0.3% 2.4%

medium 8 15 11 34 medium 2.7% 5.2% 3.8% 11.7%

low 6 43 201 41 low 2.1% 14.8% 69.1% 14.1%

18 60 213 291 6.2% 20.6% 73.2% 100%

estimated estimated

ac
tu
al

ac
tu
al

Fig. 9. Confusion matrix for estimates of version 4.2.

A Lightweight Approach for Estimating Probability 125

Underestimates are defined by the percentage of classifications where the estimated
classification is lower than the actual classification. In the confusion matrix the under‐
estimates can be found in the three cells on the top right (estimated low/medium and
actual medium/high). In the three versions 6%, 11.7% and 4.8% of the misclassified files
are underestimates. Underestimation means that defective files do not get enough atten‐
tion and, thus, defects may be missed in testing. Again, we consider underestimates as
especially critical if the files that actually have a high defectiveness were estimated as
low defective. A very low number of files have been seriously underestimated: none
(0%) in version 4.0, 0.7% in version 4.1, and 0.3% in version 4.2.

4.4 Threats to Validity

The prerequisite for applying the proposed approach is a complete and consistent record
of defects mapped to files for each release over an extended period of time. Reliable,
high-quality defect data is also a major factor for the validity of our evaluation. We
therefore selected a publically available data set that has been used in a previous, rigor‐
ously reviewed empirical study on defect prediction [25].

Defect severity has not been considered in our study. The analyzed defect data does
not include severity ratings of individual defects. In our initial approach [18] we
suggested using severity ratings to weight defects, which provides the possibility to
adjust the ordering if several files have the same number of defects. However, for the
large share of files found to be defect-free the estimation will not change. One may even
decide to ignore defect severities when estimating risk probabilities as this information
is included in the impact side of risk that has to be included in a next step of the risk-
based testing process (which is outside the scope of this study).

The approach relies on information derived from the files in the previous version.
This information is not available for new files. In our initial approach we considered all
new files relevant for testing, implicitly assuming a high probability of being defective.
However, in our study we found that most new files are actually defect-free and the
remaining ones only have few defects. Therefore our initial assumption seems to be too
pessimistic and it produces overestimates.

The discussed threats affect the validity of the evaluation, in particular, its construct
and internal validity. Concerning external validity it is clear that a generalization from
only one studied case is limited as in any case study research [27]. The main goal of our
study was to demonstrate the feasibility of the approach, which we were able to show
in the selected case. Furthermore, the studied system can be considered representative
for long-running projects developing desktop applications. However, further replica‐
tions are necessary to validate our findings in different contexts.

5 Conclusion and Future Work

Estimating risk probabilities is an important step in risk-based testing. However, this
step is often performed in an informal way, based on expert opinion and intuition rather
than on quantitative data. One of the reasons is the lack of availability of such data in

126 R. Ramler et al.

projects performed in small and medium enterprises or in agile environments. These
projects neither have the time nor the resources for establishing additional procedures
for data collection and analysis. Similarly, sophisticated risk estimation procedures are
out of scope for these projects.

In this paper we therefore proposed a lightweight approach for estimating the risk
probability in risk-based software testing following the “yesterday’s weather” principle.
Probability estimates are based on defect numbers from the preceding version.
Simplicity of the estimation approach is of foremost concern. It is intended to be easily
implemented as part of risk-based test strategy development in small and medium enter‐
prises without specific prerequisites. The only required source of information is defect
data from previous versions, which can usually be derived from existing defect data‐
bases.

To investigate the feasibility of the approach we performed an evaluation on the
popular open-source application jEdit. We used historical defect data to estimate the
defect probability of files for three consecutive versions. Our estimates achieve an accu‐
racy of 73% to 78%. Furthermore, they resulted in a low number of critical overestimates
(less than 4%) and only a few underestimates (less than 1%). The results show that the
approach is capable to satisfy the requirements suggested for applying defect prediction
as basis for risk-based testing [28].

In this paper our focus was on a lightweight estimation technique with the goal to
find the simplest approach that could possibly work. As part of future work we will
investigate strategies to improve the estimation approach and to increase its accuracy
while still keeping it simple. Our aim is to include easy-to-compute process metrics and
product metrics to augment the probability estimates based on defect data.

Acknowledgments. This work has been supported by the COMET Competence Center program
of the Austrian Research Promotion Agency (FFG), and the project MOBSTECO (FWF P 26194-
N15) funded by the Austrian Science Fund.

References

1. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw. Tools
Technol. Transf. 16(5), 559–568 (2014)

2. ISO/IEC/IEEE 29119-2:2013 Software and systems engineering – Software testing – Part 2:
Test processes. International Organization for Standardization, Geneva (2013)

3. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry. Int. J. Softw.
Tools Technol. Transf. 16(5), 609–625 (2014)

4. Felderer, M., Ramler, R.: Risk orientation in software testing processes of small and medium
enterprises: an exploratory and comparative study. Software Qual. J. 24(3), 519–548 (2016)

5. Ramler, R., Felderer, M.: Experiences from an initial study on risk probability estimation
based on expert opinion. In: Joint Conference of the 23rd International Workshop on Software
Measurement and the Eighth International Conference on Software Process and Product
Measurement (IWSM-MENSURA), pp. 93–97. IEEE (2013)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(2000)

A Lightweight Approach for Estimating Probability 127

7. Spillner, A., Rossner, T., Winter, M., Linz, T.: Software Testing Practice: Test Management:
A Study Guide for the Certified Tester Exam ISTQB Advanced Level. Rocky Nook, Santa
Barbara (2007)

8. Black, R.: Advanced Software Testing. Guide to the ISTQB Advanced Certification as an
Advanced Test Manager, vol. 2. Rocky Nook, Santa Barbara (2009)

9. Bach, J.: James Bach on risk-based testing: how to conduct heuristic risk analysis. Softw. Test.
Qual. Eng. (STQE) Mag., 23–28, November/December 1999

10. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software testing
including a financial application case study. J. Syst. Softw. 53(3), 287–295 (2000). Elsevier

11. van Veenendaal, E.: The PRISMA Approach. Uitgeverij Tutein Nolthenius, The Netherlands
(2012)

12. CERT: Risk Management Framework (RMF). United States Computer Emergency Readiness
Team, US-CERT, July 2013

13. OWASP: Testing Guide Ver. 4, Open Web Application Security Project, September 2014
14. Kontio, J.: Risk management in software development: a technology overview and the Riskit

method. In: 21st International Conference on Software Engineering. ACM (1999)
15. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: A risk assessment framework for software

testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 292–308.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8_21

16. Herrmann, A.: The quantitative estimation of IT-related risk probabilities. Risk Anal. 33(8),
1510–1531 (2013)

17. Vose, D.: Risk Analysis: A Quantitative Guide. Wiley, Hoboken (2008)
18. Ramler, R., Felderer, M.: A process for risk-based test strategy development and its industrial

evaluation. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS,
vol. 9459, pp. 355–371. Springer, Cham (2015). doi:10.1007/978-3-319-26844-6_26

19. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes. Software
Qual. J. 22(3), 543–575 (2014)

20. ISTQB: Standard glossary of terms used in software testing. Version 2.1 (2010)
21. Felderer, M., Beer, A.: Using defect taxonomies for testing requirements. IEEE Softw. 32(3),

94–101 (2015)
22. Gitzel, R., Krug, S., Brhel, M.: Towards a software failure cost impact model for the customer:

an analysis of an open source product. In: 6th International Conference on Predictive Models
in Software Engineering (PROMISE). ACM (2010)

23. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley Professional, Boston
(2001)

24. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic risk assessment
for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD 2012. LNBIP, vol.
94, pp. 159–180. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27213-4_11

25. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to
defect prediction. In: 6th International Conference on Predictive Models in Software
Engineering (PROMISE). ACM (2010)

26. Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco (2005)

27. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering:
Guidelines and Examples. Wiley, Hoboken (2012)

28. Ramler, R., Felderer, M.: Requirements for integrating defect prediction and risk-based
testing. In: 42nd Euromicro Conference on Software Engineering and Advanced Applications.
IEEE (2016)

128 R. Ramler et al.

http://dx.doi.org/10.1007/978-3-662-45231-8_21
http://dx.doi.org/10.1007/978-3-319-26844-6_26
http://dx.doi.org/10.1007/978-3-642-27213-4_11

Gaining Certainty About Uncertainty

Testing Cyber-Physical Systems in the Presence of Uncertainties
at the Application Level

Martin A. Schneider(✉), Marc-Florian Wendland, and Leon Bornemann

Fraunhofer FOKUS, Berlin, Germany
martin.schneider@fokus.fraunhofer.de

Abstract. A cyber-physical system (CPS) comprises several connected,
embedded systems and is additionally equipped with sensors and actuators. Thus,
CPSs can communicate with their cyber environment and measure and interact
with their physical environment. Due to the complexity of their operational envi‐
ronment, assumptions the manufacturer have made may not hold in operation.
During an unforeseen environmental situation, a CPS may expose behavior that
negatively impactsits reliability. This may arise due to insufficiently considered
environmental conditions during the design of a CPS, or – even worse – it is
impossible to anticipate such conditions. In the U-Test project, we are developing
a configurable search-based testing framework that exploits information from
functional testing and from declarative descriptions of uncertainties. Itaims at
revealing unintended behavior in the presence of uncertainties. This framework
enables testing for different scenarios of uncertainty and thus, allows to achieve
a certain coverage of those, and to find unknown uncertainty scenarios.

Keywords: Cyber-Physical systems · Reliability · Search-based testing ·
Uncertainty · UML state machines

1 Introduction

Cyber-physical systems (CPS) are increasingly affecting our daily lives, e.g. in form of
an autopilot of airplanes and autonomous cars, medical devices such as insulin pumps,
or less visible in logistic centers that are receiving, storing and distributing goods. They
often perform safety-critical tasks (as for autonomous vehicles and medical devices) or
mission-critical tasks (as for logistic centers). Due to this criticality and their impact on
our daily lives, it is even more important that CPSs work reliably, otherwise health or
business is at risk.

Due to their nature, CPS interact with their cyber environment as well as with their
physical environment. Along with the increasing connectivity and pervasiveness of

The research leading to these results has also received funding from the European Union’s
Horizon 2020 Programme under grant agreement no. 645463.

© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 129–142, 2017.
DOI: 10.1007/978-3-319-57858-3_10

CPSs, the complexity of such interaction increases as well and is getting more complex,
in particular for the physical world. Manufacturers cannot predict all circumstances, in
particular with respect to the physical world, CPSs are exposed to. They have to make
assumptions to make the design and development of CPSs manageable and affordable.
Incomplete knowledge leads to uncertainties about their assumptions. If such an assump‐
tion fails while a CPSs is in operation, it may heavily impact its reliability and may harm
human beings in their environment. Hence, finding uncertainties and testing CPSs in
their presence is inevitable to increase their reliability. Since the complexity of the envi‐
ronment and the uncertainties of manufacturers’ assumptions are difficult to grasp,
traditional testing approaches are not sufficient and have to be adapted to overcome these
issues.

In this paper, we propose a search-based approach to testing CPSs that copes with
the challenges of the complexity of the environment and the implicit uncertainties of
manufacturers’ assumptions. The proposed approach provides means to declaratively
describe uncertainties that are already known, e.g.due to analysis or from field tests.
These descriptions are then used to bootstrap the search-based algorithm, to confine the
search space and to find new uncertainties. The presented approach is subject to ongoing
work done under the European research project U-Test1.

The remaining paper is organized as follows: Sect. 2 discusses related work relevant
for this paper, Sect. 3 introduces the uncertainty taxonomy used as a conceptual model
for declarative description of uncertainties with respect to CPSs and catches a glimpse
on declarative descriptions of uncertainties by means of an uncertainty taxonomy.
Section 4 describes the proposed methodology for uncertainty testing of CPS.
Section 5 closes with a conclusion and future work.

2 Related Work

2.1 Uncertainty

The term uncertainty has several meanings in different sciences and contexts as pointed
out by Ramirez et al. [1]. While we are not specifically interested in the meaning in the
science of psychology and economics and can ignore them, even in the field of systems
engineering this term has different meanings with respect to latent or unknown properties
and behaviors of a software system [2] or from the perspective of assumptions upon a
certain goal [3].

However, a recognized article from Walker et al. [4] defines uncertainty as “any
deviation from the unachievable ideal of completely deterministic knowledge of the
relevant system”. This definition takes into account the fact that there might be different
kinds of knowledge beside completely deterministic knowledge. Ramirez et al. [1]
defines uncertainty from the perspective of a dynamically adaptive system as a system
state of incomplete or inconsistent knowledge such that it cannot decided which envi‐
ronmental or system configuration holds.

1 http://www.u-test.eu.

130 M.A. Schneider et al.

http://www.u-test.eu

Refsgaard et al. [5] specify incomplete, inaccurate, unreliable, inconclusive, or poten‐
tially false information sources for uncertainty. Ramirez et al. [1] collected several sources
of uncertainties from the literature, e.g. missing or ambiguous requirements, false assump‐
tions, unpredictable entities or phenomena in the execution environment, incomplete or
inconsistent information caused by imprecise, inaccurate, and unreliable sensors. Thus,
uncertainties can be introduced in the requirements, design, and runtime phase.

Walker [4] also introduces the classification in epistemic and variability uncertainties
and called this the nature of an uncertainty: epistemic uncertainty results from missing
knowledge whereas variability uncertainty results from the variability, for instance in
human and natural systems, and is also called aleatory, stochastic, or ontological uncer‐
tainty. Erkoyuncu et al. [6] and Refsgaard et al. [5] also use the terms epistemic uncer‐
tainty and stochastic or aleatoric uncertainty in order to express the unpredictability of
an event.

According to the classification of nature of uncertainties from Walker [4], Erkoyuncu
et al. [6] describe the characteristics of epistemic uncertainties by a lack of knowledge.
Further research may increase the amount of knowledge and thus, reduce epistemic
uncertainty. In contrast, aleatoric uncertainties are characterized to be stochastic and
random where the uncertainty cannot be reduced by further research.

In order to determine the knowledge level about an uncertainty, Walker [4] intro‐
duced a scale reaching from statistical uncertainty to total ignorance: Statistical uncer‐
tainty can be described in statistical terms. Scenario uncertainty is characterized by
scenarios that indicate what might happen in the future, and what the effects to the system
are. Recognized ignorance means that functional relationships are nearly unknown and
there is no significant scientific basis for developing acceptable scenarios. However, for

Fig. 1. Brown’s taxonomy of imperfect knowledge adapted by Refsgaard et al. [5]

Gaining Certainty About Uncertainty 131

reducible uncertainties, this missing knowledge can be investigated in order to shift such
recognized ignorance to scenario uncertainty or even statistical uncertainty. Total igno‐
rance comprises all the uncertainties that one is aware of but have no or only little
knowledge, those we do not know, in principle as well as those uncertainties we are not
aware of.

Refsgaard [5] merged Walker’s knowledge level with Brown’s [7] spectrum of
confidence by a taxonomy of imperfect knowledge as shown in Fig. 1. This taxonomy
distinguishes uncertainties by the knowledge of possible outcomes and the probabilities
of the different outcomes. Refsgaard [5] mapped this taxonomy to Walker’s scale
described above.

However, as discussed by Erkoyuncu [6], there are also opinions that uncertainties
do not have a probability assigned and this is the main distinction between uncertainties
and risks[8, 9]. Uncertainty is considered as a source of risk [10]. Erkoyuncu [6] distin‐
guishes uncertainty from risk by the lack of any outcome predictability – in contrast to
Walker and Refsgaard – and that uncertainty covers positive outcomes while risk only
covers negative outcomes.

2.2 Mutation Testing, Fault-Based Test Generation and Search-Based Testing

Mutation testing [11] and mutation analysis [12] are techniques to introduce faults either
in the implementation, i.e. source code, or in the specification, e.g. models, to assess the
quality of test cases and test suites. Mutation operators are considered as fault models
that are applied to code or models and can be used to generate test cases [13, 14]. Higher
order mutation testing uses combinations of mutation operators to find real bugs [15].
Mutation operators are specific to a modelling or programming language and thus, work
on a syntactic rather than on a semantic level. Semantic-level mutation is considered as
a relevant research-topic [15].

Search-based testing employs search-based software engineering algorithms for
testing purposes. The typical search-space is usually too large for exhaustive testing.
Thus, search-based testing employs metaheuristics [16, 17] to explore the search space
more efficiently. Since those metaheuristics are generic techniques that requires the
formulation of the problem as an optimization problem, a quality function is used to
assess individual candidate solutions, e.g. test cases for search-based testing. A
frequently used algorithm belonging to the class of search-based algorithm is the genetic
algorithm [18] that employs mutation as used by mutation analysis, and additionally
crossover and selection based on fitness values calculated by a quality function. The
guidance by fitness values is one of several differences to mutation testing and higher
order mutation testing. However, mutation and crossover is usually done on a syntactical
level guided by the fitness calculation. Depending on the quality and appropriateness of
the fitness function, even search-based testing may degenerate into random testing.
Therefore, developing the fitness function has to be done carefully and may pose a
significant challenge.

132 M.A. Schneider et al.

3 The Uncertainty Taxonomy: Declarative Descriptions
of Uncertainty

In this paper, we consider uncertainties coming from the environment and accordingly,
call them environmental uncertainties [19–23]. According to Cheng [20], environmental
uncertainties come from the physical environment and the cyber environment. Uncer‐
tainties from the physical environment come from unforeseen or environmental condi‐
tions with a lack of knowledge about it and may also result from sensor failures or noisy
environments [23]. Uncertainties from the cyber environment may result from malicious
threats or unexpected (human) input [23].

In addition to environmental uncertainties, uncertainties of CPS may also occur
within the technical infrastructure when connected embedded systems, sensors and
actuators interact in an unforeseen way or errors occur in the communication infra‐
structure of a CPS. However, in this paper we consider uncertainties in the environment
of a CPS since uncertainties in the infrastructure are different compared to environmental
level uncertainties, are often originating from technical uncertainties within the CPS’s
technical infrastructure and have to deal with other aspects than the environment, e.g.
elasticity and virtualization. Therefore, we assume the infrastructure was sufficiently
tested and is working fine.

Environmental uncertainties may impact the application running on the technical
infrastructure of a CPS either directly, if the application is confronted with invalid or
unexpected data or behavior, e.g. from another system or a user, or indirectly because
a sensor works correctly but its reading is tampered by physical circumstances such as
smoke. Therefore, we refer to environmental uncertainties by the term application level
uncertainties.

An application level uncertainty is constituted by a circumstance that does not
comply with the specified or expected environmental behavior, and may not be foreseen
by a CPS’ manufacturer. If a CPS behaves in an undesired manner due to an uncertainty,
i.e. in a way that negatively impacts its reliability, we call such a behavior an uncertain
behavior to indicate that it results from an unforeseen or unexpected environmental
condition. We distinguish between known uncertain behaviors that are known by anal‐
ysis or field tests, i.e. before the system is deployed, and those that are not known a
priori, and call them unknown uncertain behaviors. Accordingly, the corresponding
uncertainties are referred to by the terms known uncertainty for those that may be known
a priori and unknown uncertainty for uncertainties one not aware of.

To describe known uncertainties, we developed a taxonomy that allows to specify
their characteristics. The purpose of the taxonomy is twofold. On one hand, by providing
a scheme for properties of uncertainties may support their analysis and thus, their under‐
standing. Furthermore, we use it to test for these, in order to find uncertainty scenarios
and even new uncertainties as explained in Sect. 4.

The characteristics of uncertainties comprise properties such as the origin, i.e.
whether the uncertainty occurs in the physical or the cyber environment, or its causes,
on a high-level distinguishing between human behavior, natural process and techno‐
logical process. Figure 2 provides an excerpt of the taxonomy.

Gaining Certainty About Uncertainty 133

Fi
g.

 2
.

Ex
ce

rp
t o

f t
he

 ta
xo

no
m

y
fo

r a
pp

lic
at

io
n

le
ve

l u
nc

er
ta

in
tie

s

134 M.A. Schneider et al.

We aim at characterizing uncertainties systematically by its origin, its cause, its
location and its impact on a system. The origin is related to the environment where the
uncertainty may occur. This is denoted by the environment and may either be the cyber
environment or the physical environment. The cause is used to characterize the originator
of an uncertainty. We basically distinguish human behavior, natural process and tech‐
nological processes as cause for an uncertainty. A person that regularly interacts with a
cyber-physical system may show behavior that may contribute to an uncertainty. Natural
processes are usually related to the physical environment where randomness may come
into play, a very simple example may be radiation that may impact the readings of a
sensor. Technological processes are distinguished in those related to resources, timing,
protocols and the application itself.

Timing issues may result from the uncertainty whether a system is working with the
expected performance while abstracting of real time, e.g. by a cycle counter.

Resource issues are reflecting different issues with respect to the cyber world as well
as to the real world, e.g. resource competition meaning that two instances are working
on or using the same resources and thus interfering with each other. Resource location
means that the expected resource is not where it is expected to be. Insufficient resources
comprises uncertainties regarding the demanded and the provided resources where the
demanded resources are higher than the provided resources, e.g. a missing resource item
in the physical environment or insufficient CPU resources with respect to the cyber
environment.

Protocol issues summarize different uncertainties with respect to communication
protocols. Interoperability issues occur if the specification of a communication protocol
is ambiguous and two communication partners differ in their protocol implementation
Faulty protocol implementation is a result of an incorrect protocol implementation
leading to communication errors between two communication partners, e.g. different
components of the application or between the application and the infrastructure of the
cyber-physical system.

Application issues comprise uncertainties inherent to the application itself. Commu‐
nication issues with platform is referring to situations where the application fails to
communicate with platform devices, maybe resulting from a faulty application config‐
uration. Functional faults are traditional implementation bugs within the application.

The concept impact represents the impact of an uncertainty from the environment to
the impacted element of a cyber-physical system, such as hardware and/or application.

4 Uncertainty Testing

This section introduces the proposed approach for search-based uncertainty testing by
(i) providing an overview how to create models suitable for uncertainty testing in the
first subsection and (ii) describing how the proposed approach evolve such models,
aiming at revealing uncertain behavior by eventual test case generation and execution,
in the second subsection. Since we employ a genetic algorithm, we require a quality
function that provides a measure to evaluate whether we are about to find uncertain
behavior of a system under test (SUT). To do so, we provide a model-based framework

Gaining Certainty About Uncertainty 135

to describe relevant behavioral characteristics of the SUT for fitness evaluation in the
third subsection. The last subsection provides information that can be used to describe
an exit criterion when to stop uncertainty testing in terms of coverage criteria (Fig. 3).

Fig. 3. Overview of uncertainty testing process steps

4.1 Modelling for Uncertainty Testing

Modelling for uncertainty testing requires two artifacts: modelled uncertainties and
functional models in terms of UML state machines. The latter one can be easily obtained
from a functional testing process performed in a model-based way. Such models can be
reused for uncertainty testing and thus, reducing the effort to start the proposed approach.
If functional descriptions in form of UML state machines do not exist, they can be created
by anyone who has enough information on the requirement but does not need specific
knowledge about uncertainties. The more challenging task is to describe characteristics
of uncertainties. Such information can be obtained by a risk analysis approach or by
obtaining information from tests in the field. Figure 4 provides an example of a UML
state machine describing valid interaction of the environment with the SUT. It describes
a simple geo-locating system that determines the positions of tags whose positions are
determined through a set of locators. The locators receive the signal of a tag and the
application calculates its position via triangulation. First, tags are configured for the
system (transition ‘configureTag’) and locators mounted (transition ‘subsequentMoni‐
toring’). After that, the system is calibrated (transition ‘calibrate’), and by changing the
position of a tag (transition ‘setPosition’), it can be checked whether the tag’s position
is correctly calculated by the system (transition ‘getAllPositions’).

Fig. 4. UML state machine providing a functional description

136 M.A. Schneider et al.

The system may not calculate a tag’s position correctly if a locator is mounted after
the system has been calibrated. The corresponding uncertainty would influence the
correct recording of position data. The uncertainty consists in the unmodified position
of the locators, i.e. that locators are not remounted after calibration. Hence, the correct
functionality may be discontinued by an application level uncertainty related to the
mount operation on an already mounted locator (referred by the transition ‘subsequent‐
Mounting’) after the system has been calibrated. Figure 5 provides a description of such
an uncertainty whose impact refers to this mount operation.

Fig. 5. Example of a modelled application level uncertainty

For this small example, it’s enough information to perform uncertainty testing as
described in the next subsection.

4.2 Evolving UML State Machines and Generating Test Cases

Uncertainties at the application level comprise all the stimuli from the environment of
the SUT. The purpose of uncertainty testing is (i) discovering known uncertain behaviors
resulting from uncertainties that may be known at design time, and (ii) discovering
unknown uncertain behaviors that may occur in the presence of yet unknown uncer‐
tainties.

Since we do not know all the manifestations of an uncertainty and would like to
reveal unknown uncertain behavior resulting from unknown uncertainties, we employ
search-based techniques to efficiently walk through the input space. Aiming at meas‐
uring whether we are approaching an uncertainty that may expose known or unknown
uncertain behavior or if we have already discovered one, we exploit different outputs of
the SUT as inputs to a fitness function.

The modelled uncertainties and the functional models as described in the previous
subsection form the basis for evolving state machines. Thus, we exploit the coupling
effect [24]. The goal is to gain state machines of which at least one path reveals uncertain
behavior.

Mutation. Mutation is performed on one hand using information from modelled
uncertainties, and on the other hand independent from that by using information of the
system provided by the test model. In contrast to mutation analysis and search-based
testing, we take into account semantical information provided by modelled uncertainties

Gaining Certainty About Uncertainty 137

for mutation and eventual test generation. Thus, we do not apply mutation on a syntac‐
tical level but on the semantic level as well. By this approach, we can reduce the search
space further.

We apply mutations to transitions based on information from modelled uncertainties,
evaluating its impact property that refers to a single operation or an interface containing
operations. Several mutations of the same element are allowed, although a few combi‐
nations of mutations are excluded to generate executable test cases eventually, e.g. those
combinations that do not lead to a new state machine, e.g. in case one mutation is the
inverse of another mutation. Based on the literature [9, 18], we use the mutation operators
as follows and adapted them to UML state machines.

• Add Transition: Adds a new transition by duplicating an existing one and setting a
new source and target state.

• Remove Transition: Completely removes a transition.
• Reverse Transition: Swap source and target of a transition.
• Change Source/Target of Transition: Move the source/target of a transition to any

other state.
• Remove Trigger of Transition: Transforms a transition to a completion transition.
• Change Trigger of Transition: Changes the operation of a transition’s trigger to

another one of the same interface.

Based on the example state machine depicted in Fig. 4 and an application level
uncertainty depicted in Fig. 5, we can identify those transitions that refer to the operation
mount as the uncertainty. Such a mutation looks as in Fig. 6.

Fig. 6. UML state machine mutated by adding a transition with trigger mount

Crossover. Mutations are the atomic piece of information to perform uncertainty
testing. Therefore, for the recombination/crossover of state machines, we solely consider
mutations instead of whole state machines. We propose to use the following crossover

138 M.A. Schneider et al.

operators: Combine all mutations of both parents. This yield one new child UML state
machine. Uniform crossover: swap n mutations of both state machines. This yield two
new child state machines. This approach can be refined by swapping an unfit mutation
of state machine A with a fit mutation of state machine B if the share at least one path.
Combine only the fittest path(s): This yields one new state machine with less mutations.

Test Case Generation. We generate test cases based on evolved UML state
machines using Microsoft’s Spec Explorer [30] that calculates all paths through it. To
generate executable test cases, we use UML-based behavioral description of so-called
execution invariants that describe those sequences that all test cases must respect. A
simple example of such an execution invariant is that a system must be switched on
before it can be configured. These execution invariants are different from system
requirements since we would like to intentionally violate system requirements. Execu‐
tion invariants represent those invariants whose violation is actually impossible and
would lead to test cases that could not be executed against the system under test or that
would impede evaluation of test cases.

Considering again the example state machine depicted in Fig. 4. It has two transitions
named ‘setPosition’ to change the position of a tag and ‘getAllPositions’ to retrieve the
position calculated by the SUT. Each time we change the position, we would require to
retrieve the calculated position to decide whether it still matches sufficiently. Therefore,
we would describe this as an execution invariant in form of a sequence diagram as shown
in Fig. 7.

Fig. 7. Simple example of an execution invariant requiring that getAllPositions is called
immediately after setPosition

4.3 Modelling Fitness Factors

To specify use-case specific factors, we provide stereotypes to identify elements that
allow obtaining values from test runs (FitnessFactorProviders) that may be compared
with an expected value by the corresponding counterpart (ExplicitProvider). These can
be used for instance, to measure the distance between a measured position and the actual
position. For measured values without any comparative value, ImplicitProviders can
refer to them. An optional threshold can be specified together with a metricGoal that
specifies whether the actual, measured value should be minimized, maximized or
approach the threshold. In case of ExplicitProviders, the difference between the actual
and the expected value can be minimized or maximized. System-specific factors can be
identified by the same means. Furthermore, we use generic measures such as response

Gaining Certainty About Uncertainty 139

time, CPU load, and memory consumption if we can obtain these values from the SUT.
Figure 8 shows the different stereotypes for fitness factor descriptions.

Fig. 8. Framework for model-based fitness factors description

With respect to the example given in Fig. 4, we would use the stereotype Explicit‐
Provider referring to the operation to retrieve the position that was actually set with the
kind property set to the value expected to describe the expected position data, i.e. setPo‐
sition, and a second one referring to the operation that retrieves the position data calcu‐
lated by the SUT with the kind property set to the value actual, i.e. the operation getAll‐
PositionData. Since both values should be equal, the corresponding MetricFunction
would have the metricGoalminimize, and an implementation would calculate the differ‐
ence between the values provided by the actual and the expected fitness factor provider.

4.4 Metrics for Measuring the Progress of Uncertainty Testing

To measure the progress of uncertainty testing and to be able to provide an exit criterion
to determine when the testing process should be stopped, we described an Uncertainty
Space Coverage metric that would be first step towards this goal.

It measures all generations of evolved state machines related to a single uncertainty.
The Uncertainty Space is spanned by all the possible mutation on triggers, guards and
effect of transition in a UML state machine denoted by the variable N. If g is the number
of steps of evolving a state machine, i.e. the number of generations (equal to the number
of mutations), we can describe all the possible mutations by

NG(N, g) =
g(g + 1)

2
N − 2

g∑

j=1

j∑

k=1

(k − 1)

that can be simplified to the following version:

140 M.A. Schneider et al.

NG(N, g) =
g(g + 1)

2
N − 2

g∑

j=1

j(j + 1)
2

− j

The Uncertainty Space comprises all possible combinations:

UncertaintySpace(N, g) =

g∑

j=1

NG(N, g)

As expected, the uncertainty space may grow strongly with the number of mutations
applied to a single state machine and strongly depends on the constant N.

5 Conclusion and Future Work

We introduced an approach for testing the reliability of CPS in the presence of uncer‐
tainty with the help of declarative descriptions and UML state machines evolved by a
genetic algorithm. The approach aims at finding manifestations of known uncertainties
and unknown uncertainties and the corresponding uncertain behaviors. We described
execution invariants to ensure generation of executable test cases. Finally, we proposed
a coverage criterion based on the uncertainty space appropriate for specifying an exit
criterion for uncertainty testing.

Since this paper presents ongoing work, there is still a lot of work to do. Obviously,
information used from uncertainty description is currently. For an effective approach,
other kind of information should be obtained, particularly with respect to the cause of
an uncertainty. Currently, the number of mutation operators is limited. Krenn et al. [11]
provides an exhaustive specification of mutation operators for UML state machines.
Since the uncertainty space is very huge, more ways to confine the process should be
investigated. Eventually, the approach has to show its feasibility, effectiveness and
efficiency by a thorough evaluation and compare it with traditional approaches.

References

1. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dynamically
adaptive systems. In: Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-managing Systems, Piscataway, NJ, USA, pp. 99–108
(2012)

2. Goldsby, H.J., Cheng, B.H.C.: Automatically discovering properties that specify the latent
behavior of UML models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) Model Driven
Engineering Languages and Systems, pp. 316–330. Springer, Berlin Heidelberg (2010)

3. Welsh, K., Sawyer, P.: Understanding the scope of uncertainty in dynamically adaptive
systems. In: Wieringa, R., Persson, A. (eds.) Requirements Engineering: Foundation for
Software Quality, pp. 2–16. Springer, Berlin Heidelberg (2010)

4. Walker, W.E., et al.: Defining uncertainty: a conceptual basis for uncertainty management in
model-based decision support. Integr. Assess. 4(1), 5–17 (2003)

Gaining Certainty About Uncertainty 141

5. Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A.: Uncertainty in the
environmental modelling process – a framework and guidance. Environ. Model Softw. 22(11),
1543–1556 (2007)

6. Erkoyuncu, J.A., Roy, R., Shehab, E., Cheruvu, K.: Understanding service uncertainties in
industrial product–service system cost estimation. Int. J. Adv. Manuf. Technol. 52(9–12),
1223–1238 (2011)

7. Brown, J.D.: Knowledge, uncertainty and physical geography: towards the development of
methodologies for questioning belief. Trans. Inst. Br. Geogr. 29(3), 367–381 (2004)

8. Faro, D., Rottenstreich, Y.: Affect, empathy, and regressive mispredictions of others’
preferences under risk. Manag. Sci. 52(4), 529–541 (2006)

9. Knight, F.H.: Risk, Uncertainty and Profit. Courier Corporation (2012)
10. Emblemsvåg, J.: Life-Cycle Costing: Using Activity-Based Costing and Monte Carlo

Methods to Manage Future Costs and Risks. Wiley, New Jersey (2003)
11. Krenn, W., Schlick, R., Tiran, S., Aichernig, B., Jobstl, E., Brandl, H.: MoMut::UML model-

based mutation testing for UML. In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–8 (2015)

12. Fabbri, S.P.F., Delamaro, M.E., Maldonado, J.C., Masiero, P.C.: Mutation analysis testing
for finite state machines. In: Proceedings of 5th International Symposium on Software
Reliability Engineering, pp. 220–229 (1994)

13. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Program mutation: a new approach to program
testing. Infotech State Art Rep. Softw. Test. 2, 107–126 (1979)

14. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests from
specifications. In: Proceedings Second International Conference on Formal Engineering
Methods (Cat.No.98EX241), pp. 46–54 (1998)

15. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2011)

16. Luke, S.: Essentials of metaheuristics (2013). lulu.com
17. McMinn, P.: Search-based software test data generation: a survey: research articles. Softw.

Test Verif. Reliab. 14(2), 105–156 (2004)
18. Harman, M., Zhang, Y., Mansouri, S.A.: Search based software engineering: a comprehensive

analysis and review of trends techniques and applications. King’s College (2009)
19. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to

develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A.,
Selic, B. (eds.) Model Driven Engineering Languages and Systems, pp. 468–483. Springer,
Berlin Heidelberg (2009)

20. Tackling Uncertainty for Transportation Cyber-Physical Systems | CPS-VO. http://cps-
vo.org/node/11229. Accessed 25 Sep 2016

21. NIST Foundations for Innovation for Cyber-Physical Systems. http://events.energetics.com/
NIST-CPSWorkshop/. Accessed 25 Sep 2016

22. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C., Knoester, D.B.: Automatically exploring how
uncertainty impacts behavior of dynamically adaptive systems. In: Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software Engineering, Washington,
DC, USA, pp. 568–571 (2011)

23. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: RELAX: a language to
address uncertainty in self-adaptive systems requirement. Requir. Eng. 15(2), 177–196 (2010)

24. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing
programmer. Computer 11(4), 34–41 (1978)

142 M.A. Schneider et al.

http://lulu.com
http://cps-vo.org/node/11229
http://cps-vo.org/node/11229
http://events.energetics.com/NIST-CPSWorkshop/
http://events.energetics.com/NIST-CPSWorkshop/

Risk Management During Software Development:
Results of a Survey in Software Houses
from Germany, Austria and Switzerland

Michael Felderer1(B), Florian Auer1, and Johannes Bergsmann2

1 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{michael.felderer,florian.auer}@uibk.ac.at

2 Software Quality Lab GmbH, Linz, Austria
johannes.bergsmann@software-quality-lab.com

Abstract. Resource constraints during development require an elabo-
rated decision-making process supported by risk information. The goal
of this paper is to investigate the state-of-practice of risk management
during development in software houses. For this purpose, we conducted
a survey in Germany, Austria, and Switzerland where 57 software houses
participated. The survey results are triangulated by results from liter-
ature and interviews with a subset of the survey participants. Results
from the survey show that less than a third of the companies performs
risk management during development. Main reasons for not performing
risk management are lack of resources, need and knowledge. An impor-
tant application area of risk assessment results is the prioritization of
test cases. Finally, technical product risks as well as project risks are
commonly applied risk assessment criteria.

1 Introduction

Developing software systems or services within budget and schedule requires
an elaborated decision-making process supported by risk information [1,2]. For
instance, competent decisions on what to release [3,4] or on how much to
test [5,6] are supported by risk management activities. Given the importance
of risk management during software development, it is important to investigate
its state-of-practice and to provide respective guidelines. This holds especially
for software houses, i.e., companies whose primary products are software, for
which risk management during development is essential to guarantee quality
and to deliver within time and budget. The goal of this paper is to investigate
the state-of-practice of risk management during development in software houses.
For this purpose, we present results of a survey conducted by the University
of Innsbruck together with the Austrian consultancy company Software Qual-
ity Lab in software houses from Germany (D), Austria (A) and Switzerland
(CH), the so called “DACH region”. Overall 57 software houses from the DACH
region responded to questions on risk management during software development.
The results were complemented by interviews and results from related surveys.

c© Springer International Publishing AG 2017
J. Großmann et al. (Eds.): RISK 2016, LNCS 10224, pp. 143–155, 2017.
DOI: 10.1007/978-3-319-57858-3 11

144 M. Felderer et al.

The results presented in this paper provide information on the state-of-practice
and are equally relevant for research (by guiding it to relevant topics) and prac-
tice (by serving as a baseline for comparison). The presented survey on risk
management was part of a comprehensive survey with additional questions in
the areas of process models, release planning, requirements engineering, imple-
mentation, and testing [7].

This paper is structured as follows. Section 2 presents related work. Section 3
discusses the survey goal, design and execution. Section 4 presents results and
discusses them. Finally, Sect. 5 concludes the paper.

2 Background and Related Work

In this section, we provide background on risk management and summarize
related results on risk management during development from other surveys
reporting respective results. Relevant related results reported in these studies
address the project effort spent on implementation, tool support during imple-
mentation as well as the usage of agile practices during implementation. In the
following paragraphs we summarize these quantitative and qualitative results
and later in Sect. 4 we relate them to our findings.

A risk is the chance of injury, damage or loss and is typically determined by
the combination of the probability of an event and its consequence [8]. Amongst
others, risks can refer to the software project or product level. For instance,
with regards to project risks, the Project Management Body of Knowledge
(PMBOK) [9] defines risk as an uncertain event or condition that, if it occurs,
has a positive or negative effect on a project’s objectives. With regards to prod-
uct risks, the IEEE 829:2008 standard on software and system test documen-
tation [10] defines risk as the combination of the probability of an abnormal
event or failure and the consequence(s) of that event or failure to a system’s
components, operators, users, or environment.

Risk management is according to the standard ISO/IEC/IEEE 24765:2010
on systems and software engineering [11] an organized process for identifying and
handling risk factors to identify what might cause harm or loss (identify risks); to
assess and quantify the identified risks; and to develop and, if needed, implement
an appropriate approach to prevent or handle causes of risk that could result
in significant harm or loss. Reasons to apply risk management are to increase
the likelihood and impact of positive events, and decrease the likelihood and
impact of negative events in the project [9]. According to Sommerville [12] risk
management is one of the most important jobs for a project manager.

A risk management process contains the core activities risk identification,
risk analysis, risk treatment and risk monitoring [13]. In the risk identification
phase the risk items are identified. In the risk analysis phase the probability and
impact of risk items and, hence, the risk exposure is estimated. On the basis of
risk exposure values, risk items may be prioritized and assigned to risk levels.
This results in a risk classification. In the risk treatment phase the actions for
obtaining a satisfactory situation are determined and implemented. In the risk

Risk Management During Software Development 145

monitoring phase the risks are tracked over time and their status is reported. In
addition, the effect of the implemented actions is determined. The activities risk
identification and risk analysis are often collectively referred to as risk assess-
ment, while the activities risk treatment and risk monitoring are referred to as
risk control.

The factors that influence how a risk is assessed are called risk criteria and
can be quite diverse including associated cost and benefits, legal and statutory
requirements, socio-economic and environmental aspects, the concerns of stake-
holders, priorities and other inputs to the assessment [8].

Several surveys address risk management during development [14–16]. Haberl
et al. [15] asked in 2011 for the reasons to not applying risk analysis. 32.3% of all
respondents answered to not apply it because of missing methodological skills,
24.5% mentioned insufficient resources as a reason, 17.4% did not see the neces-
sity and finally 10.8% argued to not have the time for it. The remaining 15%
mentioned other reasons that were not further discussed in the report. Similar
issues for risk management integration were also observed by Kajko-Mattsson
et al. [14] in 18 of the 37 surveyed companies (48%). Amongst others, the fol-
lowing three reasons (similar to [15]) were found. First, that employees do not
see necessity for risk management, which may make it more difficult to motivate
necessary work for risk assessment. Second, another reason are inexperienced
risk managers that do not have enough knowledge and experience in risk man-
agement. Third, risk management requires to allocate resources exclusively to
the task. This may be a problem for organizations. In the case of insufficient
resources for risk management, risks cannot adequately be monitored and con-
trolled. As a consequence, risk management possible fails. Overall, one can state
that according to available studies, missing methodological knowledge, insuffi-
cient resources and a lack of time are very common reasons to not apply risk
management.

Kajko-Mattsson et al. [14] found in 2008 that risk management in the context
of software development is essential and that its integration into the process of
development is important. Furthermore, the authors concluded that the imple-
mentation of risk management is experienced to be very difficult in the stud-
ied organizations [14]. Nevertheless, Haberl et al. [15] noted that almost 70%
of participants stated that they perform risk management in their projects. A
similar percentage was found in 2014 by Arnuphaptrairong [16] for the inves-
tigated software companies from Thailand. 77.5% of them responded to have
risk management integrated in their software development process. In addition,
Arnuphaptrairong asked the participants which techniques for risk identifica-
tion are practiced. The most common answers were brain storming (73.3% of
all respondents), check lists (70%) and interview (23.3%). Other techniques like
top ten lists, risk dimensions or the delphi method, were only mentioned by at
most 16% of the participants to be used in practice. Concerning risk roles, 80.6%
of all participants identified the project manager as the person responsible for
software project risk management.

146 M. Felderer et al.

3 Survey Goal, Design, Distribution, and Analysis

This section provides the survey goal and research questions (Sect. 3.1), the
survey design (Sect. 3.2), the survey distribution (Sect. 3.3), as well as the survey
analysis (Sect. 3.4). Finally, Sect. 3.5 provides a summarizing timeline of the
performed survey design, distribution and analysis activities.

3.1 Goal and Research Questions

The goal of this survey is to investigate the role of risk management during devel-
opment in software houses from Germany, Austria and Switzerland. The target
audience of the survey are therefore software houses that are located in Germany,
Austria or Switzerland and do not operate in a domain that may impose restric-
tions on their software development, e.g., medical or automotive. Based on the
goal and taking industrial relevance from experiences of the involved company
Software Quality Lab into account, we investigate the following three research
questions (RQs):

RQ 1. How common is risk management during development and what are the
reasons for not performing risk management?

RQ 2. For what purposes are risk assessment results applied for?
RQ 3. Which risk assessment criteria are considered for risk management dur-

ing development?

3.2 Survey Design

In this section, we present the sampling plan, the questionnaire design and the
performed pilot test. As the presented survey on risk management was performed
as part of a more comprehensive survey, the presentation of the survey design is
based on a previous publication [7]. The survey design is based on lessons learned
and guidelines reported by other researchers in software engineering [17,18].

Sampling Plan. The sampling plan describes how the participants are rep-
resentatively selected from the target population. The first decision, whether
a probabilistic, non-probabilistic or census sample should be considered, was
already made by selecting the target audience. Given that no list of all compa-
nies exists that have the characteristics of to target audience, a truly probabilistic
or census sample is not feasible. The first (probabilistic) would require an enu-
meration of all members of the target audience to select randomly participants
and the later (census) can as well only be conducted if all individuals of the
target audience are known. As a result, non-probabilistic sampling was chosen.

As a method to draw the sample from the population quota sampling with
the two strata geographical location of the software house (Germany, Austria
or Switzerland) and number of employees (less or equal 10, 11 to 100 and more
than 100) was applied.

Risk Management During Software Development 147

Overall 57 software houses, 19 from each of the three countries, evenly dis-
tributed over the three company sizes were selected and could be consulted
within the given time and resources. Based on the activities relevant for soft-
ware houses from the OECD [19] industry categories, i.e., 62 – Computer pro-
gramming, consultancy and related activities, as well as 631 – Data process-
ing, hosting and related activities; web portals, the overall number of software
houses in Germany, Austria and Switzerland could be estimated based on data
from governmental statistical offices. For Germany, the “IKT-BRANCHE IN
DEUTSCHLAND” [20] report identified 61,029 companies in 2013 that are clas-
sified with one of the two categories1. For Austria, the governmental statistical
office reported 13,281 companies in the respective categories2 in 2012. Finally
for Switzerland, the federal statistical office measured 2008 in the census of com-
panies3 15,466 companies that have amongst their main activities programming,
information technology consulting and data processing. As a result, the total
number of software houses in the DACH region can be estimated with 90,000
(61,029 + 15,466 + 13,281 = 89,776). Taking the population size of 90,000 into
account, with the 57 participating companies a precision [17], which measures
how close an estimate (resulting from the survey data) is to the actual charac-
teristic in the population, of 87% is achieved.

Questionnaire Design. The questionnaire was designed based on the experi-
ences of Software Quality Lab and the involved researchers in conducting sur-
veys as well as academic findings of related surveys (see Sect. 2) and the software
engineering body of knowledge (SWEBOK) [21]. The knowledge and practical
consultancy experience of Software Quality Lab was a valuable input to design
the questionnaire. Furthermore, a technical report of a survey on software qual-
ity conducted by Winter et al. [22] in 2011 provided many useful insights for the
questionnaire design. The questions included in the questionnaire were trans-
formed into closed-ended questions and ordered by topic. The questionnaire
was implemented and performed online with the survey tool LimeSurvey4. Each
research question was addressed by one question in the questionnaire, which
was embedded into a larger questionnaire on software quality processes. The
answer options for each questions are shown in Figs. 2, 3, and 4. The complete
questionnaire is available via the first author upon request.

Pilot Test. The questionnaire was validated internally, i.e., by the involved
researchers and Software Quality Lab, as well as externally by six employees
of software houses. Internally, there were several iterations and the involvement
of researchers and industrialists guaranteed a high quality review from different
perspectives. Externally, the reviewers provided valuable, written feedback to
further improve the questionnaire.

1 http://bit.ly/1Sqfb3z.
2 http://bit.ly/22IjjeS.
3 http://bit.ly/22IkScL.
4 http://www.limesurvey.org.

http://bit.ly/1Sqfb3z
http://bit.ly/22IjjeS
http://bit.ly/22IkScL
http://www.limesurvey.org

148 M. Felderer et al.

3.3 Survey Distribution

The distribution of the questionnaires among the potential participants included
a pre-notification, the invitation with the questionnaire, reminders and a thank-
you letter. The survey distribution started on April 1, 2015. The participants
were selected by using Google Maps and searching for ‘software company’.
Searching for this term reveals all software companies at the related location.
Furthermore, information about the number of employees for each identified
software house were determined. This made it possible to come up with 450 par-
ticipants – 50 small, 50 medium and 50 large software houses per country. Two
weeks after the pre-notification emails were sent, the invitation emails with a link
to the online survey were distributed. As a result, 13 participants responded to
not wish to participate and 20 software houses participated. One reminder was
sent in the middle of the survey (end of April 2015) to remember possible par-
ticipants about the survey. Due to the low number of responses, additional 500
software companies were contacted via email. In addition, new participants were
searched and contacted exclusively by phone to invite them to the survey. Dur-
ing three days within the last week, 200 potential software houses in Germany,
Austria and Switzerland were called and asked for participation. In this three
days 18 software houses could be convinced to participate. Thus, the response
rate for the phone calls was 9%, which is double the response rate of the email
invitations (4% for the first half of the survey and 3% for the second). During the
phone calls, also some of the reasons against the participation were mentioned.
Amongst others, no time, no interest, already having participated in similar sur-
veys as well as the absence of the respective decision maker were mentioned. The
survey distribution ended on May 22, 2015.

3.4 Survey Analysis

The data was first analyzed quantitatively and then qualitatively by interviews
with survey participants and evidence extracted from related work.

As the responses for each question were nominally scaled, the votes for each
question were counted and then visualized in bar charts. In addition, we per-
formed 12 interviews with survey participants (i.e., 21% of all participants) to
triangulate the quantitative analysis and to identify the reasons behind some sur-
vey answers. The semi-structured interview type was chosen, because the struc-
tured interview limits the discussion freedom to enter unforeseen subtopics or ask
questions that may arise during the interview. Another alternative would have
been the unstructured interview. However, this form would have not allowed to
ask prepared questions of interest that emerged during the analysis of the empir-
ical survey. Telephone calls were used contact each participant in an economic
and for the interviewee time- and place-flexible way. In the short interview one
question on implementation was asked. In addition, the non-structured part of
the interview followed subtopics of interest that were raised by the interviewee or
that turned out as a result of previously conducted interviews to be of interest.

Risk Management During Software Development 149

3.5 Survey Timeline

This section summarizes the survey design, distribution and analysis by provid-
ing the concrete timeline in which the respective activities were performed in
2015. Figure 1 shows the timeline for survey design, distribution and analysis
activities. Activities with concrete dates in parentheses were performed in the
given date range, the other activities were performed during the whole month.

February • – collect requirements for the instrument
– setup and customize the online survey instrument
– explicit target audience characterization

March • – design sampling plan
– collect possible participants
– design and refine questionnaire
– distribute pilot test invitations (30.3 - 31.3)

April • – distribute survey announcement emails (1.4 - 7.4)
– perform pilot test (8.4 - 16.4)
– evaluate and consider feedback, adapt questionnaire (17.4 - 21.4)
– perform survey (21.4 - 4.5); (27.4) send reminder

May • – extend the survey because of low participation (5.5 - 22.5)
– analyze the results
– describe and summarize findings

June • – analyze the results (22.5 - 7.6)
– prepare email invitations and interviews (13.6 - 14.6)
– send out email invitations for interviews (15.6)
– conduct interviews (16.6 - 19.6)
– analyze interview results (19.6 - 28.6)
– describe and summarize findings

Fig. 1. Timeline of the survey

4 Results and Discussion

In this section, we first present the demographics of our survey, then we present
and discuss main findings for each of the three research questions, and finally
we discuss threats to validity.

4.1 Demographics

Overall 57 software houses, 19 from Germany, 19 from Austria and 19 from
Switzerland, participated in the survey. Most of the software houses (84%) stated

150 M. Felderer et al.

that they perform more than one type of software project. On average three types
were stated. The three most common project types are development of web-
applications (71%), individual software (61%), and standard software (56%).

In the sample of 57 software houses small, medium and large companies are
present with a similar frequency: 38% of the companies are small-sized (up to
10 employees), 35% medium-sized (11 to 100) and 26% large-sized (more than
100 employees).

4.2 Main Findings

In this section we present the main findings for each of the three research
questions.

RQ 1: Frequency of Risk Management During Development and Rea-
sons for not Performing It. We asked whether risk management is applied or
not during software development. 58% of the participants (33 of the responding
software houses) answered to not perform risk management, 26% (15 respon-
dents) stated to perform risk management, and 16% (9 respondents) did not
know or provided no answer. As a follow-up question we asked the 33 respon-
dents not performing risk management for their reasons. The results are shown
in Fig. 2.

The main reasons for most respondents are lack of resources (48%) or no
necessity (42%). Furthermore, lack of knowledge (33%) and no time (24%) are
common reasons for not performing risk management. Finally, 6% provide no
reason why they do not perform risk management.

6%

24%

33%

42%

48%

0% 20% 40% 60% 80% 100%

Unknown

No Time

Lack of Knowledge

No Necessity

Lack of Resources

Fig. 2. Reasons for not performing risk management (N = 33)

Risk Management During Software Development 151

In two surveys from 2014 [16] and 2011 [15] it was found that at least two of
three projects apply risk management. However, according to the collected survey
data of this study only about every third company performs risk management.
Thus, it may seem that the number of risk management practitioners decreased.
However, it should be considered that the survey presented in this paper had a well-
defined target audience consisting of software houses in the DACH region, whereas
Haberl et al. did not restrict their target audience. Thus, it may be that because of
the inclusion of other industry branches (more mission or safety-critical domains
like finance or production) the ratio of companies that perform risk management
that also influences software development is higher. The higher rate reported in
Arnuphaptrairong [16] could be due to regional differences.

Haberl et al. [15] and Kajko et al. [14] identified missing methodological
knowledge, insufficient resources and a lack of time as the most common reasons
to not apply risk analysis. The reasons for not performing risk management
reported in our survey, i.e., lack of resources, lack of knowledge as well as no
time are similar.

Also a subset of 12 respondents was interviewed whether they applied risk
management or not and how this influenced their software projects. Reasons
mentioned during the interviews for not applying risk management are that the
interviewees were not convinced by the idea of it or that they had the feeling
that it does not fit for agile development. Interviewees that declared to use risk
management highlighted to use it because it helps them to assess the priorities of
the requirements, it stresses the importance of specific tests and helps to decide
which requirements should be included in the next release.

RQ 2: Application of Risk Assessment Results. Figure 3 shows the appli-
cation areas of risk assessment results as provided by the 15 respondents who
perform risk management. 73% of them apply risk assessment results to prior-
itize test cases. 53% apply them to target test selection methods, to allocate
resources, and to define test criteria, respectively. Furthermore, 33% apply them
to evaluate remaining risks in test reports. Finally, 13% of the respondents who
perform risk management do not name an application area of risk assessment
results.

In terms of the usage of the risk management and its affect on the software
project, the survey found that the main application of risk management is to
prioritize test cases. Similar, the participants mentioned during the interviews
that again the main usage is to prioritize the requirements. Furthermore, they
claimed that it is used to stress certain tests or to decide which requirements
should be part of the next release. The main application of risk management is
to prioritize activities, especially during software testing. Prioritization of test
cases is an important application of risk assessments in software testing [23–25].

Interviewees that declared to use risk management pointed out during the
interviews to use risk management because it helps them to assess the priorities
of the requirements and to use this information for test and release manage-
ment. Furthermore, the importance of risk management for specific tests was
highlighted.

152 M. Felderer et al.

13%

33%

53%

53%

53%

73%

0% 20% 40% 60% 80% 100%

Unknown

Evalua ng Remaining Risks in Test Reports

Defini on of Test Criteria

Resource Alloca on

Targeted Selec on of Tes ng Methods

Priori za on of Test Cases

Fig. 3. Application areas of risk assessment results (N = 15)

RQ 3: Risk Assessment Criteria Considered for Risk Management.
Figure 4 shows the risk assessment criteria considered during risk management
as reported by the 15 respondents who perform risk management. 93% of them
consider technical product risk (i.e., a technical risk directly related to a system,
service or test object), and project risk (i.e., risks related to management and
control of a (test) project), respectively. 67% consider business product risk (i.e.,
a business risk directly related to a system, service or test object), 60% criticality
(which informally integrates other risk assessment criteria), and 27% frequency
of execution. Finally, 7% of the respondents who perform risk management do
not which risk assessment criteria are considered during risk management.

In the survey of Arnuphaptrairong [16] from 2014 the participants stated
that brain storming, check lists and interview are common methods for risk
identification. Furthermore, most participants identified the project manager as
the person responsible for software project risk management. Although neither
this result nor results from other surveys provide results on the actual usage
of risk assessment criteria as our survey does, we can assume from Arnuphap-
trairong [16] that assessment criteria are often not specified explicitly (as brain
storming plays an important role) or that project risks play an important role
(as project managers are often responsible for risk management).

4.3 Threats to Validity

In this section we discuss the main threats to validity of the presented study and
measures performed to mitigate them. First, the survey was answered by repre-
sentatives from 57 software houses (from overall about 90,000 software houses in
the whole DACH region). Although the number of participating software houses

Risk Management During Software Development 153

7%

27%

60%

67%

93%

93%

0% 20% 40% 60% 80% 100%

Unkown

Frequency of Execu on

Cri cality

Business Product Risk

Project Risk

Technical Product Risk

Fig. 4. Risk assessment criteria considered during risk management (N = 15)

is relatively small, the precision of the conducted survey is already 87%. Further-
more, the results were triangulated by interviews and a comparison to results
of related studies. The partial deviation of the study results from those of simi-
lar studies, especially with regards to the frequency of risk management during
software development in software houses, suggest that the presented results are
specific for software houses and not generalizable to arbitrary domains. The
questionnaire itself was reviewed internally by the involved researchers and the
involved company Software Quality Lab as well as externally by six employ-
ees of software houses. Furthermore, other already validated and successfully
implemented related questionnaires like [22] were taken into account when con-
structing the performed questionnaire. Finally, the questions asked on risk man-
agement were part of a more comprehensive survey on software quality and
processes in software houses. This might reduce the threat that the survey par-
ticipants have in general a positively biased attitude towards risk management
in software development.

5 Conclusion

This paper presented a survey on risk management during development in soft-
ware houses from Germany, Austria and Switzerland. Overall 57 software houses
participated. Results from the survey show that risk management is often not
performed during software development. The most important reasons for not
performing risk management are lack of resources or missing necessity for it.
The most important application area for risk assessment results is the priori-
tization of tasks like testing. The most important risk assessment criteria are

154 M. Felderer et al.

technical product risk and project risk. The survey was restricted to the DACH
region including the countries Germany, Austria and Switzerland, and based on
a limited amount of participants. However, the results are triangulated by results
from literature and interviews with a subset of the survey participants.

In future, we plan to replicate the survey in other regions and to perform case
studies to investigate in which context (for instance, with respect to the process
model applied or the development domain) specific risk management approaches
are effective and efficient. Based on the results of these empirical studies we plan
to derive practical guidelines to improve risk management during development.

Acknowledgments. The authors thank Software Quality Lab GmbH for joint oper-
ation of this survey as well as all participating companies, interview partners and
colleagues who helped to make this survey possible.

References

1. Haisjackl, C., Felderer, M., Breu, R.: Riscal-a risk estimation tool for software
engineering purposes. In: 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications, pp. 292–299. IEEE (2013)

2. Karolak, D.W., Karolak, N.: Software Engineering Risk Management: A Just-in-
Time Approach. IEEE Computer Society Press, Los Alamitos (1995)

3. Felderer, M., Beer, A., Ho, J., Ruhe, G.: Industrial evaluation of the impact of
quality-driven release planning. In: Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, p. 62.
ACM (2014)

4. Ruhe, G.: Product Release Planning: Methods Tools and Applications. Auerbach
Publications, Boca Raton (2011)

5. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16(5), 559–568 (2014)

6. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software
testing including a financial application case study. J. Syst. Softw. 53(3), 287–295
(2000)

7. Felderer, M., Auer, F.: Software quality assurance during implementation: results
of a survey in software houses from Germany, Austria and Switzerland. In:
Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp.
87–102. Springer, Cham (2017). doi:10.1007/978-3-319-49421-0 7

8. ISO/IEC: ISO/IEC 16085:2006, standard for software engineering - software life
cycle processes - risk management. Std ISO IEC 16085–2006, pp. 1–46, December
2006

9. Project Management Institute: A Guide to the Project Management Body of
Knowledge: PMBOK(R) Guide. Project Management Institute (2013)

10. IEEE: IEEE standard for software and system test documentation. IEEE Std 829–
2008, pp. 1–150, July 2008

11. ISO/IEC/IEEE: ISO/IEC/IEEE 24765:2010 - systems and software engineering -
vocabulary, p. 418 (2010)

12. Sommerville, I.: Software Engineering. International Computer Science Series.
Addison-Wesley, Boston (2007)

13. ISO: ISO 31000 - risk management (2009)

http://dx.doi.org/10.1007/978-3-319-49421-0_7

Risk Management During Software Development 155

14. Kajko-Mattsson, M., Nyfjord, J.: State of software risk management practice. Int.
J. Comput. Sci. 35(4), 451–462 (2008)

15. Haberl, P., Spillner, A., Vosseberg, K., Winter, M.: Survey 2011: software test in
practice (2011). http://www.istqb.org/documents/Survey GTB.pdf

16. Arnuphaptrairong, T.: Software risk management practice: evidence from Thai
software firms. In: Proceedings of the International Multi Conference of Engineers
and Computer Scientists, vol. 2 (2014)

17. Kasunic, M.: Designing an effective survey. Technical report, DTIC Document
(2005)

18. Linaker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M., Runeson, P.: Guidelines
for conducting surveys in software engineering v. 1.0 (2015)

19. Working Party on Indicators for the Information Society: Information economy -
sector definitions based on the internet standard industry classification (isic 4).
DSTI/ICCP/IIS(2006) 2/FINAL (2007)

20. Bundesamt, S.: Ikt-branche in deutschland - bericht zur wirtschaftlichen entwick-
lung - ausgabe 2013 (2013). https://www.destatis.de

21. IEEE: Guide to the Software Engineering Body of Knowledge (SWEBOK): Version
3.0. IEEE Computer Society Press (2014)

22. Winter, M., Vosseberg, K., Spillner, A., Haberl, P.: Softwaretest-umfrage 2011-
erkenntnisziele, durchführung und ergebnisse. In: Software Engineering, pp. 157–
168 (2012)

23. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
Int. J. Softw. Tools Technol. Transf. 16(5), 609–625 (2014)

24. Felderer, M., Ramler, R.: Risk orientation in software testing processes of small
and medium enterprises: an exploratory and comparative study. Software Qual. J.
24, 1–30 (2015)

25. Ramler, R., Felderer, M.: A process for risk-based test strategy development and its
industrial evaluation. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.)
PROFES 2015. LNCS, vol. 9459, pp. 355–371. Springer, Cham (2015). doi:10.1007/
978-3-319-26844-6 26

http://www.istqb.org/documents/Survey_GTB.pdf
https://www.destatis.de
http://dx.doi.org/10.1007/978-3-319-26844-6_26
http://dx.doi.org/10.1007/978-3-319-26844-6_26

Author Index

Angermeier, Daniel 82
Auer, Florian 143
Aziz, Benjamin 19

Bergsmann, Johannes 143
Bornemann, Leon 129

De Decker, Bart 66

Eichler, Jörn 82
Ekstedt, Mathias 37
Erdogan, Gencer 11, 99

Felderer, Michael 115, 143

Gorton, Dan 37

Harpes, Carlo 53

Johnson, Pontus 37
Jung, Jeyong 19

Lagerström, Robert 37
Leitner, Matthias 115
Lemaire, Laurens 66

Malik, Ali 19
Muller, Cédric 53
Muller, Steve 53

Naessens, Vincent 66
Natvig, Marit K. 11
Nieding, Alexander 82

Omerovic, Aida 11

Ramler, Rudolf 115

Schneider, Martin A. 129
Stølen, Ketil 99

Tardy, Isabelle C.R. 11

Vernotte, Alexandre 37
Viehmann, Johannes 3
Vossaert, Jan 66

Wendland, Marc-Florian 129

	Preface
	Organization
	Contents
	Security Risk Management
	Business Driven ICT Risk Management in the Banking Domain with RACOMAT
	Abstract
	1 Introduction
	2 The Problems, Challenges and Related Work
	3 Methods and Concepts
	3.1 Business Simulation Using Models Created with Domain Specific Catalogues
	3.2 Modelling the Bridge Between Technical Incidents and Business Processes
	3.3 Assessing Legal Risks and Reputation Risks
	3.4 Advanced Stakeholder Analysis for Risk Evaluation

	4 Tool Support and Application
	5 Conclusion and Future Work
	References

	Towards Transparent Real-Time Privacy Risk Assessment of Intelligent Transport Systems
	1 Introduction
	2 Needs and Challenges
	3 Initial Method: Example-Driven Feasibility Study
	3.1 Method
	3.2 Applying the Method on an ITS Example Case

	4 Discussion and Conclusion
	References

	Check Your Blind Spot: A New Cyber-Security Metric for Measuring Incident Response Readiness
	1 Introduction
	2 Related Work
	3 Background
	3.1 Mean Time Between Security Incidents
	3.2 Mean Time to Incident Recovery
	3.3 VERIS

	4 The Mean Blind Spot Metric
	4.1 An Approximated MBS
	4.2 Ratio of Blind Spots Metric

	5 Method Implementation Using VERIS
	5.1 Implementing the MBS Metric
	5.2 Implementing the AMBS Metric

	6 Conclusion and Future Work
	References

	Security Risk Analysis
	Quantitative Information Security Risk Estimation Using Probabilistic Attack Graphs
	1 Introduction
	2 Related Work
	3 pwnPr3d's Meta-modeling Architecture
	3.1 Layer-0: Assets and Attack Graph Theory
	3.2 Layer-1: Network and System-Specific Logic

	4 Extension for Quantitative Information Security Risk Estimation
	5 Motivating Example
	6 Conclusions
	References

	Fast and Optimal Countermeasure Selection for Attack Defence Trees
	1 Introduction
	2 The Optimisation Problem
	2.1 Attack--Defence Trees
	2.2 Multi-purpose Defences
	2.3 Rules of Calculation
	2.4 Optimisation Problem

	3 Branch and Bound Algorithm
	3.1 Performance

	4 Case-Study
	5 Conclusion
	References

	An Assessment of Security Analysis Tools for Cyber-Physical Systems
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Case Study
	3 Tools
	3.1 CSET
	3.2 ADVISE
	3.3 CyberSAGE
	3.4 CySeMoL
	3.5 FAST-CPS

	4 Comparison of Tools
	4.1 Input Model
	4.2 Feedback

	5 Other Methods for Security Assessment
	5.1 Audits
	5.2 Standards and Guidelines
	5.3 Intrusion Detection/Prevention Systems

	6 Conclusion
	6.1 Future Work

	References

	Supporting Risk Assessment with the Systematic Identification, Merging, and Validation of Security Goals
	1 Introduction
	2 Related Work
	3 Background: Modular Risk Assessment
	4 Guidelines for the Determination of Protection Needs
	4.1 Systematic Identification of Security Goals
	4.2 Merging Security Goals
	4.3 Validation and Tracing of Security Goals

	5 Summary and Conclusion
	References

	Risk-Based Testing
	Design Decisions in the Development of a Graphical Language for Risk-Driven Security Testing
	1 Introduction
	2 The CORAL Language
	2.1 Example-Driven Explanation of the CORAL Approach

	3 Why We Designed CORAL as We Did?
	3.1 Domain Appropriateness
	3.2 Comprehensibility Appropriateness
	3.3 Participant Appropriateness
	3.4 Modeler Appropriateness
	3.5 Tool Appropriateness

	4 What We Could Have Done Differently?
	4.1 Graphical Versus Textual
	4.2 Risk Annotations Versus Tables
	4.3 Sequence Diagrams Versus Other UML Representations
	4.4 CORAL Versus Attack Trees
	4.5 CORAL Versus Formal Methods

	5 Conclusion
	References

	A Lightweight Approach for Estimating Probability in Risk-Based Software Testing
	Abstract
	1 Introduction
	2 Background: Risk-Based Testing and Test Strategy Development
	3 Approach for Risk Probability Estimation
	4 Evaluation
	4.1 Versions and Defect Distributions
	4.2 Defective Files in Consecutive Versions
	4.3 Estimating Probability Classes
	4.4 Threats to Validity

	5 Conclusion and Future Work
	Acknowledgments
	References

	Gaining Certainty About Uncertainty
	Abstract
	1 Introduction
	2 Related Work
	2.1 Uncertainty
	2.2 Mutation Testing, Fault-Based Test Generation and Search-Based Testing

	3 The Uncertainty Taxonomy: Declarative Descriptions of Uncertainty
	4 Uncertainty Testing
	4.1 Modelling for Uncertainty Testing
	4.2 Evolving UML State Machines and Generating Test Cases
	4.3 Modelling Fitness Factors
	4.4 Metrics for Measuring the Progress of Uncertainty Testing

	5 Conclusion and Future Work
	References

	.25em plus .1em minus .1em Risk Management During Software Development: Results of a Survey in Software Houses from Germany, Austria and Switzerland
	1 Introduction
	2 Background and Related Work
	3 Survey Goal, Design, Distribution, and Analysis
	3.1 Goal and Research Questions
	3.2 Survey Design
	3.3 Survey Distribution
	3.4 Survey Analysis
	3.5 Survey Timeline

	4 Results and Discussion
	4.1 Demographics
	4.2 Main Findings
	4.3 Threats to Validity

	5 Conclusion
	References

	Author Index

