Submarine Glacial Landforms
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Abstract The development of a range of geophysical imaging techniques,
including multi-beam swath bathymetry and shallow-acoustic profiling, has enabled
the identification and interpretation of submarine glacial landforms on and beneath
the seafloor of formerly-glaciated continental margins. The analysis of these land-
forms provides information about past ice-sheet dynamic behaviour and the
mechanisms by which sediment is eroded, transported and deposited by ice sheets.
Submarine glacial landforms can be categorised into subglacial, ice-marginal and
glacimarine features. The majority of subglacially produced landforms, including
mega-scale glacial lineations and drumlins, are elongate features that are orientated
parallel to the direction of former ice flow. In contrast, ice-marginal landforms,
including moraines and grounding-zone wedges, are orientated transverse to the
former ice-flow direction. Ice-marginal landforms reveal the positions of still-stands
or minor re-advances in the grounding-zone during general ice-sheet retreat.
Glacimarine landform associations include ploughmarks that are formed by the
grounding of iceberg keels on the seafloor, and smooth basin-fill sediments pro-
duced by suspension settling of material derived from meltwater plumes. The
typical distribution of glacial landforms on formerly glaciated continental margins
is illustrated using the case study of the Norwegian continental shelf and slope. The
locations of former fast-flowing ice streams are associated with deep cross-shelf
troughs that contain elongate subglacial landforms. Major glacial-sedimentary
depocentres or trough-mouth fans are typically present on the continental slope
beyond trough mouths. In contrast, relatively shallow inter-ice stream banks on the
continental shelf are characterised by transverse moraine ridges and widespread
iceberg ploughmarks.
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1 Introduction

Ice sheets expanded across the continental shelf beyond mid- and high-latitude land
masses on many occasions during the glacial-interglacial cycles of the Quaternary
(e.g. Svendsen et al. 1999; Dyke et al. 2002). The advance and retreat of ice across
these margins has resulted in the formation of distinctive assemblages of subglacial,
ice-marginal and glacimarine landforms (Table 1). Whereas subaerial erosion and
human activity have led to a fragmented record of glacial activity on land, glacial
landforms are often well preserved in the marine environment, where they can be
identified within deglaciated fjords and on the continental shelf and slope (e.g.
Solheim et al. 1990; Shipp et al. 1999; Dowdeswell et al. 2002; Ottesen et al. 2005;
Larter et al. 2012).

The interpretation of submarine glacial landforms has been made possible by the
advent of geophysical imaging techniques. The morphology of the seafloor was
initially investigated using single-beam echo sounders, which acquired a line of
seafloor depth soundings beneath the ship (e.g. Damuth 1978). Technological
improvements in the past few decades have facilitated the use of, first, side-scan
sonar and then multi-beam echo sounders to map wide regions of the seafloor,
whilst shallow-acoustic and 2-D seismic-reflection profiles enabled the initial
recognition of older landforms on buried horizons. More recently, 3-D seismic
reflection surveys have been used to interpret the submarine glacial landform record
with high temporal and spatial resolution (e.g. Dowdeswell et al. 2006).

The analysis of submarine glacial landforms facilitates reconstructions of the
configuration and dynamics of past glaciers and ice sheets. Understanding past rates
of change is also important information against which to assess model predictions
of future responses of the Greenland and Antarctic ice sheets to climatic change
(Stokes et al. 2016). A key focus within ice-sheet reconstruction is the identification
of the sites of former ice streams, which are relatively narrow corridors of
fast-flowing ice set within slower-flowing regions of an ice sheet (Bentley 1987;
Dowdeswell and Siegert 1999; Whillans et al. 2001). Ice streams respond
dynamically to perturbations over short, sub-decadal, time-scales (e.g.
Anandakrishnan and Alley 1997; Joughin et al. 2003) and also have the potential to
force abrupt climatic change through the rapid delivery of ice and meltwater to the
marine ice-sheet margin (e.g. MacAyeal 1993; Clark 1994).

Erosion of the continental shelf by fast-flowing ice streams has resulted in the
formation of deep bathymetric depressions termed cross-shelf troughs, which are
bordered by shallower banks (Vorren and Laberg 1997; Dowdeswell and Siegert
1999; Batchelor and Dowdeswell 2014). Cross-shelf troughs typically contain
assemblages of glacial landforms that are indicative of fast, ice-streaming flow,
including subglacially produced elongate and streamlined landforms and perva-
sively deformed till (e.g. Stokes and Clark 2001; Shipp et al. 1999; O Cofaigh et al.
2002; Dowdeswell et al. 2004a). Prograding sedimentary depocentres, known as
trough-mouth fans, typically develop on the continental slope seaward of
cross-shelf troughs that have experienced high rates of sediment delivery to the
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Table 1 List of studies covering the environments and landforms discussed in this chapter

Environment

Landform

References

Subglacial

Mega-scale glacial
lineations

Stokes and Clark (1999, 2002); O Cofaigh et al.
(2002); Dowdeswell et al. (2004a); Ottesen et al.
(2005, 2007)

Flutes and drumlins

Shipp et al. (1999); Wellner et al. (2001); ) Cofaigh
et al. (2002)

Crag-and-tails

Ottesen et al. (2005); 0] Cofaigh et al. (2013)

Ice-moulded bedrock

Wellner et al. (2001); Dowdeswell et al. (2014)

Hill-hole pairs

Settem (1990); Ottesen et al. (2005); Dowdeswell
et al. (2010)

Crevasse-fill ridges

Solheim (1991); Boulton et al. (1996); Ottesen and
Dowdeswell (2006), Ottesen et al. (2008)

Tunnel valleys
(glacifluvial)

o} Cofaigh (1996); Praeg (2003)

Eskers (glacifluvial)

Ottesen and Dowdeswell (2006); Ottesen et al.
(2008)

Ice-marginal

Terminal and
recessional moraine
ridges

Powell (1983); Seramur et al. (1997); Vorren and
Plassen (2002); Ottesen et al. (2005); Bradwell et al.
(2008)

Hummocky-terrain
belts

Ottesen and Dowdeswell (2009); Elvenes and
Dowdeswell (2016)

Small retreat
moraines

Boulton (1986); Shipp et al. (2002); Ottesen and
Dowdeswell (2006); Todd et al. (2007)

Grounding-zone
wedges

Anderson (1997); Powell and Alley (1997); 6}
Cofaigh et al. (2005); Dowdeswell and Fugelli
(2012); Batchelor and Dowdeswell (2015)

Ice-proximal fans

Powell (1990); Lenne (1995); Powell and Domack
(1995); Dowdeswell et al. (2015)

Ice-stream lateral
shear-zone moraines

Stokes and Clark (2002); Ottesen et al. (2005, 2008)

Ice-stream lateral
marginal-moraines

Rydningen et al. (2013); Batchelor and Dowdeswell
(2016)

Trough-mouth fan

Vorren et al. (1988); King et al. (1996);
Dowdeswell et al. (1998); Laberg et al. (2000)

Glacimarine Iceberg and sea-ice Woodworth-Lynas et al. (1991); Dowdeswell et al.
keel ploughmarks (1993); Mertz et al. (2008)
Smooth basin-fill Cowan and Powell (1990); Cai et al. (1997); O
from meltwater Cofaigh and Dowdeswell (2001)
plumes

Marine Wave and current Howe and Pudsey (1999); Gargia et al. (2012)

features

Mass movement
events

Laberg and Vorren (1993); Vanneste et al. (2006);
Piper et al. (2012)
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shelf edge over successive full-glacial periods (Dowdeswell et al. 1996; Elverhei
et al. 1998; Dowdeswell and Siegert 1999). The glacial landforms that are preserved
on the intervening shallower banks are characteristic of slower-flowing ice (e.g.
Ottesen and Dowdeswell 2009).

In this chapter, we describe the submarine glacial landforms that have been
identified on mid- to high-latitude continental margins (Figs. 1, 2, 3, 4, 5 and
Table 1). The typical distribution of these landforms within cross-shelf troughs and
on shallower banks is illustrated using the example of the formerly-glaciated
Norwegian margin (Figs. 6 and 7).

2 Landforms Produced in Different Glacial-Process
Environments

2.1 Subglacial Landforms

The majority of subglacially produced landforms, including mega-scale glacial
lineations (MSGLs), flutes, drumlins, crag-and-tails and ice-moulded bedrock, are
streamlined in the direction of ice flow (Fig. 1 and Table 1) and can therefore be
used to infer former ice-flow patterns. Hill-hole pairs, crevasse-fill ridges and
glacifluvial tunnel valleys and eskers (Fig. 2) are also formed subglacially.

2.1.1 Mega-Scale Glacial Lineations and Other Streamlined
Subglacial Landforms

MSGLs (Fig. 1a, b) are elongate sedimentary ridges that have typical lengths of up
to a few tens of kilometres, widths of a few hundred metres and amplitudes of a few
metres (Stokes and Clark 2002). They have high elongation (length:width) ratios of
greater than 10:1, and generally occur in groups of parallel to sub-parallel ridges
that have regular spacing of a few hundred metres (Clark 1993; Stokes and Clark
2002; Spagnolo et al. 2014). MSGLs have been recognised on the seafloor of a
number of formerly glaciated continental margins, where they are typically iden-
tified within cross-shelf troughs (Elverhei et al. 1995; Shipp et al. 1999; O Cofaigh
et al. 2002; Ottesen et al. 2005; Dowdeswell et al. 2014). Sub-bottom acoustic
profiles (e.g. Fig. 5a) and sediment cores show that MSGLs are formed within an
acoustically-transparent structureless diamict of low shear strength, which is
interpreted as subglacial deformation till (e.g. Dowdeswell et al. 2004a).

The close association of MSGLs with cross-shelf troughs and areas of
deformable sediment has led to these features being considered diagnostic of
grounded, fast-flowing ice within ice streams (e.g. Stokes and Clark 2002;
Dowdeswell et al. 2004a; Evans et al. 2005). This interpretation is supported by the
identification of MSGLs forming beneath modern active ice streams in West
Antarctica (King et al. 2009).
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Fig. 1 Examples of
subglacially produced
streamlined submarine
landforms. White arrows
show former ice-flow
directions. a Seafloor
mega-scale glacial lineations
(MSGLs) overprinted by
iceberg ploughmarks on the
Norwegian continental shelf.
b MSGLs on a buried surface
around 100 m deep on the
mid-Norwegian margin
(adapted from Dowdeswell
et al. 2006). ¢ Seafloor
crag-and-tail features in
Eclipse Sound, Baffin Island,
Arctic Canada (adapted from
Dowdeswell et al. 2016)
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Fig. 2 Examples of subglacially produced, non-streamlined landforms. a Seafloor hill-hole pair
on the Norwegian margin. b Crevasse-fill ridges on the seafloor of Borebukta, Isfjorden,
Spitsbergen. ¢ Upper time slice of 3D seismic-reflection data, showing a network of tunnel valleys
in the North Sea. Lower seismic cross-profile of tunnel valleys in the North Sea. d Sinuous esker
on the seafloor of Van Keulenfjorden, Spitsbergen

There is currently no consensus regarding the process by which MSGLs are
formed. Some theories invoke a predominantly erosional mechanism, by which
MSGLs are produced by the ploughing action of basal ice keels across a sedi-
mentary substrate (Clark et al. 2003), whilst others advocate a constructional pro-
cess involving downflow attenuation by pervasive subglacial sediment deformation
(Boulton and Hindmarsh 1987; Clark 1993). The observation that MSGLs tend
towards a relatively consistent spacing, size and shape has been interpreted as
evidence that some type of instability, possibly involving a film of water at the
ice-sediment interface, may be involved in their formation (Fowler 2010).

Although the majority of submarine MSGLs have been recognised on or close to
the seafloor, the analysis of 3-D seismic-reflection data facilitates the identification
of landforms, including MSGLs, on older surfaces that are buried within the
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Fig. 3 Examples of submarine ice-marginal landforms. White arrows show former ice-flow
directions. a The Skjoldryggen terminal moraine on the mid-Norwegian shelf. b A shelf-edge
moraine and a belt of hummocky terrain close to the shelf edge of Restbanken, west of the Lofoten
Islands, Norway. ¢ Series of small moraine ridges in Raudfjorden, northwest Spitsbergen.
d Grounding-zone wedge (GZW) in Vestfjorden, south of the Lofoten Islands, Norway.
e Lateral-moraine ridge at the southern lateral margin of Rebbenesdjupet, northern Norway.
f Trough-mouth fan (TMF) at the mouth of Bear Island cross-shelf trough, Barents Sea. Black lines
show seafloor glacigenic debris-flows (adapted from Taylor et al. 2002a)



214 C.L. Batchelor et al.

Fig. 4 Examples of glacimarine landforms. a Narrow linear to curvilinear iceberg ploughmarks
on the seafloor outside Brésvellbreen, eastern Svalbard. b Wide iceberg ploughmarks with raised
berms on the seafloor of Brasvellbreen, eastern Svalbard. ¢ Iceberg ploughmarks on a buried
surface around 100 m deep in the northern North Sea. d Bathymetric image of smooth basin-fill
sediments in Magdalenefjorden, northwest Spitsbergen

sub-seafloor stratigraphy (e.g. Fig. 1b). The identification of MSGLs on
palaeo-shelves provides direct evidence for the former presence of grounded,
fast-flowing ice and can be used to infer palaeo-ice stream flow directions (e.g.
Dowdeswell et al. 2006).

Whereas MSGLs represent the end-point of a spectrum of elongate subglacial
landforms (Clark 1993), ice-flow parallel ridges with lower elongation ratios, such
as flutes and drumlins, are also identified in association with relatively fast-flowing
ice (e.g. Shipp et al. 1999; Wellner et al. 2001; O Cofaigh et al. 2002; Ottesen et al.
2005). Groups of parallel to subparallel flutes and drumlins have been identified on
the seafloor of formerly glaciated fjords and continental shelves, where they are
interpreted to indicate relatively fast ice flow within outlet glaciers or ice streams
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Fig. 5 Examples of the internal acoustic character of glacially-influenced landforms. a—d show
TOPAS sub-bottom profiles (3.5 kHz), whereas e—f show seismic-reflection profiles. a Mega-scale
glacial lineations (MSGLs) formed within acoustically transparent sediment in Marguerite Bay,
Antarctic Peninsula (Reprinted from O Cofaigh et al. 2005, with permission from Elsevier)—past
ice flow is towards the reader. b Cross-section through acoustically transparent glacigenic
debris-flow lobes on the Bear Island trough-mouth fan, Barents Sea (Reprinted from Taylor et al.
2002b, with permission from Elsevier). ¢ Acoustically stratified basin-fill sediment in the
Uummannaq cross-shelf trough, West Greenland. d Long-profile of a grounding-zone wedge
(GZW) in the Uummannaq cross-shelf trough, West Greenland. ¢ and d are adapted from
Dowdeswell et al. (2014). e Long-profile of a grounding-zone wedge (GZW) off West Greenland.
f Long-profile of a grounding-zone wedge on a buried surface around 150 deep in Amundsen Gulf,
Arctic Canada. e and f are adapted from Batchelor and Dowdeswell (2015)

(e.g. Solheim and Elverhei 1997). Drumlins can be differentiated by their distinc-
tive shape, with blunt up-glacier or stoss sides and tapered down-flow or lee sides,
and have been interpreted to indicate former zones of ice acceleration (Shipp et al.
1999; Wellner et al. 2001).

Erosional subglacial landforms include streamlined crag-and-tails, which consist
of an outcrop of bedrock with a tapering ridge of glacial sediment deposited on the
lee side of the obstacle, and ice-moulded bedrock (Table 1 and Fig. 1c). These
features are formed by the action of relatively fast-flowing ice and have been
identified within fjords and on inner-continental shelves in areas where outcrops of
bedrock are exposed on the seafloor (e.g. Fig. 1c) (Wellner et al. 2001; Dowdeswell
et al. 2014).
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Fig. 6 a Bathymetric image of the seafloor of Malangsdjupet cross-shelf trough on the north
Norwegian margin, illustrating the typical submarine architecture and landforms that are produced
by a fast-flowing ice stream. The locations of ice-moulded bedrock, mega-scale glacial lineations
(MSGLs), a grounding-zone wedge (GZW), ice-stream lateral shear-zone moraines, iceberg
ploughmarks and a trough-mouth fan (TMF) are shown. The image is provided by the MAREANO
project. b Location map (red box; map from IBCAO v. 3.0)

2.1.2 Hill-Hole Pairs

Hill-hole pairs are subglacially produced glacitectonic landforms that consist of a
topographic depression or hole located up-glacier of a positive-relief arcuate hill of
similar size (e.g. Fig. 2a). The former direction of ice flow is indicated by the
orientation of the hill-hole axis. Individual hill-hole pairs have been identified on
relatively shallow submarine banks off Norway and Svalbard (e.g. Saettem 1990;
Ottesen et al. 2005; Dowdeswell et al. 2010), whilst an assemblage of several tens
of pairs has been reported from the Arendal Terrace on the southern Norwegian
margin (Ottesen et al. 2005; Rise et al. 2016). The formation of these landforms is
suggested to involve the freezing-on of slabs of sediment at the ice-sheet base and
the subsequent melting and release of this sediment in a downstream direction
(Ottesen et al. 2005). Hill-hole pairs are therefore interpreted to be produced
beneath relatively slow-flowing and probably thin ice, which facilitates the basal
freeze-on of sediment.
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Fig. 7 a Bathymetric image of the seafloor of Restbanken, west of the Lofoten Islands, Norway,
illustrating the typical submarine architecture and submarine landforms that are produced by
slow-flowing ice. The locations of a shelf-edge moraine, a hummocky-terrain belt, recessional
moraine ridges, iceberg ploughmarks and submarine canyons are shown. The image is provided by
the MAREANO project. b Location map (red box; map from IBCAO v. 3.0). LI is Lofoten Islands

2.1.3 Crevasse-Fill Ridges

Crevasse-fill ridges are non-orientated subglacial landforms that have a distinctive
rhombohedral pattern consisting of a series of intersecting ridges a few metres high
(Fig. 2b). They have been identified on the forefields of surging terrestrial glaciers
(Sharp 1985; Evans and Rea 1999) and on the seafloor beyond the marine margins
of several surge-type glaciers in Svalbard (Boulton et al. 1996; Ottesen et al. 2008).
The ridges are interpreted to be produced during the post-surge ice stagnation phase
by the squeezing of soft, deformable sediment into basal crevasses. These crevasses
are formed at the glacier bed during the preceding active phase of the surge cycle.

2.1.4 Subglacial Glacifluvial Landforms

Tunnel valleys and eskers are produced by the flow of subglacial meltwater
(Table 1). They reveal the former pattern of meltwater drainage and are usually
aligned parallel or sub-parallel to the direction of former ice flow.

Tunnel valleys are meltwater channels that have cut down beneath the ice into
the underlying substrate (Boyd et al. 1988; O Cofaigh 1996). They can reach widths
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of several kilometres and depths of up to around 400 m. Extensive networks of
buried tunnel valleys have been identified on seismic-reflection profiles of the North
Sea (e.g. Fig. 2c), where they record the pathways of subglacial meltwater beneath
the former Eurasian Ice Sheet over a number of successive glaciations (e.g. Praeg
2003).

Conversely, eskers are sedimentary casts of supraglacial, englacial or subglacial
meltwater channels (Warren and Ashley 1994). The majority of preserved eskers
were formed subglacially by the sedimentary infilling of channels incised upwards
into the base of the ice (known as ‘R’ channels; Roéthlisberger 1972). Eskers are
straight to sinuous in plan-form (Fig. 2d) and are composed of glacifluvial sand and
gravel. Eskers up to a few tens of metres high and 2 km wide have been identified
on the seafloor of a number of Spitsbergen fjords, in the Baltic Sea, and in Hudson
Bay, Canada (Ottesen et al. 2008; Dowdeswell and Ottesen 2016; Greenwood et al.
2016). The formation of eskers may reflect either the synchronous configuration of
the hydrological system during high-magnitude drainage events, or the
time-transgressive deposition of short esker segments beneath a retreating ice
margin linked to normal intra-annual changes in meltwater discharge (Boulton and
Hindmarsh 1987; O Cofaigh 1996).

2.2 Ice-Marginal Landforms

Ice-marginal landforms (Fig. 3) are produced during deglacial still-stands or
re-advances of the ice margin. They can provide information about the former
configuration of an ice mass and the style and relative speed of ice retreat (e.g.
Dowdeswell et al. 2008).

2.2.1 Moraine Ridges

Moraine ridges (Fig. 3a—c) are formed transverse to ice-flow direction along a line
source at the grounding zone, which is the point at which the ice-sheet base ceases
to be in contact with the underlying substrate. Submarine moraines can be cate-
gorised into large terminal and recessional moraine ridges, hummocky-terrain belts
and small retreat moraines (Fig. 3a—c).

Terminal and recessional moraines can reach several tens of metres thick and
several kilometres wide in the former ice-flow direction (e.g. Sexton et al. 1992;
Seramur et al. 1997; Ottesen and Dowdeswell 2009). They form through a com-
bination of processes, including sediment lodgement and deformation, meltwater
deposition, melt-out of basal and englacial debris, and squeezing and pushing of
sediment from beneath the ice (Powell and Domack 1995; Powell and Alley 1997).
Terminal and recessional moraines have been identified within high-latitude fjords
in both hemispheres (e.g. Powell 1983; Dowdeswell and Vasquez 2013) and are
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widespread on the continental shelves of Norway, Svalbard and Britain and Ireland
(Elverhgi et al. 1983; Powell and Domack 2002; Vorren and Plassen 2002; Ottesen
et al. 2005, 2007; Bradwell et al. 2008; Rydningen et al. 2013).

Submarine moraines are probably formed mainly at the margins of tidewater
glaciers, which have unrestricted vertical accommodation space for the develop-
ment of a high-amplitude ridge at the grounding zone (Powell and Alley 1997).
They may be formed preferentially at the grounding zone of relatively slow-flowing
regions of an ice sheet, as evidenced by their widespread occurrence on shallow,
inter-trough areas of the continental shelf (Dowdeswell and Elverhgi 2002; Ottesen
et al. 2005, 2007; Ottesen and Dowdeswell 2009). The Skjoldryggen moraine on
the mid-Norwegian margin (Fig. 3a) provides an example of a large
terminal-moraine ridge. Although this moraine is located in a region that has
experienced high rates of sediment delivery during the last three glaciations (Rise
et al. 2005), it is interpreted to have formed at times when fast ice flow and rapid
sediment delivery to the shelf edge may have ceased (Ottesen et al. 2005).

Submarine hummocky-terrain belts have a distinctive morphology of irregular
crests and depressions with amplitude of 5-20 m (Fig. 3b) (Ottesen and
Dowdeswell 2009; Elvenes and Dowdeswell 2016). The crests are typically
asymmetric with steeper ice-distal faces. Well-defined belts of hummocky terrain
up to 6 km wide have been identified extending for tens of kilometres along the
outermost continental shelf beyond inter-trough banks off north Norway and
northwest Svalbard (Fig. 3b) (Ottesen and Dowdeswell 2009; Elvenes and
Dowdeswell 2016). The formation of belts of hummocky-terrain, which have also
been termed °lift-off moraine’, has been suggested to be linked to buoyancy-related
tidal effects that cause small-scale variations in the position of the grounding zone
(Elvenes and Dowdeswell 2016). This process has been observed beneath modern
ice-shelf grounding zones (Bindschadler et al. 2003; Gudmundsson 2006).

Small retreat moraines, which are often referred to as De Geer moraines (Lindén
and Moller 2005), are typically a few metres high and up to a few hundred metres
wide (e.g. Fig. 3c). They are usually identified in assemblages of tens to hundreds
of relatively evenly spaced sub-parallel ridges. Small transverse ridges, interpreted
as retreat moraines, have been identified on the seafloor of shallow inter-trough
regions of the shelf, as well as within cross-shelf troughs and high-latitude fjords
(Boulton 1986; Ottesen et al. 2005; Mosola and Anderson 2006; Ottesen and
Dowdeswell 2006, 2009; Todd et al. 2007; O Cofaigh et al. 2008). In contrast with
larger terminal and recessional moraines (Fig. 3a), which probably build-up during
grounding-zone still-stands of at least decades to centuries, small moraine ridges
(Fig. 3c) are produced by the delivery and ice pushing of sediment during
short-lived still-stands or re-advances of a grounded ice margin during overall
retreat (Boulton et al. 1996; Ottesen and Dowdeswell 2009). They therefore indi-
cate the relatively slow retreat of grounded ice (Dowdeswell et al. 2008). Although
confirmation by dated sediment cores is relatively rare, small retreat moraines are
often formed annually, with minor re-advances taking place as a result of the
suppression of iceberg calving by sea-ice buttressing during winter months
(Boulton 1986; Dowdeswell et al. 2008; O Cofaigh et al. 2008).
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2.2.2 Grounding-Zone Wedges

Grounding-zone wedges (GZWs) are asymmetric sedimentary depocentres which
form predominantly through the rapid accumulation of subglacial sediment at the
grounding zone of marine-terminating ice sheets (Fig. 3d) (e.g. Powell and Alley
1997). GZWs are typically 15-100 m thick and less than 15 km long in the
along-flow direction (Dowdeswell and Fugelli 2012; Batchelor and Dowdeswell
2015). They can be differentiated by their relatively subdued geometry compared
with higher amplitude moraine ridges (Fig. 3a, d). Whereas submarine moraines
probably develop preferentially at tidewater ice cliffs, GZWs have been suggested
to form mainly where floating ice shelves constrain vertical accommodation space
immediately beyond the grounding zone (Dowdeswell and Fugelli 2012; Batchelor
and Dowdeswell 2015).

A large number of GZWs have been described from formerly-glaciated conti-
nental margins, where they are identified within major fjord systems and cross-shelf
troughs (e.g. Anderson 1997; Powell and Alley 1997; 0] Cofaigh et al. 2005;
Mosola and Anderson 2006; Ottesen et al. 2007; Larter et al. 2012). The association
of GZWs with cross-shelf troughs and fjords suggests that high rates of sediment
delivery to the grounding zone of a fast-flowing ice stream or outlet glacier is
required for GZW formation. The presence of GZWs in the geological record
indicates an episodic style of ice-stream retreat in which rapid retreat of the
grounding zone is punctuated by still-stands of at least decades to centuries
(Dowdeswell et al. 2008; O Cofaigh et al. 2008; Batchelor and Dowdeswell 2015).
Many high-latitude GZWs occur at vertical or lateral pinning points in the shelf
topography, which encourage grounding-zone stabilisation through increasing basal
and lateral drag (Joughin et al. 2004; Ottesen et al. 2007).

Seismic-reflection profiles reveal that a number of GZWs contain
seaward-dipping reflections, which indicate sediment progradation and wedge
growth through the continued delivery of basal sediment (Fig. 5e and f) (Larter and
Vanneste 1995). Although the majority of GZWs have been recognised on or close
to the seafloor and were probably formed during the last deglaciation, a number of
buried GZWs, interpreted to have been formed during earlier Quaternary glacia-
tions, have been identified from seismic-reflection profiles of the Greenland and
West Antarctic margins (Dowdeswell and Fugelli 2012; Gohl et al. 2013; Batchelor
and Dowdeswell, 2015). Possible GZWs have also been identified in the Late
Ordovician glacial sediments of North Africa (Decalf et al. 2016).

2.2.3 Ice-Proximal Fans

Ice-proximal fans are point-source depocentres that develop at the mouths of sub-
glacial meltwater channels at the ice-sheet grounding zone (e.g. Powell 1990; Powell
and Domack 1995). The formation of ice-proximal fans is therefore dependent on the
availability of surface-derived meltwater and the existence of a channelised melt-
water network beneath the ice sheet (Powell 1990; Siegert and Dowdeswell 2002).
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Ice-proximal fans up to a few tens of metres thick have been identified on the
seafloor of fjords in Alaska, Norway and Svalbard, where they mark the former
locations of relatively stable grounding-zone positions (Powell 1990; Lonne 1995;
Seramur et al. 1997; Dowdeswell et al. 2015). The absence of large ice-proximal
fans on formerly glaciated continental shelves is probably a consequence of the
highly-variable position of the ice-sheet grounding zone (Dowdeswell et al. 2015).
Advancing ice sheets overrun and remove evidence of sediment delivered to the
mouths of subglacial meltwater channels, whilst the majority of ice-margin
still-stands during deglaciation are probably of insufficient duration to enable the
development of large fans unless sediment delivery is very rapid.

2.2.4 Lateral Moraines

Submarine glacial landforms can also develop at the lateral margins of fast-flowing
ice streams. Ice-stream lateral marginal-moraines build up at the lateral boundary
between ice streams and terrain that is free of grounded ice, whilst ice-stream lateral
shear-moraines form in the shear zone between ice streams and slower-flowing
regions of the ice sheet (Stokes and Clark 2002; Batchelor and Dowdeswell 2016).
Ice-stream lateral shear-moraines are orientated parallel to the former ice-flow
direction (e.g. Fig. 3e) and their formation is probably linked to the high stress
gradient in the shear zone at the boundary between fast- and slow-flowing ice (e.g.
Bentley 1987). They are linear to curvilinear in plan-form and are typically a few
tens of metres high and less than a few kilometres wide (Stokes and Clark 2002).
Ice-stream lateral shear-moraines have been identified at one or both lateral margins
of cross-shelf troughs off Norway and Svalbard, where they have been interpreted
to define the lateral boundaries of former ice streams (Ottesen et al. 2005, 2008;
Rydningen et al. 2013). Although ice-stream lateral shear-moraines are an impor-
tant geomorphological indicator of past ice-stream activity, they are not always
present in the geological record and may require relatively constrained conditions to
form (Stokes and Clark 2002; Hindmarsh and Stokes 2008).

2.2.5 Trough-Mouth Fans

Trough-mouth fans (TMFs) are major glacial-sedimentary depocentres that build up
on the continental slope beyond fast-flowing ice streams (Fig. 3f). TMFs are
formed when large volumes of deformable sediment are delivered to the shelf edge
by ice streams over successive full-glacial periods. This sediment is often remo-
bilised on the upper continental slope to form glacigenic debris-flows (GDFs)
(Alley et al. 1989; Laberg et al. 2000). TMFs have volumes of up to several
hundred thousand cubic kilometres and are identified on bathymetric maps of the
seafloor by a distinctive outward bulging of slope contours beyond the
trough-mouth, indicating shelf progradation (Fig. 3f) (Dowdeswell et al. 1996,
1998; O Cofaigh et al. 2005). These sedimentary depocentres contain a record of
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past glacial history and can provide information about long-term sediment delivery
and ice-stream dynamics (Dowdeswell et al. 1996, 2006; Vorren and Laberg 1997,
Dowdeswell and Siegert 1999; O Cofaigh et al. 2003).

TMFs composed predominantly of stacked acoustically-transparent lenses rep-
resenting GDFs from episodes of cross-shelf glaciation (Figs. 3f and 5c) have been
identified on the continental slope beyond many high-latitude cross-shelf troughs
(Vorren et al. 1988; Laberg and Vorren 1995; Dowdeswell et al. 1996; King et al.
1996; Vorren and Laberg 1997; O Cofaigh et al. 2003; Batchelor and Dowdeswell
2014). However, the slope beyond former ice streams can also be characterised by
channel and gully systems or mass transfer deposits resulting from slope failure
(e.g. Dowdeswell et al. 1996, 2004b; Laberg and Vorren 2000; ) Cofaigh et al.
2003; Piper et al. 2012). TMF development is encouraged by high debris flux,
limited contour-current erosion of the slope and a relatively low (generally <4°)
upper-slope gradient, which enables GDFs to accumulate on the upper-slope (O
Cofaigh et al. 2003).

2.3 Glacimarine Landforms

Whereas terrestrial sections of an ice sheet lose mass through surface melting and
run-off, and, rarely, sublimation, marine-terminating ice sheets additionally lose
mass through iceberg calving and the melt-out of basal and englacial debris from
icebergs, ice cliffs and floating ice shelves. The processes associated with mass loss
by iceberg and meltwater production lead to the formation of distinctive glaci-
marine landforms and sediments.

2.3.1 Iceberg Ploughmarks

Iceberg ploughmarks (e.g. Fig. 4a—c) are linear to curvilinear depressions produced
by the grounding of iceberg keels in seafloor sediments (Woodworth-Lynas et al.
1991; Dowdeswell et al. 1993). They have typical depths of a few metres to tens of
metres and widths of up to several hundred metres, and many have distinctive
raised berms a few metres high on either side of a central depression (Fig. 4b).

Linear to curvilinear depressions, interpreted as iceberg ploughmarks, are
widespread on the seafloor of mid- and high-latitude continental margins in
present-day water depths down to at least 500 m (e.g. Woodworth-Lynas et al.
1991; Dowdeswell et al. 1993; Metz et al. 2008). They are particularly common on
relatively shallow inter-trough banks, where they are often responsible for the
erosion and reworking of older subglacial and ice-marginal landforms and sedi-
ments. Some wide iceberg ploughmarks are probably formed by the grounding of
tabular icebergs on the seafloor, whereas parallel to subparallel sets of ploughmarks
may be produced by single large icebergs with multiple keels or by the keels of
several icebergs that were trapped within multi-year sea ice, providing a uniform
pattern of iceberg drift.
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Whereas the majority of seafloor iceberg ploughmarks were probably formed
during the last glacial-deglacial cycle, iceberg ploughmarks produced during earlier
stages of the Quaternary can be identified from 3-D seismic-reflection data (e.g.
Fig. 4c). Buried iceberg ploughmarks preserved on palaeo-shelf surfaces indicate
the expansion of ice sheets beyond the coastline and provide information about
palaeo-oceanographic conditions (e.g. Syvitski et al. 1996; Dowdeswell and
Ottesen 2013).

2.3.2 Smooth Basin Fill from Meltwater Plumes

The discharge of sediment-laden meltwater from conduits at the grounding zone
produces turbid jets of sediment-water mixtures, which typically transform into
buoyant plumes in seawater (e.g. Powell 1990; Mugford and Dowdeswell 2011).
The suspension settling of material derived from meltwater plumes provides a
significant source of sediment in some glacimarine environments (e.g. Cowan and
Powell 1990; Dowdeswell et al. 1998; O Cofaigh and Dowdeswell 2001). Sand and
coarse silt are typically deposited within a few kilometres of the grounding zone,
whereas finer-grained material is transported in plumes for greater distances. The
rain-out of sediment through the water column results in the formation of a blanket
of acoustically transparent to stratified basin-fill sediment on the seafloor (Cai et al.
1997), which has a smooth appearance on bathymetric images (Fig. 4d). These
sediments often have a strong cyclical signature manifested as acoustic lamination
as a result of variations in glacial meltwater discharge and the position of the ice
margin (Fig. 5¢).

Suspension settling occurs at present in high-latitude fjords and was a significant
process in some shelf and slope settings during the Quaternary (e.g. Domack 1990;
Dowdeswell et al. 1996, 2000). High rates of deglacial and post-glacial
meltwater-derived sedimentation in temperate and subpolar glacimarine environ-
ments can lead to the burial of submarine glacial landforms (Elverhei et al. 1983;
Cowan and Powell 1990; Cai et al. 1997; Dowdeswell and Vasquez 2013).
Suspension setting is less significant on polar continental margins, such as off
Greenland and Antarctica, where there are lower rates of glacimarine sedimentation
and ice mass is lost predominantly through iceberg calving rather than meltwater
runoff (e.g. Dowdeswell et al. 1993, 1996).

2.4 Marine Landforms

Marine processes, including the action of waves and currents, and mass movement
events such as submarine slides (Table 1) can result in the burial and reworking of
submarine glacial landforms. Current and wave action can modify glacial landforms
on relatively shallow areas of the seafloor (e.g. Howe and Pudsey 1999), whilst
submarine slides with lengths of up to several kilometres take place as a result of
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the failure of glacial sediments on steep fjord walls (e.g. Ottesen and Dowdeswell
2009; Forwick et al. 2010). Larger submarine slides with volumes of up to several
tens of thousand cubic kilometres have been recognised on the continental slope
beyond cross-shelf troughs and shallower banks in both hemispheres (e.g. Laberg
and Vorren 1993, 2000; Hjelstuen et al. 2005; Piper et al. 2012). Slope failure on
high-latitude continental margins can occur as a consequence of the build-up of
excess pore pressure in fine-grained sediment as a result of rapid sedimentation
during full-glacial periods, contour-current erosion of the lower slope under inter-
glacial conditions, and tectonic activity and gas-hydrate disassociation (e.g. Mosher
et al. 1994; Laberg and Vorren 2000; Mienert 2004).

3 Glacial Landforms on the Norwegian Margin:
A Case Study

The typical distribution of glacial landforms on formerly-glaciated continental
margins is illustrated using the case study of the Norwegian continental shelf and
slope (Figs. 6 and 7).

3.1 Landforms in Cross-Shelf Troughs

The large-scale architecture and submarine glacial landforms that are typically
produced by fast-flowing ice streams are shown by the Malangsdjupet cross-shelf
trough on the north Norwegian margin (Fig. 6). Malangsdjupet has been interpreted
to have been occupied by a marine-terminating ice stream during a number of
Quaternary full-glacial periods, including during the Last Glacial Maximum
(LGM) around 20 ka ago (Ottesen et al. 2005, 2008; Rydningen et al. 2013).

The trough is around 50 km long and has a maximum width and depth of 30 and
400 m, respectively (Fig. 6). Malangsdjupet has characteristic cross-shelf trough
geometry, with over-deepened inner-shelf basins extending from fjords,
well-defined lateral margins and an increasing width towards the shelf edge (Stokes
and Clark 2001) (Fig. 6). It has a landward-dipping seafloor, which is probably a
result of repeated erosion of the inner-shelf by ice over successive glaciations.
Bathymetric data show a seaward change in the roughness of the seafloor, which
corresponds with a transition from outcrops of crystalline bedrock on the inner-shelf
to a sedimentary substrate on the mid- and outer-shelf (Fig. 6). The continental
slope beyond the trough displays the progradational architecture and outward
bulging upper-slope contours that are typical of glacial-sedimentary depocentres or
TMFs (Dowdeswell et al. 1998; O Cofaigh et al. 2005). Malangsdjupet TMF has
been interpreted to have been built up on the slope from around 1.5 million years
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ago, when fast-flowing ice streams started delivering large quantities of deformable
sediment to the Norwegian continental margin over successive full-glacial periods
(Rise et al. 2005; Rydningen et al. 2016).

Several types of submarine glacial landform are preserved on the seafloor of
Malangsdjupet; these include subglacially produced ice-moulded bedrock and
MSGLs, ice-marginal GZWs and lateral moraines, and iceberg ploughmarks
(Fig. 6) (Vorren and Plassen 2002; Ottesen et al. 2005, 2008; Rydningen et al.
2013). These landforms record the extent and dynamics of the ice stream in the
trough during the last glacial-deglacial cycle.

Ice-moulded bedrock and MSGLs were produced subglacially during ice-stream
advance and reveal former ice-flow directions. Ice-moulded bedrock on the
inner-shelf shows that the ice emerged from the fjords and converged in the central
trunk of the trough (Fig. 6). MSGLs with lengths of several kilometres are present
on the mid- and outer-shelf, indicating that grounded, fast-flowing ice extended to
the shelf edge during the LGM.

An ice-marginal GZW is present on the mid-shelf of Malangsdjupet (Fig. 6).
This depocentre, which spans most of the trough width and is at least 20 km long in
the ice-flow direction, was produced during a still-stand in the grounding-zone
position of at least decades to centuries during ice-stream retreat. The presence of a
mid-shelf GZW and preserved outer-shelf MSGLs suggest that the ice stream
experienced an episodic style of retreat (Dowdeswell et al. 2008), with ice probably
retreating relatively rapidly from the shelf edge to the GZW position on the
mid-shelf.

Ice-stream lateral shear-zone moraines a few metres high are present along both
lateral margins of Malangsdjupet (Fig. 6). These landforms delimit the former
lateral boundaries between the ice stream in the trough and slower-flowing ice on
the adjacent banks (Fig. 6). Ice-stream lateral marginal-moraines are also present at
the northern outermost lateral margin of the trough, where they probably record the
former boundary between the ice stream and terrain that was free of grounded ice
during lateral-moraine formation (Rydningen et al. 2016; Batchelor and
Dowdeswell 2016).

A number of linear to curvilinear iceberg ploughmarks are present at the
northern margin of Malangsdjupet in water depths of between 100 and 200 m
(Fig. 6). They record the drift tracks of deep-keeled icebergs that were produced
during regional deglaciation. Iceberg ploughmarks are generally absent from the
seafloor of the rest of the trough, which suggests that these regions were deeper than
the maximum iceberg-keel depth. The relatively fresh appearance of glacial land-
forms on bathymetric images of the seafloor suggests that there is only a thin veneer
of glacimarine sediments draping the shelf and slope off northern Norway.
Accumulations of smooth basin-fill sediments derived from meltwater plumes are
probably present in inner-shelf basins between bedrock outcrops and in the more
ice-proximal fjords (e.g. Elverhai et al. 1983).
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3.2 Landforms on Inter-Trough Banks

The inter-trough bank of Restbanken beyond Lofoten on the Norwegian margin
illustrates the typical architecture and glacial landforms that are produced by rel-
atively slow-flowing regions of an ice sheet (Fig. 7). Slow-moving ice is interpreted
to have expanded to the shelf edge beyond Restbanken during the LGM as well as
probably also during a number of earlier Quaternary full-glacial periods (Ottesen
et al. 2005).

Slow-flowing ice is relatively passive; it does not typically cause considerable
erosion of the continental shelf or deliver large volumes of deformable sediment to
the shelf edge. Rastbanken therefore lacks the erosional cross-shelf trough and
depositional TMF architecture that is characteristic of former ice-stream locations.
Rostbanken has water depths of between 100 and 200 m and there is no evidence of
a significant glacial-sedimentary depocentre on the upper continental slope (Fig. 7).
The slope beyond the bank is instead characterised by small-scale mass-wasting
features and submarine canyons.

Subglacially produced streamlined landforms that indicate the direction of for-
mer ice flow are largely absent from Restbanken. By contrast, the bank is domi-
nated by ice-marginal moraines that are orientated transverse to the former ice-flow
direction (Fig. 7). A terminal-moraine ridge is present at the shelf edge, marking the
maximum extent of grounded ice during the LGM (Ottesen et al. 2005). A several
kilometre-wide belt of hummocky terrain, which was probably produced by
tidally-related variations in the position of the grounding zone (Ottesen and
Dowdeswell 2009), is also present on the outermost shelf (Fig. 7). The mid- and
outer-shelf of Restbanken is dominated by a number of recessional-moraine ridges
that are a few tens of metres wide in the former ice-flow direction (Fig. 7). These
ridges mark the former positions of still-stands or minor re-advances in the
grounding zone and indicate the relatively slow retreat of grounded ice across the
bank (Dowdeswell et al. 2008). Rastbanken is heavily scoured by linear to curvi-
linear depressions, which are interpreted to have been produced by the keels of
icebergs ploughing into sediments on the relatively shallow seafloor (Fig. 7).

3.3 Landsystem Models for Fast- and Slow-Flowing Ice

The submarine glacier-influenced landforms described from Malangsdjupet and
Reostbanken (Figs. 6 and 7) can be combined into schematic landsystem models for
fast- and slow-flowing ice on formerly-glaciated continental margins (Fig. 8) (e.g.
Ottesen et al. 2005, 2007; O Cofaigh et al. 2005; Ottesen and Dowdeswell 2009).

The locations of former ice streams can be identified by deep (typically >300 m)
cross-shelf troughs that are formed by fast-flowing ice over successive full-glacial
periods. In contrast, the former locations of slower-flowing, relatively passive ice
are typically characterised by shallower banks (Fig. 8). Whereas large TMFs often
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Fig. 8 Summary schematic landsystem models of the submarine landforms on the seafloor of
inter-ice stream shallow banks and cross-shelf troughs formerly occupied by fast-flowing ice
streams (adapted from Ottesen and Dowdeswell 2009)

develop beyond cross-shelf troughs, lower rates of sediment delivery to the shelf
edge beyond inter-ice stream regions of the ice sheet preclude the development of
major glacial-sedimentary depocentres in these locations.

A key feature of the ice-stream glacial landform-assemblage model is the
presence of elongate streamlined landforms, such as MSGLs, that are orientated
parallel to the former ice-flow direction (Fig. 8) (Stokes and Clark 2002; O Cofaigh
et al. 2002). GZW:s record the positions of still-stands in the grounding zone during
deglaciation and indicate an episodic style of ice-stream retreat through the trough.

By contrast, the inter-ice stream glacial landform-assemblage model is domi-
nated by ice-marginal landforms, such as moraine and hummocky-terrain belts,
which are orientated transverse to the former ice-flow direction (Ottesen and
Dowdeswell 2009). Groups of parallel to subparallel moraine-ridges provide evi-
dence for the slow retreat of grounded ice across the bank (Dowdeswell et al. 2008).
Some inter-ice stream locations contain glacitectonically formed hill-hole pairs that
indicate the direction of past ice flow (Ottesen and Dowdeswell 2009). Ice-stream
lateral shear-moraines are orientated parallel to the former ice-flow direction and
delimit the lateral boundary between fast- and slow-flowing ice (Fig. 8) (Stokes and
Clark 2002).

Iceberg ploughmarks have been identified on the seafloor of inter-trough banks,
cross-shelf troughs and the upper continental slope (e.g. Woodworth-Lynas et al.
1991; Dowdeswell et al. 1993). They are most widespread on inter-trough banks
that are the former locations of slow-flowing ice, as a result of the shallower
seafloor in these locations (Fig. 8).
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4 Future Research Objectives

Recent developments in geophysical imaging techniques have enabled the identi-
fication and interpretation of glacial landforms in a wide range of submarine
environments. There are, however, three key areas in which future research may be
directed.

First, there is a need for increased data coverage of formerly glaciated conti-
nental margins. Some offshore areas, such as the Norwegian margin and the western
Barents Sea, have been the focus of extensive seafloor mapping programmes and
subsurface investigations, facilitating detailed reconstructions of past ice-sheet
configurations and dynamics (e.g. Ottesen et al. 2005, 2007; Andreassen et al.
2014). However, comparatively little is known about other formerly glaciated
regions, such as the Kara Sea in the Russian Arctic and parts of the Queen Elizabeth
Islands in the Canadian Arctic, where data collection has historically been ham-
pered by sea ice.

Secondly, higher-resolution data of the seafloor and the subsurface are needed to
capture complexity in ice-sheet behaviour, with a particular focus on dynamic
behaviour of ice streams during the last deglaciation. Geophysical surveys have
revealed that the geological record is more complex than previously envisaged,
both in terms of the changing dynamics of individual sectors of former ice sheets,
and the assemblages of submarine glacial landforms that are produced (e.g.
Greenwood et al. 2012).

Finally, increased chronological control, derived from the dating of material
within sediment cores, is needed to establish the timing of ice-sheet advances and
retreats and to better constrain the rates of formation of submarine glacial
landforms.
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