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Cocultivation of Piriformospora indica
and Azotobacter chroococcum for Production

of Artemisinin

Prasun Bandyopadhyay, Monika Arora, M.Z. Abdin, and Ajit Varma

Abstract Artemisinin is one of the major active ingredients used in artemisinin

combination therapies (ACTs) used in malarial treatment. It is produced from

Artemisia annua L. Malaria being one of the most severe tropical diseases, depen-

dency on the production of artemisinin has been increasing. Lower yield

(0.01–1.1%) further complicates the production process. This has led to the devel-

opment of alternate strategy to improve plant productivity and enhance the active

ingredient. Biostimulants like Piriformospora indica and Azotobacter chroococcum
have been well known for their beneficial interaction with plants. Here, we studied

the impact of dual inoculation of these stimulants in the growth and productivity of

artemisinin in the poly house condition. The plant growth was monitored by

measuring parameters like height of plant, total dry weight, and leaf yield with an

increase of 63.51, 52.61, and 79.70%, respectively, for treatment with dual biolog-

ical consortium, as compared to that of control plants. This significant improvement

in biomass was associated with higher total chlorophyll content (59.29%) and

enhanced nutrition (especially nitrogen and phosphorus, 55.75 and 86.21%, respec-

tively). The concentration of artemisinin along with expression patterns of

artemisinin biosynthesis genes was appreciably higher in dual treatment, which

showed positive correlation. The study suggested the potential use of the consor-

tium P. indica strain DSM 11827 and A. chroococcum strain W-5 in A. annua L.
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15.1 Introduction

Artemisia annua L. (sweet wormwood) is an important medicinal plant due to

presence of artemisinin. It belongs to genus Artemisia, family Asteraceae

(Compositae) with an annual growth cycle (Willcox et al. 2004). The phyto-

molecule artemisinin, sesquiterpene lactone containing endoperoxide bridge, is

obtained from aerial parts of A. annua L. plants (Mandal et al. 2015). Artemisinin

is an effective anti-malarial drug discovered by Miller and Su (2011). It has been

also reported that artemisinin is not only effective against malaria but also for

human cancer (Singh and Lai 2004) and hepatitis B virus (Romero et al. 2005). So

far artemisinin-based combination therapies (ACTs) have been the choice for the

treatment of people worldwide (Abdin et al. 2003). A. annua L. produces small

amount of artemisinin (0.01–1.1%). Such low yields of artemisinin results in

relatively high cost for isolation and purification of the useful chemical. Also, the

demand of artemisinin production from dried plant material of A. annua L. has been
estimated to about 289 tons as against the annual production of about 232–262 tons

(Arora et al. 2016).

Rhizosphere microbiota like arbuscular mycorrhizal fungi (AMF) are well-

known plant beneficial soilborne microsymbionts. They significantly contribute

toward improved agricultural performance by triggering diverse plant physiological

responses. Hence, these have been employed for many agricultural production

systems as well as for medicinal and endangered plant species (Pozo et al. 2010).

The symbiotic association of arbuscular mycorrhizal fungi (AMF) with the plant is

in synergistic coordination with the plant growth-promoting rhizobacteria (PGPR)

(Bandyopadhyay et al. 2016a; Bandyopadhyay et al. 2016b; Bakker et al. 2013;

Berendsen et al. 2012; Bhuyan et al. 2015). The overall plant performance relies on

both bacteria and the fungi whereby the nitrogen-fixing ability of bacteria is

stimulated by improved phosphate uptake due to AMF association and vice versa

(Javot et al. 2007). PGPRs show phosphate-solubilizing mechanisms, enhancement

in phytohormone production, increased antifungal activity, etc. (Awasthi et al.

2011; Prasad et al. 2015). The synergistic interaction between plant and microbes

in rhizosphere critically improves growth and productivity of plants through an

array of processes like increased nutrient uptake, availability, nitrogen fixation,

nutrient recycling, photosynthetic rate, and pathogen resistance (Jeffries et al.

2003).

P. indica as well as arbuscular mycorrhiza fungi individually have also been

shown to enhance artemisinin content in A. annua L. plants (Kapoor et al. 2007;

Rapparini et al. 2008; Chaudhary et al. 2008; Sharma and Agrawal 2013). Kapoor

et al. (2007) reported an increase in artemisinin concentration in leaves of A. annua
from 0.1% (control) to 0.3% (Glomus fasciculatum treated) while investigating the

effect of two AMF Glomus fasciculatum and Glomus macrocarpum singly and

along with addition of phosphorous. The increased artemisinin concentration was

attributed to high leaf yield and shoot growth which was further validated by high

glandular trichome (artemisinin biosynthesis and assembly sites) density in the
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mycorrhizal-treated plants. Azotobacter is a Gram-negative aerobic soil-dwelling

nitrogen-fixing bacteria (Lakshminarayana et al. 1992). It is found in soil and water

systems and in association with plants (Martyniuk and Martyniuk 2003). Only,

recently studies analyzing synergistic effect of PGPRs and AMF on medicinal and

crop plants have been conducted (Awasthi et al. 2011; Walker et al. 2012; Vafadar

et al. 2014).

15.2 Effect of P. indica and A. chroococcum on Plant

Growth Parameters

Inoculation of A. annua L. plants with Piriformospora indica and A. chroococcum
either singly or in combination under poly house conditions improved the growth of

plants in terms of plant height, biomass, and total leaf yield per plant as compared

with control plants (Table 15.1). A. annua L. plants treated with either P. indica or

A. chroococcum enhanced the growth compared with control. When combined,

inoculation of plants with both P. indica and A. chroococcum was highly effective

in improving the plant height, biomass, and leaf yield with an observed increase of

63.51, 52.61 and 79.70% respectively, compared with control (Table 15.1).

Rhizospheric soil from A. annua L. plants treated with A. chroococcum alone or in

combination with P. indica was used for determination of the viable count of

A. chroococcum by using standard serial dilution pour plate method. A. annua
L. plants treated only with A. chroococcum showed 18.33� 105 CFU/g soil, whereas

dual treated plants exhibited high population of A. chroococcum (21.12� 105 CFU/g

soil) in the rhizospheric soil. P. indica colonization was evaluated by randomly

selected fine roots from 2-month-old A. annua L. as method followed by Phillips

and Hayman (1970), and percentage colonization of P. indica was calculated using

the formula as described by McGonigle et al. (1990). A. annua L. plants cocultivated
with P. indica resulted in 50.23% colonization, while dual treated plants have better

root colonization of 78.99% by P. indica (Arora et al. 2016).

Table 15.1 Effect of P. indica and A. chroococcum alone or in combination on plant growth

Parameters Control P. indica A. chroococcum P. indica + A. chroococcum

Plant height 60.4 � 3.36a 79.37 � 2.76b 74.74 � 4.42b 98.76 � 2.68c

Plant

biomass

57.71 � 3.23a 76.14 � 2.47b 64.84 � 3.56b 88.07 � 4.53c

Leaf yield 7.93 � 1.26a 12.13 � 1.03b 10.04 � 1.05b 14.25 � 1.14c

Plants were grown with P. indica, A. chroococcum, both P. indica þ A. chroococcum, and control
plant without P. indica or A. chroococcum. Values are presented as means (n¼ 8)� SD. Different

letters (a,b,c) indicate significant differences between each treatment (P � 0.05) by Tukey’s post
hoc test
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15.3 Effect of P. indica and A. chroococcum on Nitrogen

and Phosphorus

Phosphorus and nitrogen are the important macromolecules that are responsible for

increased growth, yield, and quality of plant. Concentrations of phosphorus and

nitrogen were significantly higher in those plants cocultivated with dual treatment

(Fig. 15.1). On individual basis, plants treated with P. indica significantly increased
P content by 65.95% and with A. chroococcum resulted in 31.90% higher P content

in A. annua L. plants compared to the control plants, respectively. Likewise, plants

treated with P. indica significantly increased N content by 13.27% and with

A. chroococcum resulted in 29.20% higher N content in A. annua L. plants com-

pared to the control plants, respectively. The colonization of A. annua L. with dual

treatment resulted in 86% increase in P content and 55.75% increase in N content

(Fig. 15.1). P. indica is known to enhance phosphorous uptake in plants, which in

turn might enable more energy available for nitrogen fixation by A. chroococcum;
this could be the reason for higher P and N content in dual treated plants (Arora

et al. 2016).

15.4 Effect of P. indica and A. chroococcum on Chlorophyll

Content

Chl a, chl b, and total chlorophyll content was quantified in leaves of A. annua L. and
found significantly increased in plants treated with P. indica, A. chroococcum alone,

or in combination as compared to the control plants. Chl a showed values of 4.5 and

4.7 mg/g, respectively, for plant treated with A. chroococcum and P. indica, sepa-
rately, and 5.6 mg/g fresh weight for plant dual treated with P. indica and

A. chroococcum together. Similarly, the content of chl b exhibited values of 0.7

Fig. 15.1 Phosphorus (a) and nitrogen (b) concentration (%) in leaves of A. annua L. plants,

grown for 2 months after transplanting, under poly house conditions. Columns with different

letters are indicating significant differences between each treatment at 5% probability level

according to Tukey’s post hoc test, and the error bars represent the standard error
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and 0.8 mg/g, respectively, for plant treated with A. chroococcum and P. indica,
separately, and 1.0 mg/g fresh weight for plant dual treated with P. indica and

A. chroococcum together. The plants dual treated with P. indica and

A. chroococcum together also enhanced total chlorophyll content by 57.91% than

control plants (Fig. 15.2). However, the chlorophyll content of A. annua L. plants

treated with P. indica and A. chroococcum, separately, was not significantly different.
More chlorophyll content in the plants is attributed to the fact that an increase in plant

nutrition by an increase in P and N uptake will optimize the rate of photosynthesis by

increasing the amount of plant chlorophyll, which will lead to an increase in biomass

production by C fixation from CO2. Nitrogen is part of the chlorophyll molecule,

which gives green color to plants and is involved in creating food for the plant

through photosynthesis.

15.5 Effect of P. indica and A. croococcum on Artemisinin

Content

One gram of dry leaf material was used for the estimation of artemisinin using the

method as described by Zhao and Zeng (1986). Derivatized artemisinin was

analyzed and quantified through reverse phase column (C18, 5 μm,

4.6 � 250 mm) using premix methanol: 100 mM K-phosphate buffer, pH, 6.5

(60:40), as mobile phase at constant flow rate of 1 ml min�1 with the detector set at

260 nm. Artemisinin was quantified with the help of standard curve prepared by

HPLC (Fig. 15.3). An overlay of the results obtained with preparative HPLC of a

Fig. 15.2 Chlorophyll content (mg/g fresh weight) in leaves of A. annua L. plants, grown for

2 months after transplanting, under poly house conditions. Columns with different letters are

indicating significant differences between each treatment at 5% probability level according to

Tukey’s post hoc test, and the error bars represent the standard error
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standard solution of artemisinin prior to analysis of samples is shown in Fig. 15.3.

Artemisinin content was expressed as % as well as mg g�1 dw of leaves.

The symbiotic effectiveness was much evident when artemisinin content was

recorded 70% higher in A. annua L. plants subjected to dual inoculation (Fig. 15.4).
P. indica colonization or A. croococcum inoculation independently enhanced

artemisinin content to approximately similar levels. The enhanced concentration

of artemisinin by dual treatment may be due to improved growth and nutrient status

of the plants (Arora et al. 2016; Davies et al. 2009).

Fig. 15.3 (a) Calibration curve of artemisinin standard. (b) Chromatogram of a standard solution

of artemisinin after process prior to analysis (RT ¼ 5.611)
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15.6 Conclusion

Interaction of A. annua L. with both P. indica and A. chroococcum in cocultivation

resulted in improved plant biomass and concentration of artemisinin in the plant as

compared to control and singly treated plants. The combinatorial application of

P. indica with A. chroococcum induces reprogramming of many cellular activities

like phytohormone biosynthesis, nutrient acquisition, and secondary metabolite

synthesis in A. annua L. leading to higher biomass and enhanced artemisinin

content and yield. The use of this microbial consortium as bio-fertilizer in place

of chemical fertilizers, hence, presents a viable option for increased artemisinin

availability.

15.7 Future Prospects

The current study provides a perspective into study of combined inoculation of

symbiotic fungus and nitrogen-fixing bacteria and their interaction with plants.

Different beneficial and symbiotic bacterial fungal associations can also be studied

with plants to check their effect on plant yield, disease resistance, abiotic and biotic

stress response, production of important molecules, and plant products. It will also

help to understand the molecular mechanism between the microorganisms and

determine the active compounds released that help in plant trait enhancement.

Proteomic studies can also be carried out to check the effect of consortium on

plants. Hence, this consortium can also be used to check their effect on other plant

Fig. 15.4 Artemisinin content (%) in leaves of A. annua L. plants, grown for 2 months after

transplanting, under poly house conditions. Columns with different letters are indicating signifi-

cant differences between each treatment at 5% probability level according to Tukey’s post hoc test,
and the error bars represent the standard error
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species. Further study is also required to check the effectiveness of microbial

consortia in making the plant resistant to pathogens through systemic induced

resistance.
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