
Chapter 5
Algebraic Grid Generation

5.1 Introduction

The algebraic grid generation approach relies chiefly on an explicit construction
of coordinate transformations through the formulas of transfinite interpolation. Of
central importance in the method are blending functions (univariate quantities, each
depending on one chosen coordinate only). These provide matching of the grid dis-
tribution on, and grid directions from, the boundaries and specified interior surfaces
of an arbitrary domain. Direct control of the essential properties of the coordinate
transformations in the vicinity of the boundaries and interior surfaces is carried out by
the specification of the out-of-surface-direction derivatives and blending functions.

The purpose of this chapter is to describe common techniques of algebraic grid
generation.

Nearly all of the formulas of transfinite interpolation include both repeated indices
over which a summation is carried out and one repeated index, usually i, that is fixed.
Therefore, in this chapter, we do not use the convention of summation of repeated
indices, but instead use the common notation

∑
to indicate summation.

5.2 Transfinite Interpolation

This section describes some general three-dimensional formulas of transfinite inter-
polation which are used to define algebraic coordinate transformations from a stan-
dard three-dimensional cube Ξ 3 with Cartesian coordinates ξi , i = 1, 2, 3, onto a
physical domain X3 with Cartesian coordinates xi , i = 1, 2, 3. The formulation of
the three–dimensional interpolation is based on a particular operation of Boolean
summation over unidirectional interpolations. So, first, the general formulas of uni-
directional interpolation are reviewed.
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176 5 Algebraic Grid Generation

5.2.1 Unidirectional Interpolation

General Formulas

For the unit cube Ξ 3, let there be chosen one coordinate direction ξi and some
sections of the cube orthogonal to this direction, defined by the planes ξi = ξil ,
l = 1, . . . , Li . Furthermore, on each section ξi = ξil , let there be given the values
of some vector-valued function r(ξ), ξ = (ξ1, ξ2, ξ3), and of its derivatives with
respect to ξi up to order Pi

l . Then, the unidirectional interpolation of the function
r(ξ) is a vector-valued function P i [r](ξ) from Ξ 3 into R3 defined by the formula

P i [r](ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=ξil

) . (5.1)

Here, the smooth scalar functions αi
l,n(ξ

i ), depending on one independent variable
ξi , are subject to the following restrictions:

dm

(dξi )m
αi
l,n(ξ

i
k) = δlkδ

n
m , l, k = 1, . . . , Li , m, n = 0, 1, . . . Pi

l , (5.2)

where δ
j
i is the Kronecker delta function, i.e. δ j

i =
{
1, i = j,
0, i �= j.

The expression (ξ|ξi=ξil
) in (5.1) designates a point that is a projection of ξ =

(ξ1, ξ2, ξ3) on the section ξi = ξil , i.e. the i th coordinate ξi of ξ is fixed and equal to
ξil ; for example,

(ξ|ξ1=ξ1l
) = (ξ1l , ξ

2, ξ3) .

It is also assumed in (5.1) and below that the operator for the zero-order derivative
is the identity operator, i.e.

∂0

(∂ξi )0
f (ξ) = f (ξ) ,

d0

(dξi )0
g(ξi ) = g(ξi ) .

The coefficientsαi
l,n(ξ

i ) in (5.1) are referred to as the blending functions. They serve
to propagate the values of the vector-valued function r(ξ) from the specified sections
of the cube �3 into its interior. It is easily shown that the conditions (5.2) imposed
on the blending functions αi

l,n(ξ
i ) provide matching at the sections ξi = ξil of the

values of the function P i [r](ξ) and r(ξ), as well as the values of their derivatives
with respect to ξi , namely,

∂n P i [r]
(∂ξi )n

(ξ|ξi=ξil
) = ∂n r

(∂ξi )n
(ξ|ξi=ξil

) , n = 0, . . . , Pi
l .
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Two-Boundary Interpolation

A very important interpolation for grid generation applications is the one which
matches the values of the vector-valued function r(ξ) and of its derivatives exclu-
sively at the boundary planes of the cube Ξ 3. In this case, Li = 2, ξi1 = 0, and
ξi2 = 1, and the relations (5.1) and (5.2) have the form

P i [r](ξ) =
Pi
1∑

n=0

α1
1,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=0)

+
Pi
2∑

n=0

αi
2,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=1) , (5.3)

dm

(dξi )m
αi
l,n(ξ

i
k) = δlkδ

n
m , l, k = 1, 2 , m, n = 0, 1, . . . Pi

l . (5.4)

The interpolation described by (5.3) is referred to as the two-boundary interpolation.

5.2.2 Tensor Product

The composition of two unidirectional interpolations P i [r](ξ) and P j [r](ξ) of r(ξ)

in the directions ξi and ξ j , respectively, is called their tensor product. This operation
is denoted by P i [r ] ⊗ P j [r ](ξ) and, in accordance with (5.1), we obtain

P i [r] ⊗ P j [r](ξ) = P i
[
P j [r]

]
(ξ)

=
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n P j [r]
(∂ξi )n

(ξ|ξi=ξil
)

=
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n+m r
(∂ξi )n(∂ξ j )m

(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.5)

Here, by the notation (ξ|ξi=ξil ,ξ
j=ξ

j
k
), we mean the point which is the projection of ξ

on the intersection of the planes ξi = ξil and ξ j = ξ
j
k , e.g.

(ξ|ξ1=ξ1l ,ξ
3=ξ3k

) = (ξ1l , ξ
2, ξ3k ) .

Equation (5.5) shows clearly that the tensor product is a commutative operation, i.e.

P i [r] ⊗ P j [r] = P j [r] ⊗ P i [r] .



178 5 Algebraic Grid Generation

Using the relations (5.1), (5.2), and (5.5), we obtain

∂

∂ξi
P i [r] ⊗ P j [r](ξ|ξi=ξis ,ξ

j=ξ
j
t
)

=
L j

∑

m=1

P j
k∑

k=0

Li
∑

l=1

Pi
l∑

p=0

d

dξi
αi
m,k(ξ

i
s)α

j
l,p(ξ

j
t )

∂k+p r
(∂ξi )k(∂ξ j )p

(ξ|ξi=ξim ,ξ j=ξ
j
l
)

= ∂r
∂ξi

(ξ|ξi=ξis ,ξ
j=ξ

j
t
) .

Analogously,

∂k+p

(∂ξi )k(∂ξ j )p
(P i [r] ⊗ P j [r])(ξ|ξi=ξis ,ξ

j=ξ
j
t
) = ∂k+p

(∂ξi )k(∂ξ j )p
r(ξ|ξi=ξis ,ξ

j=ξ
j
t
) .

Thus, the derivatives of the tensor product P i [r] ⊗ P j [r] with respect to ξi and ξ j

match the derivatives of the function r(ξ) at the intersections of the planes ξi = ξis
and ξ j = ξ

j
t .

5.2.3 Boolean Summation

Bidirectional Interpolation

The bidirectional interpolation matching the values of the function r(ξ) and of its
derivatives at the sections in the directions ξi and ξ j is defined through the Boolean
summation ⊕ :

P i [r] ⊕ P j [r](ξ) = P i [r](ξ) + P j [r](ξ) − P i [r] ⊗ P j [r](ξ) . (5.6)

Using (5.1) and (5.5), we obtain

P i [r] ⊕ P j [r](ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n r

(∂ξi )n
(ξ|ξi=ξil

)

+
L j

∑

k=1

P j
k∑

m=0

α
j
k,m(ξi )

∂m r
(∂ξ j )m

(ξ|ξ j=ξ
j
k
)

−
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n+m r
(∂ξi )n(∂ξ j )m

(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.7)
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Taking into account the relation

P j [r] − P i [r] ⊗ P j [r] = P j
[
r − P i [r]

]
(5.8)

we obtain the result that the formulas (5.6) and (5.7) for the Boolean summation
can be written as the ordinary sum of two unidirectional interpolants P i [r] and
P j

[
r − P i [r]

]
. Thus, using (5.1), we obtain

P i [r] ⊕ P j [r](ξ) = P j [r](ξ) +
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n(r − P j [r])

(∂ξi )n
(ξ|ξi=ξil

) . (5.9)

From (5.7), it is evident that

P i [r] ⊕ P j [r] = P j [r] ⊕ P i [r] ,

so the indices i and j in (5.7), (5.9) can be interchanged.
The Boolean summation (5.6) matches r(ξ) and its derivatives at all sections

ξi = ξik and ξ j = ξ
j
l , i.e.

∂k+p

(∂ξi )k(∂ξ j )p
(P i [r] ⊗ P j [r])(ξ|ξt=ξtl

) = ∂k+p

(∂ξi )k(∂ξ j )p
r(ξ|ξt=ξtl

) ,

where either t = i or t = j.

Three-Dimensional Interpolation

A multidirectional interpolation P[r](ξ) of r(ξ), which matches the values of the
function r(ξ) and of its derivatives at the sections ξi = ξil , l = 1, . . . , Li , in all direc-
tions ξi , i = 1, 2, 3, is defined through the Boolean summation of all unidirectional
interpolations P i [r], i = 1.2, 3:

P[r] = P1[r] ⊕ P2[r] ⊕ P3[r] . (5.10)

Taking into account (5.6), we obtain

P[r] = P1[r] + P2[r] + P3[r]
−P1[r] ⊗ P2[r] − P1[r] ⊗ P3[r] − P2[r] ⊗ P3[r]
+P1[r] ⊗ P2[r] ⊗ P3[r] . (5.11)

Recursive Form of Transfinite Interpolation

Using the relation (5.8), we can easily show that (5.11) is also equal to the following
equation:

P[r] = P1[r] + P2
[
r − P1[r]

] + P3

[
r − P1[r] − P2

[
r − P1[r]

]]
. (5.12)
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This represents the formula (5.10) for multidirectional interpolation as the sum of

the three unidirectional interpolations P1[r], P2
[
r − P1[r]

]
, and P3

[
r − P1[r] −

P2
[
r − P1[r]

]]
. Therefore, the expression (5.12) for P[r] gives a recursive form

of the interpolation (5.10) through a sequence of the unidirectional interpolations
(5.1):

F1[r] = P1[r] ,

F2[r] = F1[r] + P2
[
r − F1[r]

]
,

P[r] = F2[r] + P3
[
r − F2[r]

]

which is usually applied in constructing algebraic coordinate transformations. Using
(5.1), we obtain

F1[r](ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)
∂n r

(∂ξ1)n
(ξ1l , ξ

2, ξ3) ,

F2[r](ξ) = F1[r](ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, ξ2l , ξ

3) ,

P[r](ξ) = F2[r](ξ) +
L3

∑

l=1

P3
l∑

n=0

α3
l,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, ξ3l ) . (5.13)

It is easy to see, taking advantage of (5.2), that the multiple summation matches
the function r(ξ) and its derivatives with respect to ξ1, ξ2, and ξ3 on all sections
ξi = ξil , i = 1, 2, 3, of the cube Ξ 3.

Outer Boundary Interpolation

Equation (5.13) shows that the outer boundary interpolation based on the two-
boundary unidirectional interpolations described by (5.4) has the following form:

F1[r](ξ) =
P1
1∑

n=0

α1
1,n(ξ

1)
∂n r

(∂ξ1)n
(0, ξ2, ξ3)

+
P1
2∑

n=0

α1
2,n(ξ

1)
∂n r

(∂ξ1)n
(1, ξ2, ξ3) ,

F2[r](ξ) = F1[r](ξ) +
P2
1∑

n=0

α2
1,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, 0, ξ3)

+
P2
2∑

n=0

α2
2,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, 1, ξ3) ,
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P[r](ξ) = F2[r](ξ) +
P3
1∑

n=0

α3
1,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, 0)

+
P3
2∑

n=0

α3
2,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, 1) . (5.14)

Two-Dimensional Interpolation

The formulas for two-dimensional transfinite interpolation of a two-dimensional
vector-valued function x(ξ) : Ξ 2 → X2 are obtained from (5.13) and (5.14) by
assuming F2(r) = P(r), α3

l,k = 0, and omitting ξ3. For example, we obtain, from
(5.13), the following formula for two-dimensional transfinite interpolation:

F1[r](ξ1, ξ2) =
L1

∑

l=1

P1
l∑

k=0

α1
k(ξ

1)
∂k r

(∂ξ1)k
(ξ1l , ξ

2) ,

P[r](ξ1, ξ2) = F1[r](ξ1, ξ2)

+
L2

∑

l=1

P2
l∑

m=0

α2
l,m(ξ2)

∂m(r − F1[r])
(∂ξ2)m

(ξ1, ξ2l ) . (5.15)

5.3 Algebraic Coordinate Transformations

This section sets out the definitions of the algebraic coordinate transformations appro-
priate for the generation of coordinate grids through the formulas of transfinite inter-
polation.

5.3.1 Formulation of Algebraic Coordinate Transformation

The formulas of transfinite interpolation described above give clear guidance on how
to define an algebraic coordinate transformation

x(ξ) : Ξ 3 → X3 , x(ξ) = (x1(ξ), x2(ξ) , x3(ξ)) , ξ = (ξ1, ξ2, ξ3)

from the cube Ξ 3 onto a domain X3 ⊂ R3 which matches, at the boundary and
some chosen intermediate coordinate planes of the cube, the prescribed values and
the specified derivatives of x(ξ) along the coordinate directions emerging from the
coordinate surfaces (Fig. 5.1).

Let there be chosen, in each direction ξi , some coordinate planes ξi = ξil , l =
1, . . . , Li , of the cube Ξ 3, including two opposite boundary planes ξi = ξi1 = 0,
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Fig. 5.1 Coordinate transformation

ξi = ξiLi = 1. Furthermore, let there be specified, at each section ξi = ξil , a smooth
three-dimensional vector-valued function denoted by Ai

l,0(ξ|ξi=ξil
), which is assumed

to represent the values of the function x(ξ) being constructed at the points of this
section. Also, let there be specified, at this section, three-dimensional vector-valued
functions denoted by Ai

l,n(ξ|ξi=ξil
) which represent derivatives with respect to ξi of

the function x(ξ) on the respective sections ξi = ξil . Thus, it is assumed that

Ai
l,0(ξ|ξi=ξil

) = ∂0

(∂ξi )0
x(ξ|ξi=ξil

) = x(ξ|ξl=ξil
) , l = 1, . . . , Li ,

Ai
l,n(ξ|ξi=ξil

) = ∂n

(∂ξi )n
x(ξ|ξi=ξil

) , n = 1, . . . , Pi
l .

Since
∂m

(∂ξ j )m

( ∂nx
(∂ξi )n

)
= ∂n

(∂ξ j )n

( ∂mx
(∂ξ j )m

)
,

we find that the vector functions Ai
l,n(ξ|ξi=ξil

) and A j
k,m(ξ|ξ j=ξ

j
k
) specifying the cor-

responding derivatives on the planes ξi = ξil and ξ j = ξ
j
k , respectively, must be com-

patible at the intersection of these planes, i.e.

∂m

(∂ξ j )m
Ai
l,n(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = ∂n

(∂ξ j )n
A j
k,m(ξ|ξi=ξil ,ξ

j=ξ
j
k
) ,

n = 0, . . . , Pi
l , m = 0, . . . , P j

k . (5.16)

When the vector-valued functions Ai
l,k satisfying (5.16) are specified, the transfor-

mation x(ξ) is obtained by substituting the functions Ai
l,0 and Ai

l,n for the values of
r(ξ) and of its derivatives ∂n r/∂(ξi )n(ξ|ξi=ξil

), respectively, in the above formulas
for transfinite interpolation. Hence, the transformation based on the unidirectional
interpolation given by (5.1) has the form
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P i (ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )Ai
l,n(ξ|ξi=ξil

) . (5.17)

This mapping matches the values of Ai
l,n only at the coordinate planes ξi = ξil cross-

ing the chosen coordinate ξi .
The formula (5.5) for the tensor product ⊗ of the two mappings P i (ξ) and P j (ξ)

obtained from (5.17) then gives the transformation

P i ⊗ P j (ξ)

=
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n

(∂ξi )n
A j
k,m(ξ|ξi=ξil ,ξ

j=ξ
j
k
) , (5.18)

which matches the values of Ai
l,n and A j

k,m at the intersection of the planes ξi = ξil
and ξ j = ξ

j
k . According to the consistency conditions (5.16), the operation of the

tensor product is commutative, i.e.

P i ⊗ P j (ξ) = P j ⊗ P i (ξ) ,

which is indispensable for an appropriate definition of the coordinate transformation
x(ξ).

5.3.2 General Algebraic Transformations

The general formula for the three-dimensional coordinate transformation x(ξ) that
provides a matching with Ai

l,n in all directions and at all chosen coordinate planes
ξi = ξil is given by the replacement of the values of the function r(ξ) and of its
derivatives in the recursive formula (5.13) by the functions Ai

l,n . Thus, we obtain

F1(ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)A1
l,n(ξ

1
l , ξ

2, ξ3) ,

F2(ξ) = F1(ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n(ξ

2)
(
A2
l,n − ∂nF1

(∂ξ2)n

)
(ξ1, ξ2l , ξ

3) ,

x(ξ) = F2(ξ) +
L3

∑

l=1

P3
l∑

n=0

α3
l,n(ξ

3)
(
A3
l,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, ξ3l ) . (5.19)
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As the specified functions Ai
l,n are consistent on the intersections of the planes

ξi = ξil and ξ j = ξ
j
k and, therefore, the tensor product of the transformations P i (ξ)

and P j (ξ) is commutative, the result (5.19) is independent of the specific ordering
of the successive interpolation directions ξi .

The formula for the two-dimensional algebraic coordinate transformation is
obtained in a corresponding way from (5.15):

F1(ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)A1
l,n(ξ

1
l , ξ

2) ,

x(ξ) = F1(ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n

(
A2
l,n − ∂nF1

(∂ξ2)n

)
(ξ1, ξ2l ) , (5.20)

where Ai
l,n are two-dimensional vector-valued functions representing x(ξ) for n = 0

and its derivatives for Pi
l ≥ n > 0 at the sections

ξi = ξil , i = 1, 2 , l = 1, . . . , Li .

These functions must satisfy the relations (5.16) at the points (ξ1l , ξ2m), l =
1, . . . , L1, m = 1, . . . , L2.

The vector-valued function x(ξ) defined by (5.19) maps the unit cubeΞ 3 onto the
physical region X3 bounded by the six coordinate surfaces specified by the parame-
trizations Ai

1,0(ξ|ξi=0) and Ai
Li ,0(ξ|ξi=1), i = 1, 2, 3, from the respective boundary

intervals ofΞ 3.The introduction of the intermediate planes ξi = ξil , 0 < ξil < 1, into
the formulas of transfinite interpolation allows one to control the grid distribution
and grid spacing in the vicinity of some selected interior surfaces of the domain
X3. A similar result is achieved by joining, at the selected boundary surfaces, a
series of transformations x(ξ) constructed using the above described outer boundary
interpolation equation (5.14):

F1(ξ) =
P1
1∑

n=0

α1
1,n(ξ

1)A1
1,n(0, ξ

2, ξ3)

+
P1
2∑

n=0

α1
2,n(ξ

1)A1
2,n(1, ξ

2, ξ3) ,

F2(ξ) = F1(ξ) +
P2
1∑

n=0

α2
1,n(ξ

2)
(
A2
1,n − ∂nF1

(∂ξ2)n
(ξ1, 0, ξ3)

)

+
P2
2∑

n=0

α2
2,n(ξ

2)
(
A2
2,n − ∂nF1

(∂ξ2)n

)
(ξ1, 1, ξ3) ,
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Fig. 5.2 Two-dimensional nonsmooth grid generated by means of transfinite interpolation

x(ξ) = F2(ξ) +
P3
1∑

n=0

α3
1,n(ξ

3)
(
A3
1,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, 0)

+
P3
2∑

n=0

α3
2,n(ξ

3)
(
A3
2,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, 1) . (5.21)

This boundary interpolation transformation x(ξ) is widely applied to generate grids
in regions around bodies. These domains cannot be successfully gridded by one
global mapping x(ξ) from the unit cube Ξ 3 because of the inevitable singularities
pertinent to such global maps. An approach based on the matching of a series of
boundary-interpolated transformations is thus preferable. It only requires the con-
sistent specification of the parametrizations and coordinate directions at the corre-
sponding boundary surfaces.

Equations (5.18)–(5.21) use the same set of blending functions αi
l,n(ξ

i ) to define
each component xi (ξ) of the transformation x(ξ). These formulas can be generalized
by introducing an individual set of blending functions αi

l,n(ξ
i ) for the definition

of each component xi (ξ) of the map x(ξ) being built. Such a generalization gives
broader opportunities to define appropriate algebraic coordinate transformations x(ξ)

and, therefore, to generate grids more successfully.
One of the drawbacks of the method of transfinite interpolation for generating

structured grids is that it carries boundary-sharp bends inside a domain (Fig. 5.2).

5.4 Lagrange and Hermite Interpolations

The recursive formula (5.19) represents a general form of transfinite interpolation
which includes the prescribed values of the constructed coordinate transformation
x(ξ) and of its derivatives up to order Pi

l at the sections ξi = ξil of the cube Ξ 3.



186 5 Algebraic Grid Generation

However, most grid generation codes require, as a rule, only specification of the
values of the function x(ξ) being sought and sometimes, in addition, the values
of its first derivatives at the selected sections. Such sorts of algebraic coordinate
transformation are described in this section.

5.4.1 Coordinate Transformations Based on Lagrange
Interpolation

A Lagrange interpolation matches only the values of the function r(ξ) at some
prescribed sections ξi = ξil , l = 1, . . . , Li , of the cube Ξ 3. So, in accordance with
(5.1), the unidirectional Lagrange interpolation has the following form:

P i [r](ξ) =
Li

∑

l=1

αi
l (ξ

i )r(ξ|ξi=ξil
) .

The blending function αi
l (ξ

i ) in this equation corresponds to αi
l,0(ξ

i ) in the for-
mula (5.1). Taking into account (5.2), the blending functions αi

l (ξ
i ), l = 1, . . . , Li ,

depending on one independent variable ξi , must be subject to the following restric-
tions:

αi
l (ξ

i
k) = δlk , l, k = 1, . . . , Li . (5.22)

These restrictions imply that the blending function αi
l for a fixed l equals 1 at the

point ξi = ξil and equals zero at all other points ξim, m �= l. The formula for the con-
struction of a three-dimensional coordinate mapping x(ξ) based on the Lagrangian
interpolation is obtained from (5.19) as

F1(ξ) =
L1

∑

l=1

α1
l (ξ

1)A1
l (ξ|ξ1=ξ1l

) ,

F2(ξ) = F1(ξ) +
L2

∑

l=1

α2
l (ξ

2)
(
A2
l − F1

)
(ξ|ξ2=ξ2l

) ,

x(ξ) = F2(ξ) +
L3

∑

l=1

α3
l (ξ

3)
(
A3
l − F2

)
(ξ|ξ3=ξ3l

) , (5.23)

where the blending functions αi
l (ξ

i ) satisfy (5.22), and the functions Ai
l (ξ|ξi=ξil

)

corresponding to Ai
l,0 in (5.22) specify the values of the mapping x(ξ) being sought.

In accordancewith (5.16), the specified functions Ai
l must coincide at the intersection

of their respective coordinate planes ξi = ξil , i.e.



5.4 Lagrange and Hermite Interpolations 187

Ai
l (ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k (ξ|ξi=ξil ,ξ
j=ξ

j
k
) .

When L1 = L2 = L3 = 2, i.e. the prescribed interior sections are absent, then the
i th component of the transformation (5.23) has the following form:

Fi
1(ξ

1, ξ2, ξ3) = α1
1(ξ

1)ψi (0, ξ2, ξ3) + α1
2(ξ

1)ψi (1, ξ2, ξ3),
Fi
2(ξ

1, ξ2, ξ3) = Fi
1(ξ

1, ξ2, ξ3) + α2
1(ξ

2)[ψi (ξ1, 0, ξ3) − Fi
1(ξ

1, 0, ξ3)] +
+ α2

2(ξ
2)[ψi (ξ1, 1, ξ3) − Fi

1(ξ
1, 1, ξ3)],

xi (ξ1, ξ2, ξ3) = Fi
2(ξ

1, ξ2, ξ3) + α3
1(ξ

3)[ψi (ξ1, ξ2, 0) − Fi
2(ξ

1, ξ2, 0)] +
+ α3

2(ξ
3)[ψi (ξ1, ξ2, 1) − Fi

2(ξ
1, ξ2, 1)], i = 1, 2, 3,

(5.24)

where the function ψi (ξ1, ξ2, ξ3), i = 1, 2, 3 is the i th component of a speci-
fied boundary transformation ψ(ξ) : ∂Ξ 3 → ∂X3; αi

l (t) : [0, 1] → R, i = 1, 2, 3,
l = 1, 2 are scalar blending functions subject to the following restrictions:

αi
1(0) = 1, αi

1(1) = 0, αi
2(0) = 0, αi

2(1) = 1, i = 1, 2, 3. (5.25)

In particular, when αi
1(t) = 1 − t , αi

2(t) = t , i = 1, 2, 3, we obtain the simplest
formula of transfinite interpolation in a vector form

F1(ξ) = (1 − ξ1)ψ(0, ξ2, ξ3) + ξ1ψ(1, ξ2, ξ3),
F2(ξ) = F1(ξ) + (1 − ξ2)[ψ(ξ1, 0, ξ3) − F1(ξ

1, 0, ξ3)]
+ ξ2[ψ(ξ1, 1, ξ3) − F1(ξ

1, 1, ξ3)],
x(ξ) = F2(ξ) + (1 − ξ3)[ψ(ξ1, ξ2, 0) − F2(ξ

1, ξ2, 0)]
+ ξ3[ψ(ξ1, ξ2, 1) − F2(ξ

1, ξ2, 1)].

(5.26)

The conditions (5.25) provide the identity

x(ξ)|∂Ξ 3 = ψ(ξ)|∂Ξ 3 (5.27)

for the transformation x(ξ) obtained by (5.24).
Now we consider some examples of the blending functions used in Lagrange

interpolations.

Lagrange Polynomials

The best-known blending functions αi
l (ξ

i ) satisfying (5.22) are defined as Lagrange
polynomials applied to the points ξi1, . . . , ξ

i
Li :

αi
l (ξ

i ) =
Li
∏

j=1

ξi − ξij

ξil − ξij
, j �= l . (5.28)

For example, when Li = 2, then, from (5.28),



188 5 Algebraic Grid Generation

αi
1(ξ

i ) = ξi − ξi2
ξi1 − ξi2

, αi
2(ξ

i ) = ξi − ξi1
ξi2 − ξi1

= 1 − αi
1(ξ

i ) . (5.29)

Therefore, for the boundary interpolation, i.e. when ξi1 = 0, ξi2 = 1, we obtain

αi
1(ξ

i ) = 1 − ξi , αi
2(ξ

i ) = ξi . (5.30)

Spline Functions

TheLagrange polynomials become polynomials of a high-orderwhen a large number
of intermediate sections ξi = ξil is applied to control the grid distribution in the
interior of the domain X3. These polynomials of high order may cause oscillations.
One way to overcome this drawback is to use splines as blending functions αi

l (ξ
i ).

The splines are defined as polynomials of low-order between each of the specified
points ξi = ξiLi , with continuity of some derivatives at the interior points.

Piecewise-continuous splines satisfying (5.22) can be derived by means of linear
polynomials. The simplest pattern of such blending functions in the form of splines
consists of piecewise linear functions:

αl(ξ
i ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 , ξi ≤ ξil−1,

ξi − ξil−1

ξil − ξil−1

, ξil−1 ≤ ξi ≤ ξil ,

ξil+1 − ξi

ξil+1 − ξil
, ξil ≤ ξi ≤ ξil+1,

0 , ξi ≥ ξil+1

However, the use of these blending functions results in a nonsmooth point distribu-
tion, since they themselves are not smooth.

Continuity of the first derivative of a spline blending function can be achieved
with polynomials of the third-order, regardless of the number of interior sections.

Construction Based on General Functions

The application of polynomials in the Lagrange interpolation gives only a poor
opportunity to control the grid spacing near the selected boundary and interior sur-
faces. In this subsection, we describe a general approach, originally, proposed by
Liseikin (1999), to constructing the blending functions αi

l (ξ
i ) through the use of a

wide range of basic functions, which provides a real opportunity to control the grid
point distribution.

The formulation of the blending functions on the interval 0 ≤ ξi ≤ 1, with Li

specified points,
0 = ξi1 < · · · < ξiLi = 1 ,

requires only the specification of some univariate smooth positive function

φ(x) : [0,∞) → [0,∞) ,
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satisfying the restrictions φ(0) = 0 ,φ(1) = 1 . This function can be used as a basic
element to derive the blending functions satisfying (5.22) through the following
standard procedure.

First, we define two series of functions

φ
f
l (ξi ) and φb

l (ξ
i ) , l = 1, . . . , Li .

The functions φ
f
l (ξi ) are defined for l = 1 by

φ
f
1 (ξi ) = φ(1 − ξi ) , 0 ≤ ξ ≤ 1 ,

and for 1 < l ≤ Li by

φ
f
l (ξi ) =

⎧
⎨

⎩

0 , 0 ≤ ξi ≤ ξil−1 ,

φ
(ξi − ξil−1

ξil − ξil−1

)
, ξil−1 ≤ ξi ≤ 1 .

The functions φb
l (ξ

i ) are determined similarly:

φb
Li (ξ

i ) = φ(ξi )

and for 1 ≤ l < Li ,

φb
l (ξ

i ) =
⎧
⎨

⎩

0 , 1 ≥ ξi ≥ ξil+1 ,

φ
(ξil+1 − ξi

ξil+1 − ξil

)
, 0 ≤ ξi ≤ ξil+1 .

Using the functions φ
f
l (ξi ) and φb

l (ξ
i ), the blending coefficients αi

l (ξ
i ) satisfying

(5.22) are defined by

αi
l (ξ

i ) = φ
f
l (ξi )φb

l (ξ
i ) , l = 1, . . . , Li . (5.31)

Each of these blending functions vanishes outside some interval, and thus it affects
the interpolation function only locally (Fig. 5.3).

Note that this procedure for constructing blending functions for the Lagrange
interpolations will yield splines if the original function φ is a polynomial. This
construction may be extended by using various original functions for the terms φ

f
l

and φb
l in (5.31).

The simplest example of the basic function is φ(x) = x . However, this function
generates nonsmooth blending coefficients αi

l (ξ
i ) at the points ξil−1 and ξil+1, since

αi
l (ξ

i ) ≡ 0 outside the interval (ξil−1, ξil+1). If the derivative of φ(x) at the point
x = 0 is zero, then the blending functions derived by the procedure described are
smooth. One example of such a function is φ(x) = x2. It can readily be shown that
in this case, the blending functions αi

l are of the class C
1[0, 1].
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Fig. 5.3 Smooth blending
functions

Continuity of the higher-order derivatives of the blending functions (5.31) is
obtained when the basic function φ(x) satisfies the condition φ(k)(0) = 0, k > 1, in
particular, if φ(x) = xk+1. The function φ(x) = ϕ(x), where

ϕ(x) =
{
0 , x = 0 ,

a1−1/x , x > 0 ,

with a > 1, generates an infinitely differentiable blending function αi
l (ξ

i ) on the
interval [0, 1].Figure5.3 demonstrates the blending functions constructed forφ(x) =
ϕ(x) (left) and φ(x) = x2 (right).

Relations Between Blending Functions

Now we point out some relations between blending functions which can be useful
for their construction. If the functions αi

l (ξ
i ) are blending functions for Lagrangian

interpolation, namely, they are subject to the restrictions (5.22), then the functions
βi
l (ξ

i ) defined below satisfy the condition (5.22) as well:

(1) βi
l (ξ

i ) = αi
l (ξ

i ) f (ξ) if f (ξil ) = 1 ,

(2) βi
l (ξ

i ) = αi
l [ f (ξi )] if f (ξil ) = ξil ,

(3) βi
l (ξ

i ) = f [αi
l (ξ

i )] if f (0) = 0, f (1) = 1 ,

(4) βi
l (ξ

i ) = αi
l (ξ

i ) + f (ξi ) if f (ξil ) = 0 ,

(5) βi
l (ξ

i ) = 0.5[αi
l (ξ

i ) + γi
l (ξ

i )] if γi
l (ξ) satisfies (5.22) . (5.32)
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5.4.2 Transformations Based on Hermite Interpolation

Hermite interpolation matches the values of both the function r(ξ), and its first
derivatives ∂r/∂ξi (ξ|ξi=ξil

) at each section ξi = ξil , l = 1, . . . , Li , and therefore, the
unidirectional interpolation (5.1) takes the following form:

P i [r](ξ) =
Li

∑

l=1

(
αi
l,0(ξ

i )r(ξ|ξi=ξil
) + αi

l,1(ξ
i )

∂r
∂ξi

(ξ|ξi=ξil
)
)

. (5.33)

The formula (5.19) in the case of a Hermite coordinate mapping x(ξ)which matches
the specified values of x(ξ), denoted by Ai

l,0, and of its first derivatives, denoted by
Ai
l,1, at all sections ξi = ξil , l = 1, . . . , Li , and in all directions ξi , i = 1, 2, 3, is

thus reduced to

F1(ξ) =
L1

∑

l=1

(
α1
l,0(ξ

1)A1
l,0(ξ

1
l , ξ

2, ξ3) + α1
l,1(ξ

1)A1
l,1(ξ

1
l , ξ

2, ξ3)
)

,

F2(ξ) = F1(ξ) +
L2

∑

l=1

(
α2
l,0(ξ

2)(A2
l,0 − F1)(ξ

1, ξ2l , ξ
3)

+α2
l,1(ξ

2)(A2
l,1 − ∂F1

∂ξ2
)(ξ1, ξ2l , ξ

3)
)

,

x(ξ) = F2(ξ) +
L3

∑

l=1

(
α3
l,0(ξ

3)
(
A3
l,0 − F2

)
(ξ1, ξ2, ξ3l )

+α3
l,1(ξ

3)
(
A3
l,1 − ∂F2

∂ξ3
)
(ξ1, ξ2, ξ3l )

)
, (5.34)

where, in accordance with (5.2), the blending functions αi
l,0, αi

l,1 satisfy the condi-
tions

αi
l,0(ξ

i
k) = δlk , αi

l,1(ξ
i
k) = 0 ,

d

dξi
αi
l,1(ξ

i
k) = δlk ,

d

dξi
αi
l,0(ξ

i
k) = 0 ,

l, k = 1, . . . , Li , i = 1, 2, 3 , (5.35)

and the vector-valued functions Ai
l,n(ξ|ξi=ξil

) satisfy the consistency conditions
(5.16):

Ai
l,0(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k,0(ξ|ξi=ξil ,ξ
j=ξ

j
k
) ,

∂

∂ξ j
Ai
l,0(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k,1(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.36)



192 5 Algebraic Grid Generation

Construction of Blending Functions

Theblending functionsαi
l,m(ξi ),m = 0, 1, forHermite interpolations canbeobtained

from the smooth blending functions defined for Lagrange interpolations. Namely,
let αi

l (ξ
i ) , l = 1, . . . , Li , be some smooth scalar functions meeting the conditions

(5.22). The functions αi
l,m, m = 0, 1, determined by the relations

αi
l,0 =

(
1 − 2(ξi − ξil )

dαi
l

dξi
(ξi )

)
[αi

l (ξ
i )]2 ,

αi
l,1 = (ξi − ξil )[αi

l (ξ
i )]2 , (5.37)

then satisfy (5.35) and, therefore, are the blending functions for the Hermite inter-
polations. For example, if Li = 2 and the Lagrangian blending functions are defined
through (5.29), then, from (5.37),

αi
1,0(ξ

i ) =
(
1 − 2

ξi − ξi1
ξi1 − ξi2

)( ξi − ξi2
ξi1 − ξi2

)2
,

αi
2,0(ξ

i ) =
(
1 − 2

ξi − ξi2
ξi2 − ξi1

)( ξi − ξi1
ξi2 − ξi1

)2
,

αi
1,1(ξ

i ) = (ξi − ξi1)
( ξi − ξi2
ξi1 − ξi2

)2
,

αi
2,1(ξ

i ) = (ξi − ξi2)
( ξi − ξi1
ξi2 − ξi1

)2
. (5.38)

So, if ξi1 = 0, ξi2 = 1, then, from these relations,

αi
1,0(ξ

i ) = (1 + 2ξi )(ξi − 1)2 ,

αi
2,0(ξ

i ) = (3 − 2ξi )(ξi )2 = 1 − αi
1,0(ξ

i ) ,

αi
1,1(ξ

i ) = ξi (1 − ξi )2 ,

αi
2,1(ξ

i ) = (ξi − 1)(ξi )2 . (5.39)

If the blending functions for Lagrange interpolation satisfy the condition

dαi
l

dξi
(ξi ) ≡ 0 , if ξi ≥ ξil+1 and ξi ≤ ξil−1 , (5.40)

then the blending functions αi
l,n(ξ

i ) for the Hermite interpolation can be derived
from αi

l (ξ
i ) by the relations

αi
l,0(ξ

i ) =
(
1 + (ξi − ξil )

dαi
l

dξi
(ξil )

)
αi
l (ξ

i ) ,

αi
l,1(ξ

i ) = (ξi − ξil )α
i
l (ξ

i ) . (5.41)
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It is readily shown that the blending functions αi
l,n(ξ

i ), n = 0, 1, satisfy the restric-
tion (5.35). Note that the approach described above for the general construction of
the blending functions for Lagrange interpolation yields the smooth blending func-
tions αi

l (ξ
i ), l = 1, . . . , Li , in the form (5.31), which, in addition to (5.22), are also

subject to (5.40).

Deficient Form of Hermite Interpolation

Often, it is not reasonable to specify the values of the first derivative with respect to ξi

of the sought coordinate transformation x(ξ) at all sections ξi = ξil , l = 1, . . . , Li ,
but only at some selected ones. By omitting the corresponding terms

α1
l,1(ξ

1)A1
l,1(ξ|ξ1=ξ1l

)

and/or

αi
l,1(ξ

i )(Ai
l,1 − ∂Fi−1

∂ξi
)(ξ|ξi=ξil

) , i = 2, 3 ,

in (5.34), a deficient formofHermite interpolation is obtainedwhichmatches the val-
ues of the first derivatives at the selected sections only. For example, the outer bound-
ary interpolation which contains the outer boundary specifications on all boundaries
but the outward derivative with respect to ξ1 on the boundary ξ1 = 0 only has, in
accordance with (5.34), the form

F1(ξ) = α1
1,0(ξ

1)A1
1,0(0, ξ

2, ξ3) + α1
2,0(ξ

1)A1
2,0(1, ξ

2, ξ3)

+α1
1,1(ξ

1)A1
1,1(0, ξ

2, ξ3) ,

F2(ξ) = F1(ξ) + α2
1,0(ξ

2)(A2
1,0 − F1)(ξ

1, 0, ξ3)

+α2
2,0(ξ

2)(A2
2,0 − F1)(ξ

1, 1, ξ3) ,

x(ξ) = F2(ξ) + α3
1,0(ξ

3)(A3
1,0 − F2)(ξ

1, ξ2, 0)

+α3
2,0(ξ

3)(A3
2,0 − F2)(ξ

1, ξ2, 1) . (5.42)

Specification of Normal Directions

In the outer boundary interpolation technique, the outward derivatives
Ai
1,1(ξ|ξi=0), Ai

2,1(ξ|ξi=1) along the lines emerging from the boundary surfaces are
usually required to be performed as normals to the corresponding boundary sur-
faces in order to generate orthogonal grids near the boundaries. The boundary sur-
faces are parametrized by the specified boundary transformations Ai

1,0(ξ|ξi=0) and
Ai
2,0(ξ|ξi=1), respectively. Therefore, these normals can be computed from the cross

product of the vectors tangential to the boundary surfaces. For example, the ξ1 coor-
dinate direction A1

l,1(ξ
1
l , ξ

2, ξ3) can be specified as

A1
1,1(0, ξ

2, ξ3) = g(ξ2, ξ3)
( ∂

∂ξ2
A1
1,0(0, ξ

2, ξ3) × ∂

∂ξ3
A1
1,0(0, ξ

2, ξ3)
)

,
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where g(ξ2, ξ3) is a scalar function that can be used to control the spacing of the
grid lines emerging from the boundary surface represented by the parametrization
A1
1,0(0, ξ

2, ξ3). Such a specification of the first derivatives can be chosen on the
interior sections as well.

Parametrization of Cells

Formulas of transfinite interpolation can also be used for definition of the shape of
a grid cell and the parametrization of this cell by values of the coordinates of its
vertices. For this purpose, a transformation of the cube Ξ 3 into X3 is written out in
such a way that the vertices of the cube are transformed on the vertices of the cell,
while the edges of the cube are transformed by the formula of the one–dimensional
transformation. After this, the faces of the cube are transformed on the faces of the
cell with the formula of the two–dimensional transfinite interpolation, and finally the
interior of the cube Ξ 3 is mapped on the interior of the cell through the formula of
the three–dimensional transfinite interpolation. The formula of such a transformation
has the following form:

x(ξ) = (1 − ξ1)(1 − ξ2)(1 − ξ3)x000 + (1 − ξ1)(1 − ξ2)ξ3x001 +
+ (1 − ξ1)ξ2(1 − ξ3)x010 + (1 − ξ1)ξ2ξ3x011 + ξ1(1 − ξ2)(1 − ξ3)x100 +
+ ξ1(1 − ξ2)ξ3x101 + ξ2ξ2(1 − ξ3)x110 + ξ1ξ2ξ3x111,

where xi1i2i3 = (x1(i1, i2, i3), x
2(i1, i2, i3), x

3(i1, i2, i3)), i1, i2, i3 = 0, 1, are the
vertices of the cell. The edges of this cell are the straight lines connecting its vertices,
while its faces are surfaces of second order.

5.5 Control Techniques

Commonly, all algebraic schemes are computationally efficient but require a signif-
icant amount of user interaction and control techniques to define workable meshes.
This section delineates some control approaches applied to algebraic grid generation.

The spacing between the grid points and the skewness of the grid cells in the
physical domain is controlled in the algebraic method, primarily by the blending
functions αi

l,n(ξ
i ), by the representations of the boundary and intermediate surfaces

Ai
l,0(ξ|ξi=ξil

), and by the values of the first derivatives Ai
l,1(ξ|ξi=ξil

) in the interpolation
equations.

As was stated in Chap.4, an effective approach which significantly simplifies
the control of grid generation relies on the introduction of an intermediate control
domain between the computational and the physical regions. The control domain
is a unit cube Q3 with the Cartesian coordinates qi , i = 1, 2, 3. In this approach,
the coordinate transformation x(ξ) from the unit cube Ξ 3 onto the physical region
X3 is defined as a composition of two transformations: q(ξ) from Ξ 3 onto Q3 and
g(q), q = (q1, q2, q3), from Q3 onto X3, that is,

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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x(ξ) = g[q](ξ) : Ξ 3 → X3 .

The functions g(q) and q(ξ) can be constructed through the formulas of transfi-
nite interpolation or by other techniques. As both the computational domain Ξ 3 and
the intermediate domain Q3 are the standard unit cubes, the formulas of transfinite
interpolation for the generation of the intermediate transformations q(ξ) are some-
what simpler than the original expressions. In these formulas, it can be assumed,
without any loss of generality, that the boundary planes ξi = 0 and ξi = 1 for each
i = 1, 2, 3 are transformed by the function q(ξ) onto the boundary planes qi = 0
and qi = 1, respectively, so that

q(ξ|ξ1=0) = [0, q2(0, ξ2, ξ3), q3(0, ξ2, ξ3)] ,

q(ξ|ξ1=1) = [1, q2(1, ξ2, ξ3), q3(1, ξ2, ξ3)] .

Therefore, the first component q1(ξ) of the Lagrangian boundary interpolation for
the intermediate mapping q(ξ) has the form

F1(ξ) = α1
2(ξ

1) ,

F2(ξ) = F1(ξ) + α2
1(ξ

2)
(
u1(ξ1, 0, ξ3) − α1

2(ξ
1)

)

+α2
2(ξ

2)
(
u1(ξ1, 1, ξ3 − α1

2(ξ
1)

)
,

q1(ξ) = F2(ξ) + α3
1(ξ

3)
(
u1(ξ1, ξ2, 0) − F2(ξ

1, ξ2, 0)
)

+α3
2(ξ

3)
(
u1(ξ1, ξ2, 1) − F2(ξ

1, ξ2, 1)
)

. (5.43)

Analogous equations can be defined for the other components of the intermediate
transformation q(ξ).

The functions based on the reference univariate transformations xi,c(ϕ, ε) and
xi,s(ϕ, ε) introduced in Chap.4 can be used very successfully as blending functions
to construct intermediate transformations by Lagrange and Hermite interpolations
in the two-boundary technique. In the case of Lagrange interpolation, the blending
function αi

1,0(ξ
i ) satisfies the conditions αi

1,0(0) = 1, αi
1,0(1) = 0. Therefore, any

monotonically decreasing function derived by applying the procedures described in
Sect. 4.4 to the reference univariate functions can be used as the blending function
αi
1,0(ξ

i ). Analogously, the blending function αi
2,0(ξ

i ) can be represented by any
monotonically increasing mapping based on one of the standard local contraction
functions xi (ϕ, ε). The blending functions αi

i,1(ξ
i ) for Hermite interpolations can

also use these standard transformations through applying the operation described by
(5.37) to the blending functions αi

1,0(ξ
i ). By choosing the proper functions, one has

an opportunity to construct intermediate transformations that provide adequate grid
clustering in the zones where it is necessary.

http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_4
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Fig. 5.4 Quadrangular
adaptive grid

One example of a two-dimensional adaptive quadrangular grid, with the inter-
mediate grid generated in such a manner through the basic stretching functions, is
presented in Fig. 5.4.

5.6 Transfinite Interpolation from Triangles
and Tetrahedrons

The formulas of transfinite interpolation define a coordinate transformation from the
unit cube Ξ 3 (the square Ξ 2 in two dimensions and line Ξ 1 in one dimension) onto
a physical domain X3 (or X2 or X1). The application of this interpolation may lead
to singularities of the type pertaining to polar transformations when any boundary
segment of the physical domain, corresponding to a boundary segment of the com-
putational domain, is contracted into a point. An example is when the boundary of
a physical two-dimensional domain X2 is composed of three smooth segments, as
shown in Fig. 5.5. One way to treat such regions is to use coordinate transformations
from triangular computational domains in two dimensions and tetrahedral domains
in three dimensions. It can be seen that the transfinite interpolation approach can be
modified to generate triangular or tetrahedral grids by mapping a standard triangular
or tetrahedral domain, respectively. The formulation of a transfinite interpolation
to obtain these transformations from the standard unit tetrahedron (triangle in two
dimensions) is based on the composition of an operation of scaling (stretching) the
coordinates to deform the tetrahedron into the unit cube Ξ 3 and an algebraic trans-
formation constructed by the equations given above.

This procedure is readily clarified in two dimensions by the scheme depicted in
Fig. 5.5. Suppose that the boundary segments AB, BC, and CD of the unit triangle
T 2 are mapped onto the corresponding boundary segments AB, BC, and CD of
the domain X2. Then, in this procedure, the standard triangle T 2 with a uniform
triangular grid is expanded to a square by a deformation ξ(t) uniformly stretching
each horizontal line of the triangle tomake it a rectangle, and afterwards, the rectangle
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Fig. 5.5 Scheme for gridding triangular curvilinear domains with triangles

is uniformly stretched in the vertical direction tomake it the unit squareΞ 2, as shown
in Fig. 5.5. This operation is the inverse of the contraction t(ξ) of the square along the
horizontal and vertical lines to transform it into the triangle. As a result, we obtain
a square Ξ 2 with triangular cells on all horizontal levels except the top one. The
number of these cells in each horizontal band reduces from the lower levels to the
upper ones. The top level consists of one rectangular cell.With this deformation of T 2,
the transformation between the boundaries of T 2 and X2 generates the transformation

x(ξ) : ∂Ξ 2 → ∂X2 ,

which is the composition of t(ξ) and the assumed mapping of the boundary of T 2

onto the boundary of X2. This boundary transformation maps the top segment of
Ξ 2 onto the point C in X2. Now, applying the formulas of transfinite interpolation
to a square Ξ 2 with such grid cells, and the specified boundary transformation, one
generates the algebraic transformation

x(ξ) : Ξ 2 → X2

and consequently
x[ξ(t)] : T 2 → X2

from the triangle to the physical region X2 with the prescribed values of the transfor-
mation at the boundary segments of the triangle. Note that the composition x[ξ(t)]
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Fig. 5.6 Example of an adaptive algebraic triangular grid (right) and the corresponding grid on the
intermediate domain (left) generated by the algebraic method

is continuous as the upper segment of Ξ 2 is transformed by x(ξ) onto one point C
in X2.

In fact, such a triangular grid in the physical domain can be generated directly by
mapping the nonuniform grid constructed in the unit square Ξ 2 as described above
onto X2 with a standard algebraic coordinate transformation defined by transfinite
interpolation.

The generation of grids by this approach is very well justified for regions shaped
like curvilinear triangles, i.e. their boundaries are composed of three smooth curves
intersecting at angles θ less than π. By dividing an arbitrary domain into triangular
curvilinear domains, one can generate a composite triangular grid in the entire domain
through the procedure described above.

An analogous procedure using transfinite interpolation is readily formulated for
generating tetrahedral grids in regions with shapes similar to that of a tetrahedron.

The approach for generating triangular or tetrahedral meshes described above
can be extended to include grid adaptation by adding to the scheme an intermediate
domain and intermediate transformation q(ξ), as illustrated in Fig. 5.6, and special
blending functions, as in the case of generating hexahedral (or quadrilateral) grids.
Here, an adaptive triangular grid is generated through the composition of the trans-
formations q(ξ) and x(q), where q(ξ) is an intermediate mapping providing grid
adaptation and x(q) is an algebraic transformation.

Note that the procedure described above for generating triangular grids (tetrahe-
dral and prismatic ones in three dimensions) can be realized analogously in other
techniques based on coordinate transformations from the unit cube.
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5.7 Drag and Sweeping Methods

Through the methods described above, the interior grid nodes are obtained by inter-
polating the grid points from all boundary segments. For domains of relatively simple
geometries, the grid nodes may be obtained by dragging or sweeping the grid nodes
of one boundary section. Suppose these nodes are xi , i = 1, . . . , N ; then, both the
interior nodes and another boundary grid nodes x j

i , i = 1, . . . , N , j = 1, . . . , M,

may be defined by the formula

x j
i = x j−1

i + v
j
i , x0i = xi ,

with specified incremental vectors v j
i . If the vectors v

j
i are constant, then this algo-

rithm is referred to as a drag method. However, the vectors v j
i may be different, in

which case the approach is referred to as a sweeping method. These methods were
developed at the early stage of mesh generation by Park and Washam (1979).

5.8 Comments

The standard formulas of multivariate transfinite interpolation using Boolean oper-
ations were described by Gordon (1969, 1971), although a two-dimensional inter-
polation formula with the simplest blending functions for the construction of the
boundaries of hexahedral patches from CAD data was proposed by Coons (1967)
andAhuja andCoons (1968). The construction of coordinate transformations through
the formulas of transfinite interpolation was formulated by Gordon and Hall (1973)
and Gordon and Thiel (1982). The Hermite interpolation was presented by Smith
(1982).

The multisurface method was described by Eiseman (1980) and was, in its origi-
nal form, a univariate formula for grid generation based on the specification of two
boundary surfaces and an arbitrary number of interior control surfaces. The blend-
ing functions were implicitly derived from global and/or local interpolants which
result from an expression for the tangential derivative spanning between the exterior
boundary surfaces. The multisurface transformation can be described in the context
of transfinite interpolation.

A two-boundary technique was introduced by Smith (1981). It is based on the
description of two opposite boundary surfaces, tangential derivatives on the boundary
surfaces which are used to compute normal derivatives, and Hermite cubic blending
functions.

The construction of some special blending functions aimed at grid clustering at
boundaries was performed by Eriksson (1982) and Smith and Eriksson (1987). A
detailed description of various forms of blending functions with the help of splines
was presented in a monograph by Thompson et al. (1985).
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The procedures described above for generating smooth blending functions and
algebraic triangulations were developed by Liseikin (1999).
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