
Chapter 3
Grid Quality Measures

3.1 Introduction

It is very important to develop grid generation techniques which sense grid quality
features and possess means to eliminate the deficiencies of the grids. These require-
ments give rise to the problem of selecting and adequately formulating the necessary
grid quality measures and finding out how they affect the solution error and the
solution efficiency, in order to control the performance of the numerical analysis of
physical problems with grids. Commonly, these quality measures encompass grid
skewness, stretching, torsion, cell aspect ratio, cell volume, departure from confor-
mality, cell deformation and various related constructions (centroids, circumcenters,
circumcircles, incircles, etc.).

In this chapter, we utilize the notions and relations discussed in Sects. 2.2 and
2.3 to describe some qualitative and quantitative characteristics of structured grids.
The structured grid concept allows one to define the grid characteristics through
coordinate transformations as features of the coordinate curves, coordinate surfaces,
coordinate volumes, etc. In general, these features are determined through the ele-
ments of the metric tensors and their derivatives. In particular, some grid properties
can be described in terms of the invariants of the covariant metric tensor.

The chapter starts with an introduction to the elementary theory of curves and
surfaces, necessary for the description of the quality measures of the coordinate
curves and coordinate surfaces. It also includes a discussion of the metric invariants.
Various grid characteristics are then formulated through quantities which measure
the features of the coordinate curves, surfaces, and transformations.
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88 3 Grid Quality Measures

3.2 Curve Geometry

Commonly, the curves lying in the n-dimensional space Rn are represented by smooth
nondegenerate parametrizations

x(ϕ) : [a, b] → Rn, x(ϕ) = [x1(ϕ), · · · , xn(ϕ)] . (3.1)

In our considerations, we will use the designation Sx1 for the curve with the para-
metrization x(ϕ). In this chapter, we discuss the important measures of the local
curve quality known as curvature and torsion. These measures are derived by some
manipulations of basic curve vectors using the operations of dot and cross products.

3.2.1 Basic Curve Vectors

Tangent Vector

The first derivative of the parametrization x(ϕ) in (3.1) is a tangential vector

xϕ = (x1ϕ, . . . , xnϕ)

to the curve Sx1. The quantity

gxϕ = xϕ · xϕ = xiϕx
i
ϕ , i = 1, . . . , n ,

is the metric tensor of the curve and its square root is the length of the tangent vector
xϕ. Thus, the length l of the curve Sx1 is computed from the integral

l =
∫ b

a

√
gxϕdϕ .

The most important notions related to curves are connected with the arc length
parameter s defined by the equation

s(ϕ) =
∫ ϕ

0

√
gxϕdϕ . (3.2)

The vector dx[ϕ(s)]/ds, where ϕ(s) is the inverse of s(ϕ), is a tangent vector des-
ignated by t . From (3.2), we obtain

t = d

ds
x[ϕ(s)] = dϕ

ds
xϕ = 1√

gxϕ
xϕ .
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Therefore, t is the unit tangent vector and, after differentiating the relation t · t = 1,
we find that the derivative ts is orthogonal to t . The vector ts is called the curvature
vector and denoted by k. Let n be a unit vector that is parallel to ts ; there then exists
a scalar k, such that

ts = k = kn, k = (ts · ts)1/2 = α|k| , (3.3)

where α = 1 or α = −1.
The magnitude k is called the curvature, while the quantity ρ = 1/k is called the

radius of curvature of the curve.
Using the identity xϕ = √

gxϕ t , we obtain, from (3.3),

xϕϕ = 1√
gxϕ

(xϕϕ · xϕ)t + gxϕkn . (3.4)

The identity (3.4) is an analog of the Gauss relations (2.36). This identity shows that
the vector xϕϕ lies in the t–n plane.

Curves in Three-Dimensional Space

In three dimensions, we can apply the operation of the cross product to the basic
tangential and normal vectors. The vector b = t × n is a unit vector which is
orthogonal to both t and n. It is called the binormal vector. From (3.4), we find that
b is orthogonal to xϕϕ.

The three vectors (t, n, b) form a right-handed triad (Fig. 3.1). Note that if the
curve lies in a plane, then the vectors t and n lie in the plane as well and b is a
constant unit vector normal to the plane.

The vectors t, n, and b are connected by the Serret–Frenet equations

dt
ds

= kn ,

dn
ds

= −k t + τ b ,

db
ds

= −τn , (3.5)

Fig. 3.1 Base curve vectors
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90 3 Grid Quality Measures

where the coefficient τ is called the torsion of the curve. The first equation of the
system (3.5) is taken from (3.3). The second and third equations are readily obtained
from the formula (2.6) by replacing the b in (2.6) with the vectors on the left-hand
side of (3.5), while the vectors t, n, and b substitute for e1, e2, and e3, respectively.
The vectors t, n, and b constitute an orthonormal basis, i.e.

ai j = ai j = δij , i, j = 1, 2, 3 ,

where, in accordance with Sect. 2.2.4, ai j = ei · e j , and the tensor {ai j } is the inverse
of the tensor {ai j }. Now, using (2.6), we obtain

dn
ds

=
(
dn
ds

· t
)
t +

(
dn
ds

· n
)
n +

(
dn
ds

· b
)
b = −k t +

(
dn
ds

· b
)
b ,

since ns · t = −n · ts, ns · n = 0. Thus, we obtain the second equation of (3.5) with
τ = ns · b. Analogously, we obtain the last equation of (3.5) by expanding the vector
bs through t, n, and b using the relation (2.6):

db
ds

=
(
db
ds

· t
)
t +

(
db
ds

· n
)
n +

(
db
ds

· b
)
b = −

(
dn
ds

· b
)
n = −τn ,

as bs · t = −b · ts = 0, bs · b = 0.

3.2.2 Curvature

A very important characteristic of a curve which is related to grid generation is the
curvature k. This quantity is used as a measure of coordinate line bending.

One way to compute the curvature is to multiply (3.3) by n using the dot product
operation. As

dt
ds

= 1√
gxϕ

d

dϕ

(
1√
gxϕ

xϕ

)
= 1

gxϕ
xϕϕ − 1

(gxϕ)2
(xϕ · xϕϕ)xϕ ,

from (3.2), (3.3), the result is

k = 1

gxϕ
xϕϕ · n . (3.6)

The vector n is independent of the curve parametrization, and therefore we find from
(3.4), (3.6) that k is an invariant of parametrizations of the curve.

In two dimensions,

n = 1√
gxϕ

(−x2ϕ, x1ϕ) ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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therefore, in this case, we obtain, from (3.6),

k2 = (xϕyϕϕ − yϕxϕϕ)2

[(xϕ)2 + (yϕ)2]3 (3.7)

with the convention x = x1, y = x2. In particular, when the curve in R2 is defined
by a function u = u(x), we obtain from (3.7), assuming in (3.1) x(ϕ) = [ϕ, u(ϕ)],
ϕ = x ,

k2 = (uxx )
2/[1 + (ux )

2]3 .

In the case of three-dimensional space, the curvature k can also be computed from
the relation obtained by multiplying (3.4) by xϕ with the cross product operation:

xϕ × xϕϕ = gxϕk(xϕ × n) = (gxϕ)3/2kb .

Thus, we obtain

k2 = |xϕ × xϕϕ|2
(gxϕ)3

(3.8)

and consequently, from (2.26),

k2 = (x1ϕx
2
ϕϕ − x2ϕx

1
ϕϕ)2 + (x2ϕx

3
ϕϕ − x3ϕx

2
ϕϕ)2 + (x3ϕx

1
ϕϕ − x1ϕx

3
ϕϕ)2

[(x1ϕ)2 + (x2ϕ)2 + (x3ϕ)2]3 .

3.2.3 Torsion

Another important qualitymeasure of curves in three-dimensional space is the torsion
τ . This quantity is suitable formeasuring the rate of twisting of the lines of coordinate
grids.

In order to figure out the value of τ for a curve in R3, represented by (3.1) for
n = 3, we use the last relation in (3.5), which yields

τ = −db
ds

· n .

As b = t × n, we obtain

db
ds

= dt
ds

× n + t × dn
ds

= t × dn
ds

,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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since dt/ds = kn. Thus,

τ =
(

−t × dn
ds

)
· n . (3.9)

From (3.2), (3.3), we have the following obvious relations for the basic vectors t and
n in terms of the parametrization x(ϕ) and its derivatives:

t = 1√
gxϕ

xϕ ,

n = 1

k

dt
ds

= 1

k

(
1

gxϕ
xϕϕ − xϕ · xϕϕ

(gxϕ)2
xϕ

)
,

dn
ds

= 1

k

(
1

(gxϕ)3/2
xϕϕϕ − 2

xϕ · xϕϕ

(gxϕ)2
xϕϕ

− d

dϕ

(
xϕ · xϕϕ

(gxϕ)2

)
xϕ − 1

k

dk

ds
n
)

. (3.10)

Thus,

t × dn
ds

= 1

k(gxϕ)2
xϕ × xϕϕϕ − 2

xϕ · xϕϕ

k(gxϕ)5/2
xϕ × xϕϕ − 1

k2
√

gxϕ

dk

ds
xϕ × n .

As (a × b) · a = (a × b) · b = 0 for arbitrary vectors a and b, we obtain, from (3.9,
3.10),

τ = − 1

k2(gxϕ)3
(xϕ × xϕϕϕ) · xϕϕ = 1

k2(gxϕ)3
(xϕ × xϕϕ) · xϕϕϕ . (3.11)

And using (2.31), we also obtain

τ = 1

k2(gxϕ)3
det

⎧⎪⎨
⎪⎩
x1ϕ x2ϕ x3ϕ
x1ϕϕ x2ϕϕ x3ϕϕ

x1ϕϕϕ x2ϕϕϕ x3ϕϕϕ

⎫⎪⎬
⎪⎭ .

3.3 Surface Geometry

In general, a surface in the three-dimensional space R3 is assumed to be locally
represented by some parametric two-dimensional domain S2 and a parametrization

x(s) : S2 → R3 , x(s) = [x1(s), x2(s), x3(s)] , s = (s1, s2) , (3.12)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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where x(s) is a smooth nondegenerate vector function. We use the designation Sx2

for the surface with the parametrization x(s). In analogy with domains, the transfor-
mation x(s) defines the curvilinear coordinate system s1, s2 on the surface, as well
as the respective base vectors and metric tensors.

For the purpose of adaptive grid generation, the so-calledmonitor surfaces are very
important. These surfaces are defined by the values of some vector-valued function
u(s), referred to as the height function, over the domain S2. The natural form (3.12)
of the parametrization of the monitor surface formed with a scalar height function
u(x) is represented by the formula

x(s) = [s1, s2, u(s1, s2)] . (3.13)

3.3.1 Surface Base Vectors

A surface in R3, represented by (3.12), has three base vectors: two tangents (one to
each coordinate curve) and a normal. The two tangential vectors to the coordinates
s1 and s2 represented by x(s) are, respectively,

xsi = ∂x
∂si

=
(

∂x1

∂si
,

∂x2

∂si
,

∂x3

∂si

)
, i = 1, 2 .

The unit normal vector to the surface Sx2 is defined through the cross product of the
tangent vectors xs1 and xs2 :

n = 1

|xs1 × xs2 | (xs1 × xs2) .

Since (xs1 × xs2) · n > 0, the base surface vectors xs1 , xs2 , and n comprise a right-
handed triad (Fig. 3.2). In accordance with (2.26) and (2.27), the unit normal n can
also be expressed as

n = 1√
grs

(
∂xl+1

∂s1
∂xl+2

∂s2
− ∂xl+2

∂s1
∂xl+1

∂s2

)
el , l = 1, 2, 3 , (3.14)

where (e1, e2, e3) is the Cartesian basis of R3. Recall that this formula implies the
identification convention for indices in three dimensions, where k is equivalent to
k ± 3. If the surface Sx2 is a monitor surface represented by a height function u(s),
then we obtain, from (3.14),

n = 1√
1 + (us1)2 + (us2)2

(
− ∂u

∂s1
, − ∂u

∂s2
, 1

)
.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 3.2 Surface base
vectors

In another particular case, when the surface points are found from the equation
f (x) = c, we obtain ∇ f · xsi = 0, i = 1, 2, and therefore

n = l∇ f , |l| = 1/|∇ f | .

3.3.2 Metric Tensors

The surface metric tensors, like the domain metric tensors, are defined through the
operation of the dot product on the vectors tangential to the coordinate lines.

Covariant Metric Tensor

We designate the covariant metric tensor of the surface Sx2, represented by (3.12) in
the coordinates s1, s2 as Gxs , i.e.

Gxs = {gxs
i j }, i, j = 1, 2 ,

where

gxs
i j = xsi · xs j , i, j = 1, 2 . (3.15)

In particular, when a surface is defined by the values of some scalar function u(s)
over the domain S2 then, from (3.13),

gxs
i j = δ

j
i + ∂u

∂si
∂u

∂s j
, i, j = 1, 2 .
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Fig. 3.3 Geometric meaning of the metric elements

The quantity
√

gxs
ii in (3.15) for a fixed i has the geometrical meaning of the length

of the tangent vector xsi to the coordinate curve si (see Fig. 3.3).
The differential quadratic form

gxs
i j ds

ids j , i, j = 1, 2 ,

relating to the line elements in space, is called the first fundamental form of the sur-
face. It represents the value of the square of the length of an elementary displacement
dx on the surface.

Let the Jacobian of Gxs be designated by gxs . Since

gxs = |xs1 |2|xs2 |2(1 − cos2 θ) = (|xs1 | · |xs2 | sin θ)2 = (xs1 × xs2)
2 ,

where θ is the angle between xs1 and xs2 , we find that the quantity gxs is the area
squared of the parallelogram formed by the vectors xs1 and xs2 . Therefore, the area
of the surface Sx2 is computed from the formula

S =
∫
S2

√
gxsds .

Contravariant Metric Tensor

Consequently, the contravariant metric tensor of the surface Sx2, represented by
(3.12), in the coordinates s1, s2 is the matrix designated as Gsx , and consequently

Gsx = {gi jsx } , i, j = 1, 2.

The tensors Gxs and Gsx are inverse to each other, i.e.

gxs
i j g jk

sx = δik , i, j, k = 1, 2 .
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Thus, in analogy with (2.21), we obtain

gi jsx = (−1)i+ jgxs
3−i 3− j/g

xs ,

gxs
i j = (−1)i+ jgxsg3−i 3− j

sx , i, j = 1, 2 , (3.16)

with fixed indices i and j . The diagonal elements g11sx and g22sx of the contravariant
metric tensor Gsx are connected with the natural geometric quantities of the paral-
lelogram defined by the tangent vectors xs1 and xs2 (see Fig. 3.3). Namely, taking
into account the relation gxs = gxs

11/g
22
sx , we find that

√
g22sx is the inverse of the value

of the distance between the parallel edges of the parallelogram formed by the vec-
tor xs1 . Analogously,

√
g11sx is the inverse of the distance between the other pair of

parallelogram edges, i.e. those formed by xs2 .

3.3.3 Second Fundamental Form

The coefficients of the second fundamental form

bi jds
ids j , i, j = 1, 2 ,

of the surface Sx2 are defined by the dot products of the second derivatives of the
vector function x(s) and the unit normal vector n to the surface at the point s under
consideration:

bi j = xsi s j · n , i, j = 1, 2 . (3.17)

Thus, from (3.14), (3.17), we obtain for bi j , i, j = 1, 2,

bi j = 1√
gxs

[
∂2xl

∂si∂s j

(
∂xl+1

∂s1
∂xl+2

∂s2
− ∂xl+2

∂s1
∂xl+1

∂s2

)]
, l = 1, 2, 3 , (3.18)

with the identification convention for the superscripts that k is equivalent to k ± 3.
Correspondingly, for the monitor surface with the height function u(s), we obtain

bi j = 1√
1 + (us1)2 + (us2)2

usi s j , i, j = 1, 2 .

The tensor {bi j } reflects the local warping of the surface, namely its deviation
from the tangent plane at the point under consideration. In particular, if {bi j } ≡ 0 at
all points of S2, then the surface is a plane.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.3.4 Surface Curvatures

Principal Curvatures

Let a curve on the surface be defined by the intersection of a plane containing the
normal n with the surface. It is obvious that either n or −n is also the curve normal
vector. Taking into account (3.6), we obtain for the curvature of this curve

k = bi jdsids j

gxs
i j ds

ids j
, i, j = 1, 2 . (3.19)

Here, (ds1, ds2) is the direction of the curve, i.e. dsi = c(dsi/dϕ), where s(ϕ) is
a curve parametrization. The two extreme quantities KI and KII of the values of k
are called the principal curvatures of the surface at the point under consideration. In
order to compute the principal curvatures, we consider the following relation for the
value of the curvature:

(bi j − kgxs
i j )ds

ids j = 0 , i, j = 1, 2 , (3.20)

which follows from (3.19). In order to find the maximum and minimum values of
k, the usual method of equating to zero the derivative with respect to dsi is applied.
Thus, the components of the (ds1, ds2) direction giving an extreme value of k are
subject to the restriction

(bi j − kgxs
i j )ds

j = 0 , i, j = 1, 2 ,

which, in fact, is the eigenvalue problem for curvature. One finds the eigenvalues
k by setting the determinant of this equation equal to zero, obtaining thereby the
secular equation for k:

det(bi j − kgxs
i j ) = 0 , i, j = 1, 2 .

This equation, written out in full, is a quadratic equation

k2 − gi jsxbi j k + [b11b22 − (b12)
2]/gxs = 0 ,

with two roots, which are the maximum and minimum values KI and KII of the
curvature k:

KI,II = 1

2
gi jsxbi j ±

√
1

4
(g

i j
sxbi j )2 − 1

gxs
[b11b22 − (b12)2] . (3.21)
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Gaussian Curvature

The determinant of the tensor {K i
j } represents the Gaussian curvature of the surface

(3.12)

KG = det{K i
j } = 1

gxs
[b11b22 − (b12)

2] . (3.22)

Taking into account (3.21), we readily see that the Gaussian curvature is the product
of the two principal curvatures KI and KII, i.e.

KG = KI KII .

In terms of the height function u(s) representing the monitor surface Sx2, we have

KG = us1s1us2s2 − (us1s2)2

[1 + (us1)2 + (us2)2]2 .

A surface point is called elliptic if KG > 0, i.e. both KI and KII are both nega-
tive or both positive at the point of consideration. A saddle or hyperbolic point has
principal curvatures of opposite sign, and therefore has negative Gaussian curvature.
A parabolic point has one principal curvature vanishing and, consequently, a van-
ishing Gaussian curvature. This classification of points is prompted by the form of
the curve which is obtained by the intersection of the surface with a slightly offset
tangent plane. For an elliptic point, the curve is an ellipse; for a saddle point, it is a
hyperbola. It is a pair of lines (degenerate conic) at a parabolic point, and it vanishes
at a planar point, where both principal curvatures are zero.

Mean Curvature

One half of the sum of the principal curvatures is referred to as the mean surface
curvature. Taking advantage of (3.21), the mean curvature, designated by Km, is
defined through the coefficients of the second fundamental form and elements of the
contravariant metric tensor by

Km = 1

2
(KI + KII) = 1

2
gi jsxbi j , i, j = 1, 2 . (3.23)

In the case of the monitor surface represented by the function u(s1, s2), we obtain

Km = us1s1 [1 + (us2)2] + us2s2 [1 + (us1)2] − 2us1us2us1s2

2[1 + (us1)2 + (us2)2]3/2 .

Now we consider the tensor

{K i
j } ≡ {giksxbk j } , i, j, k = 1, 2 .
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As a reminder, the repeated index k means summation over it. It is easy to see that
{K i

j } is a mixed tensor contravariant with respect to the upper index and covariant
with respect to the lower one. From (3.23), we find that the mean curvature is defined
as the trace of the tensor, namely,

2Km = tr{K i
j } , i, j = 1, 2 . (3.24)

A surface whose mean curvature is zero, i.e. KI = −KII, possesses the following
unique property. Namely, if a surface bounded by a specified contour has a minimum
area, then its mean curvature is zero. Conversely, of all the surfaces bounded by
a curve whose length is sufficiently small, the minimum area is possessed by the
surface whose mean curvature is zero.

It is easily shown that both the mean and the Gaussian curvatures are invariant of
surface parametrizations.

3.3.5 Curvatures of Discrete Surfaces

From a computational standpoint, the discrete objects are attractive because they
have been designed from the ground up with data-structures and algorithms in mind.
From a mathematical standpoint, they present a great challenge: the discrete objects
should have properties which are analogues of the properties of continuous objects.
One important property of curves and surfaces is their curvature, which plays a
significant role in many application areas. In the continuous formulations, there are
remarkable theorems dealing with curvatures; a key requirement for a discrete curve
or surface with discrete curvatures is that they satisfy analogous theorems.

Relying on the results presented in the paper of Sullivan (see Pinkall and Polhier
1993), we consider here some formulations of the curvatures of discrete surfaces,
meaning triangulated polyhedral surfaces. Often, the most useful formulations are
those which are based on integral relations for curvature, like the Gauss–Bonnet
theorem or the force balance equation for mean curvature.

We assume that all cells meeting at a grid node P of the discrete surface under
consideration are triangles. Such a triangulation at the node P can be obtained from
arbitrary polyhedron triangulations by connecting the nodes adjacent to P of each
of the two neighboring edges emanating from P .

Gauss Curvature

Gauss curvature KG at a grid vertex P must be subject to the following relation

∫ ∫
D
KGd A :=

∑
P∈D

K P , with K P = 2π −
∑
i

θi , (3.25)

where the angles θi are the interior angles at P of the triangles meeting there, and
K P is often known as the angle defect at P .
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From this relation, one formula for discrete Gauss curvature Kd
G(P) at the node

P may be defined by

Kd
G(P) = 1

A(starP)
(2π −

∑
i

θi ) , (3.26)

where starP is a designation for the union of all triangles containing the vertex P ,
and A(starP) is the area of starP .

One more intrinsic characterization of Gauss curvature KG is obtained by com-
paring the circumferences Cε of (intrinsic) ε-balls around P to the value 2πε. We
have

Cε

2πε
= 1 − ε2

6
KG(P) + O(ε3) . (3.27)

From this formula, discrete Gauss curvature Kd
G(P) at the node P may be

defined by

Kd
G(P) = 6

ε2

(
1 − Sε

2πε

)
, (3.28)

where Sε is the length of the curve obtained by intersecting an ε-ball with starP , and
ε is a small number.

These formulations of the discrete Gauss curvature depend significantly on the
choice of which pairs of cone points are connected by triangle edges (see Bobenko
and Springborn 2005).

Mean Curvature

Suppose that the vertices adjacent to P , in cyclic order, are P1, . . . , Pk . Then, the
discrete vector mean curvature K d

m(P) can be expressed explicitly in terms of these
neighbors by the following formula:

K d
m(P) = 1

2

∑
i

(cot αi + cot βi )(P − P i ) , (3.29)

where αi and βi are the angles opposite the edge P P i in the two incident triangles
(see Pinkall and Polhier 1993 and Sullivan 2008).

Alternatively, we have

Km(P) = ΔB[x](P) ,

where x is the position vector, and ΔB is the Beltrami operator. Computing the
Beltrami operator numerically at each grid point of a discrete surface gives the value
of K d

m(P).
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3.4 Metric-Tensor Invariants

The coordinate transformation x(ξ) : Ξ n → Xn of a physical n-dimensional domain
Xn applied to generate grids through mapping approaches can be locally interpreted
as some deformation of a uniform cell in the computational domain Ξ n into the
corresponding cell in the domain Xn . The local deformation of any cell is approxi-
mated by a linear transformation represented by the Jacobi matrix {∂xi/∂ξ j }. This
deformation is not changed if any orthogonal transformation is applied to the cell in
Xn . The deformation is also preserved if the orientation of the computational domain
Ξ n is changed. Therefore, it is logical to formulate the features of the coordinate
grid cells in terms of the invariants of the orthogonal transformations of the covariant
metric tensor {gi j }, in the coordinates ξ1, . . . , ξn , i.e.

gi j = xξi · xξ j , i, j = 1, . . . , n . (3.30)

3.4.1 Algebraic Expressions for the Invariants

According to the theory of matrices, a symmetric nondegenerate (n×n)matrix {ai j }
has n independent invariants Ii , i = 1, . . . , n, of its orthogonal transformations. The
i th invariant Ii is defined by summing all of the principal minors of order i of the
matrix. Recall that the principal minors of a square matrix are the determinants of
the square submatrices of the matrix. Thus, for example,

I1 =
n∑

i=1

aii = tr{ai j } ,

In−1 =
n∑

i=1

cofactor aii = det{ai j }
n∑

i=1

aii = det{ai j } tr{ai j } ,

In = det{ai j } , (3.31)

where the matrix {ai j } is the inverse of {ai j }.
Whenweuse, for {ai j }, the covariantmetric tensor {gi j }, gi j = xξi ·xξ j , of a domain

Xn , then, taking advantage of (3.31), the invariants I1 and I2 in two dimensions are
expressed as

I1 = g11 + g22 ,

I2 = g11 g22 − (g12)
2 = g = J 2 , (3.32)

where J = det{∂xi/∂ξ j }. The invariants of the three-dimensional metric tensor {gi j }
are expressed as follows:



102 3 Grid Quality Measures

I1 = g11 + g22 + g33 ,

I2 = g(g11 + g22 + g33)

I3 = det{gi j } = g , i, j = 1, 2, 3 , (3.33)

where gi j = ∇ξi ·∇ξ j . Analogously, the invariants of the surface metric tensor Gxs ,
represented in the coordinates s1, s2 by (3.12), are written out as

I1 = gxs
11 + gxs

22

I2 = gxs . (3.34)

The notion of an invariant can be helpful to identity conformal coordinate trans-
formations. For example, in two dimensions, we know that a conformal mapping
x(ξ) satisfies the Cauchy–Riemann equations

∂x1

∂ξ1
= ∂x2

∂ξ2
,

∂x1

∂ξ2
= −∂x2

∂ξ1
.

Therefore, a zero value of the quantity

Q =
(

∂x1

∂ξ1
− ∂x2

∂ξ2

)2

+
(

∂x1

∂ξ2
+ ∂x2

∂ξ1

)2

is an indication of the conformality of x(ξ). We obtain

Q = g11 + g22 − 2J = I1 − 2
√
I2 ,

using (3.32). Thus, the two-dimensional coordinate transformation x(ξ) is conformal
if only if the invariants I1 and I2 satisfy the restriction I1/

√
I2 = 2. In Sect. 3.7.7, it

will be shown that an analogous relation is valid for an arbitrary dimension n ≥ 2.
We also can see that the mean and Gaussian curvatures described by (3.24) and

(3.22), respectively, are defined through the invariants of the tensor {K i
j }, namely,

Km = 1

2
I1 , KG = I2 .

3.4.2 Geometric Interpretation

The invariants of the covariant metric tensor {gi j } can also be described in terms of
some geometric characteristics of the n-dimensional parallelepiped (parallelogram
in two dimensions) determined by the tangent vectors xξi , thus giving a relationship
between the cell characteristics of coordinate grids and the invariants. For example,
we see from (3.32), (3.34) in two dimensions that the invariant I1 equals the sum
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squares of the parallelogram edge lengths, while I2 is equal to the parallelogram area
squared. In three-dimensional space, we find, from (3.33), that I1 equals the sum of
the squares of the lengths of the base vectors xξi , i = 1, 2, 3, which are the edges
of the parallelepiped. The invariant I2 is the sum of the squares of the areas of the
faces of the parallelepiped, while the invariant I3 is its volume squared.

These geometric interpretations can be extended to arbitrary dimensions by the
following consideration. Every principal minor of order m is the determinant of an
m-dimensional squarematrix Am obtained from the covariant tensor {gi j } by crossing
out n − m rows and columns that intersect pairwise on the diagonal. Therefore, the
elements of Am are the dot products of m particular vectors of the base tangential
vectors xξi , i = 1, . . . , n. Thus, geometrically, the determinant of Am equals the
square of them-dimensional volumeof them-dimensional parallelepiped constructed
by the vectors of the basic set xξi , i = 1, . . . , n, whose dot products form the matrix
Am . Therefore, Ii , i = 1, . . . , n, is geometrically the sum of the squares of the i-
dimensional volumes of the i-dimensional sides of the n-dimensional parallelepiped
spanned by the base vectors xξi , i = 1, . . . , n.

We note that the invariants do not describe all of the geometric features of the grid
cells. In the two-dimensional case, the invariants I1 and I2 given by (3.32) can be the
same for parallelepipeds that are not similar. For example, if we take a transformation
x(ξ) whose tangential vectors xξ1 and xξ2 define a rectangle with sides of different
lengths a and b, then we obtain

I1 = a2 + b2 , I2 = (ab)2 .

However, as demonstrated in Fig. 3.4, the same invariants are produced by a trans-
formation x(ξ), whose tangent vectors yield a rhombus with a side length l equal to√

(a2 + b2)/2 and an angle θ defined by

θ = arcsin
2ab

a2 + b2
,

Fig. 3.4 Quadrilaterals with
the same invariants
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since

I1 = 2l2 = a2 + b2 ,

I2 = l2 sin2 θ = (ab)2 .

Thus, knowledge of the values of the invariants I1 and I2 alone is not sufficient
to distinguish the rectangle from the rhombus. However, the value of the quantity
I1/

√
I2 imposes restriction on the maximal angle between the parallelogram edges

and on the maximum cell aspect ratio. These bounds will be evaluated in Sect. 3.7.7.
In particular, if I1 = 2

√
I2, then we can definitely state that the parallelogram is a

square.

3.5 Characteristics of Grid Lines

This section describes some characteristics of curvilinear coordinate lines in domains
specified by the parametrization x(ξ) : Ξ n → Xn . These characteristics can be used
for the evaluation of the grid properties and for the formulation of grid generation
techniques through the calculus of variations.

All considerations in this section are concerned with a selected coordinate line ξi

for a specified i , and therefore summation is not carried out over the repeated index
i here.

3.5.1 Sum of Squares of Cell Edge Lengths

The length li of any cell edge along the coordinate curve ξi is expressed through the
element gi i of the covariant metric tensor {gi j }:

li ≈ √
gi i h .

The sum of the squares of the cell edge lengths equals Qlh2, where

Ql =
n∑
j=1

g j j = tr {gi j } . (3.35)

The quantity Ql is one of the important characteristics of the grid cell. This charac-
teristic is the first invariant I1 of the tensor matrix {gi j }.
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3.5.2 Eccentricity

The ratio between two adjacent grid steps along any coordinate curve ξi is a quantity
which characterizes the change of the length of the cell edge in the ξi direction. This
quantity is designated as εi , and at the point ξ, it is expressed as follows:

εi ≈ |xξi (ξ + hei )|
|xξi (ξ)| .

We also find that

εi ≈
√

gi i (ξ + hei ) − √
gi i (ξ)√

gi i (ξ)
+ 1 ≈ h

1√
gi i

∂

∂ξi
√

gi i + 1 ,

for a fixed i , since |xξi | = √
gi i . The quantity

Qi
ε =

(
1√
gi i

∂

∂ξi
√

gi i

)2

=
(

∂

∂ξi
ln

√
gi i

)2

, i fixed (3.36)

obtained from the expression for εi is a measure of the relative eccentricity. When
Qε = 0, then the length of the cell edge does not change in the ξi direction. With the
Christoffel symbol notation (2.40), we also obtain

Qi
ε =

(
1

gi i

∂x
∂ξi

· ∂2x
∂ξi∂ξi

)2

=
(

1

gi i
[i i, i]

)2

, i fixed . (3.37)

3.5.3 Curvature

The relative eccentricity Qi
ε describes the change of the length of the cell edge along

the coordinate curve ξi , however, it fails to describe the change in its direction. The
quantity which characterizes this grid quality is derived through a curvature vector.

In accordance with (3.3), the curvature vector ki of the coordinate line ξi for a
fixed i is defined by the relation ki = xss , where s is the arc length parametrization
of the coordinate line ξi , i.e. the variable s is defined by the transformation s(ξi )
satisfying the equation

ds

dξi
= √

gi i , i fixed .

Therefore,

∂

∂s
= 1√

gi i

∂

∂ξi
, i fixed

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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and consequently

ki = 1

gi i
xξi ξi − xξi

(gi i )2
xξi · xξi ξi , i fixed . (3.38)

Local Straightness of the Coordinate Line

Equation (3.38) shows that if the curvature vector ki equals zero (ki = 0), then the
vector xξi ξi is parallel to the vector xξi , i.e. the tangential vector does not change
its direction. Therefore, the coordinate line ξi is locally straight at a point of zero
curvature. From (3.38), we obtain, in this case,

xξi ξi = (xξi ξi · xξi )

gi i
xξi , i fixed .

Using the Gauss relations (2.36), we also obtain

xξi ξi = Γ l
i i xξl , l = 1, . . . , n , i fixed .

Comparing these two expansions of xξi ξi , we see that the vector xξi ξi is parallel to
xξi if

Γ l
i i = 0 for all l �= i , i fixed . (3.39)

The relation (3.39) is a criterion of local straightness of the coordinate curve ξi .
A measure of the deviation of the curve ξi from a straight line may, therefore, be
determined as

Qi
st = dlmΓ l

i iΓ
m
ii , l,m �= i , i fixed , (3.40)

where dlm is a positive (n − 1) × (n − 1) tensor.

Expansion of the Curvature Vector in the Normal Vectors

We know that the curvature vector ki is orthogonal to the unit tangential vector xs .
On the other hand, the normal base vectors ∇ξ j , j �= i , are also orthogonal to the
tangent vector xξi and therefore to xs . Thus, the curvature vector ki of the coordinate
curve ξi can be expanded in the n − 1 normal vectors ∇ξ j , j �= i . In order to find
such an expansion, we first recall that in accordance with (2.41),

xξi ξi = [i i,m]∇ξm , m = 1, . . . , n , , i fixed

with summation over m, where

[i i,m] = xξi ξi · xξm = ∂gim

∂ξi
− 1

2

∂gi i

∂ξm
, i fixed ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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from (2.45). Furthermore, from (2.23),

xξi = gim∇ξm, m = 1, . . . , n .

Therefore, the relation (3.38) is equivalent to

ki = 1

gi i

(
[i i,m]∇ξm − 1

gi i
[i i, i]

)
gim∇ξm

= 1

(gi i )2
(gi i [i i, l] − gil [i i, i])∇ξl ,

m = 1, . . . , n , l = 1, . . . , n , l �= i , i fixed . (3.41)

This equation represents the curvature vector ki through the n−1 normal base vectors
∇ξl, l �= i .

In particular, in two dimensions, the relation (3.41) for i = 1 becomes

k1 = 1

(g11)2
(g11[11, 2] − g12[11, 1])∇ξ2 . (3.42)

And, from (2.21),

k1 = g

(g11)2
(g22[11, 2] + g21[11, 1])∇ξ2 .

Therefore, using (2.43), we obtain

k1 = g

(g11)2
Γ 2
11∇ξ2 . (3.43)

Analogously, the curvature vector k2 along the coordinate ξ2 is expressed as follows:

k2 = g

(g22)2
Γ 1
22∇ξ1 . (3.44)

In the same way, the curvature vector of the coordinate curves in the case of three-
dimensional space R3 is computed. For example, in accordance with (3.41), the
vector k1 can be expanded in the normal vectors ∇ξ2 and ∇ξ3 as

k1 = 1

(g11)2
{(g11[11, 2] − g12[11, 1])∇ξ2

+(g11[11, 3] − g13[11, 1])∇ξ3} . (3.45)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Measure of Coordinate Line Curvature

The length of the vector ki is the modulus of the curvature and denoted by |ki |. Thus,
for the curvature k1 of the coordinate line ξ1 in the two-dimensional domain X2, we
obtain, from (3.43),

|k1| = g
√

g22

(g11)2
|Γ 2

11| = g
√

g22

(g11)2

∣∣∣∣ ∂2x1

∂ξ1∂ξ1
∂ξ2

∂x1
+ ∂2x2

∂ξ1∂ξ1
∂ξ2

∂x2

∣∣∣∣ . (3.46)

Taking into account the two-dimensional relation (2.4)

∂ξi

∂x j
= (−1)i+ j 1

J

∂x3− j

∂ξ3−i
, i, j = 1, 2 , J = √

g ,

with i, j fixed, we find that

Γ 2
11 = 1

J

(
∂x1

∂ξ1
∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1
∂2x1

∂ξ1∂ξ1

)
.

Therefore, for the curvature of the coordinate ξ1, we also obtain, from (2.21) and
(3.46),

|k1| = 1

(g11)3/2

∣∣∣∣∂x
1

∂ξ1
∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1
∂2x1

∂ξ1∂ξ1

∣∣∣∣ . (3.47)

Analogously, using the relation (3.44), we get for the curvature of the coordinate
curve ξ2

|k2| = 1

(g22)3/2

∣∣∣∣∂x
2

∂ξ2
∂2x1

∂ξ2∂ξ2
− ∂x1

∂ξ2
∂2x2

∂ξ2∂ξ2

∣∣∣∣ . (3.48)

In the case of three-dimensional space, the curvature measure of the coordinate
line ξi is computed from the relation (3.8):

|ki | = 1√
(gi i )3

|xξi × xξi ξi | , i = 1, 2, 3 , i fixed . (3.49)

The curvature representation can provide various measures of the curvature of the
coordinate line ξi . The simplest measure may be described in the common manner
as the square of the curvature

Qi
k = (ki )

2 . (3.50)

In analogy with (3.40), the quantity Qi
k is also a measure of the departure of the

coordinate line ξi from a straight line.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.5.4 Measure of Coordinate Line Torsion

The square of the torsion is another measure of a coordinate line ξi lying in three-
dimensional space. This measure is computed in accordance with (3.11) from the
relation

Qi
τ = 1

(ki )4(gi i )6
[(xξi × xξi ξi ) · xξi ξi ξi ]2

= 1

(ki )4(gi i )6
det2

⎛
⎝ xξi

xξi ξi

xξi ξi ξi

⎞
⎠ , i fixed . (3.51)

The condition Qi
τ ≡ 0 means that the coordinate line ξi lies in a plane. Thus, the

quantity Qi
τ is a measure of the departure of the coordinate line ξi from a plane line.

3.6 Characteristics of Faces of Three-Dimensional Cells

A coordinate grid in a three-dimensional domain X3 is composed of three-
dimensional curvilinear hexahedral cells which are images of elementary cubes
obtained through a coordinate transformation

x(ξ) : Ξ 3 → X3.

The boundary of each cell is segmented into six curvilinear quadrilaterals, through
which some characteristics of the cell can be defined. This section describes some
important quality measures of the faces of three-dimensional coordinate cells.

3.6.1 Cell Face Skewness

The skewness of a cell face is described through the angle between the two tangent
vectors defining the cell face. Let the cell face lie in the surface ξl = const; the
tangent vectors of the surface are then the vectors xξi and xξ j , i = l + 1, j = l + 2,
with the identification convention for the index m that m is equivalent to m ± 3.
One of the cell face skewness characteristics can be determined as the square of the
cosine of the angle between the vectors. Thus, for a fixed l,

Ql
sk,1 = cos2 θ = (gi j )

2

gi ig j j
, i = l + 1 , j = l + 2 . (3.52)
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Another expression for the cell face skewness is specified by the cotangent squared
of the angle θ:

Ql
sk,2 = cot2 θ = (gi j )

2

gi ig j j − (gi j )2
, i = l + 1 , j = l + 2 . (3.53)

Taking into account the relations (2.29) and (2.33), this can also be written in the
form

Ql
sk,2 = (gi j )

2

(xξi × xξ j )2
= (gi j )

2

ggll
, i = l + 1 , j = l + 2 .

Since (gi j )
2 = gi ig j j (1 − sin2 θ), we also obtain

Ql
sk,2 = gi ig j j

(xξi × xξ j )2
− 1 = gi ig j j

ggll
, i = l + 1 , j = l + 2 .

The quantities for the grid face skewness introduced above equal zero when the
edges of the cell face are orthogonal. Therefore, these quantities characterize the
departure of the cell face from a rectangle. One more characteristic of the cell face
nonorthogonality is defined as square of the dot product of the vectors xξi and xξ j :

Ql
o,1 = (gi j )

2 , i = l + 1 , j = l + 2 . (3.54)

3.6.2 Face Aspect-Ratio

A measure of the aspect-ratio of the cell face formed by the tangent vectors xξi and
xξ j is defined through the diagonal elements gi i and g j j of the covariant metric tensor
{gkm}, k,m = 1, 2, 3. One form of this measure is given by the expression

Ql
as = gi i

g j j
+ g j j

gi i
= (gi i + g j j )

2

gi ig j j
− 2 , (3.55)

where i = l + 1, j = l + 2, and m + 3 is equivalent to ±m. We have the inequality
Ql

as ≥ 2, which is an equality if and only if gi i = g j j , i.e. the parallelogram formed
by the vectors xξi and xξ j is a rhombus. Thus, (3.55) is a measure of the departure
of the cell from a rhombus.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.6.3 Cell Face Area Squared

The square of the area of the face of the basic parallelepiped formed by the two
tangential vectors xξi and xξ j is expressed as follows:

Ql
ar = |xξi |2|xξ j |2 sin2 θ = gi ig j j − (gi j )

2 , i = l + 1 , j = l + 2 , (3.56)

where θ is the angle of intersection of the vectors and i and j are chosen to satisfy
the condition l �= i and l �= j . Taking advantage of (2.29) and (2.33), we see that

Ql
ar = |xξi × xξ j |2 = g|∇ξl |2 = ggll , l fixed . (3.57)

As the square of the area of the coordinate cell face which corresponds to the paral-
lelogram defined by the vectors xξi and xξ j equals h2Qar + O(h3), the quantity Ql

ar
can be applied to characterize the area of the cell face.

3.6.4 Cell Face Warping

Measures of the cell face warping are obtained through the curvatures of the coor-
dinate surface on which the face lies. Let this be the coordinate surface ξ3 = ξ30 .
Then, a natural parametrization x(ξ) : Ξ 2 → R3, ξ = (ξ1, ξ2) of the surface is
represented by x(ξ1, ξ2, ξ30).

Mean Curvature of the Coordinate Surface

Twice the mean curvature of the coordinate surface is defined through the formula
(3.23) or (3.24) as

2K3,m = g
i j
ξxbi j , i, j = 1, 2 , (3.58)

where bi j = xξi ξ j · n. It is obvious that the contravariant metric tensor {gi jξx } of the
surface ξ3 = ξ30 in the coordinates ξ1, ξ2 is the inverse of the 2 × 2 matrix {gxξ

i j }
whose elements are the elements of the volume metric tensor {gi j } with the indices
i, j = 1, 2, i.e.

g
xξ
i j = gi j = xξi · xξ j , i, j = 1, 2.

Therefore, using (3.16) and (2.33), we have

g
i j
ξx = (−1)i+ jg3−i 3− j/(xξ1 × xξ2)

2 = (−1)i+ jg33

g
g3−i 3− j , i, j = 1, 2 ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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without summation over i or j . Also, it is clear that

n = 1√
g33

∇ξ3,

and consequently the coefficients of the second fundamental form of the coordinate
surface ξ3 = ξ30 are expressed as follows:

bi j = 1√
g33

xξi ξ j · ∇ξ3 = 1√
g33

Γ 3
i j .

Thus, (3.58) results in

2K3,m = (−1)i+ j
√

g33

g
g3−i 3− jΓ

3
i j , i, j = 1, 2 .

Analogously, we obtain a general formula for the coefficients of the second funda-
mental form of the coordinate surface ξl = ξl0, l = 1, 2, 3:

bi j = 1√
gll

Γ l
l+i l+ j , i, j = 1, 2 , (3.59)

with l fixed and where m is equivalent to m ± 3. Thus, twice the mean curvature of
the coordinate surface ξl = ξl0, l = 1, 2, is expressed by

2Kl,m = (−1)i+ j
√

gll

g
gl−i l− jΓ

l
l+i l+ j , i, j = 1, 2 , (3.60)

with l fixed.

Gaussian Curvature of the Coordinate Surface

Taking advantage of (3.22) and (3.59), the Gaussian curvature of the coordinate
surface ξl = ξl0 can be expressed as follows:

Kl,G =
√

gll

g
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2] , (3.61)

with the index l fixed.

Measures of Face Warping

The quantities which measure the warping of the face of a three-dimensional cell
are obtained through the coefficients of the second fundamental form or through the
mean and Gaussian curvatures of a coordinate surface containing the face. Let this
be the surface ξl = ξl0. Then, taking advantage of (3.60) and (3.61), the measures
may be expressed as follows:
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Ql
w,1 = (Kl,m)2 = gll

g2
[(−1)i+ jgl−i l− jΓ

l
l+i l+ j ]2 ,

Ql
w,2 = (Kl,g)

2 = gll

g2
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2] , (3.62)

with l fixed.
Equation (3.59) for the second fundamental form of the surface ξl = ξl0 also gives

an expression for the third measure of the cell face warpness:

Ql
w,3 =

2∑
i, j=1

(bi j )
2 = 1

gll

2∑
i, j=1

(Γ l
l+i l+ j )

2 , l fixed . (3.63)

3.7 Characteristics of Grid Cells

Cell features are described by the cell volume (area in two dimensions) and by the
characteristics of the cell edges and faces.

3.7.1 Cell Aspect-Ratio

A measure of the aspect-ratio of a three-dimensional cell is formulated through the
measures of the aspect-ratio of its faces described by (3.55). The simplest formulation
is provided by summing these measures, which results in

Qas =
3∑

l=1

Ql
as . (3.64)

3.7.2 Square of Cell Volume

The characteristic related to the square of the cell volume is

QV = g = det{gi j } = In . (3.65)

In three dimensions, we also obtain, from (2.32),

QV = [xξ1 · (xξ2 × xξ3)]2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.7.3 Cell Area Squared

We denote by Qar the sum of the quantities Qi j
ar, i �= j , from (3.57). These quantities

are the area characteristics of the faces of a three-dimensional cell; thus, in accordance
with (3.33), the magnitude Qar coincides with the invariant I2 :

Qar =
3∑

i=1

ggi i = I2 . (3.66)

3.7.4 Cell Skewness

One way to describe the cell skewness characteristics of three-dimensional grids
utilizes the angles between the tangential vectors in the forms of the corresponding
expressions (3.52) and (3.53) introduced for the formulation of the face skewness.
For example, summation of these quantities gives the following expressions for the
cell skewness measures:

Qsk,1 = (g12)
2

g11g22
+ (g23)

2

g22g33
+ (g13)

2

g11g33

Qsk,2 = (g12)
2

g11g22 − (g12)2
+ (g13)

2

g11g33 − (g13)2
+ (g23)

2

g22g33 − (g23)2

= 1

g

(
(g12)

2

g33
+ (g13)

2

g22
+ (g23)

2

g11

)
. (3.67)

Here, Qsk,1 is the sum of the squares of the cosines of the angles between the edges
of the cell, while Qsk,2 is the sum of the squares of the cotangents of the angles.

Other quantities for expressing the three-dimensional cell skewness can be defined
through the angles between the normals to the coordinate surfaces. Any normal to
the coordinate surface ξi = ξi0 is parallel to the normal vector ∇ξi . Therefore, the
cell skewness can be derived through the angles between the base normal vectors
∇ξi . The quantity

(∇ξi · ∇ξ j )2

gi ig j j
= (gi j )2

gi ig j j
, i, j fixed

is the cosine squared of the angle between the respective faces of the coordinate cell.
This characteristic is a dimensionless magnitude. The sum of such quantities is the
third characteristic of the three-dimensional cell skewness:

Qsk,3 = (g12)2

g11g22
+ (g13)2

g11g33
+ (g23)2

g22g33
. (3.68)
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Another dimensionless quantity which characterizes the mutual skewness of two
faces of the cell is the cotangent squared of the angle between the normal vectors
∇ξi and ∇ξ j :

(∇ξi · ∇ξ j )2

|∇ξi × ∇ξ j |2 = g(gi j )2

gkk
= (gi j )2

gi ig j j − (gi j )2
,

where (i, j, k) are cyclic and fixed. The summation of this over k defines the fourth
grid skewness characteristic

Qsk,4 = (g12)2

g11g22 − (g12)2
+ (g13)2

g11g33 − (g13)2
+ (g23)2

g22g33 − (g23)2

= g

(
(g12)2

g33
+ (g13)2

g22
+ (g23)2

g11

)
. (3.69)

Note that the three-dimensional cell skewness quantities Qsk,1 and Qsk,3 can be
readily extended to arbitrary dimensions n ≥ 2.

3.7.5 Characteristics of Nonorthogonality

The quantities Qsk,i , i = 1, 2, 3, 4, from (3.67)–(3.69) reach their minimum values
equal to zero only when the three-dimensional transformation x(ξ) is orthogonal at
the respective point, and vice-versa. Therefore, these quantities, which provide the
possibility to detect orthogonal grids, may be considered as some measures of grid
nonorthogonality.

Other quantities characterizing the departure of a three-dimensional grid from an
orthogonal one are as follows:

Qo,1 = g11g22g33

g
,

Qo,2 = g (g11g22g33) . (3.70)

Obviously, these quantities Qo,1 and Qo,2 are dimensionless and reach theirminimum
equal to 1 if and only if the coordinate transformation x(ξ) is orthogonal.

The sum of the squares of the nondiagonal elements of the covariant metric tensor
{gi j } yields another characteristic of cell nonorthogonality,

Qo,3 = (g12)
2 + (g13)

2 + (g23)
2 . (3.71)

An analogous formulation is given through the elements of the contravariant metric
tensor,

Qo,4 = (g12)2 + (g13)2 + (g23)2 . (3.72)
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Note that, in contrast to Qo,1 and Qo,2, the quantities Qo,3 and Qo,4 are dimensionally
heterogeneous.

3.7.6 Grid Density

The invariants of the tensor {gi j } can be useful for specifying some characteristics of
grid quality. For example, one important characteristic describing the concentration
of grid nodes can be derived from the ratio In−1/In .

In order to show this, we first note that in accordance with the geometrical inter-
pretation of the invariants given in Sect. 3.4.2, we can write

In−1

In
=

n∑
m=1

(
V n−1
m

)2 / (
V n

)2
, (3.73)

where V n−1
m is the space of the boundary segment ξm = const of the basic paral-

lelepiped defined by the tangential vectors xξi , i = 1, . . . , n.
It is evident that

V n = dmV
n−1
m , m = 1, . . . , n ,

where dm is the distance between the vertex of the tangential vector xξm and the
(n − 1)-dimensional plane Pn−1 spanned by the vectors xξi , i �= m. Hence, from
(3.73),

In−1

In
=

n∑
m=1

(1/dm)2 . (3.74)

Now let us consider two grid surfaces ξm = c and ξm = c+h obtained by mapping a
uniform rectangular grid with a step size h in the computational domainΞ n onto Xn .
Let us denote by lm the distance between a node on the coordinate surface ξm = c
and the nearest node on the surface ξm = c + h (Fig. 3.5). We have

lm = dmh + O(h)2

and therefore, from (3.74),

In−1

In
=

n∑
m=1

(h/ lm)2 + O(h) .

The quantity (h/ lm)2 increases if the grid nodes cluster in the direction normal to the
surface ξm = c. Therefore, this quantity can be considered as some measure of the
grid concentration in the normal direction and, consequently, the magnitude 1/dm
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Fig. 3.5 Illustration of
invariants

means the density of the grid concentration in the ∇ξm direction. In particular, we
readily see that 1/dm = √

gmm , with m fixed. Thus, the expression (3.74) defines a
measure of the grid density in all directions. We denote this quantity by Qcn, where
the subscript “cn” represents “concentration”. Note that, in accordance with (3.31),
this measure can be expressed as follows:

Qcn = In−1

In
= g11 + · · · + gnn . (3.75)

3.7.7 Characteristics of Deviation from Conformality

Conformal coordinate transformations are distinguished by the fact that the Jacobi
matrix j is orthonormal, and consequently the metric tensor {gi j } is a multiple of the
unit matrix:

{gi j } = g(ξ)I = g(ξ){δij } , i, j = 1, . . . , n .

The cells of the coordinate grid derived from the conformalmapping x(ξ) are close to
n-dimensional cubes (squares in two dimensions). Grids with such cells are attractive
from the computational point of view. Therefore, it is desirable to define simple grid
quantities which can allow one to detect grids whose cells are close to n-dimensional
cubes. It is clear that the condition of conformality can be described by the system

gi j = 0 , i �= j ,

g11 = g22 = · · · = gnn .

These relations give rise to a natural quantity

Q =
∑
i �= j

(gi j )
2 +

n∑
i=2

(gi i − g11)
2 ,
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which is zero if and only if the coordinate transformation x(ξ) is conformal. So,
this quantity can help one to detect when the grid is conformal. However, the above
formula is too cumbersome, as well as being dimensionally heterogeneous. More
compact expressions for the analysis of the conformality or nonconformality of grid
cells and for the formulation of algorithms to construct nearly conformal grids are
obtained through the use of the metric-tensor invariants.

Two-Dimensional Space

The departure from conformality of the two-dimensional transformation x(ξ) :
Ξ 2 → X2 is expressed by the quantity

Qcf,1 = I1√
I2

= |xξ1 |2 + |xξ2 |2
|xξ1 ||rξ2 || sin θ| = g11 + g22√

g11
√

g22| sin θ| , (3.76)

where θ is the angle between the tangent vectors xξ1 and xξ2 . Since

Qcf,1 ≥ g11 + g22√
g11g22

,

it is clear that the value of I1/
√
I2 exceeds 2. The minimum value 2 is achieved only

if g11 = g22 and θ = π/2, i.e. when the parallelogram with sides defined by the
vectors xξ1 and xξ2 is a square. Thus, the characteristic Qcf,1 allows one to state with
certainty when the coordinate transformation x(ξ) is conformal at a point ξ, namely
when Qcf,1(ξ) = 2. Therefore, in the two-dimensional case, the quantity

Qcf,1 − 2 = I1/
√
I2 − 2

reflects some measure of the deviation of the cell from a square. We see that the
quantity Qcf,1 given by (3.76) is dimensionally homogeneous.

Through the quantity Qcf,1, we can also estimate the bounds of the aspect ratio of
the two-dimensional cell and the angle between the edges of this cell.

Evaluation of the Cell Angles

First, we obtain an estimate of the angle between the cell edges. From (3.76), we
have

sin2 θ = (F2 + 1)2

F2
/Q2

cf,1 , (3.77)

where F2 = g11/g22. As (F2 + 1)2/F2 ≥ 4, we have from (3.77) that

sin2 θ ≥ 4/Q2
cf,1 (3.78)
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and, accordingly, we obtain the following estimate for the angle θ:

π − arcsin(2/Qcf,1) ≥ θ ≥ arcsin(2/Qcf,1) . (3.79)

From (3.77), we find that the minimum value 4/Q2
cf,1 of sin

2 θ for a fixed value of
Qcf,1 is achieved when F = 1, i.e. when the parallelogram is the rhombus.

Although it is desirable to generate orthogonal grids, a departure from orthogo-
nality is practically inevitable when grid adaptation is performed. Commonly, this
departure is required to be restricted to 45◦. Beyond this range, the contribution of
the grid skewness to the truncation error may become unacceptable. The inequality
(3.79) shows that this barrier of 45◦ is not broken if Qcf,1 ≤ 2

√
2.

Evaluation of the Cell Aspect Ratio

Now we estimate the quantity F = √
g11/g22. The quantity F , called the cell aspect-

ratio, is the ratio of the lengths of the edges of the cell. By computing F from (3.77),
we obtain

F = α

2
− 1 ±

√
α2

4
− α , α = Q2

cf,1 sin
2 θ . (3.80)

Equation (3.80) gives two values of the cell aspect-ratio,

F1 = α

2
− 1 +

√
α2

4
− α and F2 = α

2
− 1 −

√
α2

4
− α ,

satisfying the relation F1F2 = 1. We find that

F1 = max(
√

g11/g22,
√

g22/g11)

and

F2 = min(
√

g11/g22,
√

g22/g11) .

Thus,

α

2
− 1 −

√
α2

4
− α ≤ Fi ≤ α

2
− 1 +

√
α2

4
− α , i = 1, 2 , (3.81)

and consequently

2 ≤ Fi + 1/Fi ≤ α − 2 , i = 1, 2 . (3.82)

As Q2
cf,1 ≥ α ≥ 4, from (3.78), we also obtain, from (3.81) and (3.82), the following

upper and lower estimates of the aspect ratios Fi , i = 1, 2, which depend only on
the quantity Qcf,1:
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Q2
cf,1

2
− 1 − Qcf,1

√
Q2

cf,1

4
− 1 ≤ Fi ≤ Q2

cf,1

2
− 1 + Qcf,1

√
Q2

cf,1

4
− 1 , (3.83)

and

2 ≤ Fi + 1/Fi ≤ Q2
cf,1 − 2 , i = 1, 2 . (3.84)

The maximum value of Fi for a given value of Qcf,1 is realized when sin2 θ = 1, i.e.
the parallelogram is a rectangle.

Three-Dimensional Space

In three-dimensional space, the deviation from conformality can be described by the
dimensionless magnitude

Qcf,1 = (g)1/3(g11 + g22 + g33) , (3.85)

which, in accordance with (3.33), is expressed by means of the invariants I2 and I3
as follows:

Qcf,1 = I2/(I3)
2/3 . (3.86)

The value of (3.86) reaches its minimum only if

g11 = g22 = g33 and g−1 = g11g22g33 , (3.87)

i.e. when the parallelogram defined by the basic normal vectors ∇ξi is a cube. To
prove this fact, we note that

1

g
≤ g11g22g33 .

Therefore, from (3.85),

Qcf,1 ≥ g11 + g22 + g33

3
√

g11g22g33

and, taking into account the general inequality for arbitrary positive numbers
a1, . . . , an

1

n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai ,

we find that Qcf,1 ≥ 3. Obviously, Qcf,1 = 3 when the relations (3.87) are satified.
From (2.35),

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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1

g
= |∇ξ1 · ∇ξ2 × ∇ξ3|2

and therefore (3.87) is satisfied only when the normal vectors ∇ξi , i = 1, 2, 3, are
orthogonal to each other and have the same length. But then this is valid for the base
tangential vectors xξi , i = 1, 2, 3, as well. Thus, (3.87) is satisfied only when the
transformation x(ξ) is conformal.

In the same manner as in the two-dimensional case, one can derive bounds on the
angles of the parallelepiped and on the ratio of the lengths of its edges that depend
on the quantity Qcf,1.

Generalization to Arbitrary Dimensions

Analogously, in the n-dimensional case, a local measure of the deviation of the
transformation x(ξ) from a conformal one is expressed by the quantity Qcf,1 − n,
where

Qcf,1 = In−1/(In)
1−1/n = g1/n(g11 + · · · + gnn) . (3.88)

The quantity Qcf,1 equals n if and only if the mapping x(ξ) is conformal.
Another local characteristic of the deviation from conformality is described by

the quantity Qcf,2 − n, where

Qcf,2 = I1/(In)
1/n . (3.89)

As for Qcf,1, we can show that Qcf,2 ≥ n and that Qcf,2 = n if the transformation
x(ξ) is conformal at the point under consideration. Note also that Qcf,1 = Qcf,2 in
two dimensions.

3.7.8 Grid Eccentricity

One grid eccentricity characteristic is defined by summing the squares of the
coordinate-line eccentricities (3.36). Thus, the quantity

Qε,1 =
n∑

i=1

(
∂

∂ξi
ln

√
gi i

)2

(3.90)

is a measure of the change of the lengths of all of the grid cell edges.
A similar characteristic of eccentricity can be formulated through the terms gi i ,

namely

Qε,2 =
n∑

i=1

(
∂

∂xi
ln

√
gi i

)2

. (3.91)
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3.7.9 Measures of Grid Warping and Grid Torsion

In the same way as for grid eccentricity, we may formulate measures of three-
dimensional grid warping by summing the surface-coordinate characteristics (3.62)
and (3.63). As a result, we obtain

Qw,1 = 1

g2

3∑
l=1

gll
(
(−1)i+ jgl−i l− jΓ

l
l+i l+ j

)2
,

Qw,2 = 1

g2

3∑
l=1

gll
[
Γ l
l+1 l+1Γ

l
l+2 l+2 − (

Γ l
l+1 l+1

)2]
,

Qw,3 =
3∑

l=1

2∑
i, j=1

1

gll
(
Γ l
l+i l+ j

)2
. (3.92)

The measure of grid torsion is formulated by summing the torsion measures (3.51)
of the coordinate lines ξi , i = 1, 2, 3:

Qτ =
3∑

i=1

Qi
τ . (3.93)

3.7.10 Quality Measures of Simplexes

The quantities which are applied to measure the quality of triangles and tetrahedrons
are the following:

(1) the maximum edge length H ,
(2) the minimum edge length h,
(3) the circum-radius R,
(4) the inradius r .

There are four deformation measures that allow one to characterize the quality of
triangular and tetrahedral cells:

Qd,1 = H

r
, Qd,2 = R

H
, Qd,3 = H

h
, Qd,4 = R

r
.

The uniformity condition for a cell is satisfied when Qd,1 = O(1) or Qd,4 = O(1).
Examples of poorly shaped cells are shown in Fig. 3.6. Cases a and c correspond

to needle-shaped cells. Figure3.6d shows a wedge-shaped cell, while Fig. 3.6b, e
show sliver-shaped cells.
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Fig. 3.6 Examples of poorly shaped triangles (a, b) and tetrahedrons (c, d, e)

The cell is excessively deformed if Qd,1 � 1. In this case, the cell has either a very
acute or a very obtuse angle. The former case corresponds to Qd,2 = O(1), Qd,3 �
1 (Fig. 3.6a, c, d), while the latter corresponds to Qd,4 � 1, Qd,3 = O(1)
(Fig. 3.6b, e). The condition Qd,2 = O(1) precludes obtuse angles.

3.8 Comments

Various aspects of mesh quality were surveyed by Knupp (2001, 2007). The intro-
duction of metric-tensor invariants to describe some of the qualitative properties of
grids was originally proposed by Jacquotte (1987). The grid measures in terms of the
invariants and their relations described in this chapter were obtained by the author.

Prokopov (1989) introduced the dimensionless characteristics of two-dimensional
cells.

Triangular elements were extensively analyzed by Field (2000).
Some questions concerned with the assessment of the contribution of the grid

quality properties to the accuracy of solutions obtained using the grid were discussed
by Kerlic and Klopfer (1982), Mastin (1982), Lee and Tsuei (1992), and Huang and
Prosperetti (1994).

Discrete length, area, and orthogonality grid measures using averages and devia-
tions were formulated by Steinberg and Roache (1992).

Babuŝka and Aziz (1976) have shown that the minimum-angle condition in a
planar triangulation is too restrictive and can be replaced by a condition that limits the
maximum allowable angle. Also, the influence of grid quality measures on solution
accuracy was discussed by Knupp (2007) and Shewchuck (2002).

Measures to quantify the shape of triangles and tetrahedrons were introduced by
Field (1986), Baker (1989), Cougny et al. (1990), and Dannenlongue and Tanguy
(1991).

A brief overview of tetrahedron quality measures with a comparison of the fidelity
of these measures to a set of distortion sensitivity tests, as well as a comparison of the
computational expense of such measures, was given by Parthasarathy et al. (1993).
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An overview of several element quality metrics was given by Field (2000).
Chen et al. (2003) extended the angle-based quality metric originally defined by
Lee and Lo (1994) for use in the optimization of meshes consisting of triangles and
quadrilaterals. They also extended the formulation of cell unfolding by adding a
barrier part to their quality functional (2003).

A special tetrahedron shape measure was given by Liu and Joe (1994a). It is based
on eigenvalues of the metric tensor for the transformation between a tetrahedron and
a regular reference tetrahedron. The geometric explanation of this measure is that it
characterizes the shape of the inscribed ellipsoid. Another shape regularity quality
of a triangle was given Bank and Xu (1996) and Bank and Smith (1997). They
showed that the quality has circular level sets, when considered a function of the
location of one vertex of a trianglewith the other two vertices fixed. Three tetrahedron
measures – the minimum solid angle, the radius ratio, and the mean ratio – and their
relations were discussed by Liu and Joe (1994b).

An algorithm for construction of solution-adapted triangular meshes within an
optimization framework was considered by Buscaglia and Dari (1997). Here, the
optimized quality measure is a product of “shape” quality and a function of mesh
size.

A local cell quality measure as a function of Jacobian matrix and combined
element-shape and size-control metrics for different cell types was analyzed by
Garanzha (2000) and Branets and Carey (2005).

Dompierre et al. (2005) analyzed and generalized several simplex shapemeasures
documented in the literature and used them for mesh adaptation and mesh optimiza-
tion. Conclusions were drawn on the choice of simplex shape measures to control
mesh optimization.
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