
Chapter 12
Unstructured Methods

12.1 Introduction

Unstructured mesh techniques occupy an important niche in grid generation. The
major feature of unstructured grids consists, in contrast to structured grids, of a nearly
absolute absence of any restrictions on grid cells, grid organization, or grid structure.
Figuratively speaking, unstructured grids manifest the domination of anarchy while
structured grids demonstrate adherence to order. The concept of unstructured grids
allows one to place the grid nodes locally irrespective of any coordinate directions,
so that curved boundaries can be handled with ease and local regions in which the
solution is turbulent or its variations are large canbe resolvedwith a selective insertion
of new points without unduly affecting the resolution in other parts of the physical
domain.

Unstructured grid methods were originally developed in solid mechanics.
Nowadays, these methods influence many other fields of application beyond solid
modeling, in particular, computational fluid dynamics, where they are becoming
widespread.

Unstructured grids can, in principle, be composed of cells of arbitrary shapes
built by connecting a given point to an arbitrary number of other points, but are
generally formed from tetrahedra and hexahedra (triangles and quadrilaterals in two
dimensions). The advantages of these grids lie in their ability to deal with com-
plex geometries, while allowing one to provide natural grid adaptation through the
insertion of new nodes.

At the present time, the methods of unstructured grid generation have reached
the stage in which three-dimensional domains with complex geometry can be suc-
cessfully meshed. The most spectacular theoretical and practical achievements have
been connected with the techniques for generating tetrahedral (or triangular) grids.
There are at least two basic approaches that have been used to generate these meshes:
Delaunay and advancing-front. This chapter presents a review of some popular tech-
niques realizing these approaches.
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450 12 Unstructured Methods

Note that the chapter addresses only some general aspects of unstructured grid
methods. The interested reader who wishes to learn more about the wider aspects
of unstructured grids should study, for example, the monographs by Carey (1997)
George and Borouchaki (1998a, b), Frey and George (2008), and Lo (2015).

12.2 Methods Based on the Delaunay Criterion

Much attention has been paid in the development of methods for unstructured dis-
cretizations to triangulations which are based upon the very simple geometrical con-
straint that the hypersphere of each n-dimensional simplex defined by n + 1 points
is void of any other points of the triangulation. For example, in three dimensions, the
four vertices of a tetrahedron define a circumsphere which contains no other nodes
of the tetrahedral mesh. This restriction is referred to as the Delaunay or incircle
criterion, or the empty-circumcircle property. Triangulations obeying the Delaunay
criterion are called Delaunay triangulations. They are very popular in practical appli-
cations, owing to the following properties being valid in two dimensions:

(1) Delaunay triangles are nearly equilateral;
(2) the maximum angle is minimized;
(3) the minimum angle is maximized;
(4) the triangulation is unique if the points are in a general position, i.e. no four

points are cyclic;
(5) if every triangle in a triangulation is non-obtuse, it is a Delaunay triangulation;
(6) any two-dimensional triangulation can be transformed into a Delaunay triangu-

lation by locally flipping of the diagonals of adjacent triangles.

These properties give some grounds to expect that the grid cells of a Delaunay
triangulation are not too deformed.

Based on a sound geometrical concept and the optimality properties, Delaunay
triangulation has important applications in many fields, including data visualization,
terrainmodelling, mesh generation, surface reconstruction and structural networking
for arbitrary point sets. The popularity of Delaunay triangulation is attributed to its
nice geometric properties as a dual of Voronoi tessellation and the speed with which
it can be constructed in two or higher dimensions.

The Delaunay criterion itself is not an algorithm for mesh generation. It merely
provides a rule for connecting a set of existing points in space to form a triangulation.
As a result, although the boundary of the domain is well specified, it is necessary
to devise a scheme to determine the number and the locations of node points to be
inserted within the domain of interest.

The Delaunay criterion does not give any indication as to how the grid points
should be defined and connected.Onemore drawback of theDelaunay criterion is that
it may not be possible to realize it over the whole region with a prespecified bound-
ary triangulation. This disadvantage gives rise to two grid generation approaches of
constrained triangulation which preserve the boundary connectivity and take into
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account the Delaunay criterion. In the first approach of constrained Delaunay trian-
gulation, the Delaunay property is overriden at points close to the boundaries, and
consequently the previously generated boundary grid remains intact. Alternatively,
or in combination with this technique, points can be added in the form of a skeleton
to ensure that breakthroughs of the boundary do not occur. Another approach, which
observes the Delaunay criterion over the whole domain, is to postprocess the mesh
by recovering the boundary simplexes which are missed during the generation of the
Delaunay triangulation and by removing the simplexes lying outside the triangulated
domain.

There are a number of algorithms for generating unstructured grids based on the
Delaunay criterion in constrained or unconstrained forms.

Some methods for Delaunay triangulations are formulated for a preassigned dis-
tribution of points which are specified by means of some appropriate technique, in
particular, by a structured grid method. These points are connected to obtain a tri-
angulation satisfying certain specific geometrical properties which, to some extent,
are equivalent to the Delaunay criterion.

Many Delaunay triangulations use an incremental Bowyer–Watson algorithm
which can be readily applied to any number of dimensions. It starts with an ini-
tial triangulation of just a few points. The algorithm proceeds at each step by adding
points one at a time into the current triangulation and locally reconstructing the tri-
angulation. The process allows one to provide both solution-adaptive refinement and
mesh quality improvement in the framework of the Delaunay criterion. The distinc-
tive characteristic of thismethod is that point positions and connections are computed
simultaneously.

One more type of algorithm is based on a sequential correction of a given trian-
gulation, converting it into a Delaunay triangulation.

12.2.1 Dirichlet Tessellation

A very attractive means for generating a Delaunay triangulation of an assigned set of
points is provided by a geometrical construction first introduced by Dirichlet (1850).

Consider an arbitrary set of points Pi , i = 1, . . . , N , in then-dimensional domain.
For any point Pi , we define a region V (Pi ) in Rn characterized by the property that it
is constituted by the points from Rn which are nearer to Pi than to any other Pj , i.e.

Vi = {x ∈ Rn|d(x, Pi ) ≤ d(x, Pj ) , i �= j , j = 1, . . . , N } ,

where d(a, b) denotes the distance between the points a and b. These areas Vi are
called the Voronoi polyhedrons (see Fig. 12.1 for n = 2). Thus, the polyhedra are
intersections of half-spaces, and therefore they are convex, though not necessarily
bounded. The set of Voronoi polyhedra corresponding to the collection of points Pi
is called the Voronoi diagram or Dirichlet tessellation. The common boundary of
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Fig. 12.1 Voronoi
polyhedron for 4 points

two facing Voronoi regions V (Pi ) and V (Pj ) is an (n − 1)-dimensional polygon. A
pair of points Pi and Pj whose Voronoi polyhedra have a face in common is called a
configuration pair. By connecting only the contiguous points, a network is obtained.
In this network, a set of n + 1 points which are contiguous with one another forms
an n-dimensional simplex. The circumcenter, i.e. the center of the hypersphere, of
any simplex is a vertex of the Voronoi diagram. The hypersphere of the simplex is
empty, that is, there is no point inside the hypersphere. Otherwise, this point would
be nearer to the circumcenter than the points on the hypersphere. Thus, the set of
simplexes constructed in such a manner from the Dirichlet tessellation constitutes a
new tessellation which satisfies the Delaunay criterion and is, therefore, a Delaunay
triangulation. The boundary of the Delaunay triangulation built from the Voronoi
diagram is the convex hull of the set of points Pi (see Fig. 12.2 for n = 2).

It should be noted that Delaunay triangulations and Dirichlet tessellations can be
considered the geometrical duals of each other, in the sense that for every simplex Si ,
there exists a vextex Pi of the tessellation and, conversely, for every Voronoi region
V (Pj ), there exists a vertex Pj of the triangulation. In addition, for every edge of
the triangulation, there exists a corresponding (n − 1)-dimensional segment of the
Dirichlet tessellation.

Fig. 12.2 Voronoi diagram
and Delaunay triangulation
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12.2.2 Incremental Techniques

The empty-hypercircle criterion of the Delaunay triangulation can be utilized to
create incremental triangulation algorithms for arbitrary dimensions. Recall that by
the Delaunay triangulation of a set VN of N points in n-dimensional space, we mean
the triangulation of VN by simplexes with the vertices taken from VN such that no
point lies inside the hypersphere of any n-dimensional simplex.

Here, two incremental methods are presented. In the first method, a new
n-dimensional simplex is constructed during each stage of the triangulation, using
the given set of points for this purpose. In the second technique, each step produces
several simplexes which are generated after inserting a new point.

A-Priori-Given Set of Points

Let a set of points VN in a bounded n-dimensional domain Xn be given. We assume
that these points do not lie in any (n − 1)-dimensional hyperplane. The incremental
technique starts by taking an (n − 1)-dimensional face e (edge in two dimensions and
triangle in three dimensions), commonly the onewith the smallest size, and construct-
ing hyperspheres through the vertices of e and any one of the remaining points of VN .

One of these hyperspheres formed by a point, say, P1, does not contain any point of
VN inside it. The (n − 1)-dimensional simplex e and P1 define a new n-dimensional
simplex. In the next step, the (n − 1)-dimensional simplex e is taken out of consider-
ation. The algorithm stops, and the triangulation is complete, when every boundary
face corresponds to the side of one simplex and every internal (n − 1)-dimensional
simplex forms the common face of precisely two n-dimensional simplexes. It is clear
that this algorithm is well suited to generate a Delaunay triangulation with respect
to a prescribed boundary triangulation.

The set of points used to generate the triangulation can be built with a structured
method or an octree approach, or by embedding the domain into a Cartesian grid.
However, the most popular approach is to utilize the strategy of a sequential insertion
of new points.

Modernized Bowyer–Watson Technique

Another incrementalmethod, proposed byBaker (1989) andwhich is a generalization
of the Bowyer–Watson technique, starts with some triangulation, not necessarily
that of Delaunay, of the set of N points VN = {Pi |i = 1, . . . , N } by an assembly
of simplexes TN = {Sj }. For any simplex S ∈ TN , let RS be the circumradius and
QS the circumcenter of S. In the sequential-insertion technique, a new point P is
introduced inside the convex hull of VN . Let B(P) be the set of the simplexes whose
circumspheres contain the point P, i.e.

B(P) = {S|S ∈ TN , d(P, QS) < RS} ,

where d(P, Q) is the distance between P and Q. All these simplexes from B(P)

form a region Γ (P) surrounding the point P. This region is called the generalized
cavity. The maximal simply connected area of Γ (P) that contains the point P is
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called the principal component of Γ (P) and denoted by ΓP . The point P is checked
to determine if it is visible from all boundary segments of the principal component
or if it is obscured by some simplex. In the former case, the algorithm generates new
simplexes associated with P by joining all of the vertices of the principal component
with the point P . In the latter case, either this point is rejected and a new one is
introduced or the principal component ΓP is reduced by excluding the redundant
simplexes from B(P) to obtain an area whose boundary is not obscured from P by
any simplex. Then, the new simplexes are formed as in the former case. The union of
these simplexes and thosewhich do not form the reduced region of the retriangulation
defines a new triangulation of the set of N + 1 points VN+1 = VN

⋃{P}. In this
manner, the process proceeds by inserting new points, checking visibility, adjusting
theprincipal component, andgeneratingnewsimplexes.Thenew triangulationdiffers
from the previous one only locally around the newly inserted point P.

In two dimensions, we have that if the initial triangulation is the Delaunay tri-
angulation, then the region Γ (P) is of star shape, and consequently the boundary
is visible from the point P and each step of the Bowyer–Watson algorithm pro-
duces a Delaunay triangulation. Thus, in this case, the Bowyer–Watson algorithm
is essentially a “reconnection” method, since it computes how an existing Delaunay
triangulation is to be modified because of the insertion of new points. In fact, the
algorithm removes from the existing grid all the simplexes which violate the empty-
hypersphere property because of the insertion of the new point. The modification
is constructed in a purely sequential manner, and the process can be started from a
very simple initial Delaunay triangulation enclosing all points to be triangulated (for
example, that formed by one very large simplex or one obtained from a given set of
boundary points) and adding one point after another until the necessary requirements
for grid quality have been satisfied.

12.2.3 Approaches for Insertion of New Points

The sequential nature of the Bowyer–Watson algorithm gives rise to a problem of
choosing the position where the new point in the existing mesh will be inserted,
because a poor point distribution can eventually lead to an unsatisfactory triangula-
tion. The new point should be chosen according to some suitable geometrical and
physical criteria which depend on the existing triangulation and the behavior of the
physical solution. The geometrical criteria commonly consist in the requirement for
the grid to be smooth and for the cells to be of a standard uniform shape and a neces-
sary size. The physical criterion commonly requires the grid cells to be concentrated
in some specific zones as the zones of turbulence, large solution variations, or large
solution errors. With respect to the geometrical criterion of generating uniform cells,
the vertices and segments of the Dirichlet tessellation are promising locations for
placing a new point, since they represent a geometrical locus which falls, by con-
struction, midway between the triangulation points. Thus, in order to control the size
and shape of the grid cells, two different ways in which the new point is inserted
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are commonly considered. In the first, the new point is chosen at the vertex of the
Voronoi polyhedron corresponding to the “worst” simplex. In the second way, the
new point is inserted into a segment of the Dirichlet tessellation, in a position that
guarantees the required size of the newly generated simplexes.

12.2.4 Two-Dimensional Approaches

This subsection discusses the major techniques delineated in Sects. 12.2.1–12.2.3 for
generating planar triangulations based on the Delaunay criterion.

Voronoi Diagram

The Delaunay triangulation has a dual set of polygons referred to as the Voronoi
diagram or the Dirichlet tessellation.

The Voronoi diagram can be constructed for an arbitrary set of points in the
domain. Each polygon of the diagram corresponds to the point that it encloses. The
polygon for a given point is the region of the plane which is closer to that point
than to any other points. These regions have polygonal shapes and the tessellation
of a closed domain results in a set of nonoverlapping convex polygons covering the
convex hull of the points. It is clear that the edge of a Voronoi polygon is equidistant
from the two points which it separates, and is thus a segment of the perpendicular
bisector of the line joining these two points. The Delaunay triangulation of the given
set of points is obtained by joining with straight lines all point pairs whose Voronoi
regions have an edge in common. For each triangle formed in this way, there is an
associated vertex of the Voronoi diagram which is at the circumcentre of the three
points which form the triangle. Thus, eachDelaunay triangle contains a unique vertex
of the Voronoi diagram, and no other vertex within the Voronoi structure lies within
the circle centered at this vertex. Figure12.2 depicts the Voronoi polygons and the
associated Delaunay triangulation.

It is apparent from the definition of a Voronoi polygon that degeneracy problems
can arise in the triangulation procedure when

(1) three points of a potential triangle lie on a straight line;
(2) four or more points are cyclic.

These cases are readily eliminated by rejecting or slightly moving the point which
causes the degeneracy from its original position.

Incremental Bowyer–Watson Algorithm

The two-dimensional incremental technique, introduced independently by Bowyer
(1981) andWatson (1981), triangulates a set of points in accordance with the require-
ment that the circumcircle through the three vertices of a triangle does not contain
any other point. The accomplishment of this technique starts from some Delaunay
triangulation which is considered to be an initial triangulation. The initial triangu-
lation commonly consists of a square divided into two triangles which contain the
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Fig. 12.3 Stages of the planar incremental algorithm

given points. With this starting Delaunay triangulation, a new grid node is chosen
from a given set of points or is found in accordance with some user-specified rule
to supply new vertices. In order to define the grid cells which contain this point as a
vertex, all the cells whose circumcircles enclose the inserted point are identified and
removed. The union of the removed cells forms the region which is referred to as
the Delaunay or inserting cavity. A new triangulation is then formed by joining the
new point to all boundary vertices of the inserting cavity created by the removal of
the identified triangles. Figure12.3 represents the stages of the planar incremental
algorithm.

The distinctive feature of the two-dimensional Delaunay triangulations is that all
edges of the Delaunay cavity are visible from this inserted point, i.e. each point of
the edges can be joined to it by a straight line which lies in the cavity.

Properties of the Planar Delaunay Cavity

In order to prove the fact that all boundary edges of the Voronoi cavity are visible
from the introduced point, we consider an edge AB lying on the boundary of the
cavity. Let ABC be the triangle with the vertices A, B, and C, which lies in the
Delaunay cavity formed by the insertion of the point, denoted by P (Fig. 12.4). It is
obvious that all edges of triangle ABC are visible if P lies inside the triangle. Let P

Fig. 12.4 Illustration of the
inserted point P and the
triangles of the Delaunay
cavity
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lie outside the triangle. As this triangle lies in the Delaunay cavity, it follows that P
lies inside circle ABC. In this case, the quadrilateral whose vertices are the points
ABCP is convex. Thus, P has to be visible from edge AB unless we have a situation
like the one depicted in Fig. 12.4, in which some triangle ACD separates the edge
from P. As triangle ACD belongs to the initial Delaunay triangulation, the vertex D
lies outside circle ABC. However, since a chord of a circle subtends equal angles
at its circumference, we readily find that P belongs to circle ACD, i.e. the triangle
lies inside the Delaunay cavity formed by P. Thus, triangle ACD does not prevent
those edges of ABC which are the boundary edges of the cavity from being visible
from P. Repeating the argument with the other triangles, the number of which is
finite, we come to the conclusion that there are no triangles between the boundary
of the Delaunay cavity and P which do not lie in the cavity. Also, we find that the
Delaunay cavity is simply connected. We emphasize that these facts are valid if the
original triangulation satisfies the Delaunay criterion.

Thus, in accordance with the incremental algorithm, the Delaunay cavity is trian-
gulated by simply connecting the inserted point with each of the nodes of the initial
grid that lie on the boundary of the cavity. The union of these triangles with those
which lie outside of the cavity (Fig. 12.3c) completes one loop of the incremental
grid construction. The subsequent steps are accomplished in the same fashion.

It is apparent that in two dimensions, the creation of these new cells results in
a Delaunay triangulation, i.e. the Delaunay criterion is valid for all new triangles.
Here, we present a schematic proof of this fact.

Let AB be an edge of the Delaunay cavity formed by the insertion of point P.

Suppose that the new triangle ABP does not satisfy the Delaunay criterion. Then,
there exists some point D on the same side of AB as P and which lies inside circle
ABP (Fig. 12.5). Consider the original triangle that had AB as an edge. There are
two possibilities: either ABD is this original triangle or there is another point, say, E,

on the cavity boundary lying outside circle ABP. In the former case, P lies outside
circle ABD, i.e. triangle ABD does not lie in the Delaunay cavity, and consequently
edge AB is not the edge of the cavity, contrary to our assumption. In the latter
case, arc ABP lies inside circle ABE .However, this contradicts the assumption that

Fig. 12.5 Illustration of the
proof that the Delaunay
criterion is satisfied by all
new triangles created by the
incremental algorithm
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the original triangulation was of Delaunay type. Therefore„„ circle ABP does not
contain other points, i.e. the triangle ABP satisfies the Delaunay criterion.

Thus, we find that the planar Bowyer–Watson algorithm is a valid procedure for
generating Delaunay triangulations. One more issue that has received attention is
that the point placement selected to generate Delaunay triangulations can be used to
generate meshes with a good aspect ratio.

Initial Triangulation

Because the mesh points are introduced in a sequential manner, in the initial stages
of this construction, an extremely coarse grid containing a small subset of the total
number of mesh points and consisting of a small number of very large triangles can
be chosen. For example, for generating grids in general two-dimensional domains,
an initial triangulation can be formed by dividing a square lying in the domain or
containing it into two triangles. Then, interior and boundary points are successively
added to build successive triangulations until the necessary requirements of domain
approximation are observed.

It is desirable to make the initial triangulation boundary-conforming, i.e. all
boundary edges are included in the triangulation. One natural way is to triangulate
initially only the prescribed boundary nodes, by means of the Bowyer–Watson algo-
rithm. Since the Delaunay triangulation of a given set of points is a unique construc-
tion, there is no guarantee that the triangulation built through the boundary points will
be boundary-conforming. However, through repeated insertion of new mesh points
at the midpoints of the missing boundary edges, a boundary-conforming triangula-
tion may be obtained. Another way to maintain boundary integrity is obtained by
rejecting any point that would result in breaking boundary connectivity.

Diagonal-Swapping Algorithm

Diagonal swapping is a topological operation in which the diagonal of a quadrilateral
formed by two adjacent triangles is swapped to the other position to improve the
overall quality of the two triangles. The diagonal-swapping algorithm makes use
of the equiangular property of a Delaunay-type triangulation, which states that the
minimum angle of each triangle in the mesh in maximized.

Assuming we have some triangulation of a given set of points, the swapping
algorithm transforms it into a Delaunay triangulation by repeatedly swapping the
positions of the edges in the mesh in accordance with the equiangular property.
For this purpose, each pair of triangles which constitutes a convex quadrilateral
is considered. This quadrilateral produces two of the required triangles when one
takes the diagonal which maximizes the minimum of the six interior angles of the
quadrilaterals, as shown in Fig. 12.6. Each time an edge swap is performed, the
triangulation becomes more equiangular. The end of the process results in the most
equiangular (the Delaunay) triangulation.

This technique based on the Delaunay criterion retriangulates a given triangu-
lation in a unique way, such that the minimum angle of each triangle in the mesh
is maximized. This has the advantage that the resulting meshes are optimal for the
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Fig. 12.6 The triangulation
which maximizes the
minimum angle. The dashed
line indicates a possible
original triangulation

given point distribution, in that they do not usually contain many extremely skewed
cells.

12.2.5 Constrained Form of Delaunay Triangulation

One way to ensure that the boundary triangulation remains intact in the process
of retriangulation by inserting new points is to use a constrained version of the
Delaunay triangulation algorithm that does not violate the point connections made
near the boundary.

Principal Component

For the purpose of generating a constrained two-dimensional triangulation, we con-
sider the modernized Bowyer–Watson algorithm for an arbitrary triangulation T that
may not satisfy the Delaunay criterion. Let P be a new, introduced point. The Delau-
nay cavity is the area constituted by all triangles whose circumcircles contain P. Let
this be denoted by Γ (P).

An important fact is that the Delaunay cavity created by the introduction of the
point P contains no points other than P in its interior. In order to show this, we
consider a point A in the triangulation T that is a vertex of at least one triangle in
Γ (P). If there is a triangle S /∈ Γ (P) that has A as a vertex, then the point A is not
an interior point of Γ (P). Thus, we need to show that there exists such a triangle. Let
{Si } be the set of all triangles that have A as a vertex, and let Ci be the circumcircle
associated with triangle Si . Now Si ∈ Γ (P) if and only if the new point P lies inside
Ci . Thus, for vertex A to be an interior point of Γ (P), point P must lie inside

⋂
Ci .

However, if the point A is an interior point of Γ (P), then the interior of
⋂

Ci is
empty, since the vertex A is the only point that lies on all the circles of {Si }. Thus,
at least one triangle of {Si } does not lie in Γ (P), and hence the vertex A is not an
interior point of Γ (P).

In the case of a general triangulation, the cavity Γ (P) need no longer be simply
connected. For the purpose of retriangulation, we consider the maximal simply con-
nected region of the cavity that contains the new point P. This region is called the
principal component of the Delaunay cavity and is designated by ΓP .

It is apparent that the principal component possesses the property that all its
boundary edges are visible from P. To prove this, we first note that ΓP is not empty,
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Fig. 12.7 Illustration of the
principal component

since it includes the triangle containing P. Let this be the triangle ABC (Fig. 12.7).
Now consider all neighboring triangles sharing a common edge with the triangle
ABC . In particular, let triangle BCD lie in ΓP . Point P must, therefore, lie inside
circle BCD. As points P, B, C, and D define a convex quadrilateral, all edges
of this quadrilateral are visible from P. Continuing this process by means of a tree
search through all triangles in ΓP , we clearly see that all edges of ΓP are visible
from P.

Formulation of the Constrained Triangulation

Nowwe can formulate the generation of a constrained planar Delaunay triangulation
developed by Baker (1989).

We assume that certain triangles of a triangulation T are fixed, in particular, those
adjacent to the boundary. Let this subset of T be denoted by T . The triangles from T
do not participate in the building of any Delaunay cavity, i.e. if the cavity created by
the introduction of a new point contains one or more of the fixed triangles, we restrict
the reconnections to the part of the cavity that does not contain any fixed triangle.
Let Υ (P) be this part of the cavity, i.e. Υ (P) = Γ (P) − T . By ΥP , we denote the
maximal simply connected region of Υ (P) that contains P. In analogy with ΓP , we
call the region ΥP the principal component of Υ (P). It is clear that the principal
component ΥP exists only if P does not lie inside any of the triangles belonging to
the collection T of the fixed triangles.

It is apparent that the boundary edges of the principal component ΥP are visible
from P. As the analogous fact has been proved for ΓP , we can restrict our consider-
ation to the case ΓP

⋂
T �= ∅. Let the edges of the principal component ΓP be given

by A1, A2, A2, A3, . . . , An−1, An, An, A1, where {Ai }i = 1, n are the vertices on
the boundary of ΓP . These edges, and consequently the vertices Ai , are visible from
P.The subcavity obtained by removing one of the triangles fromΓP contains at most
three new edges. These internal edges lie wholly inside the cavity ΓP and divide ΓP

into disjoint polygonal regions. The principal component ΥP is the polygonal region
that contains the point P, and this polygon is made up of one of these internal cav-
ity edges and other edges which come from the cavity boundary. The vertices of
the polygon containing P must, therefore, remain visible from P. Hence, all edges
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of the polygon are visible from P. By repeating this argument with other triangles
removed from ΓP , we conclude that the boundary edges of ΥP are visible from P.

Now the vertices of ΥP can be connected with P , thus building the constrained
retriangulation. This retriangulation keeps the fixed triangles of T intact.

Boundary-Conforming Triangulation

A key requirement of a mesh generation procedure is to ensure that the mesh is
boundary-conforming, i.e. the edges of the assembly of triangles conform to the
boundary curve. The procedure of constrained triangulation allows one to keep a
subset of the boundary triangles, built from the edges forming the boundary, intact.
These boundary triangles can be generated by any one of the suitable procedures.
Thus, the resulting triangulation will be boundary-conforming and its interior trian-
gles obey the Delaunay criterion.

Another approach developed by Weatherill and Hassan (1994) to applying the
Delaunay criterion to generate boundary-conforming grids consists in recovering
the boundary edges which are missing during the process of Delaunay triangulation
and then deleting all triangles that lie outside the domain.

12.2.6 Point Insertion Strategies

The Bowyer–Watson algorithm proceeds by sequentially inserting a point inside the
domain at selected sites and reconstructing the triangulation so as to include new
points. This subsection presents two approaches to sequential point insertion which
provide a refinement of planar Delaunay triangulations. In both cases, bounds on
some measures of grid quality, such as the minimum angle, the ratio of maximum to
minimum edge length, and the ratio of circumradius to inradius, are estimated.

Point Placement at the Circumcenter of The Maximum Triangle

One simple but effective approach consists in placing a new point at the circumcenter
of the cell with the largest circumradius and iterating this process until the maximum
circumradius is less than some prescribed threshold. In this way, by eliminating bad
triangles, the quality of the grid is improved at every new point insertion, terminating
with a grid formed only by suitable triangles. In this subsection, it will be shown
that the Bowyer–Watson incremental algorithm together with point insertion at the
circumcenters of maximal triangles will lead to a triangulation with a guaranteed
level of triangle quality.

Unconstrained Triangulation

Let {Tn}, n = 0, 1, . . . , be a sequence of Delaunay triangulations built by the
repeated application of the Bowyer–Watson algorithm with point insertion at the
circumcenter of the maximal triangle. By the maximal triangle of a triangulation,
we mean the triangle with the maximum value of its circumradius. We assume that
the initial Delaunay triangulation T0 conforms to a prescribed set of boundary edges.
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Now let ln, Ln, n = 0, 1, . . . , be the minimum and maximum edge lengths, respec-
tively, of Tn, and let Rn be the radius of the maximal triangle of Tn. Furthermore,
for any triangle S, we denote its circumradius by RS and its inradius by rS . Thus,
Rn = max{RS, S ∈ Tn}. We have the following relations:

(1) Ri+1 ≤ Ri ;
(2) when Rn−1 ≥ l0, then ln = l0, and when Rn−1 < l0, then ln = Rn−1;
(3) when Rn ≤ l0, then Ln/ ln ≤ 2, θ ≥ 30◦ for all angles of the triangulation Tn,

and min RS/rS ≤ 2 + 4
√
3 for all triangles S of Tn.

To prove the first relation, we consider an edge en of the Delaunay cavity of the
triangulation Tn formed by an inserted point P. There exist triangles S1 and S2 in Tn
which share the common edge en , such that S1 lies inside while S2 lies outside the
Delaunay cavity. Let S1 be defined by the points A, B, and C and S2 be defined by
the points A, B, and D. Then, edge en is the line segment AB. Since P lies outside
circle ABD, P lies on the same side of en asC. If the center of circle ABP lies on the
same side of en as D, then angle APB is obtuse and, consequently, the circumradius
of triangle ABP is smaller than the circumradius of triangle ABD. We denote these
circumradii by RABP and RABD, respectively.

If the center of circle ABP lies on the same side of en as C , then the angle θ1
subtended by chord AB at C is less than the angle θ2 subtended at P. Since the
centers of circles ABP and ABC lie on the same side of AB as points C and P , it
follows that θ1 < π/2 and θ2 < π/2. If the length of chord AB is l, then

RABP = l

2 sin θ2
<

l

2 sin θ1
= RABC ,

where RABC is the circumradius of ABC. Thus, we obtain

RABP < RABD and RABP < RABC .

Since this is true for all edges of the Delaunay cavity, we obtain the proof of the first
relation, that the maximum circumradius Rn decreases, i.e. Rn+1 ≤ Rn, with strict
inequality if there is only one triangle with the maximum radius Rn. As there can be
only a limited number of maximal triangles in Tn, after several applications of the
procedure, we obtain Rn+k < Rn .

It follows that the maximum radius can be reduced to any required size after a
sufficiently large number of iterations. When Rn falls below the value of l0, so that
ln+1 = Rn, we obtain the following obvious inequality:

Ln+1 ≤ 2Rn+1 ≤ 2Rn = 2ln+1 . (12.1)

It is evident that repeated point insertion at the circumcenter reduces the value
λ = Ln/ ln to a value no greater than 2. The upper bound of 2 for λ is achieved
when Rn ≤ l0. Let θmin be the minimum angle. We have
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sin θmin ≥ ln+1

2Rn+1
, (12.2)

with equality if the minimum edge length of any maximal triangle is equal to ln+1,

the minimum edge length for the triangulation Tn+1. From the inequalities (12.1) and
(12.2), we obtain

sin θmin ≥ ln+1

2Rn+1
= Rn

2Rn+1
≥ 1

2
, (12.3)

so that

θmin ≥ π/6 .

For each triangle, the quantity μ = R/r, where R is the circumradius and r is the
inradius, is a characteristic of cell deformity. The maximum value of μ occurs for an
isosceles triangle with an angle between sides of θmin and assumes the value

μmax = 1

2 cos θmin(1 − cos θmin)
.

From (12.3), we obtain

μ ≤ 2 + 4/
√
3

after a sufficient number of retriangulations with the insertion of new points at the
circumcenters of maximal triangles.

These considerations prove the properties (2) and (3) stated above.

Generalized Choice of the Insertion Triangles

In the approach considered, a new point is inserted at the circumcentre of the largest
triangle. The choice of the insertion triangle, namely the triangle where the point is
inserted, can be formulated in accordance with more general principles.

One simple formulation is based on the specification of a function f (x) which
prescribes ameasure of grid size or quality, say the radius of the circumscribed circle,
at the point x. The actual expression for f (x) can be obtained by interpolating
prescribed nodal values over a convenient background mesh. The function f (x)

defines a quantity α(S) for each triangle S:

α(S) = RS

f (QS)
,

where QS is the position of the centre of the circle circumscribed around the triangle
S. The largest value of α(S) determines the choice of the insertion triangle S. By
repeatedly inserting the new point at the circumcenters of such triangles, it is possible
eventually to reach a mesh in which maxS α(S) < 1.
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Voronoi-Segment Point Insertion

The second approach proposed by Rebay (1993) to placing a new point consists in
inserting the point along a segment of the Dirichlet tessellation. In contrast to the
first approach, in which the position of the inserted point is predetermined, and the
required cell size is reached after a number of iterations, this technique provides
an opportunity to generate one or possibly several new triangles having, from the
very beginning, the size prescribed for the final grid. This is achieved by choosing
a suitable position for point placement in the Dirichlet tessellation, between a tri-
angle whose circumradius falls below the required value and a neighboring triangle
whose circumradius is still too large. This point insertion results in almost equilateral
triangles over most of the interior of the domain.

Formulation of the Algorithm

At each stage of the process of generating the triangulations Tn, n = 1, 2, . . . , the
triangles of Tn are divided into two groups, which are referred to as the groups of
accepted (small enough) and nonaccepted (too large) triangles, respectively. In most
cases, the accepted triangles are the boundary triangles and those whose circumradii
are below 3/2 times the prescribed threshold. The remaining triangles constitute the
group of nonaccepted triangles.

The algorithm proceeds by always considering a maximal nonaccepted triangle
which borders one of the accepted triangles (Fig. 12.8). Let ABC be the accepted
triangle and ADB the nonaccepted triangle. The Voronoi segment connecting the
circumcenters of these triangles is the interval EF which is perpendicular to the
common edge AB and divides it into two equal parts. In the algorithm, a new point
X is inserted on theVoronoi segment edge EF in a position chosen so that the triangle

Fig. 12.8 Voronoi-segment
point insertion
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formed by connecting X with A and B has the prescribed size. This point is inserted
into the interval between the midpoint M of the common edge and the circumcenter
F of the nonaccepted triangle ADB.

Let p be one half the length of edge AB, and q the length of FM . As point F is
the circumcenter of the triangle ADB, we find that q ≥ p. Let fM be the prescribed
threshold value for the circumradius at the point M . It may seem that we can locate
the new point X on segment EF at the intersection of EF with the circle that passes
through points A and B and has a radius equal to fM . However, it might happen that
this exact value fM for the circumradius is not appropriate, since any circle through
A and B has a radius ρ ≥ p/2. Furthermore, a real intersection point X exists only
for circles having a radius ρ smaller than that of the circle passing through AB and
F , i.e. ρ ≤ (p2 + q2)/2q. For these reasons, the circumradius for the triangle AXB
is defined by the equation

RAXB = min
[
max( fM , p) ,

p2 + q2

2q

]
. (12.4)

Since

p2 + q2

2q
= (p − q)2 + 2pq

2q
≥ p ,

we find that RAXB ≥ p. In accordance with the algorithm, the new point X will lie
on the interval EF between M and F at a distance

d = RAXB +
√

(RAXB)2 − p2 (12.5)

from the point M.

Properties of the Triangulation

The condition

RAXP ≤ p2 + q2

2q

and (12.5) ensure that d ≤ q. We also have, from (12.5), that d ≥ p. Angle AXB is
a right angle when d = p, and it decreases as d increases.

If the accepted triangle ABC is equilateral, then angle AFB must be no greater
than 2π/3, since otherwise the Delaunay triangulation would have given rise to an
edge connecting C to F.

At the first stage, we expect p 	 q. Recall that the threshold of fM is such that
fM < p < 3 fM/2. It follows that fM < p ≤ (p2 + q2)/2q, and hence d = p and
RAXB = p. Thus, triangle AXB has a right angle at vertex X. Since 2 < 3 fM/2,
triangle AXB will be tagged as accepted and each segment AX and XB will be a
candidate for the next accepted triangle, built in the same way as AXB. Now we
denote the quantity p, equal to one half the length of the accepted edge of the i th
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iteration, by pi , and thus p1 = p0/
√
2. Analogously, we use di , Ri , and Mi at the

i th iteration of the procedure. It turns out that on repeating the procedure, pi and di
show the following behavior:

pi → √
3 fMi /2 , di → 3 fMi /2 ,

i.e. the generated triangles tend to become equilateral, with circumradius fMi . To
show this, let

fMn =
( 2√

3
+ εn

)
pn =

( 2√
3

+ εn+1

)
pn+1 . (12.6)

If |εn| is sufficiently small, we obtain pn < fMn so that Rn = fMn and, from (12.5),

dn = fMn +
√

f 2Mn
− p2n .

Furthermore, we have

4p2n+1 = p2n + d2
n = 2

(
f 2Mn

+ fMn

√
f 2Mn

− p2n
)

.

Thus,

p2n+1

p2n
= 1

2

f 2Mn

p2n
+ 1

2

fMn

pn

√
f 2Mn

p2n
− 1 .

Using (12.6), we obtain

p2n+1

p2n
= 1

2

( 2√
3

+ εn

)2 + 1

2

( 2√
3

+ εn

)
√

( 2√
3

+ εn

)2 − 1 ,

which results in

pn+1

pn
= 1 + 3

4

√
3 + εn + O(ε2n) .

From (12.6), we also have

pn+1

pn
= 2/

√
3 + εn

2/
√
3 + εn+1

.

Comparing the last two equations and neglecting terms O(ε2n), we find that

εn+1 � −εn/2 .
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Thus, for |εn| sufficiently small, the algorithm ensures that εn → 0 and

pn → √
3 fMn/2 .

Therefore, it can be expected that a large number of the interior triangleswill be nearly
equilateral. Close to the boundary, there may be isosceles right-angled triangles,
and in regions where the boundary has large curvature, there may be some obtuse
triangles. A maximum angle of 120◦ and minimum angle of 30◦ may be realized by
an obtuse triangle formed when the vertex D of a nonaccepted triangle is sufficiently
close to an active edge.

In analogywith the first approach to inserting new points, the choice of the triangle
into which the new point is inserted can bemodified by introducing a quality measure
function f (x) and a corresponding control quantity α(S).

12.2.7 Surface Delaunay Triangulation

A surface Delaunay triangulation is defined by analogy with the planar Delaunay
triangulation.

Let Pi be the vertices of the surface triangulation T . A triangle S from T satisfies
the Delaunay criterion if the interior of the circumsphere through the vertices of S
and centered on the plane formed by S does not contain any points. If all triangles
satisfy the Delaunay criterion, then the triangulation T is called a surface Delaunay
triangulation.

In practice, all methods for planar Delaunay triangulations are readily modified
and extended for a surfaceDelaunay triangulation taking into account various surface
geometric characteristics (see Frey and George (2008) and Lo (2015)).

12.2.8 Three-Dimensional Delaunay Triangulation

In three dimensions, the network of the Delaunay triangulation is obtained by joining
the vertices of the Voronoi polyhedrons that have a common face. Each vertex of a
Voronoi polyhedron is the circumcenter of a sphere that passes through four points
which form a tetrahedron and no other point in the construction can lie within the
sphere.

Unconstrained Technique

The most popular three-dimensional algorithm providing a Delaunay structure is
the one based on the Bowyer–Watson sequential process: each point of the grid
is introduced into an existing Delaunay triangulation, which is broken and then
reconnected to form a new Delaunay triangulation.
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In general, the algorithm follows the same steps as in the two-dimensional con-
struction described above. It starts with an initial Delaunay triangulation formed by
a supertetrahedron or supercube, partitioned into five tetrahedrons which contain all
other points. The remaining points which comprise the mesh to be triangulated are
introduced one at a time, and the Bowyer–Watson algorithm is applied to create the
Delaunay cavity and the corresponding retriangulation after each point insertion.

An important feature of a mesh generation procedure is its ability to produce a
boundary-conforming mesh, i.e. the triangular faces of the assembly of tetrahedrons
conform to the boundary surface. Unfortunately, the unconstrained technique does
not guarantee that the boundary faces will be contained within such a triangulation.
Thus, a modified procedure must be introduced to ensure that the resulting triangu-
lation is boundary-conforming.

Constrained Triangulation

The purpose of the constrained Delaunay triangulation is to generate a triangula-
tion which preserves the connections imposed on the boundary points. The three-
dimensional constrained triangulation is carried out in the same way as for two-
dimensional triangulations.

In the first approach, the tetrahedrons whose faces constitute the boundary surface
are fixed during the process of retriangulation. These boundary tetrahedrons are
generated in the first step of triangulation. The next steps include the insertion of a
point, the definition of a star-shaped cavity containing the point, and retriangulation of
the cavity. The resulting grid is boundary-conforming and its interior subtriangulation
is a Delaunay triangulation.

The second approach to the constrained triangulation of a domain developed by
Weatherill and Hassan (1994) starts with inputting the boundary points and boundary
point connectivities of the faces of the boundary triangulation. After performing
a Delaunay triangulation of the boundary points, a new Delaunay triangulation is
built by inserting interior points and applying the Bowyer–Watson algorithm. After
this, the tetrahedrons intersecting the boundary surface are transformed to recover
the boundary triangulation. If a boundary face is not present in the new Delaunay
triangulation, this is due to the fact that edges and faces of the tetrahedrons of the
Delaunay triangulation intersect this face. Since the face is formed from three edges,
it is necessary first to recover the face edges and then the face. This is achieved by
first finding the tetrahedrons which are intersected by the face edges. There is a fixed
combination of possible standard intersections of each tetrahedron by any mixed
boundary edge, which allows one to perform direct transformations to recover the
edge. Having established the intersection types, these tetrahedrons are then locally
transformed into new tetrahedrons so that the required edges are present. A similar
procedure then follows to recover the boundary faces.
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12.3 Advancing-Front Methods

Advancing-front techniques extend the grid into the region in the form of marching
layers, starting from the boundary and proceeding until the whole region has been
covered with grid cells. The region separating the part of the domain already meshed
from those that are still unmeshed is referred to as a front. Advancing-front tech-
niques need some initial triangulation of the boundaries of the geometry, and this
triangulation forms the initial front. The name of this class of methods refers to a
strategy that consists of creating the mesh sequentially, element by element, creating
new points and connecting them with previously created elements, thus marching
into as-yet-unmeshed space and sweeping a front across the domain. The marching
process includes the construction of a new simplex, which is built by connecting
either some appropriate points on the front or some inserted new point with the ver-
tices of a suitable face on the front. The process stops when the front is empty, i.e.
when the domain is entirely meshed.

The advancing-front approaches offer the advantages of high-quality point place-
ment and integrity of the boundary. The efficiency of the grid-marching process
largely depends on the arrangement of grid points in the front, especially at sharp
corners. A new grid point is placed at a position which is determined so as to result
in a simplex with prescribed optimal quality features. In some approaches, the grid
points are positioned along a set of predetermined vectors. To ensure a good grid
quality and to facilitate the advancing process, these vectors are commonly deter-
mined once at each layer mesh point by simply averaging the normal vectors of the
faces sharing the point and then smoothing the vectors. Other approaches to selecting
new points for moving the front use the insertion techniques applied in the Delaunay
triangulations described above.

The fronts continue to advance until either

(1) opposite fronts approach to within a local cell size; or
(2) certain grid quality criteria are locally satisfied.

Grid quality measures which are to be observed in the process of grid generation by
means of the advancing-frontmethod include the cell spacing and sizes of angles. The
desired mesh spacings and other gridding preferences in the region are commonly
specified by calculations on a background grid.

12.3.1 Procedure of Advancing-Front Method

In order to generate cells with acceptable angles and lengths of edges by a marching
process, the advancing-front concept inherently requires a preliminary specification
of local grid spacing and directionality at every point of the computational mesh. The
spacing is prescribed by defining three (two in two dimensions) orthogonal directions
together with some length scale for each direction. The directions and length scales
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are commonly determined from background information, in particular, by carrying
out computations on a coarse grid and interpolating the data.

The advancing-front procedure proceeds by first listing all faces which constitute
the front and then selecting an appropriate face (edge in two dimensions) on the
front. The operation of the selection is very important, since the quality of the final
grid may by affected by the choice. According to a common rule, the face is selected
where the grid spacing is required to be the smallest. A collection of vertices on the
front which are appropriate for connection to the vertices of the selected face to form
a tetrahedron (triangle in two dimensions) is searched. The collection may be formed
by the vertices which lie inside a sphere centered at the barycenter of the face, with
an appropriate radius based upon the height of a unit equilateral tetrahedron. A new
point is also created which is consistent with the ideal position determined from the
background information about grid spacing and directionality. The selected vertices
and the new point are ordered according to their distance from the barycenter of the
selected face. Each sequential tetrahedron formed by the face and the ordered points
is then checked to find out whether it intersects any face in the front. The first point
which satisfies the test and gives a tetrahedron of good quality is chosen as the fourth
vertex for the new tetrahedron. The current triangle is then removed from the list of
front faces, since it is now obscured by the new tetrahedron. This process continues
until there are no more faces in the list of front faces.

In many cases, the use of the background mesh to define the local grid spacing
can be replaced by sources in the form of points, lines, and surfaces.

One of the advantages of such a procedure is that all operations are performed
locally, on neighboring faces only.Additionally, boundary integrity is observed, since
the boundary triangulation constitutes the initial front.

The disadvantages of the advancing-front approach relate mainly to the phase in
which a local direction and length scale are determined and to the checking phase
for ensuring the acceptability of a new tetrahedron.

12.3.2 Strategies for Selecting Out-of-Front Vertices

One of the critical items of advancing-front methods is the placement of new points.
Upon generating a new simplex, a point is placed at a position which is determined
so as to result in the required shape and size of the new simplex. The parameters
which define the desirable cell at each domain position are specified by a function
which is determined a priori or found in the process of computation.

In one approach, the new point is placed along a line which is orthogonal to a
chosen face on the front and passes through its circumcenter. This placement is aimed
at the creation of a new simplex whose boundary contains the chosen face.

If the simplex generated with the new point results in a crossover with the front,
it is discarded. Alternately, if the new point is located very close to a vertex on the
front, it is replaced by this vertex in order to avoid the appearance of a cell with a
very small edge at some later stage.
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Another approach, generally applied in two dimensions, takes into account a ver-
tex on the front and the angle at which the edges cross at this point. The point is
created with the aim of making the angles in the new triangles as near to 60◦ as pos-
sible. In particular, a very large angle between the edges is bisected or even trisected.
On the other hand, if the vertex has a small interior angle, the two adjacent vertices
on the front are connected. This approach can be extended to three dimensions by
analyzing a dihedral angle at the front.

12.3.3 Grid Adaptation

The frontal approach is well suited to generating adaptive grids near the boundary
segments, where the grid cells are commonly required to be highly stretched.

Highly stretched grid cells begin forming individually from the boundary and
march into the domain. However, unlike the conventional procedure in which cells
are added in no systematic sequence, the construction of a stretched grid needs to be
performed by advancing one layer of cells at a time, with the minimum congestion of
the front and a uniform distribution of stretched cells. The new points are positioned
along a set of predetermined vectors in accordance with the value of a stretching
function. The criterion by which the points are evaluated has a significant impact
on the grid quality and the marching process. Because of the requirement of a high
aspect ratio of cells in the boundary layer, the conventional criteria based on the cell
angles are not appropriate for building highly stretched cells.

In a criterion based on a spring analogy, the points forming a new layer are
assumed to be connected to the end points of the face by tension springs. Among
these points, the one with the smallest spring force is considered the most suitable
for forming the new cell, and consequently for changing the front boundary. The
spring concept allows one to indicate when an opposing front is very close to the
new location, namely, when an existing point on the front has the smallest spring
force. The adaptive advancing process terminates on a front face when the local grid
characteristics on the front, influenced by the stretching function, no longer match
those determined by the background grid in that location.When the proximity and/or
grid quality criteria are satisfied on all faces of the front, the process switches from
an advancing-layers method to the conventional advancing-front method to form
regular isotropic cells in the rest of the domain.

12.3.4 Advancing-Front Delaunay Triangulation

A combination of the advancing-front approach and the Delaunay concept gives rise
to the advancing-front Delaunay methods.

If the boundary of a domain is triangulated and a set of points to be triangulated is
given in the interior of the domain, then the advancing-front Delaunay triangulation
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is carried out by forming the cells adjoining the front in accordance with the empty-
circumcircle property.

The procedure for the triangulation can be outlined as follows. A face on the front
is chosen, and a new simplex is tentatively built by joining the vertices of the face
to an arbitrary point on the front, in the interior of the domain with regard to the
front. If this simplex contains any points within its circumcircle, it is not added to
the triangulation. By checking all points, the appropriate vertex which produces a
simplex containing no points interior to its circumcircle is eventually found. The
simplex formed through this vertex is accepted and the front is advanced.

Another algorithm is based on the strategy of placing new points ahead of the
front and triangulating them according to the Delaunay criterion.

12.4 Meshing by Quadtree-Octree Decomposition

Quadtree-octree meshing is based on the idea of partitioning a domain in a pro-
gressive manner so as to produce cells of size compatible with the node spacing
requirement. The use of quadtree decomposition for two-dimensional mesh genera-
tion was developed in the 1980s by Shephard et al. (1988).

In this approach, applied to mesh generation, the n-dimensional domain to be
gridded is first enclosed in a bounding root box (an n-dimensional parallelepiped)
which is approximated with a union of disjoint and variably sized cells whose union
constitutes the final mesh of the domain. The cells are obtained from a recursive
refinement of the root parallelepiped. The current cell is subdivided into four equally
sized cells in a two-dimensional case and into eight equally sized cells in a three-
dimensional case. The stopping criterion used to subdivide a cell can be based on the
local geometric properties of the boundary of the domain (e.g. the local curvature of
the boundary) or user defined level of refinement.

The set of cells composes the tree structure associated with the spatial decompo-
sition. At each stage of the tree construction, each cell of the tree is analyzed and
refined into 2n (with n the space dimension) equally sized cells, based on a specific
criterion. The level of a cell corresponds to its depth in the related tree (i.e. the num-
ber of subdivisions required to reach a cell of this size). The bounding box is at level
0. The depth of the tree corresponds to the maximum level of subdivision.

12.5 Three-Dimensional Prismatic Grid Generation

The use of prismatic cells is justified by the fact that the requirement of high aspect
ratio can be achieved without reducing the values of the angles between the cell
edges.

The procedure for generating a prismatic grid begins by triangulating the bound-
ary surface of a domain. The next stage in the procedure computes a quasinormal
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direction at each node of the surface triangulation. Then, the initial surface is shifted
along these quasinormal directions by a specified distance d. This gives the first layer
of prismatic cells. This shifting process is repeated a number of times using suitable
values of d at each stage and either the same or newly computed normal directions.
The value of the quantity d can be chosen in the formof any of the stretching functions
described in Chap.4.

The efficiency of the algorithm is essentially dependent on the choice of quasi-
normal directions. The generation of the quasinormals is carried out in three stages,
depending on a position of the vertices.

(1) Normals are first computed at the vertices which lie on the corners of the bound-
ary. These are calculated as the angle-weighted average of the adjacent surface
normals. The angle used is the one between the two edges adjacent to the bound-
ary surface and meeting at the corner.

(2) Normals at grid points on the geometrical edges of the boundary surface are
computed. These normals are the average of the two adjacent surface normals.

(3) Finally, the normals at grid nodes on the boundary surfaces are calculated.

12.6 Comments

Unstructured grid methods were originally developed in solid mechanics. The paper
by Field (1995) reviews some early techniques for unstructured mesh generation
that rely on solid modelling. An informal survey that illustrates the wide range of
unstructured mesh generation was conducted by Owen (1998) and described in the
handbook of grid generation edited by Thompson et al. (1999).

Though unstructured technology deals chiefly with tetrahedral (triangular in two
dimensions) elements, some approaches rely on hexahedrons (or quadrilaterals) for
the decomposition of arbitrary domains. Recent results have been presented by Tam
and Armstrong (1991) and Blacker and Stephenson (1991).

Properties of n-dimensional triangulations were reviewed by Lawson (1986). The
relations between the numbers of faces were proved in the monograph by Henle
(1979) and in the papers by Steinitz (1922), Klee (1964), Lee (1976).

The Delaunay triangulation and Voronoi diagram were originally formulated in
the papers of Delaunay (1934, 1947), Voronoi (1908), respectively. Algorithms for
computing Voronoi diagrams have been developed by Green and Sibson (1978),
Brostow et al. (1978), Finney (1979), Bowyer (1981), Watson (1981), Tanemura
et al. (1983), Sloan and Houlsby (1984), Fortune (1985) and Zhou et al. (1990).
Results of studies of geometrical aspects of Delaunay triangulations and their dual
Voronoi diagrams were presented in the monographs by Edelsbrunner (1987), Du
and Hwang (1992), Okabe et al. (1992), Preparata and Shamos (1985). Proofs of the
properties of planar Delaunay triangulations were given by Guibas and Stolfi (1985)
and by Baker (1987, 1989).

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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A technique for creating the Delaunay triangulation of an a priori given set of
points was proposed by Tanemura et al. (1983). The incremental two-dimensional
Delaunay triangulation which starts with an initial triangulation was developed by
Bowyer (1981), Watson (1981). Watson has also shown the visibility of the edges of
the cavity associated with the inserted point. Having demonstrated that the Delaunay
criterion is equivalent to the equiangular property, Sibson (1978) devised and later
Lee and Schachter (1980) investigated a diagonal-swapping algorithm for generating
a Delaunay triangulation by using the equiangular property.

A novel approach, based on the aspect ratio and cell area of the current triangles,
to the generation of points as the Delaunay triangulation proceeds was developed
by Holmes and Snyder (1988). In their approach, a new point is introduced into
the existing triangulation at the Voronoi vertex corresponding to the worst triangle.
Ruppert (1992), Chew (1993) have shown that in the planar case, the procedure
leads to a Delaunay triangulation with a minimum-angle bound of 30 degrees. An
alternative procedure of inserting the new point on a Voronoi segment was proposed
by Rebay (1993). Amodification of the Rebay technique was made by Baker (1994).
Haman et al. (1994) inserted points into a starting Delaunay grid in accordance with
the boundary curvature and distance from the boundary, while Anderson (1994)
added nodes while taking into account cell aspect ratio and proximity to boundary
surfaces.

Approaches to the generation of boundary-conforming triangulations based upon
the Delaunay criterion have been proposed by Lee (1978), Lee and Lin (1986), Baker
(1989), Chew (1989), Cline and Renka (1990), George et al. (1990), Weatherill
(1990), George and Hermeline (1992), Field and Nehl (1992), Hazlewood (1993),
Weatherill and Hassan (1994). All techniques and methods considered in the present
chapter for proving the results associatedwith the constrainedDelaunay triangulation
were described on the basis of papers by Weatherill (1988), Baker (1989, 1994),
Mavriplis (1990), Rebay (1993), Weatherill and Hassan (1994).

Further development of unstructured grid techniques based on the Delaunay crite-
rion and aimed at the solution of three-dimensional problems has been performed by
Cavendish et al. (1985), Shenton and Cendes (1985), Perronet (1988), Baker (1987,
1989), Jameson et al. (1986), Weatherill (1988), Frey and George (2008), Lo (2015).
The application of the Delaunay triangulation for the purpose of surface interpolation
was discussed by DeFloriani (1987).

The octree approach originated from the pioneering work of Yerry and Shephard
(1985). The octree data structure has been adapted by Lohner (1988b) to produce effi-
cient search procedures for the generation of unstructured grids by the moving-front
technique. Octree-generated cells were used by Shephard et al. (1988); Yerry and
Shephard (1990) to cover the domain and the surrounding space, and then to derive
a tetrahedral grid by cutting the cubes. The generation of hexahedral unstructured
grids was developed by Schneiders and Bunten (1995).
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The moving-front technique has been successfully developed in three dimensions
by Peraire et al. (1987), Lohner (1988a) and Formaggia (1991). Somemethods using
Delaunay connectivity in the frontal approach have been created byMerriam (1991),
Mavriplis (1991, 1993), Rebay (1993), Muller et al. (1993), Marcum andWeatherill
(1995).

Advancing-front grids with layers of prismatic and tetrahedral cells were formu-
lated by Lohner (1993). A more sophisticated procedure, basically using bands of
prismatic cells and a spring analogy to stop the advancement of approaching layers,
was described by Pirzadeh (1992). The application of adaptive prismatic meshes
to the numerical solution of viscous flows was demonstrated by Parthasarathy and
Kallinderis (1995).

Some procedures for surface triangulations have been developed by Peraire et al.
(1988), Lohner and Parikh (1988), Weatherill et al. (1993).

A survey of adaptive mesh refinement techniques was published by Powell et al.
(1992). The combination of the Delaunay triangulation with adaptation was per-
formed by Holmes and Lamson (1986), Mavriplis (1990), Muller (1994). The imple-
mentation of solution adaptation into the advancing-front method with directional
refinement and regeneration of the original mesh was studied by Peraire et al. (1987).
Approaches based on the use of sources to specify the local point spacing have been
developed by Pirzadeh (1993), Pirzadeh (1994), Weatherill et al. (1993).

The prospects and trends for unstructured grid generation in its application to com-
putational fluid dynamics were discussed by Baker (1995), Venkatakrishan (1996).
The first application of the Delaunay triangulation in computational fluid dynamics
was carried out by Bowyer (1981), Baker (1987). The advancing-front technique
was introduced, in computational fluid dynamics, primarily by Peraire et al. (1987),
Lohner (1988a), Lohner and Parikh (1988). The techniques of George (1971); Wor-
denweber (1981), Wordenweber (1983), Lo (1985), Peraire (1986) foreshadowed
the more recent advancing-front methods. Muller (1994), Marchant and Weatherill
(1994) applied a combination of frontal and Delaunay approaches to treat problems
with boundary layers. Muller (1994) generated triangular grids in the boundary layer
through a frontal technique, with high-aspect-ratio triangles, and filled the remainder
of the domain with triangles built through the Delaunay approach. Another way to
treat a boundary layer with the advancing-front approachwas applied byHassan et al.
(1994). In the first step, the boundary layer is covered by a single layer of tetrahedral
cells. Then, the newly generated nodes are moved along the cell edges towards the
boundary by a specified distance. These steps, in the original layer, are repeated until
a required resolution has been reached. After this, the advancing front proceeds to
fill up the remainder of the domain.

An algorithm for the generation of a high-quality well-graded quadrilateral ele-
ment mesh from a triangular element mesh was presented by Lee and Lo (1994), Lo
(2015). Very important applications to parallel unstructured mesh generation were
discussed by Chrisochoides (2006) and Ivanov (2008).
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