
Chapter 10
Numerical Implementations
of Comprehensive Grid Generators

10.1 One-Dimensional Equation

Here, we consider a curve Sx1 specified by parametrization from a normalized para-
metric interval S1 = [0, 1]

x(s) : [0, 1] → Rn , x = (x1, . . . , xn) . (10.1)

For generating a grid on the curve Sx1, we first define a grid on the parametric interval
[0, 1] with the use of the one-dimensional inverted Beltrami equation in a divergent
form. Then, the grid nodes on the parametric interval [0, 1] are mapped with the
parametric transformations x(s) on Sx1, thus forming a grid on the curve Sx1.

The grid nodes in [0, 1] are computed by numerically solving the Dirichlet bound-
ary value problem with respect to an intermediate transformation

s(ξ) : [0, 1] → [0, 1]

for Eq. (9.133), i.e.
d

dξ

(√
gs

ds

dξ

)
= 0 , 0 < ξ < 1 ,

s(0) = 0 , s(1) = 1 ,

(10.2)

where gs is the determinant of a control covariant metric gs11 over the curve Sx1, in
particular, specified in the form (9.116) for n = 1, i.e.

gs11 = z(s)gxs
11 + Fm(s)Fm(s) , m = 1, . . . , l ,

gxs
11 = ∂x

∂s
· ∂x
∂s

.

It is evident that in the one-dimensional case, gs = gs11, g
11
s = 1/gs11.

© Springer International Publishing AG 2017
V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-3-319-57846-0_10

385

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9

386 10 Numerical Implementations of Comprehensive Grid Generators

The metric gs11 can also be the metric of a monitor curve Sr1 prescribed by a
monitor function for controlling grid properties

f(x) : Gn → Rl , f = (f 1, . . . , f l) ,

where Gn is a domain in Rn containing Sx1. As a result, the monitor curve Sr1 over
Sx1 is parametrized by

r(s) : [0, 1] → Rn+l , r(s) = (x(s), f[x(s)]) ,

and consequently

gs11 = grs11 = rs · rs = xs · xs + fs · fs = dx
ds

· dx
ds

+ df[x(s)]
ds

· df[x(s)]
ds

.

10.1.1 Numerical Algorithm

The grid nodes x j , j = 0, 1, . . . , N , on Sx1 are defined by the relation

x j = x(s(jh)) , j = 0, 1, . . . , N , h = 1/N ,

or by
x j = x(s j) , j = 0, 1, . . . , N , h = 1/N ;

here, s j , j = 0, 1, . . . , N , is a difference function obtained by the numerical solution
on a uniform grid ξ j = jh, j = 0, 1, . . . , N , of the Dirichlet problem (10.2).

Iterative Scheme

The nonlinear problem (10.2) is solved through an iterative process which is engen-
dered by the numerical solution of the following parabolic problem with respect to
a function s(ξ, t):

∂s

∂t
− ∂

∂ξ

(√
gs

∂s

∂ξ

)
= 0 , 0 ≤ ξ ≤ 1 , 0 ≤ t ≤ T ,

s(0, t) = 0 , s(1, t) = 1 , s(ξ, 0) = s0(ξ) .

(10.3)

The problem (10.3) is approximated on the uniform grid (ih, kτ) with respect to
ski , i = 0, 1, . . . , N , k = 0, 1, . . . , by the following natural stencil:

sk+1
i − ski

τ
= 1

h2
[vki+1/2(s

k+1
i+1 − sk+1

i) − vki−1/2(s
k+1
i − sk+1

i−1)] ,

sk0 = 0 , skN = 1 , s0i = s0(ih) , h = 1/N ,

(10.4)

10.1 One-Dimensional Equation 387

where

vki+1/2 = 1

2

(√
gs(ski) +

√
gs(ski+1)

)
, i = 0, 1, . . . , N − 1. (10.5)

The scheme (10.4) is implicit. Its solution is obtained from the algorithm which
is elucidated by the application to the following well-known difference reference
problem:

Ak+1
i sk+1

i−1 − Ck+1
i sk+1

i + Bk+1
i sk+1

i+1 = −Fk
i , i = 1, 2, . . . , N − 1 ,

sk+1
0 = a , sk+1

N = b .
(10.6)

The solution to (10.6) is found through the following recursive formulas:

sk+1
i = αk+1

i+1 s
k+1
i+1 + βk+1

i+1 , i = 1, . . . , N − 1 , sk+1
N = b , (10.7)

where

αk+1
i+1 = Bk+1

i

Ck+1
i − αk+1

i Ak+1
i

, i = 1, . . . , N − 1 , αk+1
1 = 0 ,

βk+1
i+1 = Ak+1

i βk+1
i + Fk

i

Ck+1
i − αk+1

i Ak+1
i

, i = 1, . . . , N − 1 , βk+1
1 = a .

(10.8)

Thus, assuming in (10.6) a = 0, b = 1, and

Ak+1
i = vki−1/2 , Bk+1

i = vki+1/2 , Ck+1
i = vki−1/2 + vki+1/2 + θ ,

Fk
i = θski , θ = h2/τ , i = 1, . . . , N − 1 ,

(10.9)

we obtain a solution of (10.4) at a step k + 1 if it is known at the previous step k.
Note that the values of the initial function s0i , i = 0, 1, . . . , N , are specified by the
user. Naturally, it may be assumed that

s0i = ih , i = 0, . . . , N , h = 1/N .

As an approximate numerical solution of (10.3), the solution ski , i = 0, 1, . . . , N ,

of (10.4) at a step number k is taken if

max
0≤i≤N

|sk+1
i − ski |

τ
≤ ε , (10.10)

for some sufficiently small ε > 0.

Step–by–Step Algorithm

The algorithm described above is presented here in a step-by-step manner.

388 10 Numerical Implementations of Comprehensive Grid Generators

Step 1.
Define an initial grid distribution of the parametric interval [0,1] by introducing a
monotone difference function s0i , i = 0, . . . , N , such that s00 = 0, s0N = 1.
Step 2.
Compute the difference function v0i+1/2, i = 0, . . . , N − 1, by formula (10.5).
Step 3.
Compute the difference functions A1

i , B
1
i , C

1
i , F

0
i , i = 1, . . . , N − 1, by formulas

in (10.9).
Step 4.
Compute the coefficientsα1

i and β1
i , i = 1, . . . , N , by formulas in (10.8) with a = 0.

Step 5.
Compute the difference solution s1i , i = 0, . . . , N , of the first step through the
formula (10.7), taking into account s10 = 0, s1N = b = 1.
Step 6.
Return to step 2 assuming s00 = s1i , i = 0, . . . , N , where s1i is the solution obtained
at step 5.

Continue until the tolerance requirement (10.10) is observed.
Step 7.
Map the final nodes ski , i = 0, . . . , N , satisfying (10.10), with the parametrization
x(s) on Sx1.

The algorithm described is readily reformulated for the numerical solution of the
inverted diffusion equation in a divergent form, namely, by substitutingw(s) for

√
gs

in (10.2), (10.3), and (10.5).

10.2 Multidimensional Finite Difference Algorithms

In this section, we apply one version of the multidimensional algorithm of frac-
tional steps proposed by Yanenko (1971) for the numerical solution of the inverted
n-dimensional (n ≥ 2) Beltrami and diffusion equations. Other versions of this algo-
rithm that can be readily implemented for solving the resulting multidimensional
grid equations, in particular, the popular ADI (alternating direction implicit) method
are reviewed by Kovenya et al. (1990), Fletcher (1997), and Langtangen (2003).

10.2.1 Parabolic Simulation

We rewrite the boundary value problems (9.132) and (9.134) in the following general
form:

Bξ
n [si] = Ri [s], i = 1, . . . , n,

si (ξ) = ψi (ξ), ξ ∈ ∂Ξ n,
(10.11)

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9

10.2 Multidimensional Finite Difference Algorithms 389

where

Bξ
n [sl] = gξg

i j
ξ

∂2sl

∂ξi∂ξ j
, i, j, l = 1, . . . n ,

gξ = det{gξ
i j } = (J)2gs = 1/det{gi jξ } .

For inverted Beltrami equations (9.132) in a general control metric gsi j , we have in
(10.11)

Ri [s] = (J)2
√

gs
∂

∂ξ j
(
√

gsgims)
∂ξ j

∂sm
, i, j,m = 1, . . . , n . (10.12)

Notice that for the metric (9.9) of a monitor surface over a domain Sn , i.e.

gsi j = grsi j = δij + ∂ f (s)
∂si

· ∂ f (s)
∂s j

, i, j = 1, . . . , n ,

in accordance with (9.56), formula (10.12) also has the following form:

Ri [s] = −Brξ
n [f] · ∂ f [s(ξ)]

∂ξ j

∂ξ j

∂si
, i, j = 1, . . . , n , (10.13)

where

Bξ
n [y] = Brξ

n [y] = grξg
i j
ξr

∂2y

∂ξi∂ξ j
, i, j, l = 1, . . . n ,

grξ = det{grξi j } = (J)2grs = 1/det{gi jξr } ,

g
rξ
i j = grskl

∂sk

∂ξi
∂sl

∂ξ j
= g

sξ
i j + ∂ f [s(ξ)]

∂ξi
· ∂ f [s(ξ)]

∂ξ j
, i, j, k, l = 1, . . . , n .

For the general inverted diffusion equations (9.134), we have in (10.11)

Ri [s] = gs(J)2

w(s)

∂

∂ξk
(w(s)gi js)

∂ξk

∂s j
, i, j, k = 1, . . . , n , (10.14)

in particular, for (13.49), i.e. when w(s) = 1, gi js = Z [v](s)δij ,

Ri = J 2

Z [v](s)
∂

∂si
Z [v](s) , i = 1, . . . , n , (10.15)

Bξ
n [y] = Bsξ

n [y] = gsξg
i j
ξs

∂2y

∂ξi∂ξ j
, gsξ = det{gsξi j } = J 2 , i, j = 1, . . . , n ,

g
sξ
i j = ∂s

∂ξi
· ∂s
∂ξ j

= ∂sk

∂ξi
∂sk

∂ξ j
, g

i j
ξs = ∂ξi

∂sk
∂ξ j

∂sk
, i, j, k = 1, . . . , n .

(10.16)

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_13

390 10 Numerical Implementations of Comprehensive Grid Generators

Solutions to the non-linear boundary value problem (10.11) may be found in
the following way. First, the problem is replaced by a nonstationary boundary value
problemwith respect to the components si (ξ, t), i = 1, . . . , n, of the vector function
s(ξ, t) : Ξ n × [0, T] → Sn:

∂si

∂t
= (J)p

{
Bξ
n [si] − Ri [s]

}
, i, j,m = 1, . . . , n ,

si (ξ, t) = ψi (ξ), ξ ∈ ∂Ξ n, t ≥ 0 ,

si (ξ, 0) = si0(ξ) , ξ ∈ Ξ n ,

(10.17)

where J = det{∂si/∂ξ j }, p ≥ 0, si0(ξ) is the i-th component of the initial transfor-
mation

s0(ξ) : Ξ n → Sn, s0(ξ) = [s10(ξ), . . . , sn0 (ξ)]

specified by the user. Then, for an approximate solution s(ξ) of (10.11), there can
be taken the solution s(ξ, t) of (10.17) for some sufficiently large t .

If the elements gsi j are known at all points of Sn , then in (10.17), p = 0, and for
(10.12), (10.13), (10.14), and (10.15), we can assume, respectively,

Ri [s] = (J)2
√

gs
∂

∂sm
(
√

gsgims) , i,m = 1, . . . , n , (10.18)

Ri [s] = −Brξ
n [f (s)] · ∂ f (s)

∂si
, i = 1, . . . , n , (10.19)

Ri [s] = gs(J)2

w(s)

∂

∂s j
(w(s)gi js) , i, j = 1, . . . , n , (10.20)

Ri = J 2

Z [v](s)
∂

∂si
Z [v](s) , i = 1, . . . , n . (10.21)

When Bξ
n is an elliptic operator, the solution to the problem (10.17) relaxes to the

solution of (10.11) as t → ∞.
The factor (J)p, p ≥ 1 in (10.17) is introduced in the case when the control metric

gsi j is not known in advance, but is found numerically, for instance, if it is dependent
on the solution of the physical problem for which the numerical grid is generated.
This factor allows one to rule out the Jacobian J being a denominator after replacing
in Ri [s] the derivatives ∂ξi/∂s j with the derivatives ∂sk/∂ξm . In particular, in the
case of the metric of a monitor hypersurface Srn over Sn (see (9.13) and (9.14)), i.e.
when g

¸
i j = g

rξ
i j , it is sufficient to assume p = 1. Namely, for n = 2, we have, from

(10.13) and (2.4),

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_2

10.2 Multidimensional Finite Difference Algorithms 391

J Ri [s] = −J Brξ
2 [f (s)] · ∂ f (s(ξ))

∂ξm
∂ξm

∂si

= −(−1)i+m Brξ
2 [f (s)] · ∂ f (s(ξ))

∂ξm
∂s3−i

∂ξ3−m
, i,m = 1, 2 ,

(10.22)

while for n = 3, we obtain, from (10.13) and (2.5),

J Ri [s] = −J Brξ
3 [f (s)] · ∂ f (s(ξ))

∂ξm
∂ξm

∂si

= −Brξ
3 [f (s)] · ∂ f (s(ξ))

∂ξm

(∂si+1

∂ξm+1

∂si+2

∂ξm+2
− ∂si+1

∂ξm+2

∂si+2

∂ξm+1

)
,

i,m = 1, 2, 3 .

(10.23)

With such incorporation of (J)p, one can produce a final nondegenerate grid
even if the initial and intermediate grids may be singular. Note that the numerical
implementations of the inverted energy and diffusion functionals cannot eliminate
the Jacobian being the denominator.

The boundary value problem (10.17) is usually solved through alternative direc-
tion implicit methods, in particular, through the method of fractional steps.

10.2.2 Two-Dimensional Equations

In this section, a finite-difference numerical algorithm for generating grids in two-
dimensional domains and surfaces is described.

Boundary Value Problem

Let us first discuss the grid algorithm for a two-dimensional domain S2. We shall
use, for the logical domain Ξ 2, the unit square: Ξ 2 = {0 ≤ ξ1, ξ2 ≤ 1}. Let the
transformation s(ξ) for generating a grid in S2 be specified on the boundary of Ξ 2,
i.e. there is a map

ϕ(ξ) : ∂Ξ 2 → ∂S2 , ϕ = (ϕ1,ϕ2) (10.24)

which is continuous on ∂Ξ 2. Note that the one-dimensional transformation on any
segment of ∂Ξ 2 can be computed by the algorithm described in Sect. 11.1. We
consider here the generation of a grid in S2 by the numerical solution of the Dirichlet
problem (10.11) for the most general system of inverted Beltrami equations in a
control metric gsi j for n = 2 written in a vector form

Bξ
2 [s] = R[s] ,

s(ξ)

∣∣∣
∂Ξ 2

= ϕ(ξ), i = 1, 2 ,
(10.25)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_11

392 10 Numerical Implementations of Comprehensive Grid Generators

where

s(ξ) = (s1(ξ) , s2(ξ)) , ϕ(ξ) = (ϕ1(ξ), ϕ2(ξ)) , R[s] = (R1[s] , R2[s]) ,

Bξ
2 [s] = g

ξ
22

∂2s
∂ξ1∂ξ1

− 2gξ
12

∂2s
∂ξ1∂ξ2

+ g
ξ
11

∂2s
∂ξ2∂ξ2

,

R1[s] = J
√

gs
[∂

∂ξ1
(
√

gsg11s)
∂s2

∂ξ2
− ∂

∂ξ1
(
√

gsg12s)
∂s1

∂ξ2

+ ∂

∂ξ2
(
√

gsg12s)
∂s1

∂ξ1
− ∂

∂ξ2
(
√

gsg11s)
∂s2

∂ξ1

]
,

R2[s] = J
√

gs
[∂

∂ξ1
(
√

gsg11s)
∂s2

∂ξ2
− ∂

∂ξ1
(
√

gsg12s)
∂s1

∂ξ2

+ ∂

∂ξ2
(
√

gsg12s)
∂s1

∂ξ1
− ∂

∂ξ2
(
√

gsg11s)
∂s2

∂ξ1

]
.

(10.26)

Parabolic Equations

The nonlinear boundary value problem (10.25) is solved by an iterative process.
For this purpose, in accordance with (10.17), the problem (10.25) is replaced
by the following boundary value parabolic problem with respect to the function
s(ξ1, ξ2, t) = (s1(ξ1, ξ2, t), s2(ξ1, ξ2, t)):

∂s
∂t

= (J)p
{
Bξ
2 [s] − R(s)

}
,

s(ξ, t) = ϕ(ξ) , ξ ∈ ∂Ξ 2 , t ≥ 0 ,

s(ξ, 0) = s0(ξ) , ξ ∈ Ξ 2 ,

(10.27)

where s0(ξ) is an initial transformation

s0(ξ) : Ξ 2 → S2, s0(ξ) = [s10(ξ), s20 (ξ)],

specified by the user.
The solution s(ξ, t) satisfying (10.27) aspires to the solution to (10.25) when

t → ∞. Therefore, an approximate solution of (10.25) is obtained from the solution
to (10.27) computed for some sufficiently large value t = T0.

Initial Transformation

The initial transformation for (10.27)

s(ξ, 0) = s0(ξ) : Ξ 2 → S2.

can be found by propagating the values ofϕ(ξ) = [ϕ1(ξ),ϕ2(ξ)] from the boundary
points into the interior of the domainΞ 2, for example, ifΞ 2 is the unit square through
the formula of the Lagrange two-dimensional transfinite interpolation described in
Chap.5. This formula has the following recursive form for the components si (ξ, 0)
of the mapping s0(ξ):

http://dx.doi.org/10.1007/978-3-319-57846-0_5

10.2 Multidimensional Finite Difference Algorithms 393

Fi (ξ1, ξ2) = αi
01(ξ

1)ϕi (0, ξ2) + αi
11(ξ

1)ϕi (1, ξ2) ,

si (ξ1, ξ2, 0) = Fi (ξ1, ξ2) + αi
02(ξ

2)[ϕi (ξ1, 0) − Fi (ξ1, 0)]
+αi

12(ξ
2)[ϕi (ξ1, 1) − Fi (ξ1, 1)] , i = 1, 2, i fixed ,

(10.28)

where the functionsαi
k j (s), 0 ≤ s ≤ 1, (referred to as blending functions) are subject

to the following restrictions:

αi
0 j (0) = αi

1 j (1) = 1 , αi
0 j (1) = αi

1 j (0) = 0 . (10.29)

In particular, for the simplest expressions of the blending functions

αi
0 j (s) = 1 − s , αi

1 j (s) = s ,

satisfying (10.29), we find, from (10.28),

Fi (ξ1, ξ2) = (1 − ξ1)ϕi (0, ξ2) + ξ1ϕi (1, ξ2) ,

si (ξ1, ξ2, 0) = Fi (ξ1, ξ2) + (1 − ξ2)[ϕi (ξ1, 0) − Fi (ξ1, 0)]
+ ξ2[ϕi (ξ1, 1) − Fi (ξ1, 1)] , i = 1, 2 .

(10.30)

Iterative Algorithm for Generating Quadrilateral Grids

The problem (10.27) is approximated on the rectangular grid (ih1, jh2, kτ), h1 =
1/N1, h2 = 1/N2, in the logical domain Ξ 2 × [0, T], where Ξ 2 is a rectangle
(Fig. 10.1 (left-hand)), by the scheme

sk+1/2 − sk

τ/2
= J p(sk)

{
g

ξ
22[sk]Lh

11[sk+1/2] + g
ξ
11[sk]Lh

22[sk]
− 2gξ

12[sk]Lh
12[sk]

}
− J p(sk)R[sk],

sk+1 − sk+1/2

τ/2
= J p(sk)

{
g

ξ
11[sk]Lh

22[sk+1] − g
ξ
11[sk]Lh

22[sk]
}

,

(10.31)

Fig. 10.1 Two-dimensional quadrilateral and triangular stencils for finite differences

394 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.2 Stages of the iterative generation of a quadrilateral grid with the use of a singular initial
grid

where sk+α = s(ξ, (k + ατ)), k = 0, 1, 2, . . . , α = 0, 1/2, 1, Lh
i j is a finite-

difference operator approximating the operator ∂2/(∂ξi∂ξ j), by the central differ-
ences. The derivatives in J , gξ

i j , and R are also approximated by the central differ-
ences. The initial transformation s(ξ, 0) = s0(ξ) is found through the formulas of
transfinite interpolations.

The solution to (10.31) at each step k and k + 1/2 is obtained in the same way as
it was described in Sect. 11.1.

An approximate solution to (10.27) is the solution ski j at a step k such that

max
0≤i≤N1,0≤ j≤N2

1

τ
|sk+1

i j − ski j | ≤ ε , (10.32)

for some sufficiently small ε > 0.
Figure10.2 demonstrates some steps of the grid generation in a two-dimensional

domain by the solution of the inverted Beltrami equations with the iterative algorithm
described. The initial grid is singular (all its interior nodes merge into one node lying
outside of the domain).

Generation of Triangular Grids

The numerical algorithm described above for generating quadrilateral grids is nat-
urally applied to the generation of triangular grids when the logical domain is a
symmetric trapezoid (Fig. 10.1 (right-hand)).

http://dx.doi.org/10.1007/978-3-319-57846-0_11

10.2 Multidimensional Finite Difference Algorithms 395

Fig. 10.3 Stages for generating a triangular grid by using a singular initial grid

An example of a triangular grid generated by such an algorithm is exhibited by
Fig. 10.3. As it is in Fig. 10.2, the initial grid is singular. All its interior points are
placed into three points, two of which lie outside of the domain.

Algorithm for Generating Grids on Two-Dimensional Surfaces

In the same way as for domains, grids are generated in a two-dimensional surface
Sx2 represented as

x(s) : S2 → R3 , x = (x1, x2, x3) , s = (s1, s2) , (10.33)

by solving the boundary value problem for the inverted two-dimensional diffusion
equations as well as for the corresponding inverted Beltrami equations with respect
to a monitor metric gsi j over S

x2.
Similarly to the case of a two-dimensional domain, we can choose a rectangle or

trapezoid for the logical domain Ξ 2. We can also assume that the boundary trans-
formation

ϕ(ξ) : ∂Ξ 2 → ∂S2 , ϕ = (ϕ1,ϕ2) ,

which is continuous on ∂Ξ 2, has been specified on the boundary grid points of ∂Ξ 2,
for example, by computing it through the algorithm described in Sect. 10.1.

The grid on Sx2 is obtained by mapping, with x(s), the grid nodes computed in
S2 through the numerical solution of the Dirichlet problem with respect to s(ξ) for
the inverted grid equations.

Figure10.4 illustrates a surface triangular adaptive grid generated by the algo-
rithm.

396 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.4 A triangular adaptive grid on a conical surface

10.2.3 Three–Dimensional Problem

For generating grids in a three-dimensional domain S3 ⊂ R3 with the use of the
inverted Beltrami or diffusion equations in a control metric gsi j , i, j = 1, 2, 3, we
consider boundary value problem (10.11) for n = 3 written in a vector form

Bξ
3 [s] = R[s] ,

s(ξ)

∣∣∣
∂Ξ 3

= ϕ(ξ) ,
(10.34)

where

s(ξ) = (s1(ξ) , s2(ξ , s3(ξ)) , ϕ(ξ) = [ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)] ,

R(s) = (R1(s) , R2(s) , R3(s)) ,

Bξ
3 [v] = gξg

i j
ξ

∂2s
∂ξi∂ξ j

= [gξ
22g

ξ
33 − (g

ξ
23)

2] ∂2s
∂ξ1∂ξ1

+ 2[gξ
23g

ξ
13 − g

ξ
12g

ξ
33]

∂2s
∂ξ1∂ξ2

+ 2[gξ
12g

ξ
23 − g

ξ
22g

ξ
13]

∂2s
∂ξ1∂ξ3

+ [gξ
11g

ξ
33 − (g

ξ
13)

2] ∂2s
∂ξ2∂ξ2

+ 2[gξ
12g

ξ
13 − g

ξ
11g

ξ
23]

∂2s
∂ξ2∂ξ3

+ [gξ
11g

ξ
22 − (g

ξ
12)

2] ∂2s
∂ξ3∂ξ3

,

Ri [s] = J
√

gs
∂

∂ξ j
(
√

gsgims)
(∂sm+1

∂ξ j+1

∂sm+2

∂ξ j+2
− ∂sm+1

∂ξ j+2

∂sm+2

∂ξ j+1

)
,

i, j,m = 1, 2, 3 .

(10.35)

Analogously to the solution of two-dimensional problem (10.27), we find a solu-
tion to (10.34) as a limit with t → ∞ of the solution of the corresponding parabolic
problem

∂s
∂t

= J p
{
Bξ
3 [s] − R(s)

}
,

s(ξ, t) = ϕ(ξ) , ξ ∈ ∂Ξ 3 , t ≥ 0 ,

s(ξ, 0) = s0(ξ) , ξ ∈ Ξ 3 .

(10.36)

10.2 Multidimensional Finite Difference Algorithms 397

Initial Transformation

The initial transformation

s(ξ, 0) = s0(ξ) : Ξ 3 → S3 .

can be found by propagating the values of ϕ(ξ) into the interior of the unit cube Ξ 3,
for example, through the formula of Lagrange transfinite interpolation. In particular,
for the simplest expressions of the blending functions

αi
0 j (s) = 1 − s , αi

1 j (s) = s ,

we find from (5.26)

Fi
1(ξ

1, ξ2, ξ3) = (1 − ξ1)ϕi (0, ξ2, ξ3) + ξ1ϕi (1, ξ2, ξ3) ,

Fi
2(ξ

1, ξ2, ξ3) = Fi
1(ξ

1, ξ2, ξ3) + (1 − ξ2)[ϕi (ξ1, 0, ξ3)
−Fi

1(ξ
1, 0, ξ3)] + ξ2[ϕi (ξ1, 1, ξ3) − Fi

1(ξ
1, 1, ξ3)] ,

xi (ξ1, ξ2, ξ3) = Fi
2(ξ

1, ξ2, ξ3) + (1 − ξ3)[ϕi (ξ1, ξ2, 0)
−Fi

2(ξ
1, ξ2, 0)] + ξ3[ϕi (ξ1, ξ2, 1) − Fi

2(ξ
1, ξ2, 1)] , i = 1, 2, 3 ,

(10.37)

Three–Dimensional Algorithm

A numerical algorithm for solving problem (10.36) is formulated analogously to
the two-dimensional algorithm reviewed by formula (10.31), namely, by splitting
the process of the numerical solution on the computational domain Ξ 3, exhibited in
Figs. 10.5 and 10.6, into three one-dimensional algorithms:

Fig. 10.5 Computational domain Ξ3 (a) and computational stencil (b) for generating hexahedral
grids

http://dx.doi.org/10.1007/978-3-319-57846-0_5

398 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.6 Computational domain Ξ3 (a) and computational stencil (b) for generating prismatic
grids

Fig. 10.7 Three-dimensional domain with a prismatic adaptive grid

sk+1/3 − sk

τ/3
= J p(sk)

{
a11[sk]Lh

11[sk+1/3] + a22[sk]Lh
22[sk]

+ a33[sk]Lh
33[sk] + 2a12[sk]Lh

12[sk]
+ 2a13[sk]Lh

13[sk] + 2a23[sk]Lh
23[sk]

}

− J p(sk)R[sk] ,

sk+2/3 − sk+1/3

τ/3
= J p(sk)

{
a22[sk]Lh

22[sk+2/3] − a22[sk]Lh
22[sk]

}
,

sk+1 − sk+2/3

τ/3
= J p(sk)

{
a33[sk]Lh

33[sk+1] − a33[sk]Lh
33[sk]

}
,

(10.38)

where ai j = gξg
i j
ξ = g

ξ
i+1 j+1g

ξ
i+2 j+2 − g

ξ
i+1 j+2g

ξ
i+2 j+1, i, j = 1, 2, 3, i, j, k –

fixed, sk+α = s(ξ, (k + ατ)), k = 0, 1, 2, . . . , α = 0, 1/2, 2/3, 1. Lh
i j is a

finite-difference operator approximating the operator ∂2/(∂ξi∂ξ j), by the central
differences. The derivatives in J , ai j , and R are also approximated by the central
differences. The initial transformation s(ξ, 0) = s0(ξ) is found through the formulas
of transfinite interpolations.

An example of a three-dimensional prismatic spatial grid generated with the use
of this scheme is demonstrated in Fig. 10.7.

10.3 Spectral Element Algorithm 399

10.3 Spectral Element Algorithm

The inverted diffusion equations in a divergent form (9.135) may be solved by a par-
allel code, using spectral elements for spatial discretization, Newton-Krylovmethods
for solution, and an adaptive time step.

Spatial discretization by high-order spectral elements is a method of exploiting
the best features of both grid-based methods and global spectral representation.
Grid-based methods, such as the finite difference approach described above, lead
to nearest neighbor coupling and its resultant sparse matrix structure, and lends
itself to parallelization by domain decomposition and that kind of adaptive gridding.
On the other hand, convergence of the spatial truncation error is relatively slow,
typically a low power of the grid spacing h. Global spectral methods overcome the
latter problem, offering exponential convergence with increasing numbers of basis
functions, but lead to large, dense matrices and offer no obvious way to use adaptive
gridding and parallelization by domain decomposition.With spectral elements, there
is a relatively coarse grid, and within each grid cell, there is a local expansion in
basis functions based on orthogonal polynomials. The grid provides nearest-neighbor
coupling while the spectral expansion provides exponential convergence.

All equations for spectral elements are to be expressed in flux-source form,

∂uk

∂t
+ ∇ · Fk = Sk . (10.39)

This very form has the following parabolic system:

∂sk

∂t
− ∂

∂ξ j
(Jw(s)g jk

ξ) = 0, j, k = 1, . . . , n , (10.40)

with identification u = s, xi = si , obtained from grid equations (9.135) in the same
manner as the system in (10.17) from the Eq. (10.11). The dependent variables uk in
(10.39) within each grid cell are expanded in a spectral basis α j (x),

uk(t, x) ≈
n∑
j=0

ukj (t)α j (x). (10.41)

Spatially discretized equations are obtained through a Galerkin method, taking the
scalar product of (10.39) with each basis function and integrating by parts to obtain

M̈ u̇ = r ≡
∫

Xn

(Skαi + Fk · ∇αi)dx −
∫

∂Xn

Fk
i · n̂dx. (10.42)

with M̈ the mass matrix, Mi, j ≡ (αi ,α j), and the u the vector of mode amplitudes
ukj (t). Integrals are evaluated by Gaussian quadrature to an order appropriate to the

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9

400 10 Numerical Implementations of Comprehensive Grid Generators

degree of the Jacobi polynomials. Fluxes and sources may depend in an arbitrary
nonlinear manner on t , x, uk , and ∇uk . The code is structured in such a way that the
details of discretization and the specification of physics equations are separated into
different subroutines, making it as simple as possible to encode complex physics.
The discretized flux-source form preserves conservation properties to high order.
Elliptic equations are treated by zeroing the mass matrix.

Time discretization of (10.42) is fully implicit in order to treat multiple time scales
efficiently and accurately,

M̈(
u+ − u−

h
) = θr+(u+) + (1 − θ)r−(u−) (10.43)

with the time-centering parameter θ normally chosen as 1/2 (Crank-Nicholson) for
accuracy. Solution of (10.43) requires finding the roots of the nonlinear residual,

R(u+) ≡ M̈(u+ − u−) − h[θr+ + (1 − θ)r−] = 0, (10.44)

solved by Newton’s iteration,

R + J̈δu+ = 0, δu+ = − J̈−1R(u+), u+ → u+ + δu+ (10.45)

with the Jacobian defined as J̈ ≡ M̈ − hθ{∂r+
i /∂u+

j }.
Efficient solution of the large sparse linear system in (10.45) is greatly enhanced by

the method of static condensation. Because of the C0 nature of the spectral element
representation, discussed above, higher-order elements in one grid cell couple to
those in neighboring grid cells only through the shared linear finite elements which
straddle cell boundaries. To solve a linear system Äx = b, we partition the dependent
variables into (1) element boundary terms and (2) element interior terms, for example,
in two dimensions, the system is expressed in the form

Ä11x1 + Ä12x2 = b1, (10.46)

Ä21x1 + Ä22x2 = b2. (10.47)

Solving (10.47) for x2,
Ä22x2 = b2 − Ä21x1, (10.48)

and substituting it into (10.46), we obtain an equation for the Shur complement,

(Ä11 − Ä12 Ä
−1
22 Ä21)x1 = b1 − Ä12 Ä

−1
22 b2. (10.49)

Equation (10.48), involving the relatively small, dense, local matrix Ä22, is solved
locally using LAPACK routines. It parallelizes perfectly over grid cells, requiring
no communication once x2 is determined. Equation (10.49), greatly condensed in
size from the original system, is solved globally and iteratively by Krylov subspace

10.3 Spectral Element Algorithm 401

routine GMRES, using the PETSc library, preconditioned by additive Schwarz ILU
factorization with substantial fill-in and overlap. Themost efficient parallel operation
is obtained with one grid cell per processor. This is feasible because the use of high-
order spectral elements makes it possible to achieve good spatial resolution with
relatively few grid cells.

For generating a numerical grid with node clustering in the zones of large values
of a function v(s), the measure of departure from the necessary grid can be expressed
in the form

σ(s) = Z [v](s)gklsx
∂ξi

∂sk
∂ξi

∂sl
, i, k, l = 1, . . . , n (10.50)

where Z [v] is a positive operator such that the function Z [v](s) is large (small)
where v(s) is small (large). This measure for generating adaptive grids in domains
was introduced in Danaev et al. (1980) and Winslow (1981). Consequently, the
contravariant elements of the control metric in Sxn are as follows:

gi j (s) = Z [v](s)gi jsx , i, j = 1, . . . , n . (10.51)

This contravariant metric tensor can also be used for providing node clustering in
the zones of the large variation of a function f(s) by introducing for this purpose a
function v(grad f) such that v is large where |grad f | is large, and vice versa.

We choose in the control metric (10.51) the weight function v(s) and assume
Z [v](s) = 1/v(s), to reflect the spatial truncation error in the spectral element repre-
sentation. In each grid cell Ω̄ , we define the spatial truncation error as the ratio of the
L2 norm of the highest-order polynomial δu(s) and that of the full solution u(s), but
because the spatial discretization error for spectral element methods is exponentially
convergent with an increasing number of terms, we use the log of this norm,

δΩ̄ ≡ 1

2

⎛
⎜⎝

∫
Ω̄

δu2(s)ds

∫
Ω̄

u2(s)ds

⎞
⎟⎠ . (10.52)

Since this function is piecewise constant over each grid cell but we need a smooth
function, we use a least-squares bicubic spline fit. Finally, in order to control the
range of variation of v, we define

v(s) = 1 + α
(δ − δmin

δmax − δmin

)
(10.53)

withα an adjustable constant.When δ = δmin, v(s) = 1, andwhen δ = δmax , v(s) =
1 + α. Figure10.8 (left-hand) shows the resulting grid lines obtained by solution of
equations (10.40) withw(s) = 1/v(s). Note that the grid spacing is coarse where v is
small and fine where v is large. Thus, the grid is refined where the spatial truncation
error is large and rarefied where it is small. Figure10.8 (left-hand) exhibits a grid for
both alignment and adaptation and scaled grid density. Figure10.8 (center) shows the

402 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.8 Grid lines for both alignment and adaptation (left). Contour plot of alignment error for
both alignment and adaptation (center). Density of grid lines for both alignment and adaptation
(right)

resulting weight function for a magnetic reconnection problem. Figure10.8 (right-
hand) shows a contour plot of the inverse Jacobian of the transformation s(ξ), which
maybe interpreted as grid density. Thepictures inFig. 10.8were formedbyA.Glasser
who used a spectral element method, developed by Glasser and Tang (2004), for
computing plasmas and inverted diffusion grid equations for generating adaptive,
field-aligned grids (see Glasser et al. (2005, 2006)).

10.4 Finite Element Method

The finite element method has diverse applications to problems in engineering and
science.We demonstrate here its application to numerical grid generation by solution
of problem (10.17) for n = 2 whose equations are written as

∂sl

∂t
− (J)p

[
g

ξ
22

∂2sl

∂ξ1∂ξ1
− 2gξ

12

∂2sl

∂ξ1∂ξ2
+ g

ξ
11

∂2sl

∂ξ2∂ξ2
− Rl(s)

]
= 0 , l = 1, 2 .

(10.54)
These equations are replaced by the following relations:

∫

Ξ 2

(∂sl

∂t
vh − (J)p

[
(−1)i+ jg

ξ
3−i3− j

∂2sl

∂ξi∂ξ j
vh − Rlvh

])
dξ = 0 , i, j, l = 1, 2 ,

(10.55)
where vh are trial functions. Choosing a basis ϕ1, . . . ,ϕN for the trial functions at
the interior grid nodes

ϕp(ξk) =
{
1, k = p
0, k �= p,

and another basis φN+1, . . . ,φNΓ , at the boundary grid nodes,

φp(ξk) =
{
1, k = p
0, k �= p,

10.4 Finite Element Method 403

where NΓ is a number of interior and boundary grid nodes, we have an expansion
of the functions sl(ξ, t), l = 1, 2

sl(ξ, t) = slΓp φp + slkϕk , k = 1, . . . , N , p = N + 1, . . . , NΓ , l = 1, 2 .

(10.56)
Therefore, from (10.55), we obtain the following system of equations:

∂slk
∂t

∫

Ξ 2

ϕkϕmdξ = −slk

∫

Ξ 2

∂

∂ξi

(
(J)p(−1)i+ jg

ξ
3−i3− jϕk

)∂ϕm

∂ξ j
dξ

−
∫

Ξ 2

(J)p Rlϕmdξ, k,m = 1, . . . , N , i, j, l = 1, 2,
(10.57)

or in a matrix form M = {Mmk}, K = {Kmk}, F = {F1, . . . , Fm}, k, m = 1, . . . , N

M
∂sl

∂t
= Ksl − F , (10.58)

where

Mmk =
∫

Ξ 2

ϕkϕmdξ, Kmk = −
∫

Ξ 2

∂

∂ξi

(
(J)p(−1)i+ jg

ξ
3−i3− jϕk

)∂ϕm

∂ξ j
dξ,

Fm =
∫

Ξ 2

(J)p Rlϕmdξ, k,m = 1, . . . , N , i, j, l = 1, 2.

(10.59)
Solving system (10.58) gives the values slk , l = 1, 2, k = 1, . . . , N , and conse-

quently the values of the grid node coordinates. A more detailed description of the
algorithm was originally published in Vaseva and Liseikin (2011).

Figures10.9 and 10.10 illustrate an application of the finite element method to
generation of adaptive triangle grids based on the solution of inverted diffusion
equations.

Fig. 10.9 Adaptive grid with node clustering near the boundaries of wings specified analytically
(left) and the reference grid in Ξ2 (right)

404 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.10 Adaptive grid with node clustering near the boundaries of wings specified discretely
(left) and the reference grid in Ξ2 (right)

10.5 Inverse Matrix Method

Sections10.1–10.4 consider algorithms for generating numerical grids by solving a
matrix equation

Ax = y, A = {ai j }, i, j = 1, . . . , M, (10.60)

without finding the inverse matrix A−1. This section describes an algorithm for
finding the inversematrix A−1 provided that there exists a nondegeneratematrix A(s)
whose coefficients are dependent on a parameter s, 0 ≤ s ≤ 1, i.e. A(s) = {ai j (s)}
and A(1) = A, while the inverse matrix A−1(0) of the matrix A(0) is known. For
example, if A = {ai j } is some matrix with a diagonal domination, then A(s) may be
defined as

A(s) = (1 − s)D + sA, i. e. ai j (s) = (1 − s)di j + sai j , i, j = 1, . . . , M,

(10.61)
where D = {di j } is the matrix whose elements equal zero if i �= j , i.e. di j = 0,
i �= j, and its diagonal elements coincide with the diagonal elements of the matrix
A, i.e. dii = aii for every fixed index i = 1, . . . , M . Thus, A(0) = D, D−1 = {bi j },
bi j = 0 if i �= j, bii = 1/aii , i – fixed. Taking into account that ai j (s)b jk(s) = δij ,
i, j = 1, . . . , M, we have

∂

∂alp
(ai j b

jk) = δliδ
p
j b

jk+ai j
∂b jk

∂alp
= δli b

pk+ai j
∂b jk

∂alp
= 0, i, j, k, l, p = 1, . . . , M .

Multiplying these equations by bti and summing over i , we obtain

∂btk(s)

∂alp(s)
= −btl(s)bpk(s) , k, l, p, t = 1, . . . , M .

Therefore, for the elements of the inverse matrix A−1(s) = {bi j (s)}, we obtain a
system of ordinary nonlinear differential equations

10.5 Inverse Matrix Method 405

d

ds
bi j (s) = ∂bi j (s)

∂akl(s)

d

ds
akl(s) = −bik(s)bl j (s)

d

ds
akl(s) ,

i, j, k, l = 1, . . . , M, 0 < s ≤ 1 ,

(10.62)

with the initial condition bi j (0), i, j = 1, . . . , M, for s = 0. In particular, for
the matrix {ai j (s)} defined by formula (10.61), we obtain an autonomous system of
ordinary differential equations with the initial condition:

d

ds
bi j (s) = −bik(s)bl j (s)(1 − δkl)akl, i, j, k, l = 1, . . . , M, 0 < s ≤ 1,

bi j (0) = 0, if i �= j, bi j (0) = 1

ai j
, if i = j, i, j = 1, . . . , M .

Solving the initial problem for Eq. (10.62), for example, through the Runge Kutta
method on the numerical grid si = ih, i = 0, . . . , N , h = 1/N , we find for s = 1
approximate values of the elements of thematrix A−1. Then, an approximate solution
of problem (10.60) is obtained as x = A−1 y.

Note that the original description of the method was given in Liseikin (2014a, b).

10.6 Method of Minimization of Energy Functional

This section describes another finite-difference grid generation algorithm based on
the minimization of inverted energy functional (9.23). Following Charakch’yan and
Ivanenko (1988, 1997), the algorithm is first expounded for the two-dimensional
version of the functional in the Euler metric, i.e.

IIS[s] =
∫

Ξ 2

(xξ)
2 + (xη)

2 + (yξ)
2 + (yη)

2

J
dξdη, (10.63)

where J = xξ yη − xη yξ, and then an explanation is given as to how it can be
generalized to monitor metrics and other dimensions. Note that the functional (9.23)
in the Euler metric gsi j = δij , i, j = 1, 2, becomes the functional (10.63) when the
following designations are assumed:

ξ1 = ξ, ξ2 = η, s(ξ, η) = [x(ξ, η), y(ξ, η)].

By the algorithm, the functional (10.63) is approximated by a discrete functional
I h[]. This is made by approximating the integrand in (10.63) at each grid cell of the
logical domain Ξ 2 and then carrying out summation over all cells.

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9

406 10 Numerical Implementations of Comprehensive Grid Generators

10.6.1 Generation of Fixed Grids

The problem of grid generation is treated as a discrete analog of the problem of
finding the components x(ξ, η) and y(ξ, η) of the intermediate transformation s(ξ, η)

producing one-to-one mapping of the logical square

0 < ξ < 1, 0 < η < 1

onto a physical domain X2.
Instead of the logical square on the plane ξ, η, the parametric rectangle

1 < ξ < N , 1 < η < M.

is introduced to simplify the computational formulas. This rectangle is associated
with the square grid (ξi , η j) on the plane ξ, η such that ξi = i, η j = j, i =
1, . . . , N ; j = 1, . . . , M .

It is readily shown that if a smoothmapping of one domain onto anotherwith a one-
to-one transformation between boundaries possesses a positive Jacobian, then such
a mapping will be one-to-one. Hence, the grid coordinate system, generated in the
domain X2, will be non-degenerate if the Jacobian of themapping s(ξ, η) = [x(ξ, η),
y(ξ, η)] is positive:

J = xξ yη − xη yξ > 0. (10.64)

Thus, the problem of the construction of the grid coordinates in the domain X2 can be
formulated as the problem of finding a smooth mapping of the parametric rectangle
onto the domain X2, which satisfies the condition of the Jacobian positiveness.

Formulation of Discrete Functional

Let the coordinates (x, y)i j of grid nodes be given. To construct themapping xh(ξ, η),
yh(ξ, η) of the parametric rectangle onto the domain X2 such that xh(i, j) = xi j and
yh(i, j) = yi j , quadrilateral isoparametric finite elements are used. The square cell
numbered as i + 1/2, j + 1/2 on the plane ξ, η is mapped onto the quadrilateral
cell on the plane x, y, formed by the nodes with coordinates (x, y)i j , (x, y)i j+1,
(x, y)i+1 j+1, (x, y)i+1 j . The cell vertices are numbered from 1 to 4 in the clockwise
direction. The node (i, j) corresponds to the vertex 1, node (i, j + 1) to vertex 2,
and so on. Each vertex is associated with a triangle: vertex 1 with412, vertex 2 with
123, and so on. The doubled area Jk, k = 1, 2, 3, 4, of these triangles is introduced
as follows:

Jk = (xk−1 − xk)(yk+1 − yk) − (yk−1 − yk)(xk+1 − xk)

where one should put k − 1 = 4 if k = 1, k + 1 = 1 if k = 4.

10.6 Method of Minimization of Energy Functional 407

The functions xh , yh for i ≤ ξ ≤ i + 1, j ≤ η ≤ j + 1 are represented in the
form

xh(ξ, η) = x1 + (x4 − x1)(ξ − i) + (x2 − x1)(η − j)
+(x3 − x4 − x2 + x1)(ξ − i)(η − j),

yh(ξ, η) = y1 + (y4 − y1)(ξ − i) + (y2 − y1)(η − j)
+(y3 − y4 − y2 + y1)(ξ − i)(η − j).

(10.65)

Each side of the square is linearly transformed onto the appropriate side of the
quadrilateral. Consequently, the global transformation xh , yh is continuous on the
cell boundaries. To check the one-to-one property of the transformation (10.65), we
write out the expression for its Jacobian

J h = xhξ y
h
η − xhη y

h
ξ = det

(
x4 − x1 + A(η − j) x2 − x1 + A(ξ − i)
y4 − y1 + B(η − j) y2 − y1 + B(ξ − i)

)
,

where A = x3 − x4 − x2 + x1, B = y3 − y4 − y2 + y1. The function J h is linear,
not bilinear, since the coefficient before ξη in this determinant is equal to zero.
Consequently, if J h > 0 at all corner points of the square, it does not vanish inside
this square. At the corner node 1 (ξ = i, η = j) of the cell i + 1/2, j + 1/2, the
Jacobian equals

J h(i, j) = (x4 − x1)(y2 − y1) − (y4 − y1)(x2 − x1),

i.e. J h(i, j) = J1 is the doubled area of the triangle 412, introduced above. From
this follows that the condition of the Jacobian positiveness xhξ y

h
η − xhη y

h
ξ > 0 is

equivalent to the system of inequalities

[Jk]i+1/2 j+1/2 > 0, k = 1, 2, 3, 4; i = 1, . . . , N −1; j = 1, . . . , M −1. (10.66)

If conditions (10.66) are satisfied, then all the grid cells are convex quadrilaterals.
The set of grids satisfying these inequalities is called a convex grid set and denoted
by D. This set belongs to the Euclidean space RN1 , where N1 = 2(N − 2)(M − 2)
is the total number of degrees of freedom of the grid equal to twice the number of
its interior nodes.

Finally, the problem is formulated as follows. The convex grid, satisfying inequal-
ities (10.66), must be generated in the domain X2 for the given coordinates of the
boundary nodes.

The mapping x(ξ, η), y(ξ, η) is approximated by functions xh(ξ, η), yh(ξ, η)

introduced in (10.65). Substituting those expressions in (10.63) and replacing inte-
grals over square cells by the quadrature formulas with nodes coinciding with the
grid vertices on the plane ξ, η, the following discrete analog of the functional (10.63)
is obtained:

I h =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 , (10.67)

408 10 Numerical Implementations of Comprehensive Grid Generators

where Fk is the integrand evaluated in the k - th grid node as

Fk = [(xk+1 − xk)
2 + (xk − xk−1)

2 + (yk+1 − yk)
2 + (yk − yk−1)

2]J−1
k , (10.68)

and Jk is the doubled area of the triangle introduced above.
Notice some properties of the function (10.67). For this purpose, we introduce a

parametric rectangle 0 < ξ < 1, 0 < η < α, where α = (M − 1)/(N − 1) is the
constant, instead of the unit logical square as a domain of integration in (10.63). In
this case, the continuous limit of the expression I h/(N − 1)2 when N , M → ∞ in
such a way, that (M − 1)/(N − 1) = α = const , will be the functional (10.63).

The following identity is readily obtained:

I =
1∫

0

α∫

0

x2ξ + y2ξ + x2η + y2η − 2(xξ yη − xη yξ) + 2(xξ yη − xη yξ)

J
dξdη

=
1∫

0

α∫

0

(xξ − yη)
2 + (xη − yξ)

2

J
dξdη + 2α.

From this follows that the functional (10.63) has a lower bound equal to 2α. If this
minimum is attained, the mapping s(ξ, η) is conformal:

xξ = yη, xη = −yξ .

To find out the corresponding property of discrete analog (10.67) of functional
(10.63), let us consider one term in (10.68) for k = 2. We can assume that x2 = 0
and y2 = 0, since expression (10.68) contains only finite differences of the grid node
coordinates. In this case, we obtain the following identity:

F2 = x21 + y21 + x23 + y23
x1y3 − x3y1

= x21 + y21 + x23 + y23 − 2(x1y3 − x3y1) + 2(x1y3 − x3y1)

x1y3 − x3y1

= (x1 − y3)2 + (x3 + y1)2

x1y3 − x3y1
+ 2.

From this follows that the function I h/(N − 1)2 has on the set D a lower bound
equal to 2(M − 1)/(N − 1). If this minimum is attained, the coordinates of the grid
nodes satisfy a discrete analog of the conformal conditions

x1 = y3, x3 = −y1.

If these conditions are satisfied for all cells, every grid cell will be a square.

10.6 Method of Minimization of Energy Functional 409

Note that the function (10.67) is not convex and, in principle, multiple solutions
may exist.

The function I h also possesses the following very important property. IfG → ∂D
for G ∈ D, where ∂D is the boundary of the set of convex grids D, i.e. if at least
one of the quantities Jk tends to zero for some cell while remaining positive, then
I h(G) → +∞. In fact, suppose that Jk → 0 in (10.68) for some cell, but I h does not
tend to +∞. Then, the numerator in (10.68) must also tend to zero, i.e. the lengths
of two sides of the cell tend to zero. Consequently, the areas of all triangles that
contain these sides must also tend to zero. Repeating the argument as many times as
necessary, we conclude that the lengths of the sides of all grid cells, including those
at the boundary of the domain, must tend to zero, which is impossible.

Thus, if the set D is not empty, the system of algebraic equations

Rx = ∂ I h

∂xi j
= 0, Ry = ∂ I h

∂yi j
= 0, i = 2, . . . , N −1; j = 2, . . . , M −1, (10.69)

has at least one solution which is a convex grid. To find it, one must first find a certain
initial gridG0 ∈ D, and then use somemethod of unconstrainedminimization. Since
the function (10.67) has the infinite barrier on the boundary of the set D, each step
of the method can be chosen so that the grid always remains convex. Note that in the
common case, the discrete grid-generation Eq. (10.69) may have multiple solutions,
but numerical experiments have not met with such opportunity.

Method of Minimization

First, we consider a method for minimizing the function (10.67) assuming that the
initial grid G0 ∈ D has been found. Suppose the grid at the l-th step of the iterations
is determined. For finding the grid nodes at the (l + 1)-th step, the quasi-Newtonian
procedure for each interior node can be used:

τ Rx + ∂Rx

∂xi j
(xl+1

i j − xli j) + ∂Rx

∂yi j
(yl+1

i j − yli j) = 0,

τ Ry + ∂Ry

∂xi j
(xl+1

i j − xli j) + ∂Ry

∂yi j
(yl+1

i j − yli j) = 0
(10.70)

where τ is the iteration parameter. Note that (10.70) is not the Newton-Raphson
iteration, because only a part of the second derivatives of (10.67) is taken into account.
The rate of convergence for (10.70) is low by comparison. At the same time, the
Newton-Raphson method gives us a much more complex system of linear equations
at each iteration.

Each of the derivatives in (10.70) is the sum of twelve terms, in accordance with
the number of triangles containing the given node as a vertex. Rather than write out
such cumbersome expressions, the first and second derivatives of the terms in (10.67)
are considered:

∂Fk

∂xk−1
= 2

xk−1 − xk
Jk

− Fk
yk+1 − yk

Jk
, (10.71)

410 10 Numerical Implementations of Comprehensive Grid Generators

and so on. Arrays storing the derivatives of the function (10.67) were first cleared,
and then all grid triangles were scanned and the appropriate derivatives added to the
relevant elements of the arrays.

Now, an algorithm is suggested for the choice of the iteration parameter τ in
(10.70), which was used only for the problems with moving boundaries. Recall that
the minimized function (10.67) has the infinite barrier on the boundary of the set of
convex grids D. Since the initial grid G0 is convex, the iteration (10.70) gives, as a
rule, a convex grid for any τ < 1. But in extreme cases when G0 is very close to the
boundary of the set D, the grid G(τ) can cross the boundary of the set in the first
iterations (10.70). Clearly, such a condition is fatal for the method because the same
barrier on the boundary of the set D does not allow the iterations to return into the set
D in the following iterations. To avoid this, a certain basic parameter τ0 is chosen so
that G(τ0/2) ∈ D and G(τ0) ∈ D. In the beginning, τ0 = 1. If the above-mentioned
conditions are violated, we put τ0 = 1/4 or τ0 = 1/2, depending on whether the
grids G(τ0/2) or G(τ0) leave the set D, and so on.

In fixed boundary problems, the simple choice τ = const · τ0 is used. For time-
dependent problems with moving boundaries, a version of the method of parabolas
was developed. As the controlling quantity, the squared residual of the Eq. (10.70)

W =
∑
i, j

(R2
x + R2

y)i, j

was used. The parabola W (τ) is constructed from the grids obtained for τ = 0,
τ = τ0/2 and τ = τ0. The parameter τ is then chosen so that W (τ) = min in the
interval θτ ≤ τ ≤ ατ0. The parameter θ ∼ 0.1 is given a priori and bounds the
value of τ away from zero. The parameter α bounds τ above, i.e. prevents a very
large extrapolation along the parabola. If τ0 = 1, i.e. if the boundary of the set D
is not crossed, we put α = 2. If τ0 < 1, then α = 1. Finally, if the algorithm
gives τ < τ0/2, the condition I h(τ0/2) < I h(0) is checked. In the cases when this
condition is found to be valid, τ = τ0/2 was used.

For one iteration of the above method, a measurement of the computational cost
gives the value of about double (but not three times) the cost of the simple iteration.
The reason is that the second derivatives of the function (10.67) are not used in cal-
culatingW , while they are used in (10.70) to calculate the direction of minimization.

The algorithm described can be used only if the initial grid is convex. Otherwise, it
is necessary either to obtain a convex grid through another algorithm as a preliminary
stage of the method or to modify the computational formulas. The first approach is
based on the minimization of the following function:

ID =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

(
[ε − Jk]i+1/2 j+1/2

)2
+ , (f)+ = max(0, f), (10.72)

for some given ε > 0. This is accomplished through the gradient method with a
suitable choice of the iteration parameter. The iterative process is broken off as soon

10.6 Method of Minimization of Energy Functional 411

as all inequalities (10.66) are satisfied. Thismethodwas used byCharakch’yan (1993,
1994) for studying gas dynamics problems with moving boundaries when the initial
interior grid nodes for minimizing (10.72) were taken from the previous time step.
As a result, the initial grid is either convex or such that a convex grid is obtained
after a few iterations.

In fixed boundary problems, the starting grid may be non-convex, containing
numerous self-intersecting cells. In such a case the preliminary stage of the method
basedonminimizing (10.72) can be unsuitable. Therefore, another approachhadbeen
developed by Ivanenko (1988). The computational formulas (10.70) were modified
so that the initial grid need not belong to the set D of convex grids. The quantities Jk
appearing in the expressions for Rx , Ry and their derivatives are replaced with new
quantities J̃k

J̃k =
{
Jk i f Jk > ε,

ε i f Jk ≤ ε,

where ε > 0 is some sufficiently small quantity.
It is quite important to choose an optimal value of ε so that the convex grid is

constructed as quickly as possible. The method used for specifying the value of ε is
based on the computation of the absolute value of the average area of triangles with
negative areas

ε = max[αS/(N + 0.01), ε1],

where S is twice the absolute value of the total area of triangles with negative areas,
and N the number of these triangles. The quantity ε1 > 0 sets a lower bound on ε to
avoid very large values appearing in the computations. The coefficient α is chosen
experimentally and is in the range 0.3 ≤ α ≤ 0.7.

In practical implementation, an arbitrary set of grid nodes can be marked
as movable during iterations, while all other nodes are considered as station-
ary. All the terms in the function (10.67) which become independent on mov-
able nodes are excluded from computations. Since the boundary nodes are always
marked as stationary, four terms in (10.67) corresponding to “corner” triangles
{(1, 2); (1, 1); (2, 1)}, {(N − 1, 1); (N , 1); (N , 2)}, {(1, M − 1); (1, M); (2, M)},
and {(N − 1, M); (N , M); (N , M − 1)} are always excluded from computations.
As a result, the method becomes applicable to those domains for which the angle
between two intersecting boundaries is greater than or equal to π, despite the fact
that the corresponding grid cell becomes non-convex regardless of the positions of
interior nodes.

Examples of the grids generated by this method are exhibited in Figs. 10.11 and
10.12. Figure10.12 demonstrates the application of the algorithm to generation of a
grid for computing a high-velocity impact of a thin foil (a) upon a conical target CD
Lomonosov et al. (1997).

412 10 Numerical Implementations of Comprehensive Grid Generators

Fig. 10.11 Grids in a model domain (a) and for computing a cumulative jet (b)

Fig. 10.12 A fragment of the grid (right) in the vicinity of the point E (left)

10.6.2 Adaptive Grid Generation

Numerical Algorithm
One approach to adaptive grid generation is based on the minimization of the func-
tional (9.23) in the metric of a monitor surface.

Let the monitor surface be defined by a function z = f (x, y) where f ∈ C1. The
expressions for the covariant elements and Jacobian of the monitor metric in the grid
coordinates ξ = ξ1, η = ξ2 are as follows:

g
ξ
11 = gs11

(∂x

∂ξ

)2 + 2gs12
∂x

∂ξ

∂y

∂ξ
+ gs22

(∂y

∂ξ

)2
,

g
ξ
22 = gs11

(∂x

∂η

)2 + 2gs12
∂x

∂η

∂y

∂η
+ gs22

(∂y

∂η

)2
,

gξ = (J)2gs = (J)2[1 + (fx)2 + (fy)2],

where
gs11 = 1 + (fx)2, gs12 = fx fy, gs22 = 1 + (fy)2.

http://dx.doi.org/10.1007/978-3-319-57846-0_9

10.6 Method of Minimization of Energy Functional 413

Then, functional (9.23) for n = 2, with the identification X2 = S2, ξ = ξ1, η = ξ2,
has the following form:

Ia[x] =
1∫

0

1∫

0

(x2ξ + x2η)[1 + (fx)2] + (y2ξ + y2η)[1 + (fy)2] + 2 fx fy(xξ yξ + xη yη)

J [1 + (fx)2 + (fy)2]1/2 dξdη.

(10.73)
Now we again consider the grid (x, y)i j , i = 1, . . . , N ; j = 1, . . . , M and, to

simplify the computational formulas, the parametric rectangle 1 < ξ < N , 1 <

η < M substitutes for the unit square 0 < ξ < 1, 0 < η < 1. The functional Ia is
approximated by the function

I ha =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 , (10.74)

Fk = D1[1 + (fx)2k] + D2[1 + (fy)2k] + 2D3(fx)k(fy)k
Jk[1 + (fx)2k + (fy)2k]1/2

, (10.75)

where
D1 = (xk−1 − xk)

2 + (xk+1 − xk)
2,

D2 = (yk−1 − yk)
2 + (yk+1 − yk)

2,

D3 = (xk−1 − xk)(yk−1 − yk) + (xk+1 − xk)(yk+1 − yk),
Jk = (xk−1 − xk)(yk+1 − yk) − (xk+1 − xk)(yk−1 − yk).

Derivatives (fx)k and (fy)k in the k-th cell vertex are equal to the corresponding
values of derivatives, evaluated at the grid node i j

(fx)i j = (fi+1 j − fi−1 j)(yi j+1 − yi j−1) − (fi j+1 − fi j−1)(yi+1 j − yi−1 j)

(xi+1 j − xi−1 j)(yi j+1 − yi j−1) − (xi j+1 − xi j−1)(yi+1 j − yi−1 j)
,

(fy)i j = (fi+1 j − fi−1 j)(xi j+1 − xi j−1) − (fi j+1 − fi j−1)(xi+1 j − xi−1 j)

(xi+1 j − xi−1 j)(yi j+1 − yi j−1) − (xi j+1 − xi j−1)(yi+1 j − yi−1 j)
.

(10.76)
These formulas must bemodified for the boundary nodes. Indices “leaving” the com-
putational domain must be replaced by the nearest boundary indices. For example,
if j = 1, then (i, j − 1) must be replaced by (i, j).

Function (10.74) possesses the same property as the function (10.67): I ha (G) →
+∞ if G → ∂D for G ∈ D where D is the set of convex grids, and ∂D is the
boundary of the set.

As before, Eq. (10.70) are used to minimize the function I ha . Quantities (fx)i j and
(fy)i j are assumed to be parameters, and therefore all their derivatives in (10.70)
vanish. Note that if (fx)i j and (fy)i j vanish, the function I ha reduces to the function
I h (10.67).

http://dx.doi.org/10.1007/978-3-319-57846-0_9

414 10 Numerical Implementations of Comprehensive Grid Generators

The adaptive grid generation algorithm is formulated as follows:
1. Generate a grid for the given domain using the unconstrained minimization

algorithm described.
2. Compute the values of the control function at each grid node. The result is fi j .
3. Evaluate derivatives (fx)i j and (fy)i j using the formulas (10.76).
4. Make one step in the minimization process for the function I ha using Eq. (10.70)

and compute new values of xi j and yi j .
5. Repeat starting with Step 2 to convergency.
It is important that at each step of the iterative process the grid remains convex.

Redistribution of Boundary Nodes

There are several ways to redistribute the grid nodes along the boundary ∂X2 of the
domain X2 during adaptation. The simplest one is a fixed position of every point on
∂X2, referred to as the “fixed position.” However, if some physical quantities are not
smooth (e.g. shock waves), then some instability in the mesh generation and, con-
sequently, in the physical problem solution near the points where the discontinuity
joins ∂X2 may arise. In some methods, referred to as “unconstrained minimization”,
the boundary nodes are treated as interior and the vectors of their shift are projected
onto ∂X2. This method can be used only if the discontinuity is nearly orthogonal
to ∂X2. If not, then, when condensing, the boundary nodes overlap, adjacent cells
degenerate, and modeling breaks. The next method, referred to as “1-D minimiza-
tion”, relies on using the 1-D functional along ∂X2. This method is more robust than
the two ones discussed above and can usually be used for adaptation. However, the
1-D and 2-D functionals are, as a rule, inconsistent. For this reason, the parameters
of adaptation for the interior and boundary nodes should be selected separately. It
requires additional work when modeling unsteady flow problems.

In the method suggested by Azarenok (2002), instead of (10.74), the function

Ĩ ha =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 +

∑
i j∈L

λi jGi j = I ha +
∑
i j∈L

λi j Gi j , (10.77)

was minimized where the constraints Gi j = G(xi j , yi j) = 0 define ∂X2, λi j are the
Lagrange multipliers, and L is the set of the boundary nodes. The function G(x, y)
is assumed to be piecewise differentiable, so the function Ĩ ha holds the infinite barrier
on the boundary of the set of convex grids as I ha does if f ∈ C1.

If the set of convex grids is not empty, the system of algebraic equations

Rx = ∂ I ha
∂xi j

+ λi j
∂Gi j

∂xi j
= 0, Ry = ∂ I ha

∂yi j
+ λi j

∂Gi j

∂yi j
= 0, Gi j = 0, (10.78)

has at least one solution that is a convex mesh. Here, λi j = 0 if i j /∈ L and the
constraints are defined for the boundary nodes i j ∈ L.

10.6 Method of Minimization of Energy Functional 415

Consider the method of minimizing the function (10.77) assuming the grid to be
convex at the lth step of the iterative procedure. The quasi-Newton procedure for
finding, the coordinates xl+1

i j , yl+1
i j from the system (10.78) was used:

τ Rx + ∂Rx

∂xi j
(xl+1

i j − xli j) + ∂Rx

∂yi j
(yl+1

i j − yli j) + ∂Rx

∂λi j
(λl+1

i j − λl
i j)=0,

τ Ry + ∂Ry

∂xi j
(xl+1

i j − xli j) + ∂Ry

∂yi j
(yl+1

i j − yli j) + ∂Ry

∂λi j
(λl+1

i j − λl
i j)=0,

τGi j + ∂Gi j

∂xi j
(xl+1

i j − xli j) + ∂Gi j

∂yi j
(yl+1

i j − yli j) = 0,

where

∂Rx

∂xi j
= ∂2 I ha

∂x2i j
+ λi j

∂2Gi j

∂x2i j
,

∂Rx

∂yi j
= ∂2 I ha

∂xi j∂yi j
+ λi j

∂2Gi j

∂xi j∂yi j
,

∂Ry

∂xi j
= ∂2 I ha

∂xi j∂yi j
+ λi j

∂2Gi j

∂xi j∂yi j
,

∂Ry

∂yi j
= ∂2 I ha

∂y2i j
+ λi j

∂2Gi j

∂y2i j
,

∂Rx

∂λi j
= ∂Gi j

∂xi j
,

∂Ry

∂λi j
= ∂Gi j

∂yi j
.

Resolving the last equation of (10.79) with respect to yl+1
i j − yli j and substituting

it in the two remaining equations, the system

(
a11 a12
a21 a22

) (
xl+1
i j − xli j

λl+1
i j − λl

i j

)
=

(
a13
a23

)
,

is obtained, where

a11 = ∂Rx

∂xi j
− ∂Rx

∂yi j

∂Gi j

∂xi j

/∂Gi j

∂yi j
,

a12 = ∂Gi j

∂xi j
,

a13 = τ

[
∂Rx

∂yi j
Gi j

/∂Gi j

∂yi j
− Rx

]
,

a21 = ∂Ry

∂xi j
− ∂Ry

∂yi j

∂Gi j

∂xi j

/∂Gi j

∂yi j
,

a22 = ∂Gi j

∂yi j
,

a23 = τ

[
∂Ry

∂yi j
Gi j

/∂Gi j

∂yi j
− Ry

]
.

Denoting = a11a22 − a12a21, 1 = a13a22 − a23a12, 2 = a11a23 − a21a13 (since
Gi j = 0, the terms a13, a23 are simplified), we obtain

xl+1
i j = xli j + 1/, λl+1

i j = λl
i j + 2/, (10.79)

416 10 Numerical Implementations of Comprehensive Grid Generators

while yl+1
i j is determined from the third equation of (10.79). If the constraints are

resolved in y in the form G(x, y) = y − g(x) = 0, then

∂Gi j

∂xi j
= −∂gi j

∂xi j
,

∂Gi j

∂yi j
= 1,

and the upper formulas are simplified. Analogously, the constrains may be resolved
in x in the form G(x, y) = x − g̃(y) = 0. Note that the equation G(x, y) = 0 can
be locally resolved by one of these two forms.

If ∂X2 is specified by parametric functions x = x(t), y = y(t) or tabular
values (x, y)i j , the following algorithm can be used. Assume the index j is fixed
and i is variable. When calculating the coordinates of the (i j)th node, in the interval
(xi−1 j , xi+1 j), we construct an interpolating parabola t = t (x) using the values in
three nodes (i−1 j) , (i j), and (i+1 j). From (10.79), we compute an intermediate
value x̃ l+1

i j ; further from the interpolation formula, we determine ti j = t (x̃ l+1
i j) and

final values xl+1
i j , yl+1

i j from the parametric formulas.
Anotherway for redistributing the nodes along ∂X2, given as parametric functions

or by tabular values, employs an unconstrained minimization of the function in a
parametric form and is based on solving the following system of algebraic equations,
referred to as “parametric minimization”:

Rt = Rx
∂xi j
∂ti j

+ Ry
∂yi j
∂ti j

= 0,

via the quasi-Newton procedure

τ Rt + ∂Rt

∂ti j
(t l+1
i j − t li j) = 0. (10.80)

Here,

∂Rt

∂ti j
= ∂Rx

∂xi j

(
∂xi j
∂ti j

)2

+ ∂Ry

∂yi j

(
∂yi j
∂ti j

)2

+
(

∂Rx

∂yi j
+ ∂Ry

∂xi j

)
∂xi j
∂ti j

∂yi j
∂ti j

+Rx
∂2xi j
∂t2i j

+ Ry
∂2yi j
∂t2i j

, Rx = ∂ I h

∂xi j
, Ry = ∂ I h

∂yi j
.

To the analytical control functions, both the constrained and parametricminimization
give similar results. Real-world 2-D flow computations have shown that it is better
to perform adaptation along the boundary using constrained minimization (10.79),
since the procedure (10.80) may not ensure consistent redistribution of the nodes in
X2 and on ∂X2.

The use of the constrainedminimization without adaptation (i.e. when f =const.)
means that we seek the conformal mapping x(ξ, η), y(ξ, η) of the parametric rec-

10.6 Method of Minimization of Energy Functional 417

tangle onto the domain X2 with an additional parameter, the so-called conformal
modulus.

10.7 Parallel Mesh Generation

Parallel computing is an efficient tool for handling large multidimensional problems
by distributing the computational effort and/or the memory requirements over the
different computers available.

As to themesh generation step, one parallelization approach consists of construct-
ing the mesh in parallel by means of using a meshing method under interest which
is to be updated in order to incorporate some degree of parallelism. Many classical
methods for mesh generation are amenable to being performed in parallel, in partic-
ular, the Delaunay and quad-octree methods and the mapping methods based on the
numerical solution of elliptic and parabolic equations such as the inverted Beltrami
and diffusion equations.

The second approach to the parallelization of the meshing process consists of
partitioning the domain by means of sub-domains, whose union forms a covering-
up of the entire domain, prior to dispatching these to different processors, each of
them generating a mesh on one sub-domain. Different classes of domain partition are
encountered. Among these, some are based on graph partitions and some are purely
geometric methods directly based on mesh partitions. All these methods apply to
finite element type meshes, since a vicinity graph can be constructed based on the
connections between the elements in a given mesh.

The partition of the domain as well as constructing the corresponding sub-meshes
can be achieved either through a posteriori or a priori partitioning methods. The
posteriori processing starts from the data of a large size fine mesh of the entire
domain and then splits it into sub-meshes, while a priori processing uses the domain
itself or a coarse mesh of it which is split into sub-domains.

For the priori processing, first, a partition of the domain is created. This step may
start from the domain geometry or a reasonable coarse mesh of the entire domain.
Once this partition is available, some sub-domains are then identified and meshed,
each on one processor, thus taking advantage of the parallel capabilities of the com-
puters right from the meshing stage. The global mesh is then achieved by merging
all of the local meshes. The interface between two sub-domains is constructed either
from the data of the coarse mesh or from the data of the domain boundary discretiza-
tion. The meshes can also be constructed by using the meshes of the surfaces that
constitute the interfaces between the sub-domains extracted from the given boundary
mesh. This approach leads to meshing each sub-domain separately after the defini-
tion of the various domain interfaces and after a mesh of these interfaces has been
constructed.

Provided with a fine mesh of the domain under interest, the posteriori partitioning
method consists of splitting this mesh into several sub-meshes in order to distribute
the computational effort over several processors, each of them being responsible

418 10 Numerical Implementations of Comprehensive Grid Generators

for the solution of a physical problem for one sub-domain. The global solution is
achieved by merging all of the partial solutions. The most frequent case is element-
based decomposition in which the fine mesh is partitioned by distributing the cells
among the sub-domains i.e. one cell is logically associatedwith one and only one sub-
domain. Another case is node-based decomposition in which the mesh is partitioned
by distributing its nodes among the sub-domains, i.e. one node is logically associated
with one and only one sub-domain. The main drawback of such a method is related
to its memory requirement, as it is necessary to store the initial mesh and, at least,
one of the sub-meshes. Nevertheless, the posteriori methods are widely used.

Of course, in practice, these parallelization approaches are often combined by
taking into account their advantages and weaknesses.

These and different partition methods are presented in greater detail in the books
of Frey and George (2008) and Lo (2015).

References

Azarenok, B. N. (2002). Variational barrier method of adaptive grid generation in hyperbolic prob-
lems of gas dynamics. SIAM Journal on Numerical Analysis, 40(40), 651–682.

Charakch’yan,A.A. (1993). Almost conservative difference schems for the equations of gas dynam-
ics. Computational Mathematics and Mathematical Physics, 33, 1473.

Charakch’yan, A. A. (1994). Compound difference schems for time-dependent equations on non-
uniform nets. Communications in Numerical Methods in Engineering, 10, 93.

Charakch’yan, A. A., & Ivanenko, S. A. (1988). A variational form of the Winslow grid generator.
Journal of Computational Physics, 136, 385–398.

Charakch’yan, A. A., & Ivanenko, S. A. (1997). A variational form of the Winslow grid generator.
Journal of Computational Physics, 136, 385–398.

Danaev, N. T., Liseikin, V. D., &Yanenko, N. N. (1980). Numerical solution on amoving curvilinear
grid of viscous heat-conducting flowabout a body of revolution.Chisl.MetodyMekhan. Sploshnoi
Sredy, 11(1), 51–61. (Russian).

Fletcher, C. A. J. (1997). Computational Techniques for Fluid Dynamics 1: Fundamental and
General Techniques. Berlin: Springer.

Frey, P. J., & George, P.-L. (2008).Mesh Generation Application to Finite Elements. Verlag: ISTE
Ltd and Wiley Inc.

Glasser, A. H., Liseikin, V. D., & Kitaeva, I. A. (2005). Control of grid properties with the help of
monitor metrics. Computational Mathematics and Mathematical Physics, 45(8), 1416–1432.

Glasser, A. H., Liseikin, V. D., Shokin, Ju. I., Vaseva, I. A., & Likhanova, Ju. V. (2006). Grid
Generation with the Use of Beltrami and Diffusion Equations. Nauka, Novosibirsk. (Russian).

Glasser, A. H., & Tang, X. Z. (2004). The SEL macroscopic modeling code. Computer Physics
Communications, 164, 237–243.

Ivanenko, S. A. (1988). Generation of non-degenerate meshes. USSR Computational Mathematics
and Mathematical Physics, 28(5), 141.

Kovenya, V. M., Tarnavskii, G. A., & Chernyi, S. G. (1990). Application of a Splitting Method to
Fluid Problems. Novosibirsk: Nauka. (in Russian).

Langtangen,. (2003).Computational partial differential equations, numerical methods and diffpack
programming. Berlin: Springer.

Liseikin, V. D. (2014a). Numerical Grids. SD RAS, Novosibirsk (in Russia): Theory and Applica-
tions.

Liseikin, V. D. (2014b).Methods for Generating Numerical Grids. Novosibirsk: NSU. (in Russia).

References 419

Lo, S. H. (2015). Finite Element Mesh Generation. Boca Raton: CRC Press Taylor and Francis
Group.

Lomonosov, I. V., Frolova, A. A., & Charakhch’yan, A. A. (1997). Computation of hight-velocity
impact of thin foil upon conical target (survey).AMathematicalModeling, 9(5), 48–60. (Russian).

Vaseva, I. A., & Liseikin, V. D. (2011). Application of the finite element method for generating
adaptive grids. Computational Technologies, 16(5), 3–15. (in Russia).

Winslow,A.M. (1981):Adaptivemesh zoning by the equipotentialmethod.UCID-19062,Lawrence
Livermore National Laboratories.

Yanenko, N. N. (1971). The method of fractional steps. The solution of problems of mathematical
physics in several variables. New York: Springer.

	10 Numerical Implementations of Comprehensive Grid Generators
	10.1 One-Dimensional Equation
	10.1.1 Numerical Algorithm

	10.2 Multidimensional Finite Difference Algorithms
	10.2.1 Parabolic Simulation
	10.2.2 Two-Dimensional Equations
	10.2.3 Three--Dimensional Problem

	10.3 Spectral Element Algorithm
	10.4 Finite Element Method
	10.5 Inverse Matrix Method
	10.6 Method of Minimization of Energy Functional
	10.6.1 Generation of Fixed Grids
	10.6.2 Adaptive Grid Generation

	10.7 Parallel Mesh Generation
	References

