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Preface to the Third Edition

Grid generation codes represent an indispensable tool for solving field problems in
applied mathematics, mechanics, physics, and other areas of practical applications.
Despite the considerable success achieved in grid generation technologies, devel-
opment of more efficient and sophisticated algorithms and computer codes for
generating grids still remains an important problem. Serious difficulties arise in grid
generation in domains with complicated boundary geometries, specifically, with
discretely defined boundary segments and in the case when grids have to be adapted
to solution singularities, such as boundary and interior layers, shocks, detonation
waves, combustion fronts, high-speed jets, and phase transition zones. A promising
tool to deal with the numerical problems having such singularities is adaptive grid
generation technology. With increasing complexity of the physical problems, there
is an increased need for more reliable, robust, and fully automated grid generation
codes which enable one to generate suitable meshes in a uniform “black box” mode,
without human interaction. The development of such grid systems is a challenging
problem in computational physics and applied mathematics.

Grid technology still remains a rapidly advancing field of computational and
applied mathematics. New achievements are being added by the creation of more
sophisticated techniques, modification of the available methods, and implementa-
tion of more subtle tools as well as the results of the classical theories of differential
equations, calculus of variations, and Riemannian geometry in the formulation of
grid models and analysis of grid properties. Therefore, there is a clear need of
students, researchers, and practitioners in the field of applied mathematics and
industry for the creation of new books and/or updated editions of the available
books which will complement the existing ones, providing a description of current
developments relating to grid methods, grid codes, and their applications to the
solving of actual problems.

This third edition of the monograph “Grid Generation Methods” is significantly
expanded with new material that discusses recent advances in grid generation
technology. It includes a description of updated grid generation methods, which
were partly presented in the former monograph of the author, as well as new
adaptive approaches for structured and unstructured grids and numerical algorithms
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for their generation. Special attention is paid to a review of those promising
approaches and methods which have been developed recently and/or have not been
sufficiently covered in other monographs. In particular, this book includes an
application for generating grids for immersed boundary methods. It also describes a
stretching method adjusted to the numerical solution of singularly perturbed
equations having large-scale solution variations, e.g., those modeling high-
Reynolds-number flows. A number of functionals related to conformality, orthog-
onality, energy, and alignment are described. This book includes differential and
variational techniques for generating uniform, conformal, and harmonic coordinate
transformations on hypersurfaces for the development of a comprehensive approach
to the construction of both fixed and adaptive grids in the interior and on the
boundary of domains in a unified manner. The monograph is also concerned with
the description of all essential grid quality measures such as skewness, curvature,
torsion, angle and length values, and conformality. It gives a more detailed and
practice-oriented description of control metrics for providing the generation of
adaptive, field-aligned, and balanced numerical grids by means of the numerical
solution of inverted Beltrami and diffusion equations in the control metrics. Some
numerical algorithms are described for generating surface and domain grids. One
more new feature of this book is the implementation of adaptive grid technology to
the numerical solution of problems in mechanics, physics, fluids, plasmas, and
nanotechnologies. Emphasis is placed on mathematical formulations, explanations,
and examples of various aspects of grid generation and their applications.

This book will introduce a reader to structured and unstructured grid methods, as
well as automated technologies for the generation of adaptive grids for the
numerical solution of applied problems with complicated domain segments and
complicated solution structures. These technologies are based on advanced alge-
braic, elliptic, variational, Delaunay, advancing-front, and quad–octree methods, as
well as on the methods of finite differences and volumes. The technologies are
indispensable for the numerical solution of differential equations, modeling various
complex physical processes in energetics, ecology, industry, as well as the medical
sphere. Furthermore, this book includes chapters devoted to the implementation of
comprehensive grid methods into numerical codes and to the application of the
codes to the numerical solution of a range of mechanical, fluid, and plasma-related
problems. The new and fast-developing computational tools discussed throughout
this book enable a detailed analysis of real-world problems that simply lie beyond
the reach of traditional methods.

The major area of attention of this book is grid-mapping techniques. In addition,
however, the author has also included an elementary introduction to basic
unstructured approaches to mesh generation. A more detailed description of
unstructured mesh techniques and corresponding aspects related to parallel pro-
cessing, mesh quality enhancement, and mesh modification and optimization can be
found in the books of the leading experts on these technologies: Computational
Grids: Adaptation and Solution Strategies by G.F. Carey (1997), Delaunay
Triangulation and Meshing by P.-L. George and H. Borouchak (1998), Mesh
Generation Application to Finite Elements by P.J. Frey and P.-L. George (2008),
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and Finite Element Mesh Generation by D.S.H. Lo (2015). These books, though,
do not give a detailed introduction to advanced mapping approaches developed in
recent years. Thus, the current monograph and these books complement each other,
presenting a comprehensive description of all the popular grid generation approa-
ches. As grid generation methodology is well on its way to becoming a formal
subject in university curricula, the books mentioned and the current book taken
together will provide materials fully sufficient to support a one-year university
course related to structured and unstructured mesh technologies.

Since grid technology has a widespread application across nearly all field
problems, this new edition of the monograph will be of significant interest to a
broad range of readers: teachers, students, researchers, and practitioners in applied
mathematics, mechanics, physics, and other areas of application. In addition, it
could be used as a textbook for advanced undergraduates or for first-year post-
graduate students or as a tutorial for mathematicians, engineers, and scientists who
are engaged in the computation of equations in multidimensional domains with
complicated boundary geometries.

Chapter 1 of this book provides a general introduction to the subject of grids. It
gives an outline of structured, unstructured, hybrid, overlapping, and composite
grids. The chapter delineates some of the basic classes of methods, in particular
manual or semiautomatic methods, mapping methods, and unstructured methods.
The chapter also includes a description of various types of grid topology and
touches on certain issues of comprehensive grid codes.

Chapter 2 deals with several mathematical relations that are necessary only for
the generation of grids by means of the mapping approach and which are connected
with and derived from the metric tensors of coordinate transformations. As an
example of an application of these relations, the chapter presents a technique aimed
at obtaining conservation-law equations in new fixed or time-dependent coordi-
nates. In the procedures described, the deduction of the expressions for the trans-
formed equations is based only on the formula for the differentiation of the Jacobian
of the coordinate transformations.

Very important issues of grid generation, connected with a description of grid
quality measures in forms suitable for formulating grid techniques and efficiently
analyzing the necessary mesh properties, are discussed in Chap. 3. The definitions
of the grid quality measures are based on the metric tensors and on the relations
between the metric elements considered in Chap. 2. Special attention is paid to the
invariants of the metric tensors, which are the basic elements for the definition of
many important grid quality measures. Clear algebraic and geometric interpreta-
tions of the invariants are presented.

Chapter 4 describes a stretching method based on the application of special
nonuniform stretching coordinates in the regions of large variation of the solution.
The use of stretching coordinates is extremely effective for the numerical solution
of problems with boundary and interior layers. The chapter acquaints the reader
with various types of singularity arising in solutions to equations with a small
parameter affecting the higher derivatives. The solutions of these equations undergo
large variations in very small boundary and interior zones, called boundary or
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interior layers, respectively. The chapter gives a detailed description of the
qualitative properties of solutions in such layers. Besides the well-known expo-
nential layers, three types of power layer common to bisingular problems having
complementary singularities arising from reduced equations are described. Such
equations are widespread in applications, for example, in viscous gas dynamics.
The specification of the stretching functions is given for each type of basic sin-
gularity. The functions are defined in such a way that the singularities are auto-
matically smoothed with respect to the new stretching coordinates. The chapter
gives the description of a procedure to generate intermediate coordinate transfor-
mations with the stretching functions. The transformations are suitable for
smoothing both exponential and power layers. The grids derived with such coor-
dinate transformations are often themselves well adapted to the expected physical
features. Therefore, they make it easier to provide dynamic adaptation by taking
part of the adaptive burden on themselves.

The simplest and fastest technique of grid generation is the algebraic method of
transfinite interpolation described in Chap. 5. Of central importance in transfinite
interpolation are the blending functions which provide the matching of the grid
lines at the boundary and interior surfaces. Examples of various types of blending
functions are reviewed, in particular the functions defined through the basic
stretching coordinate transformations for singular layers. These transformations are
dependent on a small parameter so that the resulting grid automatically adjusts to
the respective physical parameter, e.g., viscosity, Reynolds number, or shell
thickness, in practical applications. This chapter also gives a description of a pro-
cedure for generating triangular, tetrahedral, or prismatic grids through the method
of transfinite interpolation. The chapter ends with a concise presentation of drag and
sweeping meshing methods.

Chapter 6 is concerned with grid generation techniques based on the numerical
solution of systems of partial differential equations. Generation of grids from these
systems of equations is largely based on the numerical solution of elliptic, hyper-
bolic, and parabolic equations for the coordinates of grid lines which are specified
on the boundary segments. The elliptic and parabolic systems reviewed in the
chapter provide grid generation within blocks with specified boundary point dis-
tributions. These systems are also used to smooth algebraic, hyperbolic, and
unstructured grids. A very important role is currently played in grid codes by a
system of Poisson equations defined as a sum of Laplace equations and control
functions. This system was originally considered by Godunov and Prokopov and
further generalized, developed, and implemented for practical applications by
Thompson, Thames, Mastin, and others. The chapter describes the properties of the
Poisson system and specifies expressions for the control functions required to
construct nearly orthogonal coordinates at the boundaries. Hyperbolic systems are
useful when an outer boundary is free of specification. The control of the grid
spacing in the hyperbolic method is largely performed through the specification of
volume distribution functions. Special hyperbolic and elliptic systems are presented
for generating orthogonal and nearly orthogonal coordinate lines, in particular those
proposed by Ryskin and Leal. The chapter also reviews some parabolic and
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high-order systems for the generation of structured grids and describes adaptive
mesh generation for steady and unsteady simulations.

Chapter 7 reviews the development of variational methods applied to grid
generation. Variational grid generation relies on functionals related to grid quality:
smoothness, orthogonality, regularity, aspect ratio, adaptivity, etc. By the mini-
mization of a combination of these functionals, a user can define a compromise grid
with the desired properties. The chapter discusses a variational approach for gen-
erating harmonic maps through the minimization of energy functionals, which was
suggested by Dvinsky. Several versions of the functionals from which harmonic
maps can be derived are identified.

Methods developed for the generation of grids on curves and surfaces are dis-
cussed in Chap. 8. The chapter describes the development and application of
hyperbolic, elliptic, and variational techniques for the generation of grids on
parametrically defined curves and surfaces. The differential approaches based on the
Beltrami equations were proposed by Warsi and Thomas, while the variational
methods rely on functionals of surface grid quality measures.

Chapter 9 is devoted to the implementation of inverted Beltrami equations with
respect to control metrics for the generation of multidimensional adaptive grids via
a mapping approach. The approach is based on mapping from a simple structured or
an unstructured grid in the logical domain to a curvilinear grid with the desired
properties in the physical domain. The control metrics provide efficient and simply
defined conditions for various types of grid adaptation, particularly grid clustering
according to given function values and/or gradients, grid alignment with given
vector fields, and combinations thereof. The corresponding formulas of control
metrics providing these grid properties are demonstrated. Using this approach, both
adaptive and fixed grids can be generated in a unified manner, in arbitrary domains.

Numerical algorithms for generating grids by mapping approaches based on the
solution of inverted Beltrami and diffusion equations are presented in Chap. 10.
Furthermore, the chapter includes numerical methods (finite differences, finite
elements, and spectral elements) for finding grid nodes via the solution of the
inverted Beltrami equations. Basic approaches in parallelizing the mesh generating
process are outlined in Chap. 10.

Chapter 11 describes techniques aimed at controlling grid properties with special
control metrics in inverted Beltrami and diffusion equations. The control metrics
provide efficient and straightforwardly defined conditions for various types of grid
adaptation, particularly grid clustering according to given function values and/or
gradients, grid alignment with given vector fields, and combinations thereof.

The subject of unstructured grid generation is discussed in Chap. 12.
Unstructured grids may be composed of cells of arbitrary shape, but they are
generally composed of triangles and tetrahedrons. Tetrahedral grid methods
described in the chapter include Delaunay procedures and the advancing-front
method. The Delaunay approach connects neighboring points (of some previously
defined set of nodes in the region) to form tetrahedral cells in such a way that the
sphere through the vertices of any tetrahedron does not contain any other points. In
the advancing-front method, the grid is generated by building cells one at a time,
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marching from the boundary into the volume by successively connecting new
points to points on the front until all the unmeshed space is filled with grid cells.
The chapter also outlines the quod-octree approaches.

Chapter 13 is devoted to the implementation of adaptive grid techniques to
provide solutions to applied problems. The equations for the evolving grid are
incorporated into a single implicit time step in which the grid and the physical
solution evolve together. The chapter discusses numerical solutions of three-
dimensional diffusion equations with boundary and interior layers on adaptive grids
with node clustering in the zones of large solution variations and also touches some
applications of adaptive grid technologies to solutions of two-dimensional gas
dynamics problems. The application of adaptive grids to calculations of some
magnetically confined plasma problems and a tsunami wave run-up on a coastal
region is described as well in Chap. 13. This chapter describes the results of
numerical modeling of temperature gauged in burning solid fuel via an inserted
thermocouple. Subsurface thermocouple sensors are very important technical
devices employed to gauge heat fluxes in complicated heat-stressed frameworks in
various heat-diffusion mechanisms and in burning solid fuels. Incidental problems
related to the accuracy of the sensors’ temperature data may appear. The primary
source of inaccuracy is the difference in thermal properties of the materials of the
thermocouple and of the surrounding medium. High gradients of temperature in
heated materials lead, as a rule, to an increased heat transfer from the surface, since
the thermal conductivity of metallic thermocouples is higher than that of the sur-
rounding substance. Additional problems may appear due to a variation in the
distances to the surface of heat transfer caused by the pyrolysis of the substance.
The chapter presents an adaptive grid technology to investigate these problems.
Chapter 13 also demonstrates the use of adaptive grids for the numerical simula-
tions of nanopore formations in metals. It also includes a new grid generation
approach aimed at solving problems by immersed boundary methods. This
approach to grid generation does not involve the initial triangulation of the
boundary of a domain, but a global numerical grid is first constructed in a larger
domain with mesh refinement near the specified boundary points. Next, boundary
and interior cells of the domain under consideration are selected, which comprise its
numerical grid. As a result, a grid with thin cells near the boundary is obtained. The
thinner these cells, the better the approximation of the domain. The global grid is
generated by means of inverted diffusion equations for a spherical metric tensor.
This approach is also suitable for domains with boundaries specified by an implicit
analytic function.
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Chapter 1
General Considerations

1.1 Introduction

An indispensable tool of the numerical solution of partial differential equations by
finite-element or finite-difference methods on general regions is a grid which repre-
sents the physical domain in a discrete form. In fact, the grid is a preprocessing tool
or a foundation on which physical, continuous quantities are described by discrete
functions and on which the differential equations are approximated by algebraic
relations for discrete values that are then numerically analyzed by the application of
computational codes. The grid technique also has the capacity, based on an appro-
priate distribution of the grid points, to enhance the computational efficiency of the
numerical solution of complex problems.

The efficiency of a numerical study of a boundary value problem is estimated from
the accuracy of the computed solution and from the cost and time of the computation.

The accuracy of the numerical solution in the physical domain depends on both
the error of the solution at the grid points and the error of interpolation. Commonly,
the error of the numerical computation at the grid points arises from several dis-
tinct sources. First, mathematical models do not represent physical phenomena with
absolute accuracy. Second, an error arises at the stage of the numerical approximation
of the mathematical model. Third, the error is influenced by the size and shape of the
grid cells. Fourth, an error is contributed by the computation of the discrete phys-
ical quantities satisfying the equations of the numerical approximation. And fifth,
an error in the solution is caused by the inaccuracy of the process of interpolation
of the discrete solution. Of course, the accurate evaluation of the errors due to their
sources remains a formidable task. It is apparent, however, that the quantitative and
qualitative properties of the grid play a significant role in controlling the influence of
the third and fifth sources of the error on the numerical analysis of physical problems.

Another important characteristic of a numerical algorithm that influences its effi-
ciency is the cost of the operation of obtaining the solution. From this point of view,
the process of generating a sophisticated grid may increase the computational costs
of the numerical solution and encumber the computer tools with the requirement of
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2 1 General Considerations

additional memory. On the other hand, there may be a significant profit in accuracy
which allows one to use a smaller number of grid points. Any estimation of the
contributions of these opposing factors can help in choosing an appropriate grid. In
any case, since grid generation is an important component of numerical modeling,
research in this field is aimed at creating techniqueswhich are not too costly butwhich
cause a significant improvement in the accuracy of the solution. The utilization of
these techniques provides one with the real opportunities to enhance the efficiency of
the numerical solution of complex problems. Thus, grid generation helps to satisfy
the constant demand for enhancement of the efficiency of the numerical analysis of
practical problems.

The first efforts aimed at the development of grid techniques were undertaken in
the 1960s. In the present day, a significant number of advanced methods have been
created: algebraic, elliptic, hyperbolic, parabolic, variational, Delaunay, advancing-
front, quadtree-octree, etc. The development of these methods has reached a stage
in which calculations in fairly complicated domains and on surfaces that arise while
analyzing multidimensional problems are possible. Because of its successful devel-
opment, the field of numerical grid generation has already formed a separate math-
ematical discipline with its own methodology, approaches, and technology.

At the end of the 1980s there began a new stage in the development of grid gener-
ation technique. It is characterized by the creation of comprehensive, multipurpose,
three-dimensional grid generation codes which are aimed at providing a uniform
environment for the construction of grids in arbitrary multidimensional geometries.
Because of the numerous applications in engineering and scientific computations,
grid generation has become increasingly recognized as a subject in its own right not
only in engineering but also at universities as well.

The current chapter presents a framework for the subject of grid generation. It
outlines the most general concepts and techniques, which will be expounded upon
in more detail in the following chapters.

1.2 General Concepts Related to Grids

A physical domain, surface, or curve can be considered in a unified manner, as a
collection of geometric objects referred to as regular surfaces or physical geometries
locally represented as

x(s) : Sn → Rn+k, x = (x1, . . . , xn+k), s = (s1, . . . , sn), n ≥ 1 , (1.1)

where Sn is an n-dimensional parametric domain (an interval if n = 1), while x(s)
is a smooth vector-valued function of rank n at all points s ∈ Sn . We shall designate
by Sxn the regular surface parametrized by (1.1). Note, when k = 0 then Sxn is a
domain Xn ⊂ Rn which can be identified with the parametric domain Sn .

We assume further throughout this book that we are dealing with an arbitrary
geometry Sxn locally represented by the parametrization (1.1).
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Using the specification (1.1) of the physical geometry Sxn allows one to generate
grid points first on the parametric domain Sn and thenmapping them into Sxn through
the parametrization x(s). With such consideration the process of grid generation can
be carried out uniformly both for the boundary of a physical geometry and for its
interior part. This scheme of grid generation leads to the natural requirement for grid
techniques that the grids generated by a specific algorithm in the physical geometry
for different parametrizations should be the same, i.e. the grid algorithms should be
invariant of parametrizations of Sxn .

There are two general notions of a grid in an n-dimensional bounded domain or
on a surface. One of these considers the grid as a set of algorithmically specified
points of the domain or the surface. The points are called the grid nodes. The second
considers the grid as an algorithmically described collection of small standard n-
dimensional volumes covering the necessary area of the domain or surface without
gaps and overlaps. The volumes are referred to as the grid cells. The cells are bounded
curvilinear volumes, whose boundaries are divided into a few segments which are
(n − 1)-dimensional cells. Therefore, the cells can be formulated successively from
one dimension to higher dimensions. The boundary points of the one-dimensional
cells are called the cell vertices or the grid nodes.

1.2.1 Grid Cells

This subsection discusses some general concepts related to grid cells.
For cells in an n-dimensional domain or surface, there are commonly used n-

dimensional volumes of simple standard shapes (see Fig. 1.1 for n = 1, 2, 3).
In one dimension, the cell is a closed line or segment,whose boundary is composed

of two points referred to as the cell vertices.
A general two-dimensional cell is a two-dimensional simply connected domain,

whose boundary is divided into a finite number of one-dimensional cells referred

Fig. 1.1 Typical grid cells
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Fig. 1.2 Convex (left) and
strongly convex (right)
quadrilateral cells

to as the edges of the cell. Commonly, the cells of two-dimensional domains or
surfaces are constructed in the form of linear or nonlinear triangles or quadrilaterals.
The boundary of a triangular cell is composed of three segments, while the boundary
of a quadrilateral is represented by four segments. These segments are the one-
dimensional grid cells.

By a general three-dimensional cell, we mean a simply connected
three-dimensional polyhedron, whose boundary is partitioned into a finite number of
two-dimensional cells called its faces. In practical applications, three-dimensional
cells typically have the shape of linear or curvilinear tetrahedrons or hexahedrons.
The boundary of a tetrahedral cell is composed of four triangular cells, while a hexa-
hedron is bounded by six quadrilaterals. Thus, a hexahedral cell has six faces, twelve
edges, and eight vertices. Some applications also rely on the three-dimensional cells
in the form of prisms and even pyramids as three-dimensional cells. A prism has two
triangular and three quadrilateral faces, nine edges, and six vertices, while a pyramid
has four triangular and one quadrilateral faces, eight edges, and five vertices.

The selection of the shapes shown in Fig. 1.1 to represent the standard cells is
justified, first, by their geometrical simplicity, and second, because the existing pro-
cedures for the numerical simulation of physical problems are largely based on
approximations of partial differential equations using these elemental volumes. The
specific choice of cell shape depends on the geometry and physics of the particu-
lar problem and on the method of solution. In particular, tetrahedrons (triangles in
two dimensions) are well suited for finite-element methods, while hexahedrons are
commonly used for finite-difference techniques.

Convex Cells

A convex n-dimensional cell S is the convex hull of some n + k, k > 1, points
P1, · · · , Pn+k from Xn which do not lie in any (n − 1)-dimensional plane. Thus, S
is composed of all points x ∈ Rn which are defined through P i by the equation

x =
n+k∑

i=1

αi P i ,

n+k∑

i=1

αi = 1 , 1 ≥ αi ≥ 0 .
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We call all those points P l of the set {P i , i = 1, · · · , n + k} which lie on the
boundary of S vertices of the convex cell S.

An m-dimensional face of the convex n-dimensional cell S (n > m) is a convex
hull of m + 1 vertices Pl , which does not contain any other vertices of S.

We call the cell S strongly convex if for all m < n it does not have any two m-
dimensional faces which lie in an m-dimensional plane. Figure1.2 demonstrates the
difference between convex (Fig. 1.2, left-hand) and strongly convex (Fig. 1.2, right-
hand) quadrilateral cells. Evidently, if P is an interior point of the strongly convex
cell S with the vertices P1, · · · , Pn+k then there will be at least n + 1 points in the
expansion of P

P =
n+k∑

i=1

αi P i ,

n+k∑

i=1

αi = 1 , αi ≥ 0 , i = 1, · · · , n + k ,

with nonzero values of their coefficients αi .

Simplexes and Simplex Cells

Commonly, the edges and the faces of the cells are linear (Fig. 1.1, above). Linear tri-
angles and tetrahedrons are also referred to as two-dimensional simplexes and three-
dimensional simplexes, respectively. The notion of the simplex can be formulated
for arbitrary dimensions. Namely, by a k-dimensional simplex in an n-dimensional
(n ≥ k) geometry Sxn we mean a volume of k-dimensional space whose nodes are
defined by the equation

x =
k+1∑

i=1

αi xi ,

where xi , i = 1, · · · , k + 1, are some specified points which are the verticies of the
simplex, and αi , i = 1, · · · , k + 1, are real numbers satisfying the relations

k+1∑

i=1

αi = 1 , αi ≥ 0 .

The points xi , i = 1, · · · , k + 1, are subject to the following restriction: they are
not all in the same hyperplane, namely, the vectors r i = xi+1 − x1, i = 1, · · · , k,
are independent, i.e. the matrix {ri · r j }, i, j = 1, · · · k is invertible. In this respect,
a one-dimensional linear cell is the one-dimensional simplex. The boundary of a
k-dimensional simplex is composed of k + 1 simplexes of (k − 1)-dimension.

In practical discretizations of domains, convex cells whose boundary faces are
simplexes are also applied. Such cells are referred to as simplex cells.

For each n-dimensional simplex cell S, the following relation between the number
of faces is valid:
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n−1∑

i=k

(−1)i
(
i + 1
k + 1

)
Ni = (−1)n−1Nk ,

k = −1, · · · , n − 2 , N−1 = 1 ,(
l
m

)
= l(l − 1) · · · (l − m + 1)

m! , m ≥ 1 ,

(
l
0

)
= 1 , (1.2)

where Ni , i = 1, · · · , n, is the number of i-dimensional boundary simplexes of S,
and N0 is the number of vertices of S.

Properties of Basic Cells

Some applications consider curvilinear cells as well (Fig. 1.1, below). These grid
cells are obtained by deformation of ordinary linear segments, triangles, tetrahedrons,
squares, cubes, and prisms.

The major advantage of hexahedral cells (quadrilaterals in two dimensions) is
that their faces (or edges) may be aligned with the coordinate surfaces (or curves).
In contrast, no coordinates can be aligned with tetrahedral meshes. However, strictly
hexahedral meshes may be ineffective near boundaries with sharp corners.

Prismatic cells are generally placed near boundary surfaceswhich have previously
been triangulated. The surface triangular cells serve as faces of prisms, which are
grown out from these triangles. Prismatic cells are efficient for treating boundary
layers, since they can be constructed with a high aspect ratio in order to resolve the
layers, but without small angles, as would be the case for tetrahedral cells.

Triangular cells are the simplest two-dimensional elements and can be produced
from quadrilateral cells by constructing interior edges. Analogously, tetrahedral cells
are the simplest three-dimensional elements and canbederived fromhexahedrons and
prisms by constructing interior faces. The strength of triangular and tetrahedral cells
is in their applicability to virtually any type of domain configuration. The drawback
is that the integration of the physical equations becomes a few times more expensive
with these cells in comparison with quadrilateral or hexahedral cells.

The vertices of the cells define grid pointswhich approximate the physical domain.
Alternatively, the grid points in the domain may have been generated previously by
some other process. In this case, the construction of the grid cells requires special
techniques.

1.2.2 Requirements Imposed on Grids

The grid should discretize the physical domain or surface in such a manner that the
computation of the physical quantities is carried out as efficiently as desired. The
accuracy, which is one of the components of the efficiency of the computation, is
influenced by a number of grid factors, such as grid size, grid topology, cell shape
and size, and consistency of the grid with the geometry and with the solution. A very
general consideration of these grid factors is given in this subsection.
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Grid Size and Cell Size

The grid size is indicated by the number of grid nodes, while the cell size implies the
maximum value of the lengths of the cell edges. Grid generation requires techniques
which possess the intrinsic ability to increase the number of grid nodes. At the same
time, the edge lengths of the resulting cells should be reduced in such a manner that
they approach zero as the number of nodes tends to infinity.

An instructive example of a grid on the interval [0,1] which does not satisfy the
requirement of unlimited reduction of the cell sizes when the number of the nodes
is increased is a grid generated by a rule in which the steps are in a geometrical
progression:

hi+1

hi
= a , a > 0 , a �= 1 , (1.3)

where hi = xi+1 − xi , i = 0, · · · , N − 1, are the steps of the grid nodes xi , i =
0, · · · , N ,with x0 = 0, xN = 1. The grid nodes xi satisfying (1.3) are computed for
arbitrary N by the formula

xi = a − 1

aN−1 − a

i∑

j=1

a j , i = 1, · · · , N ,

and consequently we obtain

hi = ai+1(a − 1)

aN−1 − a
, i = 0, · · · , N − 1 .

Therefore,
limN→∞ h0 = 1 − a if 0 < a < 1 ,

limN→∞ hN−1 = a − 1

a
if a > 1 ,

i.e. the left-hand boundary cell of this grid, if a < 1, or the right-hand boundary cell,
if a > 1, does not approach zero even though the number of grid points tends to
infinity.

Small cells are necessary to obtain more accurate solutions and to investigate
phenomena associated with the physical quantities of small scales, such as boundary
and transition layers and turbulence. Also, the opportunity to increase the number of
grid points and to reduce the size of the cells enables one to study the convergence
rate of a numerical code and to improve the accuracy of the solution by multigrid
approaches.

Grid Consistency

By a consistent grid or a consistent discretization, we mean a collection of n-
dimensional strongly convex cells satisfying the following condition: if two different
cells intersect, then the region of the intersection is a common (n − 1-dimensional)
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Fig. 1.3 Admitted (1) and nonadmitted (2, 3, 4) intersections of neighboring quadrilateral cells

face for both cells. This definition does not admit the fragments of two-dimensional
discretizations depicted in Fig. 1.3 (2, 3, 4). If the union of the cells of the consis-
tent discretization constitutes a simply connected n-dimensional geometry Sxn , i.e.
a geometry which is homeomorphic to an n-dimensional cube, then, in accordance
with the Euler theorem,

n−1∑

i=0

(−1)i Ni = 1 + (−1)n−1 , (1.4)

where Ni , i > 0, is the number of i-dimensional boundary faces of the domain
discretization, while N0 is the number of boundary vertices. In particular, N1 is the
number of boundary edges. This relation can be used to verify the consistency of a
generated grid.

Three-Dimensional Discretization

In three dimensions, we have, for each consistent discretization, the following gen-
eralization of the Euler formula (1.4):

N0 − N1 + N2 = 2(k − t) , (1.5)

where k is the number of simply connected subdomains and t is the number of holes.
For any convex three-dimensional cell, we also have the relations

N0 − N1 + N2 = 2 ,

4 ≤ N0 ≤ 2N2 − 4 ,

4 ≤ N2 ≤ 2N0 − 4 . (1.6)

Let N0(k) be the number of those vertices, each of which is common to k edges
of a convex cell S. Analogously, by N2(k) we denote the number of faces, each of
which is formed by k edges. Obviously,

N0 =
∑

k≥3

N0(k) , N2 =
∑

k≥3

N2(k) .
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Using (1.4), we obtain

N0(3) + N2(3) = 8 +
∑

k≥4

(k − 4)[N0(k) + N2(k)] ≥ 8 . (1.7)

If the cell is a simplex cell, then we have, from (1.2), the relations

N0 − N1 + N2 = 2 ,

−2N1 + 3N2 = 0 (1.8)

or, in equivalent form,

N1 = 3N0 − 6 ,

N2 = 2N0 − 4 . (1.9)

Also, the following nonlinear inequalities for a simplex cell are valid:

2N1 < (N0 − 1)N0 ,

3N2 < (N0 − 2)N1 . (1.10)

Discretization by Triangulation

A consistent discretization by simplexes is called a triangulation. Let the number of
edges be maximal for a given set of vertices of a two-dimensional triangulation. Let
C(P) be the boundary of the hull formed by all vertices of the triangulation and NC

be the number of vertices which lie in C(P). Then, the following relations are valid:

NT = 2(NV − 1) − NC ,

NE = 3(NV − 1) − NC , (1.11)

where NT is the number of triangles, NE is the number of edges, and NV is the number
of vertices of the triangulation. Thus, the maximal triangulation for the given vertices
has a fixed number of triangles and edges.

Grid Organization

There is also a requirement ongrids to have someorganization of their nodes and cells,
which is aimed at facilitating the procedures for formulating and solving the alge-
braic equations substituted for the differential equations. This organization should
identify neighboring points and cells. The grid organization is especially important
for that class of finite-difference methods whose procedures for obtaining the alge-
braic equations consist of substituting differences for derivatives. To a lesser degree,
this organization is needed for finite-element methods because of their inherent com-
patibility with irregular meshes.
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Fig. 1.4 Normal (1) and badly deformed (2-4) quadrilateral cells

Cell and Grid Deformation

The cell deformation characteristics can be formulated as some measures of the
departure of the cell from a reference, represented by the least deformed one (Fig. 1.1,
above). Such reference triangular and tetrahedral cells are those with edges of equal
length. The least distorted quadrilaterals and hexahedrons are squares and cubes,
respectively. The reference prism is evidently the prism with reference linear faces.
Cells with low deformity are preferable from the point of view of simplicity and uni-
formity of the construction of the algebraic equations approximating the differential
equations.

Typically, cell deformation is characterized through the edge length, the circum-
radius, the inradius, the aspect ratio, the angles between the cell edges, and the volume
(area in two dimensions) of the cell.

The major requirement for the grid cells is that they must not be folded or degen-
erate at any points or lines, as demonstrated in Fig. 1.4. Unfolded cells are obtained
from reference cells by a one-to-one deformation. Commonly, the value of any grid
generationmethod is judged by its ability to yield grids with unfolded cells in regions
with complex geometry.

Thegrid deformity is also characterizedby the rate of the changeof the geometrical
features of contiguous cells. Grids whose neighboring cells do not change abruptly
are referred to as smooth grids.

Consistency with Geometry

The accuracy of the numerical solution of a partial differential equation and of the
interpolation of a discrete function is considerably influenced by the degree of com-
patibility of the mesh with the geometry of the physical domain. First of all, the
grid nodes must adequately approximate the original geometry, that is, the distance
between any point of the domain and the nearest grid node must not be too large.
Moreover, this distance must approach zero when the number of grid nodes tends to
infinity. This requirement of adequate geometry approximation by the grid nodes is
indispensable for the accurate computation and interpolation of the solution over the
whole region.

The second requirement for consistency of the gridwith the geometry is concerned
with the approximation of the boundary of the physical domain by the grid, i.e. there
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is to be a sufficient number of nodeswhich can be considered to be the boundary ones,
so that a set of edges (in two dimensions) and cell faces (in three dimensions) formed
by these nodes models the boundary efficiently. In this case, the boundary conditions
may be applied more easily and accurately. If these points lie on the boundary of the
domain, then the grid is referred to as a boundary-fitting or boundary-conforming
grid.

Consistency with Solution

It is evident that distribution of the grid points and the form of the grid cells should
be dependent on the features of the physical solution. In particular, it is better to
generate the cells in the shape of hexahedrons or prisms in boundary layers. Often,
the grid points are to be aligned with some preferred directions, e.g. streamlines or
vector fields. Furthermore, a nonuniform variation of the solution requires clustering
of the grid points in regions of high gradients, so that these areas of the domain have
finer resolution. Local grid clustering is needed because the uniform refinement
of the entire domain may be very costly for multidimensional computations. It is
especially true for problems whose solutions have localized regions of very rapid
variation (layers). Without grid clustering in the layers, some important features
of the solution can be missed, and the accuracy of the solution can be degraded.
Problems with boundary and interior layers occur in many areas of application, for
example, in fluid dynamics, combustion, solidification, solid mechanics and wave
propagation.

The typical pattern of a solution with large local variation is illustrated by the
following univariate monotonic function:

u(x) = 1 − exp(−x/ε) , 0 ≤ x ≤ 1 ,

with a positive parameter ε. This function is a solution to the two-point singularly-
perturbated boundary value problem

εu′′ + u′ = 0 , 1 > x > 0 ,

u(0) = 0 , u(1) = 1 − exp(−1/ε) .

When the parameter ε is very small, then u(x) has a boundary layer of rapid variation
(Fig. 1.5). Namely, in the interval [0, ε| ln ε|], the function u(x) changes from 0 to
1 − ε. For example, if ε = 10−5, then ε| ln ε| = 5 × 10−5 ln 10 < 2 × 10−4. In this
small interval, the variation of the function u(x) is 1 − 10−5.

Let the number of uniform grid points required for the accurate approximation of
u(x) on the boundary layer be N0. Then, the number of uniform grid points on [0, 1]
with the same step as in the boundary layer will be

N = N0/ε| ln ε| ≥ 2 × 104N0.
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Fig. 1.5 Boundary layer
function

However, in order to approximate u(x) with the same accuracy in the interval
[ε| ln ε|, 1], it is not necessary to use more than N0 points of the uniform grid, since
u(x) is monotonic and changes with nearly the same variation in this interval as it
does in the boundary layer. Thus, instead of 2 × 104N0, we can restrict the number
of grid nodes on the interval [0, 1] to 2N0 in order to obtain the same accuracy of
interpolation. This spectacular reduction in the number of grid points is obtained at
the expense of using a finer grid in the boundary layer only.

This example clearly demonstrates that local grid refinement for problems in
which the solution quantities have narrow zones in which the dominant length scales
are very small is more promising than the uniform refinement of the entire region,
since a significant reduction in the total number of grid nodes and, consequently,
in the solution time can be attained. Local refinement becomes indispensable for
complex geometries in three dimensions, since otherwise the cost of the numerical
solution of a physical problem on the grid will be too high.

The locations of the zones of local refinement are also dependent on the numerical
approximation to the physical equations. In particular, the areas of high solution error
requiremore refined grid cells.However, the error is estimated through the derivatives
of the solution and the size of the grid cells. Thus, ultimately, the grid point locations
are to be defined in accordance with the derivatives of the solution.

Typically the locations where the high resolution is needed are not known before-
hand but are found in the process of computation. Consequently, a suitable mesh,
tracking the necessary features of the physical quantities as the solution evolves, is
required.

A local grid refinement is accomplished in twoways: (a) bymoving a fixed number
of grid nodes, clustering of them in zones where this is necessary, and coarsening
outside of these zones, and (b) by inserting new points in the zones of the domain
where they are needed. Local grid refinement in zones of large variation of the
solution commonly results in the following improvements:

(1) the solution at the grid points is obtained more accurately;
(2) the solution is interpolated over the whole region more precisely;
(3) oscillations of the solution are eliminated;
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(4) larger time steps can be taken in the process of computing solutions of time-
dependent problems.

Compatibility with Numerical Methods

In general, numericalmethods for solving partial differential equations can be divided
into two classes: methods based on direct approximations of the derivatives in the
differential equation andmethods that approximate the solution of the continuum dif-
ferential equation by linear combinations of trial functions. Finite-differencemethods
belong to the first class. This difference in methods has a direct impact on the con-
struction of the numerical grid. For the finite-difference methods, it is desirable to
locate the grid points along directions of constant coordinates in the physical region
in order to provide a natural approximation of the derivatives: on the other hand, the
methods in the second class that approximate the solution with trial functions do not
impose such a restriction on the grid, since the approximate derivatives are obtained
after substitution of the approximate solution.

1.2.3 Grid Classes

There are two fundamental classes of grid popular in the numerical solution of
boundary value problems in multidimensional regions: structured and unstructured.
These classes differ in the way in which the grid cells and their nodes are locally
organized. In the most general sense, this means that if the local organization of the
grid nodes and the formof the grid cells do not depend on their position but are defined
by a general rule, the grid is considered to be structured. When the connection of the
neighboring grid nodes varies from point to point, the grid is called an unstructured
grid or unstructured mesh. As a result, in the structured case, the connectivity of the
grid is implicitly taken into account, while the connectivity of unstructured meshes
must be explicitly described by an appropriate data structure procedure.

The two fundamental classes of mesh give rise to three additional subdivisions
of grid types: block-structured, overset, and hybrid. These kinds of mesh possess to
some extent the features of both structured and unstructured grids, thus occupying
an intermediate position between the purely structured and unstructured grids.

The grid generation models can be classified into two types according to whether
they lead to structured or unstructured grids. This subsection outlines some basic
concepts related to structured and unstructured grids.

Structured Grids

The process of structured grid generation on the physical geometry Sxn locally rep-
resented by a parametrization

x(s) : Sn → Rn+k, x = (x1, . . . , xn+k), s = (s1, . . . , sn), n ≥ 1 , (1.12)
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Fig. 1.6 Cylindrical structured grid

Fig. 1.7 Boundary-conforming quadrilateral grid

is generally carried out by the mapping approach that concludes with finding an
intermediate transformation

s(ξ) : Ξ n → Sn , ξ = (ξ1, . . . , ξn) (1.13)

from a suitable simple computational (logical) domain Ξ n to the parametric domain
Sn . Consequently, the mesh points on Sxn are generated as images through

x[s(ξ)] : Ξ n → Rn+k (1.14)

of the nodes of a reference structured grid in Ξ n (see Figs. 1.6, 1.7 and 1.8).
We will use a designation x(ξ) instead of x[s(ξ)] in the case in which the physical

geometry Sxn is a domain Xn and the parametric domain Sn coincides with Xn , while
the parametric transformation x(s) is the identity function x(s) ≡ s.
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Fig. 1.8 Boundary-conforming triangular grid

Themapping concept was borrowed from examples of grids generated for geome-
tries that are described by analytic coordinate transformations. In particular, two-
dimensional transformations have often been defined by analytic functions of a com-
plex variable and by direct shearing. This is the case, for example, for the polar
coordinate system for circular regions

x(ξ) = exp(ξ1)(cos ξ2, sin ξ2) , r0 ≤ ξ1 ≤ r1 , 0 ≤ ξ2 ≤ 2π .

Asan illustrative exampleof a three-dimensional transformation, the following scaled
cylindrical transformation may be considered:

x(ξ) : Ξ 3 → X3 , ξ = (ξ1, ξ2, ξ3) , 0 ≤ ξi ≤ 1 , i = 1, 2, 3 ,

described by

x1(ξ) = r cos θ ,

x2(ξ) = r sin θ ,

x3(ξ) = Hξ3 , (1.15)

where

r = r0 + (r1 − r0)ξ
1 , θ = θ0 + (θ1 − θ0)ξ

2 , H > 0 ,

with
0 < r0 < r1 , 0 ≤ θ0 < θ1 ≤ 2π .

If θ1 = 2π then this function transforms the unit three-dimensional cube into a space
bounded by two cylinders of radii r0 and r1 and by the two planes x3 = 0 and x3 = H.

The reference uniform grid in Ξ 3 is defined by the nodes

ξi jk = (ih, jh, kh) , 0 ≤ i, j, k ≤ N , h = 1/N ,
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Fig. 1.9 Illustration for independence of grid generation of the choice of parametrizations

where i, j, k and N are positive integers. The cells of this grid are the three-
dimensional cubes bounded by the coordinate planes ξ1i = ih, ξ2j = jh, and ξ3k =
kh.Correspondingly, the structured grid in the domain X3 is determined by the nodes

xi jk = x(ξi jk) , 0 ≤ i, j, k ≤ N .

The cells of the grid in X3 are the curvilinear hexahedrons bounded by the curvilinear
coordinate surfaces derived from the parametrization x(ξ) (Fig. 1.6).

Independence of Parametrizations of Geometries

If a grid algorithm uses parametrizations of a physical geometry Sxn in the process
of grid generation, then, inevitably, this algorithm should be independent of the
choice of a parametrization. To clarify this, we consider one popular equidistribution
approach for generating grids on curves (Fig. 1.9). Let a curve Sx1 in Rn be specified
by two parametrizations

x1(s) : [0, 1] → Rn , x1 = (x11 , . . . , x
n
1 ) , (1.16)

and
x2(t) : [0, 1] → Rn , x2(t) = x1[s(t)] , (1.17)

where
s(t) : [0, 1] → [0, 1]

is a smooth one-to-one function connecting these parametrizations. The popular
universal approach, based on the parametrization (1.16), for generating grid nodes
on Sx1 uses a solution of the following two-point boundary value problem:

d

dξ

[ds
dξ

w1(s)
]

= 0 , 0 < ξ < 1 ,

s(0) = 0 , s(1) = 1 ,

(1.18)
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where w1(s) > 0 is some function called a weight function. If s(ξ) is a solution of
this problem, then the grid nodes xi , i = 0, 1, . . . , N , on the curve Sx1, obtained by
the method, are defined as follows:

xi = x1[s(ih)] , i = 0, . . . , N , h = 1/N .

Now, let the parametrization x2(t) specified by (1.17) be used in the problem
(1.18) with some weight function w2(t) for the generation of the same grid nodes on
Sx1. In this case, the function t1(ξ) for which

x2(t1(ih)) = x1[s(t1(ih))] = xi = x1(s(ih)) , i = 0, 1, . . . , n ,

must coincide with t[s(ξ)], where s(ξ) is the solution of (1.18), while t (s) is the
inverse of s(t). Therefore, the function t1(ξ) is a solution of the boundary value
problem

d

dξ

[dt1
dξ

ds

dt
w1[s(t1)]

]
= 0 , 0 < ξ < 1 ,

t1(0) = 0 , t1(1) = 1 .

Since the weight functions w1(s) and w2(t) for defining the same grid nodes on Sx1

by the model (1.18) through the parametrizations (1.16) and (1.17), respectively, are
not independent, they should be connected by the following relation:

w2(t) = w1[s(t)]ds
dt

. (1.19)

If this relation is not satisfied, the grid nodes obtained with the help of the solution
of (1.18) may vary for different parametrizations of Sx1.

It appears that if we take for the weight functions related to the parametrization
(1.16) and (1.17) the corresponding functionsw1(s) = √

gs andw2(t) = √
gt , where

gs = dx1
ds

· dx1
ds

and gt = dx2
dt

· dx2
dt

is the covariant metric tensor of Sx1 in the coordinate s and t , respectively, then the
Eq. (1.19) holds since there is validity to the obvious equation

gt = gs
(ds
dt

)2
.

The consideration given for the curvilinear curve also is actual for surfaces. As
well as in the one-dimensional case, the application of the elements of the metric
tensors of n-dimensional surfaces allows one to formulate grid equations which
produce the same grid nodes for different surface parametrizations.
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Realization of Grid Requirements

The notion of using an intermediate transformation to generate amesh is very helpful.
The idea is to choose a computational domainΞ n with a simpler geometry than that of
the physical domain Xn or the parametric domain Sn and then to find a transformation
x(ξ) between these domains which eliminates the need for a nonuniformmesh when
approximating the physical quantities. That is, if the computational area and the
transformation are well chosen, the transformed boundary value problem can be
accurately represented by a small number of equally spaced mesh points. Emphasis
is placed on a small number of points, because any transformed problem (provided
only that the transformation is nonsingular) may be accurately approximated with
a sufficiently fine, uniform mesh. In practice, there will be a trade-off between the
difficulty of finding the transformation and the number of uniformly spaced points
required to find the solution to a given accuracy.

The idea of using mappings to generate grids is extremely appropriate for finding
the conditions that the grid must satisfy for obtaining accurate solutions of partial
differential equations in the physical domain Xn, because these conditions can be
readily defined in terms of the transformations. For example, the grid requirements
described in Sect. 1.2.2 are readily formulated through the transformation concept.

Since a solution which is a linear function is computed accurately at the grid
points and is approximated accurately over the whole region, an attractive possible
method for generating structured grids is to find a transformation x(ξ) such that the
solution is linear in Ξ n. Though in practice, this requirement for the transformation
is not attained even theoretically (except in the case of strongly monotonic univariate
functions), it is useful in the sense of an ideal that the developers of structured grid
generation techniques should bear in mind. One modification of this requirement
which can be practically realized consists of the requirement of a local linearity of
the solution in Ξ n.

The requirements imposed on the grid and the cell size are realized by the con-
struction of a uniform grid in Ξ n and a smooth function x(ξ). The grid cells are not
folded if x(ξ) is a one-to-one mapping. Consistency with the geometry is satisfied
with a transformation x(ξ) that maps the boundary of Ξ n onto the boundary of Xn.

Grid concentration in zones of large variation of a function u(x) is accomplished
with amapping x(ξ)which provides variations of the function u[x(ξ)] in the domain
Ξ n that are not large.

Coordinate Grids

Among structured grids, coordinate grids inwhich the nodes and cell faces are defined
by the intersection of lines and surfaces of a coordinate system in Xn (Fig. 1.6 for
n = 3) are very popular in finite-difference methods. The range of values of this
system defines a computation region Ξ n in which the cells of the uniform grid
are rectangular n-dimensional parallelepipeds, and the coordinate values define the
function x(ξ) : Ξ n → Xn.

The simplest of such grids are the Cartesian grids obtained by the intersection
of the Cartesian coordinates in Xn. The cells of these grids are rectangular paral-
lelepipeds (rectangles in two dimensions). The use of Cartesian coordinates avoids
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the need to transform the physical equations. However, the nodes of the Cartesian
grid do not coincide with the curvilinear boundary, which leads to difficulties in
implementing the boundary conditions with second-order accuracy.

Boundary-Conforming Grids

An important subdivision of structured grids is the boundary-fitted or boundary-
conforming grids. These grids are obtained from one-to-one transformations x(ξ)

which map the boundary of the domain Ξ n onto the boundary of Xn (Figs. 1.7 and
1.8, for n = 2).

The most popular of these, for finite-difference methods, have turned out to be
the coordinate boundary-fitted grids whose points are formed by intersection of
the coordinate lines, while the boundary of Xn is composed of a finite number of
coordinate surfaces (lines in two dimensions) ξi = ξi0. Consequently, in this case,
the computation region Ξ n is a rectangular domain, the boundaries of which are
determined by (n − 1)-dimensional coordinate planes in Rn , and the uniform grid in
Ξ n is the Cartesian grid. Thus, the physical region is represented as a deformation
of a rectangular domain and the generated grid as a deformed lattice (Figs. 1.6 and
1.7).

The boundary-conforming grids give a good approximation of the boundary of
the region and are therefore suitable for the numerical solution of problems with
boundary singularities, such as those with boundary layers in which the solution
depends verymuch on the accuracy of the approximation of the boundary conditions.

The requirements imposed on boundary-conforming grids are naturally satisfied
with the coordinate transformations x(ξ).

The algorithm for the organization of the nodes of boundary-fitted coordinate
grids consists of the trivial identification of neighboring points by incrementing the
coordinate indices, while the cells are curvilinear hexahedrons. This kind of grid is
very suitable for algorithms with parallelization.

Its design makes it easy to increase or change the number of nodes as required
for multigrid methods or in order to estimate the convergence rate and error, and to
improve the accuracy of numerical methods for solving boundary value problems.

With boundary-conforming grids, there is no necessity to interpolate the boundary
conditions of the problem, and the boundary values of the region can be considered
as input data to the algorithm, so automatic codes for grid generation can be designed
for a wide class of regions and problems.

In the case of unsteady problems, the most direct way to set up a moving grid is
to do it via a coordinate transformation. These grids do not require a complicated
data structure, since they are obtained from uniform grids in simple fixed domains,
such as rectangular ones where the grid data structure remains intact.

Shape of Computational Domains

The idea of the structured approach is to substitute a complex physical domain Xn

with a simpler domainΞ n with the help of the parametrization x(ξ).The regionΞ n in
(1.12), which is called the computational or logical region, can be either rectangular
or of a different shape qualitatively matching the geometry of the physical domain
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Fig. 1.10 Computational domain adjusted to the physical domain

(Fig. 1.10); in particular, its shape can be triangular for n = 2 (Fig. 1.8) or tetrahedral
for n = 3. Using such parametrizations, a numerical solution of a partial differential
equation in a physical region of arbitrary shape can be carried out in a standard
computational domain, and codes can be developed that require only changes in the
input.

The cells of the uniform grid in the computational domain Ξ n can be rectangular
or of a different shape. Schematic illustrations of two-dimensional triangular and
quadrilateral grids are presented in Figs. 1.8 and 1.10, respectively. Note that regions
in the form of curvilinear triangles, such as that shown in Fig. 1.8, are more suitable
for gridding in the structured approach by triangular cells than by quadrilateral ones.

Unstructured Grids

Many field problems of interest involve very complex geometries that are not easily
amenable to the framework of the pure structured grid concept. Structured grids may
lack the required flexibility and robustness for handling domains with complicated
boundaries, or the grid cells may become too skewed and twisted, thus prohibiting an
efficient numerical solution. An unstructured grid concept is considered to be one of
the appropriate solutions to the problem of producing grids in regions with complex
shapes.

Unstructured grids have irregularly distributed nodes and their cells are not obliged
to have any one standard shape. Besides this, the connectivity of neighboring grid
cells is not subject to any restrictions; in particular, the cells can overlap or enclose
one another. Thus, unstructured grids provide the most flexible tool for the discrete
description of a geometry.

These grids are suitable for the discretization of domains with a complicated
shape, such as regions around aircraft surfaces or turbomachinery blade rows. They
also allow one to apply a natural approach to local adaptation, through either insertion
or removal of nodes. Cell refinement in an unstructured system can be accomplished
locally by dividing the cells in the appropriate zones into a few smaller cells. Unstruc-
tured grids also allow for excessive resolution to be removed by deleting grid cells
locally over regions in which the solution does not vary appreciably.
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However, the use of unstructured grids complicates the numerical algorithm
because of the inherent datamanagement problem,which demands a special program
to number and order the nodes, edges, faces, and cells of the grid, with extra memory
being required to store information about the connections between the cells of the
mesh. One further disadvantage of unstructured grids that causes excessive compu-
tational work is associated with increased numbers of cells, cell faces, and edges in
comparison with those for hexahedral meshes. For example, a tetrahedral mesh of N
points has roughly 6N cells, 12N faces, and 7N edges, while a mesh of hexahedra
has roughly N cells, 3N faces, and 3N edges. Furthermore, moving boundaries or
moving internal surfaces of physical domains are difficult to handlewith unstructured
grids. Besides this, linearized difference scheme operators on unstructured grids are
not usually band matrices, which makes it more difficult to use implicit schemes.
As a result, the numerical algorithms based on an unstructured grid topology are the
most costly in terms of operations per time step and memory per grid point.

Originally, unstructured grids were mainly used in the theory of elasticity and
plasticity, and in numerical algorithms based on finite-element methods. However,
the field of application of unstructured grids has now expanded considerably and
includes three-dimensional fluid dynamics problemswith shockwaves. Some impor-
tant aspects of the construction of unstructured grids are considered in Chap.12.

Block-Structured Grids

In the commonly applied block strategy, the region is divided without holes or over-
laps into a few contiguous subdomains, which may be considered as the cells of a
coarse, generally unstructured grid (see Fig. 1.11 for a tokamak-related domain). And
then, a separate structured grid is generated in each block. The union of these local
grids constitutes a mesh referred to as a block-structured or multi-block grid. Grids
of this kind can thus be considered as locally structured at the level of an individ-
ual block, but globally unstructured when viewed as a collection of blocks. Thus, a
common idea in the block-structured grid technique is the use of different structured
grids, or coordinate systems, in different regions, allowing the most appropriate grid
configuration to be used in each region.

Block-structuredgrids are considerablymoreflexible in handling complexgeome-
tries than structured grids. Since these grids retain the simple regular connectivity
pattern of a structured mesh on a local level, these block-structured grids maintain,
in nearly the same manner as structured grids, compatibility with efficient finite-
difference or finite-volume algorithms used to solve partial differential equations.
However, the generation of block-structured grids may take a fair amount of user
interaction and, therefore, requires the implementation of an automation technique
to lay out the block topology.

The main reasons for using multi-block grids rather than single-block grids are
that

(1) the geometry of the region is complicated, having amultiply connected boundary,
cuts, narrow protuberances, cavities, etc.;

http://dx.doi.org/10.1007/978-3-319-57846-0_12
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Fig. 1.11 Section of a Tokamak-Edge region (left), block-structure (right)

(2) the physical problem is heterogeneous relative to some of the physical quantities,
so that different mathematical models are required in different zones of the
domain to adequately describe the physical phenomena;

(3) the solution to the problem behaves non-uniformly: zones of smooth and rapid
variation of different scales may exist.

The blocks of locally structured grids in a three-dimensional region are commonly
homeomorphic to a three-dimensional cube, thus having the shape of a curvilinear
hexahedron. However, some domains can be more effectively partitioned with the
use of cylindrical blocks as well. Cylindrical blocks are commonly applied to the
numerical solution of problems in regions with holes and to the calculation of flows
past aircraft or aircraft components (wings, fuselages, etc.). For many problems, it is
easier to take into account the geometry of the region and the structure of the solution
by using cylindrical blocks. Also, the total number of blocks and sections might be
smaller than in a case in which only blocks homeomorphic to a cube are used.

Communication of Adjacent Coordinate Lines

The requirement of mutual positioning or “communication” of adjacent grid blocks
can also have a considerable influence on the construction of locally structured grids
and on the efficiency of the numerical calculations. The coordinate lines defining
the grid nodes of two adjacent blocks need not have points in common, and can
join smoothly or nonsmoothly (Fig. 1.12). If all adjacent grid blocks join smoothly,
interpolation is not required. If the coordinate lines do not join, then during the
calculation the solution values at the nodes of one block must be transferred to
those of the adjacent block in the neighborhood of their intersection. This is done by
interpolation or (in mechanics) using conservation laws.
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Fig. 1.12 Types of interface between contiguous blocks (a discontinuous; b, c nonsmooth; d
smooth)

The types of interaction between adjacent grid blocks are selected on the basis
of the features of the physical quantities in the region of their intersection. If the
gradient of the physical solution is not high in the vicinity of a boundary between
two adjacent blocks and interpolation can, therefore, be performed with high accu-
racy, the coordinate lines do not need to join. This greatly simplifies the algorithm
for constructing the grid in a block. If there are high gradients of the solution near
the intersection of two blocks, a smooth matching is usually performed between the
coordinate lines of the two blocks. This kind of conformity poses a serious diffi-
culty for structured mesh generation methods. Currently, the problem is overcome
through an algebraic technique using Hermitian interpolation, or through elliptic
methods involving a choice of control functions. A combination of Laplace and
Poisson equations, yielding equations of fourth or even sixth order, is also used for
this purpose.

Topology of the Grid

The correct choice of the topology in a block, depending on the geometry of the
computational region and the choice of the transformation of the region into the
block, has a considerable influence on the quality of the grid. There are two ways of
specifying the computational region for a block:

(1) as a complicated polyhedron which maintains the schematic form of the block
subdomain (Fig. 1.10);

(2) simply as a solid parallelepiped, triangle, trapezium (parallelogram, tetrahedral,
prism) (Figs. 1.14 and 1.15) or a parallelepiped, triangle, trapezium (parallelo-
gram, tetrahedral, prism) with cuts (Fig. 1.13).

With the first approach, the problem of constructing the coordinate transformation
x(ξ) is simplified, and this method is often used to generate a single-blocked grid
in a complicated domain. The second approach relies on a simplified geometry of
the computational domain, but requires sophisticated methods to derive suitable
transformations x(ξ).

In a blockwhich is homeomorphic to a cylinder with thickwalls, the grid topology
is determined by the topology of the two-dimensional grids in the transverse sections.
In applications, for sections of this kind, which are annular planes or surfaces with
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Fig. 1.13 H-type grid

Fig. 1.14 O-type grid

Fig. 1.15 C-type grid

a hole, wide use is made of three basic grid topologies: H , O and C (see Figs. 1.13,
1.14 and 1.15).

In H -type grids, the computational region is a square with an interior cut which
is opened by the construction of the coordinate transformation and mapped onto an
interior boundary of the region X2. The outer boundary of the square is mapped onto
the exterior of X2. The interior boundary has two points with singularities where one
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coordinate line splits. H -type grids are used, for instance, when calculating the flow
past thin bodies (aircraft wings, turbine blades, etc.).

In O-type grids, the computational region is a solid square. In this case, the system
of coordinates is obtained by bending the square, sticking two opposite sides together
and then deforming. The stuck sides determine the cut, called the fictive edge, in
the block. An example of an O-type grid is the nodes and cells of a polar system
of coordinates. The O-type grid can be constructed without singularities when the
boundary of the region is smooth. Grids of this kind are used when calculating the
flow past bulky aircraft components (fuselages, gondolas, etc.) and, in combination
with H -type grids, for multilayered block structures.

The computational region is also a solid square in a C-type grid, but the mapping
onto X2 involves the identification of some segments of one of its sides and then its
deformation. In the C-type grid, the coordinate lines of one family leave the outer
boundary, circle the inner boundary and return again to the outer boundary. There
is one point on the inner boundary which has the same type of singularity as in the
H -type grid. The C-type grids are commonly used in regions with holes and long
protuberances.

The O and C-type techniques, in fact, introduce artificial interior cuts in multiply
connected regions to generate single block-structured grids. The cuts are used to
join the disconnected components of the domain boundary in order to reduce their
number. Theoretically, this operation can allow one to generate a single coordinate
transformation in a multiply connected domain.

The choice of the grid topology in a block depends on the structure of the solu-
tion, the geometry of the domain, and, in the case of continuous or smooth grid-line
communication, on the topology of the grid in the adjacent block as well. For com-
plicated domains, such as those near aircraft surfaces or turbines with a large number
of blades, it is difficult to choose the grid topology of the blocks, because each com-
ponent of the system (wing, fuselage, etc.) has its own natural type of grid topology,
but these topologies are usually incompatible with each other.

Conditions Imposed on Grids in Blocks

Agrid in a blockmust satisfy the conditionswhich are required to obtain an acceptable
solution. In any specific case, these conditions are determined by features of the
computer, the methods of grid generation available, the topology and conditions
of interaction of the blocks, the numerical algorithms, and the type of data to be
obtained.

One of the main requirements imposed on the grid is its adaptation to the solution.
Multidimensional computations are likely to be very costly without the application
of adaptive grid techniques. The basic aim of adaptation is to enhance the efficiency
of numerical algorithms for solving physical problems through a special nonuni-
form distribution of grid nodes. The appropriate adaptive displacement of the nodes,
depending on the physical solution, can increase the accuracy and rate of convergence
and reduce oscillations and the interpolation error.

In addition to adaptation, the construction of locally structured grids often requires
the coordinate lines to cross the boundary of the domain or the surface in an orthog-
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onal or nearly orthogonal fashion. The orthogonality at the boundary can greatly
simplify the specification of boundary conditions. Also, a more accurate represen-
tation of algebraic models of turbulence, the equations of a boundary layer, and
parabolic Navier–Stokes equations is possible in this case. If for grids of O and
C-type, the coordinate lines are orthogonal to the boundary of each block and its
interior cuts, the global block-structured grid will be smooth. It is also desirable for
the coordinate lines to be orthogonal or nearly orthogonal inside the blocks. This will
improve the convergence of the difference algorithms, and the equations, if written
in orthogonal variables, will have a simpler form.

For unsteady gas-dynamics problems, some coordinates in the entire domain or
on the boundary are required to have Lagrange or nearly Lagrange properties. With
Lagrangian coordinates, the computational region remains fixed in time and simpler
expressions for the equations can be obtained in this case.

It is also important that the grid cells do not collapse, the changes in the steps are
not too abrupt, the lengths of the cell sides are not very different, and the cells are finer
in any domain of high gradient, large error, or slow convergence. Requirements of this
kind are taken into account by introducing quantitative and qualitative characteristics
of the grid, both with the help of coordinate transformations and by using the sizes
of cell edges, faces, angles, and volumes. The characteristics used include the devi-
ation from orthogonality, the Lagrange properties, the values of the transformation
Jacobian or cell volume, and the smoothness and adaptivity of the transformation.
For cell faces, the deviation from a parallelogram, rectangle, or square, as well as
the ratio of the area of the face to its perimeter, is also used.

Overset Grids

Block-structured grids require the partition of the domain into blocks that are
restricted so as to abut each other. Overset grids are exempt from this restriction.
With the overset concept, the blocks are allowed to overlap, which significantly sim-
plifies the problem of the selection of the blocks covering the physical region. In fact,
each block may be a subdomain which is associated only with a single geometry or
physical feature. The global grid is obtained as an assembly of structured grids which
are generated separately in each block. These structured grids are overset on each
other, with data communicated by interpolation in overlapping areas of the blocks
(Fig. 1.16).

Hybrid Grids

Hybrid numerical grids are meshes which are obtained by combining both structured
and unstructured grids. These meshes are widely used for the numerical analysis of
boundary value problems in regions with a complex geometry and with a solution
of complicated structure. They are formed by joining structured and unstructured
grids on different parts of the region or surface. Commonly, a structured grid is
generated about each chosen boundary segment. These structured grids are required
not to overlap. The remainder of the domain is filled with the cells of an unstructured
grid (Fig. 1.17). This construction is widely applied for the numerical solution of
problems with boundary layers.
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Fig. 1.16 Fragment of an
overset grid

Fig. 1.17 Fragment of a
hybrid grid

1.3 Methods for Grid Generation

The unique aspect of grid generation on general domains is that grid generation has
a high degree of freedom, i.e. mesh techniques are not obliged to have any specified
formulation, so any foundation may be suitable for this purpose if the grid generated
is acceptable.

The chief practical difficulty facing grid generation techniques is that of formulat-
ing satisfactory techniqueswhich can realize the user’s requirements.Grid generation
techniques should develop methods that can help in handling problems with multi-
ple variables, each varying over many orders of magnitude. These methods should
be capable of generating grids which are locally compressed by large factors when
compared with uniform grids.

The methods should incorporate specific control tools, with simple and clear
relationships between these control tools and characteristics of the grid such as mesh
spacing, skewness, smoothness, and aspect ratio, in order to provide a reliable way
to influence the efficiency of the computation. And finally, the methods should be
computationally efficient and easy to code.

A number of techniques for grid generation have been developed. Every method
has its strengths and its weaknesses. Therefore, there is also the question of how to
choose the most efficient method for the solution of any specific problem, taking into
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Fig. 1.18 Process for generating prismatic grid

account the geometrical complexity, the computing cost for generating the grid, the
grid structure, and other factors.

The goal of the development of these methods is to provide effective and accept-
able grid generation systems.

1.3.1 Mapping Methods

The structured grids are typically generated through a mapping approach. In this
subsection, the main mapping methods generally used to create structured grids are
briefly described. The basic idea common to all structured grid generation methods
consists of meshing a canonical (computational) domain Ξ n of a simple shape and
mapping thismesh to a physical domain Xn or to a physical geometry Sxn , represented
by Eq. (1.12).

Themost efficient structured grids are boundary-conforminggrids. The generation
of these grids can be performed through a number of approaches and techniques.
Many of these methods are specifically oriented to the generation of grids for the
finite-difference method.

A boundary-fitted coordinate grid in the region Xn is commonly generated first on
the boundary of Xn and then successively extended from the boundary to the interior
of Xn (Fig. 1.18) This process is analogous to the interpolation of a function from a
boundary or to the solution of a differential boundary value problem. On this basis,
three basic groups of mapping methods of grid generation have been developed:
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(1) algebraicmethods, which use various forms of interpolation or special functions;
(2) differential methods, based mainly on the solution of elliptic, parabolic, and

hyperbolic equations in a selected transformed region;
(3) variational methods, based on optimization of grid quality properties.

Algebraic Methods

In the algebraic approach, the intermediate transformation s(ξ) which extends the
boundary mapping ∂s(ξ) : ∂Ξ n → ∂Sn found in the previous step is commonly
computed through the formulas of transfinite interpolation. There are two types of
transfinite interpolations popular with grid generation: Lagrange and Hermite.

In particular, the three-dimensional Lagrange intermediate transformation s(ξ)

between the interior of the unit cube 0 ≤ ξi ≤ 1, i = 1, 2, 3, and the parametric
domain S3 is defined by the following recursive formula:

F1(ξ) = α1
0(ξ

1)s(0, ξ2, ξ3) + α1
1(ξ

1)s(1, ξ2, ξ3) ,

F2(ξ) = F1(ξ) + α2
0(ξ

2)s(ξ1, 0, ξ3) + α2
1(ξ

2)s(ξ1, 1, ξ3) ,

s(ξ) = F2(ξ) + α3
0(ξ

3)s(ξ1, ξ2, 0) + α3
1(ξ

3)s(ξ1, ξ2, 1) ,

where the univariate functions αi
k(ξ), i = 1, 2, 3, k = 0, 1, referred to as blending

functions, are subject to the relations of consistency

αi
0(0) = 1 , αi

0(1) = 0 ,

αi
1(0) = 0 , αi

1(1) = 1 .

Analogous formulas are held for the Hermite interpolation that matches at the
points of the boundary of Ξ n the values of both the function s(ξ) and its first deriv-
atives in the directions normal to the boundary segments. A detailed review of the
Lagrange and Hermite techniques for generating algebraic grids is presented in the
monograph of Liseikin (1999).

Algebraic methods are simple; they enable the grid to be generated rapidly and the
spacing and slope of the coordinate lines to be controlled by the tangential derivatives
at the boundary points and blending coefficients in the transfinite interpolation for-
mulas. However, in regions of complicated shape, the coordinate surfaces obtained
through algebraic methods can become degenerate or the cells can overlap or cross
the boundary. Moreover, they basically preserve the features of the boundary sur-
faces, in particular, discontinuties. Besides this, the algebraic methods of transfinite
interpolation do not guarantee the independence of grid nodes displacement on para-
metrizations of a physical geometry.

Algebraic approaches are commonly used to generate grids in regionswith smooth
boundaries that are not highly deformed, or as an initial approximation in order to
start the iterative process of an elliptic grid solver.
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The construction of intermediate transformations through the formulas of transfi-
nite interpolation was originally formulated by Gordon and Hall (1973) and Gordon
and Thiel (1982). The Hermite interpolation was presented by Smith (1982).

The multisurface method which allows for the specification of the intermediate
transformation s(ξ) at the points of some interior sections of the physical domain was
described by Eiseman (1980). The blending functions were implicitly derived from
global and/or local interpolants which result from an expression for the tangential
derivative spanning between the exterior boundary surfaces. A two-boundary tech-
nique was introduced by Smith (1981). It is based on the description of two opposite
boundary surfaces, tangential derivatives on the boundary surfaces which are used
to compute normal derivatives, and Hermite cubic blending functions.

The construction of some special blending functions aimed at grid clustering at
the boundaries of physical geometries was performed by Eriksson (1982), Smith and
Eriksson (1987), and Liseikin (1998a, b). A detailed description of various forms
of blending functions was presented in monographs by Thompson et al. (1985) and
Liseikin (1999).

Differential Methods

For gridding geometries with arbitrary boundaries, differential methods based on
the solution of elliptic and parabolic equations are commonly used. Such equations
generate smooth grids, allow for full specification of grid nodes on the boundary of
a physical geometry, do not propagate boundary singularities into its interior, have
less danger of producing cell overlapping, and can be solved efficiently using many
well-developed codes. The use of parabolic and elliptic systems enables orthogonal
and clustering coordinate lines to be constructed, while, inmany cases, themaximum
principle, which is typical for these systems, ensures that the intermediate transfor-
mations are nondegenerate. Elliptic equations are also used to smooth algebraic or
unstructured grids.

Elliptic Equations

Originally, the most popular elliptic equations with differential grid approaches were
the generalized Poisson equations formulated with respect to the components ξi (s)
of the transformation

ξ(s) : Sn → Ξ n (1.20)

that is the inverse of the intermediate transformation (1.13). The equations for gener-
ating grids of the physical geometry Sxn include coefficients defined by the elements

gxsi j = xsi · xs j , i, j = 1, . . . , n ,

of the covariant metric tensor of Sxn in the parametric coordinates s1, . . . , sn . A
general form of these generalized Poisson equations is as follows:

ΔB[ξi ] = Pi (s) , i = 1, . . . , n . (1.21)
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Here, ΔB is the operator of Beltrami defined at a function f (s) by the formula

ΔB[ f ] = 1√
gxs

n∑

j=1

∂

∂s j

(√
gxs

n∑

k=1

g jk
sx

∂ f (s)
∂sk

)
, (1.22)

where gxs = det{gxsi j }, while g jk
sx is the ( jk)th element of the contravariant metric

tensor of Sxn in the parametric coordinates s1, . . . , sn . The elements gi jsx , i, j =
1, . . . , n, comprise a matrix that is the inverse of the matrix formed by the elements
gxsi j , i, j = 1, . . . , n. The terms Pi (s) in (1.21) referred to as source terms or control
functions are introduced to control the grid behavior.

A particular form of (1.21) for generating grids in a domain Xn ⊂ Rn , Xn ≡ Sn

is given by the Poisson equations

n∑

j=1

∂2ξi

∂x j∂x j
= Pi (x) , i = 1, . . . , n . (1.23)

The intermediate transformation s(ξ) = [s1(ξ), . . . , sn(ξ)] for generating grids
on a physical geometry Sxn is found from the solution to the Dirichlet boundary value
problem for the transformed equations obtained from (1.21) by changing mutually
dependent and independent variables. These equations are of the form

n∑

i, j=1

gi jξx
∂2sk

∂ξi∂ξ j
= ΔB[sk] −

n∑

i=1

Pi ∂s
k

∂ξi
, k = 1, . . . , n , (1.24)

where gi jξx is the (i j)th element of the contravariant metric tensor of Sxn in the grid
coordinates ξ1, . . . , ξn .

Since 1991 a new elliptic approach for controlling grid properties has been devel-
oped. By this approach, the task of grid adaptation, instead of source terms Pi (s) in
(1.21), is put on monitor metrics in Beltrami equations. Namely, as an elliptic model,
the Beltrami equations

ΔB[ξi ] = 0, i = 1, . . . , n , (1.25)

are used in a monitor metric, where the operator ΔB is of the form (1.22), but the
contravariant metric elements are not obliged to be the elements of the physical
geometry Sxn . The Eq. (1.25) are the Euler-Lagrange equations for the functional of
energy. The solutions of these equations are referred to as harmonic transformations.

Hyperbolic Equations

The most well-known hyperbolic equations are the first order partial differential
equations of the Cauchy–Riemann type. In practice, two-dimensional hyperbolic
equations with respect to the intermediate transformation s(ξ) have the following
form:
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Asξ1 + Bsξ2 = f , (1.26)

where A and B are somematrices. These equations are simpler then nonlinear elliptic
Eq. (1.25) and enable marching methods to be used and an orthogonal system of
coordinates to be constructed, while grid adaptation can be performed using the
coefficients of the equations. However, methods based on the solution of hyperbolic
equations are not alwaysmathematically correct and they are not applicable to regions
in which the complete boundary node distribution is strictly specified. Therefore,
hyperbolic methods are mainly used for simple regions which have several lateral
faces for which no special nodal distribution is required. The marching procedure
for the solution of hyperbolic equations allows one to decompose only the boundary
geometry in such a way that neighboring boundary grids overlap.

Parabolic Equations

The parabolic grid approach lies between the elliptic and hyperbolic ones.
The two-dimensional parabolic grid generation equation where the marching

direction is ξ2 may be written in the following form:

sξ2 = A1sξ1ξ1 − B1s + P , (1.27)

where A1 and B1 are matrix coefficients, and P is a source vector-valued function
that contains the information about the outer boundary configuration. Analogously,
the three-dimensional parabolic equations may be written as follows:

sξ3 =
2∑

i=1

Ai sξi ξi − B1s + P . (1.28)

The generation of grids based on a parabolic scheme approximating the inverted
Poisson equationswas first proposed for two-dimensional grids byNakamura (1982).
A variation of the method of Nakamura was developed by Noack (1985) for use
in space-marching solutions to the Euler equations. Extensions of this parabolic
technique to generate solution adaptive grids were performed by Edwards (1985)
and Noack and Anderson (1990).

Hybrid Grid Generation Scheme

The combination of the hyperbolic and parabolic schemes into a single scheme is
attractive because it can use the advantages of both schemes. These advantages are:
first, it is a noniterative scheme; second, the orthogonality of the grid near the initial
boundary is well controlled; and third, the outer boundary can be prescribed.

A hybrid grid generation scheme in two dimensions for the particular marching
direction ξ2 can be derived by combining hyperbolic and parabolic equations, in
particular, as the sum of Eq. (1.26) multiplied by B−1 and (1.27) with weights α and
1 − α, respectively:
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α(B−1Asξ1 + sξ2) + (1 − α)(sξ2 − A1sξ1ξ1 + B1s)

= αB−1 f + (1 − α)P . (1.29)

The parameter α can be changed as desired to control the proportions of the two
methods. If α approaches 1, the system (1.29) becomes the hyperbolic grid system,
while if α approaches zero, it becomes the parabolic grid system. In practical appli-
cations, α is set to 1, when the grid generation starts from the initial boundary curve
ξ2 = 0, but it gradually decreases and approaches zero when the grid reaches the
outer boundary.

An analogous combination can be used to generate three-dimensional grids
through a hybrid of parabolic and hyperbolic equations.

A combination of hyperbolic and parabolic schemes that uses the advantages of
the two but eliminates the drawbacks of each was proposed by Nakamura and Suzuki
(1987).

Variational Methods

Variational methods are widely used to generate grids which are required to satisfy
several critical properties, e.g., mesh concentration in areas needing high resolution
of the physical solution, mesh alignment to some prescribed vector fields, mesh non-
degeneracy, smoothness, uniformity, and near-orthogonality that cannot be realized
simultaneously with algebraic or differential techniques. Variational methods take
into account the conditions imposed on the grid through the construction of special
functionals defined on a set of smooth or discrete transformations. A compromise
grid, with properties close to those required, is obtained with the optimum transfor-
mation for a combination of these functionals.

The major task of the variational approach to grid generation is to describe all
basic measures of the desired grid features in an appropriate functional form and to
formulate a combined functional that provides a well-posed minimization problem.
These functionals can providemathematical feedback in an automatic grid procedure.

Commonly, in the calculus of variations, any functional over some admissible set
of functions f : Dn → Rm is defined by the integral

I [ f ] =
∫

Dn

G( f )dV , (1.30)

where Dn is a boundedn-dimensional domain, andG( f ) is someoperator specifying,
for each vector-valued function f : Dn → Rm, a scalar function G( f ) : Dn → R.

The admissible set is composed of those functions f which satisfy a prescribed
boundary condition

f |∂Dn= φ

and for which the integral (1.30) is limited.
In the application of the calculus of variations to grid generation, this set of admis-

sible functions is a set of sufficiently smooth invertible coordinate transformations
(1.20) between the parametric domain Sn and the computational domain Ξ n or, vice
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versa, a set of sufficiently smooth invertible intermediate transformations (1.13) from
the computational domain Ξ n onto the parametric region Sn . The integral (1.30) is
defined over the domain Sn or Ξ n, respectively.

In grid generation applications, the operator G is commonly chosen as a combi-
nation of weighted local grid characteristics which are to be optimized. The choice
depends, of course, on what is expected from the grid. Some forms of the weight
functions and both local and integral grid characteristics were formulated in a mono-
graph of Liseikin (1999) through the transformations (1.13) or (1.20) and their first
and second derivatives. Therefore, for the purpose of grid generation, it can be sup-
posed that the most widely acceptable formula for the operator G in (1.30) is one
which is derived from some expressions containing the first and second derivatives
of the coordinate transformations. Thus, it is generally assumed that the functional
(1.30), depending on the transformation ξ(s), is of the form

I [ξ] =
∫

Sn
G(s, ξ, ξsi , ξsi s j )ds ,

where G is a smooth function of its variables.
Analogously, the functional (1.30) formulated over a set of invertible intermediate

transformations s(ξ) has the form

I [s] =
∫

Ξ n

G1(ξ, s, sξi , sξi ξ j )dξ .

In onepopular approach, the functional formulatedwith respect to the intermediate
mapping s(ξ) has the following form:

I [s] =
∫

Ξ n

(
√
gmξ

n∑

i, j=1

gi jξmg
sξ
i j )dξ , (1.31)

where gi jξm , i, j = 1, . . . , n, are the elements of the contravariant tensor in the logi-

cal coordinates ξ1, . . . , ξn of a monitor metric gmξ
i j imposed on Ξ n , gmξ = det{gmξ

i j },
while gsξi j is the covariant Euclideanmetric tensor of Sn in the coordinates ξ1, . . . , ξn .
This functional was proposed for n = 2 by Godunov and Prokopov (1967) for gener-
ating conformal and quasi-conformal grids in S2. In their consideration, the elements
gmξ
i j , i, j = 1, 2, of themonitor metric should be dependent on ξ and some, in general

vector-valued parameter r. Belinsky et al. (1975) andGodunov et al. (1990) discussed
the same two-dimensional functional of the form (1.31) with the following monitor
metric introduced in Ξ 2:

gmξ
i j =

(
e2p(ξ) ep(ξ)+q(ξ) cos[α(ξ) − β(ξ)]

ep(ξ)+q(ξ) cos[α(ξ) − β(ξ)] e2q(ξ)

)
,

where the functions p(ξ), q(ξ), α(ξ), and β(ξ) are subject to the restrictions
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p(ξ) − q(ξ) = ln
√
gsξ11/g

sξ
22 ,

α(ξ) − β(ξ) = arccos
(
gsξ12/

√
gsξ11g

sξ
22

)
.

The grid approach based on the minimization of the functional (1.31) for n = 2
was also used by Chumakov and Chumakov (1998) for generating quasi-isometric
grids by introducing in Ξ 2 a monitor metric borrowed from the metric of a surface
of a constant Gauss curvature.

Note the functional (1.31) is twice the energy functional of the function s(ξ) :
Ξ n → Sn whereΞ n is endowed by the monitor metric gmξ

i j , while S
n has the Euclid-

ean metric.
The twice energy functional of the function ξ(s) : Sn → Ξ n between Sn with an

imposedmonitormetric gsi j andΞ n with the Euclideanmetric for generating adaptive
grids was considered by Dvinsky (1991) and Liseikin (1991a). This functional has
the following form:

I [ξ] =
∫

Sn

(√
gs

n∑

i, j,k=1

gi js
∂ξk

∂si
∂ξk

∂s j

)
ds , (1.32)

where gs = det{gsi j }, gi js , i, j = 1, . . . , n, are the elements of the contravariant mon-
itor metric tensor introduced in Sn . The Euler-Lagrange equations for the functional
(1.32) are equivalent to the Beltrami equations (1.24).

The functionals are used to control and realize various grid properties. This is
carried out by combining these functionals with weights in the form

I =
∑

i

λi Ii , i = 1, · · · , k . (1.33)

Here,λi , i = 1, · · · , k, are specified parameterswhich determine the individual con-
tribution of each functional Ii to I. The ranges of the parameters λi controlling the
relative contributions of the functionals can be defined readily when the functionals
Ii are dimensionally homogeneous. However, if they are dimensionally inhomoge-
neous, then the selection of a suitable value for λi presents some difficulties. A
common rule for selecting the parameters λi involves making each component λi Ii
in (1.33) of a similar scale by using a dimensional analysis.

The most common practice in forming the combination (1.33) uses both the func-
tionals of adaptation to the physical solution and the functionals of grid regularization.
The first reason for using such a strategy is connected to the fact that the process of
adaptation can excessively distort the form of the grid cells. The distortion can be
prevented by functionals which impede cell deformation. These functionals are ones
which control grid skewness, smoothness, and conformality. The second reason for
using the regularization functionals is connected to the natural requirement for the
well-posedness of the grid generation process. This requirement is achieved through
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the utilization of convex functionals in variational grid generators. The convex func-
tionals are represented by energy-type functionals (1.32) producing harmonic maps
and by the functionals of conformality.

The various functionals provide broad opportunities to control and realize the
required grid properties, though problems still remain; these require more detailed
studies of all properties of the functionals. The knowledge of these properties will
allow one to utilize the functionals as efficient tools to generate high-quality grids.

1.3.2 Methods for Unstructured Grids

Unstructured grids can be obtained with cells of arbitrary shape, but are generally
composed of tetrahedrons (triangles in two dimensions). There are, fundamentally,
three approaches to the generation of unstructured grids: quadtree-octree basedmeth-
ods, Delaunay procedures, and advancing-front techniques.

Octree Approach

In the octree approach, the region is first covered by a regular Cartesian grid of cubic
cells (squares in two dimensions). Then, the cubes containing segments of the domain
surface are recursively subdivided into eight cubes (four squares in two dimensions)
until the desired resolution is reached. The cells intersecting the body surfaces are
formed into irregular polygonal cells. The grid generated by this octree approach is
not considered to be the final one, but serves to simplify the geometry of the final
grid, which is commonly composed of tetrahedral (or triangular) cells built from the
polygonal cells and the remaining cubes.

The main drawback of the octree approach is the inability to match a prescribed
boundary surface grid, so the grid on the surface is not constructed beforehand as
desired but rather is derived from the irregular volume cells that intersect the surface.
Another drawback of the grid is its rapid variation in cell size near the boundary.
In addition, since each surface cell is generated by the intersection of a hexahedron
with the boundary, there arise problems in controlling the variation of the surface
cell size and shape.

Delaunay Approach

The Delaunay approach connects neighboring points (of some previously specified
set of nodes in the region) to form tetrahedral cells in such away that the circumsphere
through the four vertices of a tetrahedral cell does not contain any other point. The
points can be generated in twoways: they can be defined at the start by some technique
or they can be inserted within the tetrahedra as they are created, starting with very
coarse elements connecting boundary points and continuing until the element size
criteria are satisfied. In the latter case, a new Delaunay triangulation is constructed
at every step, usually using Watson’s and Rebay’s incremental algorithms.

The major drawback of the Delaunay approach is that it requires the insertion of
additional boundary nodes, since the boundary cells may not become the boundary
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segments of the Delaunay volume cells. Either the Delaunay criterion must be mit-
igated near the boundaries or boundary points must be added as necessary to avert
breakthrough of the boundary.

Advancing-Front Techniques

In these techniques, the grid is generated by building cells progressively one at a time
and marching from the boundary into the volume by successively connecting new
points to points on the front until all previously unmeshed space is filled with grid
cells. Some provision must be made to keep the marching front from intersecting.

Finding suitable vertices for the new cells is a very difficult task in this approach,
since significant searches must be made to adjust the new cells to the existing ele-
ments. Commonly, the marching directions for the advancing front must take into
account the surface normals as well as the adjacent surface points. A particular dif-
ficulty of this method occurs in the closing stage of the procedure, when the front
folds over itself and the final vertices of the empty space are replaced by tetrahedra.
Serious attention must also be paid to the marching step size, depending on the size
of the front faces as well as the shape of the unfilled domain that is left.

Unstructured grids, after they have been completed, are generally smoothed by a
Laplacian-type or other smoother to enhance their qualitative properties.

A major drawback remaining for unstructured techniques is the increased compu-
tational cost of the numerical solution of partial differential equations in comparison
with a solution on structured grids.

1.4 Big Codes

A “big grid generation code” is an effective system for generating structured and
unstructured grids, aswell as hybrid and andoverset combinations, in general regions.
Such systems are also are referred to as “comprehensive grid generation codes”.

The development of such codes is a considerable problem in its own right. The
present comprehensive grid generation codes developed for the solution of multidi-
mensional problems have to incorporate combinations of block-structured, hybrid,
and overset grid methods, and they are still rather cumbersome, rely on interac-
tive tools, and take too many man-hours to generate a complicated grid. Efforts to
increase the efficiency and productivity of these codes are mainly being conducted
in two interconnected research areas.

The first, the “array area”, is concerned with the automation of those routine
processes of grid generation which presently require interactive tools and a great
deal of human time and effort. Some of these are:

(1) the decomposition of a domain into a set of contiguous or ovelapping blocks con-
sistent with the distinctive features of the domain geometry, the singularities of
the physical medium and the sought-for solution, and the computer architecture;
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(2) numbering the set of blocks, their faces, and their edges with a connectivity
hierarchy and determining the order in which the grids are constructed in the
blocks and their boundaries;

(3) choosing the grid topology and the requirements placed on the qualitative and
quantitative characteristics of the internal and boundary grids and on their com-
munication between the blocks;

(4) selecting appropriate methods to satisfy the requirements put on the grid in
accordance with a particular geometry and solution;

(5) assessment and enhancement of grid quality.

The second, more traditional, “methods area” deals with developing new, more
reliable, andmore elaboratemethods for generating, adapting, and smoothing grids in
domains in a unified manner, irrespective of the geometry of the domain or surface
and of the qualitative and quantitative characteristics the grids should possess, so
that these methods, when incorporated into the comprehensive codes, should ease
the bottlenecks of the array area, in particular, by enabling a considerable reduction
of the number of blocks required.

There are many demands that are made on the codes. The code must be effi-
cient, expandable, portable, and configurable. It should incorporate state-of-the-art
techniques for generating grids. Besides this, the code should include pre- and post-
processing tools in order to start from prescribed data of the geometry and end with
the final generation of the grid in the proper format for use with the specified par-
tial differential codes. The code should have the ability to be updated through the
addition of new features and the removal of obsolete ones.

The overall purpose of the development of these comprehensive grid generation
codes is to create a system which enables one to generate grids in a “black box”
mode without or with only a slight human interaction. Currently, however, the user
has to take an active role and be fully occupied in the grid generation process. The
user has to make conclusions about qualitative properties of the grid and undertake
corrective measures when necessary. The present codes include significant measures
to increase the productivity of such human activity, namely, graphical interactive
systems and user-friendly interfaces. Efforts to eliminate the “human component”
of the codes are directed towards developing new techniques, in particular, new grid
generation methods and automated block decomposition techniques.

1.4.1 Interactive Systems

An important element of the current comprehensive grid generation codes is an
interactive system which includes extensive graphical tools that display all elements
of the grid generation process and graphical feedback to monitor progress in grid
efficiency and to verify, as well as to correct, errors and faults easily. All existing
comprehensive codes possess well-developed interactive systems which are used, in
particular, to define grid boundaries and surface normals on block faces; to generate
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multiblock topologies and domain decompositions; to specify connectivity data, grid
density, and spatial distribution in the normal direction at the boundaries; and to
provide attraction to chosen points or lines. The graphical systems of the codes
provide a display of data and domain and surface elements with different colors and
markers; a representation of surface grids and their boundaries by specific colors;
a visual representation of the qualitative and quantitative properties of the grid in
terms of cell skewness, aspect ratio, surface and volume Jacobian checks, estimates
of truncation errors, and measures of grid continuity across blocks; and views of
surface and block grids at various levels of coarseness.

These capabilities allow for any portion of a multiple-block grid to be displayed in
amanner that is quickly discernible to the user.All functions of the generation process
are invoked through interactive screens andmenus. In an interactive environment, the
user can continually examine and correct the surfaces and grids as they are developed.

1.4.2 New Techniques

The present codes are designed in a modular fashion to facilitate both the addition of
new techniques in a straightforwardmanner as they become available and the removal
of obsolete ones. Although most of the methods included in the codes have provided
appropriate results for specific applications, they lack the desired generality, flexi-
bility, efficiency, automation, and robustness. Efforts to create new techniques are
directed towards the automation of domain decomposition, interactive and automated
generation of block connectivity, the development of new, more effective methods
for generating grids within the blocks, interactive local adaptive adjustment of the
control functions in elliptic equations, the optimal specification and modification of
the distribution functions in hyperbolic and advancing-front grid generators, interac-
tive local quality enhancement of the grid, and interactive and generally applicable
interpolation techniques to transfer data between the separate component grids.

Domain Decomposition

To perform domain zoning well, some expertise is required: the user must have
experience with composite zonal grid methods, familiarity with the grid generation
capabilities available, knowledge of the behavior of the zonal technique to be used,
knowledge of the physical behavior, some expectation of the important physical
features of the problem to be solved, and criteria for evaluating the zonings. To
perform zoning quickly, the user must have both expertise and interactive, graphical,
easy-to-use tools.

However, even with the interactive techniques available, the generation of the
block structure is the most difficult and time-consuming task in the grid generation
process. Therefore, any automation of domain decomposition is greatly desirable.

The first attempts to overcome the problem of domain decomposition were pre-
sented in the 1980s. The proposed approaches laid a foundation for an automated
approach to 3-D domain decomposition which relies mainly on observation of how
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experts perform the task and on a knowledge-based programming approach, typi-
cally described by means of examples. The user first represents all components of
the domain schematically as rectangular sets of blocks and then the codes develop a
schematic block structure.

New Methods

Recent results in the field of grid generation methods have largely been related to the
application of harmonic function theory to adaptive grid generation. The suggestion
to use harmonic functions for generating adaptive gridswasmade byDvinsky (1991).
Adaptive grids can be generated by mapping the reference grid into the domain with
a coordinate transformation which is inverse to a harmonic vector function (in terms
of Riemannian manifolds). Adaptation is performed through a specified adaptive
metric in the domain which converts it into a Riemannian manifold. Each harmonic
function minimizes some functional of the total energy, and hence it can be found by
the numerical solution either of a variational problem or of a boundary value problem
for a system of Euler–Lagrange equations.

One version of the harmonic approach, proposed by Liseikin (1991a, 2004), uses
a method of generating smooth hypersurface grids. Specifically, the adaptive grid
with node clustering in the zones of large values of a vector function is obtained as
a projection of a quasiuniform grid from a monitor surface generated as a surface of
the function values over the physical space. The vector function can be the physical
solution or a combination of its components or derivatives, or it can be any other
quantity that suitably monitors the behavior of the solution. A generalization of
this approach for generating grids with other properties was performed by Liseikin
(2004, 2007). The method developed allows the designer to merge the two tasks of
surface grid generation and volume grid generation into one task while developing a
comprehensive grid generation code. It also eases the array bottlenecks of the codes
by allowing a decrease in the number of blocks required for the decomposition of a
complicated region.

1.5 Comments

Detailed descriptions of themost popular structuredmethods and their theoretical and
logical justifications and numerical implementations were given in the monographs
by Thompson et al. (1985), Knupp and Steinberg (1993), and Liseikin (1999, 2010).
Particular issues concerned with the generation of one-dimensional moving grids
for gas-dynamics problems, the stretching technique for the numerical solution of
singularly perturbed equations, and nonstationary grid techniques were considered
in the books by Alalykin et al. (1970), Liseikin and Petrenko (1989), Liseikin (2001),
and Zegeling (1993), respectively.

A considerable number of general structured grid generation methods were
reviewed in surveys by Thompson et al. (1982), Thompson (1984a, 1996), Eiseman
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(1985), Liseikin (1991b), Thompson and Weatherill (1993), and in the handbook on
grid generation edited by Thompson et al. (1999).

Adaptive structured grid methods were first surveyed by Anderson (1983) and
Thompson (1984b, 1985). Then, a series of surveys on general adaptive methods
was presented by Eiseman (1987), Hawken et al. (1991), Liseikin (1996), and Baker
(1997). Adaptive techniques for moving grids were described by Hedstrom and
Rodrigue (1982) and Zegeling (1993).

A description of the types of mesh topology and the singular points of the grids
around wing-body shapes was carried out by Eriksson (1982).

Methods for unstructured grids were reviewed by Thacker (1980), Ho-Le, (1988),
Shephard et al. (1988), Baker (1995, 1997), Field (1995), Carey (1997), George and
Borouchaki (1998), Krugljakova et al. (1998), Owen (1998), Frey andGeorge (2008),
and Lo (2015). An exhaustive survey of both structured and unstructured techniques
has been given by Thompson and Weatherill (1993), and Thompson (1996).

Themultiblock strategy for generating grids around complicated shapes was orig-
inally proposed by Lee et al. (1980); however, the idea of using different coordinates
in different subregions of the domain can be traced back to Thoman and Szew-
czyk (1969). The overset grid approach was introduced by Atta and Vadyak (1982),
Berger and Oliger (1983), Benek et al. (1983), Miki and Takagi (1984), and Benek
et al. (1985). The first attempts to overcome the problem of domain decomposition
were discussed by Andrews (1988), Georgala and Shaw (1989), Allwright (1989),
and Vogel (1990). The concept of blocks with a continuous alignment of grid lines
across adjacent block boundaries was described by Weatherill and Forsey (1984)
and Thompson (1987b). Thompson (1982) and Eriksson (1983) applied the concept
of continuous line slope, while a discontinuity in slope was discussed by Rubbert
and Lee (1982). A shape recognition technique based on an analysis of a physical
domain and an interactive construction of a computational domain with a similar
geometry was proposed by Takahashi and Shimizu (1991) and extended by Chiba
et al. (1998). The embedding technique was considered by Albone and Joyce (1990)
and Albone (1992). Some of the first applications of block-structured grids to the
numerical solution of three-dimensional fluid-flow problems in realistic configura-
tions were demonstrated by Rizk and Ben-Shmuel (1985), Sorenson (1986), Atta
et al. (1987), and Belk and Whitefield (1987).

The first comprehensive grid codes were described by Holcomb (1987), Thomp-
son (1987a), Thomas et al. (1990), Widhopf et al. (1990), and Steinbrenner et al.
(1990). These codes have stimulated the development of better ones, reviewed by
Thompson (1996). This paper also describes the current domain decomposition tech-
niques developed by Shaw and Weatherill (1992), Stewart (1992), Dannenhoffer
(1995), Wulf and Akrag (1995), Schonfeld et al. (1995), and Kim and Eberhardt
(1995).

Since the time that these pioneering codes appeared, many codes more advanced
and sophisticated have been developed by researchers. Exhaustive surveys of the
most popular recent codes can be found at the meshing pages http://www.andrew.
cmu.edu/user/sowen/softsurv.html and http://www-users.informatik.rwth-aachen.
de/~roberts/software.html. In particular, very useful descriptions of mesh gener-

http://www.andrew.cmu.edu/user/sowen/softsurv.html
http://www.andrew.cmu.edu/user/sowen/softsurv.html
http://www-users.informatik.rwth-aachen.de/~roberts/software.html
http://www-users.informatik.rwth-aachen.de/~roberts/software.html
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ation codes and codes with parallel mesh generation techniques are given in the
books of Frey and George (2008), Ivanov (2008), and Lo (2015). An informal survey
of software vendors, research labs, and educational institutions that develop grid
generation codes was presented by Owen (1998).
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Chapter 2
Coordinate Transformations

2.1 Introduction

Partial differential equations in the physical domain Xn can be solved on a numerical
grid obtained by mapping a reference grid in the logical region Ξ n into Xn with a
coordinate transformation x(ξ) : Ξ n → Xn . The mapping approach also gives an
alternative way to obtain a numerical solution to a partial differential equation, by
solving the transformed equation with respect to the new independent variables ξi on
the reference grid in the logical domain Ξ n . Some notions and relations concerning
the coordinate transformations yielding grids are discussed in this chapter. These
notions and relations are used to represent some conservation-law equations in the
new logical coordinates in a convenient form. The relations presented will be used
in Chap.3 to formulate various grid properties.

Conservation-law equations in curvilinear coordinates are typically deduced from
the equations in Cartesian coordinates through the classical formulas of tensor cal-
culus, through procedures which include the substitution of tensor derivatives for
ordinary derivatives. The formulation and evaluation of the tensor derivatives is
rather difficult, and they retain some elements of mystery. However, these deriva-
tives are based on specific transformations of tensors,modeling in the equations some
dependent variables, e.g. the components of a fluid velocity vector, which after the
transformation have a clear interpretation in terms of the contravariant components
of the vector. With this concept, the conservation-law equations are readily written
out in this chapter without application to the tensor derivatives, but utilizing instead
only some specific transformations of the dependent variables, ordinary derivatives,
and one basic identity of coordinate transformations derived from the formula for
differentiation of the Jacobian.

For generality, the transformations of the coordinates are mainly considered for
arbitrary n-dimensional domains, though in practical applications, the dimension n
equals 1, 2, 3, or 4 for time-dependent transformations of three-dimensional domains.
We also apply chiefly a standard vector notation for the coordinates, as variables
with indices. Sometimes, however, particularly in figures, the ordinary designation
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for three-dimensional coordinates, namely x, y, z for the physical coordinates and
ξ, η, ζ for the logical ones, is used to simplify the presentation.

2.2 General Notions and Relations

This section presents some basic relations between Cartesian and curvilinear coor-
dinates.

2.2.1 Jacobi Matrix

Let

x(ξ) : Ξ n → Xn , ξ = (ξ1, . . . , ξn) , x = (x1, . . . , xn) , (2.1)

be a smooth invertible coordinate transformation of the physical region Xn ⊂ Rn

from the parametric domain Ξ n ⊂ Rn. If Ξ n is a standard logical domain, then,
in accordance with Chap.1, this coordinate transformation can be used to generate
a structured grid in Xn. Here and later, Rn presents the Euclidean space with the
Cartesian basis e1, . . . , en , which represents an orthogonal system of vectors, i.e.

ei · e j =
{
1 if i = j ,

0 if i �= j .

Thus, we have
x = x1e1 + · · · + xnen ,

ξ = ξ1e1 + · · · + ξnen .

The values xi , (ξi ), i = 1, . . . , n, are called the Cartesian coordinates of the vector
x, (ξ) in Xn . Analogously, the values ξi , i = 1, . . . , n, are called the Cartesian
coordinates of the vector ξ inΞ n . The coordinate transformation (2.1) defines, in the
domain Xn , new coordinates ξ1, . . . , ξn , which are called the curvilinear coordinates.
The matrix

j =
{∂xi

∂ξ j

}
, i, j = 1, . . . , n ,

is referred to as the Jacobi matrix, and its Jacobian is designated by J :

J = det
{∂xi

∂ξ j

}
, i, j = 1, . . . , n . (2.2)

http://dx.doi.org/10.1007/978-3-319-57846-0_1
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The inverse transformation to the coordinate mapping x(ξ) is denoted by

ξ(x) : Xn → Ξ n.

This transformation can be considered analogously as amapping introducing a curvi-
linear coordinate system x1, . . . , xn in the domain Ξ n ⊂ Rn. It is obvious that the
inverse to the matrix j is

j−1 =
{ ∂ξi

∂x j

}
, i, j = 1, . . . , n ,

and consequently

det
{ ∂ξi

∂x j

}
= 1

J
, i, j = 1, . . . , n . (2.3)

In the case of two-dimensional space, the elements of the matrices (∂xi/∂ξ j ) and
(∂ξi/∂x j ) are connected by

∂ξi

∂x j
= (−1)i+ j ∂x3− j

∂ξ3−i

/
J ,

∂xi

∂ξ j
= (−1)i+ j J

∂ξ3− j

∂x3−i
, i, j = 1, 2 , (2.4)

with fixed indices i and j . Similar relations between the elements of the correspond-
ing three-dimensional matrices have the form

∂ξi

∂x j
= 1

J

(
∂x j+1

∂ξi+1

∂x j+2

∂ξi+2
− ∂x j+1

∂ξi+2

∂x j+2

∂ξi+1

)
,

∂xi

∂ξ j
= J

(∂ξ j+1

∂xi+1

∂ξ j+2

∂xi+2
− ∂ξ j+1

∂xi+2

∂ξ j+2

∂xi+1

)
, i, j = 1, 2, 3 , (2.5)

where i and j are fixed indices and for each superscript or subscript index, say l,
l + 3 is equivalent to l. With this condition, the sequence of indices (l, l + 1, l + 2)
is the result of a cyclic permutation of (1, 2, 3) and vice versa; the indices of a cyclic
sequence (i, j, k) satisfy the relation j = i + 1, k = i + 2.

2.2.2 Tangential Vectors

The value of the function x(ξ) = [x1(ξ), . . . , xn(ξ)] in the Cartesian basis
(e1, . . . , en) , i.e.

x(ξ) = x1(ξ)e1 + · · · + xn(ξ)en ,
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is a position vector for every ξ ∈ Ξ n. This vector-valued function x(ξ) generates the
nodes, edges, faces, etc. of the cells of the coordinate grid in the domain Xn. Each
edge of the cell corresponds to a coordinate line ξi for some i and is defined by the
vector

Δi x = x(ξ + hei ) − x(ξ) ,

where h is the step size of the uniform grid in the ξi direction in the logical domain
Ξ n. We have

Δi x = hxξi + t ,

where

xξi =
(

∂x1

∂ξi
, . . . ,

∂xn

∂ξi

)

is the vector tangential to the coordinate curve ξi , and t is a residual vector whose
length does not exceed the following quantity:

1

2
max |xξi ξi |h2 .

Thus, the cells in the domain Xn whose edges are formed by the vectors hxξi , i =
1, . . . , n, are approximately the same as those obtained by mapping the uniform
coordinate cells in the computational domainΞ n with the transformation x(ξ).Con-
sequently, the uniformly contracted n-dimensional parallelepiped spanned by the
tangential vectors xξi , i = 1, . . . , n, represents, to a high order of accuracy with
respect to h, the cell of the coordinate grid at the corresponding point in Xn (see
Fig. 2.1 for n = 2). In particular, for the length li of the i th grid edge, we have

Fig. 2.1 Grid cell and
contracted parallelogram
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li = h|xξi | + O(h2) .

The volume Vh (area in two dimensions) of the cell is expressed as follows:

Vh = hn V + O(hn+1) ,

where V is the volume of the n-dimensional parallelepiped determined by the tan-
gential vectors xξi , i = 1, . . . , n.

The tangential vectors xξi , i = 1, . . . , n, are called the base covariant vectors since
they comprise a vector basis. The sequence xξ1 , . . . , xξn of the tangential vectors has
a right-handed orientation if the Jacobian of the transformation x(ξ) is positive.
Otherwise, the base vectors xξi have a left-handed orientation.

The operation of the dot product on these vectors produces elements of the covari-
ant metric tensor. These elements generate the coefficients that appear in the trans-
formedgoverning equations thatmodel the conservation-lawequations ofmechanics.
Besides this, the metric elements play a primary role in studying and formulating
various geometric characteristics of the coordinate grid cells.

2.2.3 Normal Vectors

For a fixed i , the vector (
∂ξi

∂x1
, . . . ,

∂ξi

∂xn

)
,

which is the gradient of ξi (x) with respect to the Cartesian coordinates x1, . . . , xn ,
is denoted by ∇ξi . The set of the vectors ∇ξi , i = 1, . . . , n, is called the set of base
contravariant vectors.

Similarly, as the tangential vectors relate to the coordinate curves, the contravariant
vectors ∇ξi , i = 1, . . . , n, are connected with their respective (n − 1)-dimensional
coordinate surfaces (curves in two dimensions). A coordinate surface is defined by
the equation ξi = ξi

0; i.e. along the surface, all of the coordinates ξ1, . . . , ξn except
ξi are allowed to vary. For all of the tangent vectors xξ j to the coordinate lines on
the surface ξi = ξi

0, we have the obvious identity

xξ j · ∇ξi = 0 , i �= j ,

and thus the vector ∇ξi is normal to the coordinate surface ξi = ξi
0. Therefore, the

vectors ∇ξi , i = 1, . . . , n, are also called the normal base vectors.
Since

xξi · ∇ξi = 1
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Fig. 2.2 Disposition of the base tangential and normal vectors in two dimensions

for each fixed i = 1, . . . , n, the vectors xξi and∇ξi intersect each other at an angle θ
which is less than π/2. Now, taking into account the orthogonality of the vector ∇ξi

to the surface ξi = ξi
0, we find that these two vectors xξi and ∇ξi are directed to the

same side of the (n − 1)-dimensional coordinate surface (curve in two dimensions).
An illustration of this fact in two dimensions is given in Fig. 2.2.

The length of any normal base vector ∇ξi is linked to the distance di between
the corresponding opposite boundary segments (joined by the vector xξi ) of the
n-dimensional parallelepiped formed by the base tangential vectors, namely,

di = 1/|∇ξi | , |∇ξi | =
√

∇ξi · ∇ξi .

To prove this relation, we recall that the vector ∇ξi is normal to all of the vectors
xξ j , j �= i , and therefore to the boundary segments formed by these n − 1 vectors.
Hence, the unit normal vector ni to these segments is expressed by

ni = ∇ξi/|∇ξi | .

Now, taking into account that
di = xξi · ni ,

we readily obtain
di = xξi · ∇ξi/|∇ξi | = 1/|∇ξi | .

Let li denote the distance between a grid point on the coordinate surface ξi = c
and the nearest point on the neighboring coordinate surface ξi = c + h; then,

li = hdi + O(h2) = h/|∇ξi | + O(h2) .
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This equation shows that the inverse length of the normal vector ∇ξi multiplied by
h represents with high accuracy the distance between the corresponding faces of the
coordinate cells in the domain Xn.

Note that the volume of the parallelepiped spanned by the tangential vectors
equals J , so we find from (2.3) that the volume of the n-dimensional parallelepiped
defined by the normal vectors∇ξi , i = 1, . . . , n, is equal to 1/J. Thus, both the base
normal vectors ∇ξi and the base tangential vectors xξi have the same right-handed
or left-handed orientation.

If the coordinate system ξ1, . . . , ξn is orthogonal, i.e.

xξi · xξ j = P(x)δi
j , P(x) > 0 , i, j = 1, . . . , n ,

then for each fixed i = 1, . . . , n the vector ∇ξi is parallel to xξi . Here and later, δi
j

is the Kronecker symbol, i.e.

δi
j = 0 if i �= j , δi

j = 1 if i = j .

2.2.4 Representation of Vectors Through the Base Vectors

If there are n independent base vectors a1, . . . , an of theEuclidean space Rn , then any
vector bwith components b1, . . . , bn in the Cartesian basis e1, . . . , en is represented
through the vectors ai , i = 1, . . . , n, by

b = ai j (b · a j )ai , i, j = 1, . . . , n , (2.6)

where ai j are the elements of the matrix (ai j ) which is the inverse of the tensor
(ai j ), ai j = ai · a j , i, j = 1, . . . , n. It is assumed in (2.6) and later that a summation
is carried out over repeated indices unless otherwise noted.

The components of the vector b in the natural basis of the tangential vectors

xξi , i = 1, . . . , n, are called contravariant. Let them be denoted by b
i
, i = 1, . . . , n.

Thus,
b = b

1
xξ1 + · · · + b

n
xξn .

Assuming in (2.5) ai = xξi , i = 1, . . . , n, we obtain

b
i = amj

(
bk ∂xk

∂ξ j

)
∂xi

∂ξm
, i, j, k, m = 1, . . . , n , (2.7)

where b1, . . . , bn are the components of the vector b in the Cartesian basis e1, . . . , en.

Since

ai j = ∂xk

∂ξi

∂xk

∂ξ j
, i, j, k = 1, . . . , n ,
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we have

ai j = ∂ξi

∂xk

∂ξ j

∂xk
, k = 1, . . . , n .

Therefore, from (2.7),

b
i = b j ∂ξi

∂x j
, i, j = 1, . . . , n , (2.8)

or, using the dot product notation,

b
i = b · ∇ξi , i = 1, . . . , n . (2.9)

Thus, in this case, (2.6) has the form

b = (b · ∇ξi )xξi , i = 1, . . . , n . (2.10)

For example, the normal base vector ∇ξi is expanded through the base tangential
vectors xξ j , j = 1, . . . , n, by the following formula:

∇ξi = ∂ξi

∂x j

∂ξk

∂x j
xξk , i, j, k,= 1, . . . , n . (2.11)

Analogously, a component bi of the vector b in the basis ∇ξi , i = 1, . . . , n, is
expressed by the formula

bi = b j ∂x j

∂ξi
= b · xξi , i = 1, . . . , n , (2.12)

and consequently

b = bi∇ξi = (b · xξi )∇ξi , i = 1, . . . , n . (2.13)

These components bi , i = 1, . . . , n, of the vector b are called covariant. In par-
ticular, the base tangential vector xξi is expressed through the base normal vectors
∇ξ j , j = 1, . . . , n, as follows:

xξi = ∂x j

∂ξi

∂x j

∂ξk
∇ξk , i, j, k = 1, . . . , n . (2.14)
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2.2.5 Metric Tensors

Many grid generation algorithms, in particular those based on the calculus of varia-
tions, are typically formulated in terms of fundamental features of coordinate trans-
formations and the correspondingmesh cells. These features are compactly described
with the use of the metric notation, which is discussed in this subsection.

Covariant Metric Tensor

The matrix
{gi j } , i, j = 1, . . . , n ,

whose elements gi j are the dot products of the pairs of the basic tangential vectors
xξi ,

gi j = xξi · xξ j = ∂xk

∂ξi

∂xk

∂ξ j
, i, j, k = 1, . . . , n , (2.15)

is called a covariant metric tensor of the domain Xn in the coordinates ξ1, . . . , ξn .

Geometrically, each diagonal element gi i of the matrix {gi j } is the length of the
tangent vector xξi squared:

gi i = |xξi |2 , i = 1, . . . , n .

Also,
gi j = |xξi ||xξ j | cos θ = √

gi i
√

g j j cos θ , (2.16)

where θ is the angle between the tangent vectors xξi and xξ j . In these expressions,
for gi i and gi j , the subscripts i i and j j are fixed, i.e. here, the summation over the
repeated indices is not carried out.

The matrix {gi j } is called the metric tensor because it defines distance measure-
ments with respect to the coordinates ξ1, . . . , ξn :

ds =
√

gi jdξidξ j , i, j = 1, . . . , n .

Thus, the length s of the curve in Xn prescribed by the parametrization

x[ξ(t)] : [a, b] → Xn

is computed by the formula

s =
∫ b

a

√
gi j

dξi

dt

dξ j

dt
dt .
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We designate by g the Jacobian of the covariant matrix {gi j }. It is evident that

{gi j } = jj T ,

and hence
J 2 = g .

The covariant metric tensor is a symmetric matrix, i.e. gi j = g j i . If a coordinate
system at a point ξ is orthogonal, then the tensor {gi j } has a simple diagonal form at
this point. Note that these advantageous properties are in general not possessed by
the Jacobi matrix {∂xi/∂ξ j } from which the covariant metric tensor {gi j } is defined.
Contravariant Metric Tensor

The contravariant metric tensor of the domain Xn in the coordinates ξ1, . . . , ξn is
the matrix

{gi j } , i, j = 1, . . . , n ,

inverse to {gi j }, i.e.

gi jg
jk = δk

i , i, j, k = 1, . . . , n . (2.17)

Therefore,

det{gi j } = 1

g
.

It is easily shown that (2.16) is satisfied if and only if

gi j = ∇ξi · ∇ξ j = ∂ξi

∂xk

∂ξ j

∂xk
, i, j, k = 1, . . . , n . (2.18)

Thus, each diagonal element gi i (where i is fixed) of the matrix {gi j } is the square of
the length of the vector ∇ξi :

gi i = |∇ξi |2 . (2.19)

Geometric Interpretation

Now we discuss the geometric meaning of a fixed diagonal element gi i , say g11,
of the matrix {gi j }. Let us consider a three-dimensional coordinate transformation
x(ξ) : Ξ 3 → X3. Its tangential vectors xξ1 , xξ2 , xξ3 represent geometrically the
edges of the parallelepiped formed by these vectors. For the distance d1 between the
opposite faces of the parallelepiped which are defined by the vectors xξ2 and xξ3 , we
have

d1 = xξ1 · n1 ,
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where n1 is the unit normal to the plane spanned by the vectors xξ2 and xξ3 . It is
clear that

∇ξ1 · xξ j = 0 , j = 2, 3 ,

and hence the unit normal n1 is parallel to the normal base vector ∇ξ1 . Thus, we
obtain

n1 = ∇ξ1/|∇ξ1 | = ∇ξ1/
√

g11 .

Therefore,
d1 = ∇ξ1 · ∇ξ1/

√
g11 = 1/

√
g11 ,

and consequently
g11 = 1/(d1)

2 .

Analogous relations are valid for g22 and g33, i.e. in three dimensions, the diagonal
element gi i for a fixed i means the inverse square of the distance di between those
faces of the parallelepipedwhich are connected by the vector xξi . In two-dimensional
space, the element gi i (where i is fixed) is the inverse square of the distance between
the edges of the parallelogram defined by the tangential vectors xξ1 and xξ2 .

The same interpretation of gi i is valid for general multidimensional coordinate
transformations:

gi i = 1/(di )
2, i = 1, . . . , n , (2.20)

where the index i is fixed, and di is the distance between those faces of the n-
dimensional parallelepiped which are linked by the tangential vector xξi .

Relations Between Covariant and Contravariant Elements

Now, in analogy with (2.4) and (2.5), we write out very convenient formulas for
natural relations between the contravariant elements gi j and the covariant ones gi j

in two and three dimensions.
For n = 2,

gi j = (−1)i+ j g3−i 3− j

g
,

gi j = (−1)i+ jgg3−i 3− j , i, j = 1, 2 , (2.21)

where the indices i, j on the right-hand side of the relations (2.21) are fixed, i.e.
summation over the repeated indices is not carried out here. For n = 3, we have

gi j = 1

g
(gi+1 j+1 gi+2 j+2 − gi+1 j+2 gi+2 j+1) ,

gi j = g(gi+1 j+1 gi+2 j+2 − gi+1 j+2 gi+2 j+1) , i, j = 1, 2, 3 , (2.22)

with the convention that any index, say l, is identified with l ± 3, so, for instance,
g45 = g12.
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We also note that, in accordance with the expressions (2.15) and (2.18) for gi j and
gi j , respectively, the relations (2.11) and (2.14) between the basic vectors xξi and
∇ξ j can be written in the form

xξi = gik∇ξk ,

∇ξi = gikxξk , i, k = 1, . . . , n . (2.23)

So, the first derivatives ∂xi/∂ξ j and ∂ξk/∂xm of the transformations x(ξ) and
ξ(x), respectively, are connected through the metric elements:

∂xi

∂ξ j
= gmj

∂ξm

∂xi
,

∂ξi

∂x j
= gmi ∂x j

∂ξm
, i, j, m = 1, . . . , n . (2.24)

2.2.6 Cross Product

In addition to the dot product, there is another important operation on three-
dimensional vectors. This is the cross product, ×, which for any two vectors
a = (a1, a2, a3), b = (b1, b2, b3) is expressed as the determinant of a matrix:

a × b = det

⎧⎨
⎩

e1 e2 e3
a1 a2 a3

b1 b2 b3

⎫⎬
⎭ , (2.25)

where (e1, e2, e3) is the Cartesian vector basis of the Euclidean space R3. Thus,

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ,

or, with the previouslymentioned convention in three dimensions of the identification
of any index j with j ± 3,

a × b = (ai+1bi+2 − ai+2bi+1)ei , i = 1, 2, 3 . (2.26)

We will now state some facts connected with the cross product operation.

Geometric Meaning

We can readily see that a × b = 0 if the vectors a and b are parallel. Also, from
(2.26), we find that a · (a × b) = 0 and b · (a × b) = 0, i.e. the vector a × b is
orthogonal to each of the vectors a and b. Thus, if these vectors are not parallel, then

a × b = α|a × b|n , (2.27)
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where α = 1 or α = −1 and n is a unit normal vector to the plane determined by
the vectors a and b.

Nowwe show that the length of the vector a×b equals the area of the parallelogram
formed by the vectors a and b, i.e.

|a × b| = |a||b| sin θ , (2.28)

where θ is the angle between the two vectors a and b. To prove (2.28), we first note
that

|a|2|b|2 sin2 θ = |a|2|b|2(1 − cos2 θ) = |a|2|b|2 − (a · b)2 .

We have, furthermore,

|a|2|b|2 − |a · b|2 =
(

3∑
i=1

ai ai

)⎛
⎝ 3∑

j=1

b j b j

⎞
⎠−

(
3∑

k=1

akbk

)2

=
3∑

k=1

[(al)2(bm)2 + (am)2(bl)2 − 2alblambm]

=
3∑

k=1

(albm − ambl)2 ,

where (k, l, m) are cyclic, i.e. l = k + 1, m = k + 2 with the convention that j + 3
is equivalent to j for any index j. According to (2.26), the quantity albm − ambl for
the cyclic sequence (k, l, m) is the kth component of the vector a × b, so we find
that

|a||b| sin2 θ = |a|2|b|2 − |a · b|2 = |a × b|2 , (2.29)

which proves (2.28). Thus, we obtain the result that if the vectors a and b are not
parallel, then the vector a × b is orthogonal to the parallelogram formed by these
vectors and its length equals the area of the parallelogram. Therefore, the three
vectors a, b and a × b are independent in this case and represent a base vector
system in the three-dimensional space R3. Moreover, the vectors a, b and a × b
form a right-handed triad, since a × b �= 0, and consequently the Jacobian of the
matrix determined by a, b, and a × b, is positive; it equals

a × b · a × b = (a × b)2 .

Relation to Volumes

Let c = (c1, c2, c3) be one more vector. The volume V of the parallelepiped whose
edges are the vectors a, b and c equals the area of the parallelogram formed by the
vectors a and bmultiplied by the modulas of the dot product of the vector c and the
unit normal n to the parallelogram. Thus,
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V = |a × b||n · c|

and from (2.27), we obtain
V = |(a × b) · c| . (2.30)

Taking into account (2.26), we obtain

(a × b) · c = c1(a2b3 − a3b2) + c2(a3b1 − a1b3) + c3(a1b2 − a2b1) .

The right-hand side of this equation is the Jacobian of the matrix whose rows are
formed by the vectors a, b, and c, i.e.

(a × b) · c = det

⎧⎨
⎩

a1 a2 a3

b1 b2 b3

c1 c2 c3

⎫⎬
⎭ . (2.31)

From this equation, we readily obtain

(a × b) · c = a · (b × c) = (c× a) · b .

Thus, the volume of the parallelepiped determined by the vectors a, b, and c equals
the Jacobian of the matrix formed by the components of these vectors. In particular,
we obtain from (2.2) that the Jacobian of a three-dimensional coordinate transfor-
mation x(ξ) is expressed as follows:

J = xξ1 · (xξ2 × xξ3) . (2.32)

Relation to Base Vectors

Applying the operation of the cross product to two base tangential vectors xξl and
xξm , we find that the vector xξl × xξm is normal to the coordinate surface ξi = ξi

0
with (i, l, m) cyclic. The base normal vector ∇ξi is also orthogonal to the surface,
and therefore it is a scalar multiple of xξl × xξm , i.e.

∇ξi = c(xξl × xξm ) .

Multiplying this equation for a fixed i by xξi , using the operation of the dot product,
we obtain, using (2.32),

1 = c J ,

and therefore

∇ξi = 1

J
(xξl × xξm ) . (2.33)
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Thus, the elements of the three-dimensional contravariant metric tensor {gi j } are
computed through the tangential vectors xξi by the formula

gi j = 1

g
(xξi+1 × xξi+2) · (xξ j+1 × xξ j+2) , i, j = 1, 2, 3 .

Analogously, every base vector xξi , i = 1, 2, 3, is expressed by the tensor product
of the vectors ∇ξ j , j = 1, 2, 3:

xξi = J (∇ξl × ∇ξk), i = 1, 2, 3 , (2.34)

where l = i+1, k = i+2, andm is equivalent tom+3 for any indexm.Accordingly,
we have

gi j = g(∇ξi+1 × ∇ξi+2) · (∇ξ j+1 × ∇ξ j+2) , i, j = 1, 2, 3 .

Using the relations (2.33) and (2.34) in (2.32), we also obtain

1

J
= ∇ξ1 · ∇ξ2 × ∇ξ3 . (2.35)

Thus, the volume of the parallelepiped formed by the base normal vectors∇ξ1, ∇ξ2,
and ∇ξ3 is the modulus of the inverse of the Jacobian J of the transformation x(ξ).

2.3 Relations Concerning Second Derivatives

The elements of the covariant and contravariant metric tensors are defined by the
dot products of the base tangential and normal vectors, respectively. These elements
are suitable for describing the internal features of the cells such as the lengths of the
edges, the areas of the faces, their volumes, and the angles between the edges and
the faces. However, as they are derived from the first derivatives of the coordinate
transformation x(ξ), the direct use of the metric elements is not sufficient for the
description of the dynamic features of the grid (e.g. curvature), which reflect changes
between adjacent cells. This is because the formulation of these grid features relies not
only on the first derivatives but also on the second derivatives of x(ξ). Therefore, there
is a need to study relations connected with the second derivatives of the coordinate
parametrizations.

This section presents some notations and formulas which are concerned with
the second derivatives of the components of the coordinate transformations. These
notations and relations will be used to describe the curvature and eccentricity of the
coordinate lines and to formulate some equations of mechanics in new independent
variables.
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2.3.1 Christoffel Symbols

The edge of a grid cell in the ξi direction can be represented with high accuracy by
the base vector xξi contracted by the factor h, which represents the step size of a
uniform grid in Ξ n. Therefore, the local change of the edge in the ξ j direction is
characterized by the derivative of xξi with respect to ξ j , i.e. by xξi ξ j .

Since the second derivativesmay be used to formulate quantitativemeasures of the
grid, we describe these vectors xξi ξ j through the base tangential and normal vectors
using certain three-index quantities known as Christoffel symbols, The Christoffel
symbols are commonly used in formulating measures of the mutual interaction of
the cells and in formulas for differential equations.

Let us denote byΓ k
i j the kth contravariant component of the vector xξi ξ j in the base

tangential vectors xξk , k = 1, . . . , n. The superscript k in this designation relates
to the base vector xξk and the subscript i j corresponds to the mixed derivative with
respect to ξi and ξ j . Thus,

xξi ξ j = Γ k
i j xξk , i, j, k = 1, . . . , n , (2.36)

and consequently

∂2x p

∂ξ j∂ξk
= Γ m

k j

∂x p

∂ξm
, j, k, m, p = 1, . . . , n . (2.37)

In accordance with (2.8), we have

Γ i
k j = ∂2xl

∂ξk∂ξ j

∂ξi

∂xl
, i, j, k, l = 1, . . . , n , (2.38)

or in vector form,
Γ i

k j = xξkξ j · ∇ξi . (2.39)

Equation (2.38) is also obtained by multiplying (2.37) by ∂ξi/∂x p and summing
over p.

The quantities Γ i
k j are called the space Christoffel symbols of the second kind

and the expression (2.36) is a form of the Gauss relation representing the second
derivatives of the position vector x(ξ) through the tangential vectors xξi .

Analogously, the components of the second derivatives of the position vector x(ξ)

expanded in the base normal vectors ∇ξi , i = 1, . . . , n, are referred to as the space
Christoffel symbols of the first kind. The mth component of the vector xξkξ j in the
base vectors ∇ξi , i = 1, . . . , n, is denoted by [k j, m]. Thus, according to (2.12),

[k j, m] = xξkξ j · xξm = ∂2xl

∂ξk∂ξ j

∂xl

∂ξm
, j, k, l, m = 1, . . . , n , (2.40)
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and consequently
xξkξ j = [k j, m]∇ξm . (2.41)

So, in analogy with (2.37), we obtain

∂2xl

∂ξ j∂ξk
= [k j, m]∂ξm

∂xi
, i, j, k, m = 1, . . . , n . (2.42)

Multiplying (2.40) by gim and summing over m, we find that the space Christoffel
symbols of the first and second kind are connected by the following relation:

Γ i
k j = gim[k j, m] , i, j, k, m = 1, . . . , n . (2.43)

Conversely, from (2.38),

[k j, m] = gmlΓ
l

k j , j, k, l, m = 1, . . . , n . (2.44)

The space Christoffel symbols of the first kind [k j, m] can be expressed through
the first derivatives of the covariant elements gi j of the metric tensor (gi j ) by the
following readily verified formula:

[k j, m] = 1

2

(
∂g jm

∂ξk
+ ∂gkm

∂ξ j
− ∂gk j

∂ξm

)
, i, j, k, m = 1, . . . , n . (2.45)

Thus, taking into account (2.43), we see that the space Christoffel symbols of the
second kind Γ i

k j can be written in terms of metric elements and their first derivatives.
In particular, in the case of an orthogonal coordinate system ξi , we obtain, from
(2.43) and (2.45),

Γ i
k j = 1

2
gi i

(
∂gi i

∂ξk
+ ∂gi i

∂ξ j
− ∂gk j

∂ξi

)
.

Here, the index i is fixed, i.e. the summation over i is not carried out.

2.3.2 Differentiation of the Jacobian

Of critical importance in obtaining compact conservation-law equations with coef-
ficients derived from the metric elements in new curvilinear coordinates ξ1, . . . , ξn

is the formula for differentiation of the Jacobian

∂ J

∂ξk
≡ J

∂2xi

∂ξk∂ξm

∂ξm

∂xi
≡ J

∂

∂xi

(
∂xi

∂ξk

)
≡ Jdivx

∂x
∂ξk

,

i, k, m = 1, . . . , n . (2.46)
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In accordance with (2.38), this identity can also be expressed through the space
Christoffel symbols of the second kind Γ i

k j by

∂ J

∂ξk
= JΓ i

ik , i, k = 1, . . . , n ,

with the summation convention over the repeated index i.
In order to prove the identity (2.46), we note that in the case of an arbitrary matrix

{ai j }, the first derivative of its Jacobian with respect to ξk is obtained through the
process of differentiating thefirst row (the others are left unchanged), then performing
the same operation on the second row, and so on with all of the rows of the matrix.
The summation of the Jacobians of the matrices derived in such a manner gives the
first derivative of the Jacobian of the original matrix {ai j }. Thus,

∂

∂ξk
det{ai j } = ∂aim

∂ξk
Gim , i, j, k, m = 1, . . . , n , (2.47)

where Gim is the cofactor of the element aim . For the Jacobi matrix {∂xi/∂ξ j } of the
coordinate transformation x(ξ), we have

Gim = J
∂ξm

∂xi
, i, j = 1, . . . , n .

Therefore, applying (2.47) to the Jacobi matrix, we obtain (2.46).

2.3.3 Basic Identity

The identity (2.46) implies the extremely important relation

∂

∂ξ j

(
J

∂ξ j

∂xi

)
≡ 0 , i, j = 1, . . . , n , (2.48)

which leads to specific forms of new dependent variables for conservation-law equa-
tions. To prove (2.48), we first note that

∂2ξ p

∂xk∂x j

∂xl

∂ξ p
= − ∂2xl

∂ξ p∂ξm

∂ξm

∂xk

∂ξ p

∂x j
, j, k, l, m, p = 1, . . . , n .

Multiplying this equation by ∂ξi/∂xl and summing over l, we obtain a formula
representing the second derivative ∂2ξi/∂xk∂xm of the functions ξi (x) through the
second derivatives ∂2xm/∂ξl∂ξ p of the functions xm(ξ), m = 1, . . . , n:
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∂2ξi

∂xk∂xm
= − ∂2x p

∂ξl∂ξ j

∂ξ j

∂xk

∂ξl

∂xm

∂ξi

∂x p
, i, j, k, l, m, p = 1, . . . , n . (2.49)

Now, using this relation and the formula (2.46) for differentiation of the Jacobian in
the identity

∂

∂ξ j

(
J

∂ξ j

∂xi

)
= ∂ J

∂ξ j

∂ξ j

∂xi
+ J

∂2ξ j

∂xi∂xk

∂xk

∂ξ j
, i, j, k = 1, . . . , n ,

we obtain

∂

∂ξ j

(
J

∂ξ j

∂xi

)
= J

∂2xk

∂ξ p∂ξ j

∂ξ p

∂xk

∂ξ j

∂xi
− J

∂2x p

∂ξl∂ξm

∂ξm

∂xi

∂ξl

∂xk

∂ξ j

∂x p

∂xk

∂ξ j

= J
∂2xk

∂ξ p∂ξ j

∂ξ p

∂xk

∂ξ j

∂xi
− J

∂2x p

∂ξl∂ξm

∂ξl

∂x p

∂ξm

∂xi
= 0 ,

i, j, k, l, m, p = 1, . . . , n ,

i.e. (2.48) has been proved.
The identity (2.48) is obvious when n = 1 or n = 2. For example, for n = 2, we

have, from (2.4),

J
∂ξ j

∂xi
= (−1)i+ j ∂x3−i

∂ξ3− j
, i, j = 1, 2 ,

with fixed indices i and j , and therefore

∂

∂ξ j

(
J

∂ξ j

∂xi

)
= (−1)i+1

( ∂

∂ξ1
∂x3−i

∂ξ2
− ∂

∂ξ2
∂x3−i

∂ξ1

)
= 0, i, j = 1, 2 .

An inference from (2.48) for n = 3 follows from the differentiation of the cross
product of the base tangential vectors rξi , i = 1, 2, 3. Taking into account (2.26),
we readily obtain the following formula for the differentiation of the cross product
of two three-dimensional vector-valued functions a and b:

∂

∂ξi
(a × b) = ∂

∂ξi
a × b + a × ∂

∂ξi
b , i = 1, 2, 3 .

With this formula, we obtain

3∑
i=1

∂

∂ξi
(xξ j × xξk ) =

3∑
i=1

xξ j ξi × xξk +
3∑

i=1

xξ j × xξkξi , (2.50)
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where the indices (i, j, k) are cyclic, i.e. j = i + 1, k = i + 2, m is equivalent to
m + 3. For the last summation of the above formula, we obtain

3∑
i=1

xξ j × xξkξi =
3∑

i=1

xξk × xξi ξ j .

Therefore, from (2.50),
3∑

i=1

∂

∂ξi
(xξ j × xξk ) = 0 ,

since
xξi × xξ j ξk = −xξ j ξk × xξi

and (2.33) implies (2.48) for n = 3.
The identity (2.48) can help one to obtain conservative or compact forms of some

differential expressions and equations in the curvilinear coordinates ξ1, . . . , ξn . For
example, for the first derivative of a function f (x) with respect to xi , we obtain,
using (2.48),

∂ f

∂xi
= 1

J

∂

∂ξ j

(
J

∂ξ j

∂xi
f
)

, j = 1, . . . , n . (2.51)

For the Laplacian

∇2 f = ∂

∂x j

∂ f

∂x j
, j = 1, . . . , n (2.52)

we have, substituting the quantity ∂ f/∂xi for f in (2.51),

∇2 f = 1

J

∂

∂ξ j

(
J

∂ξ j

∂xi

∂ f

∂xi

)
= 1

J

∂

∂ξ j

(
J

∂ξ j

∂xi

∂ξm

∂xi

∂ f

∂ξm

)

= 1

J

∂

∂ξ j

(
Jgmj ∂ f

∂ξm

)
, i, j, m = 1, . . . , n . (2.53)

Therefore, the Poisson equation
∇2 f = P (2.54)

has the form
1

J

∂

∂ξ j

(
Jgmj ∂ f

∂ξm

)
= P , j, m = 1, . . . , n , (2.55)

with respect to the independent variables ξ1, . . . , ξn .
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2.4 Conservation Laws

This section utilizes the relations described in Sects. 2.2 and 2.3, in particular the
identity (2.48), in order to describe some conservation-law equations of mechanics
in divergent or compact form in new independent curvilinear coordinates ξ1, . . . , ξn .

For this purpose, the dependent physical variables are also transformed to new depen-
dent variables using some specific formulas. The essential advantage of the equations
described here is that their coefficients are derived from the elements of the covariant
metric tensor {gi j }.

2.4.1 Scalar Conservation Laws

Let Abe ann-dimensional vectorwith components Ai , i = 1, . . . , n, in theCartesian
coordinates x1, . . . , xn . The operator

divx A = ∂ Ai

∂xi
, i = 1, . . . , n , (2.56)

is commonly used in mechanics for the representation of scalar conservation laws,
commonly in the form

divx A = F .

Using (2.48), we easily obtain

divx A = 1

J

∂

∂ξ j
(J A

j
) = F , j = 1, . . . , n , (2.57)

where A
j
is the j th contravariant component of the vector A in the coordinates

ξi , i = 1, . . . , n, i.e. in accordance with (2.8):

A
j = Ai ∂ξ j

∂xi
, i, j = 1, . . . , n . (2.58)

Therefore, a divergent form of the conservation-law equation represented by (2.56)
is obtained in the new coordinates when the dependent variables Ai are replaced

by new dependent variables A
i
defined by the rule (2.58). Some examples of scalar

conservation-law equations are given below.

Mass Conservation Law

As an example of the application of (2.57), we consider the equation of conservation
of mass for steady gas flow



68 2 Coordinate Transformations

∂ρui

∂xi
= 0 , i = 1, . . . , n , (2.59)

where ρ is the gas density, and ui is the i th component of the flow velocity vector
u in the Cartesian coordinates x1, . . . , xn . With the substitution Ai = ρui , (2.58)
is transformed into the following divergent form with respect to the new dependent
variables ρ and ui in the coordinates ξ1, . . . , ξn:

∂

∂ξi
(Jρui ) = 0 , i = 1, . . . , n . (2.60)

Here, ui is the i th contravariant component of the flow velocity vector u in the basis
xξi , i = 1, . . . , n, i.e.

ui = u j ∂ξi

∂x j
, i, j = 1, . . . , n . (2.61)

Convection–Diffusion Equation

Another example is the conservation equation for the steady convection–diffusion
of a transport variable φ, which can be expressed as

− ∂

∂xi

(
ε
∂φ

∂xi

)
+ ∂

∂xi
(ρφui ) = S , i = 1, . . . , n , (2.62)

where ρ and ε denote the density and diffusion coefficient of the fluid, respectively.
Taking

Ai = ρφui − ε
∂φ

∂xi
, i = 1, . . . , n .

we obtain, in accordance with the relation (2.58),

A
j = ρφu j − ε

∂φ

∂ξk
gk j , j, k = 1, . . . , n .

Therefore, using (2.57), the convection–diffusion equation (2.62) in the curvilinear
coordinates ξ1, . . . , ξn is expressed by the divergent form

∂

∂ξ j

[
J
(
ρφu j − εgk j ∂φ

∂ξk

)]
= J S , j, k = 1, . . . , n . (2.63)

Laplace Equation

Analogously, the Laplace equation

∇2 f = ∂

∂x j

∂ f

∂x j
= 0 , j = 1, . . . , n , (2.64)
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has the form (2.56) if we take

Ai = ∂ f

∂xi
, i = 1, . . . , n .

Using (2.58), we obtain

A
j = gi j ∂ f

∂ξi
, i = 1, . . . , n .

Therefore, the Laplace equation (2.64) results in

∇2 f = 1

J

∂

∂ξi

(
Jgi j ∂ f

∂ξ j

)
= 0 , i, j = 1, . . . , n , (2.65)

since (2.57) applies.

2.4.2 Vector Conservation Laws

Many physical problems are also modeled as a system of conservation-law equations
in the vector form

∂ Ai j

∂x j
= Fi , i, j = 1, . . . , n . (2.66)

For the representation of the system (2.66) in new coordinates ξ1, . . . , ξn in a form
which includes only coefficients derived from the elements of the metric tensor, it
is necessary to make a transition from the original expression for Ai j to a new one

A
i j
. One convenient formula for such a transition from the dependent variables Ai j

to A
i j
, i, j = 1, . . . , n, is

A
i j = Akm ∂ξi

∂xk

∂ξ j

∂xm
, i, j, k, m = 1, . . . , n . (2.67)

This relation between Ai j and A
km

is, in fact, composed of transitions of the kind
(2.58) for the rows and columns of the tensor Ai j . In tensor analysis, the quantity

A
i j
means the (i, j) component of the second-rank contravariant tensor (Ai j ) in the

coordinates ξ1, . . . , ξn .

Multiplying (2.67) by (∂x p/∂ξi )(∂xl/∂ξ j ) and summing over i and j , we also

obtain a formula for the transition from the new dependent variables A
i j

to the
original ones Ai j :

Ai j = A
km ∂xi

∂ξk

∂x j

∂ξm
, i, j, k, m = 1, . . . , n . (2.68)
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Therefore, we can obtain a system of equations for the new dependent variables A
i j

by replacing the dependent quantities Ai j in (2.66) with their expressions (2.68). As
a result, we obtain

∂ Ai j

∂x j
= ∂

∂x j

(
A

km ∂xi

∂ξk

∂x j

∂ξm

)

= ∂ A
km

∂ξm

∂xi

∂ξk
+ A

km ∂2xi

∂ξk∂ξm
+ A

km ∂xi

∂ξk

∂

∂x j

( ∂x j

∂ξm

)
= Fi ,

i, j, k, m = 1, . . . , n .

The use of the formula (2.46) for differentiation of the Jacobian in the summation in
the equation above yields

∂ Ai j

∂x j
= ∂ A

km

∂ξm

∂xi

∂ξk
+ A

km ∂2xi

∂ξk∂ξm
+ 1

J
A

km ∂xi

∂ξk

∂ J

∂ξm
= Fi ,

i, j, k, l, m = 1, . . . , n .

Multiplying this system by ∂ξ p/∂xi and summing over i , we obtain, after simple
manipulations,

1

J

∂

∂ξ j
(J A

i j
) + ∂2xl

∂ξk∂ξ j

∂ξi

∂xl
A

k j = F
i
, i, j, k, l = 1, . . . , n , (2.69)

where

F
i = F j ∂ξi

∂x j
, i, j = 1, . . . , n ,

is the i th contravariant component of the vector F = (F1, . . . , Fn) in the basis
xξ1 , . . . , xξn .Thequantities (∂2xl/∂ξk∂ξ j )(∂ξi/∂xl) in (2.69) are the spaceChristof-
fel symbols of the second kind Γ i

k j . Thus, the system (2.69) has, using the notation
Γ i

jk , the form

1

J

∂

∂ξ j
(J A

i j
) + Γ i

k j A
k j = F

i
, i, j, k = 1, . . . , n . (2.70)

We see that all coefficients of (2.70) are derived from the metric tensor {gi j }.
Equations of the form (2.70), in contrast to (2.66), do not have a conservative

form. The conservative form of (2.66) in new dependent variables is obtained, in
analogy with (2.57), from the system

1

J

∂

∂ξ j
(J A

j
i ) = Fi , i, j = 1, . . . , n , (2.71)
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where A
j
i is the j th component of the vector Ai = (Ai1, . . . , Ain) in the basis

xξ j , j = 1, . . . , n, i.e.

A
j
i = Aik ∂ξ j

∂xk
, i, j, k = 1, . . . , n . (2.72)

In fact, (2.71) is the result of the application of (2.57) to the i th line of (2.66).
Therefore, in the relations (2.66, 2.71, 2.72), we can assume an arbitrary range
for the index i , i.e. the matrix Ai j in (2.66) can be a nonsquare matrix with i =
1, . . . , m, j = 1, . . . , n.

Though the system (2.71) is conservative and more compact than (2.70), it has
its drawbacks. In particular, mathematical simulations of fluid flows are generally
formulated in the form (2.66) with the tensor Ai j represented as

Ai j = Bi j + ρui u j , i, j = 1, . . . , n ,

where ui , i = 1, . . . , n, are the Cartesian components of the flow velocity. The
transformation of the tensor ρui u j by the rule (2.72),

ρui uk ∂ξ j

∂xk
= ρui u j , i, j, k = 1, . . . , n ,

results in equations with an increased number of dependent variables, namely ui and
u j . The substitution of ui for u j or vice versa leads to equations whose coefficients
are derived from the elements ∂xi/∂ξ j of the Jacobimatrix and not from the elements
of the metric tensor {gi j }.
Example

As an example of (2.66), we consider the stationary equation of a compressible gas
flow

∂

∂x j
(ρui u j ) + ∂ p

∂xi
− ∂

∂x j
μ

∂ui

∂x j
= ρFi , i, j = 1, . . . , n , (2.73)

where ui is the i th Cartesian component of the vector of the fluid velocity u, ρ is the
density, p is the pressure and μ is the viscosity. The tensor form of (2.66) is given by

Ai j = ρui u j + δi
j p − μ

∂ui

∂x j
, i, j = 1, . . . , n .

From (2.67), we obtain, in this case,

A
i j = ρui u j + gi j p − μ

∂ul

∂xk

∂ξi

∂xl

∂ξ j

∂xk
, i, j, k, l = 1, . . . , n , (2.74)
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where ui is the i th component of u in the basis xξi , i.e. ui is computed from the
formula (2.61). It is obvious that

ul = u j ∂xl

∂ξ j
, j, l = 1, . . . , n . (2.75)

Therefore,

∂ul

∂xk
= ∂

∂ξm

(
u p ∂xl

∂ξ p

)∂ξm

∂xk

= ∂u p

∂ξm

∂xl

∂ξ p

∂ξm

∂xk
+ u p ∂2xl

∂ξ p∂ξm

∂ξm

∂xk
, k, l, m, p = 1, . . . , n .

Using this equation, we obtain, for the last term of (2.74),

μ
∂ul

∂xk

∂ξi

∂xl

∂ξ j

∂xk
= μgmj

( ∂ui

∂ξm
+ Γ i

pmu p
)

, i, j, m, p = 1, . . . , n ,

since (2.38) applies. Thus, (2.74) has the form

A
i j = ρui u j + gi j p − μgmj

( ∂ui

∂ξm
+ Γ i

pmu p
)

, i, j, m, p = 1, . . . , n , (2.76)

and, applying (2.70), we obtain the following system of stationary equations (2.73)
with respect to the new dependent variables ρ, ui , and p and the independent
variables ξi :

1

J

∂

∂ξ j

{
J
[
ρui u j + gi j p − μgmj

( ∂ui

∂ξm
+ Γ i

pmu p
)]}

+ Γ i
k j

[
ρuku j + gk j p − μgmj

( ∂uk

∂ξm
+ Γ k

pmu p
)]

= ρF
i
,

i, j, k, m, p = 1, . . . , n . (2.77)

The application of (2.71)–(2.73) yields the following system of stationary equa-
tions:

1

J

∂

∂ξ j

[
J
(
ρui u j + ∂ξ j

∂xi
p − μ

∂ui

∂ξk
gk j
)]

= ρFi ,

u j = uk ∂ξ j

∂xk
, i, j, k = 1, . . . , n . (2.78)

Now, as an example of the utilization of the Christoffel symbols of the second
kind Γ i

k j , we write out the expression for the transformed elements of the tensor
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σi j = μ
( ∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1 . . . , n , (2.79)

in the coordinates ξ1, . . . , ξn , obtained in accordance with the rule (2.67). This tensor
is very common and is important in applications simulating deformation in the theory
of elasticity and deformation rate in fluid mechanics. Using the notations described
above, the tensor σi j can be expressed in the coordinates ξ1, . . . , ξn through the
metric elements and the Christoffel symbols of the second kind. For the component
σi j , we have

σi j = σmk ∂ξi

∂xm

∂ξ j

∂xk

= μ
(
g jl ∂ui

∂ξl
+ gil ∂u j

∂ξl
+ (g jlΓ i

pl + gilΓ
j

pl)u
p
)

,

i, j, l, p = 1, . . . , n . (2.80)

This formula is obtained rather easily. For this purpose, one can use the relation
(2.75) for the inverse transition from the contravariant components ui to the Cartesian
components u j of the vector u = (u1, . . . , un) and the formula (2.38). By substituting
(2.75) in (2.79), carryingout differentiationby the chain rule, andusing the expression
(2.38), we obtain (2.80).

2.5 Time-Dependent Transformations

The numerical solution of time-dependent equations requires the application of mov-
ing grids and the corresponding coordinate transformations, which are dependent on
time. Commonly, such coordinate transformations are determined in the form of a
vector-valued time-dependent function

x(t, ξ) : Ξ n → Xn
t , ξ ∈ Ξ n , t ∈ [0, 1] , (2.81)

where the variable t represents the time and Xn
t is an n-dimensional domain whose

boundary points change smoothly with respect to t. It is assumed that x(t, ξ) is
sufficiently smooth with respect to ξi and t and, in addition, that it is invertible for
all t ∈ [0, 1]. Therefore, there is also the time-dependent inverse transformation

ξ(t, x) : Xn
t → Ξ n (2.82)

for every t ∈ [0, 1]. The introduction of these time-dependent coordinate transfor-
mations enables one to compute an unsteady solution on a fixed uniform grid in Ξ n

by the numerical solution of the transformed equations.
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2.5.1 Reformulation of Time-Dependent Transformations

Many physical problems are modeled in the form of nonstationary conservation-law
equations which include the time derivative. The formulas of Sects. 2.3 and 2.4 can
be used directly, by transforming the equations at every value of time t. However,
such utilization of the formulas does not influence the temporal derivative, which is
transformed simply to the form

∂

∂t
+ ∂ξi

∂t

∂

∂ξi
, i = 1, . . . , n ,

so that it does not maintain the property of divergency and its coefficients are not
derived from the elements of the metric tensor.

Instead, the formulas of Sects. 2.3 and 2.4 can be more successfully applied to
time-dependent conservation-law equations if the set of the functions x(t, ξ) is
expanded to an (n + 1)-dimensional coordinate transformation in which the tem-
poral parameter t is considered in the same manner as the spatial variables.

To carry out this process, we expand the n-dimensional computational and phys-
ical domains in (2.81) to (n + 1)-dimensional ones, assuming

Ξ n+1 = I × Ξ n , Xn+1 = ∪t (t × Xn
t ) .

Let the points of these domains be designated by ξ0 = (ξ0, ξ1, . . . , ξn) and x0 =
(x0, x1, . . . , xn), respectively. The expanded coordinate transformation is defined as

x0(ξ0) : Ξ n+1 → Xn+1 , (2.83)

where x0(ξ0) = ξ0 and xi (ξ0), i = 1, . . . , n, which coincides with (2.81) with
ξ0 = t.

The variables x0 and ξ0 in (2.83) represent, in fact, the temporal variable t. For
convenience and in order to avoid ambiguity, we shall also designate the variable ξ0

inΞ n+1 by τ and the variable x0 in Xn+1 by t.Thus, x0(ξ0) is the (n+1)-dimensional
coordinate transformation which is identical to x(τ , ξ) at every section ξ0 = τ .

The inverted coordinate transformation

ξ0(x0) : Xn+1 → Ξ n+1 (2.84)

satisfies
ξ0(x0) = x0 , ξi (x0) = ξi (t, x) , i = 1, . . . , n ,

where t = x0, x = (x1, . . . , xn), and ξi (t, x) is defined by (2.82). Thus, (2.84) is
identical to (2.82) at each section Xt .
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2.5.2 Basic Relations

This subsection discusses some relations and, in particular, identities of the kind
(2.46) and (2.48) for the time-dependent coordinate transformations (2.81), using for
this purpose the (n + 1)-dimensional vector functions (2.83) and (2.84) introduced
above.

Velocity of Grid Movement

The first derivative xτ , x = (x1, x2, . . . , xn), of the transformation x(ξ, τ ) has
a clear physical interpretation as the velocity vector of grid point movement. Let
the vector xτ , in analogy with the flow velocity vector u, be designated by w =
(w1, . . . , wn), i.e. wi = xi

τ . The i th component wi of the vector wi in the tangential
bases xξi , i = 1, . . . , n, is expressed by (2.7) as

wi = w j ∂ξi

∂x j
= ∂x j

∂τ

∂ξi

∂x j
, i, j = 1, . . . , n .

Therefore,
w = wi xξi , i = 1, . . . , n , (2.85)

i.e.

wi = ∂xi

∂τ
= w j ∂xi

∂ξ j
, i, j = 1, . . . , n .

Differentiation with respect to ξ0 of the composition of x0(ξ0) and ξ0(x0) yields

∂ξi

∂x0

∂x0

∂ξ0
+ ∂ξi

∂x j

∂x j

∂ξ0
= 0 , i, j = 1, . . . , n .

Therefore, we obtain the result

∂ξi

∂t
= −∂x j

∂τ

∂ξi

∂x j
= −wi , i, j = 1, . . . , n . (2.86)

Derivatives of the Jacobian

It is apparent that the Jacobians of the coordinate transformations x(τ , ξ) and x0(ξ0)

coincide, i.e.

det
{∂xi

∂ξ j

}
= det

{∂xk

∂ξl

}
= J , i, j = 0, 1, . . . , n , k, l = 1, . . . , n .

In the notation introduced above, the formula (2.46) for differentiation of the Jacobian
of the transformation

x0(ξ0) : Ξ n+1 → Xn+1
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is expressed by the relation

1

J

∂

∂ξi
J = ∂2xk

∂ξi∂ξm

∂ξm

∂xk
, i, k, m = 0, 1, . . . , n , (2.87)

differing from (2.46) only by the range of the indices. As a result, we obtain from
(2.87) for i = 0,

1

J

∂

∂τ
J = ∂

∂ξm

(∂xk

∂τ

)∂ξm

∂xk
= divx

∂x
∂τ

, k, m = 0, 1, . . . , n , (2.88)

and, taking into account (2.85),

1

J

∂

∂τ
J = ∂

∂ξm

(
w j ∂xk

∂ξ j

)∂ξm

∂xk

= ∂wm

∂ξm
+ wi ∂2xk

∂ξ j∂ξm

∂ξm

∂xk
, j, k, m = 1, . . . , n .

Now, taking advantage of the formula for differentiation of the Jacobian (2.46), in
the last sum of this equation, we have

1

J

∂

∂τ
J = ∂wm

∂ξm
+ 1

J
w j ∂ J

∂ξ j
, j, m = 1, . . . , n ,

and consequently

1

J

∂

∂τ
J = 1

J

∂

∂ξ j
(Jw j ) , j = 1, . . . , n . (2.89)

Basic Identity

Analogously, the system of identities (2.48) has the following form:

∂

∂ξ j

(
J

∂ξ j

∂xi

)
= 0 , i, j = 0, 1, . . . , n . (2.90)

Therefore, for i = 0, we obtain

∂

∂τ
(J ) + ∂

∂ξ j

(
J

∂ξ j

∂t

)
= 0 , j = 1, . . . , n , (2.91)

and, taking into account (2.86),

∂

∂τ
J − ∂

∂ξ j
(Jw j ) = 0 , j = 1, . . . , n , (2.92)
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which corresponds to (2.89). For i > 0, the identity (2.90) coincides with (2.48), i.e.

∂

∂ξ j

(
J

∂ξ j

∂xi

)
= 0 , i, j = 1, . . . , n .

As a result of (2.91), we obtain, in analogy with (2.51),

∂ f

∂t
= 1

J

∂

∂ξ j

(
J

∂ξ j

∂t
f

)
= 1

J

(
∂

∂τ
(J f ) − ∂

∂ξk
(Jwk f )

)
,

j = 0, 1, . . . , n , k = 1, . . . , n . (2.93)

2.5.3 Equations in the Form of Scalar Conservation Laws

Many time-dependent equations can be expressed in the form of a scalar conservation
law in the Cartesian coordinates t, x1, . . . , xn:

∂ A0

∂t
+ ∂ Ai

∂xi
= F , i = 1, . . . , n . (2.94)

Using (2.90), in analogy with (2.57), this equation is transformed in the coordinates
ξ0, ξ1, . . . , ξn, ξ0 = τ to

1

J

( ∂

∂ξ j
(J A

j
0)
)

= F , j = 0, 1, . . . , n , (2.95)

where by A
j
0 we denote the j th contravariant component of the (n + 1)-dimensional

vector A0 = (A0, A1, . . . , An) in the basis ∂x0/∂ξi , i = 0, 1, . . . , n, i.e.

A
j
0 = Ai ∂ξ j

∂xi
, i, j = 0, 1, . . . , n . (2.96)

We can express each component A
j
0, j = 1, . . . , n, of the vector A0 through

the components A
i
and wk, i, k = 1, . . . , n, of the n-dimensional spatial vectors

A = (A1, . . . , An) and w = (w1, . . . , wn) in the coordinates ξl , l = 1, . . . , n,
where A is a vector obtained by projecting the vector A0 into the space Rn , i.e.
P(A0, A1, . . . , An) = (A1, . . . , An). Namely,

A
j
0 = A0 ∂ξ j

∂t
+ Ai ∂ξ j

∂xi
= A

j − A0w j , i, j = 1, . . . , n ,

using (2.86). Furthermore, we have
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A
0
0 = Ak ∂ξ0

∂xk
= A0 , k = 0, 1, . . . , n .

Therefore, (2.95) implies a conservation law in the variables τ , ξ1, . . . , ξn in the
conservative form

1

J

(
∂

∂τ
(J A0) + ∂

∂ξ j
[J (A

j − A0w j )]
)

= F , j = 1, . . . , n . (2.97)

Examples of Scalar Conservation-Law Equations

As an illustration of the formula (2.97), we write out some time-dependent scalar
conservation-law equations presented first in the form (2.94).

Parabolic Equation

For the parabolic equation

∂ f

∂t
= ∂

∂x j

∂ f

∂x j
, j = 1, . . . , n , (2.98)

we obtain from (2.97), with A0 = f and Ai = ∂ f/∂xi , i = 1, . . . n,

∂ J f

∂τ
= ∂

∂ξ j

[
J
(
g jk ∂ f

∂ξk
+ f w j

)]
, j, k = 1, . . . n . (2.99)

Mass Conservation Law

The scalar mass conservation law for unsteady compressible gas flow

∂ρ

∂t
+ ∂ρui

∂xi
= F , i = 1, 2, 3 , (2.100)

is expressed in the new coordinates as

∂ Jρ

∂t
+ ∂ Jρ(u j − w j )

∂ξ j
= J F , j = 1, 2, 3 . (2.101)

Convection–Diffusion Equation

The unsteady convection–diffusion conservation equation

∂

∂t
(ρφ) + ∂

∂xi
(ρφui ) − ∂

∂xi

(
ε
∂φ

∂xi

)
= S , i = 1, . . . , n , (2.102)

has the form in the coordinates τ , ξ1, . . . , ξn
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∂

∂τ
(Jρφ) + ∂

∂ξ j

(
Jρφ(u j − w j ) − Jgk jε

∂φ

∂ξk

)
= J S , j, k = 1, . . . , n . (2.103)

Energy Conservation Law

Analogously, the energy conservation law

∂

∂t
ρ(e + u2/2) + ∂

∂x j
ρu j (e + u2/2 + p/ρ) = ρFj u j , j = 1, 2, 3 , (2.104)

where

e = e(ρ, p) , p = p − γ
∂ui

∂xi
, i = 1, 2, 3 ,

u2 =
3∑

i=1

(ui )
2 ,

is transformed in accordance with (2.97) to

∂

∂τ

[
Jρ
(

e + 1

2
gmkumuk

)]
+ ∂

∂ξ j

[
Jρ
(

e + 1

2
gmkumuk

)
(u j − w j ) + J pu j

]

= Jρgmk f
m

uk , j, m, k = 1, 2, 3 , (2.105)

where, taking into account (2.57),

p = p − γ

J

∂

∂ξi
(Jui ) , i = 1, 2, 3 .

Linear Wave Equation

The linear wave equation
utt = c2∇2u (2.106)

arises in many areas such as fluid dynamics, elasticity, acoustics, and magnetohy-
drodynamics. If the coefficient c is constant, then (2.106) has a divergent form (2.94)
with

A0 = ut , Ai = −c2
∂u

∂xi
, i = 1, . . . , n ,

or, in the coordinates τ , ξ1, . . . , ξn ,

A0 = uτ − wi ∂u

∂ξi
, Ai = −c2

∂u

∂ξk

∂ξk

∂xi
, i, k = 1, . . . , n .



80 2 Coordinate Transformations

Therefore, the divergent form (2.95) of (2.106) in the coordinates τ , ξ1, . . . , ξn has
the form

∂

∂τ

[
J

(
uτ − wi ∂u

∂ξi

)]
+ ∂

∂ξ j

[
J

(
uτw

j + (c2gmj − wiw j )
∂u

∂ξi

)]
= 0 .

(2.107)

Another representation of the linear wave equation (2.106) in the coordinates
τ , ξ1, . . . , ξn comes from the formula (2.65) for the Laplace operator and the descrip-
tion of the temporal derivative (2.93). Taking advantage of (2.93), we obtain

utt = 1

J

[ ∂

∂τ

(
J

∂u

∂t

)
− ∂

∂ξk

(
Jwk ∂u

∂t

)]

= 1

J

∂

∂τ

[
J
(

uτ − wi ∂u

∂ξi

)]
− 1

J

∂

∂ξk

[
Jwk

(
uτ − wi ∂u

∂ξi

)]
, i, k = 1, . . . , n .

This equation and (2.65) allow one to derive the following form of (2.106) in the
coordinates τ , ξ1, . . . , ξn:

∂

∂τ

[
J
(

uτ − wi ∂u

∂ξi

)]
= ∂

∂ξk

[
Jwk

(
uτ − w j ∂u

∂ξi

)]

+ c2
∂

∂ξk

(
Jgk j ∂u

∂ξ j

)
, i, j, k = 1, . . . , n , (2.108)

which coincides with (2.107) if c2 is a constant.

Lagrangian Coordinates

One of the most popular systems of coordinates in fluid dynamics is the Lagrangian
system. A coordinate ξi is Lagrangian if the both the i th component of the flow
velocity vector u and the grid velocity w in the tangent basis xξ j , j = 1, . . . , m,
coincide, i.e.

ui − wi = 0 . (2.109)

The examples of gas-dynamics equations described above, which include the terms
wi , allow one to obtain the equations in Lagrange coordinates by substituting ui

for wi in the written-out equations in accordance with the relation (2.109). In such a
manner, we obtain the equation of mass conservation, for example, in the Lagrangian
coordinates ξ1, . . . , ξn , as

∂ Jρ

∂τ
= J F (2.110)

from (2.101). Analogously, the convection–diffusion equation (2.103) and the energy
conservation law (2.105) have the forms in Lagrangian coordinates ξi

∂

∂τ
(Jρφ) + ∂

∂ξ j

(
Jgk jε

∂φ

∂ξk

)
= J S , j, k = 1, . . . , n ,
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and

∂

∂τ

[
Jρ
(

e + 1

2
gmkumuk

)]
+ ∂

∂ξ j

(
J pu j

)
= Jρgmk f

m
uk , j, m, k = 1, 2, 3 ,

respectively.
In the same manner, the equations can be written in the Euler–Lagrange form.

where some coordinates are Lagrangian while the rest are Cartesian coordinates.

2.5.4 Equations in the Form of Vector Conservation Laws

Nowwe consider a formula for a vector conservation law with time-dependent phys-
ical magnitudes Ai j

∂

∂x j
Ai j = Fi , i, j = 0, 1, . . . , n , (2.111)

where the independent variable x0 represents the time variable t , i.e. x0 = t. Let
the new independent variables ξ0, ξ1, . . . , ξn be obtained by means of (2.83). Along
with (2.70), which expresses the vector conservation law (2.66) in the coordinates
ξ1, . . . , ξn , we find that the transformation (2.111) has the form of the following

system of equations for the new dependent quantities A
i j
0 , i, j = 0, 1, . . . , n, with

respect to the independent variables ξ0, ξ1, . . . , ξn, ξ0 = τ :

1

J

∂

∂ξ j
(J A

i j
0 ) + Γ

i
k j A

k j
0 = F

i
0 , i, j = 0, 1, . . . , n , (2.112)

where

A
i j
0 = Amn ∂ξi

∂xm

∂ξ j

∂xn
, i, j, m, n = 0, 1, . . . , n ,

Γ
i
k j = ∂2xl

∂ξk∂ξ j

∂ξi

∂xl
, i, j, k, l = 0, 1, . . . , n ,

F
i
0 = F j ∂ξi

∂x j
, i, j = 0, 1, . . . , n .

As in the case of the scalar conservation law, we represent all of the terms of (2.112)
through A00 and the spatial components:



82 2 Coordinate Transformations

A
i j = Akm ∂ξi

∂xk

∂ξ j

∂xm
, i, j, m, n = 1, . . . , n ,

Γ i
k j = ∂2xl

∂ξk∂ξ j

∂ξi

∂xl
, i, j, k, l = 1, . . . , n ,

F
i = F j ∂ξi

∂x j
, i, j = 1, . . . , n ,

wi = −∂ξi

∂t
= ∂x j

∂τ

∂ξi

∂x j
, i, j = 1, . . . , n .

For A
i j
0 , we obtain

A
00
0 = A00 ,

A
0i
0 = A00 ∂ξi

∂t
+ A0m ∂ξi

∂xm
= A

0i − A00wi , i = 1, . . . , n ,

A
i0
0 = A

i0 − A00wi , i = 1, . . . , n ,

A
i j
0 = A00wiw j − A

0 j
wi − A

i0
w j + A

i j
, i, j = 1, . . . , n .

Analogously, for Γ
i
k j we obtain

Γ
0
k j = 0 , k, j = 0, 1, . . . , n ,

Γ
i
00 = ∂wi

∂t
+ wlwmΓ i

lm , i, l, m = 1, . . . , n ,

Γ
i
j0 = Γ i

0 j = ∂wi

∂ξ j
+ wlΓ i

jl , i, j, l = 1, . . . , n ,

Γ
i
jk = Γ i

jk , i, j, k = 1, . . . , n ,

and for F
i
0,

F
0
0 = F0 ,

F
i
0 = F

i − A0wi , i = 1, . . . , n .

Using these expression in (2.112), we obtain a system of equations for the vector
conservation law in the coordinates τ , ξ1, . . . , ξn with an explicit expression for the
components of the speed of the grid movement:

∂

∂τ
(J A00) + ∂

∂ξ j
[J (A

0i − A00w j )] = J F0 ,

∂

∂τ
J (A

i0 − A00w j ) + ∂

∂ξ j
J (A

i j + A00wiw j − A
0 j

w j − A
i0

wi )

+ J A00
(∂wi

∂τ
+ wl ∂wi

∂ξl
+ wlw jΓ i

l j

)

+ J (A
j0 + A

0 j − 2A00w j )
(∂wi

∂ξ j
+ wlΓ i

jl

)
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+ J (A
l j + A00wlw j − A

0 j
wl − A

0l
w j )Γ i

l j

= J (F
i − F0wi ) , i, j, l = 1, . . . , n . (2.113)

Another representation of (2.111) in new coordinates can be derived in the form
of (2.97) by applying (2.97) to each line of the system (2.111). As a result, we obtain

1

J

{
∂

∂τ
(J Ai0) + ∂

∂ξ j

[
J

(
Aik ∂ξ j

∂xk
− Ai0w j

)]}
= F , j, k = 1, . . . , n .

(2.114)

Recall that this approach is not restricted to a square form of the system (2.111), i.e.
the ranges for the indices i and j can be different.

As an illustration of these equations for a vector conservation law in the curvilinear
coordinates τ , ξ1, . . . , ξn , we write out a joint system for the conservation of mass
and momentum, which in the coordinates t, x1, x2, x3 has the following form:

∂ρ

∂t
+ ∂

∂xi
ρui = 0 , i = 1, 2, 3 ,

∂ρui

∂t
+ ∂

∂x j
(ρui u j + pδi

j ) = ρ f i , i, j = 1, 2, 3 , (2.115)

where

p = p − γ
∂ui

∂xi
, δi

j = 0 if i �= j and δi
j = 1 if i = j .

This system is represented in the form (2.111) with

A00 = ρ ,

A0i = Ai0 = ρui , i = 1, 2, 3 ,

Ai j = ρui u j + δi j p, i, j = 1, 2, 3 ,

i.e.

(Ai j ) =

⎛
⎜⎜⎝

ρ ρu1 ρu2 ρu3

ρu1 ρu1u1 + p ρu1u2 ρu1u3

ρu2 ρu2u1 ρu2u2 + p ρu2u3

ρu3 ρu3u1 ρu3u2 ρu3u3 + p

⎞
⎟⎟⎠ ,

i, j = 0, 1, 2, 3 (2.116)

and
F0 = 0 ,

Fi = ρ f i , i = 1, 2, 3 .
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For the coordinate system τ , ξ1, . . . , ξn , we obtain

A
00 = ρ ,

A
0i = A

i0 = ρ(ui − wi ) , i = 1, 2, 3 ,

A
i j = ρ(ui − wi )(u j − w j ) + pgi j , i, j = 1, 2, 3 .

Substituting these expressions in (2.113), we obtain a system of equations for the
mass and momentum conservation laws in the coordinates τ , ξ1, . . . , ξn:

∂

∂τ
(Jρ) + ∂

∂ξ j
[Jρ(u j − w j )] = 0 , i = 1, 2, 3 ,

∂

∂τ
[Jρ(ui − wi )] + ∂

∂ξ j
[Jρ(ui − wi )(u j − w j ) + J pgi j ]

+ Jρ
∂wi

∂τ
+ Jρ(2u j − w j )

∂wi

∂ξ j
+ J (ρulu j + pgl j )Γ i

l j

= Jρ f
i
, i, j, l = 1, 2, 3 . (2.117)

If the coordinates ξi are the Lagrangian ones, i.e. ui = wi , then we obtain, from
(2.117),

∂

∂τ
(Jρ) = 0 ,

Jρ
∂ui

∂τ
+ ∂

∂ξ j
(J pgi j ) + Jρu j ∂ui

∂ξ j
+ J (ρulu j + pgl j )Γ i

l j = Jρ f
i
,

i, j, l = 1, 2, 3 . (2.118)

Note that the first equation of the system (2.117) coincides with (2.101) if F = 0;
this was obtained as the scalar mass conservation law.

In the same manner, we can obtain an expression for the general Navier–Stokes
equations ofmass andmomentumconservationby inserting the tensor {σi j }described
by (2.79) in the system (2.115) and the tensor {σi j } represented by (2.80) in the system
(2.117).

A divergent form of (2.115) in arbitrary coordinates τ , ξ1, . . . , ξn is obtained by
applying (2.114). With this, we obtain the system

∂

∂τ
(Jρ) + ∂

∂ξ j
[Jρ(u j − w j )] = 0 ,

∂

∂τ
(Jρui ) + ∂

∂ξ j

[
J

(
ρui (u j − w j ) + p

∂ξ j

∂xi

)]
= J Fi ,

u j = uk ∂ξ j

∂xk
, i, j, k = 1, 2, 3 , (2.119)
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and, in the Lagrangian coordinates,

∂

∂τ
(Jρ) = 0 ,

∂

∂τ
(Jρui ) + ∂

∂ξ j

(
J p

∂ξ j

∂xi

)
= J Fi , i, j = 1, 2, 3 . (2.120)

2.6 Comments

Many of the basic formulations of vector calculus and tensor analysis may be found
in the books by Kochin (1951), Sokolnikoff (1964) and Gurtin (1981).

The formulation of general metric and tensor concepts specifically aimed at grid
generation was originally performed by Eiseman (1980) and Warsi (1981).

Very important applications of themost general tensor relations to the formulation
of unsteady equations in curvilinear coordinates in a strong conservative form were
presented by Vinokur (1974). A strong conservation-law form of unsteady Euler
equations was also described by Viviand (1974).

A derivation of various forms of the Navier–Stokes equations in general moving
coordinates was described by Ogawa and Ishiguto (1987).
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Chapter 3
Grid Quality Measures

3.1 Introduction

It is very important to develop grid generation techniques which sense grid quality
features and possess means to eliminate the deficiencies of the grids. These require-
ments give rise to the problem of selecting and adequately formulating the necessary
grid quality measures and finding out how they affect the solution error and the
solution efficiency, in order to control the performance of the numerical analysis of
physical problems with grids. Commonly, these quality measures encompass grid
skewness, stretching, torsion, cell aspect ratio, cell volume, departure from confor-
mality, cell deformation and various related constructions (centroids, circumcenters,
circumcircles, incircles, etc.).

In this chapter, we utilize the notions and relations discussed in Sects. 2.2 and
2.3 to describe some qualitative and quantitative characteristics of structured grids.
The structured grid concept allows one to define the grid characteristics through
coordinate transformations as features of the coordinate curves, coordinate surfaces,
coordinate volumes, etc. In general, these features are determined through the ele-
ments of the metric tensors and their derivatives. In particular, some grid properties
can be described in terms of the invariants of the covariant metric tensor.

The chapter starts with an introduction to the elementary theory of curves and
surfaces, necessary for the description of the quality measures of the coordinate
curves and coordinate surfaces. It also includes a discussion of the metric invariants.
Various grid characteristics are then formulated through quantities which measure
the features of the coordinate curves, surfaces, and transformations.

© Springer International Publishing AG 2017
V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-3-319-57846-0_3

87

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2


88 3 Grid Quality Measures

3.2 Curve Geometry

Commonly, the curves lying in the n-dimensional space Rn are represented by smooth
nondegenerate parametrizations

x(ϕ) : [a, b] → Rn, x(ϕ) = [x1(ϕ), · · · , xn(ϕ)] . (3.1)

In our considerations, we will use the designation Sx1 for the curve with the para-
metrization x(ϕ). In this chapter, we discuss the important measures of the local
curve quality known as curvature and torsion. These measures are derived by some
manipulations of basic curve vectors using the operations of dot and cross products.

3.2.1 Basic Curve Vectors

Tangent Vector

The first derivative of the parametrization x(ϕ) in (3.1) is a tangential vector

xϕ = (x1ϕ, . . . , xnϕ)

to the curve Sx1. The quantity

gxϕ = xϕ · xϕ = xiϕx
i
ϕ , i = 1, . . . , n ,

is the metric tensor of the curve and its square root is the length of the tangent vector
xϕ. Thus, the length l of the curve Sx1 is computed from the integral

l =
∫ b

a

√
gxϕdϕ .

The most important notions related to curves are connected with the arc length
parameter s defined by the equation

s(ϕ) =
∫ ϕ

0

√
gxϕdϕ . (3.2)

The vector dx[ϕ(s)]/ds, where ϕ(s) is the inverse of s(ϕ), is a tangent vector des-
ignated by t . From (3.2), we obtain

t = d

ds
x[ϕ(s)] = dϕ

ds
xϕ = 1√

gxϕ
xϕ .
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Therefore, t is the unit tangent vector and, after differentiating the relation t · t = 1,
we find that the derivative ts is orthogonal to t . The vector ts is called the curvature
vector and denoted by k. Let n be a unit vector that is parallel to ts ; there then exists
a scalar k, such that

ts = k = kn, k = (ts · ts)1/2 = α|k| , (3.3)

where α = 1 or α = −1.
The magnitude k is called the curvature, while the quantity ρ = 1/k is called the

radius of curvature of the curve.
Using the identity xϕ = √

gxϕ t , we obtain, from (3.3),

xϕϕ = 1√
gxϕ

(xϕϕ · xϕ)t + gxϕkn . (3.4)

The identity (3.4) is an analog of the Gauss relations (2.36). This identity shows that
the vector xϕϕ lies in the t–n plane.

Curves in Three-Dimensional Space

In three dimensions, we can apply the operation of the cross product to the basic
tangential and normal vectors. The vector b = t × n is a unit vector which is
orthogonal to both t and n. It is called the binormal vector. From (3.4), we find that
b is orthogonal to xϕϕ.

The three vectors (t, n, b) form a right-handed triad (Fig. 3.1). Note that if the
curve lies in a plane, then the vectors t and n lie in the plane as well and b is a
constant unit vector normal to the plane.

The vectors t, n, and b are connected by the Serret–Frenet equations

dt
ds

= kn ,

dn
ds

= −k t + τ b ,

db
ds

= −τn , (3.5)

Fig. 3.1 Base curve vectors
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90 3 Grid Quality Measures

where the coefficient τ is called the torsion of the curve. The first equation of the
system (3.5) is taken from (3.3). The second and third equations are readily obtained
from the formula (2.6) by replacing the b in (2.6) with the vectors on the left-hand
side of (3.5), while the vectors t, n, and b substitute for e1, e2, and e3, respectively.
The vectors t, n, and b constitute an orthonormal basis, i.e.

ai j = ai j = δij , i, j = 1, 2, 3 ,

where, in accordance with Sect. 2.2.4, ai j = ei · e j , and the tensor {ai j } is the inverse
of the tensor {ai j }. Now, using (2.6), we obtain

dn
ds

=
(
dn
ds

· t
)
t +

(
dn
ds

· n
)
n +

(
dn
ds

· b
)
b = −k t +

(
dn
ds

· b
)
b ,

since ns · t = −n · ts, ns · n = 0. Thus, we obtain the second equation of (3.5) with
τ = ns · b. Analogously, we obtain the last equation of (3.5) by expanding the vector
bs through t, n, and b using the relation (2.6):

db
ds

=
(
db
ds

· t
)
t +

(
db
ds

· n
)
n +

(
db
ds

· b
)
b = −

(
dn
ds

· b
)
n = −τn ,

as bs · t = −b · ts = 0, bs · b = 0.

3.2.2 Curvature

A very important characteristic of a curve which is related to grid generation is the
curvature k. This quantity is used as a measure of coordinate line bending.

One way to compute the curvature is to multiply (3.3) by n using the dot product
operation. As

dt
ds

= 1√
gxϕ

d

dϕ

(
1√
gxϕ

xϕ

)
= 1

gxϕ
xϕϕ − 1

(gxϕ)2
(xϕ · xϕϕ)xϕ ,

from (3.2), (3.3), the result is

k = 1

gxϕ
xϕϕ · n . (3.6)

The vector n is independent of the curve parametrization, and therefore we find from
(3.4), (3.6) that k is an invariant of parametrizations of the curve.

In two dimensions,

n = 1√
gxϕ

(−x2ϕ, x1ϕ) ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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therefore, in this case, we obtain, from (3.6),

k2 = (xϕyϕϕ − yϕxϕϕ)2

[(xϕ)2 + (yϕ)2]3 (3.7)

with the convention x = x1, y = x2. In particular, when the curve in R2 is defined
by a function u = u(x), we obtain from (3.7), assuming in (3.1) x(ϕ) = [ϕ, u(ϕ)],
ϕ = x ,

k2 = (uxx )
2/[1 + (ux )

2]3 .

In the case of three-dimensional space, the curvature k can also be computed from
the relation obtained by multiplying (3.4) by xϕ with the cross product operation:

xϕ × xϕϕ = gxϕk(xϕ × n) = (gxϕ)3/2kb .

Thus, we obtain

k2 = |xϕ × xϕϕ|2
(gxϕ)3

(3.8)

and consequently, from (2.26),

k2 = (x1ϕx
2
ϕϕ − x2ϕx

1
ϕϕ)2 + (x2ϕx

3
ϕϕ − x3ϕx

2
ϕϕ)2 + (x3ϕx

1
ϕϕ − x1ϕx

3
ϕϕ)2

[(x1ϕ)2 + (x2ϕ)2 + (x3ϕ)2]3 .

3.2.3 Torsion

Another important qualitymeasure of curves in three-dimensional space is the torsion
τ . This quantity is suitable formeasuring the rate of twisting of the lines of coordinate
grids.

In order to figure out the value of τ for a curve in R3, represented by (3.1) for
n = 3, we use the last relation in (3.5), which yields

τ = −db
ds

· n .

As b = t × n, we obtain

db
ds

= dt
ds

× n + t × dn
ds

= t × dn
ds

,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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since dt/ds = kn. Thus,

τ =
(

−t × dn
ds

)
· n . (3.9)

From (3.2), (3.3), we have the following obvious relations for the basic vectors t and
n in terms of the parametrization x(ϕ) and its derivatives:

t = 1√
gxϕ

xϕ ,

n = 1

k

dt
ds

= 1

k

(
1

gxϕ
xϕϕ − xϕ · xϕϕ

(gxϕ)2
xϕ

)
,

dn
ds

= 1

k

(
1

(gxϕ)3/2
xϕϕϕ − 2

xϕ · xϕϕ

(gxϕ)2
xϕϕ

− d

dϕ

(
xϕ · xϕϕ

(gxϕ)2

)
xϕ − 1

k

dk

ds
n
)

. (3.10)

Thus,

t × dn
ds

= 1

k(gxϕ)2
xϕ × xϕϕϕ − 2

xϕ · xϕϕ

k(gxϕ)5/2
xϕ × xϕϕ − 1

k2
√

gxϕ

dk

ds
xϕ × n .

As (a × b) · a = (a × b) · b = 0 for arbitrary vectors a and b, we obtain, from (3.9,
3.10),

τ = − 1

k2(gxϕ)3
(xϕ × xϕϕϕ) · xϕϕ = 1

k2(gxϕ)3
(xϕ × xϕϕ) · xϕϕϕ . (3.11)

And using (2.31), we also obtain

τ = 1

k2(gxϕ)3
det

⎧⎪⎨
⎪⎩
x1ϕ x2ϕ x3ϕ
x1ϕϕ x2ϕϕ x3ϕϕ

x1ϕϕϕ x2ϕϕϕ x3ϕϕϕ

⎫⎪⎬
⎪⎭ .

3.3 Surface Geometry

In general, a surface in the three-dimensional space R3 is assumed to be locally
represented by some parametric two-dimensional domain S2 and a parametrization

x(s) : S2 → R3 , x(s) = [x1(s), x2(s), x3(s)] , s = (s1, s2) , (3.12)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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where x(s) is a smooth nondegenerate vector function. We use the designation Sx2

for the surface with the parametrization x(s). In analogy with domains, the transfor-
mation x(s) defines the curvilinear coordinate system s1, s2 on the surface, as well
as the respective base vectors and metric tensors.

For the purpose of adaptive grid generation, the so-calledmonitor surfaces are very
important. These surfaces are defined by the values of some vector-valued function
u(s), referred to as the height function, over the domain S2. The natural form (3.12)
of the parametrization of the monitor surface formed with a scalar height function
u(x) is represented by the formula

x(s) = [s1, s2, u(s1, s2)] . (3.13)

3.3.1 Surface Base Vectors

A surface in R3, represented by (3.12), has three base vectors: two tangents (one to
each coordinate curve) and a normal. The two tangential vectors to the coordinates
s1 and s2 represented by x(s) are, respectively,

xsi = ∂x
∂si

=
(

∂x1

∂si
,

∂x2

∂si
,

∂x3

∂si

)
, i = 1, 2 .

The unit normal vector to the surface Sx2 is defined through the cross product of the
tangent vectors xs1 and xs2 :

n = 1

|xs1 × xs2 | (xs1 × xs2) .

Since (xs1 × xs2) · n > 0, the base surface vectors xs1 , xs2 , and n comprise a right-
handed triad (Fig. 3.2). In accordance with (2.26) and (2.27), the unit normal n can
also be expressed as

n = 1√
grs

(
∂xl+1

∂s1
∂xl+2

∂s2
− ∂xl+2

∂s1
∂xl+1

∂s2

)
el , l = 1, 2, 3 , (3.14)

where (e1, e2, e3) is the Cartesian basis of R3. Recall that this formula implies the
identification convention for indices in three dimensions, where k is equivalent to
k ± 3. If the surface Sx2 is a monitor surface represented by a height function u(s),
then we obtain, from (3.14),

n = 1√
1 + (us1)2 + (us2)2

(
− ∂u

∂s1
, − ∂u

∂s2
, 1

)
.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 3.2 Surface base
vectors

In another particular case, when the surface points are found from the equation
f (x) = c, we obtain ∇ f · xsi = 0, i = 1, 2, and therefore

n = l∇ f , |l| = 1/|∇ f | .

3.3.2 Metric Tensors

The surface metric tensors, like the domain metric tensors, are defined through the
operation of the dot product on the vectors tangential to the coordinate lines.

Covariant Metric Tensor

We designate the covariant metric tensor of the surface Sx2, represented by (3.12) in
the coordinates s1, s2 as Gxs , i.e.

Gxs = {gxs
i j }, i, j = 1, 2 ,

where

gxs
i j = xsi · xs j , i, j = 1, 2 . (3.15)

In particular, when a surface is defined by the values of some scalar function u(s)
over the domain S2 then, from (3.13),

gxs
i j = δ

j
i + ∂u

∂si
∂u

∂s j
, i, j = 1, 2 .
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Fig. 3.3 Geometric meaning of the metric elements

The quantity
√

gxs
ii in (3.15) for a fixed i has the geometrical meaning of the length

of the tangent vector xsi to the coordinate curve si (see Fig. 3.3).
The differential quadratic form

gxs
i j ds

ids j , i, j = 1, 2 ,

relating to the line elements in space, is called the first fundamental form of the sur-
face. It represents the value of the square of the length of an elementary displacement
dx on the surface.

Let the Jacobian of Gxs be designated by gxs . Since

gxs = |xs1 |2|xs2 |2(1 − cos2 θ) = (|xs1 | · |xs2 | sin θ)2 = (xs1 × xs2)
2 ,

where θ is the angle between xs1 and xs2 , we find that the quantity gxs is the area
squared of the parallelogram formed by the vectors xs1 and xs2 . Therefore, the area
of the surface Sx2 is computed from the formula

S =
∫
S2

√
gxsds .

Contravariant Metric Tensor

Consequently, the contravariant metric tensor of the surface Sx2, represented by
(3.12), in the coordinates s1, s2 is the matrix designated as Gsx , and consequently

Gsx = {gi jsx } , i, j = 1, 2.

The tensors Gxs and Gsx are inverse to each other, i.e.

gxs
i j g jk

sx = δik , i, j, k = 1, 2 .
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Thus, in analogy with (2.21), we obtain

gi jsx = (−1)i+ jgxs
3−i 3− j/g

xs ,

gxs
i j = (−1)i+ jgxsg3−i 3− j

sx , i, j = 1, 2 , (3.16)

with fixed indices i and j . The diagonal elements g11sx and g22sx of the contravariant
metric tensor Gsx are connected with the natural geometric quantities of the paral-
lelogram defined by the tangent vectors xs1 and xs2 (see Fig. 3.3). Namely, taking
into account the relation gxs = gxs

11/g
22
sx , we find that

√
g22sx is the inverse of the value

of the distance between the parallel edges of the parallelogram formed by the vec-
tor xs1 . Analogously,

√
g11sx is the inverse of the distance between the other pair of

parallelogram edges, i.e. those formed by xs2 .

3.3.3 Second Fundamental Form

The coefficients of the second fundamental form

bi jds
ids j , i, j = 1, 2 ,

of the surface Sx2 are defined by the dot products of the second derivatives of the
vector function x(s) and the unit normal vector n to the surface at the point s under
consideration:

bi j = xsi s j · n , i, j = 1, 2 . (3.17)

Thus, from (3.14), (3.17), we obtain for bi j , i, j = 1, 2,

bi j = 1√
gxs

[
∂2xl

∂si∂s j

(
∂xl+1

∂s1
∂xl+2

∂s2
− ∂xl+2

∂s1
∂xl+1

∂s2

)]
, l = 1, 2, 3 , (3.18)

with the identification convention for the superscripts that k is equivalent to k ± 3.
Correspondingly, for the monitor surface with the height function u(s), we obtain

bi j = 1√
1 + (us1)2 + (us2)2

usi s j , i, j = 1, 2 .

The tensor {bi j } reflects the local warping of the surface, namely its deviation
from the tangent plane at the point under consideration. In particular, if {bi j } ≡ 0 at
all points of S2, then the surface is a plane.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.3.4 Surface Curvatures

Principal Curvatures

Let a curve on the surface be defined by the intersection of a plane containing the
normal n with the surface. It is obvious that either n or −n is also the curve normal
vector. Taking into account (3.6), we obtain for the curvature of this curve

k = bi jdsids j

gxs
i j ds

ids j
, i, j = 1, 2 . (3.19)

Here, (ds1, ds2) is the direction of the curve, i.e. dsi = c(dsi/dϕ), where s(ϕ) is
a curve parametrization. The two extreme quantities KI and KII of the values of k
are called the principal curvatures of the surface at the point under consideration. In
order to compute the principal curvatures, we consider the following relation for the
value of the curvature:

(bi j − kgxs
i j )ds

ids j = 0 , i, j = 1, 2 , (3.20)

which follows from (3.19). In order to find the maximum and minimum values of
k, the usual method of equating to zero the derivative with respect to dsi is applied.
Thus, the components of the (ds1, ds2) direction giving an extreme value of k are
subject to the restriction

(bi j − kgxs
i j )ds

j = 0 , i, j = 1, 2 ,

which, in fact, is the eigenvalue problem for curvature. One finds the eigenvalues
k by setting the determinant of this equation equal to zero, obtaining thereby the
secular equation for k:

det(bi j − kgxs
i j ) = 0 , i, j = 1, 2 .

This equation, written out in full, is a quadratic equation

k2 − gi jsxbi j k + [b11b22 − (b12)
2]/gxs = 0 ,

with two roots, which are the maximum and minimum values KI and KII of the
curvature k:

KI,II = 1

2
gi jsxbi j ±

√
1

4
(g

i j
sxbi j )2 − 1

gxs
[b11b22 − (b12)2] . (3.21)
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Gaussian Curvature

The determinant of the tensor {K i
j } represents the Gaussian curvature of the surface

(3.12)

KG = det{K i
j } = 1

gxs
[b11b22 − (b12)

2] . (3.22)

Taking into account (3.21), we readily see that the Gaussian curvature is the product
of the two principal curvatures KI and KII, i.e.

KG = KI KII .

In terms of the height function u(s) representing the monitor surface Sx2, we have

KG = us1s1us2s2 − (us1s2)2

[1 + (us1)2 + (us2)2]2 .

A surface point is called elliptic if KG > 0, i.e. both KI and KII are both nega-
tive or both positive at the point of consideration. A saddle or hyperbolic point has
principal curvatures of opposite sign, and therefore has negative Gaussian curvature.
A parabolic point has one principal curvature vanishing and, consequently, a van-
ishing Gaussian curvature. This classification of points is prompted by the form of
the curve which is obtained by the intersection of the surface with a slightly offset
tangent plane. For an elliptic point, the curve is an ellipse; for a saddle point, it is a
hyperbola. It is a pair of lines (degenerate conic) at a parabolic point, and it vanishes
at a planar point, where both principal curvatures are zero.

Mean Curvature

One half of the sum of the principal curvatures is referred to as the mean surface
curvature. Taking advantage of (3.21), the mean curvature, designated by Km, is
defined through the coefficients of the second fundamental form and elements of the
contravariant metric tensor by

Km = 1

2
(KI + KII) = 1

2
gi jsxbi j , i, j = 1, 2 . (3.23)

In the case of the monitor surface represented by the function u(s1, s2), we obtain

Km = us1s1 [1 + (us2)2] + us2s2 [1 + (us1)2] − 2us1us2us1s2

2[1 + (us1)2 + (us2)2]3/2 .

Now we consider the tensor

{K i
j } ≡ {giksxbk j } , i, j, k = 1, 2 .



3.3 Surface Geometry 99

As a reminder, the repeated index k means summation over it. It is easy to see that
{K i

j } is a mixed tensor contravariant with respect to the upper index and covariant
with respect to the lower one. From (3.23), we find that the mean curvature is defined
as the trace of the tensor, namely,

2Km = tr{K i
j } , i, j = 1, 2 . (3.24)

A surface whose mean curvature is zero, i.e. KI = −KII, possesses the following
unique property. Namely, if a surface bounded by a specified contour has a minimum
area, then its mean curvature is zero. Conversely, of all the surfaces bounded by
a curve whose length is sufficiently small, the minimum area is possessed by the
surface whose mean curvature is zero.

It is easily shown that both the mean and the Gaussian curvatures are invariant of
surface parametrizations.

3.3.5 Curvatures of Discrete Surfaces

From a computational standpoint, the discrete objects are attractive because they
have been designed from the ground up with data-structures and algorithms in mind.
From a mathematical standpoint, they present a great challenge: the discrete objects
should have properties which are analogues of the properties of continuous objects.
One important property of curves and surfaces is their curvature, which plays a
significant role in many application areas. In the continuous formulations, there are
remarkable theorems dealing with curvatures; a key requirement for a discrete curve
or surface with discrete curvatures is that they satisfy analogous theorems.

Relying on the results presented in the paper of Sullivan (see Pinkall and Polhier
1993), we consider here some formulations of the curvatures of discrete surfaces,
meaning triangulated polyhedral surfaces. Often, the most useful formulations are
those which are based on integral relations for curvature, like the Gauss–Bonnet
theorem or the force balance equation for mean curvature.

We assume that all cells meeting at a grid node P of the discrete surface under
consideration are triangles. Such a triangulation at the node P can be obtained from
arbitrary polyhedron triangulations by connecting the nodes adjacent to P of each
of the two neighboring edges emanating from P .

Gauss Curvature

Gauss curvature KG at a grid vertex P must be subject to the following relation

∫ ∫
D
KGd A :=

∑
P∈D

K P , with K P = 2π −
∑
i

θi , (3.25)

where the angles θi are the interior angles at P of the triangles meeting there, and
K P is often known as the angle defect at P .
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From this relation, one formula for discrete Gauss curvature Kd
G(P) at the node

P may be defined by

Kd
G(P) = 1

A(starP)
(2π −

∑
i

θi ) , (3.26)

where starP is a designation for the union of all triangles containing the vertex P ,
and A(starP) is the area of starP .

One more intrinsic characterization of Gauss curvature KG is obtained by com-
paring the circumferences Cε of (intrinsic) ε-balls around P to the value 2πε. We
have

Cε

2πε
= 1 − ε2

6
KG(P) + O(ε3) . (3.27)

From this formula, discrete Gauss curvature Kd
G(P) at the node P may be

defined by

Kd
G(P) = 6

ε2

(
1 − Sε

2πε

)
, (3.28)

where Sε is the length of the curve obtained by intersecting an ε-ball with starP , and
ε is a small number.

These formulations of the discrete Gauss curvature depend significantly on the
choice of which pairs of cone points are connected by triangle edges (see Bobenko
and Springborn 2005).

Mean Curvature

Suppose that the vertices adjacent to P , in cyclic order, are P1, . . . , Pk . Then, the
discrete vector mean curvature K d

m(P) can be expressed explicitly in terms of these
neighbors by the following formula:

K d
m(P) = 1

2

∑
i

(cot αi + cot βi )(P − P i ) , (3.29)

where αi and βi are the angles opposite the edge P P i in the two incident triangles
(see Pinkall and Polhier 1993 and Sullivan 2008).

Alternatively, we have

Km(P) = ΔB[x](P) ,

where x is the position vector, and ΔB is the Beltrami operator. Computing the
Beltrami operator numerically at each grid point of a discrete surface gives the value
of K d

m(P).
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3.4 Metric-Tensor Invariants

The coordinate transformation x(ξ) : Ξ n → Xn of a physical n-dimensional domain
Xn applied to generate grids through mapping approaches can be locally interpreted
as some deformation of a uniform cell in the computational domain Ξ n into the
corresponding cell in the domain Xn . The local deformation of any cell is approxi-
mated by a linear transformation represented by the Jacobi matrix {∂xi/∂ξ j }. This
deformation is not changed if any orthogonal transformation is applied to the cell in
Xn . The deformation is also preserved if the orientation of the computational domain
Ξ n is changed. Therefore, it is logical to formulate the features of the coordinate
grid cells in terms of the invariants of the orthogonal transformations of the covariant
metric tensor {gi j }, in the coordinates ξ1, . . . , ξn , i.e.

gi j = xξi · xξ j , i, j = 1, . . . , n . (3.30)

3.4.1 Algebraic Expressions for the Invariants

According to the theory of matrices, a symmetric nondegenerate (n×n)matrix {ai j }
has n independent invariants Ii , i = 1, . . . , n, of its orthogonal transformations. The
i th invariant Ii is defined by summing all of the principal minors of order i of the
matrix. Recall that the principal minors of a square matrix are the determinants of
the square submatrices of the matrix. Thus, for example,

I1 =
n∑

i=1

aii = tr{ai j } ,

In−1 =
n∑

i=1

cofactor aii = det{ai j }
n∑

i=1

aii = det{ai j } tr{ai j } ,

In = det{ai j } , (3.31)

where the matrix {ai j } is the inverse of {ai j }.
Whenweuse, for {ai j }, the covariantmetric tensor {gi j }, gi j = xξi ·xξ j , of a domain

Xn , then, taking advantage of (3.31), the invariants I1 and I2 in two dimensions are
expressed as

I1 = g11 + g22 ,

I2 = g11 g22 − (g12)
2 = g = J 2 , (3.32)

where J = det{∂xi/∂ξ j }. The invariants of the three-dimensional metric tensor {gi j }
are expressed as follows:
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I1 = g11 + g22 + g33 ,

I2 = g(g11 + g22 + g33)

I3 = det{gi j } = g , i, j = 1, 2, 3 , (3.33)

where gi j = ∇ξi ·∇ξ j . Analogously, the invariants of the surface metric tensor Gxs ,
represented in the coordinates s1, s2 by (3.12), are written out as

I1 = gxs
11 + gxs

22

I2 = gxs . (3.34)

The notion of an invariant can be helpful to identity conformal coordinate trans-
formations. For example, in two dimensions, we know that a conformal mapping
x(ξ) satisfies the Cauchy–Riemann equations

∂x1

∂ξ1
= ∂x2

∂ξ2
,

∂x1

∂ξ2
= −∂x2

∂ξ1
.

Therefore, a zero value of the quantity

Q =
(

∂x1

∂ξ1
− ∂x2

∂ξ2

)2

+
(

∂x1

∂ξ2
+ ∂x2

∂ξ1

)2

is an indication of the conformality of x(ξ). We obtain

Q = g11 + g22 − 2J = I1 − 2
√
I2 ,

using (3.32). Thus, the two-dimensional coordinate transformation x(ξ) is conformal
if only if the invariants I1 and I2 satisfy the restriction I1/

√
I2 = 2. In Sect. 3.7.7, it

will be shown that an analogous relation is valid for an arbitrary dimension n ≥ 2.
We also can see that the mean and Gaussian curvatures described by (3.24) and

(3.22), respectively, are defined through the invariants of the tensor {K i
j }, namely,

Km = 1

2
I1 , KG = I2 .

3.4.2 Geometric Interpretation

The invariants of the covariant metric tensor {gi j } can also be described in terms of
some geometric characteristics of the n-dimensional parallelepiped (parallelogram
in two dimensions) determined by the tangent vectors xξi , thus giving a relationship
between the cell characteristics of coordinate grids and the invariants. For example,
we see from (3.32), (3.34) in two dimensions that the invariant I1 equals the sum
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squares of the parallelogram edge lengths, while I2 is equal to the parallelogram area
squared. In three-dimensional space, we find, from (3.33), that I1 equals the sum of
the squares of the lengths of the base vectors xξi , i = 1, 2, 3, which are the edges
of the parallelepiped. The invariant I2 is the sum of the squares of the areas of the
faces of the parallelepiped, while the invariant I3 is its volume squared.

These geometric interpretations can be extended to arbitrary dimensions by the
following consideration. Every principal minor of order m is the determinant of an
m-dimensional squarematrix Am obtained from the covariant tensor {gi j } by crossing
out n − m rows and columns that intersect pairwise on the diagonal. Therefore, the
elements of Am are the dot products of m particular vectors of the base tangential
vectors xξi , i = 1, . . . , n. Thus, geometrically, the determinant of Am equals the
square of them-dimensional volumeof them-dimensional parallelepiped constructed
by the vectors of the basic set xξi , i = 1, . . . , n, whose dot products form the matrix
Am . Therefore, Ii , i = 1, . . . , n, is geometrically the sum of the squares of the i-
dimensional volumes of the i-dimensional sides of the n-dimensional parallelepiped
spanned by the base vectors xξi , i = 1, . . . , n.

We note that the invariants do not describe all of the geometric features of the grid
cells. In the two-dimensional case, the invariants I1 and I2 given by (3.32) can be the
same for parallelepipeds that are not similar. For example, if we take a transformation
x(ξ) whose tangential vectors xξ1 and xξ2 define a rectangle with sides of different
lengths a and b, then we obtain

I1 = a2 + b2 , I2 = (ab)2 .

However, as demonstrated in Fig. 3.4, the same invariants are produced by a trans-
formation x(ξ), whose tangent vectors yield a rhombus with a side length l equal to√

(a2 + b2)/2 and an angle θ defined by

θ = arcsin
2ab

a2 + b2
,

Fig. 3.4 Quadrilaterals with
the same invariants
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since

I1 = 2l2 = a2 + b2 ,

I2 = l2 sin2 θ = (ab)2 .

Thus, knowledge of the values of the invariants I1 and I2 alone is not sufficient
to distinguish the rectangle from the rhombus. However, the value of the quantity
I1/

√
I2 imposes restriction on the maximal angle between the parallelogram edges

and on the maximum cell aspect ratio. These bounds will be evaluated in Sect. 3.7.7.
In particular, if I1 = 2

√
I2, then we can definitely state that the parallelogram is a

square.

3.5 Characteristics of Grid Lines

This section describes some characteristics of curvilinear coordinate lines in domains
specified by the parametrization x(ξ) : Ξ n → Xn . These characteristics can be used
for the evaluation of the grid properties and for the formulation of grid generation
techniques through the calculus of variations.

All considerations in this section are concerned with a selected coordinate line ξi

for a specified i , and therefore summation is not carried out over the repeated index
i here.

3.5.1 Sum of Squares of Cell Edge Lengths

The length li of any cell edge along the coordinate curve ξi is expressed through the
element gi i of the covariant metric tensor {gi j }:

li ≈ √
gi i h .

The sum of the squares of the cell edge lengths equals Qlh2, where

Ql =
n∑
j=1

g j j = tr {gi j } . (3.35)

The quantity Ql is one of the important characteristics of the grid cell. This charac-
teristic is the first invariant I1 of the tensor matrix {gi j }.
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3.5.2 Eccentricity

The ratio between two adjacent grid steps along any coordinate curve ξi is a quantity
which characterizes the change of the length of the cell edge in the ξi direction. This
quantity is designated as εi , and at the point ξ, it is expressed as follows:

εi ≈ |xξi (ξ + hei )|
|xξi (ξ)| .

We also find that

εi ≈
√

gi i (ξ + hei ) − √
gi i (ξ)√

gi i (ξ)
+ 1 ≈ h

1√
gi i

∂

∂ξi
√

gi i + 1 ,

for a fixed i , since |xξi | = √
gi i . The quantity

Qi
ε =

(
1√
gi i

∂

∂ξi
√

gi i

)2

=
(

∂

∂ξi
ln

√
gi i

)2

, i fixed (3.36)

obtained from the expression for εi is a measure of the relative eccentricity. When
Qε = 0, then the length of the cell edge does not change in the ξi direction. With the
Christoffel symbol notation (2.40), we also obtain

Qi
ε =

(
1

gi i

∂x
∂ξi

· ∂2x
∂ξi∂ξi

)2

=
(

1

gi i
[i i, i]

)2

, i fixed . (3.37)

3.5.3 Curvature

The relative eccentricity Qi
ε describes the change of the length of the cell edge along

the coordinate curve ξi , however, it fails to describe the change in its direction. The
quantity which characterizes this grid quality is derived through a curvature vector.

In accordance with (3.3), the curvature vector ki of the coordinate line ξi for a
fixed i is defined by the relation ki = xss , where s is the arc length parametrization
of the coordinate line ξi , i.e. the variable s is defined by the transformation s(ξi )
satisfying the equation

ds

dξi
= √

gi i , i fixed .

Therefore,

∂

∂s
= 1√

gi i

∂

∂ξi
, i fixed

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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and consequently

ki = 1

gi i
xξi ξi − xξi

(gi i )2
xξi · xξi ξi , i fixed . (3.38)

Local Straightness of the Coordinate Line

Equation (3.38) shows that if the curvature vector ki equals zero (ki = 0), then the
vector xξi ξi is parallel to the vector xξi , i.e. the tangential vector does not change
its direction. Therefore, the coordinate line ξi is locally straight at a point of zero
curvature. From (3.38), we obtain, in this case,

xξi ξi = (xξi ξi · xξi )

gi i
xξi , i fixed .

Using the Gauss relations (2.36), we also obtain

xξi ξi = Γ l
i i xξl , l = 1, . . . , n , i fixed .

Comparing these two expansions of xξi ξi , we see that the vector xξi ξi is parallel to
xξi if

Γ l
i i = 0 for all l �= i , i fixed . (3.39)

The relation (3.39) is a criterion of local straightness of the coordinate curve ξi .
A measure of the deviation of the curve ξi from a straight line may, therefore, be
determined as

Qi
st = dlmΓ l

i iΓ
m
ii , l,m �= i , i fixed , (3.40)

where dlm is a positive (n − 1) × (n − 1) tensor.

Expansion of the Curvature Vector in the Normal Vectors

We know that the curvature vector ki is orthogonal to the unit tangential vector xs .
On the other hand, the normal base vectors ∇ξ j , j �= i , are also orthogonal to the
tangent vector xξi and therefore to xs . Thus, the curvature vector ki of the coordinate
curve ξi can be expanded in the n − 1 normal vectors ∇ξ j , j �= i . In order to find
such an expansion, we first recall that in accordance with (2.41),

xξi ξi = [i i,m]∇ξm , m = 1, . . . , n , , i fixed

with summation over m, where

[i i,m] = xξi ξi · xξm = ∂gim

∂ξi
− 1

2

∂gi i

∂ξm
, i fixed ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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from (2.45). Furthermore, from (2.23),

xξi = gim∇ξm, m = 1, . . . , n .

Therefore, the relation (3.38) is equivalent to

ki = 1

gi i

(
[i i,m]∇ξm − 1

gi i
[i i, i]

)
gim∇ξm

= 1

(gi i )2
(gi i [i i, l] − gil [i i, i])∇ξl ,

m = 1, . . . , n , l = 1, . . . , n , l �= i , i fixed . (3.41)

This equation represents the curvature vector ki through the n−1 normal base vectors
∇ξl, l �= i .

In particular, in two dimensions, the relation (3.41) for i = 1 becomes

k1 = 1

(g11)2
(g11[11, 2] − g12[11, 1])∇ξ2 . (3.42)

And, from (2.21),

k1 = g

(g11)2
(g22[11, 2] + g21[11, 1])∇ξ2 .

Therefore, using (2.43), we obtain

k1 = g

(g11)2
Γ 2
11∇ξ2 . (3.43)

Analogously, the curvature vector k2 along the coordinate ξ2 is expressed as follows:

k2 = g

(g22)2
Γ 1
22∇ξ1 . (3.44)

In the same way, the curvature vector of the coordinate curves in the case of three-
dimensional space R3 is computed. For example, in accordance with (3.41), the
vector k1 can be expanded in the normal vectors ∇ξ2 and ∇ξ3 as

k1 = 1

(g11)2
{(g11[11, 2] − g12[11, 1])∇ξ2

+(g11[11, 3] − g13[11, 1])∇ξ3} . (3.45)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2


108 3 Grid Quality Measures

Measure of Coordinate Line Curvature

The length of the vector ki is the modulus of the curvature and denoted by |ki |. Thus,
for the curvature k1 of the coordinate line ξ1 in the two-dimensional domain X2, we
obtain, from (3.43),

|k1| = g
√

g22

(g11)2
|Γ 2

11| = g
√

g22

(g11)2

∣∣∣∣ ∂2x1

∂ξ1∂ξ1
∂ξ2

∂x1
+ ∂2x2

∂ξ1∂ξ1
∂ξ2

∂x2

∣∣∣∣ . (3.46)

Taking into account the two-dimensional relation (2.4)

∂ξi

∂x j
= (−1)i+ j 1

J

∂x3− j

∂ξ3−i
, i, j = 1, 2 , J = √

g ,

with i, j fixed, we find that

Γ 2
11 = 1

J

(
∂x1

∂ξ1
∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1
∂2x1

∂ξ1∂ξ1

)
.

Therefore, for the curvature of the coordinate ξ1, we also obtain, from (2.21) and
(3.46),

|k1| = 1

(g11)3/2

∣∣∣∣∂x
1

∂ξ1
∂2x2

∂ξ1∂ξ1
− ∂x2

∂ξ1
∂2x1

∂ξ1∂ξ1

∣∣∣∣ . (3.47)

Analogously, using the relation (3.44), we get for the curvature of the coordinate
curve ξ2

|k2| = 1

(g22)3/2

∣∣∣∣∂x
2

∂ξ2
∂2x1

∂ξ2∂ξ2
− ∂x1

∂ξ2
∂2x2

∂ξ2∂ξ2

∣∣∣∣ . (3.48)

In the case of three-dimensional space, the curvature measure of the coordinate
line ξi is computed from the relation (3.8):

|ki | = 1√
(gi i )3

|xξi × xξi ξi | , i = 1, 2, 3 , i fixed . (3.49)

The curvature representation can provide various measures of the curvature of the
coordinate line ξi . The simplest measure may be described in the common manner
as the square of the curvature

Qi
k = (ki )

2 . (3.50)

In analogy with (3.40), the quantity Qi
k is also a measure of the departure of the

coordinate line ξi from a straight line.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.5.4 Measure of Coordinate Line Torsion

The square of the torsion is another measure of a coordinate line ξi lying in three-
dimensional space. This measure is computed in accordance with (3.11) from the
relation

Qi
τ = 1

(ki )4(gi i )6
[(xξi × xξi ξi ) · xξi ξi ξi ]2

= 1

(ki )4(gi i )6
det2

⎛
⎝ xξi

xξi ξi

xξi ξi ξi

⎞
⎠ , i fixed . (3.51)

The condition Qi
τ ≡ 0 means that the coordinate line ξi lies in a plane. Thus, the

quantity Qi
τ is a measure of the departure of the coordinate line ξi from a plane line.

3.6 Characteristics of Faces of Three-Dimensional Cells

A coordinate grid in a three-dimensional domain X3 is composed of three-
dimensional curvilinear hexahedral cells which are images of elementary cubes
obtained through a coordinate transformation

x(ξ) : Ξ 3 → X3.

The boundary of each cell is segmented into six curvilinear quadrilaterals, through
which some characteristics of the cell can be defined. This section describes some
important quality measures of the faces of three-dimensional coordinate cells.

3.6.1 Cell Face Skewness

The skewness of a cell face is described through the angle between the two tangent
vectors defining the cell face. Let the cell face lie in the surface ξl = const; the
tangent vectors of the surface are then the vectors xξi and xξ j , i = l + 1, j = l + 2,
with the identification convention for the index m that m is equivalent to m ± 3.
One of the cell face skewness characteristics can be determined as the square of the
cosine of the angle between the vectors. Thus, for a fixed l,

Ql
sk,1 = cos2 θ = (gi j )

2

gi ig j j
, i = l + 1 , j = l + 2 . (3.52)
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Another expression for the cell face skewness is specified by the cotangent squared
of the angle θ:

Ql
sk,2 = cot2 θ = (gi j )

2

gi ig j j − (gi j )2
, i = l + 1 , j = l + 2 . (3.53)

Taking into account the relations (2.29) and (2.33), this can also be written in the
form

Ql
sk,2 = (gi j )

2

(xξi × xξ j )2
= (gi j )

2

ggll
, i = l + 1 , j = l + 2 .

Since (gi j )
2 = gi ig j j (1 − sin2 θ), we also obtain

Ql
sk,2 = gi ig j j

(xξi × xξ j )2
− 1 = gi ig j j

ggll
, i = l + 1 , j = l + 2 .

The quantities for the grid face skewness introduced above equal zero when the
edges of the cell face are orthogonal. Therefore, these quantities characterize the
departure of the cell face from a rectangle. One more characteristic of the cell face
nonorthogonality is defined as square of the dot product of the vectors xξi and xξ j :

Ql
o,1 = (gi j )

2 , i = l + 1 , j = l + 2 . (3.54)

3.6.2 Face Aspect-Ratio

A measure of the aspect-ratio of the cell face formed by the tangent vectors xξi and
xξ j is defined through the diagonal elements gi i and g j j of the covariant metric tensor
{gkm}, k,m = 1, 2, 3. One form of this measure is given by the expression

Ql
as = gi i

g j j
+ g j j

gi i
= (gi i + g j j )

2

gi ig j j
− 2 , (3.55)

where i = l + 1, j = l + 2, and m + 3 is equivalent to ±m. We have the inequality
Ql

as ≥ 2, which is an equality if and only if gi i = g j j , i.e. the parallelogram formed
by the vectors xξi and xξ j is a rhombus. Thus, (3.55) is a measure of the departure
of the cell from a rhombus.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.6.3 Cell Face Area Squared

The square of the area of the face of the basic parallelepiped formed by the two
tangential vectors xξi and xξ j is expressed as follows:

Ql
ar = |xξi |2|xξ j |2 sin2 θ = gi ig j j − (gi j )

2 , i = l + 1 , j = l + 2 , (3.56)

where θ is the angle of intersection of the vectors and i and j are chosen to satisfy
the condition l �= i and l �= j . Taking advantage of (2.29) and (2.33), we see that

Ql
ar = |xξi × xξ j |2 = g|∇ξl |2 = ggll , l fixed . (3.57)

As the square of the area of the coordinate cell face which corresponds to the paral-
lelogram defined by the vectors xξi and xξ j equals h2Qar + O(h3), the quantity Ql

ar
can be applied to characterize the area of the cell face.

3.6.4 Cell Face Warping

Measures of the cell face warping are obtained through the curvatures of the coor-
dinate surface on which the face lies. Let this be the coordinate surface ξ3 = ξ30 .
Then, a natural parametrization x(ξ) : Ξ 2 → R3, ξ = (ξ1, ξ2) of the surface is
represented by x(ξ1, ξ2, ξ30).

Mean Curvature of the Coordinate Surface

Twice the mean curvature of the coordinate surface is defined through the formula
(3.23) or (3.24) as

2K3,m = g
i j
ξxbi j , i, j = 1, 2 , (3.58)

where bi j = xξi ξ j · n. It is obvious that the contravariant metric tensor {gi jξx } of the
surface ξ3 = ξ30 in the coordinates ξ1, ξ2 is the inverse of the 2 × 2 matrix {gxξ

i j }
whose elements are the elements of the volume metric tensor {gi j } with the indices
i, j = 1, 2, i.e.

g
xξ
i j = gi j = xξi · xξ j , i, j = 1, 2.

Therefore, using (3.16) and (2.33), we have

g
i j
ξx = (−1)i+ jg3−i 3− j/(xξ1 × xξ2)

2 = (−1)i+ jg33

g
g3−i 3− j , i, j = 1, 2 ,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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without summation over i or j . Also, it is clear that

n = 1√
g33

∇ξ3,

and consequently the coefficients of the second fundamental form of the coordinate
surface ξ3 = ξ30 are expressed as follows:

bi j = 1√
g33

xξi ξ j · ∇ξ3 = 1√
g33

Γ 3
i j .

Thus, (3.58) results in

2K3,m = (−1)i+ j
√

g33

g
g3−i 3− jΓ

3
i j , i, j = 1, 2 .

Analogously, we obtain a general formula for the coefficients of the second funda-
mental form of the coordinate surface ξl = ξl0, l = 1, 2, 3:

bi j = 1√
gll

Γ l
l+i l+ j , i, j = 1, 2 , (3.59)

with l fixed and where m is equivalent to m ± 3. Thus, twice the mean curvature of
the coordinate surface ξl = ξl0, l = 1, 2, is expressed by

2Kl,m = (−1)i+ j
√

gll

g
gl−i l− jΓ

l
l+i l+ j , i, j = 1, 2 , (3.60)

with l fixed.

Gaussian Curvature of the Coordinate Surface

Taking advantage of (3.22) and (3.59), the Gaussian curvature of the coordinate
surface ξl = ξl0 can be expressed as follows:

Kl,G =
√

gll

g
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2] , (3.61)

with the index l fixed.

Measures of Face Warping

The quantities which measure the warping of the face of a three-dimensional cell
are obtained through the coefficients of the second fundamental form or through the
mean and Gaussian curvatures of a coordinate surface containing the face. Let this
be the surface ξl = ξl0. Then, taking advantage of (3.60) and (3.61), the measures
may be expressed as follows:
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Ql
w,1 = (Kl,m)2 = gll

g2
[(−1)i+ jgl−i l− jΓ

l
l+i l+ j ]2 ,

Ql
w,2 = (Kl,g)

2 = gll

g2
[Γ l

l+1 l+1Γ
l
l+2 l+2 − (Γ l

l+1 l+2)
2] , (3.62)

with l fixed.
Equation (3.59) for the second fundamental form of the surface ξl = ξl0 also gives

an expression for the third measure of the cell face warpness:

Ql
w,3 =

2∑
i, j=1

(bi j )
2 = 1

gll

2∑
i, j=1

(Γ l
l+i l+ j )

2 , l fixed . (3.63)

3.7 Characteristics of Grid Cells

Cell features are described by the cell volume (area in two dimensions) and by the
characteristics of the cell edges and faces.

3.7.1 Cell Aspect-Ratio

A measure of the aspect-ratio of a three-dimensional cell is formulated through the
measures of the aspect-ratio of its faces described by (3.55). The simplest formulation
is provided by summing these measures, which results in

Qas =
3∑

l=1

Ql
as . (3.64)

3.7.2 Square of Cell Volume

The characteristic related to the square of the cell volume is

QV = g = det{gi j } = In . (3.65)

In three dimensions, we also obtain, from (2.32),

QV = [xξ1 · (xξ2 × xξ3)]2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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3.7.3 Cell Area Squared

We denote by Qar the sum of the quantities Qi j
ar, i �= j , from (3.57). These quantities

are the area characteristics of the faces of a three-dimensional cell; thus, in accordance
with (3.33), the magnitude Qar coincides with the invariant I2 :

Qar =
3∑

i=1

ggi i = I2 . (3.66)

3.7.4 Cell Skewness

One way to describe the cell skewness characteristics of three-dimensional grids
utilizes the angles between the tangential vectors in the forms of the corresponding
expressions (3.52) and (3.53) introduced for the formulation of the face skewness.
For example, summation of these quantities gives the following expressions for the
cell skewness measures:

Qsk,1 = (g12)
2

g11g22
+ (g23)

2

g22g33
+ (g13)

2

g11g33

Qsk,2 = (g12)
2

g11g22 − (g12)2
+ (g13)

2

g11g33 − (g13)2
+ (g23)

2

g22g33 − (g23)2

= 1

g

(
(g12)

2

g33
+ (g13)

2

g22
+ (g23)

2

g11

)
. (3.67)

Here, Qsk,1 is the sum of the squares of the cosines of the angles between the edges
of the cell, while Qsk,2 is the sum of the squares of the cotangents of the angles.

Other quantities for expressing the three-dimensional cell skewness can be defined
through the angles between the normals to the coordinate surfaces. Any normal to
the coordinate surface ξi = ξi0 is parallel to the normal vector ∇ξi . Therefore, the
cell skewness can be derived through the angles between the base normal vectors
∇ξi . The quantity

(∇ξi · ∇ξ j )2

gi ig j j
= (gi j )2

gi ig j j
, i, j fixed

is the cosine squared of the angle between the respective faces of the coordinate cell.
This characteristic is a dimensionless magnitude. The sum of such quantities is the
third characteristic of the three-dimensional cell skewness:

Qsk,3 = (g12)2

g11g22
+ (g13)2

g11g33
+ (g23)2

g22g33
. (3.68)
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Another dimensionless quantity which characterizes the mutual skewness of two
faces of the cell is the cotangent squared of the angle between the normal vectors
∇ξi and ∇ξ j :

(∇ξi · ∇ξ j )2

|∇ξi × ∇ξ j |2 = g(gi j )2

gkk
= (gi j )2

gi ig j j − (gi j )2
,

where (i, j, k) are cyclic and fixed. The summation of this over k defines the fourth
grid skewness characteristic

Qsk,4 = (g12)2

g11g22 − (g12)2
+ (g13)2

g11g33 − (g13)2
+ (g23)2

g22g33 − (g23)2

= g

(
(g12)2

g33
+ (g13)2

g22
+ (g23)2

g11

)
. (3.69)

Note that the three-dimensional cell skewness quantities Qsk,1 and Qsk,3 can be
readily extended to arbitrary dimensions n ≥ 2.

3.7.5 Characteristics of Nonorthogonality

The quantities Qsk,i , i = 1, 2, 3, 4, from (3.67)–(3.69) reach their minimum values
equal to zero only when the three-dimensional transformation x(ξ) is orthogonal at
the respective point, and vice-versa. Therefore, these quantities, which provide the
possibility to detect orthogonal grids, may be considered as some measures of grid
nonorthogonality.

Other quantities characterizing the departure of a three-dimensional grid from an
orthogonal one are as follows:

Qo,1 = g11g22g33

g
,

Qo,2 = g (g11g22g33) . (3.70)

Obviously, these quantities Qo,1 and Qo,2 are dimensionless and reach theirminimum
equal to 1 if and only if the coordinate transformation x(ξ) is orthogonal.

The sum of the squares of the nondiagonal elements of the covariant metric tensor
{gi j } yields another characteristic of cell nonorthogonality,

Qo,3 = (g12)
2 + (g13)

2 + (g23)
2 . (3.71)

An analogous formulation is given through the elements of the contravariant metric
tensor,

Qo,4 = (g12)2 + (g13)2 + (g23)2 . (3.72)
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Note that, in contrast to Qo,1 and Qo,2, the quantities Qo,3 and Qo,4 are dimensionally
heterogeneous.

3.7.6 Grid Density

The invariants of the tensor {gi j } can be useful for specifying some characteristics of
grid quality. For example, one important characteristic describing the concentration
of grid nodes can be derived from the ratio In−1/In .

In order to show this, we first note that in accordance with the geometrical inter-
pretation of the invariants given in Sect. 3.4.2, we can write

In−1

In
=

n∑
m=1

(
V n−1
m

)2 / (
V n

)2
, (3.73)

where V n−1
m is the space of the boundary segment ξm = const of the basic paral-

lelepiped defined by the tangential vectors xξi , i = 1, . . . , n.
It is evident that

V n = dmV
n−1
m , m = 1, . . . , n ,

where dm is the distance between the vertex of the tangential vector xξm and the
(n − 1)-dimensional plane Pn−1 spanned by the vectors xξi , i �= m. Hence, from
(3.73),

In−1

In
=

n∑
m=1

(1/dm)2 . (3.74)

Now let us consider two grid surfaces ξm = c and ξm = c+h obtained by mapping a
uniform rectangular grid with a step size h in the computational domainΞ n onto Xn .
Let us denote by lm the distance between a node on the coordinate surface ξm = c
and the nearest node on the surface ξm = c + h (Fig. 3.5). We have

lm = dmh + O(h)2

and therefore, from (3.74),

In−1

In
=

n∑
m=1

(h/ lm)2 + O(h) .

The quantity (h/ lm)2 increases if the grid nodes cluster in the direction normal to the
surface ξm = c. Therefore, this quantity can be considered as some measure of the
grid concentration in the normal direction and, consequently, the magnitude 1/dm
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Fig. 3.5 Illustration of
invariants

means the density of the grid concentration in the ∇ξm direction. In particular, we
readily see that 1/dm = √

gmm , with m fixed. Thus, the expression (3.74) defines a
measure of the grid density in all directions. We denote this quantity by Qcn, where
the subscript “cn” represents “concentration”. Note that, in accordance with (3.31),
this measure can be expressed as follows:

Qcn = In−1

In
= g11 + · · · + gnn . (3.75)

3.7.7 Characteristics of Deviation from Conformality

Conformal coordinate transformations are distinguished by the fact that the Jacobi
matrix j is orthonormal, and consequently the metric tensor {gi j } is a multiple of the
unit matrix:

{gi j } = g(ξ)I = g(ξ){δij } , i, j = 1, . . . , n .

The cells of the coordinate grid derived from the conformalmapping x(ξ) are close to
n-dimensional cubes (squares in two dimensions). Grids with such cells are attractive
from the computational point of view. Therefore, it is desirable to define simple grid
quantities which can allow one to detect grids whose cells are close to n-dimensional
cubes. It is clear that the condition of conformality can be described by the system

gi j = 0 , i �= j ,

g11 = g22 = · · · = gnn .

These relations give rise to a natural quantity

Q =
∑
i �= j

(gi j )
2 +

n∑
i=2

(gi i − g11)
2 ,
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which is zero if and only if the coordinate transformation x(ξ) is conformal. So,
this quantity can help one to detect when the grid is conformal. However, the above
formula is too cumbersome, as well as being dimensionally heterogeneous. More
compact expressions for the analysis of the conformality or nonconformality of grid
cells and for the formulation of algorithms to construct nearly conformal grids are
obtained through the use of the metric-tensor invariants.

Two-Dimensional Space

The departure from conformality of the two-dimensional transformation x(ξ) :
Ξ 2 → X2 is expressed by the quantity

Qcf,1 = I1√
I2

= |xξ1 |2 + |xξ2 |2
|xξ1 ||rξ2 || sin θ| = g11 + g22√

g11
√

g22| sin θ| , (3.76)

where θ is the angle between the tangent vectors xξ1 and xξ2 . Since

Qcf,1 ≥ g11 + g22√
g11g22

,

it is clear that the value of I1/
√
I2 exceeds 2. The minimum value 2 is achieved only

if g11 = g22 and θ = π/2, i.e. when the parallelogram with sides defined by the
vectors xξ1 and xξ2 is a square. Thus, the characteristic Qcf,1 allows one to state with
certainty when the coordinate transformation x(ξ) is conformal at a point ξ, namely
when Qcf,1(ξ) = 2. Therefore, in the two-dimensional case, the quantity

Qcf,1 − 2 = I1/
√
I2 − 2

reflects some measure of the deviation of the cell from a square. We see that the
quantity Qcf,1 given by (3.76) is dimensionally homogeneous.

Through the quantity Qcf,1, we can also estimate the bounds of the aspect ratio of
the two-dimensional cell and the angle between the edges of this cell.

Evaluation of the Cell Angles

First, we obtain an estimate of the angle between the cell edges. From (3.76), we
have

sin2 θ = (F2 + 1)2

F2
/Q2

cf,1 , (3.77)

where F2 = g11/g22. As (F2 + 1)2/F2 ≥ 4, we have from (3.77) that

sin2 θ ≥ 4/Q2
cf,1 (3.78)
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and, accordingly, we obtain the following estimate for the angle θ:

π − arcsin(2/Qcf,1) ≥ θ ≥ arcsin(2/Qcf,1) . (3.79)

From (3.77), we find that the minimum value 4/Q2
cf,1 of sin

2 θ for a fixed value of
Qcf,1 is achieved when F = 1, i.e. when the parallelogram is the rhombus.

Although it is desirable to generate orthogonal grids, a departure from orthogo-
nality is practically inevitable when grid adaptation is performed. Commonly, this
departure is required to be restricted to 45◦. Beyond this range, the contribution of
the grid skewness to the truncation error may become unacceptable. The inequality
(3.79) shows that this barrier of 45◦ is not broken if Qcf,1 ≤ 2

√
2.

Evaluation of the Cell Aspect Ratio

Now we estimate the quantity F = √
g11/g22. The quantity F , called the cell aspect-

ratio, is the ratio of the lengths of the edges of the cell. By computing F from (3.77),
we obtain

F = α

2
− 1 ±

√
α2

4
− α , α = Q2

cf,1 sin
2 θ . (3.80)

Equation (3.80) gives two values of the cell aspect-ratio,

F1 = α

2
− 1 +

√
α2

4
− α and F2 = α

2
− 1 −

√
α2

4
− α ,

satisfying the relation F1F2 = 1. We find that

F1 = max(
√

g11/g22,
√

g22/g11)

and

F2 = min(
√

g11/g22,
√

g22/g11) .

Thus,

α

2
− 1 −

√
α2

4
− α ≤ Fi ≤ α

2
− 1 +

√
α2

4
− α , i = 1, 2 , (3.81)

and consequently

2 ≤ Fi + 1/Fi ≤ α − 2 , i = 1, 2 . (3.82)

As Q2
cf,1 ≥ α ≥ 4, from (3.78), we also obtain, from (3.81) and (3.82), the following

upper and lower estimates of the aspect ratios Fi , i = 1, 2, which depend only on
the quantity Qcf,1:



120 3 Grid Quality Measures

Q2
cf,1

2
− 1 − Qcf,1

√
Q2

cf,1

4
− 1 ≤ Fi ≤ Q2

cf,1

2
− 1 + Qcf,1

√
Q2

cf,1

4
− 1 , (3.83)

and

2 ≤ Fi + 1/Fi ≤ Q2
cf,1 − 2 , i = 1, 2 . (3.84)

The maximum value of Fi for a given value of Qcf,1 is realized when sin2 θ = 1, i.e.
the parallelogram is a rectangle.

Three-Dimensional Space

In three-dimensional space, the deviation from conformality can be described by the
dimensionless magnitude

Qcf,1 = (g)1/3(g11 + g22 + g33) , (3.85)

which, in accordance with (3.33), is expressed by means of the invariants I2 and I3
as follows:

Qcf,1 = I2/(I3)
2/3 . (3.86)

The value of (3.86) reaches its minimum only if

g11 = g22 = g33 and g−1 = g11g22g33 , (3.87)

i.e. when the parallelogram defined by the basic normal vectors ∇ξi is a cube. To
prove this fact, we note that

1

g
≤ g11g22g33 .

Therefore, from (3.85),

Qcf,1 ≥ g11 + g22 + g33

3
√

g11g22g33

and, taking into account the general inequality for arbitrary positive numbers
a1, . . . , an

1

n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai ,

we find that Qcf,1 ≥ 3. Obviously, Qcf,1 = 3 when the relations (3.87) are satified.
From (2.35),

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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1

g
= |∇ξ1 · ∇ξ2 × ∇ξ3|2

and therefore (3.87) is satisfied only when the normal vectors ∇ξi , i = 1, 2, 3, are
orthogonal to each other and have the same length. But then this is valid for the base
tangential vectors xξi , i = 1, 2, 3, as well. Thus, (3.87) is satisfied only when the
transformation x(ξ) is conformal.

In the same manner as in the two-dimensional case, one can derive bounds on the
angles of the parallelepiped and on the ratio of the lengths of its edges that depend
on the quantity Qcf,1.

Generalization to Arbitrary Dimensions

Analogously, in the n-dimensional case, a local measure of the deviation of the
transformation x(ξ) from a conformal one is expressed by the quantity Qcf,1 − n,
where

Qcf,1 = In−1/(In)
1−1/n = g1/n(g11 + · · · + gnn) . (3.88)

The quantity Qcf,1 equals n if and only if the mapping x(ξ) is conformal.
Another local characteristic of the deviation from conformality is described by

the quantity Qcf,2 − n, where

Qcf,2 = I1/(In)
1/n . (3.89)

As for Qcf,1, we can show that Qcf,2 ≥ n and that Qcf,2 = n if the transformation
x(ξ) is conformal at the point under consideration. Note also that Qcf,1 = Qcf,2 in
two dimensions.

3.7.8 Grid Eccentricity

One grid eccentricity characteristic is defined by summing the squares of the
coordinate-line eccentricities (3.36). Thus, the quantity

Qε,1 =
n∑

i=1

(
∂

∂ξi
ln

√
gi i

)2

(3.90)

is a measure of the change of the lengths of all of the grid cell edges.
A similar characteristic of eccentricity can be formulated through the terms gi i ,

namely

Qε,2 =
n∑

i=1

(
∂

∂xi
ln

√
gi i

)2

. (3.91)
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3.7.9 Measures of Grid Warping and Grid Torsion

In the same way as for grid eccentricity, we may formulate measures of three-
dimensional grid warping by summing the surface-coordinate characteristics (3.62)
and (3.63). As a result, we obtain

Qw,1 = 1

g2

3∑
l=1

gll
(
(−1)i+ jgl−i l− jΓ

l
l+i l+ j

)2
,

Qw,2 = 1

g2

3∑
l=1

gll
[
Γ l
l+1 l+1Γ

l
l+2 l+2 − (

Γ l
l+1 l+1

)2]
,

Qw,3 =
3∑

l=1

2∑
i, j=1

1

gll
(
Γ l
l+i l+ j

)2
. (3.92)

The measure of grid torsion is formulated by summing the torsion measures (3.51)
of the coordinate lines ξi , i = 1, 2, 3:

Qτ =
3∑

i=1

Qi
τ . (3.93)

3.7.10 Quality Measures of Simplexes

The quantities which are applied to measure the quality of triangles and tetrahedrons
are the following:

(1) the maximum edge length H ,
(2) the minimum edge length h,
(3) the circum-radius R,
(4) the inradius r .

There are four deformation measures that allow one to characterize the quality of
triangular and tetrahedral cells:

Qd,1 = H

r
, Qd,2 = R

H
, Qd,3 = H

h
, Qd,4 = R

r
.

The uniformity condition for a cell is satisfied when Qd,1 = O(1) or Qd,4 = O(1).
Examples of poorly shaped cells are shown in Fig. 3.6. Cases a and c correspond

to needle-shaped cells. Figure3.6d shows a wedge-shaped cell, while Fig. 3.6b, e
show sliver-shaped cells.
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Fig. 3.6 Examples of poorly shaped triangles (a, b) and tetrahedrons (c, d, e)

The cell is excessively deformed if Qd,1 � 1. In this case, the cell has either a very
acute or a very obtuse angle. The former case corresponds to Qd,2 = O(1), Qd,3 �
1 (Fig. 3.6a, c, d), while the latter corresponds to Qd,4 � 1, Qd,3 = O(1)
(Fig. 3.6b, e). The condition Qd,2 = O(1) precludes obtuse angles.

3.8 Comments

Various aspects of mesh quality were surveyed by Knupp (2001, 2007). The intro-
duction of metric-tensor invariants to describe some of the qualitative properties of
grids was originally proposed by Jacquotte (1987). The grid measures in terms of the
invariants and their relations described in this chapter were obtained by the author.

Prokopov (1989) introduced the dimensionless characteristics of two-dimensional
cells.

Triangular elements were extensively analyzed by Field (2000).
Some questions concerned with the assessment of the contribution of the grid

quality properties to the accuracy of solutions obtained using the grid were discussed
by Kerlic and Klopfer (1982), Mastin (1982), Lee and Tsuei (1992), and Huang and
Prosperetti (1994).

Discrete length, area, and orthogonality grid measures using averages and devia-
tions were formulated by Steinberg and Roache (1992).

Babuŝka and Aziz (1976) have shown that the minimum-angle condition in a
planar triangulation is too restrictive and can be replaced by a condition that limits the
maximum allowable angle. Also, the influence of grid quality measures on solution
accuracy was discussed by Knupp (2007) and Shewchuck (2002).

Measures to quantify the shape of triangles and tetrahedrons were introduced by
Field (1986), Baker (1989), Cougny et al. (1990), and Dannenlongue and Tanguy
(1991).

A brief overview of tetrahedron quality measures with a comparison of the fidelity
of these measures to a set of distortion sensitivity tests, as well as a comparison of the
computational expense of such measures, was given by Parthasarathy et al. (1993).
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An overview of several element quality metrics was given by Field (2000).
Chen et al. (2003) extended the angle-based quality metric originally defined by
Lee and Lo (1994) for use in the optimization of meshes consisting of triangles and
quadrilaterals. They also extended the formulation of cell unfolding by adding a
barrier part to their quality functional (2003).

A special tetrahedron shape measure was given by Liu and Joe (1994a). It is based
on eigenvalues of the metric tensor for the transformation between a tetrahedron and
a regular reference tetrahedron. The geometric explanation of this measure is that it
characterizes the shape of the inscribed ellipsoid. Another shape regularity quality
of a triangle was given Bank and Xu (1996) and Bank and Smith (1997). They
showed that the quality has circular level sets, when considered a function of the
location of one vertex of a trianglewith the other two vertices fixed. Three tetrahedron
measures – the minimum solid angle, the radius ratio, and the mean ratio – and their
relations were discussed by Liu and Joe (1994b).

An algorithm for construction of solution-adapted triangular meshes within an
optimization framework was considered by Buscaglia and Dari (1997). Here, the
optimized quality measure is a product of “shape” quality and a function of mesh
size.

A local cell quality measure as a function of Jacobian matrix and combined
element-shape and size-control metrics for different cell types was analyzed by
Garanzha (2000) and Branets and Carey (2005).

Dompierre et al. (2005) analyzed and generalized several simplex shapemeasures
documented in the literature and used them for mesh adaptation and mesh optimiza-
tion. Conclusions were drawn on the choice of simplex shape measures to control
mesh optimization.
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Chapter 4
Stretching Method

4.1 Introduction

In many practical problems, there may exist narrow zones in the physical domains
where the dependent quantities undergo large variations. These zones include shock
waves in compressible flows, shear layers in laminar and turbulent flows, expan-
sion fans, contact surfaces, slipstreams, phase-change interfaces, and boundary and
interior layers, which, when interacting, can present significant difficulties in the
numerical treatment. The need for a detailed description of the physical solutions
to such problems requires the development of adaptive methods whose adaptivity
is judged by their ability to provide a suitable concentration of grid nodes in these
regions in comparison with the distribution of the nodes in the rest of the domain.
Analytical and numerical investigations have demonstrated that the adaptive grid
technique has a significant potential to enhance the accuracy and efficiency of com-
putational algorithms. This is especially true for the calculation of multidimensional
and unstable problems with boundary and interior layers for which the derivatives
of the solution are large. Adaptivity can eliminate oscillations associated with inade-
quate resolution of large gradientsmore effectively, reduce the undesirable numerical
viscosity, damp out instabilities, and considerably curtail the number of grid nodes
needed to yield an acceptable solution to a problem relative to the number of nodes
of a uniform grid. The interpolation of functions by discrete values is also more
accurately performed over the whole region when the grid nodes are clustered in the
zones of large derivatives of the functions.

Adaptive grids are, therefore, an important subject to study because of their poten-
tial for improving the accuracy and efficiency of the numerical solution of boundary
value problems modeling various complex physical phenomena, and serious efforts
have been undertaken to develop and enhance the methods of adaptive grid genera-
tion and to incorporate these methods into the numerical algorithms for solving field
problems.

However, the problemof the development of robust adaptive gridmethods is a seri-
ous challenge, since conflicting demands are imposed on the methods; in particular,
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128 4 Stretching Method

they should provide adequate resolution of the solution quantities in regions of high
gradients, while also limiting the total number of points and excessive deformation
of grid cells.

This chapter is concerned with the specification of the intermediate transforma-
tions and of the stretching mappings for the generation of adaptive grids with node
clustering in the areas of solution singularities.

The stretching approach for generating adaptive grids is applied widely for the
numerical solution of partial differential equationswith singularities. Itsmajor advan-
tage is the rapidity of grid generation and direct control of grid spacing, while the
main disadvantage is the necessity to explicitly select the zones where the stretch-
ing is needed. Of central importance in the method are intermediate transformations
constructed on the basis of some standard stretching functions which provide the
required spacing between the coordinate lines in selected zones.

For this purpose, some basic univariate, nonuniform coordinate transformations
are described. These transformations can smooth the singularities arising in boundary
value problems whose solutions undergo large variations in narrow zones. The grids
generated through the use of such functions, each of which transforms an individual
coordinate, appear to be well adapted to the expected physical features.

The basic functions incorporated into themethod allow the grid to adjust automat-
ically to solution singularities arising from the physical parameters, e.g. viscosity,
high Reynolds number, or shell thickness, while a practical problem is solved. Such
automation is one of the requirements imposed on comprehensive grid codes. The
grids obtained through such methods enable users to obtain numerical solutions of
singularly perturbed equations which converge uniformly to the exact solution with
respect to the parameter. They also provide uniform interpolation of the numerical
solution over the entire region, including boundary and interior layers.

A stretching method utilizing the standard stretching functions supplies one with
a very simple means to cluster the nodes of the computational grid within the regions
of steep gradients without an increase in the total number of grid nodes. This grid
concentration improves the spatial resolution in the regions of large variation, thus
enhancing the accuracy of the algorithms applied to the numerical solution of partial
differential equations.

The stretching mappings can also be used successively to derive the blending
functions in algebraic methods of transfinite interpolation. The algebraic techniques
are usually contained in large, multipurpose grid generation codes in combination
with more sophisticated elliptic and parabolic methods, in which their major task
is to provide an initial grid which serves to start the iterative process of the grid
generators. The blending functions implemented through the stretching mappings
ease the process of the generation of the elliptic and parabolic grids by taking part
of the solution adjustment on themselves.
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4.2 Formulation of the Method

The stretching method is one of the simplest and fastest approaches applied to gen-
erate nonuniform adaptive structured grids. As a preliminary step, it requires the
introduction of some specified curvilinear coordinates in the physical region Xn.

The coordinates are chosen by a parametrization

x(q) : Qn → Xn , q = (q1, . . . , qn) , x = (x1, . . . , xn) ,

from a domain Qn ⊂ Rn with a system of Cartesian coordinates qi , i = 1, . . . , n.

This system is selected in such a way that it includes the coordinates along which
the grid nodes are to be redistributed by the stretching technique. Then, in the zones
where the nodes are to be concentrated, every required variable qi is replaced by some
stretching variable ξi using a specified separate univariate transformation ξi (qi ). To
provide stretching of the coordinate qi , the function ξi (qi ) must have a large first
derivative with respect to qi . The inverse transformation qi (ξi ), having, in contrast, a
small first derivative with respect to ξi , is a contraction transformation in these zones.
A smooth or continuous expansion of these separate local contraction functionsqi (ξi )
to produce a new coordinate system ξ1, . . . , ξn in the whole region Qn provides an
intermediate transformation

q(ξ) : Ξ n → Qn

from some parametric domain Ξ n ⊂ Rn. The composition x[q(ξ)] defines a coor-
dinate transformation which yields a numerical grid with nodal clustering in the
required parts of the domain Xn .

Analogously, the transformation q(ξ) can be obtained as the inverse to a mapping

ξ(q) : Qn → Ξ n ,

which is an expansion of the local stretching functions ξi (qi ) over the whole domain
Qn.

Without losing generality, we assume that the domain Qn, called the intermediate
domain, as well as the domain Ξ n, called the logical or computational domain, is
the unit n-dimensional cube. So, the coordinate transformation from the unit logical
cube Ξ n onto the simply connected bounded physical region Xn is defined as the
composition of two transformations: q(ξ) from Ξ n onto Qn and x(q) from Qn onto
Xn (Fig. 4.1), i.e.

x(q)(ξ) : Ξ n → Qn → Xn.

The splitting of the sought coordinate transformation x(q(ξ)) into the two trans-
formations q(ξ) and x(q) enables one to divide the task of grid generation into
two steps: one performed by the intermediate transformation q(ξ) : Ξ n → Qn,

obtained with the help of some specified contraction functions qi (ξi ) and responsi-
ble for the control of the grid, and another one performed by the parametric mapping
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Fig. 4.1 Illustration of the stretching method

x(q) : Qn → Xn, which is concerned with the specification of the coordinates
requiring stretching in some zones of the physical domain Xn . These two steps can
be considered as separate and distinct operations and, as such, can be developed in
an independent and modular way.

The intermediate coordinate transformations q(ξ) are designed to be between the
standard unit cubes Ξ n and Qn, which are fixed regardless of the physical domain
Xn and the physical solution. Therefore, there is an opportunity to create a kind of
database of reference functions which can be used as elements to construct compre-
hensive intermediate transformations q(ξ).

4.3 Theoretical Foundation

The construction of the basic intermediate transformations q(ξ) : Ξ n → Qn starts
with the definition of the basic univariate functions qi (ξi ), which are, as was men-
tioned, the inverses of the basic univariate stretching functions ξi (qi ). The functions



4.3 Theoretical Foundation 131

qi (ξi ) should be suitable for providing adequate grid clustering in the necessary zones
through their implementation in formulas for the intermediate transformations.

The form of the univariate transformation ξi (qi ), which stretches the coordinate
qi in the zones of large derivatives, depends on the qualitative behavior of the solu-
tion. Thus, for effective use of the stretching method in the numerical solution of
multidimensional problems, one needs both to select the directions qi in the region
Xn along which the solution has large derivatives and to have some information
on its structure along these particular directions. Information about the qualitative
solution structure is obtained from a theoretical analysis of simpler model equations,
in particular, ordinary differential equations which simulate the qualitative features
of the solutions, or it can be obtained from a preliminary numerical calculation for
similar problems on coarse grids.

One set of stretching functions can be formed by local nonuniform mappings
applied to the numerical solution of equations with a small parameter ε affecting the
higher derivatives. Equations with a small parameter ε before the higher derivatives
are widespread in practical applications. For example, such equations can model
flows with small viscosity or high Reynolds number, describe problems of elasticity
for which the small parameter represents the shell thickness, or simulate flows of
liquid in regions having orifices with a small diameter. These problems have narrow
boundary and interior layers where the derivatives of the solutions with respect to the
coordinates orthogonal to the layers reach very large magnitudes when the parameter
ε is small. In the center of such a layer, the mth derivative may have values of order
ε−αm, α > 0.

Problemswith a small parameter affecting the higher derivatives have been studied
thoroughly through analytical and numerical methods. At present, there is a lot of
analytical information related to the qualitative features of the solutions to these
problems in the layers, which can be efficiently applied to the development of well-
behaved numerical methods, in particular, to the generation of grids with nodal
clustering in narrow zones of large variation of the physical quantities.

The analysis of these problems has revealed new forms of local stretching func-
tions in addition to thewell-knownones aimed chiefly at the treatment of exponential-
type layers. These new stretching functions are very suitable for coping not only with
exponential-type layers, but with power-type and mixed layers as well, which are
common in practical applications. A stretching technique based on the new func-
tions provides efficient concentration of coordinate lines, and consequently efficient
concentration of grid cells in boundary and interior layers.

In this section some theoretical facts concerning qualitative features of solutions
in boundary and interior layers are outlined. These facts serve to justify the forms
of the basic stretching functions applied to generate grids through the stretching
method.
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4.3.1 Model Problems

The stretching method has efficient application to the numerical solution of ordinary
differential equations and multidimensional problems with boundary and interior
layers, where the solutions may have large variations along the coordinate lines
intersecting the layers. For the numerical calculation of a two-dimensional viscous
gas flow, for instance, the stretching method can be used successfully to generate
grids with nonuniform clustering in the region of the boundary layer, where the
longitudinal component u of the velocity u = (u, v) has its highest gradient near a
solid boundary, in the direction x orthogonal to the boundary, in the case of a laminar
flow. Some information about the qualitative behavior of the tangential velocity u in
the direction x can be gained from the study of a model two-point boundary value
semilinear problem with a small parameter ε:

εu′′ + a(x)u′ = f (x, u) , 0 < x < 1 ,

u(0) = u0 , u(1) = u1 . (4.1)

The model Eq. (4.1) is derived from the steady equation for the tangential velocity
component u of theNavier–Stokes system.With respect to the independent transverse
and longitudinal variables x and y, it can be written in the form

∂

∂x

(
μ

∂u

∂x

)
− ρv

∂u

∂x
= g

[
u,

∂u

∂y
,
∂2u

∂y2
,
∂v

∂y
,

∂

∂x

(
μ

∂v

∂y

)
,

∂

∂y

(
μ

∂v

∂x

)]
. (4.2)

The model two-point boundary value problem (4.1) is obtained from this equation
with the assumptions that the dynamic viscosity μ is a constant, the longitudinal
coordinate y is a parameter, and the right-hand side is uniformly bounded with
respect to μ. Therefore, a(x) in (4.1) corresponds to −ρv, ε to μ, and f (x, u) to the
right-hand side of (4.2).

The boundary-layer behavior of the solution u(x, ε) of the two-point boundary
value problem (4.1) for fu(x, u) > 0 is of three types (exponential and two power
ones), depending on the values of a(x0) and a′(x0) (if a(x0) = 0) x0 = 0 or x0 = 1,
and is characterized by estimates for the derivatives of u(x, ε) with respect to x . The
solution to (4.1) may also have interior power layers in the vicinity of interior points
x0 at which a(x0) = 0.

Another model equation to investigate the behavior of the solutions in boundary
and interior layers is obtained from a problem simulating the shock wave structure
of steady heat-conducting gas flow:
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dρu

dx
= 0 ,

ρu
du

dx
+ dp

dx
− ε

d2u

dx2
= 0 ,

ρu
de

dx
+ p

du

dx
− ε

(
du

dx

)2

− d

dx

(
χ
dT

dx

)
= 0 , 0 < x < 1 ,

(ρ, u, e)(0) = (ρ0, u0, e0) , (ρ, u, e)(1) = (ρ1, u1, e1) , (4.3)

where ρ is the density, u the velocity, p the pressure, T the temperature, e the energy,
ε the coefficient of viscosity of the gas, and χ the coefficient of thermal conductivity.

In the case
e = cvT ,

p = (ν − 1)ρe ,

we obtain, from the system (4.3),

−εu′′ + c[u + (ν − 1)e/u]′ = 0 , 0 < x < 1 ,

u(0) = u0 , u(1) = u1 , (4.4)

−(ε1e
′)′ + c

(
e − u2

2
+ c2

c
u

)′
= 0 , 0 < x < 1 ,

e(0) = e0 , e(1) = e1 , (4.5)

where
c = ρ0u0 , ε1 = χ/cv ,

c2 = {−εu′ + c[u + (ν − 1)e/u]}|x=0 .

The functions u(x) and e(x) are monotonic in the layer of their rapid variation.
Hence, the dependent variables u and e are connected by some relations

e = E(u) , u = U (e) .

Therefore, the problem (4.4) can be presented as a two-point boundary value problem
of a very simple, standard, autonomous quasilinear form

−εu′′ + a(u)u′ = 0 , 0 < x < 1 ,

u(0) = u0 , u(1) = u1 , (4.6)

which represents a model problem to study the qualitative features of solutions with
singularities in interior layers. An analogous expression is valid for the problem (4.5)
if ε1 is a constant. The solutions to problem (4.6) may have boundary and interior
layers of both exponential, power, and mixed types.
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One more model suitable for investigating the qualitative features of solutions in
layers is the boundary value problem of a gas flow near a round hole with a small
radius r = ε (Polubarinova-Kochina 1977) or a corresponding problem of electron
motion (Zamaraev et al. 1985). The behavior of the solution to these problems in the
vicinity of the boundary layer is simulated qualitatively by a semilinear two-point
boundary value problem

(ε + x)pu′′ + a(x)u′ = f (x, u) , p > 0 , 0 < x < 1 ,

u(0) = u0 , u(1) = u1 . (4.7)

A popular model of a singularly perturbed problem is presented by the stationary
Burger’s two-point boundary value problem

−εu′′ + uu′ + f (x, u) = 0 , 0 < x < 1 ,

u(0, ε) = A0 , u(1, ε) = A1 . (4.8)

The qualitative analysis shows that the solution can have only exponential boundary
and interior layers. The position of the interior layer is computed exactly and is
determined by the boundary values A0 and A1 and solutions to the reduced problem.

A more general problem than (4.8) is represented by the following singularly
perturbed quasilinear boundary value problem:

−εu′′ + g(x, u)u′ + f (x, u) = 0 , 0 < x < 1 ,

u(0, ε) = A0 , u(1, ε) = A1 . (4.9)

Physically, problem (4.9) may be considered to be a simulation of a one-dimensional,
steady-state, reaction-diffusion-convection process. In this connection, ε is ameasure
of the diffusivity, g is a measure of convection, and f is a measure of the effect of
reaction and of sources in the medium. The second interpretation of (4.9) refers to
a model nonlinear mass-spring system, or, more generally, simply as a formulation
of Newton’s Second Law of Motion. In this connection, x is time, ε is the mass of
the object, g is a measure of the damping effect of the medium, and f is a nonlinear
restoring force.

The problems (4.1), (4.6)–(4.9) are amenable to analytical study. Though they rep-
resent highly idealized cases, they nevertheless give a rather profound understanding
of the variety and complexity of the singularities arising in practical applications.
The study of these two-point boundary value problems has provided solid knowledge
about the possible qualitative features of solutions in boundary and interior layers.

The next considerations of this section are concerned with some results related
to the qualitative behavior of the solutions to the problems (4.1), (4.6)–(4.9). The
results mainly apply to estimates of the derivatives of the solution appropriate to
specifying the stretching functions. Any analytical proof of the facts outlined below
is beyond the scope of this book, but it can be found in the book “Layer Resolving
Grids and Transformations for Singular Perturbation Problems” written by Liseikin



4.3 Theoretical Foundation 135

(2001). However, we note that the principal technique used to analyze the asymptotic
behavior of the solutions and to provide estimates of the solutions and of their deriv-
atives employs the theory of differential inequalities developed by Nagumo (1937).
For the Dirichlet problem

u′′ = f (x, u, u′) , 0 < x < 1 ,

u(0) = u0 , u(1) = u1 , (4.10)

where f is a continuous function of the arguments x, u, u′, the Nagumo inequality
theory states that if there exist continuous, twice differentiable functions α(x) and
β(x) with the properties

α(x) ≤ β(x) , 0 ≤ x ≤ 1 ,

α(0) ≤ u(0) ≤ β(0) , α(1) ≤ u(1) ≤ β(1) ,

α′′ ≥ f (x,α,α′) , 0 < x < 1 ,

β′′ ≤ f (x,β,β′′) , 0 < x < 1 .

then the problem (4.10) with the condition f (x, u, z) = O(z2) has a solution u(x)
and

α(x) ≤ u(x) ≤ β(x) .

The functions α(x) and β(x) are called the bounding functions. Estimates of the
solutions to the problems (4.1), (4.6)–(4.9) and of their derivatives are obtained by
selecting the appropriate bounding functions α(x) and β(x).

4.3.2 Basic Majorants

This subsection presents some estimates of the first and higher derivatives of the
solutions to the problems (4.1), (4.6)–(4.9). The solutions to these problems may
have highly localized zones of rapid variation. The first derivative of the solutions
in these zones may reach a magnitude of ε−α, 1 ≥ α > 0, and therefore it tends to
infinity when ε approaches zero. Outside the layers, the derivative is estimated by a
constant M independent of the parameter ε. These estimates are used to define an
optimum coordinate ξ with a transformation x(ξ).

Relation Between Optimal Univariate Transformations and Majorants of the
First Derivative

Theoptimumunivariate transformation x(ξ) for amonotonic univariate functionu(x)
would be one for which u[x(ξ)] varied linearly with respect to ξ, since this would
result in zero truncation errors for any approximation. However, if the function u(x)
is notmonotonic and is found from a solution to a particular problem, this formulation
of the optimal transformation is too good to be realized in practice.With regard to the
problems (4.1), (4.6)–(4.9) with the small parameter ε, the optimum transformation
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x(ξ)would be one that eliminated the first order singularity of the solution u(x, ε) of
these problems, i.e. in particular, one in which the first derivative with respect to ξ of
the transformation u[x(ξ), ε] was limited by a constant M independent of ε. Such a
transformation x(ξ) eliminates the first order singularities of u(x, ε), and as a result,
the function u[x(ξ), ε] does not have large variations, and therefore the transformed
problem with respect to this independent variable ξ may be efficiently solved on the
uniform grid

ξi = ih , i = 1, . . . , N , h = 1/N .

The univariate transformations eliminating the first order singularities inherent
in the solutions to the problems (4.1), (4.6)–(4.9) depend inevitably on the small
parameter ε.Nevertheless, for simplicity, we use the notation x(ξ) for such functions.

Let the ranges of the variables x and ξ be normalized, say

0 ≤ x ≤ 1 , 0 ≤ ξ ≤ 1 .

Then, the optimum transformation x(ξ) exists if the derivative of the function u(x, ε)
is bounded by a strictly positive function ψ(x, ε) whose total integral is limited by a
constant M independent of ε, i.e.

∣∣∣du
dx

∣∣∣ ≤ ψ(x, ε) ,

with ∫ 1

0
ψ(x, ε)dx ≤ M . (4.11)

Equation (4.11) means that u(x, ε) is a function with a uniformly limited total vari-
ation on the interval [0, 1], i.e.

∫ 1

0

∣∣∣du
dx

∣∣∣dx ≤ M .

The required function x(ξ) eliminating the singularity of the first order of u(x, ε) is
obtained, for example, as the inverse of the solution ξ(x) of the initial-value problem

dξ

dx
= cψ(x, ε) , x > 0 ,

ξ(0) = 0 , (4.12)

where c is a scaling constant providing the condition ξ(1) = 1. After integrating
(4.12), we obtain

c = 1
/∫ 1

0
ψ(x, ε)dx
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and hence we have

∣∣∣du
dξ

∣∣∣ =
∣∣∣du
dx

∣∣∣dx
dξ

≤
∫ 1

0
ψ(x, ε)dx ≤ M . (4.13)

So, the function u[x(ξ), ε] does not have layers of rapid variation in the interval
[0, 1] of the independent variable ξ.

The problem (4.12) for generating adaptive grids is referred to as the equidistrib-
ution principle.

Original Formulation

The original one-dimensional formulation of the equidistribution principle (4.12) for
generating grid steps was proposed by Boor (1974) for the purpose of obtainingmore
accurate interpolation of functions by splines. The principle was formulated as a rule
for determining the grid nodes xi , i = 1, . . . , N , in the interval [a, b] in accordance
with the relation

∫ xi+1

xi

w(x)dx = c , i = 0, 1, . . . , N − 1 ,

x0 = a , xN = b , (4.14)

where w(x) is a certain positive quantity called either a monitor function or a weight
function. A discrete form of (4.14) may be represented as

hiwi = c , i = 0, . . . , N − 1 ,

x0 = a , xN = b , hi = xi+1 − xi , (4.15)

wherewi = w(x ′
i ), x

′
i ∈ hi , i = 0, . . . , N−1.The constant c in (4.15) is determined

from the condition xN = b, i.e. after summing (4.14):

c = 1

N

∫ b

a
w(x)dx .

The grid steps satisfying (4.15) will be small where the weight w is large, and
vice versa. Thus, the weight function provides information about the desired grid
clustering.

This formulation of the equidistribution principle for generating one-dimensional
grids has been used with success to generate one-dimensional adaptive grids for the
numerical solution of both stationary and nonstationary problems with singularities.
Commonly, the solution to the problem of interest is first found on an initial back-
ground grid, then the weight functionw is computed at the points of this background
grid and interpolated over the entire interval [a, b], and afterwards, grid points are
either moved or added to satisfy (4.14). The process is then repeated until a desired
convergence tolerance is achieved.
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Optimally Distributed Grid

The idea of the equidistribution principle is to equidistribute the solution error by
placing more grid nodes where the error is large, so as to gain high accuracy overall
with a fixed number of grid points. The grid which minimizes the error of the numer-
ical solution to a differential problem is an optimally distributed grid with the nodes
optimally refined in the areas of large solution error. Thus, if a measure of the error
e(x) is estimated for the grid interval hi by the relation

‖ e(x) ‖= (hi )
pQ(x) , e(x) = u(x) − uh(x) ,

where u(x) is the exact solution to the physical problem and uh(x) is the numerical
solution, it is quite natural, for obtaining the optimally distributed grid, to define the
weight function through a measure of the error by means of the following relation:

w(x) = [Q(x)]1/p .

The error e(x) may be found with high accuracy as a solution to the boundary value
problem

L(e) = T , e|∂Xn = 0 , (4.16)

where L is the operator of linearization of the governing equations for the physical
boundary value problem, while T is the approximation error of the problem. The
derivation of (4.16) is carried out analogously to that of stability equations.

Although an asymptotically accurate solution error e(x) can in principle be
obtained from the equation for variation (4.16), in practice, this task is very difficult
and expensive, even for a one-dimensional problem, to which (4.16) is applicable.

Amore promisingway seems to lie in the generation of the grid in accordancewith
a uniform distribution of some norm of T (x), i.e. by defining the monitor function
w(x) through a measure of the approximation error T (x). In this case,

w(x) = [Q1(x)]1/p

if
‖ T (x) ‖= (hi )

pQ1(x) ,

and T (x) can be readily expressed through the solution derivatives. This assumption
has some meaning, since the relation

‖ e(x) ‖∼ c(x) ‖ T (x) ‖

is generally valid for the numerical solution of boundary value problems. However,
the utilization of a weight function defined through the error of approximation T (x)
to generate adaptive grids for the numerical solution of singularly perturbed equations
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may result in too large a grid spacing in the areas which lie outside the boundary and
interior layers.

As an example, we consider the following two-point boundary value problem of
the type (4.1) with a boundary layer:

εu′′ + u′ − u = f (x) , 0 < x < 1 ,

u(0) = a , u(1) = b , (4.17)

where 1 ≥ ε > 0 is a small parameter. An approximation of (4.17) using the upwind
differencing

2ε

hi + hi−1

(
ui+1 − ui

hi
− ui − ui−1

hi−1

)
+ ui+1 − ui

hi
− ui = f (xi ) ,

0 < i < N , u0 = a , uN = b , (4.18)

on a nonuniform grid xi , i = 1, . . . , N , results in the approximation error

T ∼ c

{
ε

[
hi
d3u

dx3
(xi ) + hi−1

d3u

dx3
(xi−1)

]
+ hi

d2u

dx2
(xi )

}
. (4.19)

Let v(x) be a solution to the following initial-value problem associated with (4.17):

v′ − v = f (x) , x < 1 ,

v(1) = b .

If |v(0)− a| > m, where m is a positive constant independent of ε, then the solution
u(x) of (4.17) is a function of the exponential boundary-layer type (see Fig. 4.2)
satisfying the inequality

Fig. 4.2 Node placement generated by equidistribution of the approximation error (left) and of the
solution error computed at the grid points (right)
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|u(x) − v(x)| ≤ M[exp(−x/ε) + ε] , 0 ≤ x ≤ 1 ,

and its kth derivative in the interval [0, 1] is estimated by

|u(k)(x)| ≤ M[ε−k exp(−x/ε) + 1] ,

where M is a constant independent of ε. It is important to note that in the boundary
layer interval [0, kε ln(1/ε)] the kth derivative of u(x) is bounded from both sides
by the estimate

M1[ε−k exp(−x/ε) + 1] ≤ |u(k)(x)| ≤ M2[ε−k exp(−x/ε) + 1] , (4.20)

where M1, M2 are positive constants which do not depend on ε. Thus, in accordance
with (4.20), we obtain, from (4.19), the following estimate for T (x) in the boundary
layer interval:

M3hi [ε−2 exp(−x/ε) + 1] ≤ T (x) ≤ M4hi [ε−2 exp(−x/ε) + 1] ,

with Mi > 0 and independent of ε. From this inequality, it seems natural to choose
the weight w(x), for the purpose of obtaining a uniform distribution of T (x) with
respect to the parameter ε, as

w(x) = ε−2 exp(−x/ε) + 1 , 0 ≤ x ≤ 1 .

However, by computing (4.12) with this weight function w(x), we obtain

ξ(x) = 1 − exp(−x/ε) + εx

1 − exp(−1/ε) + ε
. (4.21)

If x0 = ε ln(1/ε), (4.21) yields

ξ(x0) = 1 − ε + ε2 ln(1/ε)

1 − exp(−1/ε) + ε
∼ 1 , if 0 < ε 
 1 ,

i.e. nearly all of the computational interval [0, 1] (and consequently nearly the entire
set of grid points) is mapped by x(ξ) into the boundary layer. As a result, the area
outside the boundary layer is not provided with a sufficient number of grid nodes
(Fig. 4.2, left-hand).

Note that this phenomenon does not occur if the scale of the layer is less then 1,
i.e. when the first derivative of u(x) satisfies the estimate

|u′(x)| ≤ Mε−α , 0 ≤ x ≤ 1 , α < 1 ,
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with M independent of ε. This case occurs, for example, when the first derivative u′
in (4.17) is either deleted or multiplied by a positive function vanishing at the point
x = 0.

If the generation of the grid for the solution of (4.17) is determined by the condition
of a uniform distribution of the solution error e = u(xi ) − ui (xi ), then both the
boundary layer and the rest of the interval [0, 1] are provided with a sufficient number
of grid points. Indeed, the following estimate of e is valid:

|ei | ≤ Mhi [ε−1 exp(−x/ε) + 1] ,

and consequently, assuming

w(x) = ε−1 exp(−x/ε) + 1 , 0 ≤ x ≤ 1 ,

we obtain, solving (4.12),

ξ(x) = 1 + x − exp(−x/ε)

2 − exp(−1/ε)
, 0 ≤ x ≤ 1 .

This expression for ξ(x) yields, for x0 = ε ln(1/ε),

ξ(x0) = 1 + x0 − ε

2 − exp(−1/ε)
∼ 1

2
, if 0 < ε 
 1 .

Thus, in this case, unlike the previous one, nearly N/2 grid points will be placed
in the boundary layer and the remaining N/2 nodes will be distributed outside the
layer. The proportion of grid points placed in the boundary layer can be controlled
by a constant c if we propose

w(x) = ε−1 exp(−x/ε) + c ,

which leads to the placement of approximately cN/(1 + c) nodes in the boundary
layer.

Let us consider another phenomenon connected with the solution of (4.17) by
the scheme (4.18). Since |ui | ≤ M , where ui is the solution to (4.18) and M is
independent of ε, we have, from (4.18),

|ei | ≤ M max
i≥2

{
ε

(h1)2
, hi [exp(−xi/ε) + 1]

}
, i = 0, 1, . . . , N − 1 .

Therefore, if ε ≤ h(h1)2, we obtain a uniform estimate of the solution error

|ei | ≤ Mh , i = 0, . . . , N − 1 .
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In this case (Fig. 4.2, right-hand), i.e. when all grid nodes lie outside the boundary
layer, we find that the solution of the associated initial-value problem is solved more
accurately than in the case where a part of the nodes is put in the boundary layer.
As a result, the solution to a problem of the type (4.17) may be more accurate at
the points of a uniform grid than at the points of a grid with node clustering in
the boundary layer when the parameter ε is sufficiently small, namely ε ≤ 1/N 3.

However, this solution is not interpolated uniformly over the entire interval [0, 1].
This consideration shows that a measure of the solution error computed only at the
grid points cannot always be used as a successful driving mechanism for the adaptive
distribution of grid points.

One more disadvantage of generating grids in accordance with a uniform distri-
bution of the error T (x) is the fact that for highly accurate approximations of the
governing equations, the expression for T (x) includes terms dependent on high-order
derivatives of the solution, which may cause much numerical noise and instability.

Thus, though it is quite natural to incorporate directly the error measurements
‖ e(x) ‖ or ‖ T (x) ‖ into a formulation of the monitor functions, the computation
of the optimally distributed grids defined by these measures may be an expensive
and unsuccessful procedure and, in fact, relies on exact knowledge of the physical
solution. So, the requirement for efficiency of the algorithms leads the practitioners
to specify the weight functions in more simple forms, applying for this purpose
only lower-order derivatives of the solution. Generally, the largest numerical errors
are found in regions of rapid variation of the lower derivatives of the solution, in
particular, the first derivative. Therefore, even the first derivatives of the solution can
often be used to derive the weight functions.

Two-Point Boundary Value Problem

The initial-value problem (4.12) can also be replaced by an equivalent linear two-
point boundary value problem for an ordinary equation of the second order,

d

dx

(
dξ

dx
/ψ(x, ε)

)
= 0 , 0 < x < 1 ,

ξ(0) = 0 , ξ(1) = 1 , (4.22)

or by a nonlinear problem for an equation with ξ as the independent variable and x
as the dependent variable,

d

dξ

(
dx

dξ
ψ(x, ε)

)
= 0 , 0 < ξ < 1 ,

x(0) = 0 , x(1) = 1 . (4.23)

So, the singular functions u(x, ε) whose total variation is limited on the interval
[0, 1] by a constant M independent of the parameter ε can be transformed to the
function u[x(ξ), ε] with a uniformly limited first derivative with respect to ξ on the
interval [0, 1].
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The one-dimensional grid derived through a transformation x(ξ) which satisfies
the relation (4.23) is optimal in the above sense. Taking into account (4.13), which
shows that the first derivative of the function u[x(ξ), ε]with respect to ξ is uniformly
bounded, we find that the variation of the function u[x(ξ), ε] on the neighboring
points xi+1 and xi of the grid derived by the transformation x(ξ), where

xi = x(ih) , h = 1/N , i = 0, . . . , N ,

is uniformly limited as well, i.e.

|ui+1 − ui | ≤ Mh , ui = u(xi , ε) , i = 0, . . . , N − 1 ,

where M is independent of ε. Therefore, the values of ui can be uniformly interpo-
lated over the whole interval [0, 1] by a piecewise function P(x) which uniformly
approximates u(x, ε) over the entire interval [0, 1]:

|u(x, ξ) − P(x)| ≤ Mh , 0 ≤ x ≤ 1 .

Analytical results guarantee the existence of a majorant ψ(x, ε) satisfying the
condition (4.11) for the solutions to the problems (4.1), (4.7) if the function f (x, u)

satisfies the condition of strong ellipticity, i.e.

fu(x, u) ≥ m > 0 ,

which also ensures uniqueness of the solution. Note, for example, that the problem

εu′′ = −u = 0 , 0 < x < 1 ,

u(0) = 0 , u(1) = 1 ,

does not satisfy the above condition of strong ellipticity and, as a result, the total
variation of its solution is not uniformly limited with respect to ε.

The solution u(x, ε) to the problem (4.6) is always a monotonic function, and
therefore its total variation equals |u1 − u0|.

Now we present four positive basic singular functions ψi (x, ε), with a uniformly
limited total variation, whose combinations bound the first derivative of the solutions
to the problems (4.1), (4.6)–(4.9) in the boundary layers.

Exponential Functions

The most popular function used to demonstrate a boundary singularity near x = 0
is the exponential function

u(x, ε) = exp(−bx/εα) , 0 ≤ x ≤ 1 ,
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α > 0, b > 0, whose first derivative yields an expression for the basic majorant
Mψ1(x, b, ε), where

ψ1(x, b, ε) = ε−α exp(−bx/εα) , (4.24)

satisfying the condition (4.11).
An exponential singularity in the form (4.24) of the solution u(x, ε) to problem

(4.1) can occur only near the boundary point x = 0 with α = 1 when a(0) ≥ m > 0,
and with α = 1/2 when a(0) = 0, a′(0) = 0. Similarly, near the boundary point
x = 1, the exponential singularity in the form

u(x, ε) = exp(−b(1 − x)/εα) , 0 ≤ x ≤ 1 ,

can occur with α = 1 when −a(0) ≥ m > 0, and with α = 1/2 when a(1) =
0, a′(1) = 0 . The condition a(0) > 0 in the gas flow simulation (4.2) corresponds
to v(0) < 0, which means the physical situation of the gas being sucked through a
side wall, while the condition a(0) = 0 corresponds to gas adhesion to the side wall.

The first derivative of the solution to (4.7) is also estimated by the majorant
Mψ1(x, b, ξ), with α = p, when p > 1.

Power Singularities

The most common condition for viscous gas flows is that of adhesion of the gas to a
solid wall, which, for two-dimensional flows (4.2), is expressed mathematically by
the equation

u(0) = 0 , v(0) = 0 ,

corresponding to a(0) = 0 in (4.1). In this case, the nature of the boundary layer
singularity of the solution to the problem (4.1) depends on the sign of the first
derivative of a(x) at the point x = 0. The relations

a(0) = 0 , a′(0) < 0 , or a′(0) > 0 ,

physically express attraction or repulsion of the gas to or from the wall, respectively.
Therefore, the singularities of the gas flow are directly connected to the direction of
the transverse velocity near the solid wall.

For a(0) = 0, a′(0) < 0, the first derivative of the solution u(x, ε) to the problem
(4.1) in the vicinity of the boundary point x = 0when fu(x, u) ≥ m > 0 is estimated
by the majorant Mψ2(x, b, ε), where

ψ2(x, b, ε) = εαb/(εα + x)b+1 , b > 0 , α = 1/2 . (4.25)

The function Mψ2(x, b, ε) with α = 1 also estimates the first derivative of the
solution to the problem (4.7) in the vicinity of the boundary point x = 0 when p = 1
and a(0) < 1.

Another power function near the boundary x = 0 is expressed by the majorant
Mψ3(x, b, ε):
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ψ3(x, b, ε) = (εα + x)b−1 , 1 > b > 0 , α > 0 . (4.26)

The combination of this function with the majorant Mψ2(x, b, ε), both for α = 1/2,
estimates the first derivative of the solution to the problem (4.1) in the vicinity of
x = 0 when a(0) = 0, a′(0) > 0. So, a viscous flow in the direction of the
repulsion of the gas from the wall may have a combined boundary layer. The function
Mψ3(x, b, ε) with α = 1 also bounds in the vicinity of the boundary point x = 0
the first derivative of the solution to the problem (4.7) when p = 1, a(0) > 1.

Logarithmic Function

One more important majorant function satisfying (4.11) appears in an estimate of
the first derivative of the solution to the problem (4.7) with p = 1, a(0) = 1.
Qualitatively, the solution u(x, ε) in the boundary layer is described in this case by
a logarithmic function

c(x)
ln(εα + x)

ln εα

with α = 1. The first derivative of u(x, ε) is estimated in the boundary layer by the
basic majorant Mψ4(x, ε) with α = 1, where

ψ4(x, ε) = 1

(εα + x)| ln ε| . (4.27)

Relations Among Basic Majorants

For the majorants ψi (x, b, ε), i = 1, 2, 3, and ψ4(x, ε), the following relations,
expressed by inequalities, apply:

ψi (x, b1, ε) ≤ Mψi (x, b2, ε) , b1 ≥ b2 > 0 , i = 1, 2, 3 ,

ψ1(x, b, ε) ≤ Mψ2(x, d, ε) for arbitrary d > 0 ,

ψi (x, b, ε) ≤ M | ln εα|ψ4(x, ε) , b > 0 , i = 1, 2 . (4.28)

These relations are readily proved. For example, the confirmation of the second
inequality follows from

ψ1(x, b, ε)

ψ2(x, d, ε)
= (εα + x)d+1

εα(1+d)
exp(−bx/εα)

≤ 2d+1 exp(−bx/εα) +
( x

εα

)d+1
exp(−bx/εα) .

As
xn exp(−cx) ≤ M , n > 0 , c > 0 , 0 ≤ x < ∞ ,

where the constant M is dependent only on n and c, we find that
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ψ1(x, b, ε)

ψ2(x, d, ε)
≤ M,

i.e. the second inequality of (4.28) is proved.

Interior Layers

The solutions to the problems (4.1) and (4.6) also have interior layers with large
variations. Moreover, the problem (4.6) qualitatively models the wave tracks and
shocks of many gas dynamic flows with layers of sharp variation away from the
boundaries. The problems (4.1), (4.6) are remarkable in that the first derivatives of
their solutions in the interior layers can be estimated by combinations of the same
majorants of the types ψi (x, b, ε), i = 1, 2, 3, however, in which the independent
variable x is replaced by |x − x0|, namely,

ψi (|x − x0|, b, ξ) , i = 1, 2, 3 ,

where x0 is the center of the layer, i.e. x0 is the point of the fastest local variation.
Thus, the estimates near the boundary point x = 0 serve also to estimate the first
derivative in the interior layer near the point 0 < x0 < 1, as well in the boundary
layer near the point x0 = 1. For example, for the derivative of the solution u(x, ξ)
to the problem (4.1), we have

∣∣∣du
dx

(x, ε)
∣∣∣ ≤ Mψ3(|x − x0|, b, ξ) , |x − x0| ≤ m ,

for same m > 0, where x0 is defined by the condition

a(x0) = 0 , a′(x0) ≥ fu(u, x) .

The location of the center of the interior layer of the solution to the problem (4.6) is
dependent on the properties of the function

b(u) =
∫ u

u0

a(η)dη.

An interior layer of the solution exists if

b(u0) = b(u1) , b(u) > b(u0) , (4.29)

and its center point x0 is defined by the first nonzero coefficients of the Taylor
expansions of the function b(u) in the vicinity of the points u0 and u1. For example,
if in addition to the condition (4.29), the condition

b′(ui ) = ai �= 0 , i = 0, 1,

is satisfied, then



4.3 Theoretical Foundation 147

x0 = a1/(a1 − a0) , i = 0, 1 ,

and
|u′(x)| ≤ Mψ1(|x − x0|, b, ε) , 0 ≤ x ≤ 1 ,

where the constant b is defined by a0 and a1.
An instructive example is that of an interior layer of the solution to the problem

(4.6) that moves unlimitedly to the boundary as the parameter ε approaches zero.
Such a layer is realized in a solution to the problem (4.6) if the function b(u) satisfies
the condition (4.29) and

a(u0) �= 0 ,
dk

duk
b(u1) = 0 , k ≤ p, p ≥ 1 ,

dp+1

du p+1
b(u1) �= 0 .

For the derivative of the solution u(x, ε), in this case, we have

|u′(x, ε)| ≤
{
M[1 + ε−1{exp[a0(x − x0)/ε]}] , 0 ≤ x ≤ x0 ,

M[1 + εb(ε + x − x0)(−1−b)] , x0 ≤ x ≤ 1 ,
(4.30)

where
b = 1/p , x0 = (1 + b)

ε

a0
ln ε−1 .

So, the derivative in the left-hand part of the layer is estimated by the majorant
Mψ1(x − x0, a0, ε) and in the right-hand part it is bounded by Mψ2(x − x0, b, ε).
Therefore, the stretching of the variable x should be different in the left- and right-
hand parts of the boundary layer. As the center point x0 approaches the boundary
unlimitedly as ε → 0, the solution with an interior layer tends to the solution of the
reduced problem (ε = 0) with a boundary layer (Fig. 4.3). Thus, this example shows
a drawback of the analysis of the locations of layers by means of reduced problems.

Estimates of the Higher Derivatives

The basic majorants of the higher derivatives of the solutions to the problems
(4.1), (4.6)–(4.9) in the layers have the form of the derivatives of the majorants
(4.24)–(4.27).Namely, they are expressedby the following functionsψn

i (x, b, ε), i =
1, 2, 3, and ψn

4 (x, ε):
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Fig. 4.3 Function with a
mixed interior layer
approaching the boundary
unlimitedly

ψn
1 (x, b, ε) = ε−αn exp(−b|x − x0|/εα) ,

ψn
2 (x, b, ε) = εαb/(εα + |x − x0|)b+n ,

ψn
3 (x, b, ε) = (εα + |x − x0|)b−n ,

ψn
4 (x, ε) = 1

(εα + |x − x0|)n| ln ε| , (4.31)

where x0 is the point at the center of the layer. Here, the constants α and bmay differ
for different functions.

The general estimate of the nth derivative of u(x, ε) in the vicinity of the point x0
has the form ∣∣∣dnu

dxn

∣∣∣ ≤ M[1 + ψn(x, ε)] , |x − x0| ≤ m , (4.32)

where ψn(x, ε) is a combination of the functions described by the formulas (4.31),
i. e.

ψn(x, ε) = c1ψ
n
1 (x, b1, ε) + c2ψ

n
2 (x, b2, ε) + c3ψ

n
3 (x, b3, ε) + c4ψ

n
4 (x, ε) ,

bi > 0 , i = 1, 2, 3 , ci ≥ 0 , i = 1, 2, 3, 4 . (4.33)

The distinctive feature of these estimates (4.32) is that they guarantee that the local
transformation x(ξ) obtained from equations of the forms (4.12), (4.22), (4.23) for

ψ(x, ε) = 1 + m1(ψ
n(x, ε))1/n , m1 > 0 , (4.34)

is suitable for smoothing the higher-order singularities, i.e. the following estimate is
valid: ∣∣∣ dn

dξn
u[x(ξ), ε]

∣∣∣ ≤ M , |x − x0| ≤ m . (4.35)
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As
ψn(x, ε) ≤ M1ψ(x, ε) ,

where

ψ(x, ε) = d1ψ
1
1(x, b1/n, ε) + d2ψ

1
2(x, b2/n, ε) + d3ψ

1
3(x, b3/n, ε) + d4(ψ

n
4 (x, ε))1/n ,

di ≥ 0, i = 1, 2, 3, 4, we can also assume in (4.34)

ψ(x, ε) = 1 + m2ψ(x, ε) , m2 > 0 .

Thus, the majorant ψ(x, ε) is a combination of the basic functions (4.24)–(4.27),
where x is substituted with | x − x0 |, which estimate the first derivative in layers.

Invariants of Equations

It is apparent that the boundary layers of the singularly perturbed solutions do not
vanish when the coordinate x is replaced by a coordinate q with a one-to-one smooth
transformation x(q) of the interval [0, 1] if x(q) is independent of ε. And it is
apparent that (4.1) has some invariants under such transformations which determine
the qualitative behavior of the solutions to the equations. For example, (4.1) in the
new independent variable q and dependent variable u1(q, ε) = u[x(q), ε] has the
form

εu′′
1 + a1(q)u′

1 = f1(q, u1) , 0 < q < 1 ,

a1(q) = x ′a[x(q)] + εx ′′/(x ′)2 ,

f1(q1, u1) = (x ′)2 f [x(a), u1] .

So, the invariants are

(1) the sign of the coefficient a1(q) of the first derivative for q = 0, ε = 0,
(2) the expression

a′
1(0)/ fu1 [0, u1(0)]

for ε = 0 when a1(0) = 0.

As was mentioned above, the estimate of the first derivative of the solution to this
problem is defined through these two invariants.

The invariant defining the structure of the solution to the problem (4.7) in the
boundary layer is also the value of the coefficient a(x) for x = 0.

The qualitative behavior of the solution to the problem (4.6) is determined by
the values of the derivatives of the function b(u) = ∫ u

u0
a(u)du at the points u0 and

u1. These values are the invariants of transformations v = f (u) of the dependent
variable u.

The preceding remarks show the importance of the study of the invariants of
equations and their connection with the qualitative features of the solutions in the
layers.
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4.4 Basic Intermediate Transformations

This section gives a detailed description of the basic univariate stretching functions
and, consequently, the contraction functions, which are applied to construct the inter-
mediate transformations that provide grid clustering in boundary and interior layers.

4.4.1 Basic Local Stretching Functions

The derivatives of the solution of a singularly perturbed equation are large in the
center of a layer and decrease towards its boundary. Outside the layers, the derivatives
are estimated by a constant M independent of the small parameter ε, while within
a layer, the derivatives of any singular solution with respect to the coordinate x
transverse to the layer can be bounded by the derivatives of one or a combination of
the basic functions ψn

i (x, b, ε), i = 1, 2, 3, and ψn
4 (x, ε) defined by (4.31). These

basic functions generate four basic univariate transformations ϕi (x, ε) which stretch
the layers. The introduction of these functions to stretch the coordinate transverse to
a layer nonuniformly allows one to build a new local coordinate system with respect
to which the solution has no layers with large derivatives.

Local coordinate transformations ϕi (x, ε) which nonuniformly stretch the coor-
dinate lines within the boundary layers have already been utilized to generate grids
for the numerical solution of some singularly perturbed problems. Analytical and
numerical analyses have demonstrated that the grids generated in the layers by these
coordinate transformations allow one to obtain a numerical solution to a singularly
perturbed problem which converges uniformly with respect to the small parame-
ter to the exact solution. Also, the solution can be interpolated uniformly over the
entire region, including the layers. Therefore, the incorporation of stretching func-
tions into formulas for intermediate transformations is a promising way to develop
grid techniques.

The four standard, local, stretching, coordinate transformations denoted by
ϕi (x, ε), i = 1, 2, 3, 4, where x is a scalar-valued independent variable interpreted
here as a coordinate orthogonal to a layer and ε is a small parameter, have been
designed only to stretch the boundary layer at the point x = 0. These functions
are defined by integrating the basic majorants (4.24)–(4.27). In reality, these local
stretching transformations are boundary layer functions which describe the quali-
tative behavior of the physical solutions across the boundary layers. The functions
which stretch the interior layers are derived from these basic transformations by the
procedures described in Sect. 4.4.4.

The boundary layer functions corresponding to the majorants (4.24)–(4.27) are
computed by solving an initial-value problem of the type (4.12):

dϕ

dx
= cψ(x, ε) , x > 0 ,

ϕ(0) = 0 ,
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where ψ(x, ε) is the majorant of the function (u(n)(x, ε))1/n first derivative. For
convenience, the local stretching functions are written in a form that satisfies the
following conditions:

ϕ(0, ε) = 0 ,
d

dx
ϕ(x, ε) > 0 .

The first function is the well-known exponential mapping

ϕ1(x, ε) = 1 − exp(−bx/εα)

c
, α > 0 , b > 0 , c > 0 . (4.36)

The next two local stretching mappings are power functions,

ϕ2(x, ε) = 1 − [εα/(εα + x)]b
c

, α > 0 , b > 0 , c > 0 , (4.37)

and

ϕ3(x, ε) = (εα + x)b − εαb

c
, α > 0 , 1 > b > 0 , c > 0 . (4.38)

The fourth local stretching function is a logarithmic map

ϕ4(x, ε) = ln(1 + xε−α)

c ln(1 + ε−α)
, α > 0 , c > 0 . (4.39)

The numbers α, b, and c in these expressions for the stretching functions ϕi (x, ε)
are positive constants. The number α shows the scale of a layer. It is easily computed
analytically. For example, for problems of viscous flows, α = 1/2 in a boundary
layer and α = 1 in a shock wave. The constant c serves to control the length of the
interval of the new stretching coordinate ϕ that is transformed into the layer. The
constant b controls the type of stretching nonuniformity and the width of the layer.
The parameter ε provides the major contribution to determining the slopes of the
stretching functions in the vicinity of the point x = 0.

The stretching functions ϕi (x, ε), i = 1, 2, 3, 4, for εα = 1/30 are shown
in Fig. 4.4. The symbols +,×,♦, and � identify the functions ϕ1(x, ε), ϕ2(x, ε),
ϕ3(x, ε), andϕ4(x, ε), respectively. The constant c is selected to satisfy the restriction
ϕi (1, ε) = 1, i = 1, 2, 3, 4.

Width of Boundary Layers

The interval where any function ϕi (x, ε) provides a stretching of the coordinate
x coincides with the interval where the first derivative with respect to x of this
functionϕi (x, ε) is large. The first derivatives of the basic stretching transformations
ϕi (x, ε), i = 1, 2, 3, 4, are
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Fig. 4.4 Basic local
stretching functions

dϕ1

dx
(x, ε) = bε−α

c
exp(−bx/εα) , α > 0 , b > 0 ,

dϕ2

dx
(x, ε) = bεαb

c(εα + x)b+1
, α > 0 , b > 0 ,

dϕ3

dx
(x, ε) = b

c
(εα + x)b−1 , α > 0 , 1 > b > 0 ,

dϕ4

dx
(x, ε) = 1

c ln(1 + ε−α)(εα + x)
, α > 0 . (4.40)

For the first derivative dϕi (x, ε)/dx of the stretching functions ϕi (x, ε), i =
1, 2, 4, one can readily obtain the following relations:

dϕ1

dx
(x, ε) ≤ M

dϕ2

dx
(x, ε) , 0 ≤ x ≤ 1 ,

d

dx
ϕ2(x, ε) ≤ M

d

dx
ϕ4(x, ε

p) , p > 1 , 0 ≤ x ≤ 1 ,

where the constant M does not depend on ε. Therefore, the stretching transforma-
tion ϕ2(x, ε) can be used to eliminate both exponential and power layers, while the
mapping ϕ4(x, ε) is suitable for smoothing exponential and power layers and also
the singularities of the type described by ϕ4(x, ε).

The derivative dϕi (x, ε)/dx of each local stretching mapping ϕi (x, ε) is large
in the vicinity of the point x = 0 when the parameter ε is small, and decreases as
x increases. The boundary of the layer for the function ϕi (x, ε) is defined to be at
the point xi where the modulus of the first derivative (d/dx)ϕi (x, ε) is limited by a
constant M > 0 independent of the parameter ε, i.e.
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∣∣∣dϕi

dx
(xi , ε)

∣∣∣ ≤ M .

The value of xi coincides with the width of the layer, denoted by Δi (x, ε), of the
function ϕi (x, ε). So, from (4.40),

x1 = Δ1(x, ε) = εα

b
ln ε−α ,

dϕ1

dx
(x1, ε) = b/c ,

x2 = Δ2(x, ε) = εαb/(b+1) − εα ,
dϕ2

dx
(x2, ε) = b/c ,

x3 = Δ3(x, ε) = dε0 − εα ,
dϕ3

dx
(x3, ε) = d(b−1)b/c ,

x4 = Δ4(x, ε) = 1

ln(1 + ε−α)
− εα ,

dϕ4

dx
(x4, ε) = 1/c . (4.41)

These expressions evidently provide a rule for controlling, with the constant b,
the width of the layers where the grid nodes are to be clustered. In order to make the
layer wider, this constant needs to be reduced.

Also, from (4.41), one can obtain the maximum value mi > 0 of the parameter
ε for each stretching function ϕi (x, ε). The value of m is obtained from the obvious
condition xi < 1, i = 1, 2, 3, 4. This value defines the range for ε for the application
of the stretching, 0 < ε ≤ mi , and consequently the contraction functions for the
construction of the intermediate transformations. In the following discussion, we
consider only those values of the parameter ε which are subject to the restriction
xi < 1.

The formulas for Δ2(x, ε), Δ3(x, ε), and Δ4(x, ε) contain the quantity −εα,
which, asymptotically, does not influence the width of the layers, but is included
purely to simplify the expression for the first derivative of ϕi (x, ε) at the point xi .
Equation (4.41) clearly show that there exists a number ε0 > 0 such that

Δ3(x, ε) > Δ4(x, ε) > Δ2(x, ε) > Δ1(x, ε)

for all positive ε < ε0.
The equations in (4.40) indicate that the length of the central part of the layer,

where thefirst derivative reaches themaximumvaluesMε−α forϕi (x, ε), i = 1, 2, 3,
and Mε−α/ ln ε−α for ϕ4(x, ε), is similar for all functions ϕi (x, ε) and equals mεα.

However, the relations (4.41) state that the transitional part of the layer, between the
center and the boundary, is considerably larger thanmεα, especially for the functions
ϕ2(x, ε),ϕ3(x, ε), andϕ4(x, ε).The first derivative in the transitional part of the layer
is also large when the parameter ε is small, and therefore stretching of the central
part is required as well, though to a lesser degree.

In contrast, the first derivative of each function ϕi (x, ε), i = 1, 2, 4, is very
small outside a layer when the parameter ε is small. Namely, from (4.41), for a point
x = const lying outside a layer,
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dϕ1

dx
(x, ε) ∼ ε−α exp(−b1/ε

α) ,

dϕ2

dx
(x, ε) ∼ εαm ,

dϕ4

dx
(x, ε) ∼ 1

ln ε−α
.

Of these three expressions for the first derivative, the last one has the least tendency
to become zero outside the layer and, when the parameter ε is not too small, the
function ϕ4(x, ε) can be used over the whole interval [0, 1] to introduce a new
coordinate variable to stretch the coordinate x in the layer.

The boundary point xi of the layer for the transformation ϕi (x, ε) corresponds to
the valueϕi (xi , ε) = ϕi of the dependent variableϕi (x, ε). So,ϕi defines the interval
[0,ϕi ] which is transformed into the layer by the function inverse to ϕi (x, ε). The
values of these points ϕi (xi , ε) = ϕi corresponding to the values of xi specified by
(4.41) are given by

ϕ1 = 1 − εα

c
, ϕ2 = 1 − εαb/(b+1)

c
,

ϕ3 = db − εαb

c
, ϕ4 = ln(ε−α) − ln[ln(1 + ε−α)]

c ln(1 + ε−α)
. (4.42)

These expressions imply that

ϕi → 1/c , i = 1, 2, 4 , ϕ3 → db/c ,

when ε tends to 0.

4.4.2 Basic Boundary Contraction Functions

The functions ϕi (x, ε) stretch the coordinate x within the narrow layers [0, xi ],
and therefore the mappings that are inverse to ϕi (x, ε) provide a contraction of the
coordinate ϕ in the interval [0,ϕi ]. Thus, these inverse functions can be used as
the univariate local transformations q j (ξ j ), where q j = x, ξ j = ϕ, to build the
intermediate n-dimensional transformations

q(ξ) : Ξ n → Qn

which generate nodal clustering in the layers along the selected coordinates q j .

Taking into account (4.36)–(4.39), the local inverse transformations xi (ξ, ε) of
the corresponding stretching functions ϕi (x, ε) have the following form:
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x1(ξ, ε) = −εα

b
ln(1 − cξ) , α > 0 , b > 0 ,

x2(ξ, ε) = εα
(
(1 − cξ)−1/b − 1

)
, α > 0 , b > 0 ,

x3(ξ, ε) = (εαb + cξ)1/b − εα , α > 0 , 1 > b > 0 ,

x4(ξ, ε) = εα
(
(1 + ε−α)cξ − 1

)
, α > 0 . (4.43)

Differentiating these expressions p times gives

dpx1(ξ, ε)

dξ p
= d1ε

α(1 − cξ)−p ,

dpx2(ξ, ε)

dξ p
= d2ε

α(1 − cξ)−1/b−p ,

dpx3(ξ, ε)

dξ p
= d3(ε

αb + cξ)1/b−p ,

dpx4(ξ, ε)

dξ p
= d4ε

α(1 + ε−α)cξ lnp(1 + ε−α) ,

where |di | ≤ M, i = 1, 2, 3, 4. Therefore, the points ξ
p
i and x p

i = xi (ξ
p
i , ε),

i = 1, 2, 3, 4, such that on the interval [0, ξ p
i ] the pth derivative of the mapping

xi (ξ, ε) is ε-uniformly bounded, are given by the equations

ξ
p
1 = 1 − εαp

c
, x p

1 = εα

pb
ln ε−α ,

ξ
p
2 = 1 − εβ

c
, x p

2 = εpβ − εα , β = αb

1 + pb
,

ξ
p
3 = 1 , x p

3 = 1 if 1/b ≥ p ,

ξ
p
4 = ln ε−α − p ln[ln(1 + ε−α)]

c ln(1 + ε−α)
, x p

4 = 1

lnp(1 + ε−α)
− εα .

Since ξ
p1
i ≤ ξ

p2
i and x p1

i ≤ x p2
i , i = 1, 2, 3, 4, if p1 ≥ p2, we conclude that

∣∣∣ d j xi (ξ, ε)

dξ j

∣∣∣≤ M , 0 ≤ ξ ≤ ξ
p
i , j ≤ p , i = 1, 2, 3, 4 .

It is clear that the interval [0, x p
i ], i = 1, 2, 3, 4, is the layer of order p− 1 of the

corresponding singular function ϕi (x, ε), i = 1, 2, 3, 4. Hence, the transformation
xi (ξ, ε), i = 1, 2, 3, 4, maps the interval [0,ϕp

i ] onto the layer of order p− 1 of the
singular function ϕi (x, ε), i = 1, 2, 3, 4.

Notice the functions xi (ξ, ε), i = 1, 2, 3, 4, can be used as local trial functions to
treat singularly perturbed problems by Galerkin or Petrov–Galerkin finite-element
methods.

The first derivative of any of the functions xi (ξ, ε) is small at the points ξ, 0 ≤
ξ ≤ ϕi (x1i , ε) = ϕ1

i , and therefore the magnitude of the grid spacing in the x
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direction of the grid generated by the mapping xi (ξ, ε) is also small in the layer; it is
approximately of the order of (d/dξ)[xi (ξ, ε)]h. The degree of grid clustering at the
center of the layer reaches a value of εk and increases at the points near the boundary
x1i of the layer.

The stretching functions ϕi (x, ε) themselves describe the qualitative behavior of
solutions within their zones of large gradients along the coordinate lines normal to
the layers. Therefore, as any mapping xi (ξ, ε), i = 1, 2, 3, 4, is the inverse of the
corresponding function ϕi (x, ε), the grids derived from the transformations xi (ξ, ε)
provide the optimum nonuniform resolution of the physical solution in the layers
with an economy of nodal points. However, these functions, excluding the map-
ping x3(ξ, ε), produce excessively sparse grids outside the layers, since their first
derivative, satisfying the equation

dxi
dξ

(ξ, ε) = 1
/dϕi

dx
[x(ξ), ε]

is very large when ξ > ξ1i and tends to infinity as the parameter ε nears zero. There-
fore, the contraction functions xi (ξ, ε) can only be used to provide grid clustering in
the layers; outside the layers, the grids must be generated through other mappings
producing less coarse grids.

Formulas for Basic Layer-Damping Transformations

In order to define a layer-damping intermediate transformation x(ξ, ε) on the interval
[0, 1] through the use of the local univariate mappings xi (ξ, ε), i = 1, 2, 3, 4, from
(4.43) specified on the corresponding intervals [0, ξ p

i ], to provide adequate clustering
of grid points, these mappings need to be extended continuously or smoothly over
the whole interval [0, 1] to map this interval monotonically onto the unit interval [0,
1]. This can be done by “gluing” these local nonuniform transformations xi (ξ, ε) to
other mappings in the interval [ξ p

i , 1] that are more uniform than the basic functions
xi (ξ, ε), for example, linear or power functions. The glued transformation extending
xi (ξ, ε) must be smooth, or at least continuous.

Continuous Mappings.

Nonsmooth continuous layer-damping mappings, denoted here as x p
i,c(ξ, ε), can be

defined as

x p
i,c(ξ, ε) =

⎧⎨
⎩
xi (ξ, ε) , 0 ≤ ξ ≤ ξ

p
i ,

x p
i + (1 − x p

i )(ξ − ξ
p
i )

1 − ξ
p
i

, ξ
p
i ≤ ξ ≤ 1 .

(4.44)

These functions are monotonically increasing, given a suitable choice of the inter-
val [0,mi ] for the parameter ε, and vary from 0 to 1. Therefore, they generate the
individual univariate layer-damping transformations q(ξ, ε), assuming

q(ξ, ε) = x p
j,c(ξ, ε) , j = 1, 2, 3, 4 .
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The pth derivative of the reference function x3(ξ, ε) is limited uniformly, with
respect to the parameter ε, for all 0 < ε ≤ m3, if 1/b ≥ p, so the matching of this
function to any other one to transform the interval [0, 1] onto the interval [0, 1] is, in
general, not necessary. The proper function, monotonically increasing and varying
from 0 to 1, denoted by x p

3, s(ξ, ε), is obtained by adjusting the constant c in (4.43):

x p
3,s(ξ, ε) = (εαb + cξ)1/b − εα , c = (εα + 1)b − εαb , 1/b ≥ p .

The length of any interval [0, ξ p
i ], i = 1, 2, 4, transformed onto the corresponding

layer by the corresponding function xi,c(ξ, ε) defined by (4.44) approaches the con-
stant 1/c as the parameter ε tends to zero. This quantity 1/c specifies that part of the
uniform grid in the interval [0, 1] of the independent variable ξ which is transformed
into the layer. Obviously, the value of the constant c must be more than 1.

Smooth Mappings.

Smooth basic univariate layer-damping transformations of the interval [0, 1] can be
defined by matching the basic local transformations xi (ξ, ε) at the corresponding
points ξ

p
i to the function of the type x3,s(ξ, ε) since its derivatives up to order p

are ε-uniformly bounded when 1/b ≥ α. The matching is made at the cost of the
constant c in the formulas for xi (ξ, ε). These very smooth transformations, obtained
by matching smoothly the local contraction functions xi (ξ, ε), i = 1, 2, 4, with the
function a1 + [a2(ξ − ξ

p
i ) + a3]p and denoted below by xi,s(ξ, ε), are given here.

The local basic contraction function x1(ξ, ε) is extended by the procedure of
smooth matching to

x p
1,s(ξ, ε) =

⎧⎪⎨
⎪⎩

−εα

b
ln(1 − cξ) , 0 ≤ ξ ≤ ξ

p
1 ,

x p
1 − εα +

(
c(ξ − ξ

p
1 )

bp
+ εα/p

)p

, ξ
p
1 ≤ ξ ≤ 1 ,

(4.45)

with

x p
1 = εα

pb
ln ε−α , c = bp(1 − x p

1 + εα)1/p + 1 − (1 + bp)εα/p ,

ξ
p
1 = (1 − εα/p)/c .

The use of the local contraction function x2(ξ, ε) yields

x p
2,s(ξ, ε) =

⎧⎨
⎩

εα[(1 − cξ)−1/b − 1] , 0 ≤ ξ ≤ ξ
p
2 ,

x p
2 − εβ p +

(
c

bp
(ξ − ξ

p
2 ) + εβ

)p

, ξ
p
2 ≤ ξ ≤ 1 ,

(4.46)

where
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β = bα

bp + 1
, x p

2 = εβ p − εα, c = bp[(1 − x p
2 + εβ p)1/p − εβ] + 1 − εβ,

ξ
p
2 = 1 − εβ

c
.

When b = 1, this transformation is as follows:

x p
2,s(ξ, ε) =

⎧⎪⎪⎨
⎪⎪⎩

εα cξ

1 − cξ
, 0 ≤ ξ ≤ ξ

p
2 ,

x p
2 − εβ p +

(
c

p
(ξ − ξ

p
2 ) + εβ

)p

, ξ
p
2 ≤ ξ ≤ 1 ,

(4.47)

where

β = α

p + 1
, x p

2 = εβ p − εα , c = p

1 − ξ
p
2

[(1 − x p
2 + εβ p)1/p − εβ] ,

ξ
p
2 = 1 − εβ

c
.

The function x3(ξ, ε) gives

x p
3,s(ξ, ε) = (cξ + εα/p)p − εα , c = (1 + εα)1/p − εα/p . (4.48)

Finally, for the fourth basic mapping x4(ξ, ε), we obtain, for p > 1,

x p
4,s(ξ, ε) =

⎧⎨
⎩

εα[(1 + ε−α)cξ − 1] , 0 ≤ ξ ≤ ξ
p
4 ,

x p
4 − y +

[
c

p
(ξ − ξ

p
4 ) + y1/p

]p

, ξ
p
4 ≤ ξ ≤ 1 ,

(4.49)

where

x p
4 = ln−p(1 + ε−α) − εα , y = [(x p

4 + εα) ln(1 + ε−α)]p/(p−1) ,

c = p[(1 + y − x p
4 )1/p − y1/p] + ln(1 + x p

4 /εα)

ln(1 + ε−α)
, ξ

p
4 = ln(1 + x p

4 /εα)

c ln(1 + ε−α)
.

While, for p = 1, we find

x14,s(ξ, ε) =
{

εα[(1 + ε−α)cξ − 1] , 0 ≤ ξ ≤ ξ14 ,

x14 + c(ξ − ξ14) , ξ14 ≤ ξ ≤ 1 ,
(4.50)

where

x14 = ln−1(1 + ε−α) − εα , c = 1 − x14 + ln(ε−α) − ln[ln(1 + ε−α)]
ln(1 + ε−α)

,

ξ14 = ln(ε−α) − ln[ln(1 + ε−α)]
c ln(1 + ε−α)

.
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Fig. 4.5 Basic layer-damping functions (left) and corresponding layer-resolving meshes (right)

Figure4.5 (left) illustrates the functions x p
i, s(ξ, ε) for ε = 2 · 10−3 and p = 2.

The right-hand side of Fig. 4.5 depicts the corresponding grid nodes derived by these
functions for ε = 10−1 and ε = 1/30. The symbols , O, �, and ♦ correspond to
the functions x21, s(ξ, ε), x

2
2, s(ξ, ε), x

2
3, s(ξ, ε), and x24, s(ξ, ε), respectively.

The first derivative of the local function

x4(ξ, ε) = εk
(
(1 + ε−α)cξ − 1

)

tends to ln ε−α as ξ > ξ14 . This quantity is large when the parameter ε is very small;
however, if ε is not too small, the magnitude of ln ε−α, which characterizes the grid
spacing, is not very large and may be tolerable for grid generation. In this case,
it is reasonable to use the local basic transformation x4(ξ, ε) as a global one from
[0, 1] to [0, 1] without matching it to any other one to generate a grid. By adjusting
the constant c, we obtain the form

x5(ξ, ε) = εα
(
(1 + ε−α)ξ − 1

)
.

The length of the interval [0, ξ p
1 ] transformed into the corresponding layer [0, x p

1 ]
by the smooth function x p

1, s(ξ, ε) tends to 1/(1+ pb) as the parameter ε tends to zero.
For the function x p

2, s(ξ, ε), the length of the interval [0, ξ p
2 ] also tends to 1/(1+ pb)

and, for the function x p
4, s(ξ, ε), the length of the interval [0, ξ p

4 ] tends to 1/(1 + p).
Consequently, this part of the uniform grid on the interval [0, 1] is transformed into
the corresponding layer. If there is a need for a larger proportion of the grid points to
be distributed by smooth mappings into layers, the basic local contraction functions
xi (ξ, ε), i = 1, 2, 4, should be matched smoothly to polynomials. In this case, the
point of matching can be chosen with less restriction and it will not be completely
prescribed, unlike in the case of the functions x p

i, s(ξ, ε).
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4.4.3 Other Univariate Transformations

Besides the univariate transformations described above,which dependon the parame-
ter ε and are directly connected with the solutions to singularly perturbed equations,
there are other monotonic functions, e.g. polynomials, hyperbolic functions, sines,
and tangents, which are used as local contraction mappings to yield grid clustering
in boundary and interior layers.

Eriksson Function

One such reference function was introduced by Eriksson (1982):

x6(ξ) = edξ − 1

ed − 1
, d > 0 , 0 ≤ ξ ≤ 1 . (4.51)

This function provides a concentration of the grid towards the boundary ξ = 0.
There is a direct correspondence between x6(ξ) and the basic transformation

x5(ξ, ε). Namely, if d in (4.51) is equal to ln(1 + ε−α), then the Eriksson function
(4.51) coincides with the contraction transformation x5(ξ, ε), i.e.

x6(ξ) = εα
(
(1 + ε−α)ξ − 1

)
.

This relation shows clearly how to adjust the grid spacing automatically to the phys-
ical small parameter ε by means of the Eriksson basic function.

Other functions, based on the inverse hyperbolic sines and tangents, were intro-
duced byVinokur (1983) to treat exponential singularities. Note that hyperbolic sines
and tangents are defined through exponential functions and, therefore, in the case of
narrow layers, are locally similar to the exponential function ϕ1(x, ε).

Tangent Function

The basic function
y(ξ) = tan ξ (4.52)

is very popular for generating grid clustering. Using two parameters α and β, a
monotonic function transforming the interval [0, 1] onto (0, 1] with an opportunity
to control the contraction near the boundary ξ = 0 can be defined by

x(ξ) = d tan(βξ) . (4.53)

The condition x(1) = 1 implies

d = 1/ tan β .

For the derivative of the function x(ξ) with respect to ξ, we have
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x ′(ξ) = β

tan β cos2 βξ
.

In order to cope with any boundary layer quantity whose derivative with respect to
x reaches values of ε−α at the point x = 0, the function x ′(ξ) must have a value of
the order of εα at the point ξ = 0. This condition implies

β = arctan ε−α

and consequently

d = εα ,

x ′(0) = εα arctan ε−α ∼ π

2
εα , for 0 < ε 
 1 .

Thus, the required expression for the local contraction function (4.53) eliminating
the boundary layer is

x(ξ) = εα tan[arctan(ε−α)ξ] . (4.54)

The corresponding inverse local stretching function ξ(x) has the form

ϕ(x) = arctan(ε−αx)

arctan(ε−α)
.

We have

ϕ′(x) = εα

arctan ε−1(ε2α + x2)

and thus

M1
εα

(εα + x)2
≤ |ξ′(x)| ≤ M2

εα

(εα + x)2
, (4.55)

where 0 < ε ≤ 1/2, and the constants M1 and M2 are independent of the parameter
ε. A comparison of the inequality (4.55) and the relations (4.40) shows that the local
stretching functionϕ(x) is qualitatively equivalent to the functionϕ2(x, ε) described
by (4.37) with b = 1. The function (4.54) is therefore suitable to cope with solutions
that are close to step functions in layers of exponential and power types.

Procedure for the Construction of Local Contraction Functions

The features of the tangent function (4.52) and the procedure described give a clue
as to how to build new functions which can generate local grid clustering near a
boundary point. These functions are derived from some basic univariate mappings
y(ξ), satisfying, in analogy with tan ξ, the following conditions:

(1) y′(0) = 1,
(2) y(ξ) is a monotonical increasing function for 0 ≤ ξ < a for some a > 0,
(3) y(ξ) → ∞ when ξ → a.
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If y(ξ) is a function satisfying these properties, then, assuming in analogywith (4.53)
and (4.54)

x(ξ) = y(βξ)

y(β)
= εαy[y−1(ε−α)ξ] ,

where y−1 is the inverse of y(ξ),we obtain amonotonic transformation of the interval
[0, 1] onto [0, 1] with a contraction of the order of εα at the point ξ = 0.

Note that the transformations

x1(ξ, ε) = −εα

b
ln(1 − cξ)

x2(ξ, ε) = εα[(1 − cξ)(−1/b) − 1]

from (4.43) can be obtained in accordance with this scheme from the functions

y1(ξ) = − ln(1 − ξ)

and
y2(ξ) = b[(1 − ξ)−1/b − 1] ,

respectively.
The original function y(ξ) can be formed as a ratio

y(ξ) = b1(ξ)/b2(ξ)

of two functions b1(ξ) and b2(ξ) which are strongly positive on the interval [0, a].
In addition, the function b1(ξ) must be monotonically increasing, while b2(ξ) is
monotonically decreasing and satisfies the condition b2(a) = 0. For example, the
function

y(ξ) = ξ

1 − ξ

generates the local contraction transformation

x(ξ) = εαξ

1 − (1 − εα)ξ
,

which coincideswith the transformation x2(ξ, ε) from (4.43) for b = 1, c = (1−εα).

4.4.4 Construction of Basic Intermediate Transformations

The basic functions xi,c(ξ, ε) and xi,s(ξ, ε) described above can be considered as
construction elements for building intermediate transformations q(ξ) : Ξ n → Qn



4.4 Basic Intermediate Transformations 163

that serve to provide adequate grid clustering where necessary. Firstly, these basic
functions can be used as separate transformations qi (ξi ) of the coordinates ξi . The
first derivatives of the basic mappings xi,c(ξ, ε) and xi, s(ξ, ε) are small near the
point ξ = 0, and therefore the derived intermediate transformations produce grid
clustering in the vicinity of the selected boundary surfaces ξi = 0.

Functions which provide grid clustering near arbitrary coordinate surfaces can
be derived from these basic univariate mappings. For this purpose, it is sufficient
to define monotonic scalar functions having a small first derivative near arbitrary
boundary or interior points in the interval [0, 1]. Such mappings can be defined
by simple procedures of scaling, shifting, and matching with the basic functions
xi,c(ξ, ε) and xi, s(ξ, ε), as described below.

Functions with Boundary Contraction

For example, let x(0, ξ) be one of these basic monotonically increasing functions
varying from 0 to 1 and having a small value of the first derivative near the point
ξ = 0, thus exhibiting a grid contraction near the point x = 0. Then, the mapping

x(1, ξ) = 1 − x(0, 1 − ξ)

is also a monotonically increasing function transforming the interval [0, 1] onto
itself and having the same small first derivative, but near the boundary point x = 1.
Therefore, it performs a nodal concentration near the point x = 1.

Grid clustering near two boundary points 0 and 1 can be produced by the mapping
x(0, 1, ξ) that is a composite of the two functions x(0, ξ) and x(1, ξ), say,

x(0, 1, ξ) = x[0, x(1, ξ)] ,

or can be obtained by the following formula of scaling and matching of the functions
x(0, ξ) and x(1, ξ):

x(0, 1, ξ) =
⎧⎨
⎩
x0x(0, ξ/x0) , 0 ≤ ξ ≤ x0 ,

1 − (1 − x0) x

(
0,

1 − ξ

1 − x0

)
, x0 ≤ ξ ≤ 1 ,

where x0 is an interior matching point of the interval [0, 1].

Functions with Interior Contraction

Further, if x0 is an inner point of the interval [0, 1], then the mapping

x(x0, ξ) =

⎧⎪⎨
⎪⎩
x0[1 − x(0, 1 − ξ/x0)] , 0 ≤ ξ ≤ x0 ,

x0 + (1 − x0)x

(
0,

ξ − x0
1 − x0

)
, x0 ≤ ξ ≤ 1 ,
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is a monotonically increasing function from the interval [0, 1] onto the interval [0,
1] which provides grid clustering in the vicinity of the point x = x0. The function
x(0, x0, 1, ξ), defined as the composition of the twomappings x(0, 1, ξ) and x(x0, ξ)
introduced above, namely,

x(0, x0, 1, ξ) = x[x0, x(0, 1, ξ)],

provides a concentration of grid nodes in the vicinity of the boundary points 0, 1
and of the interior point x0.

Amonotonically increasing function x(x0, x1, ξ) performing grid clustering near
two interior points x0 and x1, x0 < x1, can be defined as a composition of two
functions of the type x(x0, ξ) or can be given by the formula

x(x0, x1, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0[1 − x(0, 1 − ξ/x0)] , 0 ≤ ξ ≤ x0 ,

x0 + (d − x0) x

(
0,

ξ − x0
d − x0

)
, x0 ≤ ξ ≤ b ,

x1 + (d − x1) x

(
0,

x1 − ξ

x1 − d

)
, b ≤ ξ ≤ x1 ,

x1 + (1 − x1) x

(
0,

ξ − x1
1 − x1

)
, x1 ≤ ξ ≤ 1 ,

where d is a specified number satisfying x0 < b < x1. The same procedures allow
one to construct monotonically increasing functions providing grid clustering near
an arbitrary number of points. If the original mapping x(0, ξ) is smooth, then the
functions derived by these procedures are smooth as well.

Analogously, there can be defined monotonically decreasing functions providing
grid concentration near an arbitrary number of points using the basic decreasing
transformations 1 − x(0, ξ). So, there is a broad range of possibilities in using the
basic transformations to generate effective grid clustering.

Clustering Near Arbitrary Surfaces

The intermediate transformations q(ξ) constructed with the above approach through
these modifications of the basic scalar functions provide grid clustering near the
coordinate surfaces ξi = ξil . One drawback of such intermediate transformations is
that they generate grid clustering only near these coordinate surfaces, with the same
spacing in the vicinity of each of them. Therefore, some procedures are needed to
construct intermediate functions with a broader range of possibilities.

In three-dimensional domains, for instance, there is often a need to define an
intermediate transformation q(ξ) providing grid clustering near an arbitrary surface
intersecting a coordinate direction, say ξ3. Let the surface be prescribed by the
function

ξ3 = g(ξ1, ξ2) .

The required mapping q(ξ), providing grid concentration near this surface, is given
by the formula
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q1(ξ) = ξ1 ,

q2(ξ) = ξ2 ,

q3(ξ) =
⎧⎨
⎩

g(ξ1, ξ2){1 − f [1 − ξ3/g(ξ1, ξ2)]}, 0 ≤ ξ3 ≤ g(ξ1, ξ2),

g(ξ1, ξ2) + [1 − g(ξ1, ξ2)] f
(

ξ3 − g(ξ1, ξ2)

1 − g(ξ1, ξ2)

)
, g(ξ1, ξ2) ≤ ξ3 ≤ 1,

where f (ξ) is a basic monotonically increasing function with a small first derivative
near the point ξ = 0. Compositions of such transformations produce maps that
provide grid clustering near a number of surfaces intersecting different directions.

Nonuniform Clustering

The procedures described above provide adequate grid clustering in the vicinity of
arbitrary surfaces, but with the same grid spacing around any one specified surface.
However, in some cases, for example, when gridding a flow region around a body,
there is a need for nonuniform grid clustering in the transverse direction with respect
to different parts of the surface of the body. Such grid clustering can be realized by
intermediate transformations constructed along the coordinate surface (line in two
dimensions) through a combination of basic functions with different values of the
parameter ε. For example, a two-dimensional intermediate transformation q(ξ) can
be defined as

q1(ξ1, ξ2) = ξ1 ,

q2(ξ1, ξ2) = ξ1 x1(ξ2, εk) + (1 − ξ1) x2(ξ2, εd) ,

where xi (ξ2, εm) is one of the basic functions. The mapping q(ξ) provides a nonuni-
form grid spacing along the coordinate ξ2 = ξ20 in the ξ1 direction.

The procedures presented here can be applied to other mappings as well to con-
struct intermediate transformations generating nonuniform grid clustering in the
desired zones of the physical domain.

4.4.5 Multidirectional Equidistribution

The generation of grids in multidimensional domains commonly requires adaptation
in several directions. One way to perform such adaptation is to extend the methods
of univariate equidistribution. A generalization of the univariate equidistribution
approach to generate grids in a multidimensional domain can be accomplished by
using either a combination or a composition of univariate equidistributions along
fixed families of coordinate lines which are specified or computed beforehand in the
physical domain.

Combination of One-Dimensional Equidistributions

In the combination approach, the grid is derived by overlaying a series of grid lines
obtained separately with univariate equidistributions in each direction (Fig. 4.6).
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Fig. 4.6 Coordinate system derived by overlaying two independently deformed families (solid
curves) of coordinate lines

Thus, let the physical region Xn have a coordinate system q1, . . . , qn along which
a univariate adaptation is supposed to be performed. Let the coordinate system qi be
determined by a coordinate transformation

x(q) : Qn → Xn .

Here, the parametric (intermediate) domain Qn can be considered as the unit cube.
The equidistribution of the grid points along any fixed family of coordinate lines
is carried out by the formulas of univariate equidistribution. This process proceeds
separately for each fixed coordinate family qi by determining the respective weight
function wi (q) and finding the coordinate transformation qi (ξi ) for each fixed value
(q1, . . . , qi−1, qi+1, qn) through the following equation, of the form (4.23):

∂

∂ξi

(
∂qi

∂ξi
wi (q)

)
= 0 , 0 < ξi < 1 , i fixed ,

qi (0) = 0 , qi (1) = 1 , (4.56)

and then forming the final grid by overlaying the coordinate curves obtained. In
fact, the grid is built by solving the system (4.56) for i = 1, . . . , n. Of course,
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Fig. 4.7 Coordinate system derived by the composition of two successive deformations

unlike the one-dimensional case, the solution to this system may not be a one-to-one
transformation.

Composition of Univariate Equidistributions

In the composition approach, the process is split into a sequence of one-directional
adaptations, in which the grid is obtained through successive application of one-
dimensional equidistribution techniques (Fig. 4.7). In two dimensions, this succes-
sion can be represented as

x(q1, q2) → x[q1(ξ1, q2), q2] → x{q1[ξ1, q2(ξ1, ξ2)], q2(ξ1, ξ2)} .

This approach produces one-to-one coordinate transformations.

4.5 Comments

Reviews of adaptive methods for the generation of structured grids have been pub-
lished byAnderson (1983), Thompson (1985), Eiseman (1987),Hawken et al. (1991),
and Liseikin (1996).

Equidistribution approaches of various kinds have been reported by a number of
researchers. The original one-dimensional integral formulation of the equidistrib-
ution principle was proposed by Boor (1974), while the differential versions were
presented by Danaev (1979), Yanenko et al. (1977), Tolstykh (1978), and Dwyer
et al. (1980).

The most popular and general forms of the weight functions were reviewed
by Thompson (1985). These functions were proposed by Russell and Christiansen
(1978), Ablow and Schechter (1978), White (1979), Dwyer et al. (1980), Nakamura
(1983), and Anderson and Steinbrenner (1986). Acharya andMoukalled (1990) used
a normalized second derivative of the solution as the weighting function. A linear
combination of the first and second derivatives of the solution was used as a mea-
sure of the weighting function by Dwyer et al. (1980), who successfully applied
equidistribution along one family of grid lines within two-dimensional problems. A
combination of first and second derivatives and the curvature of the solution variables
to specify weight functions was applied by Ablow and Schechter (1978) and Noack
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and Anderson (1990). A selection of monitor functions in the form of weighted
Boolean sums of various solution characteristics was defined byWeatherill and Soni
(1991) and Soni and Yang (1992).

In a one-dimensional application, Gnoffo (1983) used a tension spring analogy
in which the adapted grid point spacing along a family of coordinate lines resulted
from the minimization of the spring system’s potential energy. The idea of the spring
analogy, represented in the equation for the weighting function, was extended by
Nakahashi and Deiwert (1985) to demonstrate the feasibility and versatility of the
equidistribution method. They also utilized in their considerations the notion of a
torsion spring attached to each node in order to control the inclination of the grid
lines.

Rai and Anderson (1981, 1982) and Eiseman (1985) have each used the idea
of moving grid points under the influence of forcing or weighting functions that
either attract or repel grid points relative to each other. Thus, points with forcing (or
weighting) functions greater than a specified average value attract each other, and
those with values less than the average value repel each other.

Examples of the numerical solution of singularly perturbed problems on an
equidistantmeshwere studied byAndrewandWhrite (1979). The equidistantmethod
was also advocated by Ablow (1982) and Catheral (1991), who applied it to some
gas-dynamic calculations.

Dorfi and Drury (1987) used a very effective technique for incorporating smooth-
ness into the univariate equidistribution principle. Their one-dimensional technique
ensures that the ratio of adjacent grid intervals is restricted, thus controlling clustering
and grid expansion. The power of this smoothing capabilitywas clearly demonstrated
in the valuable comparative studies by Furzland et al. (1990) and Zegeling (1993). A
multidimensional generalization of the approach of Dorfi and Drury (1987) was pre-
sented byHuang and Sloan (1994), who introduced control of concentration, scaling,
and smoothness.

Morrison (1962) was apparently the first who managed to show analytically the
efficiency of the error equidistribution principle for the generation of grids for the
numerical solution of ordinary differential equations. Babuŝka andRheinboldt (1978)
proposed an error estimator based on the solution of a local variational problem. A
truncation errormeasure for generating optimal grids was applied byDenny and Lan-
dis (1972), Liseikin and Yanenko (1977), White (1979, 1982), Ablow and Schechter
(1978), Miller (1981), Miller and Miller (1981), Davis and Flaherty (1982), Adjerid
and Flaherty (1986), and Petzold (1987). The approaches based on the equidistribu-
tion of the truncation error were developed by Pereyra and Sewell (1975) and Davis
and Flaherty (1982), while the equidistribution of the residual was developed by
Carey (1979), Pierson and Kutler (1980), and Rheinboldt (1981). An analysis of the
strategies based on a uniform error distribution was also undertaken by Chen (1994).
However, the numerical experiments by Blom and Verwer (1989) show that the mesh
generated from the error measurement monitor may be of poor quality.

Some methods which control the movement of the grid nodes in accordance
with the equidistribution of the residuals of equations were developed by
Miller (1981). Several versions of the moving-mesh method were also studied by
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Huang et al. (1994) to demonstrate their ability to accurately tracking rapid spatial
and temporal transitions.

A curve-by-curve grid line equidistribution approach in the computational space
was described by Eiseman (1987). The combination and composition versions of the
multidimensional equidistribution principle were proposed byDarmaev and Liseikin
(1987).

An orthogonalization technique of Potter and Tuttle (1973) for two-di-mensional
grid control, whereby the grids are adapted in one direction and orthogonality is
imposed on the second, was proposed byAnderson and Rajendran (1984) and Dwyer
and Onyejekwe (1985).

Certain anomalies which may arise in the process of the numerical solution of the
nonlinear equations modeling the equidistribution principle and ways for surmount-
ing them were discussed by Steinberg and Roache (1990) and Knupp (1991, 1992).
Also, some adverse effects of dynamic grid adaptation on the numerical solution of
physical problems were noted by Sweby and Yee (1990).

The method of equidistribution and minimization of the heuristically determined
error at each time step was used for calculations of nonstationary problems by Dorfi
and Drury (1987), Dwyer et al. (1980), Klopfer and McRae (1981), Miller (1983),
Wathen (1990), and White (1982).

There are three basic approaches to treating problems with boundary and inte-
rior layers. The classical approach relies on expansion of the solution in a series
of singular and slowly changing functions. The second technique applies special
approximations of equations. The third one is based on the implementation of local
stretching functions to stretch the coordinates and, correspondingly, provide clus-
tered grids.

The approach using stretching functions appears to be more effective in com-
parison with the other techniques because it requires only rough information about
the qualitative properties of the solution and enables one to interpolate the solution
uniformly over the entire physical region. The application of interactive procedures
using the basic intermediate transformations allows one to generate efficient grids in
arbitrary zones even without preliminary information about the qualitative features
of the solution.

Estimates of the derivatives of the solution to the problem of the type (4.10) with
exponential layers were obtained by Brish (1954). Investigation of the qualitative
properties of the solution to the linear problem (4.1) in interior layers was carried
out by Berger et al. (1984).

The asymptotic location of the interior layers of the solution to the problem (4.6)
was found by Lorenz (1982, 1984). The asymptotic expansion of the linear version
of the problem (4.7) for a(0) > 1 was considered by Lomov (1964). A qualitative
investigation of the solutions to the problems (4.1), (4.6), (4.7) in arbitrary boundary
and interior layers was carried out by Liseikin (1984, 1986, 1993). In these papers,
estimates of the derivatives of the solution were obtained. A detailed description
of the estimates of derivatives of the solutions of singularly perturbed equations is
presented in the monograph by Liseikin and Petrenko (1989) and Liseikin (2001).
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The logarithmic transformation x1(ξ, ε) in (4.43) with α = 1/2 was introduced
by Bahvalov (1969) for the generation of clustered grids in the vicinity of expo-
nential boundary layers of singularly perturbed equations. The mappings xi (ξ, ε),
i = 2, 3, 4, were proposed by Liseikin (1984, 1986) for the construction of nonuni-
form clustered grids within power and combined boundary and interior layers. A
particular shape of the basic contraction mapping x2(ξ, ε) for b = 1, having the
form

x2(ξ, ε) = εα cξ

1 − cξ
,

was also proposed independently by Vulanovic (1984) to generate grids within some
exponential layers for boundary layer functions of the type described by (4.36).

Stretching functions based on inverse hyperbolic sines were employed by Thomas
et al. (1972) in a numerical solution of inviscid supersonic flow.

A two-sided stretching function of the logarithmic type (4.39) was introduced by
Roberts (1971) to study boundary layer flows.

A family of tangent mappings of the form

x = x0 + α tan[(s − s0)βξ] ,

suitable primarily for internal layers, was introduced by Vinokur (1983) to generate
grids. These mappings were also employed by Bayliss and Garbey (1995) as part of
the adaptive pseudospectral method.

Physical quantities were used as new coordinates for stretching boundary and
interior layers by Tolstykh (1973).
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Chapter 5
Algebraic Grid Generation

5.1 Introduction

The algebraic grid generation approach relies chiefly on an explicit construction
of coordinate transformations through the formulas of transfinite interpolation. Of
central importance in the method are blending functions (univariate quantities, each
depending on one chosen coordinate only). These provide matching of the grid dis-
tribution on, and grid directions from, the boundaries and specified interior surfaces
of an arbitrary domain. Direct control of the essential properties of the coordinate
transformations in the vicinity of the boundaries and interior surfaces is carried out by
the specification of the out-of-surface-direction derivatives and blending functions.

The purpose of this chapter is to describe common techniques of algebraic grid
generation.

Nearly all of the formulas of transfinite interpolation include both repeated indices
over which a summation is carried out and one repeated index, usually i, that is fixed.
Therefore, in this chapter, we do not use the convention of summation of repeated
indices, but instead use the common notation

∑
to indicate summation.

5.2 Transfinite Interpolation

This section describes some general three-dimensional formulas of transfinite inter-
polation which are used to define algebraic coordinate transformations from a stan-
dard three-dimensional cube Ξ 3 with Cartesian coordinates ξi , i = 1, 2, 3, onto a
physical domain X3 with Cartesian coordinates xi , i = 1, 2, 3. The formulation of
the three–dimensional interpolation is based on a particular operation of Boolean
summation over unidirectional interpolations. So, first, the general formulas of uni-
directional interpolation are reviewed.
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5.2.1 Unidirectional Interpolation

General Formulas

For the unit cube Ξ 3, let there be chosen one coordinate direction ξi and some
sections of the cube orthogonal to this direction, defined by the planes ξi = ξil ,
l = 1, . . . , Li . Furthermore, on each section ξi = ξil , let there be given the values
of some vector-valued function r(ξ), ξ = (ξ1, ξ2, ξ3), and of its derivatives with
respect to ξi up to order Pi

l . Then, the unidirectional interpolation of the function
r(ξ) is a vector-valued function P i [r](ξ) from Ξ 3 into R3 defined by the formula

P i [r](ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=ξil

) . (5.1)

Here, the smooth scalar functions αi
l,n(ξ

i ), depending on one independent variable
ξi , are subject to the following restrictions:

dm

(dξi )m
αi
l,n(ξ

i
k) = δlkδ

n
m , l, k = 1, . . . , Li , m, n = 0, 1, . . . Pi

l , (5.2)

where δ
j
i is the Kronecker delta function, i.e. δ j

i =
{
1, i = j,
0, i �= j.

The expression (ξ|ξi=ξil
) in (5.1) designates a point that is a projection of ξ =

(ξ1, ξ2, ξ3) on the section ξi = ξil , i.e. the i th coordinate ξi of ξ is fixed and equal to
ξil ; for example,

(ξ|ξ1=ξ1l
) = (ξ1l , ξ

2, ξ3) .

It is also assumed in (5.1) and below that the operator for the zero-order derivative
is the identity operator, i.e.

∂0

(∂ξi )0
f (ξ) = f (ξ) ,

d0

(dξi )0
g(ξi ) = g(ξi ) .

The coefficientsαi
l,n(ξ

i ) in (5.1) are referred to as the blending functions. They serve
to propagate the values of the vector-valued function r(ξ) from the specified sections
of the cube �3 into its interior. It is easily shown that the conditions (5.2) imposed
on the blending functions αi

l,n(ξ
i ) provide matching at the sections ξi = ξil of the

values of the function P i [r](ξ) and r(ξ), as well as the values of their derivatives
with respect to ξi , namely,

∂n P i [r]
(∂ξi )n

(ξ|ξi=ξil
) = ∂n r

(∂ξi )n
(ξ|ξi=ξil

) , n = 0, . . . , Pi
l .
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Two-Boundary Interpolation

A very important interpolation for grid generation applications is the one which
matches the values of the vector-valued function r(ξ) and of its derivatives exclu-
sively at the boundary planes of the cube Ξ 3. In this case, Li = 2, ξi1 = 0, and
ξi2 = 1, and the relations (5.1) and (5.2) have the form

P i [r](ξ) =
Pi
1∑

n=0

α1
1,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=0)

+
Pi
2∑

n=0

αi
2,n(ξ

i )
∂n

(∂ξi )n
r(ξ|ξi=1) , (5.3)

dm

(dξi )m
αi
l,n(ξ

i
k) = δlkδ

n
m , l, k = 1, 2 , m, n = 0, 1, . . . Pi

l . (5.4)

The interpolation described by (5.3) is referred to as the two-boundary interpolation.

5.2.2 Tensor Product

The composition of two unidirectional interpolations P i [r](ξ) and P j [r](ξ) of r(ξ)

in the directions ξi and ξ j , respectively, is called their tensor product. This operation
is denoted by P i [r ] ⊗ P j [r ](ξ) and, in accordance with (5.1), we obtain

P i [r] ⊗ P j [r](ξ) = P i
[
P j [r]

]
(ξ)

=
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n P j [r]
(∂ξi )n

(ξ|ξi=ξil
)

=
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n+m r
(∂ξi )n(∂ξ j )m

(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.5)

Here, by the notation (ξ|ξi=ξil ,ξ
j=ξ

j
k
), we mean the point which is the projection of ξ

on the intersection of the planes ξi = ξil and ξ j = ξ
j
k , e.g.

(ξ|ξ1=ξ1l ,ξ
3=ξ3k

) = (ξ1l , ξ
2, ξ3k ) .

Equation (5.5) shows clearly that the tensor product is a commutative operation, i.e.

P i [r] ⊗ P j [r] = P j [r] ⊗ P i [r] .
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Using the relations (5.1), (5.2), and (5.5), we obtain

∂

∂ξi
P i [r] ⊗ P j [r](ξ|ξi=ξis ,ξ

j=ξ
j
t
)

=
L j

∑

m=1

P j
k∑

k=0

Li
∑

l=1

Pi
l∑

p=0

d

dξi
αi
m,k(ξ

i
s)α

j
l,p(ξ

j
t )

∂k+p r
(∂ξi )k(∂ξ j )p

(ξ|ξi=ξim ,ξ j=ξ
j
l
)

= ∂r
∂ξi

(ξ|ξi=ξis ,ξ
j=ξ

j
t
) .

Analogously,

∂k+p

(∂ξi )k(∂ξ j )p
(P i [r] ⊗ P j [r])(ξ|ξi=ξis ,ξ

j=ξ
j
t
) = ∂k+p

(∂ξi )k(∂ξ j )p
r(ξ|ξi=ξis ,ξ

j=ξ
j
t
) .

Thus, the derivatives of the tensor product P i [r] ⊗ P j [r] with respect to ξi and ξ j

match the derivatives of the function r(ξ) at the intersections of the planes ξi = ξis
and ξ j = ξ

j
t .

5.2.3 Boolean Summation

Bidirectional Interpolation

The bidirectional interpolation matching the values of the function r(ξ) and of its
derivatives at the sections in the directions ξi and ξ j is defined through the Boolean
summation ⊕ :

P i [r] ⊕ P j [r](ξ) = P i [r](ξ) + P j [r](ξ) − P i [r] ⊗ P j [r](ξ) . (5.6)

Using (5.1) and (5.5), we obtain

P i [r] ⊕ P j [r](ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n r

(∂ξi )n
(ξ|ξi=ξil

)

+
L j

∑

k=1

P j
k∑

m=0

α
j
k,m(ξi )

∂m r
(∂ξ j )m

(ξ|ξ j=ξ
j
k
)

−
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n+m r
(∂ξi )n(∂ξ j )m

(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.7)
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Taking into account the relation

P j [r] − P i [r] ⊗ P j [r] = P j
[
r − P i [r]

]
(5.8)

we obtain the result that the formulas (5.6) and (5.7) for the Boolean summation
can be written as the ordinary sum of two unidirectional interpolants P i [r] and
P j

[
r − P i [r]

]
. Thus, using (5.1), we obtain

P i [r] ⊕ P j [r](ξ) = P j [r](ξ) +
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )
∂n(r − P j [r])

(∂ξi )n
(ξ|ξi=ξil

) . (5.9)

From (5.7), it is evident that

P i [r] ⊕ P j [r] = P j [r] ⊕ P i [r] ,

so the indices i and j in (5.7), (5.9) can be interchanged.
The Boolean summation (5.6) matches r(ξ) and its derivatives at all sections

ξi = ξik and ξ j = ξ
j
l , i.e.

∂k+p

(∂ξi )k(∂ξ j )p
(P i [r] ⊗ P j [r])(ξ|ξt=ξtl

) = ∂k+p

(∂ξi )k(∂ξ j )p
r(ξ|ξt=ξtl

) ,

where either t = i or t = j.

Three-Dimensional Interpolation

A multidirectional interpolation P[r](ξ) of r(ξ), which matches the values of the
function r(ξ) and of its derivatives at the sections ξi = ξil , l = 1, . . . , Li , in all direc-
tions ξi , i = 1, 2, 3, is defined through the Boolean summation of all unidirectional
interpolations P i [r], i = 1.2, 3:

P[r] = P1[r] ⊕ P2[r] ⊕ P3[r] . (5.10)

Taking into account (5.6), we obtain

P[r] = P1[r] + P2[r] + P3[r]
−P1[r] ⊗ P2[r] − P1[r] ⊗ P3[r] − P2[r] ⊗ P3[r]
+P1[r] ⊗ P2[r] ⊗ P3[r] . (5.11)

Recursive Form of Transfinite Interpolation

Using the relation (5.8), we can easily show that (5.11) is also equal to the following
equation:

P[r] = P1[r] + P2
[
r − P1[r]

] + P3

[
r − P1[r] − P2

[
r − P1[r]

]]
. (5.12)
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This represents the formula (5.10) for multidirectional interpolation as the sum of

the three unidirectional interpolations P1[r], P2
[
r − P1[r]

]
, and P3

[
r − P1[r] −

P2
[
r − P1[r]

]]
. Therefore, the expression (5.12) for P[r] gives a recursive form

of the interpolation (5.10) through a sequence of the unidirectional interpolations
(5.1):

F1[r] = P1[r] ,

F2[r] = F1[r] + P2
[
r − F1[r]

]
,

P[r] = F2[r] + P3
[
r − F2[r]

]

which is usually applied in constructing algebraic coordinate transformations. Using
(5.1), we obtain

F1[r](ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)
∂n r

(∂ξ1)n
(ξ1l , ξ

2, ξ3) ,

F2[r](ξ) = F1[r](ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, ξ2l , ξ

3) ,

P[r](ξ) = F2[r](ξ) +
L3

∑

l=1

P3
l∑

n=0

α3
l,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, ξ3l ) . (5.13)

It is easy to see, taking advantage of (5.2), that the multiple summation matches
the function r(ξ) and its derivatives with respect to ξ1, ξ2, and ξ3 on all sections
ξi = ξil , i = 1, 2, 3, of the cube Ξ 3.

Outer Boundary Interpolation

Equation (5.13) shows that the outer boundary interpolation based on the two-
boundary unidirectional interpolations described by (5.4) has the following form:

F1[r](ξ) =
P1
1∑

n=0

α1
1,n(ξ

1)
∂n r

(∂ξ1)n
(0, ξ2, ξ3)

+
P1
2∑

n=0

α1
2,n(ξ

1)
∂n r

(∂ξ1)n
(1, ξ2, ξ3) ,

F2[r](ξ) = F1[r](ξ) +
P2
1∑

n=0

α2
1,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, 0, ξ3)

+
P2
2∑

n=0

α2
2,n(ξ

2)
∂n(r − F1[r])

(∂ξ2)n
(ξ1, 1, ξ3) ,
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P[r](ξ) = F2[r](ξ) +
P3
1∑

n=0

α3
1,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, 0)

+
P3
2∑

n=0

α3
2,n(ξ

3)
∂n(r − F2[r])

(∂ξ3)n
(ξ1, ξ2, 1) . (5.14)

Two-Dimensional Interpolation

The formulas for two-dimensional transfinite interpolation of a two-dimensional
vector-valued function x(ξ) : Ξ 2 → X2 are obtained from (5.13) and (5.14) by
assuming F2(r) = P(r), α3

l,k = 0, and omitting ξ3. For example, we obtain, from
(5.13), the following formula for two-dimensional transfinite interpolation:

F1[r](ξ1, ξ2) =
L1

∑

l=1

P1
l∑

k=0

α1
k(ξ

1)
∂k r

(∂ξ1)k
(ξ1l , ξ

2) ,

P[r](ξ1, ξ2) = F1[r](ξ1, ξ2)

+
L2

∑

l=1

P2
l∑

m=0

α2
l,m(ξ2)

∂m(r − F1[r])
(∂ξ2)m

(ξ1, ξ2l ) . (5.15)

5.3 Algebraic Coordinate Transformations

This section sets out the definitions of the algebraic coordinate transformations appro-
priate for the generation of coordinate grids through the formulas of transfinite inter-
polation.

5.3.1 Formulation of Algebraic Coordinate Transformation

The formulas of transfinite interpolation described above give clear guidance on how
to define an algebraic coordinate transformation

x(ξ) : Ξ 3 → X3 , x(ξ) = (x1(ξ), x2(ξ) , x3(ξ)) , ξ = (ξ1, ξ2, ξ3)

from the cube Ξ 3 onto a domain X3 ⊂ R3 which matches, at the boundary and
some chosen intermediate coordinate planes of the cube, the prescribed values and
the specified derivatives of x(ξ) along the coordinate directions emerging from the
coordinate surfaces (Fig. 5.1).

Let there be chosen, in each direction ξi , some coordinate planes ξi = ξil , l =
1, . . . , Li , of the cube Ξ 3, including two opposite boundary planes ξi = ξi1 = 0,
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Fig. 5.1 Coordinate transformation

ξi = ξiLi = 1. Furthermore, let there be specified, at each section ξi = ξil , a smooth
three-dimensional vector-valued function denoted by Ai

l,0(ξ|ξi=ξil
), which is assumed

to represent the values of the function x(ξ) being constructed at the points of this
section. Also, let there be specified, at this section, three-dimensional vector-valued
functions denoted by Ai

l,n(ξ|ξi=ξil
) which represent derivatives with respect to ξi of

the function x(ξ) on the respective sections ξi = ξil . Thus, it is assumed that

Ai
l,0(ξ|ξi=ξil

) = ∂0

(∂ξi )0
x(ξ|ξi=ξil

) = x(ξ|ξl=ξil
) , l = 1, . . . , Li ,

Ai
l,n(ξ|ξi=ξil

) = ∂n

(∂ξi )n
x(ξ|ξi=ξil

) , n = 1, . . . , Pi
l .

Since
∂m

(∂ξ j )m

( ∂nx
(∂ξi )n

)
= ∂n

(∂ξ j )n

( ∂mx
(∂ξ j )m

)
,

we find that the vector functions Ai
l,n(ξ|ξi=ξil

) and A j
k,m(ξ|ξ j=ξ

j
k
) specifying the cor-

responding derivatives on the planes ξi = ξil and ξ j = ξ
j
k , respectively, must be com-

patible at the intersection of these planes, i.e.

∂m

(∂ξ j )m
Ai
l,n(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = ∂n

(∂ξ j )n
A j
k,m(ξ|ξi=ξil ,ξ

j=ξ
j
k
) ,

n = 0, . . . , Pi
l , m = 0, . . . , P j

k . (5.16)

When the vector-valued functions Ai
l,k satisfying (5.16) are specified, the transfor-

mation x(ξ) is obtained by substituting the functions Ai
l,0 and Ai

l,n for the values of
r(ξ) and of its derivatives ∂n r/∂(ξi )n(ξ|ξi=ξil

), respectively, in the above formulas
for transfinite interpolation. Hence, the transformation based on the unidirectional
interpolation given by (5.1) has the form



5.3 Algebraic Coordinate Transformations 183

P i (ξ) =
Li

∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )Ai
l,n(ξ|ξi=ξil

) . (5.17)

This mapping matches the values of Ai
l,n only at the coordinate planes ξi = ξil cross-

ing the chosen coordinate ξi .
The formula (5.5) for the tensor product ⊗ of the two mappings P i (ξ) and P j (ξ)

obtained from (5.17) then gives the transformation

P i ⊗ P j (ξ)

=
L j

∑

k=1

P j
k∑

m=0

Li
∑

l=1

Pi
l∑

n=0

αi
l,n(ξ

i )α
j
k,m(ξ j )

∂n

(∂ξi )n
A j
k,m(ξ|ξi=ξil ,ξ

j=ξ
j
k
) , (5.18)

which matches the values of Ai
l,n and A j

k,m at the intersection of the planes ξi = ξil
and ξ j = ξ

j
k . According to the consistency conditions (5.16), the operation of the

tensor product is commutative, i.e.

P i ⊗ P j (ξ) = P j ⊗ P i (ξ) ,

which is indispensable for an appropriate definition of the coordinate transformation
x(ξ).

5.3.2 General Algebraic Transformations

The general formula for the three-dimensional coordinate transformation x(ξ) that
provides a matching with Ai

l,n in all directions and at all chosen coordinate planes
ξi = ξil is given by the replacement of the values of the function r(ξ) and of its
derivatives in the recursive formula (5.13) by the functions Ai

l,n . Thus, we obtain

F1(ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)A1
l,n(ξ

1
l , ξ

2, ξ3) ,

F2(ξ) = F1(ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n(ξ

2)
(
A2
l,n − ∂nF1

(∂ξ2)n

)
(ξ1, ξ2l , ξ

3) ,

x(ξ) = F2(ξ) +
L3

∑

l=1

P3
l∑

n=0

α3
l,n(ξ

3)
(
A3
l,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, ξ3l ) . (5.19)
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As the specified functions Ai
l,n are consistent on the intersections of the planes

ξi = ξil and ξ j = ξ
j
k and, therefore, the tensor product of the transformations P i (ξ)

and P j (ξ) is commutative, the result (5.19) is independent of the specific ordering
of the successive interpolation directions ξi .

The formula for the two-dimensional algebraic coordinate transformation is
obtained in a corresponding way from (5.15):

F1(ξ) =
L1

∑

l=1

P1
l∑

n=0

α1
l,n(ξ

1)A1
l,n(ξ

1
l , ξ

2) ,

x(ξ) = F1(ξ) +
L2

∑

l=1

P2
l∑

n=0

α2
l,n

(
A2
l,n − ∂nF1

(∂ξ2)n

)
(ξ1, ξ2l ) , (5.20)

where Ai
l,n are two-dimensional vector-valued functions representing x(ξ) for n = 0

and its derivatives for Pi
l ≥ n > 0 at the sections

ξi = ξil , i = 1, 2 , l = 1, . . . , Li .

These functions must satisfy the relations (5.16) at the points (ξ1l , ξ2m), l =
1, . . . , L1, m = 1, . . . , L2.

The vector-valued function x(ξ) defined by (5.19) maps the unit cubeΞ 3 onto the
physical region X3 bounded by the six coordinate surfaces specified by the parame-
trizations Ai

1,0(ξ|ξi=0) and Ai
Li ,0(ξ|ξi=1), i = 1, 2, 3, from the respective boundary

intervals ofΞ 3.The introduction of the intermediate planes ξi = ξil , 0 < ξil < 1, into
the formulas of transfinite interpolation allows one to control the grid distribution
and grid spacing in the vicinity of some selected interior surfaces of the domain
X3. A similar result is achieved by joining, at the selected boundary surfaces, a
series of transformations x(ξ) constructed using the above described outer boundary
interpolation equation (5.14):

F1(ξ) =
P1
1∑

n=0

α1
1,n(ξ

1)A1
1,n(0, ξ

2, ξ3)

+
P1
2∑

n=0

α1
2,n(ξ

1)A1
2,n(1, ξ

2, ξ3) ,

F2(ξ) = F1(ξ) +
P2
1∑

n=0

α2
1,n(ξ

2)
(
A2
1,n − ∂nF1

(∂ξ2)n
(ξ1, 0, ξ3)

)

+
P2
2∑

n=0

α2
2,n(ξ

2)
(
A2
2,n − ∂nF1

(∂ξ2)n

)
(ξ1, 1, ξ3) ,
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Fig. 5.2 Two-dimensional nonsmooth grid generated by means of transfinite interpolation

x(ξ) = F2(ξ) +
P3
1∑

n=0

α3
1,n(ξ

3)
(
A3
1,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, 0)

+
P3
2∑

n=0

α3
2,n(ξ

3)
(
A3
2,n − ∂nF2

(∂ξ3)n

)
(ξ1, ξ2, 1) . (5.21)

This boundary interpolation transformation x(ξ) is widely applied to generate grids
in regions around bodies. These domains cannot be successfully gridded by one
global mapping x(ξ) from the unit cube Ξ 3 because of the inevitable singularities
pertinent to such global maps. An approach based on the matching of a series of
boundary-interpolated transformations is thus preferable. It only requires the con-
sistent specification of the parametrizations and coordinate directions at the corre-
sponding boundary surfaces.

Equations (5.18)–(5.21) use the same set of blending functions αi
l,n(ξ

i ) to define
each component xi (ξ) of the transformation x(ξ). These formulas can be generalized
by introducing an individual set of blending functions αi

l,n(ξ
i ) for the definition

of each component xi (ξ) of the map x(ξ) being built. Such a generalization gives
broader opportunities to define appropriate algebraic coordinate transformations x(ξ)

and, therefore, to generate grids more successfully.
One of the drawbacks of the method of transfinite interpolation for generating

structured grids is that it carries boundary-sharp bends inside a domain (Fig. 5.2).

5.4 Lagrange and Hermite Interpolations

The recursive formula (5.19) represents a general form of transfinite interpolation
which includes the prescribed values of the constructed coordinate transformation
x(ξ) and of its derivatives up to order Pi

l at the sections ξi = ξil of the cube Ξ 3.
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However, most grid generation codes require, as a rule, only specification of the
values of the function x(ξ) being sought and sometimes, in addition, the values
of its first derivatives at the selected sections. Such sorts of algebraic coordinate
transformation are described in this section.

5.4.1 Coordinate Transformations Based on Lagrange
Interpolation

A Lagrange interpolation matches only the values of the function r(ξ) at some
prescribed sections ξi = ξil , l = 1, . . . , Li , of the cube Ξ 3. So, in accordance with
(5.1), the unidirectional Lagrange interpolation has the following form:

P i [r](ξ) =
Li

∑

l=1

αi
l (ξ

i )r(ξ|ξi=ξil
) .

The blending function αi
l (ξ

i ) in this equation corresponds to αi
l,0(ξ

i ) in the for-
mula (5.1). Taking into account (5.2), the blending functions αi

l (ξ
i ), l = 1, . . . , Li ,

depending on one independent variable ξi , must be subject to the following restric-
tions:

αi
l (ξ

i
k) = δlk , l, k = 1, . . . , Li . (5.22)

These restrictions imply that the blending function αi
l for a fixed l equals 1 at the

point ξi = ξil and equals zero at all other points ξim, m �= l. The formula for the con-
struction of a three-dimensional coordinate mapping x(ξ) based on the Lagrangian
interpolation is obtained from (5.19) as

F1(ξ) =
L1

∑

l=1

α1
l (ξ

1)A1
l (ξ|ξ1=ξ1l

) ,

F2(ξ) = F1(ξ) +
L2

∑

l=1

α2
l (ξ

2)
(
A2
l − F1

)
(ξ|ξ2=ξ2l

) ,

x(ξ) = F2(ξ) +
L3

∑

l=1

α3
l (ξ

3)
(
A3
l − F2

)
(ξ|ξ3=ξ3l

) , (5.23)

where the blending functions αi
l (ξ

i ) satisfy (5.22), and the functions Ai
l (ξ|ξi=ξil

)

corresponding to Ai
l,0 in (5.22) specify the values of the mapping x(ξ) being sought.

In accordancewith (5.16), the specified functions Ai
l must coincide at the intersection

of their respective coordinate planes ξi = ξil , i.e.
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Ai
l (ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k (ξ|ξi=ξil ,ξ
j=ξ

j
k
) .

When L1 = L2 = L3 = 2, i.e. the prescribed interior sections are absent, then the
i th component of the transformation (5.23) has the following form:

Fi
1(ξ

1, ξ2, ξ3) = α1
1(ξ

1)ψi (0, ξ2, ξ3) + α1
2(ξ

1)ψi (1, ξ2, ξ3),
Fi
2(ξ

1, ξ2, ξ3) = Fi
1(ξ

1, ξ2, ξ3) + α2
1(ξ

2)[ψi (ξ1, 0, ξ3) − Fi
1(ξ

1, 0, ξ3)] +
+ α2

2(ξ
2)[ψi (ξ1, 1, ξ3) − Fi

1(ξ
1, 1, ξ3)],

xi (ξ1, ξ2, ξ3) = Fi
2(ξ

1, ξ2, ξ3) + α3
1(ξ

3)[ψi (ξ1, ξ2, 0) − Fi
2(ξ

1, ξ2, 0)] +
+ α3

2(ξ
3)[ψi (ξ1, ξ2, 1) − Fi

2(ξ
1, ξ2, 1)], i = 1, 2, 3,

(5.24)

where the function ψi (ξ1, ξ2, ξ3), i = 1, 2, 3 is the i th component of a speci-
fied boundary transformation ψ(ξ) : ∂Ξ 3 → ∂X3; αi

l (t) : [0, 1] → R, i = 1, 2, 3,
l = 1, 2 are scalar blending functions subject to the following restrictions:

αi
1(0) = 1, αi

1(1) = 0, αi
2(0) = 0, αi

2(1) = 1, i = 1, 2, 3. (5.25)

In particular, when αi
1(t) = 1 − t , αi

2(t) = t , i = 1, 2, 3, we obtain the simplest
formula of transfinite interpolation in a vector form

F1(ξ) = (1 − ξ1)ψ(0, ξ2, ξ3) + ξ1ψ(1, ξ2, ξ3),
F2(ξ) = F1(ξ) + (1 − ξ2)[ψ(ξ1, 0, ξ3) − F1(ξ

1, 0, ξ3)]
+ ξ2[ψ(ξ1, 1, ξ3) − F1(ξ

1, 1, ξ3)],
x(ξ) = F2(ξ) + (1 − ξ3)[ψ(ξ1, ξ2, 0) − F2(ξ

1, ξ2, 0)]
+ ξ3[ψ(ξ1, ξ2, 1) − F2(ξ

1, ξ2, 1)].

(5.26)

The conditions (5.25) provide the identity

x(ξ)|∂Ξ 3 = ψ(ξ)|∂Ξ 3 (5.27)

for the transformation x(ξ) obtained by (5.24).
Now we consider some examples of the blending functions used in Lagrange

interpolations.

Lagrange Polynomials

The best-known blending functions αi
l (ξ

i ) satisfying (5.22) are defined as Lagrange
polynomials applied to the points ξi1, . . . , ξ

i
Li :

αi
l (ξ

i ) =
Li
∏

j=1

ξi − ξij

ξil − ξij
, j �= l . (5.28)

For example, when Li = 2, then, from (5.28),
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αi
1(ξ

i ) = ξi − ξi2
ξi1 − ξi2

, αi
2(ξ

i ) = ξi − ξi1
ξi2 − ξi1

= 1 − αi
1(ξ

i ) . (5.29)

Therefore, for the boundary interpolation, i.e. when ξi1 = 0, ξi2 = 1, we obtain

αi
1(ξ

i ) = 1 − ξi , αi
2(ξ

i ) = ξi . (5.30)

Spline Functions

TheLagrange polynomials become polynomials of a high-orderwhen a large number
of intermediate sections ξi = ξil is applied to control the grid distribution in the
interior of the domain X3. These polynomials of high order may cause oscillations.
One way to overcome this drawback is to use splines as blending functions αi

l (ξ
i ).

The splines are defined as polynomials of low-order between each of the specified
points ξi = ξiLi , with continuity of some derivatives at the interior points.

Piecewise-continuous splines satisfying (5.22) can be derived by means of linear
polynomials. The simplest pattern of such blending functions in the form of splines
consists of piecewise linear functions:

αl(ξ
i ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 , ξi ≤ ξil−1,

ξi − ξil−1

ξil − ξil−1

, ξil−1 ≤ ξi ≤ ξil ,

ξil+1 − ξi

ξil+1 − ξil
, ξil ≤ ξi ≤ ξil+1,

0 , ξi ≥ ξil+1

However, the use of these blending functions results in a nonsmooth point distribu-
tion, since they themselves are not smooth.

Continuity of the first derivative of a spline blending function can be achieved
with polynomials of the third-order, regardless of the number of interior sections.

Construction Based on General Functions

The application of polynomials in the Lagrange interpolation gives only a poor
opportunity to control the grid spacing near the selected boundary and interior sur-
faces. In this subsection, we describe a general approach, originally, proposed by
Liseikin (1999), to constructing the blending functions αi

l (ξ
i ) through the use of a

wide range of basic functions, which provides a real opportunity to control the grid
point distribution.

The formulation of the blending functions on the interval 0 ≤ ξi ≤ 1, with Li

specified points,
0 = ξi1 < · · · < ξiLi = 1 ,

requires only the specification of some univariate smooth positive function

φ(x) : [0,∞) → [0,∞) ,
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satisfying the restrictions φ(0) = 0 ,φ(1) = 1 . This function can be used as a basic
element to derive the blending functions satisfying (5.22) through the following
standard procedure.

First, we define two series of functions

φ
f
l (ξi ) and φb

l (ξ
i ) , l = 1, . . . , Li .

The functions φ
f
l (ξi ) are defined for l = 1 by

φ
f
1 (ξi ) = φ(1 − ξi ) , 0 ≤ ξ ≤ 1 ,

and for 1 < l ≤ Li by

φ
f
l (ξi ) =

⎧
⎨

⎩

0 , 0 ≤ ξi ≤ ξil−1 ,

φ
(ξi − ξil−1

ξil − ξil−1

)
, ξil−1 ≤ ξi ≤ 1 .

The functions φb
l (ξ

i ) are determined similarly:

φb
Li (ξ

i ) = φ(ξi )

and for 1 ≤ l < Li ,

φb
l (ξ

i ) =
⎧
⎨

⎩

0 , 1 ≥ ξi ≥ ξil+1 ,

φ
(ξil+1 − ξi

ξil+1 − ξil

)
, 0 ≤ ξi ≤ ξil+1 .

Using the functions φ
f
l (ξi ) and φb

l (ξ
i ), the blending coefficients αi

l (ξ
i ) satisfying

(5.22) are defined by

αi
l (ξ

i ) = φ
f
l (ξi )φb

l (ξ
i ) , l = 1, . . . , Li . (5.31)

Each of these blending functions vanishes outside some interval, and thus it affects
the interpolation function only locally (Fig. 5.3).

Note that this procedure for constructing blending functions for the Lagrange
interpolations will yield splines if the original function φ is a polynomial. This
construction may be extended by using various original functions for the terms φ

f
l

and φb
l in (5.31).

The simplest example of the basic function is φ(x) = x . However, this function
generates nonsmooth blending coefficients αi

l (ξ
i ) at the points ξil−1 and ξil+1, since

αi
l (ξ

i ) ≡ 0 outside the interval (ξil−1, ξil+1). If the derivative of φ(x) at the point
x = 0 is zero, then the blending functions derived by the procedure described are
smooth. One example of such a function is φ(x) = x2. It can readily be shown that
in this case, the blending functions αi

l are of the class C
1[0, 1].
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Fig. 5.3 Smooth blending
functions

Continuity of the higher-order derivatives of the blending functions (5.31) is
obtained when the basic function φ(x) satisfies the condition φ(k)(0) = 0, k > 1, in
particular, if φ(x) = xk+1. The function φ(x) = ϕ(x), where

ϕ(x) =
{
0 , x = 0 ,

a1−1/x , x > 0 ,

with a > 1, generates an infinitely differentiable blending function αi
l (ξ

i ) on the
interval [0, 1].Figure5.3 demonstrates the blending functions constructed forφ(x) =
ϕ(x) (left) and φ(x) = x2 (right).

Relations Between Blending Functions

Now we point out some relations between blending functions which can be useful
for their construction. If the functions αi

l (ξ
i ) are blending functions for Lagrangian

interpolation, namely, they are subject to the restrictions (5.22), then the functions
βi
l (ξ

i ) defined below satisfy the condition (5.22) as well:

(1) βi
l (ξ

i ) = αi
l (ξ

i ) f (ξ) if f (ξil ) = 1 ,

(2) βi
l (ξ

i ) = αi
l [ f (ξi )] if f (ξil ) = ξil ,

(3) βi
l (ξ

i ) = f [αi
l (ξ

i )] if f (0) = 0, f (1) = 1 ,

(4) βi
l (ξ

i ) = αi
l (ξ

i ) + f (ξi ) if f (ξil ) = 0 ,

(5) βi
l (ξ

i ) = 0.5[αi
l (ξ

i ) + γi
l (ξ

i )] if γi
l (ξ) satisfies (5.22) . (5.32)
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5.4.2 Transformations Based on Hermite Interpolation

Hermite interpolation matches the values of both the function r(ξ), and its first
derivatives ∂r/∂ξi (ξ|ξi=ξil

) at each section ξi = ξil , l = 1, . . . , Li , and therefore, the
unidirectional interpolation (5.1) takes the following form:

P i [r](ξ) =
Li

∑

l=1

(
αi
l,0(ξ

i )r(ξ|ξi=ξil
) + αi

l,1(ξ
i )

∂r
∂ξi

(ξ|ξi=ξil
)
)

. (5.33)

The formula (5.19) in the case of a Hermite coordinate mapping x(ξ)which matches
the specified values of x(ξ), denoted by Ai

l,0, and of its first derivatives, denoted by
Ai
l,1, at all sections ξi = ξil , l = 1, . . . , Li , and in all directions ξi , i = 1, 2, 3, is

thus reduced to

F1(ξ) =
L1

∑

l=1

(
α1
l,0(ξ

1)A1
l,0(ξ

1
l , ξ

2, ξ3) + α1
l,1(ξ

1)A1
l,1(ξ

1
l , ξ

2, ξ3)
)

,

F2(ξ) = F1(ξ) +
L2

∑

l=1

(
α2
l,0(ξ

2)(A2
l,0 − F1)(ξ

1, ξ2l , ξ
3)

+α2
l,1(ξ

2)(A2
l,1 − ∂F1

∂ξ2
)(ξ1, ξ2l , ξ

3)
)

,

x(ξ) = F2(ξ) +
L3

∑

l=1

(
α3
l,0(ξ

3)
(
A3
l,0 − F2

)
(ξ1, ξ2, ξ3l )

+α3
l,1(ξ

3)
(
A3
l,1 − ∂F2

∂ξ3
)
(ξ1, ξ2, ξ3l )

)
, (5.34)

where, in accordance with (5.2), the blending functions αi
l,0, αi

l,1 satisfy the condi-
tions

αi
l,0(ξ

i
k) = δlk , αi

l,1(ξ
i
k) = 0 ,

d

dξi
αi
l,1(ξ

i
k) = δlk ,

d

dξi
αi
l,0(ξ

i
k) = 0 ,

l, k = 1, . . . , Li , i = 1, 2, 3 , (5.35)

and the vector-valued functions Ai
l,n(ξ|ξi=ξil

) satisfy the consistency conditions
(5.16):

Ai
l,0(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k,0(ξ|ξi=ξil ,ξ
j=ξ

j
k
) ,

∂

∂ξ j
Ai
l,0(ξ|ξi=ξil ,ξ

j=ξ
j
k
) = A j

k,1(ξ|ξi=ξil ,ξ
j=ξ

j
k
) . (5.36)
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Construction of Blending Functions

Theblending functionsαi
l,m(ξi ),m = 0, 1, forHermite interpolations canbeobtained

from the smooth blending functions defined for Lagrange interpolations. Namely,
let αi

l (ξ
i ) , l = 1, . . . , Li , be some smooth scalar functions meeting the conditions

(5.22). The functions αi
l,m, m = 0, 1, determined by the relations

αi
l,0 =

(
1 − 2(ξi − ξil )

dαi
l

dξi
(ξi )

)
[αi

l (ξ
i )]2 ,

αi
l,1 = (ξi − ξil )[αi

l (ξ
i )]2 , (5.37)

then satisfy (5.35) and, therefore, are the blending functions for the Hermite inter-
polations. For example, if Li = 2 and the Lagrangian blending functions are defined
through (5.29), then, from (5.37),

αi
1,0(ξ

i ) =
(
1 − 2

ξi − ξi1
ξi1 − ξi2

)( ξi − ξi2
ξi1 − ξi2

)2
,

αi
2,0(ξ

i ) =
(
1 − 2

ξi − ξi2
ξi2 − ξi1

)( ξi − ξi1
ξi2 − ξi1

)2
,

αi
1,1(ξ

i ) = (ξi − ξi1)
( ξi − ξi2
ξi1 − ξi2

)2
,

αi
2,1(ξ

i ) = (ξi − ξi2)
( ξi − ξi1
ξi2 − ξi1

)2
. (5.38)

So, if ξi1 = 0, ξi2 = 1, then, from these relations,

αi
1,0(ξ

i ) = (1 + 2ξi )(ξi − 1)2 ,

αi
2,0(ξ

i ) = (3 − 2ξi )(ξi )2 = 1 − αi
1,0(ξ

i ) ,

αi
1,1(ξ

i ) = ξi (1 − ξi )2 ,

αi
2,1(ξ

i ) = (ξi − 1)(ξi )2 . (5.39)

If the blending functions for Lagrange interpolation satisfy the condition

dαi
l

dξi
(ξi ) ≡ 0 , if ξi ≥ ξil+1 and ξi ≤ ξil−1 , (5.40)

then the blending functions αi
l,n(ξ

i ) for the Hermite interpolation can be derived
from αi

l (ξ
i ) by the relations

αi
l,0(ξ

i ) =
(
1 + (ξi − ξil )

dαi
l

dξi
(ξil )

)
αi
l (ξ

i ) ,

αi
l,1(ξ

i ) = (ξi − ξil )α
i
l (ξ

i ) . (5.41)
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It is readily shown that the blending functions αi
l,n(ξ

i ), n = 0, 1, satisfy the restric-
tion (5.35). Note that the approach described above for the general construction of
the blending functions for Lagrange interpolation yields the smooth blending func-
tions αi

l (ξ
i ), l = 1, . . . , Li , in the form (5.31), which, in addition to (5.22), are also

subject to (5.40).

Deficient Form of Hermite Interpolation

Often, it is not reasonable to specify the values of the first derivative with respect to ξi

of the sought coordinate transformation x(ξ) at all sections ξi = ξil , l = 1, . . . , Li ,
but only at some selected ones. By omitting the corresponding terms

α1
l,1(ξ

1)A1
l,1(ξ|ξ1=ξ1l

)

and/or

αi
l,1(ξ

i )(Ai
l,1 − ∂Fi−1

∂ξi
)(ξ|ξi=ξil

) , i = 2, 3 ,

in (5.34), a deficient formofHermite interpolation is obtainedwhichmatches the val-
ues of the first derivatives at the selected sections only. For example, the outer bound-
ary interpolation which contains the outer boundary specifications on all boundaries
but the outward derivative with respect to ξ1 on the boundary ξ1 = 0 only has, in
accordance with (5.34), the form

F1(ξ) = α1
1,0(ξ

1)A1
1,0(0, ξ

2, ξ3) + α1
2,0(ξ

1)A1
2,0(1, ξ

2, ξ3)

+α1
1,1(ξ

1)A1
1,1(0, ξ

2, ξ3) ,

F2(ξ) = F1(ξ) + α2
1,0(ξ

2)(A2
1,0 − F1)(ξ

1, 0, ξ3)

+α2
2,0(ξ

2)(A2
2,0 − F1)(ξ

1, 1, ξ3) ,

x(ξ) = F2(ξ) + α3
1,0(ξ

3)(A3
1,0 − F2)(ξ

1, ξ2, 0)

+α3
2,0(ξ

3)(A3
2,0 − F2)(ξ

1, ξ2, 1) . (5.42)

Specification of Normal Directions

In the outer boundary interpolation technique, the outward derivatives
Ai
1,1(ξ|ξi=0), Ai

2,1(ξ|ξi=1) along the lines emerging from the boundary surfaces are
usually required to be performed as normals to the corresponding boundary sur-
faces in order to generate orthogonal grids near the boundaries. The boundary sur-
faces are parametrized by the specified boundary transformations Ai

1,0(ξ|ξi=0) and
Ai
2,0(ξ|ξi=1), respectively. Therefore, these normals can be computed from the cross

product of the vectors tangential to the boundary surfaces. For example, the ξ1 coor-
dinate direction A1

l,1(ξ
1
l , ξ

2, ξ3) can be specified as

A1
1,1(0, ξ

2, ξ3) = g(ξ2, ξ3)
( ∂

∂ξ2
A1
1,0(0, ξ

2, ξ3) × ∂

∂ξ3
A1
1,0(0, ξ

2, ξ3)
)

,
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where g(ξ2, ξ3) is a scalar function that can be used to control the spacing of the
grid lines emerging from the boundary surface represented by the parametrization
A1
1,0(0, ξ

2, ξ3). Such a specification of the first derivatives can be chosen on the
interior sections as well.

Parametrization of Cells

Formulas of transfinite interpolation can also be used for definition of the shape of
a grid cell and the parametrization of this cell by values of the coordinates of its
vertices. For this purpose, a transformation of the cube Ξ 3 into X3 is written out in
such a way that the vertices of the cube are transformed on the vertices of the cell,
while the edges of the cube are transformed by the formula of the one–dimensional
transformation. After this, the faces of the cube are transformed on the faces of the
cell with the formula of the two–dimensional transfinite interpolation, and finally the
interior of the cube Ξ 3 is mapped on the interior of the cell through the formula of
the three–dimensional transfinite interpolation. The formula of such a transformation
has the following form:

x(ξ) = (1 − ξ1)(1 − ξ2)(1 − ξ3)x000 + (1 − ξ1)(1 − ξ2)ξ3x001 +
+ (1 − ξ1)ξ2(1 − ξ3)x010 + (1 − ξ1)ξ2ξ3x011 + ξ1(1 − ξ2)(1 − ξ3)x100 +
+ ξ1(1 − ξ2)ξ3x101 + ξ2ξ2(1 − ξ3)x110 + ξ1ξ2ξ3x111,

where xi1i2i3 = (x1(i1, i2, i3), x
2(i1, i2, i3), x

3(i1, i2, i3)), i1, i2, i3 = 0, 1, are the
vertices of the cell. The edges of this cell are the straight lines connecting its vertices,
while its faces are surfaces of second order.

5.5 Control Techniques

Commonly, all algebraic schemes are computationally efficient but require a signif-
icant amount of user interaction and control techniques to define workable meshes.
This section delineates some control approaches applied to algebraic grid generation.

The spacing between the grid points and the skewness of the grid cells in the
physical domain is controlled in the algebraic method, primarily by the blending
functions αi

l,n(ξ
i ), by the representations of the boundary and intermediate surfaces

Ai
l,0(ξ|ξi=ξil

), and by the values of the first derivatives Ai
l,1(ξ|ξi=ξil

) in the interpolation
equations.

As was stated in Chap.4, an effective approach which significantly simplifies
the control of grid generation relies on the introduction of an intermediate control
domain between the computational and the physical regions. The control domain
is a unit cube Q3 with the Cartesian coordinates qi , i = 1, 2, 3. In this approach,
the coordinate transformation x(ξ) from the unit cube Ξ 3 onto the physical region
X3 is defined as a composition of two transformations: q(ξ) from Ξ 3 onto Q3 and
g(q), q = (q1, q2, q3), from Q3 onto X3, that is,

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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x(ξ) = g[q](ξ) : Ξ 3 → X3 .

The functions g(q) and q(ξ) can be constructed through the formulas of transfi-
nite interpolation or by other techniques. As both the computational domain Ξ 3 and
the intermediate domain Q3 are the standard unit cubes, the formulas of transfinite
interpolation for the generation of the intermediate transformations q(ξ) are some-
what simpler than the original expressions. In these formulas, it can be assumed,
without any loss of generality, that the boundary planes ξi = 0 and ξi = 1 for each
i = 1, 2, 3 are transformed by the function q(ξ) onto the boundary planes qi = 0
and qi = 1, respectively, so that

q(ξ|ξ1=0) = [0, q2(0, ξ2, ξ3), q3(0, ξ2, ξ3)] ,

q(ξ|ξ1=1) = [1, q2(1, ξ2, ξ3), q3(1, ξ2, ξ3)] .

Therefore, the first component q1(ξ) of the Lagrangian boundary interpolation for
the intermediate mapping q(ξ) has the form

F1(ξ) = α1
2(ξ

1) ,

F2(ξ) = F1(ξ) + α2
1(ξ

2)
(
u1(ξ1, 0, ξ3) − α1

2(ξ
1)

)

+α2
2(ξ

2)
(
u1(ξ1, 1, ξ3 − α1

2(ξ
1)

)
,

q1(ξ) = F2(ξ) + α3
1(ξ

3)
(
u1(ξ1, ξ2, 0) − F2(ξ

1, ξ2, 0)
)

+α3
2(ξ

3)
(
u1(ξ1, ξ2, 1) − F2(ξ

1, ξ2, 1)
)

. (5.43)

Analogous equations can be defined for the other components of the intermediate
transformation q(ξ).

The functions based on the reference univariate transformations xi,c(ϕ, ε) and
xi,s(ϕ, ε) introduced in Chap.4 can be used very successfully as blending functions
to construct intermediate transformations by Lagrange and Hermite interpolations
in the two-boundary technique. In the case of Lagrange interpolation, the blending
function αi

1,0(ξ
i ) satisfies the conditions αi

1,0(0) = 1, αi
1,0(1) = 0. Therefore, any

monotonically decreasing function derived by applying the procedures described in
Sect. 4.4 to the reference univariate functions can be used as the blending function
αi
1,0(ξ

i ). Analogously, the blending function αi
2,0(ξ

i ) can be represented by any
monotonically increasing mapping based on one of the standard local contraction
functions xi (ϕ, ε). The blending functions αi

i,1(ξ
i ) for Hermite interpolations can

also use these standard transformations through applying the operation described by
(5.37) to the blending functions αi

1,0(ξ
i ). By choosing the proper functions, one has

an opportunity to construct intermediate transformations that provide adequate grid
clustering in the zones where it is necessary.

http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_4
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Fig. 5.4 Quadrangular
adaptive grid

One example of a two-dimensional adaptive quadrangular grid, with the inter-
mediate grid generated in such a manner through the basic stretching functions, is
presented in Fig. 5.4.

5.6 Transfinite Interpolation from Triangles
and Tetrahedrons

The formulas of transfinite interpolation define a coordinate transformation from the
unit cube Ξ 3 (the square Ξ 2 in two dimensions and line Ξ 1 in one dimension) onto
a physical domain X3 (or X2 or X1). The application of this interpolation may lead
to singularities of the type pertaining to polar transformations when any boundary
segment of the physical domain, corresponding to a boundary segment of the com-
putational domain, is contracted into a point. An example is when the boundary of
a physical two-dimensional domain X2 is composed of three smooth segments, as
shown in Fig. 5.5. One way to treat such regions is to use coordinate transformations
from triangular computational domains in two dimensions and tetrahedral domains
in three dimensions. It can be seen that the transfinite interpolation approach can be
modified to generate triangular or tetrahedral grids by mapping a standard triangular
or tetrahedral domain, respectively. The formulation of a transfinite interpolation
to obtain these transformations from the standard unit tetrahedron (triangle in two
dimensions) is based on the composition of an operation of scaling (stretching) the
coordinates to deform the tetrahedron into the unit cube Ξ 3 and an algebraic trans-
formation constructed by the equations given above.

This procedure is readily clarified in two dimensions by the scheme depicted in
Fig. 5.5. Suppose that the boundary segments AB, BC, and CD of the unit triangle
T 2 are mapped onto the corresponding boundary segments AB, BC, and CD of
the domain X2. Then, in this procedure, the standard triangle T 2 with a uniform
triangular grid is expanded to a square by a deformation ξ(t) uniformly stretching
each horizontal line of the triangle tomake it a rectangle, and afterwards, the rectangle
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Fig. 5.5 Scheme for gridding triangular curvilinear domains with triangles

is uniformly stretched in the vertical direction tomake it the unit squareΞ 2, as shown
in Fig. 5.5. This operation is the inverse of the contraction t(ξ) of the square along the
horizontal and vertical lines to transform it into the triangle. As a result, we obtain
a square Ξ 2 with triangular cells on all horizontal levels except the top one. The
number of these cells in each horizontal band reduces from the lower levels to the
upper ones. The top level consists of one rectangular cell.With this deformation of T 2,
the transformation between the boundaries of T 2 and X2 generates the transformation

x(ξ) : ∂Ξ 2 → ∂X2 ,

which is the composition of t(ξ) and the assumed mapping of the boundary of T 2

onto the boundary of X2. This boundary transformation maps the top segment of
Ξ 2 onto the point C in X2. Now, applying the formulas of transfinite interpolation
to a square Ξ 2 with such grid cells, and the specified boundary transformation, one
generates the algebraic transformation

x(ξ) : Ξ 2 → X2

and consequently
x[ξ(t)] : T 2 → X2

from the triangle to the physical region X2 with the prescribed values of the transfor-
mation at the boundary segments of the triangle. Note that the composition x[ξ(t)]
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Fig. 5.6 Example of an adaptive algebraic triangular grid (right) and the corresponding grid on the
intermediate domain (left) generated by the algebraic method

is continuous as the upper segment of Ξ 2 is transformed by x(ξ) onto one point C
in X2.

In fact, such a triangular grid in the physical domain can be generated directly by
mapping the nonuniform grid constructed in the unit square Ξ 2 as described above
onto X2 with a standard algebraic coordinate transformation defined by transfinite
interpolation.

The generation of grids by this approach is very well justified for regions shaped
like curvilinear triangles, i.e. their boundaries are composed of three smooth curves
intersecting at angles θ less than π. By dividing an arbitrary domain into triangular
curvilinear domains, one can generate a composite triangular grid in the entire domain
through the procedure described above.

An analogous procedure using transfinite interpolation is readily formulated for
generating tetrahedral grids in regions with shapes similar to that of a tetrahedron.

The approach for generating triangular or tetrahedral meshes described above
can be extended to include grid adaptation by adding to the scheme an intermediate
domain and intermediate transformation q(ξ), as illustrated in Fig. 5.6, and special
blending functions, as in the case of generating hexahedral (or quadrilateral) grids.
Here, an adaptive triangular grid is generated through the composition of the trans-
formations q(ξ) and x(q), where q(ξ) is an intermediate mapping providing grid
adaptation and x(q) is an algebraic transformation.

Note that the procedure described above for generating triangular grids (tetrahe-
dral and prismatic ones in three dimensions) can be realized analogously in other
techniques based on coordinate transformations from the unit cube.
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5.7 Drag and Sweeping Methods

Through the methods described above, the interior grid nodes are obtained by inter-
polating the grid points from all boundary segments. For domains of relatively simple
geometries, the grid nodes may be obtained by dragging or sweeping the grid nodes
of one boundary section. Suppose these nodes are xi , i = 1, . . . , N ; then, both the
interior nodes and another boundary grid nodes x j

i , i = 1, . . . , N , j = 1, . . . , M,

may be defined by the formula

x j
i = x j−1

i + v
j
i , x0i = xi ,

with specified incremental vectors v j
i . If the vectors v

j
i are constant, then this algo-

rithm is referred to as a drag method. However, the vectors v j
i may be different, in

which case the approach is referred to as a sweeping method. These methods were
developed at the early stage of mesh generation by Park and Washam (1979).

5.8 Comments

The standard formulas of multivariate transfinite interpolation using Boolean oper-
ations were described by Gordon (1969, 1971), although a two-dimensional inter-
polation formula with the simplest blending functions for the construction of the
boundaries of hexahedral patches from CAD data was proposed by Coons (1967)
andAhuja andCoons (1968). The construction of coordinate transformations through
the formulas of transfinite interpolation was formulated by Gordon and Hall (1973)
and Gordon and Thiel (1982). The Hermite interpolation was presented by Smith
(1982).

The multisurface method was described by Eiseman (1980) and was, in its origi-
nal form, a univariate formula for grid generation based on the specification of two
boundary surfaces and an arbitrary number of interior control surfaces. The blend-
ing functions were implicitly derived from global and/or local interpolants which
result from an expression for the tangential derivative spanning between the exterior
boundary surfaces. The multisurface transformation can be described in the context
of transfinite interpolation.

A two-boundary technique was introduced by Smith (1981). It is based on the
description of two opposite boundary surfaces, tangential derivatives on the boundary
surfaces which are used to compute normal derivatives, and Hermite cubic blending
functions.

The construction of some special blending functions aimed at grid clustering at
boundaries was performed by Eriksson (1982) and Smith and Eriksson (1987). A
detailed description of various forms of blending functions with the help of splines
was presented in a monograph by Thompson et al. (1985).
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The procedures described above for generating smooth blending functions and
algebraic triangulations were developed by Liseikin (1999).
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Chapter 6
Grid Generation Through Differential
Systems

6.1 Introduction

Grid techniques based on the use of systems of partial differential equations to derive
coordinate transformations are very popular in mapping approaches for generating
grids. The choice of the systems of equations relies on numerical principles and
careful analysis of the required properties of the equations. They must have intrinsic
abilities to cope with complex geometries and to produce grids which are locally
compressed by large factors compared with uniform grids. The equations should be
computationally efficient, i.e. easy to model numerically and solve. Therefore, the
task of formulating satisfactory grid equations is not simple.

The present chapter describes the most typical systems of equations for grid
generation in a physical domain Xn: elliptic, hyperbolic, and parabolic.

6.2 Elliptic Equations

At present, elliptic methods of grid generation have widespread applications. The
formulation of an elliptic method for grid generation relies on the utilization of an
elliptic system whose solution defines a coordinate transformation

x(ξ) : Ξ n → Xn, x(ξ) = [x1(ξ), . . . , xn(ξ)], ξ = (ξ1, . . . , ξn), ξ ∈ Ξ n

(6.1)
from the computational domainΞ n ⊂ Rn specified by the user onto the physical one
Xn ⊂ Rn. The values of the vector-valued function x(ξ) at the points of a reference
grid in Ξ n define the nodes of the elliptic grid in Xn (Fig. 13.2 for n = 3, X3 ≡ S3).
However, in practice, the grid nodes are obtained through the numerical solution of
a boundary value problem for the elliptic system on the reference grid in the domain
Ξ n (Fig. 6.1).
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Fig. 6.1 Prismatic grid generated by a mapping approach

(a) (b)

Fig. 6.2 Two-dimensional grids: a – grid obtained by means of transfinite interpolation; b – grid
obtained by means of elliptic equations (inverted Laplace equations)

Elliptic equations are attractive for generating curvilinear coordinates because of
some of their properties. First, elliptic equations which obey the extremum principle,
i.e. the extrema of solutions cannot be within the domain, are readily formulated and
numerically implemented.With this property, there is less tendency for folding of the
resulting grid cells. Another important property of any elliptic system is the inherent
smoothness of its solution, and consequently of the resulting coordinate curves in the
interior of the domain and even on smooth segments of the boundary. Moreover, the
smoothness can be propagated over the whole boundary with slope discontinuities
if the boundary conditions are consistent with the equations of the elliptic system
(Fig. 6.2 for n = 2). The third advantageous feature of elliptic systems is that they
allow one to specify the coordinate points (and/or coordinate-line slopes) on the
whole boundary of the domain. Finally, well-established methods are available to
solve elliptic equations.

A disadvantage of elliptic systems is the cost of the numerical solution, especially
because the commonly applied equations, considered in the transformed space, are
nonlinear and require iteration.

Commonly, the elliptic equations for generating curvilinear coordinates are for-
mulated in two ways:
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(1) in the computational domain Ξ n with the physical Cartesian coordinates xi as
the dependent variables;

(2) in the physical domain Xn with the curvilinear coordinates ξi as the dependent
variables.

In the second way, the coordinate mapping x(ξ) is constructed by solving the
elliptic systemobtainedby a transformationof the original systemso as to interchange
the dependent and independent variables.

The initial elliptic systems for the generation of grids are generally chosen in the
form

L1(xi ) ≡ ak j
1

∂2xi

∂ξk∂ξ j
+ b j

1

∂xi

∂ξ j
+ c1xi = f i

1 , i, j, k = 1, . . . , n , (6.2)

and

L2(ξ
i ) ≡ ak j

2

∂2ξi

∂xk∂x j
+ b j

2

∂ξi

∂x j
+ c2ξ

i = f i
2 , i, j, k = 1, . . . , n . (6.3)

Recall that repeated indices in formulas mean a summation over them unless other-
wise noted. The condition of ellipticity puts a restriction on the coefficients ai j

l in
(6.2) and (6.3):

ai j
l bi b j ≥ clb

kbk , cl > 0 , i, j, k = 1, . . . , n , l = 1, 2 ,

for an arbitrary vector b = (b1, . . . , bn).

6.2.1 Laplace Systems

The most simple elliptic systems for generating grids are represented by the uncou-
pled Laplace equations, either in the computational domain,

∇2xi ≡ ∂

∂ξ j

∂xi

∂ξ j
= 0 , i, j = 1, . . . , n , (6.4)

with the dependent variables xi , or in the physical domain,

∇2ξi ≡ ∂

∂x j

∂ξi

∂x j
= 0 , i, j = 1, . . . , n , (6.5)

with the dependent variables ξi .

Multiplying the system (6.5) by ∂x p/∂ξi and summing over i , we readily obtain
the inverse Laplace system with the dependent and independent quantities inter-
changed, in the form
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gi j ∂2x p

∂ξi∂ξ j
= 0 , i, j, p = 1, . . . , n , (6.6)

where, in accordance with (2.18),

gi j = ∇ξi · ∇ξ j = ∂ξi

∂xk

∂ξ j

∂xk
, i, j, k = 1, . . . , n , (6.7)

is the (i j)th contravariant metric element of Xn in the coordinates ξ1, . . . , ξn. These
equations shape the coupled quasilinear elliptic system in the computational domain
Ξ n.A grid in the domain Xn is generated by solving (6.4) or (6.6), with the Cartesian
values of x on the physical boundaries used as the boundary conditions along the
corresponding boundary segments of Ξ n.

The maximum principle is valid for the Laplace equations (6.4) and (6.5). In
the case of the system (6.4), it guarantees that the image of Ξ n produced by the
coordinate transformation x(ξ) will be contained in Xn if the domain Xn is convex.
Analogously, the image of Xn produced by the transformation ξ(x) satisfying the
Laplace system (6.5) will be contained in Ξ n if Ξ n is a convex domain. In the latter
case, the restriction of convexity is not imposed on the physical domain Xn . As the
convex computational domain Ξ n can be specified by the user, the system (6.5), and
correspondingly (6.6), has been more consistently favored in applications than the
system (6.4) for generating grids in general regions.

The Eq. (6.4) seem to be more natural than the equations in (6.6) for the imple-
mentation into numerical codes, as they are linear and of divergent form with respect
to the intermediate transformation s(ξ). However, such a divergent model, owing to
the maximum principle, does not guarantee that all grid points will be inside of the
physical domain Xn when it is not convex (Fig. 6.3, left-hand), let alone that the grid
cells may be folded.

The considerations mentioned are the major reasons why the formulation of grid
systems is reasonable to make with respect to the function ξ(x) : Xn → Ξ n that is
the inverse of the intermediate transformation x(ξ) : Ξ n → Xn.

The Eq. (6.5) are also preferred because the physical-space formulation provides
direct control of grid spacing and orthogonality. For these reasons, the formulation
of many other elliptic grid generators is also commonly performed in terms of the
inverse of the coordinate transformation x(ξ).

The main problem in grid generation is to make the coordinate transformation
x(ξ) : Ξ n → Xn a diffeomorphism, i.e. one-to-one mapping with the Jacobian J
not vanishing. In the case n = 2, the mathematical foundation of the technique,
based on the Laplace system (6.5) with a convex computational domain Ξ 2, is solid.
It is founded on the following result, derived from a theorem by Rado.

Let X2 be a simply connected bounded domain in R2. In this case, the Jacobian of
the transformation ξ(x) generated by the system (6.5) does not vanish in the interior
of X2, if Ξ 2 is a rectangle and ξ(x) : ∂X2 → ∂Ξ 2 is a homeomorphism. Note, in
the case n > 2, this property may be breached (see Farrel and Jones 1996).

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 6.3 Quadrilateral (a) and triangular (b) grids in concave domains generated by the solution
of equations (6.4) (left) and by the solution of equations (6.6) (right)

The system (6.5) for n = 2 was introduced by Crowley (1962) and Winslow
(1967), and owing to the properties noted above, it has been the most widely used
system for generating fixed coordinate grids in general regions.

Some features of the coordinate transformations and corresponding grids derived
from the system (6.5) and, correspondingly, (6.6) are considered in the next two
subsections.

Two-Dimensional Equations

In this subsection, we discuss the qualitative behavior of the coordinate lines gen-
erated by the two-dimensional Laplace system (6.5) near the boundary curves. We
assume that Ξ 2 is a unit square, X2 is a simply connected bounded domain, and the
coordinate transformation x(ξ) is defined as a solution to the Dirichlet problem for
the system (6.6) with a specified one-to-one boundary transformation

x(ξ) : ∂Ξ 2 → ∂X2 .

It is obvious from the theorem above that the mapping x(ξ) is the inverse of the
transformation ξ(x), that is, a solution to the Laplace system (6.5) with the Dirichlet
boundary conditions

ξ(x) : ∂X2 → ∂Ξ 2 .

From (2.21), the two-dimensional contravariant metric elements gi j in (6.6) are
connected with the covariant elements gi j = xξi · xξ j by the relation

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 6.4 Direction of the
derivative of the tangential
vector

gi j = (−1)i+ j g3−i 3− j

g
, i = 1, 2 ,

with fixed i and j . Therefore, the system (6.6) for n = 2 is equivalent to

g22
∂2xi

∂ξ1∂ξ1
− 2g12

∂2xi

∂ξ1∂ξ2
+ g11

∂2xi

∂ξ2∂ξ2
= 0 , i = 1, 2 . (6.8)

We now demonstrate that the spacing between coordinate lines, say ξ2 = const.,
in the vicinity of the respective boundary curve ξ2 = ξ20 , increases toward it if the
boundary line is convex and, conversely, the spacing decreases when the boundary
line is concave.

Let us consider, for clarity, a family of the coordinate curves ξ2 = const. Then,
the boundary curve of this family is defined by the relation ξ2 = ξ20 with ξ20 = 0 or
ξ20 = 1.

First, we note that the vector xξ1ξ1 , which is the derivative with respect to ξ1 of
the tangential vector xξ1 , x = (x1, x2), is directed, as shown in Fig. 6.4, toward the
concavity of the coordinate line ξ2 = ξ20 .Another important gradient vector of ξ2(x),

∇ξ2 =
(∂ξ2

∂x1
,

∂ξ2

∂x2

)
,

is orthogonal to the tangent vector xξ1 . The dot product of the vector ∇ξ2 and the
tangential vector xξ2 equals 1. Therefore, these vectors are always directed to one
side of the line ξ2 = ξ20 (see Figs. 2.2 and 6.4); in particular, they are directed into
the domain X2 if this coordinate line is the boundary curve ξ2 = 0. Thus, the sign
of the quantity

Q = ∇ξ2 · xξ1ξ1 = Γ 2
11

can serve as a criterion of the local shape of the boundary ξ2 = 0.Namely, if Q < 0,
which means the vectors xξ1ξ1 and ∇ξ2 are directed toward different sides of the
coordinate curve ξ2 = 0, then the domain X2 is concave (if Q > 0 the domain is
convex) near that part of the boundary ξ2 = 0 where this inequality is satisfied (see
Fig. 6.5).

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 6.5 Grid concentration near a concave boundary curve (left) and grid rarefaction near a convex
part of the boundary (right)

We have

Q = xξ1ξ1 · ∇ξ2 = −xξ1 · ∂

∂ξ1
(∇ξ2)

= −
(∂x1

∂ξ1

)2 ∂2ξ2

∂x1∂x1
− 2

∂x1

∂ξ1
∂x2

∂ξ1
∂2ξ2

∂x1∂x2
−

(∂x2

∂ξ1

)2 ∂2ξ2

∂x2∂x2
. (6.9)

The vector n = ∇ξ2/|∇ξ2| is the unit normal to the tangential vector xξ1 . It is valid
that

n · xξ2 = 1/|∇ξ2| = 1/
√

g22 ,

where

g22 = ∇ξ2 · ∇ξ2 = ∂ξ2

∂xi

∂ξ2

∂xi
, i = 1, 2 .

Let us denote by lh the distance between the two coordinate lines ξ2 = 0 and
ξ2 = h. Using the above equation for n · xξ2 , we have

lh = (n · xξ2)h + O(h)2 = h/
√

g22 + O(h)2 .

So, the quantity
s2 = 1/

√
g22

reflects the relative spacing between the coordinate grid lines ξ2 = const.
The vector n is orthogonal to the boundary coordinate line ξ2 = 0, and therefore

the rate of change of the relative spacing s2 of the coordinate curves ξ2 = const near
this boundary line is computed in the n direction. Since
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n = 1√
g22

(∂ξ2

∂x1
,

∂ξ2

∂x2

)
,

we obtain

∂s2
∂n

= 1√
g22

( ∂s2
∂x1

∂ξ2

∂x1
+ ∂s2

∂x2

∂ξ2

∂x2

)

= − 1

2(g22)2

((∂ξ2

∂x1

)2 ∂2ξ2

∂x1∂x1
+ 2

∂ξ2

∂x1

∂ξ2

∂x2

∂2ξ2

∂x1∂x2

+
(∂ξ2

∂x2

)2 ∂2ξ2

∂x2∂x2

)
.

Using in this equation the relation

∂ξi

∂x j
= (−1)i+ j ∂x3− j

∂ξ3−i

/
J , i, j,= 1, 2 ,

with fixed i and j , we obtain for the rate of change of the relative spacing s2

∂s2
∂n

= − 1

2J 2(g22)2

[(∂x2

∂ξ1

)2 ∂2ξ2

∂x1∂x1
− 2

∂x2

∂ξ1
∂x1

∂ξ1
∂2ξ2

∂x1∂x2

+
(∂x1

∂ξ1

)2 ∂2ξ2

∂x2∂x2

]
. (6.10)

Equation (6.5) for n = 2 implies

∂2ξ2

∂x2∂x2
= − ∂2ξ2

∂x1∂x1
,

and therefore we see, from (6.9) and (6.10), that

∂s2
∂n

= − 1

2J 2(g22)2
Q .

Thus, we find that the quantities ∂s2/∂n and Q have different signs. So, if the
boundary line ξ2 = 0 is convex or concave at some point ξ0, i.e. Q > 0 or Q < 0,
respectively, then

∂s2
∂n

< 0 or
∂s2
∂n

> 0 ,

at this point. These inequalities mean that the spacing of the grid lines ξ2 = const
decreases or increases, respectively, from the boundary curve ξ2 = 0 in the vicinity
of the boundary point ξ0.
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Analogous computations are readily carriedout for the coordinates near the bound-
ary curves ξ2 = 1 and ξ1 = 0 or ξ1 = 1 , which result in the conclusion that the grid
lines obtained from the Laplace system (6.5) for n = 2 are attracted to the concave
part of the boundary and repelled near the convex part (Fig. 6.5).

Three-Dimensional Equations

In contrast to two-dimensional domains, the problem of generating one-to-one three-
dimensional transformations through theLaplace system (6.5) has not yet been solved
theoretically. One of the reasons is the fact that the technique used for the two-
dimensional case cannot extended to higher dimensions. This observation was made
by Liao (1991). However, we assume that the transformation x(ξ) obtained as a
solution to the Dirichlet problem for the system (6.6) with n = 3 on the unit cube
Ξ 3 is a diffeomorphism, and hence the inverse transformation ξ(x) is a solution to
the Laplace system (6.5). In this case, the analogous property of the concentration of
the coordinate surfaces toward the concave part of the boundary and their rarefaction
toward the convex part is valid. This subsection gives a detailed proof of this fact.

First, we note that in the three-dimensional case, the gradient vector

∇ξ3 =
(∂ξ3

∂x1
,

∂ξ3

∂x2
,

∂ξ3

∂x3

)

is orthogonal to the tangent vectors xξ1 and xξ2 , x = (x1, x2, x3). The vectors ∇ξ3

and xξ3 are directed toward one side of the coordinate surface ξ3 = ξ30 . And the
quantity

s3 = 1/
√

g33 ,

where, in accordance with (6.7) for n = 3,

g33 = ∇ξ3 · ∇ξ3 = ∂ξ3

∂xi

∂ξ3

∂xi
, i = 1, 2, 3 ,

means, as in the two-dimensional case, the relative grid spacing between the coordi-
nate surfaces ξ3 = const in the normal direction n, where

n = ∇ξ3/|∇ξ3| = ∇ξ3/
√

g33 .

The rate of change of the relative spacing in this direction n equals

∂s3
∂n

= 1√
g33

( ∂s3
∂x1

∂ξ3

∂x1
+ ∂s3

∂x2

∂ξ3

∂x2
+ ∂s3

∂x3

∂ξ3

∂x3

)

= − 1

2(g33)2

(∂ξ3

∂xi

∂ξ3

∂x j

∂2ξ3

∂xi∂x j

)
, i, j = 1, 2, 3 . (6.11)

Using the general identity (2.49),

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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∂2ξi

∂xk∂xm
= − ∂2x p

∂ξl∂ξ j

∂ξ j

∂xk

∂ξl

∂xm

∂ξi

∂x p
,

i, j, k, l, m, p = 1, 2, 3 ,

for i = 3, between the second derivatives of the coordinate transformation x(ξ) :
Ξ 3 → X3 and ξ(x) : X3 → Ξ 3 in (6.11), we obtain

∂s3
∂n

= 1

2(g33)2
g3 jg3l ∂2x p

∂ξl∂ξ j

∂ξ3

∂x p
, j, l, p = 1, 2, 3 .

Now we write out the right-hand side of this equation as the sum of two parts, one
of which contains all terms of the kind

∂2x p

∂ξl∂ξ j
, i, j = 1, 2 , p = 1, 2, 3 ,

namely,

∂s3
∂n

= 1

2(g33)2
(Q1 + Q2) ,

Q1 =
(
(g31)2

∂2x p

∂ξ1∂ξ1
+ 2g31g32

∂2x p

∂ξ1∂ξ2
+ (g32)2

∂2x p

∂ξ2∂ξ2

) ∂ξ3

∂x p
,

Q2 = g33
(
2g31

∂2x p

∂ξ1∂ξ3
+ 2g32

∂2x p

∂ξ2∂ξ3
+ g33

∂2x p

∂ξ3∂ξ3

) ∂ξ3

∂x p
, (6.12)

where p = 1, 2, 3 . Multiplying the elliptic system (6.6) for n = 3 by ∂ξm/∂x p and
summing the result over p, we obtain, for m = 3,

gi j ∂2x p

∂ξi∂ξ j

∂ξ3

∂x p
= 0 , i, j, p = 1, 2, 3 .

Using this equation in the expression (6.12) for the quantity Q2, we readily obtain

Q2 = −g33
(
g11

∂2x p

∂ξ1∂ξ1
+ 2g12

∂2x p

∂ξ1∂ξ2
+ g22

∂2x p

∂ξ2∂ξ2

) ∂ξ3

∂x p
, p = 1, 2, 3 .

Therefore,

Q1 + Q2 =
(
[(g31)2 − g33g11] ∂2x p

∂ξ1∂ξ1

+[(g32)2 − g33g22] ∂2x p

∂ξ2∂ξ2

+2[g12g33 − g13g23] ∂2x p

∂ξ1∂ξ2

) ∂ξ3

∂x p
.
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And, in accordance with the relation

gi j = J 2(gi+1 j+1gi+2 j+2 − gi+1 j+2gi+2 j+1) , i, j = 1, 2, 3 ,

from (2.22), where any superscript index k can be identified with k ± 3, we have

Q1 + Q2 = −g3−i 3− j

J 2

∂2x p

∂ξi∂ξ j

∂ξ3

∂x p
, i, j = 1, 2 , p = 1, 2, 3 . (6.13)

Now we consider the value of Q1 + Q2 at the boundary surface ξ3 = 0. Let ξ0
be a point at this surface. The derivative of the vector

b = a1xξ1 + a2xξ2 , ai = const , i = 1, 2 ,

along the direction t = b(ξ0) is the vector

∂b
∂ t

= (a1)
2xξ1ξ1 + 2a1a2xξ1ξ2 + (a2)

2xξ2ξ2 .

If ξ0 is a point of local convexity of the boundary surface ξ3 = 0, then in analogy
with the vector xξ1ξ1 considered previously in the two-dimensional case, the vector
∂b/∂ t(ξ0) is directed into the domain X3. The vector ∇ξ3 at the point ξ0 and the
vector xξ3 are also directed into the domain X3. Therefore, the dot product of the
vectors ∇ξ3 and ∂b/∂ t is positive at the point under consideration, i.e.

∇ξ3 · ∂b
∂ t

=
(
(a1)

2 ∂2x p

∂ξ1∂ξ1
+ 2a1a2

∂2x p

∂ξ1∂ξ2
+ (a2)

2 ∂2x p

∂ξ2∂ξ2

) ∂ξ3

∂x p
> 0 , (6.14)

where p = 1, 2, 3. Considering the three cases

(a1, a2) = (1, 0), (a1, a2) = (0, 1), (a1, a2) = (1, 1)

in (6.14), we find that at the point ξ0,

∂2x p

∂ξ1∂ξ1
∂ξ3

∂x p
> 0 , p = 1, 2, 3 ,

∂2x p

∂ξ2∂ξ2
∂ξ3

∂x p
> 0 , p = 1, 2, 3 ,

and ∣∣∣ ∂2x p

∂ξ1∂ξ2
∂ξ3

∂x p

∣∣∣<
( ∂2x p

∂ξ1∂ξ1
∂ξ3

∂x p

∂2x p

∂ξ2∂ξ2
∂ξ3

∂x p

)1/2
, p = 1, 2, 3 .

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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As the quadratic form {gi j }, i, j = 1, 2, is positive, we obtain, from (6.13),

Q1 + Q2 < 0 ,

and, correspondingly, ∂s3/∂n < 0, i.e. the spacing between the coordinate surfaces
ξ3 = const decreases from the convex part of the boundary ξ3 = 0.

Analogously, we have Q1 + Q2 > 0 at a point on a concave part of the boundary
surface ξ3 = 0,which implies the observation that the grid surface spacing increases
locally from a concave part of the boundary surface.

The same facts are obviously true for the corresponding grid spacings near the
boundary surfaces ξ3 = 1, ξi = 0, and ξi = 1, i = 1, 2.

Thus, we find that the coordinate surfaces of the coordinate system derived from
the Laplace equations (6.5) are clustered near the concave parts of the boundary and
coarser near its convex parts (Figs. 6.6 and 6.7).

6.2.2 Poisson Systems

The Laplace system provides little opportunity to control the properties of the grid,
in particular, to adapt the mesh to the geometry of the boundary or to the features of
the solution of the physical equations in regions of the domain where this is neces-
sary. Only one opportunity is given, by the specification of the boundary conditions.
However, the grid point distribution on the boundaries noticeably affects only the
disposition of the nearby interior grid nodes. The distribution of the nodes over most
of the interior is influenced more by the form of the elliptic equations than by the
boundary values.

Fig. 6.6 Three-dimensional numerical grid with node clustering near a concave segment of the
boundary (left), its section (right)
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Fig. 6.7 Three-dimensional numerical grid with node rarefaction near a convex segment of the
boundary (left), its section (right)

Therefore, in order to provide global control of the grid node distribution, the
Laplace system is replaced by a more general elliptic system with variable coef-
ficients. The simplest way to obtain such a generalization, suggested by Godunov
and Prokopov (1972) for the generation of two-dimensional grids, consists of adding
right-hand terms to the Laplace system (6.5), thus making it a Poisson system.

The actual generation of the grid is done through the numerical solution of the
inverted Poisson system in the computational domain Ξ n, where the curvilinear
coordinates ξi are the independent variables and the Cartesian coordinates xi are the
dependent variables.

An elliptic method of grid generation based on the numerical solution of a system
of inverted Poisson equations is being used for a broad range of practical appli-
cations. The method allows the users to generate numerical grids in fairly compli-
cated domains and on surfaces that arisewhile analyzingmultidimensional fluid-flow
problems. Practically all big grid generation codes incorporate it as a basic tool for
generating structured grids. Other techniques (algebraic, hyperbolic, etc.) play an
auxiliary role in the codes, serving as an initial guess for the elliptic solver, or as a
technique for generating grids in regions with simple geometry.

Formulation of the System

The system of Poisson equations for generating grids has the form

∇2ξi ≡ ∂

∂x j

∂ξi

∂x j
= Pi , i, j = 1, . . . , n . (6.15)

The quantities Pi are called either control functions or source terms. The source
terms are essential for providing an effective control of the grid point distribution,
although the choice of the proper control functions Pi is difficult, especially for
multicomponent geometries.
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Since
∂

∂x j

( ∂ξi

∂x j

)∂xk

∂ξi
= − ∂2xk

∂ξi∂ξm

∂ξi

∂x j

∂ξm

∂x j
= −gim ∂2xk

∂ξi∂ξm
,

bymultiplying the Poisson system (6.15) by∂xk/∂ξi and summing over i , an inverted
system of the equations is obtained:

gi j ∂2xk

∂ξi∂ξ j
= −Pi

∂xk

∂ξi
, k, i, j = 1, . . . , n . (6.16)

Note that the left-hand part of these equations comprises the left-hand part of the
system of inverted Laplace equations (6.6). The system (6.16) can also be represented
in the following vector notation:

gi j xξi ξ j = −Pi xξi , i, j = 1, . . . , n . (6.17)

For one-dimensional space, we obtain, from (6.17),

d2x

dξ2
= −P

(dx

dξ

)3
.

Assuming

P =
( dξ
dx

)2 ∂w

∂ξ

/
w ,

where w is some positive function, playing the role of a weight in applications, we
have

w
d

dξ

(
w
dx

dξ

)
= 0 .

This equation is related to the equation in (4.23), thus giving a clue as to how to
generate univariate grid clustering with the control function P.

Using the relations (2.21) and (2.22), we obtain, from (6.17), two- and three-
dimensional systems of inverted Poisson grid equations:

Bn[x](ξ) = −gPi xξi , i = 1, . . . , n , (6.18)

where

g = det{gi j } , Bn[y] = ggi j ∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n ,

i.e. for n = 2 and n = 3

http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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B2[y] = g22
∂2y

∂ξ1∂ξ1
− 2g12

∂2y

∂ξ1∂ξ2
+ g11

∂2y

∂ξ2∂ξ2
,

B3[y] = [g22g33 − (g23)
2] ∂2y

∂ξ1∂ξ1
+ [g11g33 − (g13)

2] ∂2y

∂ξ2∂ξ2

+ [g11g22 − (g12)
2] ∂2y

∂ξ3∂ξ3
+ 2[g23g13 − g12g33] ∂2y

∂ξ1∂ξ2

+ 2[g12g23 − g22g13] ∂2y

∂ξ1∂ξ3
+ 2[g13g12 − g23g11] ∂2y

∂ξ2∂ξ3
.

(6.19)

Justification for the Poisson System

The idea of using the Poisson system to provide efficient control of grid generation
was justified by the fact that the system of the Poisson type is obtained from the
Laplace system, for intermediate coordinates which are transformed to other coordi-
nates. Let every component qi , i = 1, . . . , n, of the coordinate transformation q(x)

satisfy the Laplace equation

∇2qi = ∂

∂x j

( ∂qi

∂x j

)
= 0 , i, j = 1, . . . , n .

Furthermore, let ξ(q) be a new intermediate one-to-one smooth coordinate trans-
formation. Then, every new coordinate ξi will satisfy the inhomogeneous elliptic
system

∇2ξi = ∂

∂x j

( ∂ξi

∂qk

∂qk

∂x j

)
= ∂2ξi

∂qk∂qm
gkm + ∂ξi

∂qk

∂2qk

∂x j∂x j

= gkm ∂2ξi

∂qk∂qm
, i, j, k, m = 1, . . . , n , (6.20)

where gkm is the (k, m) element of the contravariant metric tensor of the domain Xn

in the coordinates q1, . . . , qn, i.e.

gkm = ∂qk

∂x j

∂qm

∂x j
, j, k, m = 1, . . . , n .

The elements gi j , i, j = 1, . . . , n, of the contravariant metric tensor of the domain
Xn in the coordinates ξ1, . . . , ξn are connected with gi j , i, j = 1, . . . , n, by

gkm = gl j ∂qk

∂ξl

∂qm

∂ξ j
, k, l, m, j = 1, . . . , n .

Thus, taking into account this relation, the system (6.20) has the form (6.15), i.e.

∇2 ξi = Pi , i = 1, . . . , n ,
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where

Pi = gl j ∂qk

∂ξl

∂qm

∂ξ j

∂2ξi

∂qk∂qm
, i, j, k, l, m = 1, . . . , n . (6.21)

From the identity
∂qk

∂ξl

∂qm

∂ξ j

∂2ξi

∂qk∂qm
≡ − ∂ξi

∂qm

∂2qm

∂ξl∂ξ j
,

we also have

Pi = −gl j ∂ξi

∂qm

∂2qm

∂ξl∂ξ j
. (6.22)

Thus, by applying the intermediate coordinate transformation q(ξ) to a grid generated
as a solution of the Laplace system,we obtain a gridwhich could have been generated
directly as the solution of the Poisson system (6.15) with the appropriate control
functions defined by (6.21) and (6.22).

The general Poisson system (6.15) does not obey the maximum principle. And, in
contrast to the Laplace system (6.5) for n = 2, there is no guarantee that the generated
grid is not folded. In fact, any smooth but folded coordinate transformation ξ(x) can
be obtained from the system (6.15) by computing Pi directly from the Laplacian of
ξi (x). If these Pi are used in thePoisson system (6.15), then the folded transformation
ξ(x) will be reproduced.

One way to make the Poisson system satisfy the maximum principle is to replace
the control functions Pi with other functions which guarantee the maximum princi-
ple. One appropriate approach is to define the control functions Pi in the form

Pi = g jk Pi
jk , i, j, k = 1, . . . , n .

Such an expression for Pi is prompted by (6.21) and (6.22) with

Pi
jk = ∂ξi

∂qm

∂2qm

∂ξ j∂ξk
, i, j, k, m = 1, . . . , n , (6.23)

defined by the transformation from the intermediate coordinates qi to the final com-
putational coordinates ξi .According to the theory of elliptic equations, the factors gi j

in the expressions for Pi guarantee the maximum principle for the Poisson system
(6.15).

Thus, an appropriate Poisson system can be defined by the equations

∇2ξi = g jk Pi
jk , i, j, k = 1, . . . , n , (6.24)

where the control functions Pi
jk are considered to be specified. The inverse of (6.24)

then has the form
gi j (xξi j + Pk

i j xξk ) = 0 . (6.25)
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When the intermediate transformation q(ξ) is composed of separate
one-dimensional mappings qi (ξi ) for each coordinate direction ξi , then, from (6.23),

Pi
jk = δi

jδ
i
k Pi

so that the generation system (6.24) becomes

∇2ξi = gi i Pi (6.26)

for each fixed i = 1, . . . , n. The inverted system then has the form

gi j xξi ξ j + gi i Pi xξi = 0 . (6.27)

The selection of the control functions Pi
jk is a difficult task. Equations (6.23)

show that these functions are not independent if the coordinate transformation x(ξ) is
defined as the composition of an intermediate mapping q(ξ) and an exterior mapping
x(q) which satisfies the inverted Laplace equation (6.6).

Equivalent Forms of the Poisson System

Taking into account the general identity (2.57) for arbitrary smooth functions Ai , i =
1, . . . , n,

∂

∂x j

(
A j

)
≡ 1

J

∂

∂ξ j

(
J Am ∂ξ j

∂xm

)
, j, m = 1, . . . , n ,

we obtain, assuming A j = ∂ξi/∂x j ,

∇2ξi = ∂

∂x j

( ∂ξi

∂x j

)
≡ 1

J

∂

∂ξ j

(
J

∂ξi

∂xm

∂ξ j

∂xm

)
≡ 1

J

∂

∂ξ j
(Jgi j ) , (6.28)

where i, j, m = 1, . . . , n . Therefore, the Poisson system (6.15) is equivalent to the
following system of equations:

1

J

∂

∂ξ j
(Jgi j ) = Pi , i, j = 1, . . . , n , (6.29)

which is derived from the elements of the metric tensors only. The left-hand part
of (6.29) can be expressed through the Christoffel symbols. For this purpose, we
consider the identity

1

J

∂

∂ξ j

(
Jgi j xξi

)
≡ 0 , (6.30)

which is a result of (2.48), since gi j xξi = ∇ξ j . Performing the differentiation on the
left-hand part of (6.30), we obtain

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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gi j xξi ξ j + 1

J

∂

∂ξ j
(Jgi j )xξi ≡ 0 , i, j = 1, . . . , n . (6.31)

The dot product of (6.31) and ∇ξk results in

∇2ξk ≡ −gi jΓ k
i j , i, j, k = 1, . . . , n , (6.32)

using (6.28) and (2.39). The identity (6.32) demonstrates that the value of ∇2ξk

is expressed through the metric elements and the space Christoffel symbols of the
second kind.

The utilization of (6.32) generates the following equivalent form of the Poisson
system (6.15):

− gi jΓ k
i j = Pk , i, j, k = 1, . . . , n . (6.33)

In order to define the value of the forcing terms on the boundaries, we use an alter-
native, equivalent system of equations

Pk = −gi jglk[i j, l] , i, j, k, l = 1, . . . , n , (6.34)

which is obtained from (6.33) and (2.43), with

[i j, l] = xξi ξ j · xξl = 1

2

(∂gil

∂ξ j
+ ∂g jl

∂ξi
− ∂gi j

∂ξl

)
,

i, j, l = 1, . . . , n .

In particular, when the coordinate system ξi is orthogonal, then (6.34) results in

Pk = −gi igkk[i i, k] = gkk
(1
2
gi i ∂gi i

∂ξk
− gkk ∂gkk

∂ξk

)
,

i = 1, . . . , n , k fixed.

Orthogonality at Boundaries

The grid point distribution in the immediate neighborhood of the boundaries of two-
dimensional and three-dimensional regions has a strong influence on the accuracy of
the algorithms developed for the numerical solution of partial differential equations.
In particular, it is often desirable to have orthogonal or nearly orthogonal grid lines
emanating from some boundary segments.

Consider, for example, the evaluation of the outward normal derivative of an
arbitrary function f at the boundary of a two-dimensional region X2:

∂ f

∂n
= n · ∇ f.

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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If the boundary is a line of constant ξ1, then

n = 1√
g22

∇ξ2 ,

and so
∂ f

∂n
= 1√

g22

∂ f

∂xi

∂ξ2

∂xi
= g2k

√
g22

∂ f

∂ξk
, k = 1, 2 . (6.35)

If the coordinates ξ1, ξ2 are orthogonal, (6.35) reduces to just

∂ f

∂n
= 1√

g22

∂ f

∂ξ2
.

Obviously, this equation is much simpler than (6.35) and is to be preferred for most
analytical purposes. Less obviously, but of importance to numerical schemes, (6.35)
couples the ξ1 and ξ2 variations of the function f , and thus the application of a
Neumann boundary condition to f may involve the difference of two large numbers,
with a possible loss of numerical accuracy.

The Poisson system provides two opportunities to satisfy the requirement of
orthogonality or near orthogonality of the coordinate lines emanating from the bound-
ary segments, either by imposing Neumann boundary conditions or by specifying
the source terms Pi through the boundary values of the coordinate transformation.

The commonly used approach to the specification of the source terms Pi to provide
boundary orthogonality relies on the computation of the values of ∇2ξi on boundary
segments, provided the coordinate lines ξi are orthogonal to these segments. These
computed data generate the boundary conditions for Pi . Expansion of the boundary
values of Pi over the whole region through algebraic or differential approaches
produces the specification of the control functions. The coincidence of Pi and the
computed values of∇2ξi on the boundary provides some grounds for the expectation
that the solution of the Poisson system with the specified Pi will yield a coordinate
system which is nearly orthogonal in the vicinity of the boundary segments.

In this subsection, we find some necessary conditions for the boundary values
of the control functions Pi to generate coordinates which emanate orthogonally or
nearly orthogonally from the respective boundary segments.

Two-Dimensional Equations

Now we consider a two-dimensional case. Let a coordinate curve ξ2 = ξ20 be orthog-
onal to the opposite family of coordinate lines ξ1 = const. In this case,

g12 = 0 , J = √
g11 g22 ,

g12 = 0 , g11 = 1/g11 , g22 = 1/g22 ,

along this coordinate line ξ2 = ξ20 . With these equations, the relations (6.34) for the
definition of Pi , i = 1, 2, on the coordinate line ξ2 = ξ20 have the form
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P1 = −(g11)2[11, 1] − g22g11[22, 1]
= − 1

g11

( 1

2g11

∂g11

∂ξ1
+ 1

g22
(xξ2ξ2 · xξ1)

)
. (6.36)

Analogously, if the coordinate curve ξ1 = ξ10 is orthogonal to the opposite family
of coordinate curves, then for the source term P2 on the curve ξ1 = ξ10 , we obtain

P2 = − 1

2(g22)2
∂g22

∂ξ2
− 1

J 2

∂2xi

∂ξ1 ∂ξ1
∂xi

∂ξ2

= − 1

g22

( 1

2g22

∂g22

∂ξ2
+ 1

g11
[11, 2]

)
. (6.37)

If the curve ξ2 = ξ20 is the boundary segment, then all of the quantities in (6.36)
are known except g22 and xξ2ξ2 . The metric term g22 is connected with the relative
grid spacing |xξ2 | of the coordinate lines ξ2 = const by the relation g22 = |xξ2 |2. If
the spacing |xξ2 | is specified on the boundary curve ξ2 = ξ20 , then only xξ2ξ2 is an
unknown quantity in the specification of the control function P1 on this boundary. In
the same way, on the boundary segment ξ1 = ξ10, only xξ1ξ1 is an unknown quantity
in (6.37) for P2. One way to define xξ1ξ1 and xξ2ξ2 , and consequently P1 and P2, on
the respective boundary segments is to apply an iterative procedure which utilizes the
Eq. (6.18) with the term −2g12xξ1ξ2 omitted because of the orthogonality condition:

g22xξ1ξ1 + g11xξ2ξ2 = −g11g22Pi xξi . (6.38)

Every step allows one to evaluate the control function P1 on the boundary curves
ξ2 = ξ20 and the control function P2 on the boundary lines ξ1 = ξ10 . By expansion
from the boundary values, the control functions P1 and P2 are evaluated in the
domain X2. By solving the system (6.38) with the obtained control functions Pi , the
grid corresponding to the next step is generated in the domain X2. If convergence is
achieved, the final grid is generated satisfying the condition of orthogonality and the
specified spacing at the boundary.

Local Straightness at the Boundary

The Eqs. (6.36) and (6.37), which serve to define the control functions Pi on the
boundary, are simplified if an additional requirement of local straightness of coordi-
nate lines is imposed. To demonstrate this, we note that the vector

b =
(∂x2

∂ξ1
,−∂x1

∂ξ1

)

is orthogonal to the tangential vector xξ1 . From the assumed condition of orthogo-
nality of the coordinate system along the curve ξ2 = ξ20 , we find that the vector xξ2

is parallel to the vector b:
xξ2 = Fb ,
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i.e.

∂x1

∂ξ2
= −F

∂x2

∂ξ1
,

∂x2

∂ξ2
= F

∂x1

∂ξ1
. (6.39)

Let ∂x2/∂ξ2 	= 0 at the boundary point ξ0. After squaring every equation of the
system (6.39) and summing them, we find that F = √

g22/g11. Therefore,

[22, 1] = ∂xi

∂ξ1
∂2xi

∂ξ2 ∂ξ2

= 1

F

(∂x2

∂ξ2
∂2x1

∂ξ2 ∂ξ2
− ∂x1

∂ξ2
∂2x2

∂ξ2 ∂ξ2

)

= 1

F
(
∂x2

∂ξ2
)2

∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
(6.40)

at the point ξ0. The substitution of this relation in (6.36) yields

P1 = − 1

2(g11)2
∂g11

∂ξ1
− 1

J 2F

(∂x2

∂ξ2

)2 ∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
. (6.41)

The ratio (∂x1/∂ξ2)/(∂x2/∂ξ2) is merely the slope dx1/dx2 of the family of the
coordinate curves ξ1 = const, which are transverse to the coordinate ξ2 = ξ20 . The
imposition of the condition that these transverse coordinate lines ξ1 = const are
locally straight (i.e. have zero curvature) in the neighborhood of the coordinate ξ2 =
ξ20 leads to the equation

∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
= 0 (6.42)

on the coordinate line ξ2 = ξ20 . So, in this case, we obtain, from (6.36), the following
expression for P1,

P1 = − 1

2(g11)2
∂

∂ξ1
g11 (6.43)

which the source term P1 must satisfy along the coordinate curve ξ2 = ξ20 if it is
orthogonal to the family of locally straight coordinate lines ξ1 = const. This equation
can be used to compute the numerical value of P1 at each grid point on the horizontal
boundaries where the transformation x(ξ) and consequently the metric element g11,
is specified.

Analogously, if the coordinate line ξ1 = ξ10 is orthogonal to the family of locally
straight coordinate curves ξ2 = const, we have
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P2 = − 1

2(g22)2
∂

∂ξ2
g22 (6.44)

along this coordinate.
Once the control function P1 is defined at each mesh point of the horizontal

boundaries ξ2 = 0 and ξ2 = 1, its value at the interior mesh points can be computed
by unidirectional interpolation along the vertical mesh lines ξ1 = const between
the horizontal boundaries. Similarly, the control function P2 can be computed by
unidirectional interpolation along the horizontal mesh lines ξ2 = const.

Three-Dimensional Equations

Now we find the values of the system (6.28) on a coordinate surface, say ξ3 =
ξ30, when it is orthogonal to the family of coordinates ξ3. These values define the
specification of the control functions Pi , i = 1, 2, on the coordinate surface to obtain
three-dimensional grids nearly orthogonal about this surface through the system
(6.16).

From the condition of orthogonality,we have the following relations on the surface
ξ3 = ξ30 :

g13 = g23 = 0 , g33 = 1/g33 ,

J = √
g33g , g = det{gi j }, i, j = 1, 2 . (6.45)

It is also clear that the orthogonality condition on the coordinate surface ξ3 = ξ30
implies that the matrix {gi j }, i, j = 1, 2, is inverse to the tensor {gi j }, i, j = 1, 2.
In fact, the matrix {gi j }, i, j = 1, 2, is the covariant metric tensor of the surface
ξ3 = ξ30 in the coordinates ξ1, ξ2 represented by the parametrization

r(ξ) : Ξ 2 → R3 , ξ = (ξ1, ξ2) , r = (x1, x2, x3) ,

where
r(ξ1, ξ2) = x(ξ1, ξ2, ξ30) .

Correspondingly, the matrix {gi j }, i, j = 1, 2, is the contravariant metric tensor of
the surface ξ3 = ξ30 in the coordinates ξ1, ξ2.

The forcing terms Pi , i = 1, 2, are expressed by the system of equations (6.29).
We will write out the equations for i = 1, 2 as a sum of two parts. The first part
contains only the terms with the superscripts 1 and 2, which thus are related to the
coordinate surface ξ3 = ξ30 . The second part includes the terms with the superscript
3. Thus, we assume

Pi = Pi
1 + Pi

2 ,

Pi
1 = 1

J

∂

∂ξ j
(Jgi j ) , i, j = 1, 2 ,

Pi
2 = 1

J

∂

∂ξ3
(Jgi3) , i = 1, 2 . (6.46)
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Let us consider the case i = 1. In accordance with the formula (2.22), we obtain for
the element g13 in (6.46)

g13 = g21g32 − g31g22

g
.

So, taking into account the relations (6.45) valid on the surface ξ3 = ξ30, we obtain

g13 = − 1

g33
(g21g32 + g11g13) .

Also, as a result of the condition of orthogonality, we have, on the surface,

gi j = (−1)i+ jg3−i 3− j

g
, i, j = 1, 2 ,

with i, j fixed, and thus

P1
2 = 1

J

∂

∂ξ3
(Jg13) = − 1

g33

(
g21

∂

∂ξ3
g23 + g11

∂

∂ξ3
g13

)
(6.47)

on ξ3 = ξ30 . For the term Pi
1 on the surface ξ3 = ξ30,we find, using (6.45) and (6.46),

Pi
1 = 1√

g33g

∂

∂ξ j
(
√

g33ggi j )

= 1√
g

∂

∂ξ j
(
√

ggi j ) + gi j

2g33

∂

∂ξ j
g33, i, j = 1, 2 . (6.48)

The relations (6.47) and (6.48) yield

P1 = 1√
g

∂

∂ξ j
(
√

gg1 j )

+ 1

g33

[
g11

(1
2

∂

∂ξ1
g33 − ∂

∂ξ3
g13

)
+ g12

(1
2

∂

∂ξ2
g33 − ∂

∂ξ3
g23

)]

= 1√
g

∂

∂ξ j
(
√

gg1 j ) + 1

g33

(
g11

∂xk

∂ξ1
∂2xk

∂ξ3∂ξ3
+ g12

∂xk

∂ξ2
∂2xk

∂ξ3∂ξ3

)
.

Analogously,

P2 = 1√
g

∂

∂ξ j
(
√

gg2 j ) + 1

g33

(
g21

∂xk

∂ξ1
∂2xk

∂ξ3∂ξ3
+ g22

∂xk

∂ξ2
∂2xk

∂ξ3∂ξ3

)
.

So, a general formula for Pi , i = 1, 2, on the coordinate surface ξ3 = ξ30 is

Pi = 1√
g

∂

∂ξ j
(
√

ggi j ) + 1

g33

(
gi j ∂xk

∂ξ j

∂2xk

∂ξ3∂ξ3

)
, (6.49)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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where i, j = 1, 2, k = 1, 2, 3 . Equation (6.49) can be used in the same manner
as (6.36) and (6.37) to define the values of the control functions at the boundary
segments for the purpose of providing orthogonality at the boundary with a specified
normal spacing, through an iterative procedure.

If the vector rξ3ξ3 , r = (x1, x2, x3), is parallel to the vector rξ3 , for example,
when the curvature of the coordinate lines ξ3 vanishes on the surface ξ3 = ξ30, then,
from the condition of orthogonality, the second sumof (6.49) vanishes, which implies

Pi = 1√
g

∂

∂ξ j
(
√

ggi j ), i = 1, 2 , (6.50)

on the surface ξ3 = ξ30 .
Aswasmentioned, the covariant and contravariant elements of the surface ξ3 = ξ30

in the coordinates ξ1, ξ2 coincide with the elements gi j and gi j , respectively, for
i, j = 1, 2. So, the expression (6.50) for Pi is the value obtained by applying the
Beltrami operator ΔB,

ΔB = 1√
g

∂

∂ξ j

(√
ggk j ∂

∂ξk

)
, j, k = 1, 2 , (6.51)

to the function ξi (x), i.e.

ΔBξi = Pi , i = 1, 2 .

Analogous equations for Pi are valid for the coordinate surfaces ξi = ξi
0, i = 1 or

i = 2.

Control of the Angle of Intersection

Now, for two dimensions, we find how to use the source terms Pi to control the angle
at which each grid line transverse to the boundary intersects it.

First, we note that the maximum principle for the Laplace operator guarantees
that if

∇2 f ≥ ∇2g

and
f |∂Xn = g|∂Xn ,

then
f (x) ≤ g(x) , x ∈ Xn .

Therefore, in the two-dimensional case, a decrease in the values of Pi causes an
increase in the values of ξi , and, correspondingly, a reduction of the intersection angle
of the boundary line with the opposite family of coordinate curves. For example, if
Pi is negative at a grid point obtained through the inverted Laplace system, the point
is moved towards the side where ξi is less. The opposite effect is produced when
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the values of Pi are increased. This observation allows one to influence the angle of
intersection by choosing larger or smaller values of Pi .

A more sophisticated procedure for controlling the angle of intersection relies on
a study of the dependence of the source terms Pi on the boundary distribution and
the angle of intersection.

In place of the orthogonality condition g12 = 0, we use, therefore, the condition

xξ1 · xξ2 = g12 = |xξ1 | |xξ2 | cos θ = √
g11g22 cos θ , (6.52)

where θ denotes the angle of intersection between a coordinate line, say ξ2 = ξ20 ,
and the corresponding transverse coordinate curves ξ1 = const. So, θ is a function
depending on ξ1. A more convenient representation of this condition is

g12 = J cot θ , (6.53)

which follows from (6.52) and the equation

J = |xξ1 | |xξ2 | sin θ = √
g11g22 sin θ .

Since
J =

√
g11g22 − (g12)2 ,

we obtain, from (6.52) and (6.53),

g11 = 1

g11 sin2 θ
,

g22 = 1

g22 sin2 θ
,

g12 = − cos θ√
g11g22 sin2 θ

. (6.54)

The angle between the tangent vectors xξ2 and xξ1 is θ, and therefore the vector xξ2

intersects the vector

b = (−∂x2

∂ξ1
,

∂x1

∂ξ1
) ,

which is orthogonal to the vector xξ1 , at an angle of π/2 − θ (Fig. 6.8). The vectors
xξ1 and b are orthogonal and have the same length; therefore,

xξ2 = F(cos θ xξ1 + sin θ b) ,

where F = √
g22/g11. Hence,
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Fig. 6.8 Angle between the
normal and tangential
vectors

∂x1

∂ξ2
= F

(
cos θ

∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)
,

∂x2

∂ξ2
= F

(
cos θ

∂x2

∂ξ1
+ sin θ

∂x1

∂ξ1

)
(6.55)

on the coordinate curve ξ2 = ξ20 . It is clear that (6.55) is a generalization of (6.39).
Now we compute the forcing term P1 on the boundary curves ξ2 = 0 and ξ2 = 1

required to provide control of the angle θ at these segments. For this purpose, we
consider the representation of the Poisson system (6.15) in the form (6.32).

For i = 1, n = 2, the system (6.32) implies

P1 = −g11Γ 1
11 − 2g12Γ 1

12 − g22Γ 1
22

= −g11
( ∂2x1

∂ξ1∂ξ1
∂ξ1

∂x1
+ ∂2x2

∂ξ1∂ξ1
∂ξ1

∂x2

)

−2g12
( ∂2x1

∂ξ1∂ξ2
∂ξ1

∂x1
+ ∂2x2

∂ξ1∂ξ2
∂ξ1

∂x2

)

−g22
( ∂2x1

∂ξ2∂ξ2
∂ξ1

∂x1
+ ∂2x2

∂ξ2∂ξ1
∂ξ1

∂x2

)
. (6.56)

In the two-dimensional case, we have

∂ξ1

∂x1
= ∂x2

∂ξ2

/
J,

∂ξ1

∂x2
= −∂x2

∂ξ1

/
J, (6.57)

so, using the relation (6.55) valid along the coordinate ξ2 = ξ20 , we obtain
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∂ξ1

∂x1
= 1

g11

(
cot θ

∂x2

∂ξ1
+ ∂x1

∂ξ1

)
,

∂ξ1

∂x2
= 1

g11

(∂x2

∂ξ1
− cot θ

∂x1

∂ξ1

)
. (6.58)

Let the quantities ∂x1/∂ξ1 and ∂x2/∂ξ2 not vanish at the point under consideration.
Then, the (6.56) is given by

g11Γ 1
11 = g11

( ∂2x1

∂ξ1∂ξ1
∂ξ1

∂x1
+ ∂2x2

∂ξ1∂ξ1
∂ξ1

∂x2

)

= 1

(g11)2 sin2 θ

[(
cot θ

∂x2

∂ξ1
+ ∂x1

∂ξ1

) ∂2x1

∂ξ1∂ξ1

+
(
− cot θ

∂x1

∂ξ1
+ ∂x2

∂ξ1

) ∂2x2

∂ξ1∂ξ1

]

= 1

(g11)2 sin2 θ

[1
2

∂

∂ξ1
g11 − cot θ

(∂x1

∂ξ1

)2 ∂

∂ξ1

(∂x2

∂ξ1

/∂x1

∂ξ1

)]
. (6.59)

In order to compute the second term of (6.56), we note first that, from (6.55),

∂x1

∂ξ2

/∂x2

∂ξ2
=

cos θ
∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

sin θ
∂x1

∂ξ1
+ cos θ

∂x2

∂ξ1

.

Therefore,
∂

∂ξ1

(∂x1

∂ξ2

/∂x2

∂ξ2

)
= F2

(∂x2

∂ξ2

)2[ f1(ξ
1) + f2(ξ

1)] , (6.60)

where

f1(ξ1) = −
[(

sin θ
∂x1

∂ξ1
+ cos θ

∂x2

∂ξ1

)2 +
(
cos θ

∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)2]
θξ1

= −g11θξ1 ,

f2(ξ1) =
(
cos θ

∂2x1

∂ξ1∂ξ1
− sin θ

∂2x2

∂ξ1∂ξ1

)(
sin θ

∂x1

∂ξ1
+ cos θ

∂x2

∂ξ1

)

−
(
sin θ

∂2x1

∂ξ1∂ξ1
+ cos θ

∂2x2

∂ξ1∂ξ1

)(
cos θ

∂x1

∂ξ1
− sin θ

∂x2

∂ξ1

)

= ∂2x1

∂ξ1∂ξ1
∂x2

∂ξ1
− ∂2x2

∂ξ1∂ξ1
∂x1

∂ξ1

= −
(∂x1

∂ξ1

)2 ∂

∂ξ1

(∂x2

∂ξ1

/∂x1

∂ξ1

)
.
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So, using the relations (6.56) and (6.60), we obtain

g12Γ 1
12 = g12

( ∂2x1

∂ξ1∂ξ2
∂ξ1

∂x1
+ ∂2x2

∂ξ1∂ξ2
∂ξ1

∂x2

)

= g12

J

( ∂2x1

∂ξ1∂ξ2
∂x2

∂ξ2
− ∂2x2

∂ξ1∂ξ2
∂x1

∂ξ2

)

= 1

J
g12

(∂x2

∂ξ2

)2 ∂

∂ξ1

(∂x1

∂ξ2

/∂x2

∂ξ2

)

= cot θ

(g11)2 sin2 θ

[
g11θξ1 +

(∂x1

∂ξ1

) ∂

∂ξ1

(∂x2

∂ξ1

/∂x1

∂ξ1

)]
.

(6.61)

Analogously, the third term of (6.56) is given by

g22Γ 1
22 = ∂2x1

∂ξ2∂ξ2
∂ξ1

∂x1
+ ∂2x2

∂ξ2∂ξ1
∂ξ1

∂x2

= 1

J

( ∂2x1

∂ξ2∂ξ2
∂x2

∂ξ2
− ∂2x2

∂ξ2∂ξ2
∂x1

∂ξ2

)

= 1

J

(∂x2

∂ξ2

)2 ∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
. (6.62)

Now, using the relations (6.59), (6.61), and (6.62) in (6.56), we obtain

P1 = − 1

(g11)2 sin2 θ

×
[1
2

∂

∂ξ1
g11 + cot θ

(∂x1

∂ξ1

)2 ∂

∂ξ1

(∂x2

∂ξ1

/∂x1

∂ξ1

)
+ 2g11 cot θ θξ1

]

− 1

Jg22 sin2 θ

(∂x2

∂ξ2

)2 ∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
(6.63)

along the coordinate curve ξ2 = ξ20 .
Analogously, for the second source term P2 along the coordinate line ξ1 = ξ10 ,

P2 = − 1

(g22)2 sin2 θ

×
[1
2

∂

∂ξ2
g22 + cot θ

(∂x2

∂ξ2

)2 ∂

∂ξ2

(∂x1

∂ξ2

/∂x2

∂ξ2

)
+ 2g11 cot θ θξ2

]

− 1

Jg11 sin2 θ

(∂x1

∂ξ1

)2 ∂

∂ξ1

(∂x2

∂ξ1

/∂x1

∂ξ1

)
. (6.64)
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If the coordinate curves ξi = const are locally straight at the points of their intersec-
tion with the opposite coordinate lines, then the last lines in (6.63) and (6.64) will
vanish. Using the conventional notation x, y and ξ, η instead of x1, x2 and ξ1, ξ2, we
have for the source terms P1 and P2 in this case

P1 = − 1

(g11)2 sin2 θ

[1
2

∂

∂ξ
g22 + cot θ

(∂x

∂ξ

)2 ∂

∂ξ

(∂y

∂ξ

/∂x

∂ξ

)

+2g11 cot θ θξ

]
, (6.65)

P2 = − 1

(g22)2 sin2 θ

[1
2

∂

∂η
g22 + cot θ

(∂y

∂η

)2 ∂

∂η

(∂x

∂η

/∂y

∂η

)

+2g11 cot θ θη

]
. (6.66)

Adaptation Through Control Functions

In the ellipticmethod based on Poisson equations, the grid adaptationmay be realized
through the choice of the control functions Pi in the inverted system of equations

gi j ∂2xk

∂ξi∂ξ j
= −Pi ∂xk

∂ξi
, i, j, k = 1, . . . , n . (6.67)

In one dimension, this system is reduced to

( dξ
dx

)2 d2x

dξ2
= −P

dx

dξ
. (6.68)

One way of determining the source function P in (6.68) so as to provide an
opportunity to control the attraction or repulsion of grid points is to use an analogy
between the one-dimensional equation in (4.23), i.e.

d

dξ

(dx

dξ
ψ(x, ε)

)
= 0 , 0 < ξ < 1 , (6.69)

implementing the one-dimensional equidistribution principle, and (6.68). In accor-
dance with the univariate equidistribution approach, the control function P in (6.68)
realizing the equidistribution of the monitor function w(x) should have the form

P =
( dξ
dx

)2 dw

dξ

/
w , (6.70)

since, with this expression for P , the one-dimensional inverted Poisson equation
(6.68) is transformed into the equation

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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w
d

dξ

(
w
dx

dξ

)
= 0 ,

which is equivalent to Eq. (6.69).
The simplest approach to the specification of the control functions Pi in (6.67)

lies in the generalization of (6.70). Commonly, this is realized by substituting gi i

for (dξ/dx)2 and ∂w/∂ξi for dw/dξ, by the following representation of the control
functions Pi , for example:

Pi = gi i ∂w

∂ξi

/
w , for i fixed . (6.71)

A more general form also suggests

Pi =
∑

j

gi j ∂wi

∂ξ j

/
wi , for i fixed . (6.72)

The functions w, wi in (6.71) and (6.72) are defined in terms of the components
of the solution of the physical problem and their derivatives. Thus, in problems of
the motion of a liquid in a reservoir, w is defined in terms of the depth function H :

w = 1 + H .

In gas-dynamics investigations, Pi and w are defined through a number of salient
physical quantities. For flows with shock waves, use is made of the gas density,
the Mach number, and the internal energy and pressure, while in boundary-layer
calculations, the velocity or vorticity is used to formulate the control functions Pi .

For instance, in supersonic compressible flows, the pressure p is commonly identified
as such a quantity, since shock waves are detected by its rapid variation. To study
these flows on a grid controlled by source terms Pi determined through (6.71), the
weight function w is usually specified by the equation

w = 1+ ‖ ∇ p ‖ .

Another example of the specification of the control functions Pi applied to the study
of two-dimensional flows can be presented through the density ρ:

P1 = g11
( ∂w

∂ξ1
− c1

∂w

∂ξ2

)
w−1 ,

P2 = g22
(
−c2

∂w

∂ξ1
+ ∂w

∂ξ2

)
w−1 ,

w = 1 + f (ρ) .
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6.2.3 Other Elliptic Equations

Elliptic equations of the form

n∑
i, j=1

gi j ∂

∂ξi

(
bi j

∂xα

∂ξ j

)
= 0 , α = 1, 2, . . . , n , (6.73)

in which adaptation is carried out by choosing the coefficients bi j , defined as a rule
in terms of the gradients of the solution, are also used. Thus, in calculations of
two-dimensional gas flows, adaptive grids are constructed using (6.73) with

b11 = f1 , b22 = f2 , b12 = b21 = √
f1 f2 ,

fi = fi (p, g11, g22) , i = 1, 2 .

The simplest form of (6.73) is obtained for

gi j = �i
j , bi j = f (ρ)� j

i ,

resulting in
∂

∂ξi

(
f (ρ)

∂x
∂ξi

)
= 0 , i = 1, . . . , n .

6.3 Biharmonic Equations

The main drawback of a grid generation method based on a second-order elliptic
differential equation is the limitation in controlling the boundary grid distribution
and the direction of the coordinate lines emanating from the boundary. This results
in considerable numerical difficulties in the solution of problems involving boundary
conditions in the normal direction, for example, problems of heat transfer and invis-
cid aerodynamics. Thus, the technique described above, which utilizes the forcing
terms of the Poisson system to control the directions of the grid lines, is not always
acceptable.

A more reliable approach to this problem is the use of differential equations
of increased order, in particular, biharmonic equations. A system of biharmonic
equations provides an efficient opportunity to simultaneously satisfy both Dirichlet
and Neumann conditions on the boundaries. This provides the flexibility necessary
to smoothly patch together the subgrids and control the locations of grid points.
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6.3.1 Formulation of the Approach

As for the elliptic system of second order, the most acceptable system of biharmonic
equations for producing suitable grids is formulated in terms of the coordinates xi

of the physical domain, used as independent variables, through a composition of
Laplace operators:

∇2(∇2ξi ) = 0 , i = 1, . . . , n . (6.74)

This system is extended to the mixed-boundary-value problem by imposing the
boundary conditions

ξi (x) = f i (x) ,
∂ξi

∂n
(x) = 0 , x ∈ ∂Xn . (6.75)

The derivative ∂/∂n is taken in the outward normal direction on the boundary of Xn.

Applying the coupled approach, the problem of (6.74) and (6.75) yields the system

∇2ξi = pi ,

∇2 pi = 0 , i = 1, . . . , n, (6.76)

and the boundary conditions for ξi and pi

ξ(x) = f (x) , x ∈ ∂Xn ,

p(x) = ∇2ξ(x) − c
∂ξ

∂n
(x) , x ∈ ∂Xn , (6.77)

where c is an arbitrary nonzero constant, and

f = ( f 1, . . . , f n) , p = (p1, . . . , pn) .

6.3.2 Transformed Equations

In the computational domainΞ n with the dependent and independent variables inter-
changed, the original equations (6.76) become

gi j xξi ξ j + pi xξi = 0 ,

gi j pξi ξ j = 0 , i, j = 1, . . . , n . (6.78)

The boundary conditions for (6.78) are, in accordance with (6.77) and (6.32),
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x
∣∣∣
∂Ξ n

= f −1(ξ) ,

pk
∣∣∣
∂Ξ n

= gi jΓ k
i j − c

∂ξk

∂n
, i, j, k = 1, . . . , n . (6.79)

6.4 Orthogonal Systems

A system of equations suitable for generating orthogonal grids is commonly obtained
in two ways. In the first approach, the system is derived from the following equations
representing the condition of orthogonality:

gi j ≡ xξi · xξ j = 0 , i 	= j .

The second approach is based on any differential identity which can be derived for
a suitable system by eliminating the terms gi j , i 	= j.

6.4.1 Derivation from the Condition of Orthogonality

One example of a differential system, considered by Haussling and Coleman (1981)
to generate two-dimensional orthogonal and nearly orthogonal grids, is

∂

∂ξ1
g12 = 0 ,

∂

∂ξ2
g12 = 0 . (6.80)

The constant solution g12 = const to (6.80) exists only if it is consistent with the
boundarydata.Only at the corners of the computational regionΞ 2 cang12 be specified
in advance. Thus, the system (6.80) is suitable for obtaining an orthogonal grid when
the region X2 has right angles at the corners. Now we change to the customary
notations x, y for x1, x2 and ξ, η for ξ1, ξ2.

Expanding (6.80) yields

xξxξη + xξξxη + yξ yξη + yξξ yη = 0 , (6.81)

xξxηη + xξηxη + yξ yηη + yξη yη = 0 . (6.82)

To compute the transformation r(ξ, η) : Ξ 2 → X2, r = (x, y), these equations are
combined as follows. The product of (6.81) and xη is added to the product of (6.82)
and xξ, giving
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(xη)
2xξξ + (xξ)

2xηη + 2xξxηxξη + xη yη yξξ + xξ yξ yηη

+(xη yξ + xξ yη)yξη = 0 . (6.83)

The product of (6.81) and yη is added to the product of (6.82) and yξ , yielding

(yη)
2yξξ + (yξ)

2yηη + 2yξ yη yξη + xη yηxξξ + xξ yξxηη

+(xη yξ + xξ yη)xξη = 0 . (6.84)

The systems (6.83) and (6.84) are approximated by central differences and the result-
ing algebraic systems are solved iteratively using successive overrelaxation. The
reason for replacing (6.81) and (6.82) with (6.83) and (6.84) is to obtain a nonzero
coefficient for xi j and yi j in the finite-difference forms of (6.84) and (6.84). This
eliminates the possibility of dividing by zero in the iteration process.

6.4.2 Multidimensional Equations

Amultidimensional differential system for generating orthogonal and nearly orthog-
onal grids is usually obtained by the second approach, using some differential identi-
ties and then eliminating the terms gi j , i 	= j.One example gives the identity (2.48),

∂

∂ξ j

(
J

∂ξ j

∂xk

)
≡ 0 , j, k = 1, . . . , n .

In accordance with (2.24),

∂ξ j

∂xk
= gi j ∂xk

∂ξi
, i, j, k = 1, . . . , n .

Using this relation in the above equation, another form of the identity is obtained:

∂

∂ξ j

(
Jgi j ∂xk

∂ξi

)
≡ 0 , i, j, k = 1, . . . , n , (6.85)

which also follows from the Beltrami equations

∂2xk

∂x j∂x j
≡ 1

J

∂

∂ξ j

(
Jgi j ∂xk

∂ξi

)
≡ 0 , i, j, k = 1, . . . , n . (6.86)

Substituting the condition of orthogonality

gi j = 0 , i 	= j , i, j = 1, . . . , n,

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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in the Eq. (6.85) for gi j , i 	= j , we obtain the system of elliptic equations required
to generate orthogonal coordinates:

∂

∂ξ j

(
Jg j j ∂xk

∂ξ j

)
= 0 , j, k = 1, . . . , n , (6.87)

where

J =
√√√√

n∏
i=1

gi i ,

g j j = 1/g j j , for each fixed j = 1, . . . , n .

In two dimensions, using the common notations x, y for the dependent variables
and ξ, η for the independent variables, the system (6.87) is expressed as

∂

∂ξ

(
F

∂x

∂ξ

)
+ ∂

∂η

( 1

F

∂x

∂η

)
= 0 ,

∂

∂ξ

(
F

∂y

∂ξ

)
+ ∂

∂η

( 1

F

∂y

∂η

)
= 0 , (6.88)

with F = √
g22/g11.

Analogously, for the three-dimensional system, we obtain, from (6.87),

∂

∂ξi

(
Fi

∂x
∂ξi

)
= 0 , i = 1, 2, 3 , (6.89)

where
Fi = gkkgll/gi i , (i, k, l) cyclic and fixed ,

i.e.
F1 = √

g22g33/g11 ,

F2 = √
g33g11/g22 ,

F3 = √
g11g22/g33 .

6.5 Hyperbolic and Parabolic Systems

Hyperbolic and parabolic methods of grid generation imply the numerical solution of
hyperbolic and parabolic differential equations, respectively. Both types of system
of equations are solved by marching in the direction of one selected curvilinear
coordinate. These procedures are much faster than an elliptic scheme, producing a
grid in an order of magnitude less computational time.

Hyperbolic grid generation relies on the numerical solution of hyperbolic sys-
tems of equations. The hyperbolic equations allow one to use a marching numerical
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solution without any iteration or initial guess, which makes their use very simple and
inexpensive.

Hyperbolic methods are efficient for generating grids in domains around bodies.
The solution marches from the inner boundary toward the outer field, generating
loops of grids one by one, so the computational time is almost equal to that of one
iteration of solving elliptic grid generation equations by an iterative scheme. So, the
computational time required to generate the grid by the marching algorithm is only
a very small fraction of that for the elliptic grid generation equations, and the fast-
memory space required during grid generation can be substantially reduced from that
required by the elliptic grid generation method. Furthermore, hyperbolic equations
are very suitable for providing grid orthogonality and grid node clustering.

However, hyperbolic grid systems also have their inherent undesirable properties:

(1) since the hyperbolic methods are essentially a marching procedure, the specifi-
cation of the entire boundary is not allowed, and therefore the methods are not
appropriate for the computation of internal and closed systems;

(2) the techniques propagate singularities of the boundary into the interior of the
domain;

(3) grid oscillation or even overlapping of grid lines is often encountered in hyper-
bolic grid generation unless artificial damping terms for stability are appropri-
ately added to the equations.

There are two major approaches in formulating hyperbolic systems. In the first
approach, the Jacobian of the transformation is specified. The second imposes a
specification of the cell aspect ratio.

Parabolic methods possess some of the advantages of both elliptic and hyper-
bolic techniques. The advantages of using parabolic partial differential equations to
generate structured grids are as follows:

(1) parabolic equations allow for formulating initial-value problems, so grids are
generated through a marching algorithm, as in the hyperbolic grid generation
method;

(2) the parabolic equations have most of the properties of the elliptic equations, in
particular, the diffusion effect which smooths out any singularity of the inner
boundary condition, and prescribed outer boundary conditions may be satisfied.

6.5.1 Specification of Aspect Ratio

The condition of orthogonality gi j = xξ1 · xξ2 = 0 alone is not sufficient for obtain-
ing the coordinate transformation x(ξ) : Ξ 2 → X2.Two equations are needed, since
both the x1 and x2 coordinates of the transformed grid points are to be found.

Initial-Value Problems

Here, a method presented by Starius (1977) for determining orthogonal grids, based
on nonlinear hyperbolic initial-value problems which are formally related to the
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Cauchy–Riemann equations, is considered. For convenience, the ordinary notations
x, y for x1, x2 and ξ, η for ξ1, ξ2 are utilized in this subsubsection.

The orthogonality requirement g12 = 0 yields the initial-value problem

xη = −yξ F , x(ξ, 0) = x(ξ) ,

yη = xξ F , y(ξ, 0) = y(ξ) , (6.90)

where F is a positive function which is selected by meeting the following set of
requirements:

(1) F = F(ξ, η, x, y, xξ, yξ, xη, yη);
(2) a condition of invariance;
(3) a condition on the hyperbolic type of the system (6.90);
(4) geometrical conditions depending on the region X2;
(5) sufficient conditions for well-posedness of the nonlinear hyperbolic initial-value

problems.

The invariance conditions are simply invariance under transitions and rotations.
Let (x, y) be a solution to the equations (6.90); then, (x, y), defined by either

(
x
y

)
=

(
x
y

)
+

(
a
b

)

or (
x
y

)
= Q

(
x
y

)

where

Q =
(
cos θ − sin θ
sin θ cos θ

)

is the matrix of rotation, and a, b, θ are arbitrary constants, is also a solution. The
first equation implies that F does not depend on (x, y), and the second implies the
following partial differential equation for F :

−yξ Fxξ
+ xξ Fyξ

− yη Fxη
+ xη Fyη

= 0.

The solution to this equation is given by

F = F(ξ, η, g11, g22, g12).

This is, in fact, the general solution. The last argument of this function F is zero
because of the orthogonality requirement. Furthermore, by squaring (6.90) and
adding, we find that g22 is connected with g11 by the relation

g22 = F2g11,
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i.e. F is the aspect ratio. Therefore, only positive functions F depending on
ξ, η and g11 have to be considered, i.e.

F = F(ξ, η, z) , z = √
g11.

The quantity z has an evident geometrical interpretation, namely, it is the length
of the tangential vector xξ.

In order for the initial-value problem (6.90) to be well-posed , it is necessary that
the system be hyperbolic. The type of the system (6.90) is defined by the eigenvalues
of the matrix

M =

⎛
⎜⎜⎝

− xξ yξ

z
Fz −F − y2ξ

z
Fz

F + x2
ξ

z
Fz

xξ yξ

z
Fz

⎞
⎟⎟⎠

obtained through the linearization of the system (6.90). The system is hyperbolic if
the matrix M has real eigenvalues. The characteristic equation for M is given by

λ2 = −F(F + zFz) = − f fz

z
,

where
f = Fz.

Thus, fz < 0 if F > 0, and so the function f = zF is strictly decreasing in z. The
inequality fz < 0 implies that M has distinct real eigenvalues. For fz = 0, we have
a multiple real eigenvalue but only one eigenvector.

Before a specific f can be chosen, the quantity z must be normalized in some
sense. Let ξ be the arc length of ∂X2; then, z = 1 there. This means an equidistant
grid spacing on the boundary η = η0. A graded grid in the tangential direction is
obtained with a suitable choice of the function ξ(t). Grading in the other direction
can be achieved in the same way, which implies that f contains a factor depending
on the direction of η. When different gradings in η are required for different values
of ξ, the factor must depend on ξ as well.

In order to specify the function f , two cases are considered:

(1) the spacing of the mesh in the η direction is about the same along the whole
boundary;

(2) the spacing is variable.

The spacing of the mesh along the η curve is expressed by

∫ η0

0

√
g22 dη =

∫ η0

0
f dη
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for all ξ. From this equation, it is seen that in the first case, f does not need to depend
explicitly on ξ, i.e. it will depend only on z.

When solving nonlinear hyperbolic problems, discontinuities and shocks gener-
ally appear in the solution or in its derivatives; f must be chosen so that this cannot
happen as long as z > 0. It was proved by Starius that a suitable f is

f (z) = A + Bz2

C + z2
, (6.91)

where A, B, and C are constants such that A > BC, and A + B = C + 1. Since
f (0) = A/C, the divergence factor in the η direction from the outer to the inner
boundary of the curvilinear mesh can never exceed this quantity.

For the second case, it was assumed by Starius that

f (ξ, z) = a(ξ) f0(ξ, z),

where a(ξ) is a periodic function in ξ such that 0 < a ≤ 1. By using this f in (6.90),
we can see that a(ξ) is a relative measure of the grid spacing in the η direction.

6.5.2 Specification of Jacobian

Orthogonal Grids in Two Dimensions

In the two-dimensional case, the hyperbolic coordinate equations obtained by spec-
ifying the Jacobian and a measure of orthogonality have the form

xξ1 · xξ2 = 0 ,

|xξ1 × xξ2 | = J ,
(6.92)

that is,

∂x1

∂ξ1
∂x1

∂ξ2
+ ∂x2

∂ξ1
∂x2

∂ξ2
= 0 ,

∂x1

∂ξ1
∂x2

∂ξ2
− ∂x1

∂ξ2
∂x2

∂ξ1
= J , (6.93)

where J is a specified area source term. These equations form a system of nonlinear
partial differential equations whose solution is based upon solving the system

Axξ1 + Bxξ2 = f , (6.94)

where



240 6 Grid Generation Through Differential Systems

A =

⎛
⎜⎜⎜⎝

1√
g011g

0
22

∂x1
0

∂ξ2
− 1

g011

∂x1
0

∂ξ1
1√

g011g
0
22

∂x2
0

∂ξ2
− 1

g011

∂x2
0

∂ξ1

∂x2
0

∂ξ2
−∂x1

0

∂ξ2

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎝

1√
g011g

0
22

∂x1
0

∂ξ1
− 1

g022

∂x1
0

∂ξ2
1√

g011g
0
22

∂x2
0

∂ξ1
− 1

g022

∂x2
0

∂ξ2

−∂x2
0

∂ξ1
∂x1

0

∂ξ1

⎞
⎟⎟⎟⎠ ,

x = (x1, x2)
T , f = (0, J + J0)

T .

Equation (6.94) represents the linearization of (6.93) about the state x0. Taking ξ2

as a marching direction, we obtain, from (6.94),

xξ2 + B−1 Axξ1 = B−1 f . (6.95)

For the eigenvalues λ1, λ2 of the two-dimensional metric B−1A, we have

λ1λ2 = det(B−1A),

λ1 + λ2 = tr(B−1A).

As
det(B−1A) = F = |xξ2 |/|xξ1 | = √

g22/g11,
tr(B−1A) = 0,

we obtain λ1 = F, λ2 = −F. Hence, the system (6.95) is hyperbolic and the local
solution consists of one left- and one right-running wave. Equation (6.95) is typically
modified by adding an artificial term εxξ1ξ1 to stabilize the numerical scheme:

xξ2 + B−1Axξ1 + εxξ1ξ1 = B−1 f . (6.96)

Two-Dimensional Nonorthogonal Grids

A more general hyperbolic system which does not include any constraints on the
angle θ between the tangential vectors xξ1 and xξ2 is obtained from the identities

g12 = √
g11g22 cos θ ,√

g11g22 sin θ = J , (6.97)

where θ and J can be user-specified. Choosing the ξ2 direction to be the marching
direction and solving the system (6.96) for ∂x1/∂ξ2, ∂x2/∂ξ2, we obtain
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∂x1

∂ξ2
=

√
g22

g11

(∂x1

∂ξ1
cos θ − ∂x2

∂ξ1
sin θ

)
,

∂x2

∂ξ2
=

√
g22

g11

(∂x2

∂ξ1
cos θ + ∂x1

∂ξ1
sin θ

)
. (6.98)

The linearization of these equations produces the system (6.94) with

A =

⎛
⎜⎜⎜⎝

1√
g011g

0
22

∂x1
0

∂ξ2
− 1

g011
cos θ

∂x1
0

∂ξ1
1√

g011g
0
22

∂x2
0

∂ξ2
− 1

g011
cos θ0

∂x2
0

∂ξ1

∂x2
0

∂ξ2
−∂x1

0

∂ξ2

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎝

1√
g011g

0
22

∂x1
0

∂ξ1
− 1

g022
cos θ

∂x1
0

∂ξ2
1√

g011g
0
22

∂x2
0

∂ξ1
− 1

g022
cos θ0

∂x2
0

∂ξ2

−∂x2
0

∂ξ1
∂x1

0

∂ξ1

⎞
⎟⎟⎟⎠ ,

f = (cos θ + cos θ0, J + J0)
T .

The matrix B−1 exists when sin θ 	= 0, and

λ = ±
√

g22

g11
.

Hence, the system (6.98) in this case is also hyperbolic.
The introduction of the angle θ into the system (6.98) allowsone to solve the initial-

value problem, i.e. to specify grid data on the initial boundary ξ2 = 0 and the side
boundaries ξ1 = 0, ξ1 = 1. For (6.98), the boundary curves ξ2 → x(ξ10, ξ

2), ξ10 = 0
or ξ10 = 1, need not intersect the initial curve ξ2 = 0 orthogonally, and so the initial-
value problem is typically ill-posed. Equation (6.98), however, give an opportunity
to choose the angle terms near the boundary so that a consistent problem results.

Three-Dimensional Version

The three-dimensional hyperbolic grid generation approach, where the marching
direction is, say, ξ3, is based on two orthogonality relations and an additional equation
to control the Jacobian as follows:
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xξ1 · xξ3 = 0 ,

xξ2 · xξ3 = 0 ,

det
{∂xi

∂ξ j

}
= J , i, j = 1, 2, 3 . (6.99)

The local linearization of the system (6.99) with respect to (x − x0), where x0(ξ)
is a known state, neglecting products of small quantities that are second order in
(x − x0), yields

A0(x − x0)ξ1 + B0(x − x0)ξ2 + C0(x − x0)ξ3 = f , (6.100)

where x = (x1, x2, x3)T , x0 = (x1
0 , x2

0 , x3
0)

T , A0, B0, and C0 are coefficient matri-
ces that are evaluated from x0(ξ), and the subscripts si , i = 1, 2, 3, denote partial
derivatives.

6.5.3 Parabolic Equations

The parabolic grid approach lies between the elliptic and hyperbolic ones.
The two-dimensional parabolic grid generation equation where the marching

direction is ξ2 may be written in the following form:

xξ2 = A1xξ1ξ1 − B1x + S, (6.101)

where A1, B1, and B are matrix coefficients, and S is a source vector that contains
the information about the outer boundary configuration. Analogously, the three-
dimensional parabolic equations may be written as follows:

xξ3 = Ai xξi ξi − B1x + S , i = 1, 2 . (6.102)

6.5.4 Hybrid Grid Generation Scheme

The combination of the hyperbolic and parabolic schemes into a single scheme is
attractive because it can use the advantages of both schemes. These advantages are:
first, it is a noniterative scheme; second, the orthogonality of the grid near the initial
boundary is well controlled; and third, the outer boundary can be prescribed.

A hybrid grid generation scheme in two dimensions for the particular marching
direction ξ2 can be derived by combining (6.95) and (6.101), in particular, as the sum
of Eqs. (6.95) and (6.100) multiplied by weights α and 1 − α, respectively:
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α(B−1 Axξ1 + xξ2) + (1 − α)(xξ2 − A1xξ1ξ1 + B1x)

= αB−1 f + (1 − α)S . (6.103)

The parameter α can be changed as desired to control the proportions of the two
methods. Ifα approaches 1, (6.103) becomes the hyperbolic grid generation equation,
while if α approaches zero, it becomes the parabolic grid generation equation. In
practical applications, α is set to 1, when the grid generation starts from the initial
boundary curve ξ2 = 0, but it gradually decreases and approaches zero when the grid
reaches the outer boundary.

An analogous combination of (6.100) and (6.102) can be used to generate three-
dimensional grids through a hybrid of parabolic and hyperbolic equations.

6.6 Grid Equations for Nonstationary Problems

In the finite-difference techniques developed for the numerical solution of nonstation-
ary problems, the time variable t must be discretized in order to provide computation
of all physical variables at each time slice tn. As the physical solution is dependent
on the variable t , it is reasonable to adjust the grid to the solution to follow the
trajectories of severe variations in the physical quantities. The goal is to compute
as accurately as desired all physical quantities of interest at each grid location in
space and time. As a result, the placement of the grid points obtained with such an
adjustment depends on the time t. The motion of the grid points is demonstrated in
the transformed equations by the grid velocity xt appearing in the transformed time
derivative. In the process of numerical solution, the grid speed is either found using
the differences of the values of the function x(ξ, t) on the (n + 1)th and nth layers
or specified in advance.

This section reviews some techniques aimed at the generation of nonstationary
grids for time-dependent partial differential equations which, in addition to spatial
derivatives, also contain derivatives with respect to the time variable t. An example
is the following form:

∂u
∂t

= L(u, x, t) , x ∈ Xn , t > 0 , (6.104)

where L is a differential operator involving spatial derivatives.
The accuracy of the numerical solution of time-dependent partial differential

equations is significantly dependent on the time-step size as well as the spatial mesh
size. However, high resolution in local regions of large solution variations allows
larger time steps to be taken.

There are two basic approaches to solving nonstationary problems: the method
of lines and the methods of moving grids.
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6.6.1 Method of Lines

The idea of the method of lines consists in converting nonstationary equations into a
system of ordinary differential equations with time as the independent variable. This
is carried out by first approximating only the space derivatives on a specified space
grid chosen a priori. This operation yields a system of ordinary differential equations
with respect to the independent variable t. The system obtained is then approximated
on a one-dimensional grid, generally nonuniform, discretizing the variable t. In this
approach, the spatial grid is fixed, and therefore it is applicable only to the numerical
solution of problems with stationary solution singularities. However, many solutions
to time-dependent problems have large variationswhich changewith time.Moreover,
the solutions may have narrow layers of rapid change with respect to both space and
time, for example, a solution of the simple running-wave form

u(x, t) = f (x − ct) ,

where f (y) is a scalar function, of boundary or interior-layer type.

6.6.2 Moving-Grid Techniques

There are two major approaches to controlling the movement of the points of the
numerical grid with time. With the first, stationary grids are constructed through the
samemethodon each time layer but the grid pointsmoveover timebecause of changes
either of the control functions in the equation or of the boundary conditions for the
coordinate transformations applying on the boundary of the computation region Ξ n.

With the second, an equation for the velocity xt (ξ, t) of grid point movement is
determined and the boundary value problem is then solved for these equations.

Specification of Spatial Grid Distribution

The simplest way to generate grids for nonstationary problems is to use the equidis-
tribution approach with a time-dependent weight function w(x, t), for instance, in
the form

∫ xi+1

xi

w(x, t)dx = c(t) = 1

N

∫ b

a
w(x, t)dx , i = 0, . . . , N − 1 .

This form can be readily reformulated as a boundary value problem of the type
(6.69). In particular, in the case of one-dimensional nonstationary problems, it may
be realized by the replacement of the variables x, t by new variables ξ, t,where ξ is
an arc-length-like coordinate, i.e. the result is the equidistant mesh. The advantage of
this procedure is that in the variables ξ, t , the solution u(ξ, t) cannot develop large
spatial gradients ∂u/∂ξ.
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Grid Movement Induced by Boundary Movement

Equations of the type (6.15) in which the control functions Pi depend on t are often
used at each time step of the solution of gas-dynamics problems, the movement of
grid nodes on the boundary of the region being determined by the motion of the
medium; in particular, the velocity of the grid and the velocity of the medium are
the same on the boundary. The movement of interior points in this approach depends
solely upon the boundarymotion. The boundaries of the regionsmay be shockwaves,
interior boundaries which separate the different regions of flow, or free surfaces.

Algebraic methods of constructing moving grids by interpolation from a moving
boundary can also be considered in the same fashion.

Specification of Grid Speed

In multidimensional nonstationary problems, it is often necessary to generate adap-
tive grids which are adjusted to a moving solution of a problem. As a result, the grid
distribution is also nonstationary, that is, the derivative xt (ξ, t), which represents
the speed of the grid movement , is nonzero in the general case. The expression
xt (ξ, t) appears in the equations for nonstationary physical problems rewritten in
the independent variables ξ, t.

This subsubsection delineates some typical approaches for formulating grid equa-
tions by specification of the velocity of grid point movement to treat nonstationary
problems. In our considerations, we discuss a simplified form of the transformation
x(ξ, τ ), assuming t = τ . In this case, the first temporal derivatives ∂/∂t and ∂/∂τ
are subject to the relation

∂

∂τ
= ∂

∂t
+ ∂

∂xi

∂xi

∂τ
.

Thus, assuming the identification t = τ , (7.44) is transformed into

∂u
∂t

= − ∂u
∂xi

∂xi

∂t
+ L[u, x(ξ, t), t] , ξ ∈ Ξ n , t > 0 , (6.105)

with u = u[x(ξ, t), t].
The simplest way to obtain grid equations which include the speed of grid move-

ment is to add the term xt (ξ, t) to the equations developed for the generation of fixed
grids, in particular, to the inverted Poisson equations (6.16).

The equations for the grid node velocities xt (ξ, t) can be determined, for example,
from the conditions for minimizing functionals of measure of the deviation from
Lagrangian properties. These functionals will be discussed in Chap.7.

It is often proposed to solve nonstationary problems by determining equations
for xt (ξ, t) from the condition that the solution to the physical problem in the new
variables (ξ, t) is stationary. Also, the grid velocity can be formulated on the basis of
providing conditions of stability in the difference scheme in nonstationary problems.

http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
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In one more approach, for the equations for multidimensional problems of the
mechanics of a continuous medium, the equations for the grid velocities are deter-
mined from the condition that the convective terms are either a minimum or zero.
For example, if the operator L(u, x, t) in (6.104) has the form

L(u, x, t) = ai ∂u
∂xi

+ L1(u, x, t) , i = 1, . . . , n ,

where L1 is an operator without first derivatives, then (6.105) in the new coordinates
t, ξ1, . . . , ξn determined by the transformation x(ξ, t) is expressed as follows:

∂u
∂t

=
(

ai − ∂xi

∂t

)
+ L1[u, x(ξ, t), t] , i = 1, . . . , n . (6.106)

Thus, the condition for zero convective terms in (6.106) gives the following equations
for the components of the grid velocity xt (ξ, t) :

∂xi

∂t
= ai , i = 1, . . . , n .

In such away, for example, the Lagrangian coordinates are generated, so the approach
aimed at the elimination of convective terms in the transformed equations by non-
stationary coordinate mappings is referred to as the Lagrangian method.

The invertedPoisson equations (6.16), formally differentiatedwith respect to t, are
also used to obtain equations for xt (ξ, t).Also, differentation with respect to time of
the equations modeling the equidistribution principle gives differential equations for
the grid node velocity. This operation provides the necessary grid velocity equations,
which are then integrated to obtain the grid motion as a function of time.

6.6.3 Time-Dependent Deformation Method

The deformation method for generating multidimensional structured grids in an
n-dimensional domain Xn coinciding with the computational domain Ξ n can be
extended to produce time-dependent grids with nonstationary weight functions. This
subsection describes such an extension, using for this purpose weight functions
w(x, t) > 0 that satisfy the following normalization properties:

∫

Ξ n

( 1

w
− 1

)
dξ = 0 , (6.107)

andw(x, t0) = 1 for all x ∈ Ξ n. The nonstationary transformation x(ξ, t) satisfying
the equidistribution condition is found from the following initial-value problem for
ordinary differential equations, formulated for each fixed point ξ in Ξ n :
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∂

∂t
x(ξ, t) = v[x(ξ, t), t]w[x(ξ, t), t] , t > t0 ,

x(ξ, t0) = ξ , t = t0 , (6.108)

where the vector field v(x, t) is computed from the following system:

divxv(x, t) = − ∂

∂t

( 1

w(x, t)

)
in Ξ n ,

curl v(x, t) = 0 in Ξ n ,

v · n = 0 on ∂Ξ n . (6.109)

We consider the derivative with respect to t of the function

H(ξ, t) = Jw[x(ξ, t), t] ,

where J = det(∂xi/∂ξ j ). Since the relation (2.88) is valid for the transformation
x(ξ, t), we obtain

∂H

∂t
= J

(
w divx

∂x
∂t

+ ∂w

∂xi

∂xi

∂t
+ ∂w

∂t

)
.

Application of (6.107) and (6.108) to this equation yields

∂H

∂t
= J

[
w divx

( v

w

)
+ ∂w

∂xi

vi

w
+ ∂w

∂t

]

= J
(
−∂w

∂t
− vi

w

∂w

∂xi
+ ∂w

∂xi

vi

w
+ ∂w

∂t

)
= 0 .

Since H(ξ, t0) = 1, we obtain

H(ξ, t) = Jw[x(ξ, t), t] = 1 ,

i.e. the multidimensional equidistribution principle is obeyed by the transformation
x(ξ, t).

6.7 Comments

A two-dimensional Laplace system (6.4) which implied the physical coordinates to
be solutions in the logical domain Ξ 2 was introduced by Godunov and Prokopov
(1967), Barfield (1970), and Amsden and Hirt (1973). A general two-dimensional
elliptic system of the type (6.2) for generating structured grids was considered by
Chu (1971).

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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A two-dimensional Laplace system (6.5) using the logical coordinates ξi as depen-
dent variables was proposed by Crowley (1962) and Winslow (1967). The technique
presented in this chapter to analyzing the qualitative behavior near boundary seg-
ments of the coordinate lines obtained through the inverted Laplace equations was
introduced by the author of this book. A rather geometric approach was described for
this purpose in the monograph by Thompson et al. (1985). A more detailed analysis
of grid behavior near the boundary of both surfaces and two- and three-dimensional
domains was performed by Liseikin (2004, 2007).

Godunov and Prokopov (1972) obtained a system of the Poisson type (6.15)
assuming that its solution is a composition of conformal and stretching transforma-
tions. The general Poisson system presented in the current book was justified by
Thompson et al. (1974) and Thompson et al. (1985) in their monograph.

The algorithm aimed at grid clustering at a boundary and forcing grid lines to
intersect the boundary in a nearly normal fashion through the source terms of the
Poisson system was developed by Steger and Sorenson (1979), Visbal and Knight
(1982), and White (1990). Thomas and Middlecoff (1980) described a procedure
for controlling the local angle of intersection between transverse grid lines and the
boundary through the specification of the control functions. Control of grid spacing
and orthogonality was performed by Tamamidis and Assanis (1991) by introducing
a distortion function (the ratio of the diagonal metric elements) into the system
of Poisson equations. Warsi (1982) replaced the source terms Pi in (6.15) by gi i Pi

(i fixed) to improve the numerical behavior of the generator. As a result, the modified
system acquired the property of satisfying the maximum principle.

The technique based on setting to zero the off-diagonal elements of the elliptic
system was proposed by Lin and Shaw (1991) to generate nearly orthogonal grids,
while Soni et al. (1993) used a specification of the control functions for this purpose.

A composition of Poisson’s and Laplace’s equations in the computational domain
to derive biharmonic equations of fourth order was used to generate smooth block-
structured grids via the specification of grid line slopes and boundary point distrib-
utions by Bell et al. (1982). Schwarz (1986) used for this purpose equations of sixth
order, which were composed of Poisson and Laplace systems with respect to the
dependent physical coordinates xi . An alternative method, based on the solution of
biharmonic equations in the physical domain, was introduced by Sparis (1985). A
recent implementation of the biharmonic equations to provide boundary orthogonal-
ity and off-boundary spacing as boundary conditions was presented by Sparis and
Karkanis (1992).

A combination of elliptic and algebraic techniques was applied by Spekreijse
(1995) to generate two- and three-dimensional grids. An approach to formulating
an orthogonal system by differentiating nondiagonal metric elements was developed
by Haussling and Coleman (1981). Ryskin and Leal (1983), in two dimensions, and
Theodoropoulos and Bergeles (1989) in three dimensions, have developed elliptic
methods for nearly orthogonal grid generation.

The first systematic analysis of the use of two-dimensional hyperbolic equa-
tions to generate orthogonal grids was made by Starius (1977) and Steger and
Chaussee (1980), although hyperbolic grid generation can be traced back toMcNally
(1972). This system was generalized by Cordova and Barth (1988). They developed
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a two-dimensional hyperbolic systemwith an angle-control source termwhich allows
one to constrain a grid with more than one boundary. A combination of grids using
the hyperbolic technique of Steger and Chaussee (1980), which starts from each
boundary segment, was generated by Jeng and Shu (1995). The extension to three
dimensions was performed by Steger and Rizk (1985), Chan and Steger (1992), and
Tai et al. (1996), who introduced grid smoothing as well.

The generation of grids based on a parabolic scheme approximating the inverted
Poisson equationswas first proposed for two-dimensional grids byNakamura (1982).
A variation of Nakamura’s method was developed by Noack (1985) to use in space-
marching solutions to the Euler equations. Extensions of this parabolic technique for
generating solution adaptive grids were performed by Edwards (1985) and Noack
and Anderson (1990).

A combination of hyperbolic and parabolic schemes that uses the advantages of
the two but eliminates the drawbacks of each was proposed by Nakamura and Suzuki
(1987).

The idea of defining the control functions of the Poisson system through weight
functions was formulated by Anderson (1983, 1987) and extended by Eiseman
(1987). Some versions of the specification of the control functions through sums of
derivatives of physical quantities and quality measures of the domain geometry were
presented by Dannenhoffer (1990), Kim and Thompson (1990), Tu and Thompson
(1991), Soni (1991), and Hall and Zingg (1995), while Hodge et al. (1987) applied
analytical expressions for this purpose.

A deformation method for generating multidimensional unfolded grids has been
developed by Liao and Anderson (1992) and Semper and Liao (1995) on the basis
of a deformation scheme originally introduced by Moser (1965). This deformation
method was improved and applied to practical problems by Wan and Turek (2006,
2007), Chu et al. (2008), and Liao et al. (2008).

A large number of important moving-grid methods for the numerical solution of
unsteady equations can be found in the survey by Hawken et al. (1991) and in the
monograph by Zegeling (1993).

The movement of the nonstationary grid considered by Godunov and Prokopov
(1972) was caused by the boundary point speeds, while in the interior of the domain,
the grid nodes were found by solving the inverted Poisson system. Hindman et al.
(1981) formulated the gridmotion in time by taking the time derivative of the inverted
Poisson equations.

One more approach involving grid speed equations, but based on time differ-
entiation of a more complicated set of Euler–Lagrange equations derived from the
minimization of a Brackbill–Saltzman-type functional, was presented by Slater et al.
(1995).

A strategy for automatic time step selection based on equidistributing the local
truncation error in both the time and the space discretization was proposed by Chen
et al. (1993).

White (1979) suggested a technique for numerically integrating systems of time-
dependent first-order partial differential equations in one space variable x . His
technique replaces the variables x, t with the new variables s, t, where s is an
arc-length-like coordinate.
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Some questions arising from coupling upwinding schemes with moving equidis-
tributed meshes were discussed by Li and Petzold (1997). The stability problems
related to an equidistributed mesh of the systems of differential equations for the
grid velocities were studied by Coyle et al. (1986).

One approach to generating one-dimensional time-dependent grids was proposed
by Dar’in et al. (1988) with the help of the system of evolutionary equations

∂x(ξ, t)

∂ξ
= Ψ ,

∂Ψ

∂t
= −∂P

∂ξ
.

In order to concentrate the grid nodes in the high-gradient zones, various expressions
for P containing the derivatives with respect to ξ of the physical quantities were
considered. This approach was extended to the construction of two-dimensional
adaptive grids by Dar’in and Mazhukin (1989).

The method of equidistribution and minimization of the heuristically determined
error at each time step was used for calculations of nonstationary problems by Dorfi
and Drury (1987), Dwyer et al. (1980), Klopfer and McRae (1981), Miller (1983),
Wathen (1990), and White (1982).

Formal addition of the velocity function xt (ξ, t) to (6.14), to the equations
obtained from variational methods based on the minimization of grid quality func-
tionals, or to expressions for the errors determined heuristically in terms of the spatial
derivatives was analyzed by Rai and Anderson (1981), Bell et al. (1982), Harten and
Hyman (1983), and Greenberg (1985).

Various physical analogies, such as those of springs (Bell and Shubin (1983),
Rai and Anderson (1982)), chemical reactions (Greenberg (1985)) and concepts
from continuum mechanics (Jacquotte (1987), Knupp (1995)) have also been used
to construct moving adaptive grids.
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Chapter 7
Variational Methods

7.1 Introduction

The calculus of variations provides an excellent opportunity to create new tech-
niques for the generation of grids with mapping approaches by utilizing the idea of
optimization of grid characteristics modeled through appropriate functionals. The
grid characteristics include grid smoothness, departure from orthogonality or con-
formality, cell skewness, and cell volume. The minimization of a combination of
the functionals representing the desired grid features generates the equations for
those coordinate transformations which yield a grid with optimally balanced grid
quality measures. The relative contributions of the functionals are determined by the
user-prescribed weights.

The major task of the variational approach to grid generation is to describe all
basic measures of the desired grid features in an appropriate functional form and to
formulate a combined functional that provides a well-posed minimization problem.
This chapter describes some basic functionals representing the grid quality properties
and measures of grid features. These functionals can provide mathematical feedback
in an automatic grid procedure.

7.2 Calculus of Variations

The goal of the calculus of variations is to find the functions which are optimal in
terms of specified functionals. The optimal functions also are referred to as critical or
stationary points of the respective functionals. The theory of the calculus of variations
has been developed to formulate and describe the laws and relations concerned with
the critical points of functionals. One of the most important achievements of this
theory is the discovery that the optimal functions satisfy some easily formulated
equations called the Euler–Lagrange equations. Thus, the problem of computing the
optimal functions is related to the problem of the solution of these equations. This
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section presents the Euler–Lagrange equations derived through the minimization of
functionals suitable for the purpose of grid generation.

The condition of the convexity of the functionals is of paramount importance
to the well-posedness of both the minimization problem for the functionals and the
boundary value problems for the resulting Euler–Lagrange equations. Therefore, this
section also discusses questions concerned with the convexity of functionals.

7.2.1 General Formulation

Commonly, in the calculus of variations, any functional over some admissible set of
functions f : Dn → Rm is defined by the integral

I ( f ) =
∫
Dn

G( f )dV , (7.1)

where Dn is a boundedn-dimensional domain, andG( f ) is someoperator specifying,
for each vector-valued function f : Dn → Rm, a scalar function G( f ) : Dn → R.

The admissible set is composed of those functions f which satisfy a prescribed
boundary condition

f |∂Dn= φ

and for which the integral (7.1) is limited.
In the application of the calculus of variations to grid generation, this set of admis-

sible functions is a set of sufficiently smooth invertible coordinate transformations

ξ(x) : Xn → Ξ n

between the physical domain Xn and the computational domain Ξ n or, vice versa,
a set of sufficiently smooth invertible coordinate transformations from the computa-
tional domain Ξ n onto the physical region Xn :

x(ξ) : Qn → Xn .

The integral (7.1) is defined over the domain Xn or Ξ n, respectively.
In grid generation applications, the operator G is commonly chosen as a combi-

nation of weighted local grid characteristics which are to be optimized. The choice
depends, of course, on what is expected from the grid. Some forms of local grid
characteristics were formulated in Chap.3 through the coordinate transformations
and their first and second derivatives. Therefore, for the purpose of grid generation, it
can be supposed that the most widely acceptable formula for the operator G in (7.1)
is one which is derived from some expressions containing the first and second deriv-
atives of the coordinate transformations. Thus, we can assume that the functional
(7.1), depending on the coordinate transformation ξ(x), is of the form

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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I (ξ) =
∫
Xn

G(x, ξ, ξxi , ξxi x j )dx , (7.2)

where G is a smooth function of its variables

x , ξ , ξxi = ∂ξ(x)

∂xi
, and ξxi x j = ∂2ξ(x)

∂xi∂x j
.

The admissible set for this functional is a set of the invertible vector-valued func-
tions ξ(x) : Xn → Ξ n satisfying the condition of smoothness up to the fourth order,
i.e.

ξi (x) ∈ C4(Xn) , i = 1, . . . , n .

Analogously, the functional (7.1) formulated over a set of invertible coordinate
transformations x(ξ) from C4(Ξ n) has the form

I (x) =
∫

Ξ n

G(ξ, x, xξi , xξi ξ j )dξ . (7.3)

In accordance with the assumption that the admissible set of functions for the
functional (7.2) or (7.3) is composed of the corresponding invertible coordinate
transformations, we can reformulate either of these two functionals in terms of the
other through the following transition formulas:

∫
Xn

f dx =
∫

Ξ n

(J f )dξ ,

∫
Ξ n

f dξ =
∫
Xn

( f/J )dx , (7.4)

where J = det{∂xi/∂ξ j }. Thus, for the functional (7.3), we obtain

I (x) =
∫
Xn

( 1

J
G(ξ, x, xξi , xξi ξ j )

)
dx

=
∫
Xn

G1(x, ξ, ξxi , ξxi x j )dx = I1(ξ)

with an implied transition from xξi and xξi ξ j to ξxl and ξxl xk .

7.2.2 Euler–Lagrange Equations

To be definite, we consider here the variational principle for grid generation in the
form of the functional (7.2) over the set of invertible smooth coordinate transfor-
mations ξ(x) from the physical domain Xn onto the computational domain Ξ n. In
general, the functionals are formulated in the physical space Xn rather than in the
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parametric space Ξ n. This is preferred because the physical-space formulation can
be used more simply to obtain grid generation techniques that provide the necessary
grid properties.

If the transformation ξ(x) is optimal for the functional (7.2), then it satisfies a
system of Euler–Lagrange equations in the interior points of the domain Xn :

Gξi − ∂

∂x j
G ∂ξi

∂x j
+ ∂2

∂x j∂xk
G ∂2ξi

∂x j ∂xk
= 0 , i, j, k,= 1, . . . , n , (7.5)

where the subscripts ξi , ∂ξi/∂x j , and ∂2ξi/∂x j∂xk mean the corresponding partial
derivatives of G. We remind the reader that the repeated indices here and below
imply summation over them unless otherwise noted.

In many applications, the integrand G is dependent only on x, the function ξ(x),

and its first derivatives, i.e. G = G(x, ξ, ξxi ). In this case, the admissible set of
functions ξi (x) can be from the class C2(Xn), and the system of Euler–Lagrange
equations (7.5) is reduced to

Gξi − ∂

∂x j
G ∂ξi

∂x j
= 0 , i, j = 1, . . . , n . (7.6)

We give a schematic deduction of (7.6). Equation (7.5) are obtained in a similar
manner.

Let the transformation ξ(x) be a critical point of the functional (7.2) with G =
G(x, ξ, ξx j ). In order to prove that ξ(x) satisfies (7.6), we first choose a scalar
smooth function from C2(Xn)which equals zero on the boundary of the domain Xn.

Let this function be denoted by φ(x). Now, using φ(x), we define for a fixed index
i a vector-valued function ψ(x) = [ψ1(x), . . . ,ψn(x)] dependent on x as follows:

ψ j (x) = 0 , j �= i ,

ψi (x) = φ(x) , j = i ,

i.e.
ψ(x) = φ(x)ei ,

where ei is the i th basic Cartesian vector. As was assumed, the transformation ξ(x)

is critical for the functional (7.2), and therefore the following scalar smooth function

y(ε) = I (ξ + εψ) =
∫
Xn

G(x , ξ + εψ , ξxi + εψxi )dx , (7.7)

where ε is a real variable, has an extremum at the point ε = 0. This results in the
relation y′(0) = 0. In accordance with the rule of differentiation of integrals, we
obtain

y′(0) =
∫
Xn

(
φ(x)Gξi + ∂φ

∂x j
G ∂ξi

∂x j

)
dx , j = 1, . . . , n .
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Taking into account that

∂φ

∂x j
G ∂ξi

∂x j
= ∂

∂x j

(
φG ∂ξi

∂x j

)
− φ

∂

∂x j
G ∂ξi

∂x j
, j = 1, . . . , n ,

we have

y′(0) =
∫
Xn

[
φ
(
Gξi − ∂

∂x j
G ∂ξi

∂x j

)
+ ∂

∂x j

(
φG ∂ξi

∂x j

)]
dx = 0 . (7.8)

Using the divergence theorem

∫
Xn

( n∑
i=1

∂Ai

∂xi

)
dx =

∫
∂Xn

(A · n)dS , (7.9)

valid for a smooth arbitrary vector function A(x) = [A1(x), . . . , An(x)], we con-
clude that ∫

Xn

∂

∂x j

(
φG ∂ξi

∂x j

)
dx =

∫
∂Xn

φ(Gi · n)dS = 0 ,

where
Gi =

(
G ∂ξi

∂x1
, . . . ,G ∂ξi

∂xn

)
,

since the selected function φ equals zero at all points of ∂Xn. Thus, we find that the
second summation term in the integral (7.8) can be omitted, and consequently we
find that

y′(0) =
∫
Xn

φ
(
Gξi − ∂

∂x j
G ∂ξi

∂x j

)
dx = 0 (7.10)

for every smooth function φ(x) satisfying the condition proposed above, that
φ(x) = 0 if x ∈ ∂Xn. From this relation, we readily find that the optimal coor-
dinate transformation ξ(x) obeys (7.6) at every interior point of the domain Xn. If
this were not so, then there would exist an interior point x0 such that the function

f (x) =
(
Gξi − ∂

∂x j
G ∂ξi

∂x j

)
(x)

does not vanish at this point, i.e. f (x0) �= 0, say, f (x0) > 0. The function f (x) is
continuous, so there exists a positive number r > 0 such that f (x) does not change
its sign for all x satisfying |x − x0| ≤ r, i.e. f (x) > 0 at these points. Now we use
for the function φ(x) in (7.10) a nonnegative mapping which equals zero at all points
x that are outside the subdomain |x − x0| ≤ r , and φ(x0) > 0. For example, one
such function φ(x) is expressed as follows:
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φ(x) =
⎧⎨
⎩
exp

(
1

(x − x0)2 − r2

)
, |x − x0| < r

0 , |x − x0| ≥ r
.

This function is from the class C∞(Xn). In accordance with the assumed property
of f (x), we find that (7.10) is not satisfied for the function φ(x) specified above,
namely y′(0) > 0, i.e. the function ξ(x) is not critical for the functional (7.2), which
is contrary to the initial assumption about the extremum of the functional at the point
ξ(x). From this contradiction, we conclude that the optimal transformation ξ(x) is
a solution to (7.6) at every interior point of the domain Xn .

Analogously, there can be obtained a system of Euler–Lagrange equations for the
functional (7.3),

Gxi − ∂

∂ξ j
G ∂xi

∂ξ j
+ ∂2

∂ξ j∂ξk
G ∂2xi

∂ξ j ∂ξk
= 0 , i, j = 1, . . . , n , (7.11)

which is satisfied by the optimal coordinate transformation x(ξ).

7.2.3 Convexity Condition

Convexity is a very important property imposed on functionals in the calculus of
variations. In the case of the functional (7.2), it is formulated by the condition of
positiveness of the tensors Gi , i = 1, . . . , n :

Gi =
{
G ∂ξi

∂x j
∂ξi

∂xk

}
, with i fixed .

Namely, every tensor Gi , i = 1, . . . , n, must be strongly positive. Recall that a
matrix is strongly positive if every principal minor is larger then zero. In this case,
there exists a constant ci > 0 for every fixed index i = 1, . . . , n, such that

G ∂ξi

∂x j
∂ξi

∂xk
b j bk ≥ cib

lbl , j, k, l = 1, . . . , n , (7.12)

for an arbitrary vector b = (b1, . . . , bn). The inequality (7.12) means that the system
of Euler–Lagrange equations (7.6) is elliptic.

Convex functionals generate well-posed problems for their minimization and for
the solution of the Dirichlet boundary value problem for the corresponding Euler–
Lagrange equations (7.5) or (7.6). In particular, the relation (7.12) guarantees that
there exists a unique, isolated optimal transformation which satisfies the system of
Euler–Lagrange equations with Dirichlet boundary conditions.
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7.2.4 Functionals Dependent on Metric Elements

The most common interior characteristics of grid cells were defined in Chap.3 by
the elements of the metric tensors. As the covariant elements can be derived from the
contravariant ones, we can assume that the functional (7.2) representing an integral
measure of some grid feature is defined by the integrand G, depending on x and the
contravariant elements

gi j = ∇ξi · ∇ξ j = ∂ξi

∂xk
∂ξ j

∂xk
, i, j, k = 1, . . . , n ,

only, i.e.

I (ξ) =
∫
Xn

G(x, gi j )dx .

In this case, the corresponding system of the Euler–Lagrange equations (7.6) has the
following divergent form:

∂

∂x j

( ∂G

∂glk
∂glk

∂(∂ξi/∂x j )

)
= 0 , i, j, k, l = 1, . . . , n . (7.13)

As
∂glk

∂(∂ξi/∂x j )
= δil

∂ξk

∂x j
+ δik

∂ξl

∂x j
, i, j, k, l = 1, . . . , n , (7.14)

we have the result that

∂G

∂glk
∂glk

∂(∂ξi/∂x j )
=

( ∂G

∂gik
+ ∂G

∂gki

) ∂ξk

∂x j
, i, j, k, l = 1, . . . , n .

Therefore, the system of the Euler–Lagrange equations (7.13) is equivalent to

∂

∂x j

[( ∂G

∂gik
+ ∂G

∂gki

) ∂ξk

∂x j

]
= 0 , i, j, k = 1, . . . , n , (7.15)

with summation over the repeated indices j and k. Taking advantage of the identity
(2.57), the system (7.15) can be converted to

∂

∂ξ j

[
Jgk j

( ∂G

∂gik
+ ∂G

∂gk j

)]
= 0 , i, j, k = 1, . . . , n , (7.16)

written with respect to the independent variables ξi . In particular, when the integrand
G is defined by the diagonal elements gi i of the contravariant metric tensor {gi j },
then (7.15) and (7.16) are as follows:

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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∂

∂x j

( ∂G

∂gi i
∂ξi

∂x j

)
= 0 ,

∂

∂ξ j

(
Jgi j

∂G

∂gi i

)
= 0 , i, j = 1, . . . , n

with fixed index i.

7.2.5 Functionals Dependent on Tensor Invariants

Chapter 3 presents a description of some local grid quality properties which are
defined by the invariants I1, . . . , In of the metric tensor gi j = xξi · xξ j in the coor-
dinates ξ1, . . . , ξn . The integration of these properties over the physical or com-
putational domain represents the global grid properties in the form of functionals
depending on the invariants. Taking into account the general identity

∫
Ξ n

Gdξ =
∫
Xn

[G/(I 1/2n )]dx ,

where

In = g = det{gi j } = 2
det

{∂xi

∂ξ j

}
,

we can consider all these functionals as integrals over the domain Xn in the form

I (ξ) =
∫
Xn

G(x, I1, . . . , In)dx . (7.17)

The Euler–Lagrange equations (7.6) in this case are represented as follows:

∂

∂x j

(
GIk

∂ Ik
∂(∂ξi/∂x j )

)
= 0 , i, j, k = 1, . . . , n . (7.18)

Two-Dimensional Tensor

For two-dimensional coordinate transformations x(ξ) : Ξ 2 → X2, the invariants
are defined by (3.32). Since we consider the functionals depending on the invariants
as integrals over the domain Xn, we need to rewrite the invariants through the terms
of the contravariant metric tensor {gi j }. This is readily accomplished by applying
(2.21). Thus, we have in two dimensions

I1 = g(g11 + g22) ,

I2 = g = 1/ det{gi j } = 1
/[

det2
{ ∂ξi

∂x j

}]
.

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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From these relations, we obtain

∂ I2
∂(∂ξi/∂x j )

= −2J 3(−1)i+ j ∂ξ3−i

∂x3− j
= −2I2

∂x j

∂ξi
,

∂ I1
∂(∂ξi/∂x j )

= 2g
∂ξi

∂x j
− 2J 3(g11 + g22)(−1)i+ j ∂ξ3−i

∂x3− j

= 2
(
I2

∂ξi

∂x j
− I1

∂x j

∂ξi

)
, i, j = 1, 2 , (7.19)

without summation over the repeated indices i and j. Thus, we find that in two
dimensions, the Euler–Lagrange system (7.18) can be expressed as follows:

∂

∂x j

[
GI1

(
I2

∂ξi

∂x j
− I1

∂x j

∂ξi

)
− GI2 I2

∂x j

∂ξi

]
= 0 , i, j = 1, 2 . (7.20)

The application of the identity (2.57) to each equation of (7.20) leads to the following
system:

∂

∂ξ j
{J [gi jG I1 I2 − δij (GI1 I1 + GI2 I2)]} = 0 , i, j = 1, 2 . (7.21)

In particular, for the integral measure of the two-dimensional grid density expressed
locally by (3.75) with n = 2, we assume

Icn =
∫
X2

(I1/I2)dx =
∫
X2

(g11 + g22)dx ,

and therefore the system of Euler–Lagrange equations (7.20) for Icn is the system
of Laplace equations

∂

∂x j

∂ξi

∂x j
= 0 , i, j = 1, 2 .

Three-Dimensional Tensor

As in two dimensions, the invariants (3.33) of the three-dimensional tensor {gi j } can
be expressed through the elements of the contravariant tensor {gi j }. Using for this
purpose (2.22), we obtain

I1 = g(g11g22 + g11g33 + g22g33 − g12g21 − g13g31 − g23g32) ,

I2 = (g11 + g22 + g33)/ det{gi j } ,

I3 = g = 1/ det{gi j } .

Therefore, we have for i, j = 1, 2, 3

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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∂ I3
∂gi j

= −g2 cofactor of gi j = −ggi j = −gi j I3 ,

∂ I2
∂gi j

= δijg − ggi j (g
11 + g22 + g33) = δij I3 − gi j I2 ,

∂ I1
∂gi j

= δijg(g11 + g22 + +g33) − gi j − gi j I3 = δij I2 − gi j I3 − gi j .

(7.22)

Taking into account (7.14), we obtain

∂ Ik
∂(∂ξi/∂x j )

=
( ∂ Ik
∂gim

+ ∂ Ik
∂gmi

)∂ξm

∂x j
, i, j, k,m = 1, 2, 3 .

Therefore, the use of (7.22) leads to

∂ I3
∂(∂ξi/∂x j )

= −2I3
∂x j

∂ξi
, i, j = 1, 2, 3 ,

∂ I2
∂(∂ξi/∂x j )

= −2I3
∂ξi

∂x j
− 2I2

∂x j

∂ξi
, i, j = 1, 2, 3 ,

∂ I1
∂(∂ξi/∂x j )

= 2
(
I2

∂ξi

∂x j
− I3

∂x j

∂ξi
− gim

∂ξm

∂x j

)
, i, j,m = 1, 2, 3 .

Using these relations in (7.18), we find that the three-dimensional Euler–Lagrange
equations for the functional (7.17) can be written as

∂

∂x j

[
GI1

(
I2

∂ξi

∂x j
− I3

∂x j

∂ξi
− gim

∂ξm

∂x j

)

−GI2

(
I3

∂ξi

∂x j
+ I2

∂x j

∂ξi

)
− GI3 I3

∂x j

∂ξi

]
= 0 , i, j,m = 1, 2, 3 . (7.23)

This system, after application of (2.57) to every equation, is transformed into

∂

∂ξ j
{J [gi j (GI1 I2 − GI2 I3) − gimgmj − δij (GI1 I3 + GI2 I2 + GI3 I3)]} = 0 ,

i, j,m = 1, 2, 3 , (7.24)

written with respect to the independent variables ξi .
For generating quasi-isometric grids in a three-dimensional domain X3, there was

applied in Garanzha (2000) and Garanzha and Kudryavtseva (2012) the following
functional dependent on the invariants I1 and I3:

Iq-is[x] =
∫

Ξ n

{
(1 − α)

1

3

(I1)3/2√
I3

+ α
1

2

( 1√
I3

+ √
I3

)}
dξ, α > 0. (7.25)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 7.1 Section of a quasi-isometric grid (left) and fragment of the grid (right)

Figure7.1 exhibits a grid generated through the minimization of this functional.

7.3 Integral Grid Characteristics

Grid properties can play an extremely important role in influencing the accuracy and
efficiency of the numerical solutions of partial differential equations. In particular,
the truncation error is affected by the grid skewness, grid size, grid size ratio, angle
between the grid lines, grid nonuniformity, and consistency of the grid with the
features of the physical solution. Thus, by controlling these grid quantities, one
can control the efficiency of the numerical solution of boundary value problems.
The calculus of variations allows one to formulate, through appropriate functionals,
natural techniques which can serve as tools for controlling various grid properties.

A description of some local grid characteristics was given in Chap. 3 through the
elements of the metric tensors. The procedure of integration of these characteristics
defines functionals which reflect global properties of the grid. In this section, some
basic functionals modeling global grid characteristics are formulated. It needs to be
emphasized that some local characteristics are dimensionally homogeneous. There-
fore, in order to preserve this quality globally, the integration of the corresponding
quantities should be carried out over a scaled region. If we assume that the logical
domain Ξ n is the unit cube, we can utilize it as such a normalized domain.

7.3.1 Dimensionless Functionals

Dimensionless functionals are formed by integrating the dimensionless grid charac-
teristics reviewed in Chap.3 over the computational domain Ξ n.

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Grid Skewness

The integrated measures of three-dimensional grid skewness are obtained from the
formulas (3.67–3.69), derived by means of the cosines and cotangents of the angles
between the tangential and normal vectors. These characteristics are dimensionally
homogeneous and, in accordance with the argument about the integration of dimen-
sionless quantities over the domain Ξ n, we formulate the global grid skewness
measures as

Isk,1 =
∫

Ξ 3

( (g12)
2

g11g22
+ (g13)

2

g11g33
+ (g23)

2

g22g33

)
dξ ,

Isk,2 =
∫

Ξ 3

1

g

( (g12)
2

g33
+ (g13)

2

g22
+ (g23)

2

g11

)
dξ

=
∫

Ξ 3

( (g12)
2

g11g22 − (g12)2
+ (g13)

2

g11g33 − (g13)2

+ (g23)
2

g22g33 − (g23)2

)
dξ ,

Isk,3 =
∫

Ξ 3

( (g12)2

g11g22
+ (g13)2

g11g33
+ (g23)2

g22g33

)
dξ ,

Isk,4 =
∫

Ξ 3
g
( (g12)2

g33
+ (g13)2

g22
+ (g23)2

g11

)
dξ

=
∫

Ξ 3

( (g12)2

g11g22 − (g12)2
+ (g13)2

g11g33 − (g13)2

+ (g23)2

g22g33 − (g23)2

)
dξ . (7.26)

Since the elements gi j of the contravariant metric tensor are expressed directly
through the derivatives of the functions ∂ξi/∂x j , we see that the Euler–Lagrange
equations for the functionals Isk,3 and Isk,4 can be obtained more easily if these func-
tionals are reformulated over the domain X3. This can be accomplished by using the
relation (7.4). For example, we have, for the functional Isk,3,

Isk,3 =
∫
X3

√
det(gi j )

( (g12)2

g11g22
+ (g13)2

g11g33
+ (g23)2

g22g33

)
dx .

The functionals Isk,1 and Isk,2 can be transformed into functionals dependent on ξ(x)

by the rule of transition (2.22) from the elements of {gi j } in the integrand to the
elements of {gi j }.

In two-dimensions, we obtain, from (7.26), only two functionals of dimensionally
homogeneous skewness:

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Isk,1 =
∫

Ξ 2

(g12)
2

g11g22
dξ =

∫
X2

√
det{gi j } (g12)2

g11g22
dx ,

Isk,2 =
∫

Ξ 2
g(g12)2dξ =

∫
X2

1√
det{gi j } (g

12)2dx . (7.27)

The first functional is defined through the cosines of the angles while the second is
determined by the cotangents of the angles.

Deviation from Orthogonality

Dimensionally homogeneous functionals indicating the global grid nonorthogonality
in three dimensions can be derived from the local nonorthogonality measures (3.70).
As a result, we have in three dimensions

Io,1 =
∫

Ξ 3

g11g22g33

g
dξ

=
∫
X3

[g22g33 − (g23)2][g11g33 − (g13)2][g11g22 − (g12)2]√
det5{gi j }

dx ,

Io,2 =
∫

Ξ 3
g(g11g22g33)dξ =

∫
X3

1√
det{gi j } (g

11g22g33)dx . (7.28)

In two dimensions, (7.28) yields only one functional of departure from orthogonality:

Io,1 =
∫

Ξ 2

g11g22

g
dξ =

∫
X2

g11g22√
det{gi j }dx . (7.29)

Deviation from Conformality

Integration of the dimensionless characteristics (3.76), (3.85), and (3.88) over Ξ 2

or Ξ 3 generates a quantity which reflects an integral departure of the grid from a
conformal grid. Thus, we obtain, in two dimensions,

Icf,1 =
∫

Ξ 2
(I1/

√
I2)dξ =

∫
X2

(I1/I2)dx . (7.30)

An analogous consideration of (3.86) yields, in three dimensions,

Icf,1 =
∫

Ξ 3
[I2/ 3

√
(I3)2]dξ =

∫
X3

[I2/(I3)7/6]dx . (7.31)

The quantity (3.89) for n = 3 defines one more three-dimensional form of the
nonconformality functional:

Icf,2 =
∫

Ξ 3
[I1/(I3)1/3]dξ

=
∫

Ξ 3

g11 + g22 + g33
3
√
det{gi j }

dξ . (7.32)

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Reformulation of Icf,2 over the domain X3 yields

Icf,2 =
∫
X3

1

6

√
det5{gi j }

{g11g22 + g11g33 + g22g33

−[(g12)2 + (g13)2 + (g23)2]}dx , (7.33)

using (7.4) and (2.22).
We can use as the integrand the dimensionally homogeneous quantity:

Qcf,3 = [I2/ 3
√

(I3)2]α = (Qcf,1)
α , α > 0 , (7.34)

which also reaches its minimum value when the three-dimensional coordinate trans-
formation x(ξ) is conformal. In this case, we can control the form of the Euler–
Lagrange equations with the parameter α. The corresponding functional with the
quantitative characteristic (7.34) is as follows:

Icf,3 =
∫

Ξ 3
[I2/ 3

√
(I3)2]αdξ

=
∫
X3

(I2)
α/(I3)

2α/3+1/2dx .

If α = 3/2, we obtain

Icf,3 =
∫
X3

(I2/I3)
3/2dx

=
∫
X3

(g11 + g22 + g33)3/2dx ,

taking into account (3.33). The system of Euler–Lagrange equations (7.15) or (7.20)
for this functional has the form

∂

∂x j

(√
g11 + g22 + g33

∂ξi

∂x j

)
= ∂

∂x j

(√
I2
I3

∂ξi

∂x j

)
= 0 , i, j = 1, 2, 3 . (7.35)

Taking advantage of (2.57) or (7.24), we obtain for the inverted system of (7.35)

∂

∂ξ j

(√
I2g

i j
)

= 0 , i, j = 1, 2, 3 . (7.36)

Also, multiplication of (7.35) by ∂xk/∂ξi and summation over i yields one more
inverted system of (7.35):

gi j
∂2xk

∂ξi∂ξ j
=

√
I3
I2

∂

∂xk

√
I2
I3

, i, j = 1, 2, 3 . (7.37)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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An analogously simple system of Euler–Lagrange equations is derived for n-
dimensional functionals of nonconformality by replacing the local measure (3.88)
with

Qcf,3 = [In−1/(In)
1−1/n]α , α > 0 .

For the functional Icf,3 with α = n/2, we obtain

Icf,3 =
∫

Ξ n

[In−1/(In)
1−1/n]n/2dξ =

∫
Xn

(In−1/In)
n/2dx

=
∫
Xn

(g11 + · · · + gnn)n/2dx . (7.38)

The system of Euler–Lagrange equations for this functional is

∂

∂x j

(
(g11 + · · · + gnn)n/2−1 ∂ξi

∂x j

)
= 0 , i, j = 1, . . . , n . (7.39)

Multiplying (7.39) by∂xk/∂ξi and summingover i ,weobtain, in analogywith (7.37),
the system with respect to the dependent variables xi and independent variables ξi :

gi j
∂2xk

∂ξi∂ξ j
= H−1 ∂

∂xk
H , i, j, k = 1, . . . , n , (7.40)

where
H = (g11 + · · · + gnn)n/2−1 = (In−1/In)

n/2−1 .

7.3.2 Dimensionally Heterogeneous Functionals

Smoothness Functionals

The characteristic of local grid concentration is expressed through the invariants by
(3.75). In general, this quantity is not dimensionless, and therefore its integration is
carried out over the physical domain Xn. The resulting functional,

Is =
∫
Xn

(In−1/In)dx =
∫
Xn

(g11 + · · · + gnn)dx , (7.41)

formulated for an arbitrary n-dimensional domain Xn, is called the functional of
smoothness. We see that the functional of smoothness (7.41) for n = 2 coincides
with the functional of conformality (7.30). However, in the three-dimensional case,
the functionals (7.31) and (7.41) are different. The Euler–Lagrange equations for the
smoothness functional (7.41) comprise a simple system of Laplace equations

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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∂

∂x j

( ∂ξi

∂x j

)
= 0 , i, j = 1, . . . , n .

The inverted system with respect to the dependent variable x is obtained in the
ordinary manner by multiplying (7.41) by ∂xk/∂ξi and summing over i. As a result,
we obtain the n-dimensional inverted Laplace system

gi j
∂x

∂ξi∂ξ j
= 0 , i, j = 1, . . . , n . (7.42)

Functionals of Orthogonality

The characteristics (3.71) and (3.72) of the local deviation of the three-dimensional
cells fromorthogonal cells define two functionals of orthogonality. For the purpose of
simplicity of the resulting Euler–Lagrange equations, it is more suitable to integrate
(3.71) over Ξ 3 and (3.72) over X3. So, we obtain the following functionals, which
represent some measures of grid nonorthogonality and also can be interpreted as
measures of grid skewness:

Io,3 =
∫

Ξ 3

(
(g12)

2 + (g13)
2 + (g23)

2
)
dξ ,

Io,4 =
∫
X3

(
(g12)2 + (g13)2 + (g23)2

)
dx . (7.43)

The corresponding Euler–Lagrange equations (7.11) and (7.6) have the form

gik
∂

∂ξ j

(∂xk

∂ξ j

)
= 0 ,

gik
∂

∂x j

( ∂ξk

∂x j

)
= 0 , i, j, k = 1, 2, 3 , i �= k . (7.44)

By applying (2.57) to every equation of the second system of (7.44), a converted
system is obtained:

gik
∂

∂ξk
J = 0 , k = 1, 2, 3 , i �= k . (7.45)

The systems (7.44) and (7.45) derive ill-posed boundary value problems, and there-
fore the functionals of orthogonality are commonly combined with the functional of
smoothness (7.41) to yield well-posed problems of grid generation. In two dimen-
sions, the orthogonality functionals (7.43) are

Io,3 =
∫

Ξ 2
(g12)

2dξ ,

Io,4 =
∫
X2

(g12)2dx . (7.46)

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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The local departure of a two-dimensional grid from an orthogonal one with a
prescribed cell aspect ratio F may be estimated by the measure

Qo,5 =
( 1√

F

∂x1

∂ξ1
− √

F
∂x2

∂ξ2

)2 +
( 1√

F

∂x2

∂ξ1
+ √

F
∂x1

∂ξ2

)2
, (7.47)

since Qo,5 = 0 if and only if the grid is orthogonal and g11 = F2g22. From (7.47),
we obtain

Qo,5 = 1

F
g11 + Fg22 − 2J.

This quantity Qo,5 defines one more functional of departure from orthogonality:

Io,5 =
∫

Ξ 2

( 1

F
g11 + Fg22 − 2J

)
dξ

=
∫

Ξ 2

( 1

F
g11 + Fg22

)
dξ − 2S , (7.48)

where S is the area of the domain X2, with the following Euler–Lagrange equations:

∂

∂ξ1

( 1

F

∂xi

∂ξ1
+ F

∂xi

∂ξ2

)
= 0 , i = 1, 2 . (7.49)

Analogously, the functional of departure from orthogonality is defined through
the elements gi i as

Io,6 =
∫
X2

( 1

F
g11 + Fg22

)
dx − 2 . (7.50)

7.3.3 Functionals Dependent on Second Derivatives

This subsection reviews a formulation of the functionals in the form (7.2) or (7.3),
where the integrands include terms dependent on second derivatives of coordinate
transformations.

Functionals of Eccentricity

The eccentricity functionals are derived from the local grid eccentricity measures
(3.90) and (3.90). Since Qε,1, from (3.90), is expressed through the first and second
derivatives of x(ξ) with respect to ξi , we will integrate this quantity over Ξ n. For a
similar reason, the relation (3.91) is integrated over Xn. As a result, we obtain the
integral characteristics of grid eccentricity in the form

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Iε,1 =
∫

Ξ n

n∑
i=1

( ∂

∂ξi
ln

√
gi i

)2
dξ ,

Iε,2 =
∫
Xn

n∑
i=1

( ∂

∂xi
ln

√
gi i

)2
dx . (7.51)

Unlike the functionals determined by the first derivatives of the varied functions
ξ(x) or x(ξ), the functionals (7.51) include second derivatives. The system of Euler–
Lagrange equations (7.11) for grid generation is therefore of fourth order. This makes
it possible not only to specify the boundary nodal distribution when generating a grid
by solving such a system, but also to specify the directions of the coordinate lines
emerging from the boundaries, which is important when one needs to construct
smoothly abutting grids in complicated regions, as in the case of applying block grid
techniques. However, some questions related to the formulation of the boundary con-
ditions and the correctness of the boundary value problems, and also to the numerical
justification for the systems of Euler–Lagrange equations for constructing grids, are
still to be resolved.

Functionals of Grid Warping and Grid Torsion

The functionals of grid warping and grid torsion are formulated analogously through
the respective local measures (3.92) and (3.93). Like the functionals of eccentricity
(7.51), these functionals are dependent on second derivatives, thus generating Euler–
Lagrange equations of fourth order.

7.4 Adaptation Functionals

Numerical grids can significantly influence various characteristics of the efficiency
of the numerical solution of partial differential equations. One of the most important
characteristics is the accuracy of the numerical solution, which is formulated through
the error of the numerical calculation. In this matter, the theory of the calculus
of variations provides an excellent opportunity to formulate the requirement of a
minimal error for a given number of grid points in a straightforward form through
the functional of error. The minimization of this functional generates an optimal grid
in the sense of accuracy. Thus, the variational approach is a natural tool for generating
grids adapted to the physical solution.

The simplest and most logical way of defining the error functional Ier seems to
be through the integral measure of the local numerical error r = u − uh,

Ier,1 =
∫

Ξ n

‖ r ‖ dξ, (7.52)

or through the integral of the measure of the approximation error T ,

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Ier,2 =
∫

Ξ n

‖ T ‖ dξ . (7.53)

However, this logical formulation results in a very cumbersome and high-order sys-
tem of Euler–Lagrange equations; namely, its order is twice the order of the deriva-
tives in r or T . The numerical solution of these Euler–Lagrange equations is a very
difficult task, especially in the case of multidimensional space. Thus, the optimal grid
can be obtained only at the expense of the efficiency of the grid generation process.
Evidently, a more optimal approach to generating adaptive grids through the varia-
tional technique lies in formulating simpler error functionals in order to balance the
accuracy of the solution against the cost of obtaining the grid.

A common approach aimed at the minimization of the numerical error relies on
concentration of grid nodes in the subregions of high truncation error. One version
of this approach, reviewed in Chap.4, was formulated through the equidistribution
principle. In fact, this principle is universal, since all adaptive methods aimed at the
concentration of grid nodes in the regions of large solution variations are related to
the one-dimensional equidistribution principle, which requires the grid spacing to
be inversely proportional to a weight function. The equidistribution principle can be
formulated in a number of different ways. In this section, a variational version of the
equidistribution approach is discussed.

7.4.1 One-Dimensional Functionals

The basic one-dimensional differential model for the equidistribution principle with
the weight function w was formulated as the two-point boundary value problem
(4.23). In the case in which the weight function w is defined in the interval ξ, and
thus does not varywhen x(ξ) changes, the problem (4.23) is a boundaryvalue problem
for the Euler–Lagrange equation obtained by optimizing the functional

Ieq =
∫ 1

0
w

(dx
dξ

)2
dξ . (7.54)

The functional (7.54) physically models the energy which arises in a system of
nodes xi connected by springs with stiffness 2wi . The equilibrium condition of this
system also determines the positions of the grid points xi defined by a coordinate
transformation x(ξ) satisfying (4.23).

There is also a geometric interpretation of the following numerical approximation
of the integral (7.54) on a uniform grid ξi = ih, h = 1/N :

I heq = N
N−1∑
i=0

wi+1/2(hi+1/2)
2 , (7.55)

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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where
wi+1/2 = [w(ξi ) + w(ξi+1)]/2 ,

hi+1/2 = x(ξi+1) − x(ξi ) .

The expression (7.55) describes a hyperellipsoid for each value of I heq, if hi+1/2 is
considered to be the i th coordinate in the (N −1)-dimensional Euclidean space, and
its minimization means that the hyperplane

N−1∑
i=1

hi+1/2 = b − a ,

where b− a is the length of the segment x, is an (N − 2)-dimensional tangent plane
for this hyperellipsoid.

Since, in general, the error of the solution in the interval x is described by an
expression of the form r i = C(hi )k ≈ Chk(∂x/∂ξ)k, the functional (7.54) can
be interpreted as the integral error of the second-order approximation of a one-
dimensional differential problem. The error functional of the approximation of order
k can be represented by the integral

Ieq =
∫ 1

0
w

(dx
dξ

)k
dξ , k > 0 . (7.56)

A geometric interpretation of the functional (7.56) for k = 4 is possible if u2x is taken
as theweight function. In this case, the value of the functional (7.56) is proportional to
the sum of the squares of the areas of the rectangles which border the curve u = u(x)
in the (u, x) plane.

Commonly, the weight function w is defined in the physical region, and there-
fore the variational formulation of the equidistribution method typically utilizes a
functional with respect to transformations ξ(x) with specified boundary conditions:

Ieq =
∫
X

w1(x)
( dξ
dx

)k
dx , k > 0 , (7.57)

whose Euler–Lagrange equation is obtained in accordance with (7.6). Thus, the
optimal transformation ξ(x) for this functional is the solution to the boundary value
problem

d

dx

[
w1(x)

( dξ
dx

)k−1] = 0 , a < x < b,

ξ(a) = 0 , ξ(b) = 1 . (7.58)

From (7.58), the following relation follows directly:
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w
1/(k−1)
1

dξ

dx
= const ⇒ w

1/(1−k)
1

dx

dξ
= const ,

which results in small values of dx/dξ when w
1/(1−k)
1 is large and vice versa.

A problem equivalent to (4.23) is obtained from (7.58) when k = 2, w1(x) =
w−1(x), w1 > 0.

Thus, the equidistribution method considered in Chap. 4 can be interpreted as a
variational method for constructing grids by minimizing the functionals (7.56) or
(7.57).

7.4.2 Multidimensional Approaches

In this subsection, the variational formulations (7.56) and (7.57) of the one-
dimensional equidistribution approach are taken as a starting point for the exten-
sion to multiple dimensions.

The basic elements of the functionals (7.56) and (7.57) are the weight functions
and the first derivative of the transformation x(ξ) or ξ(x). When generalizing to
an n-dimensional region Xn, this derivative can be interpreted as the Jacobian of
transformation x(ξ) or ξ(x), or as the square roots of the values of the diagonal
elements of the covariant metric tensor {gi j } or the contravariant metric tensor {gi j }.
Thus, in many of the generalizations of the functionals (7.56) and (7.57) that have
been proposed for constructing adaptive grids in an n-dimensional domain Xn, the
expression dx/dξ is replaced by J = det{∂xi/∂ξ j }, and dξ/dx by det{∂ξi/∂x j } =
1/J, or combinations of the diagonal elements of the covariant or contravariant
metric tensor {gi j } and {gi j } are used. Since J = √

g, all these functionals can
be formulated through the metric tensors {gi j } or {gi j }. Thus, the Euler–Lagrange
equations for these functionals are readily obtained by using (7.15) or (7.16).

Volume-Weighted Functional

For example, the functional defined through the Jacobian J = √
g, called the volume-

weighted functional, has the form

Ivw =
∫
Xn

w(x)gkdx , k > 0 . (7.59)

The expected result of the minimization of this functional is small values of the
Jacobian when w(x) is large and vice versa.

In analogy with the first line of (7.22), we have for arbitrary dimensions

∂g

∂glk
= −gglk , l, k = 1, . . . , n .

Therefore, using (7.15), we obtain a system of Euler–Lagrange equations for the
functional (7.59):

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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∂

∂x j

(
wgkgim

∂ξm

∂x j

)
= ∂

∂x j

(
wgk

∂x j

∂ξi

)
= 0 , i, j, k,m = 1, . . . , n . (7.60)

In order to obtain compact equations which include only the derivatives with respect
to ξi , we use the identity

∂

∂x j

(
g−1/2 ∂x j

∂ξi

)
≡ 0 , i, j = 1, . . . , n ,

which is a mere reformulation of (2.48). Therefore, from (7.60), we obtain

∂

∂x j

(
wgk

∂x j

∂ξi

)
= g−1/2 ∂

∂x j

(
wgk+1/2

)∂x j

∂ξi

= g−1/2 ∂

∂ξi

(
wgk+1/2

)
= 0 . (7.61)

Tangent-Length-Weighted Functionals

An adaptation functional which uses the diagonal elements of the metric tensor {gi j }
can be expressed as follows:

Itw,1 =
∫

Ξ n

(
w(ξ)

∑
i

gi i

)
dξ =

∫
Ξ n

w(ξ)I1dξ . (7.62)

A functional aimed at providing an individual grid concentration in each grid
direction ξi can be formulated through a combination of the edge length character-
istics gi i with individually specified weights:

Itw,2 =
∫

Ξ n

(∑
i

wi (ξ)gi i

)
dξ . (7.63)

The weight functions wi control the grid spacing along each coordinate indepen-
dently.

The system of Euler–Lagrange equations for the functional (7.63) is of simple
elliptic type,

∂

∂ξ j

(
wi ∂x

i

∂ξ j

)
= 0 , i, j = 1, . . . , n ,

with the index i fixed. The functionals (7.62) and (7.63) influence the grid node
distribution in the direction of the coordinate lines.

Normal-Length-Weighted Functionals

Analogous adaptation functionals determined by weighted diagonal elements gi i of
the contravariant metric tensor {gi j } have the form

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Inw,1 =
∫
Xn

(
w(x)

∑
i

gi i
)
dx (7.64)

and

Inw,2 =
∫
Xn

(∑
i

wi (x)gi i
)
dx . (7.65)

The functionals (7.64) and (7.65) are also referred to as diffusion functionals. They are
formulated for the purpose of distributing the nodes in the direction of the normals to
the coordinate surfaces ξi = c,with clustering of the grid points in the neighborhoods
of large values of the weighting functions and rarefying of the nodes in the vicinity
of small values of the weights.

The resulting Euler–Lagrange equations for critical functions ξ(x) of the func-
tionals (7.64) and (7.65) have the form

∂

∂x j

(
wi

∂ξi

∂x j

)
= 0 , i, j = 1, . . . , n , (7.66)

with the index i fixed. If wi > 0, then this system is elliptic. The relation wi =
w, i = 1, . . . , n, in this system corresponds to the functional (7.64). In this case, the
transformed equations with the dependent and independent variables interchanged
are readily obtained by multiplying the system of Euler–Lagrange equations (7.66)
by ∂xk/∂ξi and summing over i. As a result, we obtain

gi j
∂2xk

∂ξi∂ξ j
− 1

w

∂w

∂xk
= 0 , i, j, k = 1, . . . , n . (7.67)

Using the relation (2.24), we have

∂w

∂xk
= ∂w

∂ξi
∂ξi

∂xk
= gi j

∂w

∂ξi
∂xk

∂ξ j
, i, j, k = 1, . . . , n .

Therefore, we obtain, from the inverted system of Euler–Lagrange equations (7.67),

gi j
( ∂2xk

∂ξi∂ξ j
− 1

w

∂w

∂ξi
∂xk

∂ξ j

)
= wgi j

∂

∂ξi

( 1

w

∂xk

∂ξ j

)
= 0 , i, j, k = 1, . . . , n .

Thus, we obtain another compact form of the Euler–Lagrange equations for the
functional (7.64):

gi j
∂

∂ξi

( 1

w

∂xk

∂ξ j

)
= 0 , i, j, k = 1, . . . , n . (7.68)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Metric-Weighted Functionals

The length-weighted functionals permit a natural generalization in the formofmetric-
weighted functionals:

Imw,1 =
∫

Ξ n

wi j (ξ)gi jdξ , i, j = 1, . . . , n (7.69)

and

Imw,2 =
∫
Xn

wi j (x)gi jdx , i, j = 1, . . . , n . (7.70)

The condition of convexity (7.12)will be satisfied for these functionals if thematricies
{wi j } and {wi j }, respectively, are positive. Without loss of generality, we can assume
in (7.69) and (7.70) that wi j = w j i , wi j = w j i . The corresponding systems of
Euler–Lagrange equations for (7.69) and (7.70) then have the form

∂

∂ξ j

(
wik ∂xk

∂ξ j

)
= 0 ,

∂

∂x j

(
wik

∂ξk

∂x j

)
= 0 , i, j, k = 1, . . . , n . (7.71)

General Approach

A more general formulation of the adaptation functionals utilizes the weighted ele-
ments of the matrix {(∂xi/∂ξ j )2} or the matrix {(∂ξi/∂x j )2}. For example,

Iad,6 =
∫

Ξ n

[∑
i, j

wi j (ξ)
(∂xi

∂ξ j

)2]
dξ ,

Iad,7 =
∫
Xn

[∑
i, j

wi j (x)
( ∂ξi

∂x j

)2]
dx . (7.72)

The corresponding Euler–Lagrange equations are

∂

∂ξ j

(
wi j ∂x

i

∂ξ j

)
= 0 ,

∂

∂x j

(
wi j ∂ξi

∂x j

)
= 0 , i, j = 1, . . . , n , (7.73)

where the summation is carried out only over j and the index i is fixed.

Nonstationary Functionals

In the construction of adaptive grids for spatial nonstationary elastoplastic and gas-
dynamics problems, the adaptation functional characterizing the concentrationof grid
nodes in the high-gradient region of the flow velocity u = (u1, u2, u3) is defined in
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terms of the velocity components of the grid nodes ∂xi/∂t :

Iad,6 =
∫
X3

(k div w − div u)2dx , (7.74)

where

w = (w1, . . . , wn) , wi =
3∑
j=1

∂x j

∂t

∂ξi

∂x j
,

u = (u1, . . . , un) , ui =
3∑
j=1

∂ξi

∂x j
u j , i = 1, 2, 3 .

Minimization of the functional (7.74) involves equidistribution of theweight func-
tion w(x) with respect to the values, to degree k, of the grid cell volumes, generating
a grid with small cell volumes in the neighborhood of large values of w(x).

Weight Functions

The weight functions w, wi , wi , wi, j , and wi, j in the formulations of adaptation
functionals considered above are usually taken to be combinations of the moduli of
the derivatives of those components ui of the solution of the physical problem for
which these derivatives can take large values. For instance, for the flow of a viscous
heat-conducting gas, the function w(x) has the form

w =
(
ε +

∑
i

|gradui |α j

)β + φ0(x) ,

where φ0(x) is a positive function and ε, αi , and β are positive constants. The weight
function is of this form because of the need to construct a grid which is invariant
under Galilean transformations and provides node clustering in the region of high
gradients of u.

7.5 Functionals of Attraction

For some multidimensional problems, there are natural families of lines or vector
fields which should be aligned with the grid lines or basic vector fields for reasons
of computational efficiency. In gas dynamics, for instance, these are the streamlines
(or lines of potential), lines of predominant direction of flow, and a family of the
Lagrange coordinates; in plasma theory, they are the preferred vector directions
defined by themagnetic field. The solution to viscous transonic flowproblems usually
contains shock structures which should be aligned with one coordinate direction,
while boundary layers should be aligned with the coordinates from the other family;
namely, they need to be parallel to a streamwise coordinate. Some problems also
have an underlying symmetry which should be matched with the coordinate system.



280 7 Variational Methods

The alignment of the coordinate lines with natural families of curves of this kind
leads to efficiency in the numerical modeling. For example, the use of Lagrange coor-
dinates in problems of fluid motion simplifies the representation of the equations,
andmakes it possible to localize the moving region and follow the motion of the fluid
particles during the numerical solution. The requirement to generate aligned coordi-
nates can be readily realized by variational techniques through suitable functionals
of departure. This section presents a formulation of certain functionals of this type.

7.5.1 Lagrangian Coordinates

The condition for a coordinate ξi to be Lagrangian in a three-dimensional fluid flow
is given by the equation

∂ξi

∂t
+ ui = 0 , i = 1, 2, 3 , (7.75)

where ui is the i th component of the velocity vector in the moving system of coor-
dinates (t, ξ1, ξ2, ξ3), i.e.

ui =
3∑

i=1

u j ∂ξi

∂x j
,

with u j , j = 1, 2, 3, representing the j th velocity component in the Cartesian
system (t, x1, x2, x3). Since

∂ξi

∂t
= −

3∑
j=1

∂ξi

∂x j

∂x j

∂t
,

(7.75) is equivalent to
wi − ui = 0 , (7.76)

where wi is the i th component of the grid velocity vector expanded in the tangential
vectors xξ j , j = 1, . . . , n.

Equation (7.76) can be used to determine the functional of deviation from a
Lagrangian coordinate grid:

IL,1 =
∫
X3×I

w

3∑
i=1

(wi − ui )2dx dt

=
∫
X3×I

w

m∑
i=1

(∂ξi

∂t
+ ui

)2
dx dt , (7.77)
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where I is the range of the variable t. The functional (7.77) is formulated so as to
provide attraction of the grid lines to the Lagrangian coordinates.

The Euler–Lagrange equations (7.6) derived from this functional are as follows:

∂

∂t
[w(wi − ui )] − ∂

∂x j
[w(wi − ui )u j ] = 0 , i, j = 1, 2, 3 . (7.78)

By applying (2.97), they are transformed into the system

∂

∂t
[Jw(wi − ui )] + ∂

∂ξ j
[Jw(wi − ui )(w j − u j )] = 0 , i, j = 1, 2, 3 , (7.79)

with respect to the dependent variables t, ξ1, ξ2, ξ3.
When all of the coordinates are Lagrangian, the conditions (7.76) with i = 1, 2, 3

are equivalent to the system of equations

xit (t, ξ
1, ξ2, ξ3) − ui = 0 , i = 1, 2, 3 .

This relation is used to define a functional that controls the attraction of the generated
grid to the Lagrangian grid in the form

IL,2 =
∫

Ξ 3×I
w

3∑
i=1

(
ui − ∂xi

∂t

)2
dξ dt . (7.80)

7.5.2 Attraction to a Vector Field

Alignment can be very useful when there is a natural anisotropy in the physical prob-
lem, for example, a dominant flow direction which is expressed by a vector field. The
variational approach can be helpful in generating techniques to obtain such align-
ment. Functionalswhich take into account the direction of the prescribed vector fields
Ai (x), i = 1, 2, 3, for constructing three-dimensional coordinate transformations
are introduced in the form

Ivf,1 =
∫
X3

(
w

3∑
i=1

(Ai × ∇ξi )2
)
dx , (7.81)

wherew is theweight function, and∇ξi = grad ξi . In the process of theminimization
of this functional, the normals to the surface ξi = c tend to become parallel to Ai .

From (2.29), we have for the integrand of the functional (7.81)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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w

3∑
i=1

(Ai × ∇ξi )2 = w(|Ai |2gi i − (Ai · ∇ξi )2)

= w
(
|Ai |2gi i − Ak

i A
p
i

∂ξi

∂xk
∂ξi

∂x p

)
.

From this relation, we readily obtain the Euler–Lagrange equations for the functional
(7.81):

∂

∂x j

[
w

(
|Ai |2 ∂ξi

∂x j
− A j

i A
p
i

∂ξi

∂x p

)]
, i, j, p = 1, 2, 3 , (7.82)

with the index i fixed.
Analogously, a functional of alignment of the tangent vectors xξi with the pre-

scribed vector fields Ai , i = 1, 2, 3, can be defined:

Ivf,2 =
∫
X3

(
w

3∑
i=1

(Ai × xξi )
2
)
dx . (7.83)

This functional can serve to attract the coordinate lines to the streamlines of the
vector fields Ai , i = 1, 2, 3.

7.5.3 Jacobian-Weighted Functional

A Jacobian-weighted functional represents the deviation of the Jacobian matrix
{∂ξi/∂x j } of the transformation ξ(x) from the prescribed matrix S(x) = {Si j (x)},
i, j = 1, . . . , n, via a least-squares fit. In particular, the functional can have the
following form:

Ijw,1(ξ) =
∫
Xn

G(x,∇ξi )dx , (7.84)

with

G(x,∇ξi ) =
n∑

i, j=1

( ∂ξi

∂x j
− Si j (x)

)2
.

In fact, the integrand G(x,∇ξi ) is the square of the Frobenius norm of the matrix

M =
{ ∂ξi

∂x j
− Si j

}
, i, j = 1, . . . , n ,

i.e.
G(x,∇ξi ) = tr{MT M} .
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The Euler–Lagrange equations derived from the minimization of the functional Ijw
have the form

∂

∂x j

( ∂ξi

∂x j
− Si j

)
= 0 , i, j = 1, . . . , n . (7.85)

These equations are elliptic and are, in fact, a variant of the Poisson system (6.15)
with

Pi = ∂

∂x j
Si j , i, j = 1, . . . , n .

Multiplying this system by ∂xk/∂ξi and summing the result over i , we obtain the
following transformed equation for the transformed dependent variable x(ξ),written
in vector form:

gi j
∂2x

∂ξiξ j
+ ∂

∂x j
(Si j )xξi = 0 . (7.86)

In accordance with (2.71),

∂

∂x j
Si j = 1

J

∂

∂ξk
(J S

ik
) , i, j, k = 1, . . . , n ,

where

S
ik = Si j

∂ξk

∂x j
, i, j, k = 1, . . . , n .

Hence, (7.86) can be written as follows:

gi j
∂2x

∂ξiξ j
+ 1

J

∂

∂ξ j
(J S

i j
)xξi = 0 . (7.87)

Analogously, a Jacobian-weighted functional Ijw,2, which measures the squared
departure of the Jacobi matrix {∂xi/∂ξ j } of the coordinate transformation x(ξ) from
the prescribed matrix {Si j (ξ)}, can be defined as

Ijw,2 =
∫

Ξ n

n∑
i, j=1

(∂xi

∂ξ j
− Si j

)2
dξ . (7.88)

The Jacobian-weighted functionals Ijw,1 and Ijw,2 can also be interpreted as one
more form for the functionals of alignment for vector fields. Let a vector field be
given by n vectors

vi (x) , i = 1, . . . , n , vi = (v1
i , . . . , v

n
i ) .

Then, the following form of a functional of grid attraction to the given vector field
can be defined:

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Ivf,3 =
∫
Xn

n∑
i=1

|∇ξi − vi |2dx . (7.89)

This functional is, in fact, the Jacobian-weighted functional (7.85) with

Si j = v
j
i , i, j = 1, . . . , n .

Note that the functionals of the form (7.84) and (7.88) are more efficient for
attracting grid lines to the corresponding vector fields than the functionals of the
type (7.89). This is because the former are concerned with attraction to the specified
directions only, while with the latter, an attraction to both the directions and the
specified lengths is required.

The form of the Jacobian-weighted functional gives a clear guideline for produc-
ing nonfolded grids. This guideline is based upon the following global univalence
theorem.

Theorem 1 Let F : U → Rn be a differentiable mapping, where U is the rectan-
gular region of Rn : U = {x : x ∈ Rn|ai ≤ xi ≤ bi }. If the Jacobian matrix of F
at x is positive for every x ∈ U, then F is globally one-to-one in U.

Recall that an n × n real matrix A is positive if every principal minor of A is
positive. Thus, in order to obtain one-to-one coordinate transformations, this theorem
suggests that one should use only positive matrices as the matrix S.

The minimization of the functional Ijw,1 generates a transformation ξ(x) whose
Jacobian matrix may be so close to the matrix S that the matrix {∂ξi/∂x j } is also
positive. Thus, the matrix {∂xi/∂ξ j } is positive as well, and in accordance with the
above theorem, the transformation x(ξ) : Ξ n → Xn is a one-to-one mapping.

7.6 Energy Functionals of Harmonic Function Theory

The theory of harmonic maps is useful for formulating variational grid generation
techniques which provide well-posed problems of grid generation.

7.6.1 General Formulation of Harmonic Maps

First, we consider the definition of a harmonic map between two general n-
dimensional Riemannian manifolds Xn and Zn with covariant metric tensors di j and
Di j in some local coordinates xi , i = 1, . . . , n, and zi , i = 1, . . . , n, respectively.

Every C1(Xn) map z(x) : Xn → Zn defines an energy density by the following
formula:
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e(z) = 1

2
di j (x)Dkl(z)

∂zk

∂xi
∂zl

∂x j
, i, j, k, l = 1, . . . , n , (7.90)

where {di j } is the contravariant metric tensor of Xn, i.e. di j d jk = δki .The total energy
associated with the mapping z(x) is then defined as the integral of (7.90) over the
manifold Xn:

E(z) =
∫
Xn

e(z)dXn . (7.91)

A transformation z(x) of class C2(Xn) is referred to as a harmonic mapping if it
is a critical point of the functional of the total energy (7.91). The Euler–Lagrange
equations whose solution minimizes the energy functional (7.91) are given by

1√
d

∂

∂xk

(√
ddkj ∂zl

∂x j

)
+ dkjΓ l

mp

∂zm

∂xk
∂z p

∂x j
= 0 , (7.92)

where d = det(di j ) and Γ l
mp are Christoffel symbols of the second kind on the

manifold Zn :
Γ l
mp = 1

2
Dlj

(∂Djm

∂z p
+ ∂Djp

∂zm
− ∂Dmm

∂z j

)
. (7.93)

The following theorem guarantees the uniqueness of the harmonic mapping.

Theorem 2 Let Xn, with metric di j , and Zn, with metric Di j , be two Riemannian
manifolds with boundaries ∂Xn and ∂Zn, and let φ : Xn → Zn be a diffeomor-
phism. If the curvature of Zn is nonpositive and ∂Zn is convex (with respect to the
metric Di j ), then there exists a unique harmonic map z(x) : Xn → Zn such that
z(x) is a homotopy equivalent to φ. In other words, one can deform z to φ by
constructing a continuous family of maps gt : Xn → Zn, t ∈ [0, 1], such that
g0(x) = φ(x), g1(x) = z(x), and gt (x) = z(x) for all x ∈ ∂Xn .

7.6.2 Application to Grid Generation

In application of the harmonic theory to grid generation, the manifold Zn is assumed
to correspond to the computational domain Ξ n , with a Euclidean metric Di j = δij .
Since the Euclidean space Ξ n is flat, i.e. it has zero curvature, and the domain Ξ n

is constructed by the user, both requirements of the above theorem can be satisfied.
For the manifold Xn , one uses a set of the points of a physical domain Xn with an
introduced Riemannian metric di j . The functional of the total energy (7.91) then has
the form

E(ξ) = 1

2

∫
Xn

(√
ddkl ∂ξi

∂xk
∂ξi

∂xl

)
dx , i, k, l = 1, . . . , n. (7.94)
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And for the Euler–Lagrange equations (7.92), we have

1√
d

∂

∂xk

(√
ddkj ∂ξi

∂x j

)
= 0 , i, j, k = 1, . . . , n, (7.95)

since, from (7.93), Γ l
mp = 0. The left-hand part of (7.95) is the Beltrami operator

ΔB, so (7.95) is equivalent to
ΔB(ξ) = 0 . (7.96)

Equation (7.95), in contrast to (7.92), are linear and of elliptic type, and have a
conservative form. Therefore, they satisfy the maximum principle, and the Dirichlet
boundary value problem is a well-posed problem for this system of equations, i.e.
the above theorem is proved very easily for the functional (7.94).

Equation (7.95) can be reformulated with interchanged dependent and indepen-
dent variables in the typical manner, by multiplying the system by ∂xl/∂ξi and
summing over i. As a result, we obtain

d
km ∂2xl

∂ξk∂ξm
− 1√

d

∂

∂xk
(
√
ddkl) = 0 , k, l,m = 1, . . . , n , (7.97)

where

d
km = di j ∂ξk

∂xi
∂ξm

∂x j
, i, j, k,m = 1, . . . , n,

are the elements of the contravariant metric tensor of the Riemannian manifold Xn

in the coordinates ξi .

7.6.3 Relation to Other Functionals

Some of the functionals given earlier are identical to the functionals of energy (7.91)
and (7.94). For example, the smoothness functional (7.41) is the functional of the
form (7.94) with the Euclidean metric di j = δij in Xn.

Analogously, the diffusion functional (7.64) can be interpreted as the functional
(7.94), with the contravariant metric tensor di j in Xn satisfying the condition

√
ddi j = wδij , i, j = 1, . . . , n .

From this relation, we readily obtain

di j = w2/(n−2)δij , i, j = 1, . . . , n .
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Thus, di j = w2δij for n = 3. The above formula fails to define the corresponding
metric in the two-dimensional domain X2.However, the formulation of the diffusion
functional (7.64) as the energy functional (7.94) can be accomplished by using the
Euclidean metric in Xn and the Riemannian metric in Ξ n for arbitrary n, by setting

Di j = wδij , i, j = 1, . . . , n .

The functional of inhomogeneous diffusion (7.65) can be interpreted in a similar
manner by taking

di j = wδij , Di j = wiδ
i
j , i, j = 1, . . . , n .

Similarly, the functionals (7.62), (7.63), and (7.73) can be identified with the
functional of energy (7.94).

Other applications of the functionals of energy to generate surface and hypersur-
face grids will be discussed in Chaps. 8 and 9.

7.7 Combinations of Functionals

The functionals described in Sects. 8.2, 8.3, 8.4, 8.5 and 8.6 are used to control and
realize various grid properties. This is carried out by combining these functionals
with weights in the form

I =
∑
i

λi Ii , i = 1, . . . , k . (7.98)

Here, λi , i = 1, . . . , k, are specified parameters which determine the individual con-
tribution of each functional Ii to I. The ranges of the parameters λi controlling the
relative contributions of the functionals can be defined readily when the functionals
Ii are dimensionally homogeneous. However, if they are dimensionally inhomoge-
neous, then the selection of a suitable value for λi presents some difficulties. A
common rule for selecting the parameters λi involves making each component λi Ii
in (7.98) of a similar scale by using a dimensional analysis.

The most common practice in forming the combination (7.98) uses both the func-
tionals of adaptation to the physical solution and the functionals of grid regularization.
The first reason for using such a strategy is connected with the fact that the process
of adaptation can excessively distort the form of the grid cells. The distortion can be
prevented by functionals which impede cell deformation. These functionals are ones
which control grid skewness, smoothness, and conformality. The second reason for
using the regularization functionals is connected with the natural requirement for the
well-posedness of the grid generation process. This requirement is achieved through
the utilization of convex functionals in variational grid generators. The convex func-

http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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tionals are represented by energy-type functionals, producing harmonic maps, and
by the functionals of conformality.

The various functionals described above provide broad opportunities to control
and realize the required grid properties, though problems still remain; these require
more detailed studies of all properties of the functionals. The knowledge of these
properties will allow one to utilize the functionals as efficient tools for generating
high-quality grids.

7.7.1 Natural Boundary Conditions

In order to achieve the desired result more efficiently when generating grids through
the variational approach, one needs to adjust the boundary conditions to the resulting
Euler–Lagrange equations. As an illustration, we can consider the process of gener-
ating two-dimensional conformal grids with the Laplace equations derived from the
functional of conformality (7.30). A conformal grid is not obtained with arbitrary
boundary conditions, but only with strictly specified ones.

The natural boundary conditions for the Euler–Lagrange equations yielded by
functionals are those for which the boundary contribution to the variation is zero.
The natural boundary conditions are derived in the typical way, by writing out the
first variation of the functional.

7.8 Comments

A detailed description of the fundamentals and theoretical results of the calculus of
variations can be found in the monographs by Gelfand and Fomin (1963) and by
Ladygenskaya and Uraltseva (1973).

Liseikin and Yanenko (1977), Danaev et al. (1978), Ghia et al. (1983), Brackbill
and Saltzman (1982) and Bell and Shubin (1983) have each used the variational
principle for grid adaptation.

The diffusive form of the adaptive functional (7.64) was formulated originally
by Danaev et al. (1980) and Winslow (1981). A generalization of this functional
to (7.65) with an individual weight function for each direction was realized by
Eiseman (1987) and Reed et al. (1988). The most general variational formulation
of the modified anisotropic diffusion approach was presented by Hagmeijer (1994).
A variational principle for the Jacobian-weighted functional was formulated, stud-
ied, and developed by Knupp (1995, 1996) and Knupp et al. (2002). A considarable
amount of work in determining and studying the conditions required to guarantee
invertibility of coordinate transformations was published by Pathasarathy (1983) and
Clement et al. (1996).
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The functional measuring the alignment of the two-dimensional grid with a speci-
fied vector field was formulated byGiannakopoulos and Engel (1988). The extension
of this approach to three dimensions was discussed by Brackbill (1993).

A variational method optimizing cell aspect ratios was presented and analyzed by
Mastin (1992). A dimensionally homogeneous functional of two-dimensional grid
skewness was proposed by Steinberg and Roache (1986).

The property of eccentricity for the univariate transformation x(ξ) was intro-
duced by Sidorov (1966), while a three-dimensional extension was performed by
Serezhnikova et al. (1989). A form of smoothness based on the eccentricity term was
developed by Winkler et al. (1985).

The variational formulation of grid properties was described by Warsi and
Thompson (1990).

The geometric interpretation of the approximation (7.52) was given by Steinberg
and Roache (1986).

The introduction of the volume-weighted functional was originally proposed in
two dimensions by Yanenko et al. (1977).

The approach of determining functionals which depend on invariants of orthogo-
nal transformations of the metric tensor {gi j }, to ensure that the problems are well-
posed and to obtain more compact formulas for the Euler–Lagrange equations, was
proposed by Jacquotte (1987). In his paper, the grids were constructed through func-
tionals obtained by modeling different elastic and plastic properties of a deformed
body.

The metric-weighted functional was formulated by Belinsky et al. (1975) for the
purpose of generating quasiconformal grids.

The possibility of using harmonic function theory to provide a general framework
for developing multidimensional mesh generators was discussed by Dvinsky (1991).
The interpretation of the functional of diffusion as a version of the energy functional
was presented by Brackbill (1993). A detailed survey of the theory of harmonic
mappings was published by Eells and Lenaire (1988).
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Chapter 8
Curve and Surface Grid Methods

8.1 Introduction

Curvilinear lines and surfaces are common geometrical objects in both structured
and unstructured grid generation techniques. Curves appear in grid considerations
as the boundary segments of two-dimensional domains or surface patches and as the
edges of three-dimensional blocks. Surfaces arise as the boundary segments and/or
faces of three-dimensional domains or blocks.

The main goal of grid generation on a curve is to provide boundary data for
boundary-fitted grid generators for two-dimensional planar domains and surfaces.
Analogously, surface grid generation is needed chiefly to build grids on the bound-
aries of three-dimensional domains or blocks in order to provide boundary data for
volume grid techniques.

In the mapping concept, grid generation on a surface follows the construction
of a set of surface patches, specification of a parametrization for every patch, and
generation of one-dimensional curve grids on the edges of the surface patches to
provide the boundary conditions for the surface grid generator. In fact, for the purpose
of simplicity and for maintaining adherence of the surface grid techniques to the
physical geometry, the grid is commonly generated in a parametric two-dimensional
domain and then mapped onto the original patch of the surface.

Thus, the process of surface grid generation through the mapping approaches may
be divided into three steps: forward mapping, grid generation, and backward map-
ping. The forward mapping is a representation of the background surface patch from
a three-dimensional physical domain to a two-dimensional parameter area. Once the
forward mapping is complete, the grid is generated in the parameter space and then
mapped back into the physical space (backward mapping). A surface patch is formed
as curvilinear triangle, trapezoid or a quadrilateral, with three or four boundary seg-
ments, respectively. The corresponding parametric domain may also have the shape
of a triangle or a quadrilateral with curved boundary edges. The backward transfor-
mation from the parametric domain to the patch is defined by specifically adjusted
interpolations. The specification depends on variations in surface features.
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The generation of the grid on the parametric domain is derived through the same
types of approach – algebraic, differential, and variational – as those which were
described for planar domains. However, these approaches are adjusted by including
the necessary surface characteristics, expressed in terms of the surface quadratic
forms (see Sect. 3.3), to satisfy the required grid properties on the surface.

This chapter gives a review of some advanced techniques of curve and surface
grid generation based on parametric mapping approaches.

8.2 Grids on Curves

Methods for generation of grids on curves are the simplest to formulate and ana-
lyze. These methods provide the background for the development of surface grid
techniques. Some common mapping approaches to grid generation on curves are
discussed in this section.

8.2.1 Formulation of Grids on Curves

A curve in n-dimensional space is represented parametrically by a smooth, nonsin-
gular, vector-valued function from a normalized interval [0,1]:

x(ϕ) : [0, 1] → Rn , x(ϕ) = [x1(ϕ), . . . , xn(ϕ)] . (8.1)

Let the curvewith the parametrization x(ϕ) be designated by Sx1.The transformation
(8.1) provides a discrete grid on the curve Sx1 by mapping the nodes of a uniform
grid in the interval [0, 1] into Sx1 with r(ϕ), i.e. the grid points xi , i = 0, 1, . . . , N ,

are defined as
xi = x(ih) , h = 1/N .

However, the need to produce a grid with particular desirable properties requires the
introduction of a control tool. Such control of the generation of a curve grid is carried
out with strongly monotonic and smooth intermediate transformations

ϕ(ξ) : [0, 1] → [0, 1] , (8.2)

which generate the grid nodes ϕi on the interval [0, 1], where

ϕi = ϕ(ih) , i = 0, 1, . . . , N , h = 1/N .

The transformation ϕ(ξ) is chosen in such a way that the composition

x[ϕ(ξ)] : [0, 1] → Rn , (8.3)

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Fig. 8.1 Scheme of generation of a curve grid

which represents a new parametrization of Sx1, generates the grid nodes

xi = x[ϕ(ih)] = x(ϕi ) , i = 0, 1, . . . , N , h = 1/N , (8.4)

with the desired properties. Figure8.1 demonstrates the scheme of the generation of
a curve grid.

Thus, the process of grid generation on a curve is turned into the definition of
an intermediate transformation ϕ(ξ) so as to provide a suitable parametrization of
the curve. One such natural transformation is connected with the scaled arc length
parameter ξ which, in analogy with (3.2), is defined by

ξ(ϕ) = 1

c

∫ ϕ

0

√
gxϕdx , c =

∫ 1

0

√
gxϕdx , (8.5)

where

gxϕ = xϕ · xϕ = |xϕ|2 .

The function ϕ(ξ), inverse to ξ(ϕ), is subject to the condition

dϕ

dξ
= c√

gxϕ
. (8.6)

Therefore, we have, for the grid nodes ϕi = ϕ(ih) in the interval [0, 1], the relation
ϕi+1 − ϕi

h
≈ dϕ

dξ
= c√

gxϕ
, i = 0, 1, . . . , N , h = 1/N , (8.7)

and consequently we obtain, for the grid nodes xi on the curve Sx1,

|xi+1 − xi | ≈ |xϕ|(ϕi+1 − ϕi ) ≈ ch , i = 0, 1, . . . , N , h = 1/N . (8.8)

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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Equations (8.6)–(8.8) are examples of the equidistribution principle considered in
Sect. 4.3, which is based on a specification of distances between the grid points in
accordance with a rule of inverse proportionality to a weight function.

8.2.2 Grid Methods

The main approach to generating one-dimensional grids on curves is based on a
specification of the grid step spacing. The approach is realized by direct reparame-
trization of the curvewith suitable univariate intermediate transformationsϕ(ξ), such
as the ones considered in Chap.4, or by the formulation of equations and functionals
through the first derivative of the intermediate transformations.

Differential Approach

The simplest differential method for the definition of an intermediate transformation
ϕ(ξ) relies on the solution of the initial-value problem in the form of (8.6)

dϕ

dξ
= c

F(ϕ)
, 0 < ϕ ≤ 1 ,

ϕ(0) = 0 , c =
∫ 1

0
F(ϕ)dϕ , (8.9)

where F(ϕ) is a nonnegative function specified by the user. Differentiation of (8.9)
with respect to ξ allows one to eliminate the constant c and obtain the two-point
boundary value problem

d

dξ

(dϕ
dξ

F(ϕ)
)

= 0 , 0 < ϕ < 1 ,

ϕ(0) = 0 , ϕ(1) = 1 . (8.10)

Equations (8.9) and (8.10) represent the formulation of the equidistribution principle
of Chap.4. Taking advantage of (8.6)–(8.8), we see that the solution of (8.9) or
(8.10) produces a grid on the curve Sx1 with a grid spacing inversely proportional to√

gxϕF(ϕ). Thus, in the weight-concept formulation

|xi+1 − xi |
h

≈ c1
w(ϕi )

, i = 0, . . . , N − 1 ,

we obtain

F(ϕ) = w(ϕ)
√

gxϕ , (8.11)

which, in the case w(ϕ) = 1, corresponds to the scaled-arc-length parametrization
(8.6).

http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_4
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The weight function w(ϕ) is specified by the user in accordance with the require-
ment to cluster the grid points in the zones of particular interest. It can be defined
through the derivatives of the physical quantities or through themeasures of the curve
features described in Sect. 3.5, in particular, through the metric tensor gxϕ, curvature
k, or tension τ . The specification determines the concentration of the curve grid,
which becomes larger in the areas of large values of the weight function.

Variational Approach

In accordance with the results of Chap. 7, the differential formulation (8.10) of the
equidistribution principle is obtained from the minimization of the functional

I =
∫ 1

0

1

F(ϕ)

( dξ

dϕ

)2
dϕ , (8.12)

whose Euler–Lagrange equations

∂

∂ϕ

( dξ

dϕ

1

F(ϕ)

)
= 0

(see Sect. 7.2) are equivalent to (8.10). Taking advantage of (8.11), we obtain an
equivalent form of (8.12) through the weight function w(ϕ) :

I =
∫ 1

0

1

w(ϕ)
√

gxϕ

( dξ

dϕ

)2
dϕ =

∫
Sx1

1

gxϕw(ϕ)

( dξ

dϕ

)2
dSx1

=
∫
Sx1

1

gxξw(ϕ)
dSx1 , (8.13)

where

gxξ = dx[ϕ(ξ)]
dξ

· dx[ϕ(ξ)]
dξ

= xϕ · xϕ

(dϕ
dξ

)2 = gxϕ
(dϕ
dξ

)2
.

In analogy with the differential approach, the weight function w(ϕ) in (8.13) is
defined by the values of the solution or its derivatives and/or by the curve quality
measures.

Monitor Formulation

The monitor approach for controlling the grid steps on a curve Sx1 relies on the
introduction of amonitor curvewhich is defined by the values of some vector function
f : Xn → Rk, f (x) = [ f 1(x), . . . , f k(x)], over the curve, where Xn is a domain
containing the curve. The parameter function (8.1) and f (x) define a parametrization
r(ϕ) of the monitor curve designated by Sr1 :

r(ϕ) : [0, 1] → Rn+k , r(ϕ) = [r1(ϕ), . . . , rn+k(ϕ)] , (8.14)

http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
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where

r i (ϕ) = xi (ϕ) , i = 1, . . . , n , rn+ j (ϕ) = f j [x(ϕ)] , j = 1, . . . , k .

We obtain

grϕ = gxϕ + g f ϕ , (8.15)

where

g f ϕ = d f [x(ϕ)]
dϕ

· d f [x(ϕ)]
dϕ

= ∂ f j

∂xl
∂ f j

∂xm
dxl

dϕ

dxm

dϕ
,

j = 1, . . . , k , l,m = 1, . . . , n .

In the monitor approach, the grid on the curve Sx1 is obtained by mapping a uni-
form grid on Sr1 with the projection function P : Rn+k → Rn (P(x1, . . . , xn+k) =
(x1, . . . , xn)) . The uniform grid on Sr1 is derived by means of the arc-length
approach, realized with the initial-value problem (8.6), with the two-point boundary
value problem (8.10), or with the variational problem (8.12) for F(ϕ) = √

grϕ. As
a result, we have for the intermediate transformation ϕ(ξ)

d

dξ

(dϕ
dξ

√
grϕ

)
= 0 , 0 < ξ < 1 ,

ϕ(0) = 0 , ϕ(1) = 1, (8.16)

with grϕ specified by (8.15). The transformation x[ϕ(ξ)] defines the grid on the
surface Sx1, which coincides with the grid projected from Sr1. Since

|xi+1 − xi |
h

≈
∣∣∣ dx
dϕ

∣∣∣dϕ
dξ

=
√

gxϕ

√
grϕ

= 1√
1 + g f ϕ/gxϕ

,

the monitor approach provides node clustering in the zones of large values of g f ϕ

and, consequently, where the derivatives of the function f (x) are large.
Note that in accordance with (8.13), the variational formulation of the monitor

approach is given by the functional

I =
∫
Sr1

1

grϕ
dSr1 . (8.17)

8.3 Formulation of Surface Grid Methods

It is assumed in this chapter that the surface under consideration lies in the Euclidean
space R3. Without loss of generality, we suggest that the surface, denoted as Sx2, is
locally represented by a parametrization
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x(s) : S2 → R3 , x(s) = [x1(s), x2(s), x3(s)] , s = (s1, s2) , (8.18)

where S2 is a two-dimensional parametric domain with the Cartesian coordinates
s1, s2, while x(s) is a smooth, nondegenerate function.

8.3.1 Mapping Approach

The generation of a grid on the surface Sx2 is based on the introduction of a standard
computational domain Ξ 2 with a reference grid and a one-to-one transformation

s(ξ) : Ξ 2 → S2 , s(ξ) = [s1(ξ), s2(ξ)] , ξ ∈ Ξ 2 . (8.19)

This mapping (8.19), in fact, generates a grid in the two-dimensional domain S2.
However, a required grid on the surface Sx2 is defined by mapping some reference
grid in Ξ 2 onto Sx2 by the composite transformation

x[s(ξ)] : Ξ 2 → Sx2 , (8.20)

or, equivalently, by mapping with x(s) the grid generated in S2 by some suitable
transformation s(ξ) : Ξ 2 → S2 (see Fig. 8.2).

Fig. 8.2 Framework for generation of triangular surface grids
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Thus, the problem of the generation of a surface grid is turned into the problem
of choosing an appropriate computational domain Ξ 2 with a suitable reference grid
and of constructing an adequate transformation between the computational and the
parametric two-dimensional domains.

Some techniques for generating two-dimensional coordinate transformations of
domains were considered in Chaps. 4–7. However, the direct application of the
approaches discussed above to the generation of two-dimensional planar grids may
not lead to satisfactory grids on the surface, since the grid on the surface, obtained by
the backwardmapping x(s),may become significantly distorted because of the map-
ping. The formulation of the proper methods should take into account the geometric
features of the surface under consideration and properties of the parametrization
x(s).

8.3.2 Associated Metric Relations

The features of the surface are described through the first and second fundamental
forms (Sect. 3.3), in particular, by the metric elements which are derived from the
dot products of the tangential vectors to the coordinate lines.

The scheme of grid generation on the surface Sx2 implies, in fact, two parame-
trizations of the surface: the original parametrization x(s) with the parametric space
S2 and the final one x[s(ξ)]with the parametric spaceΞ 2. The original parametriza-
tion is considered to be an input, while the final parametrization x[s(ξ)] is an output
of the surface grid generation process. The role of the intermediate transformation
s(ξ) is to correct the drawbacks of the original mapping x(s) by transforming it into
x[s(ξ)], which should generate a grid with the properties required by the user.

The covariant metric tensor of the surface in the coordinates ξ1, ξ2, denoted by

Gxξ = {gxξ
i j } , i, j = 1, 2,

is defined by the dot product of the tangent vectors xξi = ∂x(s)/∂ξi (ξ), i = 1, 2,
i.e.

g
xξ
i j = xξi · xξ j , i, j = 1, 2 .

Analogously, the elements of the covariant metric tensor

Gxs = {gxs
i j } , i, j = 1, 2 ,

in the coordinates si , i = 1, 2, are expressed in the following form:

gxs
i j = ∂x

∂si
· ∂x
∂s j

, i, j = 1, 2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_4
http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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It is clear that

g
xξ
i j = gxs

mk

∂sm

∂ξi
∂sk

∂ξ j
,

gxs
i j = g

xξ
mk

∂ξm

∂si
∂ξk

∂s j
, i, j, k,m = 1, 2 , (8.21)

using the convention of summation over repeated indices.
The contravariant metric tensor of the surface in the coordinates ξi , i = 1, 2,

denoted by

Gξx = {gi jξx } , i, j = 1, 2 ,

and in the coordinates si , i = 1, 2, written as

Gsx = {gi jsx } , i, j = 1, 2 ,

is the matrix inverse to Gxξ and Gxs, respectively. Thus,

g
i j
ξx = (−1)i+ jg

xξ
3−i 3− j/g

xξ , g
xξ
i j = (−1)i+ jgxξg

3−i,3− j
ξx ,

gi jsx = (−1)i+ jgxs
3−i 3− j/g

xs , gxs
i j = (−1)i+ jgxsg3−i,3− j

sx , (8.22)

where i, j = 1, 2, and

gxξ = det Gxξ , gxs = detGxs .

Note that here, on the right-hand side of every relation in (8.22), the summation
convention is not applied over i and j.

Similarly to (8.21), the elements of the contravariant metric tensor in the coordi-
nates ξi and si , i = 1, 2, are connected by the relations

g
i j
ξx = gmk

sx

∂ξi

∂sm
∂ξ j

∂sk
,

gi jsx = gmk
ξx

∂si

∂ξm
∂s j

∂ξk
, i, j, k,m = 1, 2 . (8.23)

These relations and (8.21) readily yield

gi isr = gmk
ξx g

sξ
mk , i, j, k,m = 1, 2 ,

gxξ = gxsgsξ , (8.24)
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where g
sξ
mk, k,m = 1, 2, are the elements of the covariant metric tensor of S2 in the

coordinates ξi , i.e. gsξmk = sξm · sξk , while gsξ = det{gsξi j } = det2{∂si/∂ξ j }.
Now we proceed to the description of some advanced grid generation techniques

for the generation of grids on the surface Sx2.

8.4 Beltramian System

It is desirable to develop methods of surface grid generation which are invariant of
the parametrizations x(s) : S2 → Sx2. One such surface grid generation system is
obtained from the Beltrami second-order differential operator.

8.4.1 Beltramian Operator

The Beltrami operator ΔB is defined as

ΔB[ f ] = 1√
gxs

∂

∂s j
(
√

gxsgmj
sr

∂

∂sm
f ) , j,m = 1, 2 . (8.25)

When Sx2 is a plane and the coordinate system s1, s2 is orthonormal, i.e. gxs
i j = g

i j
sx =

δij , then (8.25) is the Laplace operator. Thus, the operator (8.25) is a generalization
of the Laplacian on a surface.

The Beltrami operator does not depend on the parametrization of the surface. For
instance, let ui , i = 1, 2, be another parametrization. Taking into account the general
relation (2.57), we obtain, for arbitrary smooth functions A1 and A2,

∂A j

∂s j
= 1√

gsu
∂

∂uk

(√
gsu Am ∂uk

∂sm

)
, i, j, k,m = 1, 2 , (8.26)

where

√
gsu = det

{ ∂si

∂um

}
, i,m = 1, 2 .

Assuming

A j = √
gxsgmj

sr

∂

∂sm
f , j = 1, 2 ,

we have, from (8.25),

1√
gxs

∂A j

∂s j
= ΔB[ f ] , j = 1, 2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Therefore, (8.26) yields

ΔB[ f ] = 1√
gru

∂

∂u j

(√
grugmp

sr

∂u j

∂s p
∂uk

∂sm
∂ f

∂uk

)
, j, k,m, p = 1, 2 ,

where gru = gxsgsu . Thus, using (8.23), we obtain

1√
gxs

∂

∂s j

(√
gxsgmj

sr

∂

∂sm
f
)

= 1√
gru

∂

∂u j

(√
grug jk

ur

∂ f

∂uk

)
, j, k,m = 1, 2 .

So, the value of the operator ΔB at a function f does not depend on any parame-
trization of the surface Sx2.

8.4.2 Surface Grid System

A surface grid system can be formed, in analogy with the Laplace system (6.5), by
the Beltrami equations with respect to the components ξi (s) of the inverse mapping
of the intermediate transformation s(ξ) :

ΔB[ξi ] = 0 , i = 1, 2 ,

i.e. taking advantage of (8.25),

1√
gxs

∂

∂s j

(√
gxsgmj

sr

∂ξi

∂sm

)
= 0 , i, j,m = 1, 2 . (8.27)

The system (8.27) is a generalization of the two-dimensional Laplace system (6.5)
applied to the generation of planar grids. As in the case of the Laplace equations,
the solution to a Dirichlet boundary value problem for (8.27) satisfies the conditions
necessary for efficient surface grid generation. In particular, if the computational
domain Ξ 2 is chosen to be convex, then the values of the function ξ(s) satisfying
(8.27) lie inΞ 2 if ξ(s)maps the boundary of S2 onto the boundary ofΞ 2.Moreover,
the transformation ξ(s) is a one-to-one transformation if it is homeomorphic on the
boundary. This is the main justification for the formulation of (8.27) with respect to
the inverse transformation ξ(s).

In order to generate a grid on S2, the system (8.27) is inverted to interchange
its dependent and independent variables. This is done in the typical manner, by
multiplying the system by ∂sl/∂ξi and summing over i. Thus, we obtain

1√
gxs

∂

∂s j

(√
gxsgmj

sr

∂ξi

∂sm

)∂sl

∂ξi

= −g
mj
sr

∂ξi

∂sm
∂ξk

∂s j

∂2sl

∂ξi∂ξk
+ 1√

gxs

∂

∂s j
(
√

gxsgl jsr ) = 0 , i, j, k, l,m = 1, 2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_6
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So, taking into account (8.23), the system (8.27) is transformed into the following
nonlinear system with respect to the dependent variables si (ξ):

g
i j
ξx

∂2sl

∂ξi∂ξ j
= 1√

gxs

∂

∂si
(
√

gxsgilsr ) , i, j, l = 1, 2 . (8.28)

We shall refer to these equations as the inverted Beltrami equations.
The right-hand part of (8.28) is, in fact, the value of the Beltrami operator applied

to the function sl ; thus, the system (8.28) can be written out as follows:

g
i j
ξx

∂2sl

∂ξi∂ξ j
= ΔB[sl] , i, j, l = 1, 2 .

Taking advantage of (8.22), the system (8.28) is transformed into a system whose
coefficients are determined by the elements of the metric tensors {gxξ

i j } and {gxs
i j }:

Bxξ
2 [sl] = (−1)l

gxξ

√
gxs

( ∂

∂s2
gxs
3−l 1√
gxs

− ∂

∂s1
gxs
3−l 2√
gxs

)
, l = 1, 2 , (8.29)

where Bxξ
2 is an operator defined as follows:

Bxξ
2 [y] = g

xξ
22

∂2y

∂ξ1∂ξ1
− 2gxξ

12

∂2y

∂ξ1∂ξ2
+ g

xξ
11

∂2y

∂ξ2∂ξ2
.

In particular, let the surface Sx2 be a monitor surface formed by the values of a
scalar height function u(s), and consequently be represented by the parametrization

x(s) = [s1, s2, u(s)] .

Then, we obtain

gxs
i j = δij + usi us j , gi jsx = (−1)i+ j

δij + us3−i us3− j

1 + (us1)2 + (us2)2
, i, j = 1, 2 ,

gxs = 1 + (us1)
2 + (us2)

2 , gxξ = J 2gxs , J = det{∂si/∂ξ j }

without summing over i and j , and correspondingly,

ΔB[sl] =
( (−1) j+l√

1 + (us1)2 + (us2)2

) ∂

∂s j

( δ
j
l + us3− j us3−l√

1 + (us1)2 + (us2)2

)
, j, l = 1, 2 ,
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with l fixed. Thus, the system (8.29) has, in this case, the form

Bxξ
2 [sl] = (−1)k+l J 2

√
1 + (us1)2 + (us2)2

∂

∂sk

( δkl + us3−k us3−l√
1 + (us1)2 + (us2)2

)
,

i, j, k, l = 1, 2 , l fixed .

One more equivalent form of the system (9.29) in this case is as follows:

Bxξ
2 [sl] + Bxξ

2 [u1] ∂u

∂sl
= 0 , l = 1, 2 ,

where u1(ξ) = u[s(ξ)].
The right-hand sides of the systems (8.28) and (8.29) are defined through the

metric elements of the original surface parametrization in the coordinates si , i =
1, 2, and do not depend on the transformation s(ξ) : Ξ 2 → S2; therefore, they can
be computed in advance or at a previous step of an iterative solution procedure.

The values of the numerical solution of a boundary value problem for (8.28) or
(8.29) on a reference grid in Ξ 2 define a grid in the parametric domain S2. The
final grid on the surface Sx2, generated through the inverted Beltrami system (8.28),
is obtained by mapping the above grid with the original parametric transformation
x(s).

8.5 Interpretations of the Beltramian System

Equations (8.27) are a generalization of the two-dimensional Laplace system on a
surface. In this section, we give some interpretations and justifications of the systems
(8.27)–(8.29) concerned with grid generation.

8.5.1 Variational Formulation

As was shown in Sect. 7.2, the Laplace system (6.5) for generating grids in domains
can be obtained from the minimization of the functional of smoothness

Is =
∫

Xn

( n∑
i=1

gi i
)
dx , gi j =

n∑
m=1

∂ξi

∂xm
∂ξ j

∂xm
. (8.30)

A similar functional, whose Euler–Lagrange equations are equivalent to (8.27), can
be formulated for the Beltrami equations as well. This functional has the form of
(8.30), with gi i and Xn replaced by gi iξx and Sx2, respectively:

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_6
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Is =
∫

Sx2

( 2∑
i=1

gi iξr

)
dSx2 =

∫

Sx2

(
tr Gξx

)
dSx2 . (8.31)

In order to write out the Euler–Lagrange equations for this functional, we consider
the integration over S2. We obtain, using (8.23) and the relation dSx2 = √

gxsds,

Is =
∫

S2

√
gxsgmk

sr

∂ξi

∂sm
∂ξi

∂sk
ds , i, k,m = 1, 2 . (8.32)

The functional (8.32) is formulated on a set of smooth functions ξi (s), and the terms√
gxsgmk

sr of its integrand are defined through the metric elements of the original
parametrization x(s), and therefore do not depend on these functions. So, the Euler–
Lagrange equations derived from the functional (8.32) have the formof (7.6), namely,

∂

∂s j

(√
gxsgmj

sr

∂ξi

∂sm

)
= 0 , i, j,m = 1, 2 , (8.33)

and they are equivalent to (8.27). This variational formulation allows one to generate
surface grids through a variational method. For this purpose, the functional (8.31)
written out with respect to the integral over the domain Ξ 2,

Is =
∫

Ξ 2

1√
gxξ

(g
xξ
11 + g

xξ
22 )dξ ,

is used.

8.5.2 Harmonic-Mapping Interpretation

The integral (8.31), and consequently (8.32), according to the accepted terminology
in differential geometry, is the total energy associated with the function ξ(s) : S2 →
Ξ 2 which represents a mapping between the manifold Sx2 with the metric tensor
gxs
i j and the computational domain Ξ 2 with the Cartesian coordinates ξi . A function
which is a critical point of the energy functional is called a harmonic function.
It follows from the theory of harmonic functions on manifolds that if there is a
diffeomorphism f (s) : S2 → Ξ 2 and the boundary of the manifold Ξ 2 is convex,
while its curvature is nonpositive, then a harmonic function coinciding with f on
the boundary of the manifold Sx2 is also a diffeomorphism between S2 and Ξ 2.
In the case under consideration, the coordinates of the manifold Ξ 2 are Cartesian,
and therefore its curvature is nonpositive. So, if the boundary of the computational
domain Ξ 2 is convex (e.g. Ξ 2 is a rectangle) and the surface Sx2 is diffeomorphic to
Ξ 2, then the mapping ξ(s) that minimizes the functional of smoothness (8.32) is a

http://dx.doi.org/10.1007/978-3-319-57846-0_7
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one-to-one transformation and the grid obtained by the proposed variational method
is therefore nondegenerate.

8.5.3 Formulation Through Invariants

We note that, in accordance with (3.31), the trace tr Gξx of the contravariant 2 ×
2 metric tensor can be expressed through the invariants I1, I2 of the orthogonal
transforms of the covariant metric tensor Gxξ, namely,

tr Gξx = I1
I2

.

Therefore, the functional of smoothness (8.31) can also be expressed through these
invariants:

Is =
∫

Sx2

( I1
I2

)
dSx2 . (8.34)

The invariant I2 is the Jacobian of the matrix Gxξ and it equals the area squared
of the parallelogram formed by the tangent vectors xξ1 and xξ2 . The invariant I1 is
qxξ
11 + qxξ

22 andmeans the sum of the lengths squared of the sides of the parallelogram.
So,

I1
I2

= g
xξ
11 + g

xξ
22

gxξ
. (8.35)

It is obvious that
gxξ = g

xξ
11 (d2)

2, gxξ = g
xξ
22 (d1)

2 ,

where di , i = 1, 2, is the distance between the vertex of the vector xξi and the other
vector xξ j , j = 3 − i. Therefore, from (8.35),

I1
I2

= 1

(d1)2
+ 1

(d2)2
. (8.36)

The quantity di is connected with the distance li between the grid lines ξi = c and
ξi = c + h by the relation

li = dih + O(h)2 .

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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So, from (8.36),

I1
I2

=
2∑

i=1

(h/ li )
2 + O(h) .

The quantity (h/ li )2 increases as the grid nodes cluster in the direction normal
to the coordinate ξi = const, and therefore it can be considered as some measure
of the grid concentration in this direction and, consequently, the functional (8.34)
defines an integral measure of the surface grid clustering in all directions. Hence, the
problem of the minimization of the smoothness functional (8.31) can be interpreted
as a problem of finding a grid with uniform clustering on the surface Sx2. So, the
Beltrami equations (8.27) tend to generate a uniform grid on the surface in the same
manner as the system of the Laplace equations does in a domain.

8.5.4 Formulation Through the Surface Christoffel Symbols

Equivalent forms of the surface system of equations (8.27) and (8.28) can be obtained
by a consideration of the formulas of Gauss. These formulas represent the derivatives
of the tangential vectors xξ1 and xξ2 through the basis (xξ1 , xξ2 , n), where n is a
unit normal to the surface.

Surface Gauss Equations

In accordance with (2.6), we can write

xξi ξ j = alm(xξi ξ j · al)am , i, j = 1, 2 , l,m = 1, 2, 3 , (8.37)

where a1 = xξ1 , a2 = xξ2 , a3 = n, and {alm} is the matrix inverse to {akp} = {ak ·
a p}. We readily obtain, for the elements of the matrix {ai j },

ai j = g
xξ
i j , ai3 = a3i = 0 , i, j = 1, 2 , a33 = 1 .

Therefore,

ai j = g
i j
ξx , ai3 = a3i = 0 , a33 = 1 , i, j = 1, 2 . (8.38)

Thus, (8.37) results in

xξi ξ j = gkmξx (xξi ξ j · rξm)xξk + (xξi ξ j · n)n , i, j, k,m = 1, 2 . (8.39)

The quantities xξi ξ j · xξm in (8.39) are the surface Christoffel symbols of the first
kind, denoted by [i j,m].These quantities coincidewith the spaceChristoffel symbols
(2.40) for the indices i, j, k = 1, 2, and, in the samemanner as (2.45), they are subject
to the relations

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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[i j, k] = 1

2

(∂g
xξ
ik

∂ξ j
+ ∂g

xξ
jk

∂ξi
− ∂g

xξ
i j

∂ξk

)
, i, j, k = 1, 2 .

The surface Christoffel symbols of the second kind, denoted by Υ k
i j , are defined

in analogy with (2.43) by

Υ k
i j = gkmξx [i j,m] = gkmξx xξi ξ j · xξm , i, j, k,m = 1, 2 . (8.40)

The quantities xξi ξ j · n in (8.39), designated as bi j , i.e.

bi j = xξi ξ j · n , i, j = 1, 2, (8.41)

are called the coefficients of the second fundamental form. With these designations,
we have for (8.39)

xξi ξ j = Υ k
i j xξk + bi jn . (8.42)

The relations (8.42) are referred to as the surface Gauss identities.

Weingarten Equation

Some other important relations are concerned with the first derivatives of the unit
normal n. Since nξi · n = 0, i = 1, 2, the vectors nξi , i = 1, 2, are orthogonal to n,
and hence can be expanded in the tangential vectors xξi , i = 1, 2. Taking advantage
of (2.6) and (8.38), we obtain

nξi = glmξx (nξi · xξl )xξm , i, l,m = 1, 2 . (8.43)

Since

nξi · xξl = (n · xξl )ξi − n · rξlξi = −bli ,

(8.43) has the form

nξi = −glmξx bli xξm , i, l,m = 1, 2 . (8.44)

The relations (8.44) are called the Weingarten equations.

Mean Curvature

The value of the Beltrami operator over the position vector is connected with the
mean curvature. The quantity known as the mean surface curvature is expressed in
accordance with (3.23) by

Km = 1

2
g
i j
ξxbi j , i, j = 1, 2 . (8.45)

The mean surface curvature does not depend on the surface parametrization. In fact,
if si , i = 1, 2, are new surface coordinates, then

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_3
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xξi ξ j = ∂sk

∂ξi
∂sm

∂ξ j
xsk sm + ∂2sm

∂ξi∂ξ j
xsm ,

and hence

bi j = ∂sk

∂ξi
∂sm

∂ξ j
xsk sm · n , i, j, k,m = 1, 2 .

As the contravariant tensor {gimξx } is transformed into the coordinates si in accordance
with the relations (8.23), we now readily see that the mean curvature is an invari-
ant of the surface parametrizations. Therefore, it can be defined from the original
parametrization x(s).

Recall that in geometry, the first and second fundamental forms in the coordinates
ξ1, ξ2 are, respectively,

I = g
xξ
i j dξ

idξ j , II = bi jdξ
idξ j , i, j = 1, 2 .

The first fundamental form, derived from the surface metric, describes the inner
geometry of the surface, while the second form deals with the outer geometry, since
it is derived from the specification of the surface immersion into R3. Obviously, the
second fundamental form gives an expression for the local departure of the surface
from its tangent plane.

Relation Between Beltrami’s Equation and Christoffel Symbols

We assume that the basic surface vectors (xξ1 , xξ2 , n) compose a right-handed triad.
This leads to

n = 1√
gxξ

(xξ1 × rξ2) . (8.46)

Note that the tangent vectors xξi , i = 1, 2, are neither normalized nor orthogonal
to each other, while n is normalized and orthogonal to both xξ1 and xξ2 . Using the
general vector identity

u × (v × w) = (u · w)v − (u · v)w ,

we obtain, taking into account (8.46),

xξi × n = 1√
gxξ

(g
xξ
i2 xξ1 − g

xξ
i1 xξ2) .

With (8.22), this results in the relation

(−1)i+1xξ3−i × n =
√

gxξg
i j
ξx xξ j , i, j = 1, 2 , (8.47)
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with i fixed. The application of (8.47) to the Beltramian operator yields

ΔB[x] = 1√
gxξ

∂

∂ξ j
(
√

gxξg
i j
ξx xξi )

= (−1) j+1 1√
gxξ

∂

∂ξ j
(xξ3− j × n)

= (−1) j+1 1√
gxξ

(xξ3− j × nξ j ) , i, j = 1, 2 . (8.48)

Taking advantage of the Weingarten equations (8.44) and (8.46), we have

(−1) j+1 1√
gxξ

(xξ3− j × nξ j ) = (−1) j
1√
gxξ

glmξx bl j (xξ3− j × xξm )

= g
l j
ξxbl jn , j, l,m = 1, 2 .

Thus, (8.48) also has the form

ΔB[x] = bi jg
i j
ξxn = 2Kmn , i, j = 1, 2 , (8.49)

where the quantity Km, defined by (8.45), is the mean curvature of the surface.
Equation (8.49) means that the surface position vector x(ξ) is transformed by the
Beltrami operator to the vector ΔB[x], which is orthogonal to the surface. Now,
expanding the differentiation in ΔB[x] and using the expression for ΔB[ξi ], we
obtain one more form of ΔB[x]:

ΔB[x] = g
i j
ξx xξi ξ j + (ΔB[ξi ])xξi , i, j = 1, 2 . (8.50)

Equating the right-hand sides of (8.49) and (8.50), we have the identity

g
i j
ξx xξi ξ j + (ΔB[ξi ])rξi = 2Kmn , i, j = 1, 2 . (8.51)

Thus, if the surface coordinate system ξ1, ξ2 is obtained by the solution of (8.27),
then, from (8.51), we obtain

g
i j
ξx xξi ξ j = 2Kmn , i, j = 1, 2 .

We obtain one more identity by multiplying (8.42) by g
i j
ξr :

g
i j
ξx xξi ξ j = g

i j
ξxΥ

k
i j xξk + 2Kmn , i, j = 1, 2 .

Comparing this identity with (8.51), we have the identity

ΔB[ξi ] = −gklξxΥ
i
kl , i, k, l = 1, 2 , (8.52)
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i.e. the value obtained by applying the Beltrami operator to the function ξi (s) is
defined through the surface Christoffel symbols and the surface metric elements.
Note that the surface identity (8.52) is a reformulation of the identity (6.31), valid
for domains.

Taking advantage of (8.52), the Beltrami system (8.27) can be written in the
following equivalent form as

gklξxΥ
i
kl = 0 , i, k, l = 1, 2 , (8.53)

or, using (8.40), as

gklξxg
i j
ξx [kl, j] ≡ gklξxg

i j
ξx xξkξl · xξ j = 0 , i, j, k, l = 1, 2 . (8.54)

Multiplying (8.54) by g
xξ
im and summing over i yields

gklξx xξkξl · xξm = 0 , k, l,m = 1, 2 . (8.55)

Recall that the first and second Christoffel symbols in (8.53) and (8.54) are defined
in terms of the coordinates ξi .

In the particular case in which the surface Sx2 is a monitor surface defined by the
values of a height function u(s) over the domain S2, i.e.

x(s) = [s1, s2, u(s)] ,

multiplication of (8.55) by gxξ(∂ξm/∂si ) and summation over m produces the fol-
lowing system of inverted surface Beltrami equations:

Bxξ
2 [si ] + Bxξ

2 [u] ∂u

∂si
= 0 , i = 1, 2 , (8.56)

where

Bxξ
2 [y] ≡ gxξg

i j
ξx

∂2y

∂ξi∂ξ j
≡ g

xξ
22

∂2y

∂ξ1∂ξ1
− 2gxξ12

∂2y

∂ξ1∂ξ2
+ g

xξ
11

∂2y

∂ξ2∂ξ2
, i, j = 1, 2 .

Another form of the inverted Beltrami system can be obtained from the elliptic
system (8.28) for generating surface grids. Namely, applying (8.28)–(8.52) with the
identification ξi = si , i = 1, 2, we obtain

Bxξ
2 [sl] + gxξgkmsx Υ l

km = 0 , i, j, k, l,m = 1, 2 , (8.57)

where the Υ l
km are the second surface Christoffel symbols in the coordinates si . An

equivalent form of (8.56) is also obtained by utilizing (8.40) for ξi = si , i = 1, 2:

http://dx.doi.org/10.1007/978-3-319-57846-0_6
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Bxξ
2 [sl] + gxξgkmsx glpsx [km, p] = 0 , i, j, k, l,m, p = 1, 2 ,

where [km, p] = xsk sm · xs p .
In the particular case in which the surface Sx2 is a monitor surface defined by the

values of a height function u(s) over the domain S2, i.e.

x(s) = [s1, s2, u(s)] ,

the Beltrami equations (8.57) have the form

g
i j
ξx

∂2sl

∂ξi∂ξ j
+ gkmsx glpsx

∂2u

∂sk∂sm
∂u

∂s p
= 0 , i, j, k, l,m, p = 1, 2 ,

where

gkmsx = (−1)k+m
δkm + ∂u

∂s3−k

∂u

∂s3−m

1 +
( ∂u

∂s1

)2 +
( ∂u

∂s2

)2
, k,m = 1, 2 ;

here, the indices k and m are fixed.

8.6 Control of Surface Grids

8.6.1 Control Functions

One approach to controlling the generation of a surface grid is to add forcing terms
to the Beltrami operator in analogy with the Poisson system, i.e. to extend the system
(8.27) to the following one:

ΔB[ξi ] = Pi , i = 1, 2 . (8.58)

The system inverse to (8.58) with interchanged dependent and independent variables
is obtained through the same procedure as was applied to produce (8.28) and has the
form

g
i j
ξx

∂2sl

∂ξi∂ξ j
+ ∂sl

∂ξi
Pi = ΔB[sl], i, j, l = 1, 2 , (8.59)

or with the application of the operator Bxξ
2 from (8.29),

Bxξ
2 [sl] + gxξ ∂sl

∂ξi
Pi = gxξΔB[sl], i, l = 1, 2 .
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The control functions Pi , i = 1, 2, can be chosen in the same manner as was done
in Sect. 6.2. For example, for the generation of grids that are nearly orthogonal at the
boundaries, we may apply the approach of Sect. 6.2, determining the values of Pi on
the boundary curves and then propagating them into the interior.

For this purpose, we have to find the values of ΔB[ξi ] on the boundary curves.

8.6.2 Monitor Approach

Another approach to controlling the generation of a grid on a surface relies on the
concept of the monitor surface defined by the values of some vector function f =
[ f 1(s), . . . , f k(s)] over the surface Sx2. The monitor surface, denoted by Sr2, lies
in R3+k and can be represented through the parametric coordinates s1, s2 by the
equation

r(s) = [x1(s), x2(s), x3(s), f 1(s), . . . , f k(s)] , s = (s1, s2).

The covariant (contravariant) metric elements of the monitor surface Sr2 in the coor-
dinates v1, v2 are denoted as grvi j (g

i j
vr ). In this approach, the Beltrami equations on the

surface Sr2 are used to generate the grid on the parametric domain S2. Mapping this
grid on Sx2 with the transformation x(s) : S2 → Sx2 produces a grid on the surface
Sx2 dependent on the control function f .

The equations for generating the grid on the parametric domain S2 are obtained
in the same manner as the Eqs. (8.27) and have, with respect to the dependent coor-
dinates si and the independent coordinates ξi , a form similar to (8.28):

g
i j
ξr

∂2sl

∂ξi∂ξ j
= ΔB[sl], i, j, l = 1, 2 , (8.60)

where g
i j
ξr , i, j = 1, 2, are the elements of the contravariant tensor of the surface Sr2

in the coordinates ξ1, ξ2, defined through the elements of the covariant tensor

g
rξ
i j = ∂r

∂ξi
· ∂r
∂ξ j

= g
xξ
i j + ∂ f [s(ξ)]

∂ξi
· ∂ f [s(ξ)]

∂ξ j
, i, j = 1, 2 ,

by the formula

g
i j
ξr = (−1)i+ jg

rξ
3−i3− j/g

rξ , grξ = det{grξi j } ,

with fixed i and j. The Beltrami operator in the right-hand part of (8.60) is expressed
as

ΔB = 1√
grs

∂

∂s j

(√
grsgi jsr

∂

∂si

)
, i, j = 1, 2

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_6
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Fig. 8.3 Example of a
quadrangular adaptive
surface grid

through the metric elements in the coordinates s1, s2 of the monitor surface Sr2.
The same considerations as in Sect. 8.8 show that the grid on the monitor surface

Sr2 obtained through (8.60) tends to become uniform, and its projection onto the
surface Sx2 produces a gridwith a node concentration in the regions of large variations
of the control function f . One example of such an adaptive grid is illustrated by
Fig. 8.3.

8.6.3 Control Through Variational Methods

The variational approaches of Chap.7 can be successfully applied to surface grid gen-
eration. What is needed is the formulation of the corresponding surface-grid quality
measures. Chapter 3 gives a detailed description of domain-grid characteristics in
terms of the space metric elements and the space Christoffel symbols. The quantities
expressing the local grid properties are readily reformulated for grids on surfaces,
using for this purpose the surface metric elements and surface Christoffel symbols.
The integration of these quantities provides functionals which reflect the integral
measures of the respective grid qualities. The grid on the surface is then generated
by using the standard scheme of Chap.7, by optimizing the grid characteristics with
the minimization of a combination of functionals to obtain a grid with certain desired
properties. In this subsection, we describe some surface functionals which represent

http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_7
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popular geometric quality measures of surface grids. For generality, the functionals
are formulated with weights which are determined by derivatives of the solution
quantities or by measures of the quality features of the surface.

Functionals Dependent on Invariants

In analogy with Chap.7 there are three basic surface functionals determined by the
invariants I1 and I2 of the metric tensor {gxξ

i j } in the coordinates ξi . The first is the
length-weighted functional

Ilw =
∫

Ξ 2
w I1dξ =

∫
Ξ 2

w(g
xξ
11 + g

xξ
22 )dξ . (8.61)

The second is the area-weighted functional

Ia =
∫
S2

w(I2)
mds =

∫
S2

w(gxξ)mds . (8.62)

And the third is the density-weighted functional

Id =
∫

Ξ 2
w(I1/

√
I2)dξ =

∫
S2

w
√

gxs(g11ξx + g22ξx )ds . (8.63)

The length-weighted functional controls the lengths of the cell edges, while the
functional (8.62) regulates the areas of the surface grid cells. The control of the grid
density may be carried out through the functional (8.63). Note that the functional
(8.63) with w = 1 is, in fact, the smoothness functional (8.31).

Weight Skewness and Orthogonality Functionals

Analogously, functionals can be formulatedwhichmeasure the surface grid skewness
and deviation from orthogonality. Thus, in accordance with (7.27), the functional for
the weighted surface grid skewness may be either of the following forms:

Isk,1 =
∫

Ξ 2
w

(g
xξ
12 )

2

g
xξ
11g

xξ
22

dξ ,

Isk,2 =
∫

Ξ 2
w

(g12ξx )
2

g11ξxg
22
ξx

dξ . (8.64)

Similarly to (7.29) and (7.46), the orthogonality functionals can be expressed as
follows:

http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
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Io,1 =
∫

Ξ 2
w

(g
xξ
11g

xξ
22

gxξ

)
dξ ,

Io,2 =
∫

Ξ 2
w(g

xξ
12 )

2dξ ,

Io,3 =
∫
Sx2

w(g12)2dSx2 =
∫
S2

w
√

gxs(g12)2ds . (8.65)

Weight Functions

Commonly, the weight functions for surface grid generation are formulated through
the derivatives of the solution quantities and through the features of the surface.
Surface grid generation also requires adjustments of the measures of the grid cells
to the curvature of the surface. This can be carried out by applying the curvature
measures as weight functions.

A surface Sx2 has two curvatures: the mean curvature

Km = 1

2
gi jsxbi j , i, j = 1, 2 , (8.66)

and the Gaussian curvature

KG = 1

gxs
(b11b22 − (b12)

2) , (8.67)

where

bi j = 1√
gxs

xsi s j · (xs1 × xs2) , i, j = 1, 2 .

The corresponding weights can be formulated in the form

w = (Km)2 or w = (KG)2 . (8.68)

An expression for the quantity b11b22 − (b12)2 can be obtained through derivatives
of the elements of the metric tensor and the coefficients of the second fundamental
form of the surface. This is accomplished by using the expansion (8.39) with the
substitution of ξi for si , which results in the following relation:

xs1s1 · xs2s2 − xs1s2 · xs1s2 = gxs
i j (Υ

i
11Υ

j
22 − Υ i

12Υ
j
12) + b11b22 − (b12)

2 ,

i, j = 1, 2 . (8.69)

The left-hand part of (8.69) equals

xs1s1 · xs2s2 − xs1s2 · xs1s2 = ∂

∂s1
(xs2s2 · xs1) − ∂

∂s2
(xs1s2 · xs1) .
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Since

xs2s2 · xs1 = [22, 1] = 1

2

(
2
∂gxs

12

∂s2
− ∂gxs

22

∂s1

)
,

xs1s2 · xs1 = [12, 1] = 1

2

∂gxs
11

∂s2
,

we obtain, from (8.69),

xs1s1 · xs2s2 − xs1s2 · xs1s2 = 1

2

(
2

∂2gxs
12

∂s1∂s2
− ∂2gxs

11

∂s2∂s2
− ∂2gxs

22

∂s1∂s1

)
.

Therefore, (8.67) results in

KG = 1

gxs

[1
2

(
2

∂2gxs
12

∂s1∂s2
− ∂2gxs

11

∂s2∂s2
− ∂2gxs

22

∂s1∂s1

)
− gxs

i j (Υ
i
11Υ

j
22 − Υ i

12Υ
j
12)

]
,

i, j = 1, 2 . (8.70)

8.6.4 Orthogonal Grid Generation

Orthogonal elliptic coordinate systems on a surface are formulated in the same stan-
dard way as domains. Namely, an appropriate identity is chosen, which is then trans-
formed to the orthogonal system by substituting zero for the nondiagonal metric
elements.

For example, using the Beltrami operator

ΔBξi = 1√
gxξ

∂

∂ξ j

(√
gxξg

i j
ξr

)
, i, j = 1, 2 ,

we obtain

ΔBξi
∂xl

∂ξi
= −g

i j
ξx

∂2sl

∂ξi∂ξ j
+ ΔBs

l , i, j, l = 1, 2 .

Thus, we have the identity

1√
gxξ

∂

∂ξ j

(√
gxξg

i j
ξr

)∂sl

∂ξi
+ g

i j
ξr

∂2sl

∂ξi∂ξ j
= ΔBs

l ,

which implies

1√
gxξ

[ ∂

∂ξ j

(√
gxξg

i j
ξr

∂sl

∂ξi

)]
= ΔBs

l , i, j, l = 1, 2 .
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Substituting in these equations the condition of orthogonality g12ξr = 0 for the term
g12ξx ,we obtain an elliptic system for generating orthogonal or nearly orthogonal grids
on the surface Sx2 :

1√
gxξ

∂

∂ξ j

(√
gxξg

j j
ξx

∂sl

∂ξ j

)
= ΔBs

l , (8.71)

where

gxξ = g
xξ
11 g

xξ
22 , g11ξx = 1/gxξ

11 , g22ξr = 1/gxξ
22 .

Thus, we have, from (8.71),

1√
g
xξ
11 g

xξ
22

[ ∂

∂ξ1

(√
g
xξ
22/g

xξ
11

∂sl

∂ξ1

)
+ ∂

∂ξ2

(√
g
xξ
11/g

xξ
22

∂sl

∂ξ2

)]
= ΔBs

l ,

l = 1, 2 . (8.72)

The system (8.72) is, in fact, a generalization of the planar system (6.88).

8.7 Hyperbolic Method

Although the ellipticmethods described above can provide satisfactory grids formost
applications, there are situations when it is more convenient to use hyperbolic meth-
ods, in particular, when the four boundaries of the surface grid need not be specified
and constructed prior to the generation of the interior grid. Such a situation, for exam-
ple, occurs in the generation of grids for intersecting geometric components where
the surface grid is generated hyperbolically by marching away from the intersection
curve. For the overset grid approach, it is frequently the case that the location of
some boundary components is not restricted. Also, domain decomposition is simpli-
fied under the overset grid approach, and the grid generation time with a hyperbolic
technique is relatively fast, since only one boundary needs to be specified.

The hyperbolic method of surface grid generation involves marching a grid away
from an initial boundary curve by a user-specified distance. This is achieved through
the numerical solution of a set of hyperbolic partial differential equations. Desirable
grid attributes such as grid point clustering and orthogonality control are naturally
achieved. The grid points obtained are projected onto the underlying surface after
each marching step.

http://dx.doi.org/10.1007/978-3-319-57846-0_6
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8.7.1 Hyperbolic Governing Equations

Let ξ1 and ξ2 be the coordinates of the surface, where ξ1 runs along some initial
boundary curve and ξ2 is the marching direction away from the curve on the surface.
Also, let n = (n1, n2, n3) be the local unit normal,which is assumed to be computable
anywhere on the surface. The constraints of orthogonality of the families of grid lines
and specified mesh cell area are

xξ1 · xξ2 = 0 ,

n · (xξ1 × xξ2) = �S , (8.73)

where �S is a user-specified surface mesh cell area. A third equation, needed to
close the system, is provided by requiring that the marching direction of the grid be
orthogonal to the surface normal at the local grid point, i.e. the marching direction
is along the tangent plane of the underlying surface at this point. This gives

n · xξl = 0 . (8.74)

A unit vector in the marching direction ξ2 can be obtained from the cross product of
n with a unit vector in the initial curve direction ξ1.

Equations (8.73) and (8.74), in the usual variables x, y, z and ξ, η, can be written
as

xξxη + yξ yη + zξzη = 0 ,

n1(yξzη − zξ yη) + n2(zξxη − xξzη) + n3(xξ yη − yξxη) = �S ,

n1xη + n2yη + n3zη = 0 . (8.75)

These equations form a hyperbolic system for marching in the η direction.
Equations (8.75) are written in terms of the physical coordinates instead of the

parametric coordinates. In order to preserve the specified surface shape, the physical
coordinates are repeatedly projected onto the surface in the course of the iteration.

8.8 Comments

A number of algorithms for generation of curve grids were discussed by Eiseman
(1987) and Knupp and Steinberg (1993).

The use of Beltrami’s equations to generate surface grids was proposed by Warsi
(1982), in analogy with the widely utilized Laplace grid generator of Crowley (1962)
and Winslow (1967). Warsi (1990) has also justified these equations by using some
fundamental results of differential geometry. Theoretical analyses of the relation
of Beltrami’s equations to the equations of Gauss and Weingarten were given by
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Warsi (1982, 1990) and Garon and Camarero (1983). An implementation of the
Beltrami operator to derive a fourth-order surface elliptic system was performed by
Ronzheimer et al. (1994), while Spekreijse et al. (1995) applied this operator with
algebraic techniques to generate surface grids with orthogonality at the edges.

A surface grid generation scheme that uses a quasi-two-dimensional elliptic sys-
tem, obtained by projecting the inverted three-dimensional Laplace system, to gener-
ate grids on smooth surfaces analytically specified by the equation z = f (x, y) was
proposed by Thomas (1982). The method was extended and updated by Takagi et al.
(1985) and Warsi (1986) for arbitrary curved surfaces using a parametric surface
representation. An adaptive surface grid technique based on control functions and
parametric specifications was also considered by Lee and Loellbach (1989).

Some robust blending functions for algebraic surface grid generation were pro-
posed by Soni (1985) using the normalized arc lengths of the physical edges of
the surface patches. These functions and various techniques for the surface patch
parametrization were discussed by Samareh-Abolhassani and Stewart (1994) for the
purpose of the development of a surface grid software system.

The hyperbolic approach based on grid orthogonality was extended to surfaces
by Steger (1991). An analogous technique for generating overset surface grids was
presented by Chan and Buning (1995).

Liseikin (1991, 1992, 2004, 2007) used an elliptic system derived from a vari-
ational principle to produce n-dimensional harmonic coordinate transformations
which, in a particular two-dimensional case, generate both uniform and adaptive
grids on surfaces. Harmonic mapping was also used by Arina and Casella (1991) to
derive a surface elliptic system. The conformal mapping technique for generating
surface grids presented in this chapter was formulated by Khamayseh and Mastin
(1996).

Variational approaches for generating grids on surfaces were described by Saltz-
man (1986), Liseikin (1991), and Steinberg and Roache (1986). A variational adap-
tive technique for deriving a surface grid approaching orthogonality was developed
by Desbois and Jacquotte (1991). A variational approach was also given by Castilio
(1991) for the control of spacing, cell area, orthogonality, and quality measures.
Several grid generation anomalies which appear while implementing some surface
variational techniques were discovered by Steinberg and Roache (1986).

An optimization approach to surface grid generation which aimed to maximize
grid smoothness and orthogonality was discussed by Pearce (1990). Some tech-
niques for clustering the grid points in regions of larger curvature were considered
by Weilmuenster et al. (1991).
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Chapter 9
Comprehensive Method

9.1 Introduction

Many physical phenomena involve the rapid formation, propagation, and disintegra-
tion of small-scale structures. Examples include shock waves in compressible flows;
shear layers in laminar and turbulent flows; phase boundaries in nonequilibrium and
boundary and interior layers; tearing layers and magnetic reconnection regions in
magnetically confined plasmas; and combustion and detonation fronts. A promising
tool for dealing with the numerical problems related to these structures is adaptive
grid generation technology. With increasing complexity of the physical problem,
there is an increased need for more reliable, robust, and fully-automated grid gener-
ation codes which enable one to generate suitable meshes in a uniform “black box”
mode, with negligible human interaction (Liseikin 1999). The development of such
grid systems is a challenging problem of modern computational physics and applied
mathematics.

The method advocated in this chapter is a further development of that presented in
Liseikin (1999, 2007). It is based on a mapping from a simple structured or unstruc-
tured grid in the logical domain to a curvilinear grid with the desired properties in
the physical domain. At the heart of the method are Beltrami and diffusion equa-
tions with control metrics and weight functions whose specification governs the grid
properties. The equations for the evolving grid can be incorporated into a single
implicit time step in which the grid and the physical solution evolve together. The
main purpose of this chapter is to illustrate the choice of these quantities to generate
adaptive grids for a wide variety of computational physics problems.

Recent new results in the field of grid generation by means of the mapping
approach have largely been related to the application of harmonic function theory to
adaptive grid generation. The suggestion to use harmonic functions for generating
adaptive grids was made by Dvinsky (1991). Adaptive grids can be generated by
mapping the reference grid into the domain with a coordinate transformation which
is inverse to a harmonic vector function (in terms of Riemannian manifolds). Adap-
tation is performed by a specified adaptive metric in the domain which converts it
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into a Riemannian manifold. Each harmonic function minimizes some functional of
the total energy, and hence it can be found through the numerical solution either of a
variational problem or of a boundary value problem for a system of Euler–Lagrange
equations.

The basic comprehensive method discussed in this chapter is one version of the
harmonic-function approach for generating both adaptive andfixedgrids. Themethod
relies on a variational technique for the generation of grids on hypersurfaces with the
help of an energy functional with respect to control metrics. Specifically, the adaptive
grid with node clustering in the zones of large values of a vector function is obtained
as a projection of a quasiuniform grid from a monitor surface generated as a surface
of the function values over the physical space (Liseikin 1991). The vector function
can be the physical solution or a combination of its components or derivatives, or
it can be any other quantity that suitably monitors the behavior of the solution.
A generalization of this approach for generating grids with other properties was
performed by Liseikin (2007). The method developed allows the designer to merge
the two tasks of surface grid generation and volume grid generation into one task
while developing a comprehensive grid generation code. Since the grid generation is
based onharmonic coordinate transformations that are able to generate unfolded grids
in regionswith complex geometry, themethod can also relieve an array of bottlenecks
of codes by reducing the number of blocks required for partitioning a complicated
physical domain. The functions representing the monitor surface and control metrics
are easily determined, thus providing efficient and straightforwardly controlled grid
adaptation of various types. Thus, the method is free from the drawbacks of the
ellipticmethod based on Poisson equations, and its numerical implementation should
provide a uniform environment for the generation of fixed and adaptive grids in
arbitrary regions. This gives grounds to expect that the method will be relevant to a
large number of application areas.

For the purpose of commonality, a general approach based on differential and
variational methods for the generation of quasiuniform grids on arbitrary hyper-
surfaces is considered. The variational method of generating quasiuniform grids is
grounded on the minimization of a generalized functional of grid smoothness on
hypersurfaces, which was introduced for the Euclidian control metric by Brackbill
and Saltzman (1982). The energy functional with respect to the metric of a monitor
surface is the functional of smoothness which is defined for a general hypersurface
through the invariants of its metric tensor in the grid coordinates and has a clear geo-
metric interpretation of a measure of grid nonuniformity (Liseikin 1993). In fact, the
grid in this method is derived from a coordinate transformation that is inverse to the
solution of a system of Beltrami equations which are the Euler–Lagrange equations
of the functional. A two-dimensional Laplace system using the logical coordinates
as dependent variables was proposed by Crowley (1962) and Winslow (1967). A
rather geometric approach to analyzing the qualitative behavior near boundary seg-
ments of the coordinate lines obtained through the inverted Laplace equations was
described for this purpose in the monograph by Thompson et al. (1985). A more
detailed analysis of grid behavior near the boundary of both surfaces and two- and
three-dimensional domains was performed by Liseikin in (2007).
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This chapter describes the formulation and some properties of themethod and dis-
cusses its relation to other techniques, in particular, to the approaches using harmonic
functions and Beltrami equations.

9.2 Hypersurface Geometry and Grid Formulation

In order to formulate a unified grid model for all physical geometries, we shall con-
sider curves, surfaces, and domains of arbitrary dimensions in the same manner,
as n-dimensional hypersurfaces lying in the (n + k)-dimensional space Rn+k, n ≥
1, k ≥ 0, though in practical applications, the dimension n equals 1, 2, and 3. Each
hypersurface under consideration is supposed to be represented by a smooth para-
metrization of rank n at all points s ∈ Sn:

x(s) : Sn → Rn+k , x = (x1(s), . . . , xn+k(s)) , s = (s1, · · · , sn) , (9.1)

where Sn is some n-dimensional parametric domain in Rn (an interval if n = 1)
with Cartesian coordinates si , i = 1, . . . , n. The hypersurface represented by (9.1)
is designated by Sxn . Note, when k = 0, then Sxn is a domain Xn ⊂ Rn which itself
can naturally be considered as a parametric domain Sn for Xn with x(s) being the
identical, i.e., x(s) ≡ s (Fig. 9.1), or another parametrization.

This section gives a natural multidimensional generalization of the notions and
relations considered for n-dimensional domains, curves, and two-dimensional sur-
faces in Chaps. 2, 3, and 8.

9.2.1 Hypersurface Grid Formulation

In order to generate a numerical grid by a mapping approach on an arbitrary
hypersurface Sxn, represented by a parametrization x(s) : Sn → Rn+k , both an n-
dimensional computational domainΞ n ⊂ Rn and an intermediate invertible, smooth
transformation

Fig. 9.1 Scheme for generating hexahedral grids

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_3
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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Fig. 9.2 Scheme for generating prismatic grids

s(ξ) : Ξ n → Sn , s(ξ) = [s1(ξ), . . . , sn(ξ)] , ξ = (ξ1, . . . ξn) , ξ ∈ Ξ n ,

(9.2)
between a suitable computational (logical) domain Ξ n and the parametrization
domain Sn are determined. Then, the numerical grid on the hypersurface Sxn is built
by mapping the nodes of some reference grid, specified in the computational domain
Ξ n, onto the hypersurface Sxn with the aid of the composition of the transformations
x(s) and s(ξ), i.e., with

x[s(ξ)] : Ξ n → Rn+k , (9.3)

(see Fig. 9.1 for the case when Sxn coincides with Sn, n = 3). The transformation
(9.3) defines a new coordinate system ξ1, . . . ξn , hereafter referred to as the grid
coordinate system of the hypersurface Sxn .

The original parametrization x(s) also generates a grid on Sxn by mapping some
reference grid in Sn . However, this grid may be unsatisfactory. The role of the inter-
mediate transformation s(ξ) is to generate a suitable grid in the parametrization
domain Sn , which is mapped with x(s) on Sxn thus forming the grid on Sxn with the
necessary properties.

Of course, in contrast to the parametric domain Sn , the computational domainΞ n

should have a more simple geometry of its boundary, allowing one to specify the
reference grid easily, for instance, analytically. The reference gridmay be rectangular
(see Fig. 9.1) or have another configuration, say, tetrahedral or prismatic (see Fig. 9.2)
when n = 3, or unstructured, which results in an unstructured grid in Sxn .

9.2.2 Monitor Hypersurfaces

An example of a hypersurface, suitable for the purpose of adaptive grid generation, is
represented by a monitor hypersurface formed by values of some, in general, vector
function over the physical domain or surface. This vector function can be a solution to
the problem of interest, a combination of its components or derivatives, or any other
variable vector quantity that suitably monitors the features of the physical solution
or of the geometry of the physical domain or surface which significantly affect the
accuracy of the calculations. The vector functions provide an efficient opportunity to
control the grid quality, in particular, the concentration of grid nodes in the zones of
large variations of such a function (see Fig. 9.3, left-hand). The parametrization of the
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Fig. 9.3 Scheme of grid adaptation by the use of a monitor hypersurface

monitor hypersurface is established very simply. For example, in one case, important
for the generation of adaptive grids in a physical domain Xn ⊂ Rn , the monitor
hypersurface designated further by Srn is defined as an n-dimensional hypersurface
formed as the graph of some vector function

f (x) : Xn → Rl , x = (x1, . . . , xn) , f = [ f 1(x), . . . , f l(x)] ,

over Xn . This monitor hypersurface Srn lies in the (n + l)-dimensional space Rn+l

(see Fig. 9.3, right-hand, for n = 2, l = 1). It is apparent that the parametric domain
Sn can coincide with Xn and, consequently, the parametric mapping designated
further by r(s) : Sn → Rn+l of Srn can be defined as

r(s) = [s, f (s)] = [s1, . . . , sn, f 1(s), . . . , f l(s)] , Sn = Xn , s = x .

(9.4)

If the monitor hypersurface Sxn is formed by the values of the function f (x)

over an n-dimensional hypersurface Sxn lying in the space Rn+k and represented by
the parametrization (9.1) from an n-dimensional domain Sn in the space Rn+k , then
the monitor hypersurface Srn lies in the space Rn+k+l and it can be described by a
parametrization from Sn in the form

r(s) : Sn → Rn+k+l , r(s) = {x(s), f [x(s)]} . (9.5)

In particular, a one-dimensional monitor surface Sr1 (curve) over a curve Sx1 lying
in Rn , n = 1, 2, 3, and represented by

x(ϕ) : [a, b] → Rn ,

can be defined by the parametrization

r(s) : [a, b] → Rn+l , r(s) = {x(s), f [x(s)]} , s = ϕ . (9.6)
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9.2.3 Metric Tensors

As for ordinary two-dimensional surfaces lying in R3, the interior features of the
hypersurface Sxn are defined by the elements of the covariant metric tensor which
in the coordinates vi are denoted as gxv

i j and computed by the dot products of the
vectors xvi = ∂x/∂vi that are tangent to the corresponding coordinate lines in Sxn ,
i.e.,

gxv
i j = xvi · xv j , i, j = 1, . . . , n . (9.7)

The determinant of the covariant metric tensor {gxv
i j } is denoted by gxv.

The contravariant elements of the hypersurface Sxn in the coordinates vi are
denoted by g

i j
vx . The contravariant metric tensor {gi jvx } is the inverse of the matrix

{gxv
i j }.
Similar to (9.7), we shall designate by grvi j (g

i j
vr ) the covariant (contravariant)metric

elements of the monitor hypersurface Srn in the parametric coordinates v1, . . . , vn,

i.e.,
grvi j = rvi · rv j , i, j = 1, . . . , n . (9.8)

Thus, in the case of the parametrization (9.4) of the monitor hypersurface Srn over
the domain Sn, we obtain

grsi j = δij + f si · f s j , i, j = 1, . . . , n . (9.9)

If f is a scalar function f , then the determinant grs of the covariant metric tensor
{grsi j }, whose elements are defined by (9.9), is readily computed:

grs = 1 + ∂ f

∂si
∂ f

∂si
= 1 + (∇ f )2 , i = 1, . . . , n .

The parametrization (9.5) of the monitor hypersurface Srn determined by the values
of f over the surface Sxn yields

grsi j = gxs
i j + ∂ f [x(s)]

∂si
· ∂ f [x(s)]

∂s j
, i, j = 1, . . . , n , (9.10)

where {gxs
i j } is the covariant metric tensor of the hypersurface Sxn in the coordinates

si , i = 1, . . . , n. In the case of a scalar monitor function f , we obtain for (9.10)

grs = gxs
(
1 + gi jsx

∂ f

∂si
∂ f

∂s j

)
, i, j = 1, . . . , n , (9.11)

where gxs = det{gxs
i j }, {gi jsx } is the inverse of {gxs

i j }, and by ∂ f/∂si , ∂ f [x(s)]/∂si is
meant here. In particular, for n = 2,



9.2 Hypersurface Geometry and Grid Formulation 331

grs = gxs + gxs
11

( ∂ f

∂s2

)2 − 2gxs
12

∂ f

∂s1
∂ f

∂s2
+ gxs

22

( ∂ f

∂s1

)2
.

As a reminder, repeated indices in formulas here and further mean summation
over them.

9.2.4 Relations Between Metric Elements

The mapping x[s(ξ)] which generates a grid on the hypersurface Sxn determines a
new coordinate system ξi , i = 1, . . . , n, on Sxn and it also defines the values of the
covariant metric tensor {gxξ

i j } in the coordinates ξi , whose elements are the scalar
products of the vectors xξi = ∂x[s(ξ)]/∂ξi , i = 1, . . . , n, i.e.,

g
xξ
i j = xξi · xξ j , i, j = 1, . . . , n .

The covariant metric tensor {gxξ
i j } of the hypersurface Sxn in the grid coordinates

ξ1, . . . , ξn , represented by (9.3), has n invariants I1, . . . , In, whose geometrical
meaning is described through the geometrical measures of the edges, faces, etc., of
the n-dimensional parallelepiped formed by the tangent vectors xξi , i = 1, . . . , n.

In analogy with Chap.3, the invariants of the metric tensor {gxξ
i j } of the hypersurface

Sxn can be used to formulate some quality properties of the grid on Sxn .

The elements of the covariant tensor of Sxn in the coordinates si and ξi are
connected by the following relations:

g
xξ
i j = gxs

ml

∂sm

∂ξi
∂sl

∂ξ j
,

gxs
i j = g

xξ
ml

∂ξm

∂si
∂ξl

∂s j
, i, j, l,m = 1, . . . , n , (9.12)

where ∂ξm/∂si , i,m = 1, . . . , n, is the first derivative with respect to si of the mth
component ξm(s) of the mapping

ξ(s) : Sn → Ξ n , ξ(s) = [ξ1(s), . . . , ξn(s)] , s = (s1, . . . , sn) , s ∈ Sn ,

which is inverse to the intermediate mapping

s(ξ) : Ξ n → Sn , s(ξ) = [s1(ξ), . . . , sn(ξ)] .

In particular, for the covariant metric elements g
rξ
i j of a monitor hypersurface Srn

over a domain Sn in the coordinates ξi , i = 1, . . . , n, formulas (9.9) and (9.12) give

http://dx.doi.org/10.1007/978-3-319-57846-0_3
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g
rξ
i j = grsml

∂sm

∂ξi
∂sl

∂ξ j
= ∂sl

∂ξi
∂sl

∂ξ j
+ ∂ f (s(ξ))

∂ξi
· ∂ f (s(ξ))

∂ξ j

= g
sξ
i j + ∂ f (s(ξ))

∂ξi
· ∂ f (s(ξ))

∂ξ j
, i, j, l,m = 1, . . . , n , (9.13)

where

g
sξ
i j = ∂s

∂ξi
· ∂s
∂ξ j

= ∂sl

∂ξi
∂sl

∂ξ j
, i, j, l = 1, . . . , n ,

is the (i j)th covariant metric element of the domain Sn in the coordinates ξi , i =
1, . . . , n.

Similarly, for the metric elements g
rξ
i j of a monitor hypersurface Srn over Sxn in

the coordinates ξi , i = 1, . . . , n, we have, from (9.10) and (9.12),

g
rξ
i j = g

xξ
i j + ∂ f (s(ξ))

∂ξi
· ∂ f (s(ξ))

∂ξ j
, i, j = 1, . . . , n . (9.14)

The intermediate mapping s(ξ) and parametric transformation x(s) : Sn → Sxn

serve to generate a suitable grid on the hypersurface Sxn .
The contravariant metric tensor {gi jξx } of the hypersurface Sxn in the grid coor-

dinates ξi , i = 1, . . . , n, is the inverse to the covariant metric tensor {gxξ
i j }, that

is,
g
xξ
i j g

jl
ξx = δil , i, j, l = 1, . . . , n .

In analogy with the relations (8.23) for two-dimensional surfaces, the elements of
the contravariant tensor of Sxn in the coordinates si and ξi are connected as follows:

g
i j
ξx = gml

sx

∂ξi

∂sm
∂ξ j

∂sl
,

gi jsx = gml
ξx

∂si

∂ξm
∂s j

∂ξl
, i, j, l,m = 1, . . . , n . (9.15)

Similarly to (8.24), we also have the relations

gi isx = gmk
ξx g

sξ
mk , i, k,m = 1, . . . , n ,

gxξ = J 2gxs ,

where

gxξ = det{gxξ
i j } , J = det

{ ∂si

∂ξ j

}
, i, j = 1, . . . , n .

http://dx.doi.org/10.1007/978-3-319-57846-0_8
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9.2.5 Christoffel Symbols

The quantities
[i j, l] = xsi s j · xsl , i, j, l = 1, . . . , n , (9.16)

where

xsi s j = ∂2x(s)
∂si∂s j

, xsl = ∂x(s)
∂sl

, i, j, l = 1, . . . , n ,

are the Christoffel symbols of the first kind of the hypersurface Sxn in the paramet-
ric coordinates si . These symbols are, in fact, the space Christoffel symbols and,
therefore, are subject to the relations (2.45).

In analogy with (8.40), the hypersurface Christoffel symbols of the second kind
in the coordinates si are defined by the relation

Υ l
i j = glmsx [i j,m] , i, j, l,m = 1, . . . , n . (9.17)

From (2.45),

Υ
j
j i = g

jm
sx [ j i,m] = 1

2
g jm
sx

(∂gxs
jm

∂si
+ ∂gxs

im

∂s j
− ∂gxs

i j

∂sm

)

= 1

2
g jm
sx

∂gxs
jm

∂si
, i, j,m = 1, . . . , n ,

and in accordance with the formula (2.47) for differentiation of the Jacobian, we
have an analog of the identity (2.46) in the form

∂

∂si
√

gxs = 1

2

√
gxsg jm

sx

∂gxs
jm

∂si

= √
gxsΥ

j
j i , i, j,m = 1, . . . , n . (9.18)

Now we determine the role of the Christoffel symbols in the expansion of the deriv-
atives of the tangent vectors xsi . Let d i j be the vector defined by the relation

d i j = xsi s j − Υ l
i j xsl , i, j, l = 1, . . . , n .

We have

d i j · xsm = [i j,m] − Υ l
i jg

xs
lm = 0 , i, j, l,m = 1, . . . , n ,

from (9.17). Thus, we find that in the following expansion of the vectors xsi s j ,

xsi s j = Υ l
i j xsl + d i j , i, j, l = 1, . . . , n , (9.19)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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the vectors d i j lie in the k-dimensional hypersurface which is orthogonal to the
tangent n-dimensional hypersurface defined by the tangent vectors xsi . Note that
if some vectors v1, . . . , vk from Rn+k comprise an orthonormal basis for this k-
dimensional hypersurface, i.e.,

vm · xs j = 0 , m = 1, . . . , k , j = 1, . . . , n ,

vm · v p = δmp , m, p = 1, . . . , k ,

then, in accordance with (2.6), we find that

xsi s j = Υ l
i j xsl + (xsi s j · vm)vm , i, j, l = 1, . . . , n , m = 1, . . . , k .

Thus, we obtain, from (9.19),

d i j = (xsi s j · vm)vm , i, j = 1, . . . , n , m = 1, . . . , k ,

and so (9.19) is a generalization of (2.36) and (8.42) with the identification ξi = si .

9.3 Functional of Smoothness

One of the ways of finding the intermediate coordinate transformations s(ξ) between
the computational and parametric domains required to generate grids on hypersur-
faces is to use variational methods. In accordance with the grid methods for domains
and two-dimensional surfaces considered above, the most appropriate functional for
this purpose is that of smoothness, since it generates a system of Beltrami equations
possessing the unique properties desired for grid generation.

9.3.1 Formulation of the Functional

Similarly to (8.31), the expression for the functional of grid smoothness on the
hypersurface Sxn with the parametrization (9.1) is represented as

Is =
∫

Sxn

( n∑
i=1

gi iξx

)
dSxn =

∫

Sxn

tr{gi jξx }dSxn . (9.20)

This functional is defined on the set of invertible functions ξ(s) ∈ C2(Sn). Since

dSxn = √
gxsds =

√
gxξdξ ,

we obtain, from (9.15) and (9.20),

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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Is =
∫

Sn

√
gxs tr{gi jξx }ds =

∫

Sn

√
gxsgklsx

∂ξi

∂sk
∂ξi

∂sl
ds , i, k, l = 1, . . . , n . (9.21)

Thus, for n = 1, 2, and 3, we have

Is =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

S1

√
gxsg11ξxds , n = 1 ,

∫

S2

√
gxs(g11ξx + g22ξx )ds

1ds2 , n = 2 ,

∫

S3

√
gxs(g11ξx + g22ξx + g33ξx )ds

1ds2ds3 , n = 3 ,

(9.22)

with the corresponding contravariant metric elements g
i j
ξx and determinants gxs for

each n = 1, 2, 3.
Analogously, we obtain the formulation of the inverted smoothness functional in

terms of the covariant metric elements g
xξ
i j :

IIS =
∫

Ξ n

√
gxξtr{gi jξx }dξ . (9.23)

Note that the functional IIS , in this formulation, is defined on the set of invertible
transformations s(ξ) ∈ C2(Ξ n). Using suitable formulas for the elements of inverse
matrices {gi jξx }, we have for n = 1, 2, and 3

IIS =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ξ 1

1√
gxξ

dξ , n = 1 ,

∫

Ξ 2

1√
gxξ

(g
xξ
11 + g

xξ
22 )dξ

1dξ2 , n = 2 ,

∫

Ξ 3

1√
gxξ

[gxξ
11g

xξ
22 + g

xξ
11g

xξ
33 + g

xξ
22g

xξ
33

−(g
xξ
12 )

2 − (g
xξ
13 )

2 − (g
xξ
23 )

2]dξ1dξ2dξ3 , n = 3 .

(9.24)

When the hypersurface Sxn is an n-dimensional region Sn , the functional (9.20)
is the very functional of grid smoothness on Sn ,

Is =
∫

Sn

( n∑
i=1

gi iξs

)
ds , g

i j
ξs =

n∑
m=1

∂ξi

∂sm
∂ξ j

∂sm
, i, j = 1, . . . , n , (9.25)



336 9 Comprehensive Method

described in Chap.7 for n = 2 and n = 3. Therefore, the functional (9.20), being the
generalization of (9.25), is called the functional of grid smoothness on the hypersur-
face Sxn . For the inverted smoothness functional (9.25), we have for n = 1, 2, 3,
from (9.24),

IIS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ξ 1

1√
gsξ

dξ , n = 1 ,

∫

Ξ 2

1√
gsξ

(g
sξ
11 + g

sξ
22)dξ

1dξ2 , n = 2 ,

∫

Ξ 3

1√
gsξ

[gsξ11gsξ22 + g
sξ
11g

sξ
33 + g

sξ
22g

sξ
33

−(g
sξ
12)

2 − (g
sξ
13)

2 − (g
sξ
23)

2]dξ1dξ2dξ3 , n = 3 ,

(9.26)

where

g
sξ
i j = ∂s

∂ξi
· ∂s
∂ξ j

, i, j = 1, . . . , n , gsξ = det{gsξi j } . (9.27)

Furthermore, it will be shown that such a generalization of the functional (9.25)
to n-dimensional hypersurfaces preserves all salient features of grids obtained by
applying the smoothness functional on domains.

9.3.2 Geometric Interpretation

This subsection describes a geometric meaning of the smoothness functional which
justifies to some extent its expression (9.20) for the generation of quasiuniform
grids on hypersurfaces, in particular, on monitor hypersurfaces Srn over domains or
surfaces specified by the parametrizations (9.4) and (9.5) and, consequently, adaptive
grids in domains and on surfaces. The explanation of the geometric interpretation of
the functional generally follows the considerations presented in Sect. 3.7 for domain
grid generation and in Sect. 8.5 for two-dimensional surface grid generation.

First, note that the trace of the contravariant n-dimensional metric tensor {gi jξx }
can be expressed through the invariants In−1 and In of the orthogonal transforms of
the covariant tensor {gxξ

i j }, namely,

tr {gi jξx } = In−1

In
.

Therefore, the functional of smoothness (9.20) can also be expressed through these
invariants:

Is =
∫

Sxn

( In−1

In

)
dSxn . (9.28)

http://dx.doi.org/10.1007/978-3-319-57846-0_7
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Now, for the purpose of simplicity, we restrict our consideration to three dimensions.
The functional (9.28) then has the form

Is =
∫

Sx3

( I2
I3

)
dSx3 .

In three dimensions, the invariant I3 is the Jacobian of the matrix {gxξ
i j }, and it

represents the volume V 3 of the three-dimensional parallelepiped P3 formed by the
basic tangent vectors xi , i = 1, 2, 3.The invariant I2 of thematrix {gxξ

i j } is the sum of
its principal minors of order 2. Every principal minor of order 2 equals the Jacobian
of the two-dimensional matrix A2 obtained from {gxξ

i j } by crossing out a row and a
columnwhich intersect on the diagonal. Therefore, each element of thematrix A2 is a
dot product of two tangential vectors of the basis xi , i = 1, 2, 3, and, consequently,
the Jacobian of A2 equals the square of the area of the parallelogram formed by these
two vectors. So, the invariants I2, I3 can be expressed as

I2 =
3∑

m=1

(
V 2
m

)2
, I3 =

(
V 3

)2
,

where V 2
m is the area of the boundary segment of the parallelepiped P3 formed by

the vectors xi , i = 1, 2, 3, except for xm, and V 3 is the volume of P3. Therefore,

I2
I3

=
3∑

m=1

(
V 2
m

)2
/
(
V 3

)2
. (9.29)

It is obvious that
V 3 = dmV

2
m , m = 1, 2, 3 ,

where dm is the distance between the vertex of the vector xm and the plane spanned
by the vectors xi , i �= m. Hence, from (9.29),

I2
I3

=
3∑

m=1

(1/dm)2 . (9.30)

Now let us consider two grid surfaces ξm = c and ξm = c + h obtained bymapping a
uniform rectangular grid with a step size h in the computational domain Ξ 3 onto the
hypersurface Sx3. The distance lm between a node on the coordinate surface ξm = c
and the nearest node on the surface ξm = c + h equals dmh + O(h)2. Therefore,
(9.30) is equivalent to

I2
I3

=
3∑

m=1

(h/ lm)2 + O(h) .
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The quantity (h/ lm)2 increases as the grid nodes cluster in the direction normal
to the surface ξm = c, and therefore it can be considered as some measure of the grid
concentration in this direction; consequently, the functional (9.28) for n = 3 defines
an integral measure of the grid clustering in all directions. Therefore, as in the case
of two-dimensional surfaces considered in Chap. 8, the problem of minimizing the
functional of smoothness (9.20) for n = 3 can be interpreted as a problem of finding
a grid with a minimum of nonuniform clustering, namely a quasiuniform grid on the
surface Sx3. Analogous interpretations are valid for arbitrary dimensions, i.e., the
integrand

σ(s) = gkmξs

∂ξi

∂sk
∂ξi

∂sm
, i, k,m = 1, . . . , n (9.31)

in the functional (9.20) can be considered to be a relative measure of the grid nonuni-
formity on the hypersurface Sxn represented by (9.1). Since the grid in a domain Sn ,
and consequently on Sxn , obtained by minimizing the inverted energy functional in
the metric of a monitor hypersurface Srn is, in fact, the grid obtained by projecting a
quasiuniform grid on Srn , and therefore it is clustering in the zones of large variations
of the monitor function f (s). So, measure (9.31) with respect to the metric (9.10)
of the monitor surface Srn over Sxn , i.e., when gkmξs is replaced by gkmξr , can also be
considered as a measure of departure of the grid in the physical geometry Sxn from
an adaptive grid with node clustering in the zones of large variation of the function
f(s).

Notice that, for n = 2 and a scalar monitor function f (s1, s2), the inverted func-
tional of smoothness in the metric of the monitor surface over S2 is

IIS[s] = 1

2

∫

Ξ 2

1

J
√
1 + |grad f (s)|2

{[(∂s1

∂ξ1

)2+
(∂s1

∂ξ2

)2][
1+

(∂ f (s)
∂s1

)2]

+
[(∂s2

∂ξ1

)2 +
(∂s2

∂ξ2

)2][
1 +

(∂ f (s)
∂s2

)2]

+ 2
[∂s1

∂ξ1
∂s2

∂ξ1
+ ∂s1

∂ξ2
∂s2

∂ξ2

]∂ f (s)
∂s1

∂ f (s)
∂s2

}
dξ1dξ2 .

(9.32)

Note that the expressions

ḡ
i j
sξ = ∂si

∂ξk
∂s j

∂ξk
, i, j, k = 1, . . . , n ,

are the contravariant elements of a domainΞ n in coordinates s1, . . . , sn , and therefore
functional (9.32) can be written in the following form:

IIS[s] = 1

2

∫

Ξ 2

1

J
√
1 + |grad f (s)|2

n∑
i, j=1

ḡ
i j
sξg

s
i jdξ. (9.33)

http://dx.doi.org/10.1007/978-3-319-57846-0_8
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Functionals (9.20) and (9.23) in the metric of a monitor surface were originally
published in Liseikin (1991). These functionals demonstrate a simple and efficient
way for combining derivatives ofmonitor functions and intermediate transformations
s(ξ) for generating adaptive gridswith node clustering in the zones of large variations
of the monitor functions.

Variable interpretations of the inverted functional (9.23) in the metric of a mon-
itor surface were published in Liseikin (1993), in which the method for generating
adaptive grids based on the minimization of the inverted energy functional in the
metric of a monitor surface was named as a projection method, since the adaptive
grid in a domain Sn is, in fact, the projection of a quasiuniform grid on a monitor
surface Srn over Sn . Later, this method was referred to in Ivanenko (1997) without
consulting with its deviser as amethod of harmonic adaptation. The authors of papers
Garanzha (2000), Ivanenko (1997), Ivanenko and Charakch’yan (1988) made con-
siderable contributions in the development of numerical algorithms (barriermethods)
for solving the minimization problems for functionals (9.32) and (9.26) for n = 2
and n = 3 in the metric of a monitor surface. These algorithms were applied for gen-
erating adaptive grids with node clustering in the zones of shock waves and solving
two-dimensional gas dynamics problems on such grids (see, for example, Azarenok
and Ivanenko 2001).

The interpretations of the smoothness functional considered above justifies, to
some extent, its potential to generate adaptive grids in a domain Sn in the metric of
a monitor surface or on a surface Sxn by the minimization of the inverted functional
of smoothness (see Fig. 9.4 for n = 2).

9.3.3 Euler–Lagrange Equations

The substitution of the parametric domain Sn for the integration hypersurface Sxn

in (9.20) yields the smoothness functional in the following equivalent form with
integration over Sn:

Fig. 9.4 Illustration for grid
adaptation in a domain S2
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Is =
∫

Sn

√
gxs gml

sx

∂ξi

∂sm
∂ξi

∂sl
ds , i,m, l = 1, . . . , n . (9.34)

The quantities gxs and gml
sx in (9.34) are defined through the specified parametriza-

tion x(s) : Sn → Sxn , and therefore they remain unchanged when the functions ξi (s)
are varied. So, the Euler–Lagrange equations derived from the functional of smooth-
ness (9.34) are readily obtained and, in accordance with (7.6), have the following
divergent form:

∂

∂sm

(√
gxs gml

sx

∂ξi

∂sl

)
= 0 , i,m, l = 1, . . . , n . (9.35)

If Sxn is an n-dimensional domain Sn , then the system (9.35) is equivalent to the
system of Laplace equations

∇2ξi ≡ ∂

∂s j

( ∂ξi

∂s j

)
= 0 , i, j,= 1, . . . , n ,

introduced by Crowley (1962) and Winslow (1967) for the generation of fixed grids
in two-dimensional domains. Therefore, the method for generating grids on hyper-
surfaces Sxn by solving a boundary value problem for (9.35) derived from the func-
tional of smoothness can also be considered as an extension of the Crowley–Winslow
approach.

We considered in Chap.6 the technique for generating adaptive grids in Sn which
is based on the numerical solution of the Poisson system

∂

∂s j

( ∂ξi

∂s j

)
= Pi , i, j,= 1, . . . , n , (9.36)

where the Pi are the control functions. In the case of a monitor hypersurface Srn

represented by (9.4) or (9.5), the system (9.35) with the identification gxs = grs and
gml
sx = gml

sr can also be interpreted as a system of elliptic equations with a control
function. The control function is the monitor mapping f (s) whose values over the
physical domain or surface form the monitor hypersurface Srn . The influence of the
control function f (s) is realized through the magnitudes f si · f s j in the terms grs

and gml
sr . These terms are determined by the tensor elements grsi j in the form (9.9)

or (9.10) which define the covariant metric tensor of the hypersurface Srn in the
coordinates si represented by the parametrization (9.4) or (9.5). The system (9.35),
in contrast to that of (9.36), has a divergent form and its solution is a harmonic
function.

Notice that the Dirichlet problem for both the Eq. (9.35) with respect to the metric
of a monitor hypersurface Srn and (9.36) is well posed. Let us consider a twice
differentiable function ξ0(s) : Sn → Ξ n , ξ0(s) = (ξ10(s), . . . , ξn0 (s)) that is a one-
to-one transformation at the boundary points but that itself transforms two different

http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_6
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interior points of Sn into one point in Ξ n , that is, ξ0(s) is not invertible. Then,
assuming in (9.36)

Pi = ∂

∂s j

(∂ξi0
∂s j

)
, i, j,= 1, . . . , n ,

we obtain that ξ0(s) is the solution to (9.36), however, the inverted Poisson system
with such Pi does not have a solution.

9.3.4 Equivalent Forms

In analogy with two-dimensional space, the left-hand part of (9.35) multiplied by
1/

√
gxs is the value of the Beltrami operator

ΔB = 1√
gxs

∂

∂sm
(
√

gxs gml
sx

∂

∂sl
) , l,m = 1, . . . , n, (9.37)

applied to the function ξi (x). Similarly, as in Chap.8, it is proved that this operator
is invariant of parametrizations for arbitrary twice-differentiable function g(s) and
another coordinate system vi , i = 1, . . . , n, in Sxn , i.e.,

1√
gxs

∂

∂sm
(
√

gxs gml
sx

∂

∂sl
g(s))(v) = 1√

gxv

∂

∂vm
(
√

gxv gml
vx

∂

∂vl
g(s(v))) ,

l,m = 1, . . . , n .

In particular, we get

ΔB[ξi ] = 1√
gxξ

∂

∂ξm
(
√

gxξ gmi
ξx ) , i,m = 1, . . . , n ,

thus we find that the system of Euler–Lagrange equations (9.35) for the generation
of quasiuniform grids on hypersurfaces is equivalent to the following system:

ΔB[ξi ] ≡ 1√
gxξ

∂

∂ξ j
(
√

gxξ g
jl
ξx) = 0 , i, j, l = 1, . . . , n. (9.38)

Now we obtain other forms of (9.38). For this purpose, we first compute the value
of ΔB[x], where the operator ΔB is defined by (9.37). Expanding the differentiation
in ΔB[x], we have

ΔB[x] = 1√
gxξ

∂

∂ξ j
(
√

gxξ g
jl
ξx xξl ) = g

jl
ξx xξ j ξl + ΔB[ξl]xξl ,

j, l = 1, . . . , n , (9.39)

http://dx.doi.org/10.1007/978-3-319-57846-0_8
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where

xξi ξ j = ∂2x(s(ξ))

∂ξi∂ξ j
, xξl = ∂x(ξ)

∂ξl
, i, j, l = 1, . . . , n .

Using the expansion (9.19) with the assumption ξi = si , i = 1, . . . , n, we obtain

xξi ξ j = Υ l
i j xξl + d i j , i, j, l = 1, . . . , n ,

where

Υ l
i j = glmξx [i j,m] , [i j,m] = xξi ξ j · xξm , i, j, l,m = 1, . . . , n , (9.40)

and the d i j are the vectors orthogonal to the tangent n-dimensional hyperplane
defined by the vectors xξi , i = 1, . . . , n. From the above expansion of xξi ξ j , we
have

g
jl
ξx xξ j ξl = g

jl
ξxΥ

m
jl xξm + g

jl
ξxd jl , j, l,m = 1, . . . , n .

Substitution of these identities in (9.39) yields

ΔB[x] = (g
jl
ξxΥ

m
jl + ΔB[ξm])xξm + g

jl
ξxd jl , j, l,m = 1, . . . , n . (9.41)

Now we show that the vector ΔB[x], as well as the vectors d i j , lies in the k-
dimensional hyperplane which is orthogonal to the tangent hyperplane, i.e.,

ΔB[x] · xξi = 0 for all i = 1, . . . , n .

Indeed, we have

ΔB[x] · xξi = 1√
gxξ

( ∂

∂ξ j

√
gxξg

jm
ξx xξm

)
· xξi

= 1√
gxξ

∂

∂ξ j
(
√

gxξg
jm
ξx xξm · xξi ) − g

jm
ξx xξm · xξi ξ j

= 1√
gxξ

∂

∂ξi

√
gxξ − Υ

j
j i , i, j,m = 1, . . . , n . (9.42)

Now, using the identity (9.18) (valid for arbitrary parametrization) in the coordinates
ξi , we obtain

ΔB[x] · xξi = 0 , i = 1, . . . , n ,

from (9.42). Therefore, the coefficients before xξm in (9.41) are equal to zero, i.e.,
we have the identity

ΔB[ξm] = −g
jl
ξxΥ

m
jl , j, l,m = 1, . . . , n . (9.43)
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Thus, (9.41) becomes

ΔB[x] = g
jl
ξxd jl , j, l = 1, . . . , n . (9.44)

Note that (9.44) is an extension of (6.32) and (8.49) to general hypersurfaces.
From (9.40), the identity (9.43) also has the form

ΔB[ξm] = −g
jl
ξx gmi

ξx [ jl, i] = −g
jl
ξx gmi

ξx (xξ j ξl · xξi ) ,

i, j, l,m = 1, . . . , n . (9.45)

Analogously, we have, assuming si = ξi , i = 1, . . . , n, in (9.45),

ΔB[sm] = −g jl
sx gmi

sx (xs j sl · xsi ) , i, j, l,m = 1, . . . , n . (9.46)

The identities (9.43) and (9.45) represent an extension of the identities (8.52) valid
for two-dimensional surfaces.

Since the Beltrami system (9.38) is equivalent to (9.35), we obtain, from (9.45),
one more system of equations:

g
jl
ξx gmi

ξx [ jl, i] = 0 , i, j, l,m = 1, . . . , n ,

which is equivalent to the Euler–Lagrange equations (9.35). Multiplication of this
system by g

xξ
mp and summation over m yields one more equivalent system:

g
jl
ξx [ jl, p] = 0 , j, l, p = 1, . . . , n ,

namely,

g
jl
ξx

∂2x[s(ξ)]
∂ξ j∂ξl

· ∂x[s(ξ)]
∂ξ p

= 0 , j, l, p = 1, . . . , n . (9.47)

In particular, if Srn is a monitor surface Sxn over a domain Sn identified with a
physical domain Xn and represented by (9.4), then the system (9.47) is

g
jl
ξr

{ ∂2s
∂ξ j∂ξl

· ∂s
∂ξ p

+ ∂2 f [s(ξ)]
∂ξ j∂ξl

· ∂ f [s(ξ)]
∂ξ p

}
= 0 , j, l, p = 1, . . . , n . (9.48)

This system of equations can be used to generate adaptive grids on Sxn and nearly
orthogonal grids in the vicinity of boundary segments of a domain Xn by specifying
the monitor hypersurface with a suitable choice of a monitor function f (x).

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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9.3.5 Inverted Beltrami Equations

The components si (ξ) of the function s(ξ), which is the inverse of ξ(s), are to satisfy
the inverse system of (9.35). This system is obtained first by multiplying each i th
component of system (9.35) by the derivative ∂sm/∂ξi and then by summing the
result over i. This operation produces the following system:

∂

∂s p

(√
gxs g pl

sx

∂ξi

∂sl

)∂sm

∂ξi

= ∂

∂s p

(√
gxs g pl

sx

∂ξi

∂sl
∂sm

∂ξi

)
− √

gxs g pl
sx

∂ξi

∂sl
∂ξ j

∂s p
∂2sm

∂ξi∂ξ j
= 0 ,

i, j, l,m, p = 1, . . . , n .

By multiplying this system of equations by 1/
√

gxs and taking into account (9.15)
and the relation

∂ξi

∂sl
∂sm

∂ξi
= δlm , i, l,m = 1, . . . , n ,

the system of the inverse equations with si as dependent and ξi as independent
variables has the form

g
i p
ξx

∂2sm

∂ξi∂ξ p
= 1√

gxs

∂

∂sl

(√
gxs glmsx

)
, i, l,m, p = 1, . . . , n . (9.49)

Notice that in contrast to Beltrami equations (9.35) the inverse equations (9.49)
are not divergent for n ≥ 2. However, for n = 1, the inverse Beltrami equation is
also equivalent to the equation in a divergent form:

d

dξ

(√
gxs

ds

dξ

)
= 0 . (9.50)

System (9.49) is a system of quasilinear equations and, an important point for the
creation of iterative numerical algorithms, its right-hand part is defined only by the
tensor elements gxs

i j of the hypersurface S
xn and, therefore, remains unchanged when

the function s(ξ) is varied. Moreover, each i th equation of the right-hand part of the
system (9.49) is the value of the Beltrami operator applied to the function si . Thus,
the system (9.49) can be written in the following equivalent form:

g
i j
ξx

∂2sl

∂ξi∂ξ j
= ΔB[sl] , i, j, l = 1, . . . , n . (9.51)
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As in (6.18), introducing an operator

Bxξ
n [y] ≡ gxξg

i j
ξx

∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n , (9.52)

gives the system (9.51) another form

Bxξ
n [sl] = gxξΔB[sl] , l = 1, . . . , n . (9.53)

The coefficients gxξg
i j
ξx of the operator B

xξ
n for n > 1 are expressed by the elements

of the covariant metric tensor {gxξ
i j }, in particular, for n = 2,

gxξg
i j
ξx = (−1)i+ jg

xξ
3−i3− j , i, j fixed,

and for n = 3,

gxξg
i j
ξx = g

xξ
i+1 j+1g

xξ
i+2 j+2 − g

xξ
i+1 j+2g

xξ
i+2 j+1, i, j = 1, 2, 3, i, j fixed,

with the convention for the latter formula that any index, say, k, is identified with
k ± 3, so, for instance, gxξ

45 = g
xξ
12 . Thus, for n = 1, 2, and 3, we have

Bxξ
1 [y] = ∂2y

∂ξ∂ξ
,

Bxξ
2 [y] = g

xξ
22

∂2y

∂ξ1∂ξ2
− 2gxξ

12

∂2y

∂ξ1∂ξ2
+ g

xξ
11

∂2y

∂ξ2∂ξ2
,

Bxξ
3 [y] = [gxξ

22g
xξ
33 − (g

xξ
23 )

2] ∂2y

∂ξ1∂ξ1
+ [gxξ

11g
xξ
33 − (g

xξ
13 )

2] ∂2y

∂ξ2∂ξ2

+[gxξ
11g

xξ
22 − (g

xξ
12 )

2] ∂2y

∂ξ3∂ξ3
+ 2[gxξ

23g
xξ
13 − g

xξ
12g

xξ
33 ]

∂2y

∂ξ1∂ξ2

+2[gxξ
12g

xξ
23 − g

xξ
22g

xξ
13 ]

∂2y

∂ξ1∂ξ3
+ 2[gxξ

13g
xξ
12 − g

xξ
23g

xξ
11 ]

∂2y

∂ξ2∂ξ3
.

(9.54)

Also, taking advantage of (9.46), we obtain, from (9.53), one more system of
equations equivalent to (9.49):

Bxξ
n [sl] = −gxξg jm

sx glisx [ jm, i] , i, j, l,m = 1, . . . , n , (9.55)

where [ jm, i] = xs j sm · xsi . Thus, (9.55) is a generalization of (8.57).
If Sxn is a monitor surface Srn over Sn , represented by the parametrization (9.4),

then multiplying (9.48) by ∂ξ p/∂si yields

g
jl
ξr

( ∂2si

∂ξ j∂ξl
+ ∂2 f [s(ξ)]

∂ξ j∂ξl
· ∂ f (s)

∂si

)
= 0 , i, j, l = 1, . . . , n , (9.56)

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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or introducing an operator Brξ
n , similar to (9.52),

Brξ
n [y] = grξg

i j
ξr

∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n , (9.57)

the system (9.56) is expressed as

Brξ
n [si ] + Brξ

n [ f ] · ∂ f
∂si

= 0 , i = 1, . . . , n . (9.58)

9.4 Role of the Mean Curvature

This section shows how the mean curvature, which is one of the abstract geometric
characteristics reviewed in Chap.3, is involved in grid generation technologies.

9.4.1 Mean Curvature and Inverted Beltrami Grid Equations

General Formulas

In the case of a regular surface Sxn ⊂ Rn+1 defined by the parametrization

x(s) : Sn → Rn+1 , x(s) = [x1(s), . . . , xn+1(s)] ,

with its natural metric elements gxs
i j specified in the coordinates s1, . . . , sn as

gxs
i j = xsi · xs j , i, j = 1, . . . , n ,

we have, from (9.37) and (9.43), assuming ξi = si ,

ΔB[si ] = −gk jsxΥ
i
k j = −gk jsxg

im
sx (xsk s j · xsm ) , i, j, k,m = 1, . . . , n . (9.59)

Now let us remind ourselves that the quantity

Km = 1

n
gk jsxxsk s j · n , j, k = 1, . . . , n , (9.60)

where n is an (n + 1)-dimensional unit normal vector to Sxn in Rn+1, is the mean
curvature of the surface Sxn with respect to this normal n.

Note the mean curvature with respect to the same normal is an invariant of para-
metrizations of Sxn .

It appears that the mean curvature of Sxn is connected with the parametrization
x(s) : Sn → Sxn ⊂ Rn+1 by the following relation:

http://dx.doi.org/10.1007/978-3-319-57846-0_3


9.4 Role of the Mean Curvature 347

ΔB[x] = nKmn , (9.61)

where n is the same vector used in (9.60). Indeed, we have

ΔB[x] = 1√
gxs

∂

∂s j
(
√

gxsg j i
s xsi ) = g j i

sxxs j si + ΔB[sk]xsk ,

i, j, k = 1, . . . , n ,

(9.62)

and applying the relation (9.59) to the last item of (9.62), we obtain

ΔB[x] = g j i
sx [xs j si − gmk

sx (xs j si · xsm )xsk ] , i, j, k,m = 1, . . . , n . (9.63)

Now, taking into account equation (2.6), yielding that the expansion of the vector
xsi s j in the basis (xs1 , . . . , xsn ,n) is expressed as

xsi s j = gmk
sx (xsi s j · xsm )xsk + (xsi s j · n)n ,

we find, applying this expansion to (9.63) and using (9.60),

ΔB[x] = g j i
sx (xs j si · n)n = nKmn , i, j = 1, . . . , n ,

i.e., Eq. (9.61) is valid. Consequently, from the relation (9.62), we obtain

g j i
sxxs j si + ΔB[sk]xsk = nKmn , i, j, k = 1, . . . , n . (9.64)

This formula is valid in arbitrary coordinates, in particular, in the grid coordinates
ξ1, . . . , ξn satisfying the Euler–Lagrange equations (9.35), and consequently the
Beltrami equations (9.38).

Application to a Monitor Surface over a Domain

Let the parametric transformation r(s) for amonitor surface Srn be specified as r(s) =
[s, f (s)] with a scalar-valued monitor function f (s). Then, Srn ⊂ Rn+1 is a monitor
surface over Sn , whose covariant metric elements in the coordinates s1, . . . , sn are
computed as

grsi j = rsi · rs j = δij + fsi fs j , i, j = 1, . . . , n , (9.65)

and therefore
grs = det{grsi j } = 1 + fsm fsm , m = 1, . . . , n .

Consequently, we have for the contravariant metric elements g
i j
sr the following for-

mula:

gi jsr = δij − 1

grs
fsi fs j , i, j = 1, . . . , n . (9.66)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Thus, we find

gimsr fsm =
(
δim − 1

grs
fsi fsm

)
fsm =

(
1 − 1

grs
fsm fsm

)
fsi = 1

grs
fsi ,

i,m = 1, . . . , n .

(9.67)

So, using (9.43), with the identification si = ξi , we conclude that in the metric (9.65)

ΔB[si ] = −gk jsr g
im
sr fsk s j fsm = − 1

grs
gk jsr fsk s j fsi , i, j, k,m = 1, . . . , n . (9.68)

For the parametrization r(s) = [s, f (s)], we find

rsi = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

, fsi ) , i = 1, . . . , n ,

so it is obvious that for the unit normal n, we can take

n = 1√
grs

(− fs1 , . . . ,− fsn , 1) . (9.69)

For the above expressions for r(s) and n,

rsk s j · n = 1√
grs

fsk s j , j, k = 1, . . . , n ,

so, in accordance with (9.60), the mean curvature of this monitor surface Srn with
respect to the normal (9.69) is computed by the following formula:

Km = 1

n
√

grs
gk jsr fsk s j , j, k = 1, . . . , n . (9.70)

Thus, in the metric (9.65), Eq. (9.68) have the following form:

ΔB[si ] = − n√
grs

Km fsi , i = 1, . . . , n . (9.71)

Consequently, the inverted Beltrami grid equations (9.51) in application to a domain
Xn = Sn with a scalar monitor function f (x) are expressed through the mean cur-
vature of Srn with respect to the normal (9.69) as follows:

g
i j
ξr

∂2sk

∂ξi∂ξ j
= − n√

grs
Km fsk , i, j, k = 1, . . . , n . (9.72)

So, if Km = 0, i.e., the monitor surface Srn is a minimal surface, then Eq. (9.72)
have a simple form (with the zero right-hand part). Some results related to the con-
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struction of minimal n-dimensional surfaces, providing such equations, can be found
in the monograph by Fomenko and Thi (1991).

Notice that another form for the expression of the mean curvature of the mon-
itor surface with the monitor metric (9.65) can be computed using the (n + 1)th
component of (9.61). Thus, we have, with respect to the normal (9.69),

Km = 1

n

√
grsΔB[ f ] . (9.73)

Availing us of (9.67), we find, in the case of the parametrization r(s) = [s, f (s)],

ΔB[ f ] = 1√
grs

∂

∂s j

(√
grsg jk

sr

∂ f

∂sk

)
= 1√

grs
∂

∂s j

( 1√
grs

∂ f

∂s j

)
, j, k = 1, . . . , n .

Thus, from (9.73),

Km = 1

n

∂

∂s j

( 1√
grs

∂ f

∂s j

)
, j = 1, . . . , n , (9.74)

with respect to the normal (9.69).
Notice that there is a formula of the mean curvature for the n-dimensional hyper-

surface in Rn+1 defined by the equation φ(s) = 0, s = (s1, . . . , sn+1), namely,

Km = −1

n

∂

∂s j

( φs j√∇(φ)

)
, j = 1, . . . , n + 1 , (9.75)

where ∇(φ) = φsi φsi , i = 1, . . . , n + 1. Since the points of the monitor surface
Srn ⊂ Rn+1 in the coordinates s1, . . . , sn, sn+1 can be found from the solution of the
equation

sn+1 − f (s1, . . . , sn) = 0 ,

the formula (9.74) is a particular case of (9.75) for

ϕ(s1, . . . , sn, sn+1) ≡ sn+1 − f (s1, . . . , sn) .

9.4.2 Mean Curvature and Rate of Grid Clustering

Fundamental Formula

It is well-known that when Sxn is a domain with the Euclidean metric tensor, then the
operator of Beltrami in this metric is the Laplace operator and the spacing between
(n − 1)-dimensional grid hypersurfaces ξi = const in Sxn related to the solution of
the Laplace equations, for both n = 2 and n = 3, increases near a convex boundary
segment and, conversely, the spacing decreases when the boundary segment is con-
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Fig. 9.5 Grid rarefaction (clustering) near convex (concave) boundary segments

cave (see Fig. 9.5 for n = 2). It is shown further that similar facts are also valid for
the grid hypersurfaces related to the solution of the Beltrami equations in arbitrary
n-dimensional regular surfaces Sxn .

Throughout this subsection, we assume i0, 1 ≤ i0 ≤ n as a fixed index, i.e., the
summation in the formulas with i0 repeated is not carried out over this index.

Relative Spacing Between Coordinate Surfaces

Let s1, . . . , sn be an arbitrary local coordinate system of an n-dimensional regular
surface Sxn represented by (9.1). We first consider in the surface Sxn a family of the
coordinate (n − 1)-dimensional hypersurfaces si0 = const. We can readily find that
the vector ni0 lying in the tangent n-dimensional plane to Sxn , and which is expressed
in the form

ni0 = 1√
gi0i0sx

gi0 jsx xs j , j = 1, . . . , n , (9.76)

is a unit normal to the coordinate hypersurface si0 = c0. Here, g
i j
sx is the (i j)th element

of the contravariant metric tensor of Sxn in the coordinates s1, . . . , sn , and the values
of g

i j
sx and xs j are considered at the points of Sn for which si0 = c0. Indeed,

ni0 · xsk = 1√
gi0i0sx

gi0 jsx xs j · xsk = 1√
gi0i0sx

gi0 jsx gxs
jk = 1√

gi0i0sx

δi0k ,

j, k = 1, . . . , n ,

i.e., ni0 is orthogonal to the coordinate surface s
i0 = c0 in Sxn . Furthermore,

ni0 · ni0 = 1√
gi0i0sx

gi0 jsx xs j · 1√
gi0i0sx

gi0ksx xsk

= 1

gi0i0sx

gi0 jsx gi0ksx gxs
jk = 1 , j, k = 1, . . . , n ,

i.e., ni0 is a unit vector.
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Fig. 9.6 Spacing of the
coordinate lines s2 = const
on the regular surface

Let us denote by lh the distance between a point on the hypersurface si0 = c0 and
the nearest point on the hypersurface si0 = c0 + h in Sxn . We have

lh = (ni0 · xsi0 )h + O(h2) = h
1√
gi0i0sx

gi0 jsx xs j · xsi0 + O(h2)

= h
1√
gi0i0sx

gi0 jsx gxs
ji0 + O(h2) = h

1√
gi0i0sx

+ O(h2) , j = 1, . . . , n .

So, the quantity 1/
√

gi0i0sx with i0 fixed reflects the relative spacing between the cor-

responding points on the coordinate hypersurfaces si0 = c0 + h and si = c0 on Sxn

(see Fig. 9.6 for n = 2).

Rate of Change of the Relative Spacing

The vector ni0 is orthogonal to the coordinate hypersurface si0 = c0 in Sxn , and

therefore the derivative of 1/
√

gi0i0sx in theni0 direction is the rate of change, designated

as vi0 of the relative spacing between the coordinate hypersurfaces s
i0 = const . Using

(9.76), we obtain

vi0 = d

dni0

( 1√
gi0i0sx

)
= 1√

gi0i0sx

gi0 jsx

∂

∂s j

( 1√
gi0i0sx

)

= 1√
gi0i0sx

∇
(
si0 ,

1√
gi0i0sx

)
, j = 1, . . . , n ,

(9.77)

where ∇( , ) is the Beltrami mixed differential parameter, i.e.,

∇( f, g) = gi jsx fsi gs j , i, j = 1, . . . , n .
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On the other hand,

d

dni0

( 1√
gi0i0sx

)
= − 1

2
√

(gi0i0sx )3

d

dni0
gi0i0sx

= − 1

2(gi0i0sx )2
gi0 jsx

∂

∂s j
gi0i0sx , j = 1, . . . , n .

(9.78)

Availing us of the relations

∂g
i j
sx

∂sk
= gl jsxg

xs
ml

∂gimsx
∂sk

= −gl jsxg
im
sx

∂gxs
ml

∂sk
= −gl jsxg

im
sx ([mk, l] + [lk,m]) = −gimsx Υ

j
km − gl jsxΥ

i
lk ,

i, j, k, l,m = 1, . . . , n .

(9.79)

in Eq. (9.78) yields

vi0 = d

dni0

( 1√
gi0i0sx

)
= 1

(gi0i0sx )2
gi0lsx g

i0 j
sx Υ

i0
l j , j, l = 1, . . . , n . (9.80)

Note that this equation is valid for an arbitrary coordinate system s1, . . . , sn .

Relations to the Mean Curvature

In order to connect the rate of change of the relative spacing of the coordinate
hypersurfaces with geometrical characteristics, we need to consider the following
general situation in the theory of matrices. Let {ai j }, i, j = 1, . . . , n, n ≥ 2, be a
nondegenerate symmetric matrix of rank n and {ai j }, i, j = 1, . . . , n, be its inverse
matrix. Let ai0i0 �= 0 for some fixed index i0, 1 ≤ i0 ≤ n. Define a matrix {bi j }where

bi j = 1

ai0i0
(ai0i0ai j − ai0i ai0 j ) , i, j = 1, . . . , n . (9.81)

Let {ai0i j } and {bi ji0 } be the (n − 1) × (n − 1) matrices obtained by deleting the i0th
row and i0th column of the matrices {ai j } and {bi j }, respectively.
Theorem 3 The matrix {bi ji0 } is the inverse of {ai0i j }.
Proof It is sufficient to show that

ai0i j b
jl
i0

= δil , i, j, l = 1, . . . , n , and i, j, l �= i0 . (9.82)

Here and from this point on, the entries i = 1, . . . , n, and i �= k mean i = 1, . . . , k −
1, k + 1, . . . , n.

From (9.81), we readily see

bi0k = bki0 = 0 , k = 1, . . . , n ,
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and therefore

ai0i j b
jl
i0

= aimb
ml , i, j, l,m = 1, . . . , n , and i, j, l �= i0 .

Since (9.81)

aimbml = aima
ml − aim

ai0i0
ai0mai0l

= δil − δii0
ai0i0

ai0l = δil , i, l,m = 1, . . . , n , and i, l �= i0 ,

i.e., (9.82) is valid. This proves the theorem. �

Now we apply the matrix consideration given above to the matrix {gxs
i j } which is

the covariant metric tensor of the regular surface Sxn in the coordinates s1, . . . , sn .
Designate by {gi0i j } the matrix obtained by deleting the i0th row and i0th column of

{gxs
i j }. It is clear that {gi0i j } is the covariant metric tensor of the coordinate hypersurface

si0 = c0 in the coordinates s1, . . . , si0−1, si0+1, . . . , sn . The matrix which is inverse
to {gi0i j } is the contravariant metric tensor of this coordinate hypersurface si0 = c0 in
the same coordinates s1, . . . , si0−1, si0+1, . . . , sn . Let this matrix be designated by
{gi ji0 }. Since

gi0i0sx = det{gi0i j }/gxs �= 0 ,

where gxs = det{gxs
i j }, we find, availing us of Theorem 3,

g
i j
i0

= 1

gi0i0sx

(gi0i0sx gi jsx − gi0isx gi0 jsx ) , i, j = 1, . . . , n , and i, j �= i0 .

Therefore,

gi0isx gi0 jsx = gi0i0sx (gi jsx − g
i j
i0
) , i, j = 1, . . . , n , and i, j �= i0 . (9.83)

Since
gi0lsx g

i0 j
sx Υ

i0
l j = gi0ksx g

i0 p
sx Υ

i0
kp + 2gi0i0sx g

i0 j
sx Υ

i0
i0 j

− gi0i0sx gi0i0sx Υ
i0
i0i0

,

j, k, l, p = 1, . . . , n , and k, p �= i0 ,

we obtain, using (9.83),

gi0lsx g
i0 j
sx Υ

i0
l j = gi0i0sx (g

kp
sx − g

kp
i0

)Υ
i0
kp + 2gi0i0sx g

i0 j
sx Υ

i0
i0 j

− gi0i0sx gi0i0sx Υ
i0
i0i0

= gi0i0sx g
l j
sxΥ

i0
l j − gi0i0sx g

kp
i0

Υ
i0
kp ,

j, k, l, p = 1, . . . , n , and k, p �= i0 .

(9.84)

Now we note that, from (9.17),

Υ
i0
kp = gi0lsx [xsk s p · xsl ] , k, l, p = 1, . . . , n ,
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so, since (9.76),

Υ
i0
kp =

√
gi0i0sx xsk s p · ni0 , k, p = 1, . . . , n ,

where ni0 is the unit normal to the coordinate hypersurface si0 = c0 in Sxn . Thus,

Υ
i0
kp =

√
gi0i0sx bkp , k, p = 1, . . . , n , and k, p �= i0 , (9.85)

where
bkp = xsk s p · ni0 , k, p = 1, . . . , n , and k, p �= i0 ,

is the (kp)th element of the second fundamental form of the coordinate hypersurface
si0 = c0 in Sxn . Therefore, using (9.60) and (9.85), we find

g
kp
i0

Υ
i0
kp =

√
gi0i0sx g

kp
i0
bkp = (n − 1)

√
gi0i0sx Km(si0) ,

k, p = 1, . . . , n , and k, p �= i0 ,
(9.86)

where Km(si0) is the mean curvature of the coordinate hypersurface si0 = c0 in Sxn

with respect to the normal ni0 . Furthermore, from (9.43), with the identification
ξi = si , we obtain

gl jsxΥ
i0
l j = −ΔB[si0 ] , j, l = 1, . . . , n ,

where ΔB is the operator of Beltrami in the metric of Sxn . Substituting this equation
and (9.86) in (9.84) gives

gi0lsx g
i0 j
sx Υ

i0
l j = −gi0i0sx ΔB[si0 ] − (n − 1)(gi0i0sx )3/2Km(si0) , j, l = 1, . . . , n .

Therefore, using (9.80), we conclude that the rate of change of the relative spacing
of the coordinate hypersurfaces si0 = const is expressed through the mean curvature
and the Beltrami second differential parameter as follows:

d

dni0

( 1√
gi0i0sx

)
= − 1

gi0i0sx

ΔB[si0 ] − n − 1√
gi0i0sx

Km(si0) . (9.87)

The application of (9.77) to this equation gives the following relation between the
mean curvature of the coordinate hypersurface si0 = c0 and the Beltrami mixed and
second differential parameters:

(n − 1)Km(si0) + ∇
(
si0 ,

1√
gi0i0sx

)
+ ΔB[si0 ]√

gi0i0sx

= 0 . (9.88)
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Note that the Eqs. (9.87) and (9.88) are readily rewritten for the case of themonitor
surface Srn , namely, it suffices to substitute sx for sr in these equations. In particular,
when Srn is the monitor surface over Sn with a scalar-valued monitor function f (s),
i.e., Srn is represented by

r(s) : Sn → Rn+1 , r(s) = [s, f (s)] ,

then, availing us of (9.71), we obtain that the Eq. (9.87) has the following specific
form:

d

dni0

( 1√
gi0i0sr

)
= n√

grsgi0i0sr

Km(Srn) fsi0 − n − 1√
gi0i0sr

Km(si0) (9.89)

where grs = 1 + fsi fsi , i = 1, . . . , n, Km(Srn) is the mean curvature of Srn in Rn+1

with respect to the unit normal (9.69).

Two-Dimensional Case

Let Sx2 be an arbitrary two-dimensional regular surface. Since for the coordinate line
si0 = c0 in Sx2

Km(si0) = σi0 , (9.90)

where σi0 is the geodesic curvature of the curve s
i0 = c0 in Sxn , the equations derived

from (9.87) in the two-dimensional case have the form

d

dn1

( 1√
g11sx

)
= − 1

g11sx
Δx

B[s1] − σ1√
g11sx

,

d

dn2

( 1√
g22sx

)
= − 1

g22sx
Δx

B[s2] − σ2√
g22sx

.
(9.91)

Meanwhile Eq. (9.88) in the two-dimensional case yields

σ1 + ∇(s1, 1/
√

g11sx ) + Δx
B[s1]/√g11sx = 0 ,

σ2 + ∇(s2, 1/
√

g22sx ) + Δx
B[s2]/√g22sx = 0 .

(9.92)

Basic Relation to Grid Coordinates

Let us apply formulas (9.87) and (9.91) to the grid coordinates ξ1, . . . , ξn in Sxn

obtained by the composition of the parametrization (9.2) and intermediate transfor-
mation (9.3).

Basic Theorem

We designate by vp the rate of change of the relative spacing between the grid
hypersurfaces ξ p = const in Sxn , i.e., analogously to (9.80),

vp = d

dnp

( 1√
g
pp
ξx

)
= 1

(g
pp
ξx )2

g
pl
ξxg

pj
ξx Υ

p
l j , j, l, p = 1, . . . , n , p fixed ; (9.93)
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here, Υ p
l j is the Christoffel symbol of the second rank of Sxn in the grid coordinates

ξ1, . . . , ξn , and np is the normal to the grid hypersurface ξ p = const , namely, similar
to (9.76),

np = 1√
g
pp
ξx

g
pj
ξx

∂

∂ξ j
x[s(ξ)] , j, p = 1, . . . , n , p fixed . (9.94)

We see that ifvp < 0(vp > 0), then the nodes of the coordinate grid cluster (rarefy)
in the np direction, i.e., vp is a measure of change of grid spacing. We also call it
a measure of grid clustering. The formulas (9.87) and (9.91), rewritten in the grid
coordinates, result in the following:

Theorem 4 Let x(s) in (9.2) and s(ξ) in (9.3) be nondegenerate transformations of
the class C2[Sn] and C2[Ξ n], respectively. Then,

vp = − 1

g
pp
ξx

ΔB[ξ p] − n − 1√
g
pp
ξx

Km(ξ p) , p = 1, . . . , n , p fixed , (9.95)

where ΔB is the operator of Beltrami defined by (9.37) in the metric of Sxn; the
function ξ p(s) is the pth component of the transformation ξ(s) : Sn → Ξ n inverse
to the intermediate transformation (9.2); Km(ξ p) is the geodesic curvature of the
curve ξ p = c0 in Sx2 when n = 2, while Km(ξ p), when n > 2, is the mean curvature
of the hypersurface ξ p = c0 in Sxn.

Remarks

We assume here that the logical domain Ξ n is a rectangular n-dimensional par-
allelepiped 0 ≤ ξi ≤ li , i = 1, . . . , n, and the (n − 1)-dimensional boundary plane
ξi = 0 or ξi = li is mapped onto some (n − 1)-dimensional segment of the boundary
of Sxn .

Formula (9.95) demonstrates how the measure vp of grid clustering near a bound-
ary hypersurface ξ p = c0 in Sxn depends on its mean curvature. In particular, when
the grid coordinate function ξ p(s), p = 1, . . . , n, is subject to the corresponding pth
equation of the grid system

ΔB[ξi ] = 0 , i = 1, . . . , n , (9.96)

in the original metric of the physical geometry Sxn , then (9.95) yields

vp = −n − 1√
g
pp
ξx

Km(ξ p) , p = 1, . . . , n , p fixed. (9.97)
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So, the sign of vp is determined by the sign of Km(ξ p). Note that the Eq. (9.96)
proposed for two-dimensional domains byWinslow (1967) and for surfaces byWarsi
(1981) are the most popular for the generation of fixed grids in domains and on two-
dimensional surfaces.

If Sxn is a domain Sn with the Euclideanmetric, then the Eq. (9.96) are the Laplace
equations

∇2[ξi ] ≡ ∂

∂s j

( ∂ξi

∂s j

)
= 0 , i, j = 1 . . . , n . (9.98)

In the monographs of Thompson et al. (1985) and Liseikin (1999), it was proved that
the nodes of the coordinate grid obtained in Sn by the solution of the equations inverse
to (9.98) on a rectangular computational domain Ξ n : 0 ≤ ξi ≤ li , i = 1, . . . , n,
cluster near concave boundary segments of Sn and rarefy near its convex boundary
segments (see Figs. 6.6 and 6.7 for n = 3). However, formula (9.97) yields more
strong conclusions for n-dimensional domains Sn when n ≥ 3. In order to formulate
these results, we first note that the unit normal np, specified by (9.94), in this case,
is as follows:

np = 1√
g
pp
ξs

g
pj
ξs sξ j , j, p = 1, . . . , n , p fixed ,

where

g
pj
ξs = ∂ξ

∂s p
· ∂ξ

∂s j
, j, p = 1, . . . , n .

Since

np · sξ p = 1√
g
pp
ξs

> 0 , p = 1, . . . , n , p fixed ,

the unit normal np is directed to the interior of Sn at the points of the boundary
hypersurface ξ p = 0. Contrastingly, at the points of the hypersurface ξ p = l p, it is
directed to the exterior of Sn . Therefore, the inequality vp > 0 (vp < 0) at the points
of the boundary hypersurface ξ p = 0 means that the grid nodes cluster (rarefy) near
it. Contrastingly for the hypersurface ξ p = l p in Sn , the inequality vp > 0 (vp < 0)
means rarefaction (clustering) of grid nodes near it. Thus, the nodes of the grid pro-
duced by the equations inverted to (9.98) will also cluster (rarefy) near the boundary
ξ p = l p if this segment is not concave (convex) but rather has the negative (positive)
mean curvature, for example, it is a saddle surface (see Fig. 9.7).

Formula (9.97) also yields a new result in the theory of surface grid generation.
Namely, the nodes of the coordinate grid on the surface Sx2 generated through the
equations inverse to (9.96) cluster (rarefy) near concave (convex) segments of the
boundary of Sx2. Figures9.8 and 9.9 of the surface grid generated through the solution
of equations (9.96) for n = 2 demonstrate node clustering near its concave boundary
segments. The right-hand part of Fig. 9.8 illustrates the grid in a parametric domain
S2.

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_6
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Fig. 9.7 Three-dimensional domain with a hexahedral numerical grid generated through the
inverted system of Laplace equations. The grid is clustering near a concave boundary segment
and rarefying near a convex boundary segment

Fig. 9.8 A surface grid with node clustering near concave boundary segments (left). The grid on
the parametric domain S2 (right)

9.4.3 Diffusion Functional

One of the generalizations of the smoothness functional (9.21) is represented by a
diffusive functional:

ID[ξ] =
∫

Sn

w(s)g jk
sx

∂ξi

∂sk
∂ξi

∂s j
ds ≡

∫

Sn

w(s)gi iξxds ≡
∫

Ξ n

w[s(ξ)]Jgi iξxdξ,

i, j, k = 1, . . . , n,

(9.99)

where J = det{∂si/∂s j }.
Analogously to the inverted functional of grid smoothness in the form (9.23), the

diffusion functional (9.99) yields the following inverted diffusion functional IID[s]
with respect to the intermediate transformations s(ξ) :
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Fig. 9.9 A grid with node
clustering near a boundary
segment with negative
curvature

IID[s] =
∫

Ξ n

w(s(ξ))tr{gi jξx }dξ . (9.100)

Thus, for n = 1, 2, 3, we have

IID[s] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ξ 1

w[s(ξ)]
Jgxs

dξ , n = 1 ,

∫

Ξ 2

w[s(ξ)]
Jgxs

(g
sξ
11 + g

sξ
22)dξ

1dξ2 , n = 2 ,

∫

Ξ 3

w[s(ξ)]
Jgxs

[gsξ11gsξ22 + g
sξ
11g

sξ
33 + g

sξ
22g

sξ
33

−(g
sξ
12)

2 − (g
sξ
13)

2 − (g
sξ
23)

2]dξ1dξ2dξ3 , n = 3 ,

(9.101)

The expression of functional (9.99) prompts one to determine what the monitor
metric should be to provide the generation of the numerical grid with a required
property. For this purpose, the metric is to have such a form so that the integrand of
the functional (9.99)

σ(s) = w(s)g jk
sx

∂ξi

∂s j

∂ξi

∂sk
, i, j, k = 1, . . . , n (9.102)

describes a measure of departure of the grid from the necessary grid at the point
s ∈ Sn . If such a metric is found, then it can be expected that the minimization of
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the functional (9.99) will produce the grid with the required property. In particular,
formula (9.102) with respect to the metric of the monitor surface Srn over Sxn can
be considered as a measure of departure of a grid from the reference grid with node
clustering in the zones of large variations of the function f(s).

The Euler–Lagrange equations for the diffusion functional (9.99) have the fol-
lowing form:

∂

∂sm

(
w(s) gml

sx

∂ξi

∂sl

)
= 0 , i,m, l = 1, . . . , n , (9.103)

in particular, when Sxn ≡ Sn , then these equations are the diffusion equations

∂

∂sm

(
w(s)

∂ξi

∂sm

)
= 0 , i,m = 1, . . . , n , (9.104)

described in Sect. 6.

9.4.4 Dimensionless Functionals

This section formulates some dimensionally homogeneous functionals through the
invariants of themetric tensor {gxξ

i j }which, in analogywith the smoothness functional,
measure global nonuniformity of hypersurface grids.

As was demonstrated in Sect. 9.3.2, the quantity In−1/In represents a measure of
the local clustering of a hypersurface grid. Integration of this measure over the hyper-
surface Sxn derives the smoothness functional whose minimization tends to yield a
uniform grid on Sxn . The smoothness functional possesses the spectacular properties
reviewed in Sects. 9.3.2 and 9.3.3. In the particular case when n = 2, this functional
is also dimensionless. However, it is not dimensionless in three-dimensions, which
may be important for the generation of spatial adaptive grids. Nevertheless, using
the invariants of the covariant metric tensor {gxξ

i j }, we can formulate dimensionless
functionals measuring grid nonuniformity for arbitrary n > 1.

For this purpose, we, in analogy with (7.34), consider a dimensionless measure
of the local departure of a hypersurfaces grid, in particular of a monitor surface grid,
from a conformal one:

Qcf,3 = [In−1/(In)
1−1/n]α , α > 0 , n > 1 .

As was mentioned in Sect. 7.3.1, the dimensionless functionals are formulated by
integrating local dimensionless measures over the unit cube Ξ n. Thus, we obtain
one functional, using the quantity Qcf,3,

http://dx.doi.org/10.1007/978-3-319-57846-0_7
http://dx.doi.org/10.1007/978-3-319-57846-0_7
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Icf,3 =
∫

Ξ n

[In−1/(In)
1−1/n]αdξ

=
∫

Sxn

1√
In

[In−1/(In)
1−1/n]αdSxn . (9.105)

Functional (9.105) can be interpreted as an integral measure of the departure from
conformality. When (1 − 1/n)α = 1/2, this functional is independent of the para-
metrization of Sxn .

Another dimensionless functional measuring the departure from conformality is
defined, in analogy with (7.32), through the first and nth invariants:

Icf,2 =
∫

Ξ n

[I1/(In)1/n]αdξ

=
∫

Sxn

1√
In

[I1/(In)1/n]αdSxn , α > 0 , n > 1 . (9.106)

This functional is independent onparametrizations of Sxn ifα = n/2.Theparame-
ter α in (9.105) and (9.106) can be used to control the form of the functionals. In par-
ticular, assuming α = n/2 in (9.105), we obtain a dimensionless functional which is
defined through themeasure of the local grid clustering In−1/In = gi iξx , i = 1, . . . , n:

Icf,3 =
∫

Sxn

(In−1/In)
n/2dSxn . (9.107)

Note that functional (9.107) coincides with the smoothness functional for n = 2. For
n = 3, we obtain, using (9.15),

Icf,3 =
∫

Sr3

( I2
I3

)3/2
dSr3

=
∫

S3

√
gxs

(
gklsx

∂ξi

∂sk
∂ξi

∂sl

)3/2
ds , i, j, k, l = 1, 2, 3 . (9.108)

Thus, the Euler–Lagrange equations for this functional have the form

∂

∂s j

(√
gxs

√
I2
I3

gk jsx
∂ξi

∂sk

)
= 0 , i, j, k = 1, 2, 3 , (9.109)

while the corresponding inverted equations are represented as

http://dx.doi.org/10.1007/978-3-319-57846-0_7
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g
i j
ξx

∂2sl

∂ξi∂ξ j
= 1√

gxs

√
I3
I2

∂

∂sk

(√
gxs

√
I2
I3

glksx

)
, i, j, k, l = 1, 2, 3 , (9.110)

which are a generalization of (9.49) with n = 3 for three-dimensional hypersurfaces.
In the samemanner, there can bewritten Euler–Lagrange equations for the functional
Icf,3 for arbitrary n > 1.

Analogously, by assuming α = n/[2(n − 1)], we find a simpler form of the
dimensionless functional (9.106):

Icf,2 =
∫

Sxn

(I1/In)
n/[2(n−1)]dSxn . (9.111)

This functional coincides with the smoothness functional for n = 2, while for n = 3,
it has the form

Icf,2 =
∫

Sr3

(I1/I3)
3/4dSr3 . (9.112)

Substituting in formulas (9.105)–(9.112), Sxn for Srn yields the corresponding
dimensionless functionals for generating adaptive grids on Sxn .

9.5 Formulation of Comprehensive Grid Generator

Sections9.2 and 9.4 give a schematic description of a mapping approach in which
an adaptive grid in the physical geometry Sxn represented by (9.1) is generated
as a smooth mapping subject to the inverted Beltrami equation with respect to the
metric of a monitor hypersurface Srn over Sxn . This metric provides the generation
of grids with node clustering in the zones of large variations of a specified function
f (x). However, the application of such a metric does not provide the generation of
grids with other very important properties, in particular, grids with node clustering
according to given function values, grid alignment with given vector fields, and
combinations thereof. So, it is necessary to generalize the metrics (9.9) and (9.10)
of the monitor hypersurface Srn in order to generate adaptive grids for a more wide
variety of applied problems.

For the purpose of providing more efficient control of grid generation in the
hypersurface Sxn , we introduce the notion of a monitor manifold designated as Mn

over Sxn . The points of the manifold Mn are the points of Sxn , while its metric may
differ from the metric of the given hypersurface. We shall refer to this more general
metric as the control metric.

This section reviews mathematical models for robust grid generators based on
energy and diffusion functionals and corresponding differential Beltrami and diffu-
sion equations, with respect to the control metrics.
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9.5.1 Formulation of Control Metrics

The control metric serves to control the properties of grids in the physical geometry
Sxn . It is evident that the metric should take into account the quantities requiring grid
adaptation: geometric characteristics of Sxn, physical variables and their derivatives,
specified vector fields, error of the numerical solution applied, etc.

For the purpose of better handling grid control, it is reasonable to restrict the
whole set of the control metrics to a basic subset which, however, can be adequate
for realizing the necessary grid properties. Also, these basic control metrics are to
be described by simple formulas which allow one to establish readily the relations
between them and the grid characteristics. Furthermore, one of the natural ways to
satisfy balanced grid properties, each of which is realized by an individual control
metric, is to combine these metrics linearly. Therefore, the basic metric tensors
formulated should be subject to the operation of summation in the sense that the sum
of the two control metrics from the subset is also the metric (nonsingular tensor).
Note, in general, that the sum of two metrics may not be a metric, since the sum
of two nonsingular matrices may be a singular matrix. In addition, a mathematical
formulation of the control metric should be simple and comprehensive, so that a
robust grid code could be developed for automatic generation of grids with required
properties. It turns out that defining a suitable control metric is the key to success in
mesh adaptation.

This subsection describes an approach for formulating such basic control metrics.
Let the covariant (contravariant) elements of the control metric in arbitrary coor-

dinates v1, . . . , vn of the monitor manifold Mn over Sxn be designated as gvi j (g
i j
v ).

Notice that the matrices {gvi j } and {gi jv }, referred to as covariant and contravariant
metric tensors in the coordinates v1, . . . , vn , are to be nondegenerate, symmetric,
and mutually inverse, i.e.,

gvi jg
jk
v = δik, i, j, k = 1, . . . , n . (9.113)

Besides this covariant, metric elements in new coordinatesw1, . . . , wn and old coor-
dinates v1, . . . , vn are connected by the following relations:

gvi j = gwkp
∂wk

∂vi

∂w p

∂v j
, i, j, k, p = 1, . . . , n . (9.114)

In this case, the contravariant metric elements will be subject to the relations

gi jv = gkpw
∂vi

∂wk

∂v j

∂w p
, i, j, k, p = 1, . . . , n . (9.115)

Thus, for formulating a control metric on Sxn , it is sufficient to define covariant
metric elements or contravariant metric elements in one coordinate system. In other
coordinates, they are defined through the formulas (9.114) and (9.115).
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The most general and simple formulation of covariant metric elements gs
i j of the

imposed control metric on Sxn in the parametric coordinates s1, . . . , sn , is given
through a set of covariant tensors of the first rank

Fk(s) = [Fk
1 (s) , . . . , Fk

n (s)] , k = 1, . . . , l ,

by the following formula:

gsi j = z(s)gxs
i j + Fk

i (s)Fk
j (s) , i, j = 1, . . . , n , k = 1, . . . , l , (9.116)

where gxs
i j is the metric of Sxn , and z(s) ≥ 0 is a weight function specifying the

contribution of this metric to the control metric gsi j . When Sxn ≡ Sn , then, from
(9.116),

gsi j = z(s)δij + Fk
i (s)Fk

j (s) , i, j = 1, . . . , n , k = 1, . . . , l , (9.117)

and consequently the covariantmetric elements (9.10) and (9.9) have the form (9.116)
and (9.117), respectively, if z(s) = 1 , Fk

i = ∂ f k/∂si .
Of course, it is assumed that the function z(s) and the vectorsFk(s), k = 1, . . . , l,

in (9.116) and (9.117) are subject to the restriction

gs = det{gsi j } > 0,

at each point s ∈ Sn .
Notice that if we introduce in Rn+k+l vectors wi (s), i = 1, . . . , n by the formula

wi (s) = [√z(s)
∂x
∂si

, F1
i , . . . , Fl

i ], i = 1, . . . , n,

where x(s) is the parametrization (9.1) of the physical geometry Sxn, then it is obvious
that

gsi j = wi · w j , i, j = 1, . . . , n.

So, for nonsingularity of the control metric tensor (9.116), the vectors wi (s), i =
1, . . . , n, must be independent. In particular, the vectors wi (s), i = 1, . . . , n, will
be independent if z(s) > 0 at each point s ∈ Sn , since the tangent vectors∂x/∂si , i =
1, . . . , n, of Sxn are independent.

It is evident that the linear combination of two metric tensors of the form (9.116)
with corresponding nonnegative coefficients ε1(s) and ε2(s) is the matrix of the same
form (9.116), and it is nonsingular (metric tensor) if ε1(s) + ε2(s) > 0 at each point
of s ∈ Sn.

Sometimes, instead of the covariant metric components gsi j , it is convenient, in
particular in order to define the measure of grid departure from a required grid, to
formulate the contravariant components g

i j
s of the control metric in the parametric

coordinates s1, . . . , sn , for example, in the form (9.116), namely as
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gi js = ε(s)gi jsx + Bi
k B

j
k , i, j = 1, . . . , n , k = 1, . . . , l , (9.118)

where ε(s) ≥ 0, g
i j
sx are the contravariant metric elements of Sxn , while Bi

k, i =
1, . . . , n, are the components of a contravariant vector Bk = (B1

k , . . . , B
n
k ), k =

1, . . . , l. In particular, if Sxn ≡ Sn , (9.118) becomes

gi js = ε(s)δij + Bi
k B

j
k , i, j = 1, . . . , n , k = 1, . . . , l , (9.119)

9.5.2 Energy and Diffusion Functionals

Similar to (9.34), the energy functional IE with respect to the control metric gs
i j in

the parametric coordinates s1, . . . , sn is as follows:

IE [ξ] =
∫

Sn

√
gsgml

s
∂ξi

∂sm
∂ξi

∂sl
ds , i, l,m = 1, . . . , n , (9.120)

where gs = det{gs
i j }.

Assuming in (9.120),
√

gs = w(s), wherew(s) > 0 is aweight function, produces
the functional of diffusion ID with respect to the control metric gs

i j :

ID[ξ] =
∫

Sn

w(s)gml
s

∂ξi

∂sm
∂ξi

∂sl
ds , i, l,m = 1, . . . , n . (9.121)

The inverse of the function ξ(s) : Sn → Ξ n , which is a critical point of the func-
tionals (9.120) or (9.121), determines the intermediate transformation s(ξ) : Ξ n →
Sn applied to specify the grid nodes on the parametric domain Sn by mapping the
nodes of a reference grid in Ξ n with s(ξ). Consequently, the grid nodes on the phys-
ical geometry Sxn are obtained by mapping the nodes in Sn with parametrization
(9.1): x(s) : Sn → Sxn . Equally, the nodes in Sxn are obtained by mapping the nodes
of a reference grid in Ξ n with the transformation

x(s(ξ)) : Ξ n → Sxn ⊂ Rn+k . (9.122)

Notice that the intermediate transformation s(ξ) is typically obtained byminimiz-
ing the inverse functionals which, similar to (9.23) and (9.100), have, respectively,
the following forms:

II E [s] =
∫

Ξ n

√
gξgi iξ dξ , i = 1, . . . , n , (9.123)
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where gξ = det{gξ
i j },

IID[ξ] =
∫

Ξ n

w(s)gi iξ dξ , i = 1, . . . , n . (9.124)

The novel feature of the functionals (9.120) and (9.121) is the recognition that
the control metric gs

i j can be freely chosen to give the grid on Sxn desired properties.
The incorporation of the weight function w provides additional control over the
redistribution of grid nodes in selected regions of Sxn . The job of constructing the
grid then rests entirely on the choice of the control metric and the weight function.

The functionals (9.120) and (9.121) give some guess as to how to specify the
control metric gs

i j in order to obtain the grid with a desired property. Namely, the
metric gs

i j should be specified so that the quantity

m(s) = w(s)g jl
s

∂ξi

∂s j

∂ξi

∂sl
, i, j, l = 1, . . . , n , (9.125)

reflects some measure of departure from the desired grid in Sxn . In this case, mini-
mization of the functionals with this metric gives the intermediate transformations
s(ξ) which are able to produce desirable grids. In particular, in accordance with
Sect. 10.3.2, for the metric gs

i j = grsi j of a monitor hypersurface Srn over Sxn , the
quantity (9.125) with w(s) = √

gs is a measure of departure from a uniform grid on
Srn , and consequently from an adaptive grid on Sxn .

Notice that the dimensionless functionals considered in Sect. 9.4.4 are readily
formulated for the hypersurface Sxn with the introduced control metric gs

i j through

the invariants of the control metric tensor {gξ
i j } in the grid coordinates ξ1, . . . , ξn .

However, these functionals are the same for themetrics gs
i j andw(s)gs

i j , and therefore,
the functionals should also include weight functions, similar to the way in which it
was done for formulating the diffusion functional (9.121).

9.5.3 Beltrami and Diffusion Equations

Similar to (9.35), the intermediate transformation s(ξ) for generating grids in Sn and,
consequently, on Sxn is determined as the inverse of the transformation

ξ(s) : Sn → Ξ n , ξ(s) = [ξ1(s), . . . , ξn(s)]

which is a solution to the following Dirichlet boundary value problem for the Euler-
Lagrange equations derived from the functional of energy (9.120):

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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∂

∂s j

(√
gsg jk

s
∂ξ

∂sk

)
= 0 , j, k = 1, . . . , n ,

ξ(s)|∂Sn = ϕ(s) : ∂Sn → ∂Ξ n , ϕ(s) = [ϕ1(s), . . . ,ϕn(s)] ,

where g
jk
s are the contravariant components of the control metric in the parametric

coordinates s1, . . . , sn , ∂Sn and ∂Ξ n are the boundaries of Sn and Ξ n , respectively,
while ϕ(s) is a one-to-one continuous transformation between the boundaries of Sn

and Ξ n . This boundary value problem has the following form for the components
ξi (s):

∂

∂s j

(√
gsg jk

s
∂ξi

∂sk

)
= 0 , i, j, k = 1, . . . , n ,

ξi (s)|∂Sn = ϕi (s) , i = 1, . . . , n .

(9.126)

In the theory ofRiemannianmanifolds, the equations in (9.126) are called generalized
Laplace equations or Beltrami equations of second order.We shall hereafter call them
Beltrami equations.

The functions ξ1(s), . . . , ξn(s) satisfying (9.126) form a curvilinear coordinate
system in Sn and on Sxn . These curvilinear coordinates are further referred to as the
grid coordinates.

It is easily shown that an arbitrary one-to-one twice differentiable transformation
ψ(s) : Sn → Ξ n ,ψ(s) = (ψ1(s) , . . . ,ψn(s)), is a solution to the Dirichlet problem
(9.126) with respect to the control metric gs

i j specified in the parametric coordinates
s1, . . . , sn , by

gs
i j = ∂ψ

∂si
· ∂ψ

∂si
, i, j = 1, . . . , n , (9.127)

and with the following boundary conditions:

ξ(s)|∂Sn = ψ(s) , i = 1, . . . , n .

Indeed, it is readily obtained, from (9.127), that

√
gs = det

{∂ψl

∂sk

}
, g jk

s = ∂s j

∂ψm

∂sk

∂ψm
, j, k, l,m = 1, . . . , n ,

so the i th equation in (9.126) with ∂ξi/∂sk = ∂ψi/∂sk is, in fact, the identity of the
form (2.48)

∂

∂s j

(
det

{∂ψl

∂sk

} ∂s j

∂ψi

)
≡ 0 , i, j = 1, . . . , n ,

i.e., the functions ψi (s), i = 1, . . . , n, are the solutions to the Dirichlet problem
(9.126) for the Beltrami equations with respect to the metric (9.127).

The substitution of w(s) for
√

gs in the system of equations in (9.126) yields the
Dirichlet problem for more general diffusion equations

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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∂

∂s j

(
w(s)g jk

s
∂ξi

∂sk

)
= 0 , i, j, k = 1, . . . , n ,

ξi (s)|∂Sn = ϕi (s) , i = 1, . . . , n .

(9.128)

Here, w(s) > 0 is a weight function aimed at increasing or decreasing the effect of
the control metric in the necessary zones of Sxn . The equations in (9.128) are, in
fact, the Euler–Lagrange equations for the diffusion functional (9.121), so they will
be referred to as the diffusion equations.

The diffusion equations in (9.128) are equivalent to the Beltrami equations in
(9.126) if w(s) = √

gs, gs = det{gsi j }. Moreover, for n �= 2, they are always equiva-
lent to the Beltrami equations, with respect to the metric

gi j = (gs)
1

2−n [w(s)] 2
n−2 gsi j , i, j = 1, . . . , n , (9.129)

regardless of the weight function w(s) > 0. Indeed, for this metric,

g = det{gi j } = (gs)
n

2−n [w(s)] 2n
n−2 gs = (gs)

2
2−n [w(s)] 2n

n−2 ,

gi j = (gs)
1

n−2 [w(s)] 2
2−n g

i j
s , i, j = 1, . . . , n ,

so √
ggi j = w(s)gi js , i, j = 1, . . . , n ,

and therefore

∂

∂s j

(
w(s)g jk

s
∂ξi

∂sk

)
≡ ∂

∂s j

(√
gg jk ∂ξi

∂sk

)
, i, j, k = 1, . . . , n ,

i.e., the system in (9.128) is the system of Beltrami equations with respect to the
metric (9.129).

Though the Beltrami equations in (9.126) are comprehensive, i.e., for an arbitrary
nondegenerate twice differentiable intermediate transformation s(ξ) there exists a
control metric such that the transformation is the inverse of the solution of these
equations, the form in (9.128) of the diffusion equations with the weight function
appears to be more convenient, especially for n = 2, for realizing the necessary
requirements for the grid properties in different zones of Sxn . However, one should
remember that for another coordinate system v1, . . . , vn , the equations in (9.128)
become equivalent to

∂

∂v j

(
w[s(v)]g jk

v
∂ξi

∂vk

)
= 0 , i, j, k = 1, . . . n ,

where J = det
{
∂si/∂v j

}
. This very system in the parametric coordinates v1, . . . , vn

should be solved in order to obtain the same grid computed by the solution of the
boundary value (9.128) in the parametric coordinates s1, . . . , sn .
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9.5.4 Inverted Beltrami and Diffusion Equations

The numerical grid on the hypersurface Sxn is built bymapping a reference grid in the
computational domain Ξ n with the coordinate transformation x[s(ξ)] : Ξ n → Sxn .

Practically, the grid is first defined in the parametric domain Sn by mapping the grid
inΞ n on Sn with the use of the intermediate transformation s(ξ). Then, the grid in Sn

is mapped on Sxn by the parametrization x(s), thus forming a grid on Sxn . Note that,
in order to find the grid nodes in Sn through the intermediate transformation s(ξ), the
inverse of which is a solution of the problem (9.126) or (9.128), there is no necessity
to compute the transformation s(ξ) at all points ξ ∈ Ξ n. It is sufficient to solve
numerically the boundary value problem obtained by interchanging dependent and
independent variables in (9.126) or (9.128), i.e., considering the variables ξ1, . . . , ξn

as independent while considering the variables s1, . . . , sn of the parametric domain
Sn as dependent. This change of dependent and independent variables yields, from
(9.126) and (9.128), nonlinear elliptic equations with respect to the intermediate
function s(ξ). We shall refer to these transformed equations as inverted equations.

The inverted problem with respect to the components si (ξ), i = 1, . . . , n, of the
intermediate transformation s(ξ) should be solved on the reference grid in Ξ n . The
values of this numerical solution

s(ξ) = [s1(ξ), . . . , sn(ξ)]

at the points of the reference grid determine grid nodes in Sn , and consequently on
Sxn , by mapping them through the parametrization x(s) : Sn → Sxn .

Similar to (9.53), it is readily shown, from the equations in (9.126), that the general
inverted Beltrami equations with respect to the control metric gs

i j are as follows:

Bξ
n [sl] = gξΔB[sl] , l = 1, . . . n , (9.130)

where

Bξ
n [sl ] = gξg

i j
ξ

∂2sl

∂ξi∂ξ j
, i, j, l = 1, . . . n ,

gξ = det{gξ
i j } = gs(J )2 = 1/det{gi jξ } ,

ΔB[sl] = 1√
gs

∂

∂s j
(
√

gsgl js ) , i, j, l = 1, . . . n ,

J = det{∂si/∂ξ j }, gξ
i j (g

i j
ξ ) are the covariant (contravariant) elements of the control

metric in the grid coordinates ξ1, . . . , ξn , i.e.,

g
ξ
i j = gs

kl

∂sk

∂ξi
∂sl

∂ξ j
, g

i j
ξ = gkls

∂ξi

∂sk
∂ξ j

∂sl
, i, j, k, l = 1, . . . n . (9.131)
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Notice that the operator Bξ
n is, in fact, the operator Bxξ

n (see (9.52) and (9.54)) if
g

ξ
i j = g

xξ
i j , while it is the operator B

rξ
n (see (9.57)) if g

ξ
i j = g

rξ
i j , and the operator Bn

in the formula (6.18) if g
ξ
i j = gi j .

Consequently, the boundary value problem (9.126) is transformed into the fol-
lowing inverted problem with respect to the components si (s) of the intermediate
function s(ξ) : Ξ n → Sn:

Bξ
n [si ] = (J )2

√
gs

∂

∂ξk
(
√

gsgi js )
∂ξk

∂s j
, i, j, k = 1, . . . n ,

si (ξ)|∂Ξ n = ψi (ξ) , i = 1, . . . , n ,

(9.132)

where ψ(ξ) : ∂Ξ n → ∂Sn , ψ(ξ) = [ψ1(ξ), . . . ,ψn(ξ)], is the inverse of ϕ(s) :
∂Sn → ∂Ξ n.

In the one-dimensional case, the equation in (9.132) is equivalent, as for (9.50),
to the following equation in a divergent form

d

dξ

(√
gs

ds

dξ

)
= 0 . (9.133)

Similar to (9.132), the Dirichlet boundary value problem obtained from (9.128)
for the inverted diffusion equations is written out:

Bξ
n [si ] = gs(J )2

w(s)

∂

∂ξk
(w(s)gi js )

∂ξk

∂s j
, i, j, k = 1, . . . n ,

si (ξ)|∂Ξ n = ψi (ξ) , i = 1, . . . , n .

(9.134)

Substitution in (9.133) w(s) for
√

gs gives a divergent form of the inverted diffusion
equation in (9.134) for n = 1.

The inverted diffusion equations in (9.134) are also transformed into the following
divergent form:

∂

∂ξ j
{Jw[s(ξ)]gi jξ } = 0, i, j = 1, . . . , n, (9.135)

obtained by applying the identity (2.48) to the equations in (9.128). Substituting in
(9.135)

√
gs for w(s) gives a divergent form for the inverted Beltrami equations,

namely,
∂

∂ξ j
(
√

gξg
i j
ξ ) = 0, i, j = 1, . . . , n . (9.136)

Another formulation of a grid model through the Beltrami equations with respect
to the intermediate transformation s(ξ),

∂

∂ξ j

(√
gg jk ∂si

∂ξk

)
= 0 , i, j, k = 1, . . . , n ,

si (ξ)|Ξ n = ψi (ξ) ,

(9.137)

http://dx.doi.org/10.1007/978-3-319-57846-0_6
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 9.10 Quadrilateral (a) and triangular (b) grids in concave domains generated by the solution
of equations (9.137) (left) and by the solution of equations in (9.132) (right), both with respect to
the Euclidean metric

where g jk are the contravariant metric components of a monitor manifold over Ξ n ,
g = det{g jk} = 1/det{g jk}, was proposed by Godunov and Prokopov (1967), and
Ryskin and Leal (1983). The equations in (9.137) seem to be more natural than
the nonlinear inverted Beltrami equations in (9.132) obtained from the Beltrami
equations in (9.126) for the implementation into numerical codes, since they are linear
and of divergent form with respect to the intermediate transformation s(ξ). However,
such a divergent model, owing to the maximum principle, does not guarantee that all
grid points will be inside of the physical geometry Sxn when the parametric domain
Sn is not convex (see Fig. 9.10, left-hand); moreover, the grid cells may be folded.
Providing grid nondegeneracy through the solution of equations in (9.137) depends
on devising a suitable metric in Ξ n, which hasn’t been done so far in a general form.

The considerations mentioned are such that it is more reasonable to make the
formulation of grid systems through the Beltrami equations with respect to the func-
tion ξ(s) : Sn → Ξ n , the inverse of which yields the intermediate transformation
s(ξ) : Ξ n → Sn .
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9.5.5 Specification of Individual Control Metrics

Control Metric for Generating Field-Aligned Grids

The contravariant metric tensor in the form (9.118) allows one to control the angle
between the normal to a grid coordinate hypersurface in Sxn and a specified vector
field, in particular, to generate vector field-aligned grids. As a tensor of the first rank
in the formula (9.118), one may take either the same or a transformed vector field.

The need for a vector field-aligned coordinate system can be appreciated in the
case Sxn = Sn by considering the heat equation in a magnetized plasma, written in
the grid coordinates ξi ,

∂T

∂t
= ∇ · (χ · ∇T ) = 1

J

∂

∂ξi

(
Jχ : ∇ξi∇ξ j ∂T

∂ξ j

)
, i, j = 1, 2, 3. (9.138)

By far, the largest component of the anisotropic thermal conductivity tensor χ
equals χ‖bb, where χ‖ is parallel conductivity and b is the unit vector along the
magnetic field B = (B1, . . . , Bn). If b · ∇ξi is of order unity for all grid coordinates
ξi , then the much smaller transverse terms in (9.138) involve the difference between
large terms, resulting in a loss of numerical accuracy. If it vanishes, or nearly so, for
all but one coordinate, this inaccuracy can be avoided. Similar considerations hold
for other manifestations of magnetic anisotropy.

For simple magnetic fields, such as those in the core region of the tokamak, it
is possible to define a flux coordinate ψ labeling the magnetic surfaces, satisfying
B · ∇ψ = 0 exactly. In more complicated cases, such as nonaxisymmetric magnetic
fields with multiple islands and regions of stochasticity, this is not possible. For
example, the condition of orthogonality between a vector field B = (B1, . . . , Bn)

specified at the points of a domain Sn and a normal to the coordinate hypersurface
ξ1 = const can be described as an equation for a quadratic form

(B · gradξ1)2 ≡ Bi B j ∂ξ1

∂si
∂ξ1

∂s j
= 0, i, j = 1, . . . , n,

with a degenerate matrix {Bi B j } (det{Bi B j } = 0). This quadratic form as a measure
of grid departure from field-alignment was used in Glasser and Tang (2004) for
generating nearly field-aligned grids in the domain Sn through the minimization of
the functional

L =
∫

Sn

Bi B j ∂ξ1

∂si
∂ξ1

∂s j
ds , i, j = 1, . . . , n. (9.139)

The integrand in the functional of energy (9.120) is formulated as the sumof quadratic
forms

g jk
s

∂ξi

∂sk
∂ξi

∂s j
, i, j, k = 1, . . . , n, i fixed,
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multiplied by
√

gs, but contrary to (9.139), with a nondegenerate matrix {g jk
s }. The

condition of non-degeneracy is indispensable for obtaining unfolded grids through
the minimization of the functional (9.120), and consequently through the solution
of boundary value problem (9.132). The factor

√
gs provides the independence of

grids of parametrizations. Therefore, in order to get grids which are both nearly field-
aligned and unfolded, we have to change slightly the matrix {Bi B j } in the functional
(9.139) to make it nondegenerate. The matrix {gi js } whose elements are specified in
the form (9.119) is nondegenerate for an arbitrary ε(s) > 0; in addition, this matrix
is close to the matrix {Bi B j } when both ε(s) and Bk, k = 2, . . . , l are small and
B1 = B. Assuming this matrix

gi js = ε(s)δij + Bi B j + Bi
m B

j
m , i, j = 1, . . . , n, m = 2, . . . , l , (9.140)

as a contravariant metric tensor of a monitor manifold Mn over Sn yields that the
functional of energy (9.120) is as follows:

I [ξ] =
∫

Sn

1√
gs

[
ε(s)

∂ξi

∂sm
∂ξi

∂sm
+ B j

k B
p
k

∂ξi

∂s j

∂ξi

∂s p

]
ds ,

i, j,m, p = 1, . . . , n, k = 1, . . . , l ,

(9.141)

where gs = det{gi js } = 1/gs. In particular, for l = 2,

gs = εn−2(s)
{[ε(s) + |B1|2][ε(s) + |B2|2] − (B1 · B2)

2
}
, l = 2.

Consequently, equations in (9.132) aimed at the generation of grids providing that
the angle between B and a normal to a coordinate hypersurface is close to π/2 have
the form

gkmξ

∂2si

∂ξk∂ξm
= √

gs
∂

∂s j

(ε(s)δij + Bi
a B

j
a√

gs

)
, i, j, k,m = 1, . . . , n, a = 1, . . . , l.

(9.142)
This contravariant metric tensor of a monitor manifold over a domain Sn yields,

in accordance with (9.125), the following measure of grid nonalignment with the
vector field B

m(s) = w(s)[ε(s)δ j
k + B j Bk + B j

m B
k
m] ∂ξi

∂s j

∂ξi

∂sk
,

i, j, k = 1, . . . , n, m = 2, . . . , l .

Figure9.11 demonstrates a grid (right-hand) with one family of grid lines orthog-
onal to a vector field (left-hand) by solving Eq. (9.142) for n = 2 and l = 2.

Similarly, one can define a control metric and equations for generating grids with
the angle that is close to 0.
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Fig. 9.11 Isocontours of a vector field (left), quadrangular field-aligned grid (right)

While this approach to grid alignment with the magnetic field was motivated by
the work of Brackbill (1993), there is a substantial difference. Whereas Brackbill
has a variational principle similar to (9.120) or (9.121), his integrand is designed to
make a coordinate gradient parallel to a specified vector field; the approach described
above is designed to make a coordinate gradient perpendicular to a specified vector
field.

Control Metric for Generating Grids Adapting to the Values of a Function

For generating a numerical grid on a physical geometry Sxn with node clustering
in the zones of large values of a function |v(s)|, the measure of departure from the
necessary grid in Sxn can be expressed in the form

m(s) = Z [v](s)gkmsx
∂ξi

∂sk
∂ξi

∂sm
, i, j, k,m = 1, . . . , n, (9.143)

where Z [v] > 0 is a positive operator such that Z [v](s) is large (small) where |v(s)|
is small (large), for example,

Z [v](s) = 1

c1|v(s)| + c2
, c1 > 0 , c2 > 0 . (9.144)

So, the contravariant elements of the control metric are as follows:

gi js = Z [v](s)gi jsx , i, j = 1, . . . , n. (9.145)
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Consequently, the covariant elements of the control metric are written out as

gs
i j = 1

Z [v](s)
gxs
i j , i, j = 1, . . . , n , (9.146)

and therefore gs = gxs(Z [v])−n/2. So, the Beltrami equations in (9.126) with respect
to the metric (9.146) are expressed in the form

∂

∂s j

(
(Z [v])(2−n)/2

√
gxsg jk

sx

∂ξi

∂sk

)
= 0 , i, j = 1, . . . , n , (9.147)

while the invertedBeltrami equationswith respect to themetric (9.146) are as follows:

Bxξ
n [sk] = J 2

√
gxs(Z [v])(n−2)/2 ∂

∂s j
((Z [v])(2−n)/2

√
gxsg jk

xs ) , j, k = 1, . . . , n ,

(9.148)
where

Bxξ
n [y] = gxξg

i j
ξx

∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n .

In particular, if Sxn coincides with Sn , i.e., gxs
i j = δij , and consequently gxs = 1,

g
i j
sx = δij ,

gs
i j = 1

Z [v](s)
δij , i, j = 1, . . . , n , (9.149)

then the Beltrami equations (9.147) are as follows:

∂

∂s j

(
(Z [v])(2−n)/2 ∂ξi

∂s j

)
= 0 , i, j = 1, . . . , n . (9.150)

This system of equations is equivalent to the system of Poisson equations

∂2ξi

∂s j∂s j
= Pi , i = 1, . . . , n ,

where

Pi = n − 2

2

1

Z [v]
∂Z [v](s)

∂s j
∂ξi

∂s j
= n − 2

2

1

Z [v]
∂Z [v](s(ξ))

∂ξm
gimξx , i, j,m = 1, . . . , n .

Consequently, the inverted Beltrami equations in the control metric (9.149) are as
follows:

Bxξ
n [sk] = 2 − n

2
J 2 1

Z [v]
∂

∂sk
Z [v](s) , k = 1, . . . , n . (9.151)
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Fig. 9.12 Three-dimensional domain (left) and a fragment of an adaptive grid (right) in the interior
of the domain

Figure9.12 illustrates an adaptive three-dimensional grid obtained by the numerical
solution of equations (9.151). The grid nodes cluster in the zones of large values of
a function v(s).

The diffusion equations in (9.128) with respect to the metric (9.146) are expressed
as

∂

∂s j

(
w(s)Z [v]g jk

sx

∂ξi

∂sk

)
= 0 , i, j = 1, . . . , n . (9.152)

So, the inverted diffusion equations in this metric, necessary to generate adaptive
grids, are

Bxξ
n [sk] = J 2gxs

w(s)Z [v]
∂

∂s j
(w(s)Z [v]g jk

xs ) , j, k = 1, . . . , n . (9.153)

In particular, when Sxn = Sn , w(s) = 1, then these equations are

Bsξ
n [sk] = J 2 1

Z [v]
∂

∂sk
Z [v](s) , k = 1, . . . , n , (9.154)
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where

Bsξ
n [y] = gsξg

i j
ξs

∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n ,

gsξ = det{gsξi j } = J 2 , g
sξ
i j = ∂s

∂ξi
· ∂s
∂ξ j

= ∂sk

∂ξi
∂sk

∂ξ j
, i, j, k = 1, . . . , n ,

g
i j
ξs = ∂ξi

∂sk
∂ξ j

∂sk
, i, j, k = 1, . . . , n .

(9.155)
Equations (9.152)–(9.154) forn = 2 aremore efficient for adaptation than inverted

Beltrami equations (9.148) and (9.151), which for n = 2 do not depend on the oper-
ator Z [v].

The control metric (9.149) in Eq. (9.154) allows one to generate grids with node
clustering near the surface in Sxn specified by the formula φ(s) = 0. Such grid
clustering is provided by assuming in (9.149) Z [v](s) = v(φ(s)), for a function
v(t), subject to the following restrictions v(t) > 0, v(t1) > v(t2) if t1 > t2. If a set
A in Sxn is defined by a discrete number of points s1, . . . sN , then Z [v](s) can be
identified with v(ρ(s, A)), where

ρ(s, A) = min
i=1,...,N

|s − si |.

Figure9.13 for v(t) = t2 + 10−5 illustrates such a grid with node clustering near the
boundary of a carotis.

Fig. 9.13 Prismatic grid with node clustering near the boundary of a carotis
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General Diagonal Metric

For amore general controlmetricwith a diagonal tensor in the parametric coordinates
s1, . . . , sn ,

gsi j = vk(s)δki δ
k
j , i, j, k = 1, . . . , n , vk(s) > 0 , (9.156)

i.e.,

gsi j =

⎛
⎜⎜⎝

v1(s) 0 .... 0
0 v2(s) 0 . . . 0

................................

0 ...... 0 vn(s)

⎞
⎟⎟⎠ ,

we get

gs =
n∏

k=1

vk(s) , gi js = 1

vk(s)
δki δ

k
j , i, j, k = 1, . . . , n .

So, the Beltrami equations in (9.126) with respect to metric (9.156), are, in fact, the
following equations:

∂

∂s j

( √
gs

v j (s)
∂ξi

∂s j

)
= 0 , i, j = 1, . . . , n . (9.157)

In particular, if n = 2, Eq. (9.157) are as follows:

∂

∂s1

(
F(s)

∂ξi

∂s1

)
+ ∂

∂s2

( 1

F(s)
∂ξi

∂s2

)
= 0 , i = 1, 2 , (9.158)

where
F(s) =

√
v2(s)/v1(s) .

The inverted Beltrami grid equations with respect to metric (9.156) are also equiv-
alent to the following equations:

gξg
i j
ξ

∂

∂ξi

(vk(s)√
gs

∂sk

∂ξ j

)
= 0 , i, j, k = 1, . . . , n , k fixed. (9.159)

Control Metrics for Generating Grids Adapting to the Gradient of a Function

The contravariantmetric tensor (9.145) can also be used for providing node clustering
in the zones of large variations of a function f (s) = ( f 1(s), . . . , f l(s)), introduc-
ing for this purpose an operator Z [grad f ] such that Z [grad f ](s) is large where
|grad f |(s) is small, and vice versa. In particular, for grid clustering, we may assume

Z [grad f ](s) = 1

1 + c1 | grad f (s) |α , c1 > 0 , α > 0 . (9.160)
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Fig. 9.14 Three-
dimensional prismatic
adaptive grid

Figure9.14 illustrates an adaptive prismatic grid with node clustering in such zones.
One more control metric for generating grids with node clustering in the zones of

the large variation of the function f (s) is of the form

gs
i j = ε(s)gxs

i j + εk(s)
∂ f k

∂si
∂ f k

∂s j
, i, j = 1, . . . , n , k = 1, . . . , l , (9.161)

where ε(s) ≥ 0, εk(s) ≥ 0, k = 1, . . . , l. This control metric is a generalization of
the metric of a monitor hypersurface (see formulas (9.9) and (9.10)).

9.5.6 Control Metrics for Generating Grids with Balanced
Properties

For computing numerical grids that are field-aligned and adaptive to the values of
one function and/or to the variation of another function, a natural way for defining
a control metric consists in combining the corresponding metrics, i.e., the covariant
elements of the balanced control metric are to have a form

gs
i j (s) = ε1(s)gali j + ε2(s)gadg

i j + ε3(s)gadv
i j , i, j = 1, . . . , n , (9.162)

where εk(s) ≥ 0, k = 1, 2, 3 are the weight functions specifying the contribution
of the covariant elements gali j , g

adg
i j , and gadv

i j . The marks al, adg and adv in this
formula mean that the corresponding metric elements are chosen for grid alignment,
adaptation to gradients of a function, and adaptation to the values of the same of
another function, respectively. It is evident that (9.162) will be a covariant metric
tensor if

ε1(s) + ε2(s) + ε3(s) > 0 , s ∈ Sn .

Analogously, there is written out a formula for the contravariant components g
i j
s of

the balanced control metric
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Fig. 9.15 Examples of balanced numerical grids

gi js (s) = w1(s)gi jal + w2(s)gi jadg + w3(s)gi jadv , i, j = 1, . . . , n . (9.163)

For computing the balanced numerical grids that are field-aligned and adaptive to
the values of one function and to the variations of another function, formulas (9.118)
and (9.163) were used for the contravariant metric elements of the control metric,
written in the following form:

gi js = (1 − α)g
i j
al + α

(
(1 − β)g

i j
adg + βg

i j
adv

)
, i, j = 1, . . . , n, (9.164)

g
i j
al = δijε(s) + Bi B j , g

i j
adv = δij f1(ϕ1),

g
i j
adg = δij − 1

1 + |grad f2(ϕ2)|2
∂ f2(ϕ2)

∂si
∂ f2(ϕ2)

∂s j
.

Some two-dimensional balanced grids in a square domain X2 are shown in
Fig. 9.15. These grids were generated through the solution of equations (9.153) for
n = 2 by a finite-difference algorithm. The left-hand picture of the figure demon-
strates the grid aligned to a vector-field B = (B1, B2) and adapted to the values of a
function ϕ1(s). The center picture demonstrates the grid aligned to the same vector-
field and adapted to the gradients of a function f2[ϕ2(s)]. The right-hand picture
demonstrates the grid aligned to the same vector-field and adapted to the values of
one function and the gradients of another. These grids were generated with the help
of the functions and parameters in (9.164) for n = 2 specified as follows:

B =
(
−∂ψ(s)

∂s2
,

∂ψ(s)
∂s1

)
,

f1(ϕ1) =
( 0.6

0.6 + ϕ1

)3
, ϕ1(s) =

( 0.01

0.01 + R2

)5
,

f2(ϕ2) = 0.05tanh
( ϕ2

0.03

)
, ϕ2(s) = R2 − 0.2,

R2 = (s1 − 0.5)2 + (s2 − 0.5)2,
ψ(s) = v(s2)(1 − v(s2))[(s1 − 0.5)2 + 2(v(s2) − 0.5)2],
v(s2) = 0.5

[
1 + tanh

( s2 − 0.5

0.2

)]
,
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Fig. 9.16 Magnetic vector field flux (left) and a balanced grid (right)

1) α = ε(s) =
( 0.3

0.3 + |B|2
)6

, β = 1,

2) α = ε(s) =
( 0.3

0.3 + |B|2
)8

, β = 0,

3) α = ε(s) =
( 0.3

0.3 + |B|2
)5

, β = exp(−( f1)
2/0.1).

There may be other effective ways for combining the corresponding tensor com-
ponents; in particular, for generating grids that are field-aligned and adaptive to the
values of a function v(s), adequate results are demonstrated with the help of the
following formula for the contravariant control metric elements:

gi js (s) = Z [v](s)gi jal , i, j = 1, . . . , n . (9.165)

This metric provides a compromise between alignment and adaptation. Figure9.16
illustrates both the integral lines of a two-dimensional magnetic field (left-hand) and
such a balanced grid aligned to the magnetic field and adapted to the numerical error
(right-hand) via the metric (9.165).

9.6 Comments

Functionals of nonconformality for generating grids on hypersurfaces were formu-
lated, in analogy to the functional (8.33) or (8.37), by Liseikin (1991, 1999).

Themethods based on the utilization of control metrics in the energy and diffusion
functionals were formulated and justified by Liseikin (1991, 1992, 1993, 1999). All
properties and interpretations of the functionals and the corresponding Beltrami and
diffusion equations described here were studied and published by Liseikin (1991,
1992, 1993, 1996, 1999, 2004, 2005, 2007). The formulas of the general control
metrics were proposed by Liseikin (2004, 2007). An application of the geometry of
manifolds and the control metrics for generating adaptive grids was performed by
Liseikin (2004, 2005, 2007).

http://dx.doi.org/10.1007/978-3-319-57846-0_8
http://dx.doi.org/10.1007/978-3-319-57846-0_8
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Implementations of the inverted Beltrami and diffusion equations with respect to
the control metric in numerical codes for generating adaptive grids in domains and
on surfaces were performed by Kupin and Liseikin (1994), Liseikin and Petrenko
(1994), Liseikin (2004), Shokin et al. (2005), Glasser et al. (2006), Liseikin (2007),
Liseikin et al. (2007).

The measure (9.143) for generating adaptive grids in domains was introduced
by Danaev et al. (1980) and Winslow (1981). The generation of grids through such
a metric is helpful for numerically solving problems with strong anisotropy, and
problems of magnetized plasmas, in particular.
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Chapter 10
Numerical Implementations
of Comprehensive Grid Generators

10.1 One-Dimensional Equation

Here, we consider a curve Sx1 specified by parametrization from a normalized para-
metric interval S1 = [0, 1]

x(s) : [0, 1] → Rn , x = (x1, . . . , xn) . (10.1)

For generating a grid on the curve Sx1, we first define a grid on the parametric interval
[0, 1] with the use of the one-dimensional inverted Beltrami equation in a divergent
form. Then, the grid nodes on the parametric interval [0, 1] are mapped with the
parametric transformations x(s) on Sx1, thus forming a grid on the curve Sx1.

The grid nodes in [0, 1] are computed by numerically solving the Dirichlet bound-
ary value problem with respect to an intermediate transformation

s(ξ) : [0, 1] → [0, 1]

for Eq. (9.133), i.e.
d

dξ

(√
gs

ds

dξ

)
= 0 , 0 < ξ < 1 ,

s(0) = 0 , s(1) = 1 ,

(10.2)

where gs is the determinant of a control covariant metric gs11 over the curve Sx1, in
particular, specified in the form (9.116) for n = 1, i.e.

gs11 = z(s)gxs
11 + Fm(s)Fm(s) , m = 1, . . . , l ,

gxs
11 = ∂x

∂s
· ∂x
∂s

.

It is evident that in the one-dimensional case, gs = gs11, g
11
s = 1/gs11.
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The metric gs11 can also be the metric of a monitor curve Sr1 prescribed by a
monitor function for controlling grid properties

f(x) : Gn → Rl , f = ( f 1, . . . , f l) ,

where Gn is a domain in Rn containing Sx1. As a result, the monitor curve Sr1 over
Sx1 is parametrized by

r(s) : [0, 1] → Rn+l , r(s) = (x(s), f[x(s)]) ,

and consequently

gs11 = grs11 = rs · rs = xs · xs + fs · fs = dx
ds

· dx
ds

+ df[x(s)]
ds

· df[x(s)]
ds

.

10.1.1 Numerical Algorithm

The grid nodes x j , j = 0, 1, . . . , N , on Sx1 are defined by the relation

x j = x(s( jh)) , j = 0, 1, . . . , N , h = 1/N ,

or by
x j = x(s j ) , j = 0, 1, . . . , N , h = 1/N ;

here, s j , j = 0, 1, . . . , N , is a difference function obtained by the numerical solution
on a uniform grid ξ j = jh, j = 0, 1, . . . , N , of the Dirichlet problem (10.2).

Iterative Scheme

The nonlinear problem (10.2) is solved through an iterative process which is engen-
dered by the numerical solution of the following parabolic problem with respect to
a function s(ξ, t):

∂s

∂t
− ∂

∂ξ

(√
gs

∂s

∂ξ

)
= 0 , 0 ≤ ξ ≤ 1 , 0 ≤ t ≤ T ,

s(0, t) = 0 , s(1, t) = 1 , s(ξ, 0) = s0(ξ) .

(10.3)

The problem (10.3) is approximated on the uniform grid (ih, kτ ) with respect to
ski , i = 0, 1, . . . , N , k = 0, 1, . . . , by the following natural stencil:

sk+1
i − ski

τ
= 1

h2
[vki+1/2(s

k+1
i+1 − sk+1

i ) − vki−1/2(s
k+1
i − sk+1

i−1 )] ,

sk0 = 0 , skN = 1 , s0i = s0(ih) , h = 1/N ,

(10.4)
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where

vki+1/2 = 1

2

(√
gs(ski ) +

√
gs(ski+1)

)
, i = 0, 1, . . . , N − 1. (10.5)

The scheme (10.4) is implicit. Its solution is obtained from the algorithm which
is elucidated by the application to the following well-known difference reference
problem:

Ak+1
i sk+1

i−1 − Ck+1
i sk+1

i + Bk+1
i sk+1

i+1 = −Fk
i , i = 1, 2, . . . , N − 1 ,

sk+1
0 = a , sk+1

N = b .
(10.6)

The solution to (10.6) is found through the following recursive formulas:

sk+1
i = αk+1

i+1 s
k+1
i+1 + βk+1

i+1 , i = 1, . . . , N − 1 , sk+1
N = b , (10.7)

where

αk+1
i+1 = Bk+1

i

Ck+1
i − αk+1

i Ak+1
i

, i = 1, . . . , N − 1 , αk+1
1 = 0 ,

βk+1
i+1 = Ak+1

i βk+1
i + Fk

i

Ck+1
i − αk+1

i Ak+1
i

, i = 1, . . . , N − 1 , βk+1
1 = a .

(10.8)

Thus, assuming in (10.6) a = 0, b = 1, and

Ak+1
i = vki−1/2 , Bk+1

i = vki+1/2 , Ck+1
i = vki−1/2 + vki+1/2 + θ ,

Fk
i = θski , θ = h2/τ , i = 1, . . . , N − 1 ,

(10.9)

we obtain a solution of (10.4) at a step k + 1 if it is known at the previous step k.
Note that the values of the initial function s0i , i = 0, 1, . . . , N , are specified by the
user. Naturally, it may be assumed that

s0i = ih , i = 0, . . . , N , h = 1/N .

As an approximate numerical solution of (10.3), the solution ski , i = 0, 1, . . . , N ,

of (10.4) at a step number k is taken if

max
0≤i≤N

|sk+1
i − ski |

τ
≤ ε , (10.10)

for some sufficiently small ε > 0.

Step–by–Step Algorithm

The algorithm described above is presented here in a step-by-step manner.



388 10 Numerical Implementations of Comprehensive Grid Generators

Step 1.
Define an initial grid distribution of the parametric interval [0,1] by introducing a
monotone difference function s0i , i = 0, . . . , N , such that s00 = 0, s0N = 1.
Step 2.
Compute the difference function v0i+1/2, i = 0, . . . , N − 1, by formula (10.5).
Step 3.
Compute the difference functions A1

i , B
1
i , C

1
i , F

0
i , i = 1, . . . , N − 1, by formulas

in (10.9).
Step 4.
Compute the coefficientsα1

i and β1
i , i = 1, . . . , N , by formulas in (10.8) with a = 0.

Step 5.
Compute the difference solution s1i , i = 0, . . . , N , of the first step through the
formula (10.7), taking into account s10 = 0, s1N = b = 1.
Step 6.
Return to step 2 assuming s00 = s1i , i = 0, . . . , N , where s1i is the solution obtained
at step 5.

Continue until the tolerance requirement (10.10) is observed.
Step 7.
Map the final nodes ski , i = 0, . . . , N , satisfying (10.10), with the parametrization
x(s) on Sx1.

The algorithm described is readily reformulated for the numerical solution of the
inverted diffusion equation in a divergent form, namely, by substitutingw(s) for

√
gs

in (10.2), (10.3), and (10.5).

10.2 Multidimensional Finite Difference Algorithms

In this section, we apply one version of the multidimensional algorithm of frac-
tional steps proposed by Yanenko (1971) for the numerical solution of the inverted
n-dimensional (n ≥ 2) Beltrami and diffusion equations. Other versions of this algo-
rithm that can be readily implemented for solving the resulting multidimensional
grid equations, in particular, the popular ADI (alternating direction implicit) method
are reviewed by Kovenya et al. (1990), Fletcher (1997), and Langtangen (2003).

10.2.1 Parabolic Simulation

We rewrite the boundary value problems (9.132) and (9.134) in the following general
form:

Bξ
n [si ] = Ri [s], i = 1, . . . , n,

si (ξ) = ψi (ξ), ξ ∈ ∂Ξ n,
(10.11)

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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where

Bξ
n [sl] = gξg

i j
ξ

∂2sl

∂ξi∂ξ j
, i, j, l = 1, . . . n ,

gξ = det{gξ
i j } = (J )2gs = 1/det{gi jξ } .

For inverted Beltrami equations (9.132) in a general control metric gsi j , we have in
(10.11)

Ri [s] = (J )2
√

gs
∂

∂ξ j
(
√

gsgims )
∂ξ j

∂sm
, i, j,m = 1, . . . , n . (10.12)

Notice that for the metric (9.9) of a monitor surface over a domain Sn , i.e.

gsi j = grsi j = δij + ∂ f (s)
∂si

· ∂ f (s)
∂s j

, i, j = 1, . . . , n ,

in accordance with (9.56), formula (10.12) also has the following form:

Ri [s] = −Brξ
n [ f ] · ∂ f [s(ξ)]

∂ξ j

∂ξ j

∂si
, i, j = 1, . . . , n , (10.13)

where

Bξ
n [y] = Brξ

n [y] = grξg
i j
ξr

∂2y

∂ξi∂ξ j
, i, j, l = 1, . . . n ,

grξ = det{grξi j } = (J )2grs = 1/det{gi jξr } ,

g
rξ
i j = grskl

∂sk

∂ξi
∂sl

∂ξ j
= g

sξ
i j + ∂ f [s(ξ)]

∂ξi
· ∂ f [s(ξ)]

∂ξ j
, i, j, k, l = 1, . . . , n .

For the general inverted diffusion equations (9.134), we have in (10.11)

Ri [s] = gs(J )2

w(s)

∂

∂ξk
(w(s)gi js )

∂ξk

∂s j
, i, j, k = 1, . . . , n , (10.14)

in particular, for (13.49), i.e. when w(s) = 1, gi js = Z [v](s)δij ,

Ri = J 2

Z [v](s)
∂

∂si
Z [v](s) , i = 1, . . . , n , (10.15)

Bξ
n [y] = Bsξ

n [y] = gsξg
i j
ξs

∂2y

∂ξi∂ξ j
, gsξ = det{gsξi j } = J 2 , i, j = 1, . . . , n ,

g
sξ
i j = ∂s

∂ξi
· ∂s
∂ξ j

= ∂sk

∂ξi
∂sk

∂ξ j
, g

i j
ξs = ∂ξi

∂sk
∂ξ j

∂sk
, i, j, k = 1, . . . , n .

(10.16)

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Solutions to the non-linear boundary value problem (10.11) may be found in
the following way. First, the problem is replaced by a nonstationary boundary value
problemwith respect to the components si (ξ, t), i = 1, . . . , n, of the vector function
s(ξ, t) : Ξ n × [0, T ] → Sn:

∂si

∂t
= (J )p

{
Bξ
n [si ] − Ri [s]

}
, i, j,m = 1, . . . , n ,

si (ξ, t) = ψi (ξ), ξ ∈ ∂Ξ n, t ≥ 0 ,

si (ξ, 0) = si0(ξ) , ξ ∈ Ξ n ,

(10.17)

where J = det{∂si/∂ξ j }, p ≥ 0, si0(ξ) is the i-th component of the initial transfor-
mation

s0(ξ) : Ξ n → Sn, s0(ξ) = [s10(ξ), . . . , sn0 (ξ)]

specified by the user. Then, for an approximate solution s(ξ) of (10.11), there can
be taken the solution s(ξ, t) of (10.17) for some sufficiently large t .

If the elements gsi j are known at all points of Sn , then in (10.17), p = 0, and for
(10.12), (10.13), (10.14), and (10.15), we can assume, respectively,

Ri [s] = (J )2
√

gs
∂

∂sm
(
√

gsgims ) , i,m = 1, . . . , n , (10.18)

Ri [s] = −Brξ
n [ f (s)] · ∂ f (s)

∂si
, i = 1, . . . , n , (10.19)

Ri [s] = gs(J )2

w(s)

∂

∂s j
(w(s)gi js ) , i, j = 1, . . . , n , (10.20)

Ri = J 2

Z [v](s)
∂

∂si
Z [v](s) , i = 1, . . . , n . (10.21)

When Bξ
n is an elliptic operator, the solution to the problem (10.17) relaxes to the

solution of (10.11) as t → ∞.
The factor (J )p, p ≥ 1 in (10.17) is introduced in the case when the control metric

gsi j is not known in advance, but is found numerically, for instance, if it is dependent
on the solution of the physical problem for which the numerical grid is generated.
This factor allows one to rule out the Jacobian J being a denominator after replacing
in Ri [s] the derivatives ∂ξi/∂s j with the derivatives ∂sk/∂ξm . In particular, in the
case of the metric of a monitor hypersurface Srn over Sn (see (9.13) and (9.14)), i.e.
when g

¸
i j = g

rξ
i j , it is sufficient to assume p = 1. Namely, for n = 2, we have, from

(10.13) and (2.4),

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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J Ri [s] = −J Brξ
2 [ f (s)] · ∂ f (s(ξ))

∂ξm
∂ξm

∂si

= −(−1)i+m Brξ
2 [ f (s)] · ∂ f (s(ξ))

∂ξm
∂s3−i

∂ξ3−m
, i,m = 1, 2 ,

(10.22)

while for n = 3, we obtain, from (10.13) and (2.5),

J Ri [s] = −J Brξ
3 [ f (s)] · ∂ f (s(ξ))

∂ξm
∂ξm

∂si

= −Brξ
3 [ f (s)] · ∂ f (s(ξ))

∂ξm

( ∂si+1

∂ξm+1

∂si+2

∂ξm+2
− ∂si+1

∂ξm+2

∂si+2

∂ξm+1

)
,

i,m = 1, 2, 3 .

(10.23)

With such incorporation of (J )p, one can produce a final nondegenerate grid
even if the initial and intermediate grids may be singular. Note that the numerical
implementations of the inverted energy and diffusion functionals cannot eliminate
the Jacobian being the denominator.

The boundary value problem (10.17) is usually solved through alternative direc-
tion implicit methods, in particular, through the method of fractional steps.

10.2.2 Two-Dimensional Equations

In this section, a finite-difference numerical algorithm for generating grids in two-
dimensional domains and surfaces is described.

Boundary Value Problem

Let us first discuss the grid algorithm for a two-dimensional domain S2. We shall
use, for the logical domain Ξ 2, the unit square: Ξ 2 = {0 ≤ ξ1, ξ2 ≤ 1}. Let the
transformation s(ξ) for generating a grid in S2 be specified on the boundary of Ξ 2,
i.e. there is a map

ϕ(ξ) : ∂Ξ 2 → ∂S2 , ϕ = (ϕ1,ϕ2) (10.24)

which is continuous on ∂Ξ 2. Note that the one-dimensional transformation on any
segment of ∂Ξ 2 can be computed by the algorithm described in Sect. 11.1. We
consider here the generation of a grid in S2 by the numerical solution of the Dirichlet
problem (10.11) for the most general system of inverted Beltrami equations in a
control metric gsi j for n = 2 written in a vector form

Bξ
2 [s] = R[s] ,

s(ξ)

∣∣∣
∂Ξ 2

= ϕ(ξ), i = 1, 2 ,
(10.25)

http://dx.doi.org/10.1007/978-3-319-57846-0_2
http://dx.doi.org/10.1007/978-3-319-57846-0_11
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where

s(ξ) = (s1(ξ) , s2(ξ)) , ϕ(ξ) = (ϕ1(ξ), ϕ2(ξ)) , R[s] = (R1[s] , R2[s]) ,

Bξ
2 [s] = g

ξ
22

∂2s
∂ξ1∂ξ1

− 2gξ
12

∂2s
∂ξ1∂ξ2

+ g
ξ
11

∂2s
∂ξ2∂ξ2

,

R1[s] = J
√

gs
[ ∂

∂ξ1
(
√

gsg11s )
∂s2

∂ξ2
− ∂

∂ξ1
(
√

gsg12s )
∂s1

∂ξ2

+ ∂

∂ξ2
(
√

gsg12s )
∂s1

∂ξ1
− ∂

∂ξ2
(
√

gsg11s )
∂s2

∂ξ1

]
,

R2[s] = J
√

gs
[ ∂

∂ξ1
(
√

gsg11s )
∂s2

∂ξ2
− ∂

∂ξ1
(
√

gsg12s )
∂s1

∂ξ2

+ ∂

∂ξ2
(
√

gsg12s )
∂s1

∂ξ1
− ∂

∂ξ2
(
√

gsg11s )
∂s2

∂ξ1

]
.

(10.26)

Parabolic Equations

The nonlinear boundary value problem (10.25) is solved by an iterative process.
For this purpose, in accordance with (10.17), the problem (10.25) is replaced
by the following boundary value parabolic problem with respect to the function
s(ξ1, ξ2, t) = (s1(ξ1, ξ2, t), s2(ξ1, ξ2, t)):

∂s
∂t

= (J )p
{
Bξ
2 [s] − R(s)

}
,

s(ξ, t) = ϕ(ξ) , ξ ∈ ∂Ξ 2 , t ≥ 0 ,

s(ξ, 0) = s0(ξ) , ξ ∈ Ξ 2 ,

(10.27)

where s0(ξ) is an initial transformation

s0(ξ) : Ξ 2 → S2, s0(ξ) = [s10(ξ), s20 (ξ)],

specified by the user.
The solution s(ξ, t) satisfying (10.27) aspires to the solution to (10.25) when

t → ∞. Therefore, an approximate solution of (10.25) is obtained from the solution
to (10.27) computed for some sufficiently large value t = T0.

Initial Transformation

The initial transformation for (10.27)

s(ξ, 0) = s0(ξ) : Ξ 2 → S2.

can be found by propagating the values ofϕ(ξ) = [ϕ1(ξ),ϕ2(ξ)] from the boundary
points into the interior of the domainΞ 2, for example, ifΞ 2 is the unit square through
the formula of the Lagrange two-dimensional transfinite interpolation described in
Chap.5. This formula has the following recursive form for the components si (ξ, 0)
of the mapping s0(ξ):

http://dx.doi.org/10.1007/978-3-319-57846-0_5
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Fi (ξ1, ξ2) = αi
01(ξ

1)ϕi (0, ξ2) + αi
11(ξ

1)ϕi (1, ξ2) ,

si (ξ1, ξ2, 0) = Fi (ξ1, ξ2) + αi
02(ξ

2)[ϕi (ξ1, 0) − Fi (ξ1, 0)]
+αi

12(ξ
2)[ϕi (ξ1, 1) − Fi (ξ1, 1)] , i = 1, 2, i fixed ,

(10.28)

where the functionsαi
k j (s), 0 ≤ s ≤ 1, (referred to as blending functions) are subject

to the following restrictions:

αi
0 j (0) = αi

1 j (1) = 1 , αi
0 j (1) = αi

1 j (0) = 0 . (10.29)

In particular, for the simplest expressions of the blending functions

αi
0 j (s) = 1 − s , αi

1 j (s) = s ,

satisfying (10.29), we find, from (10.28),

Fi (ξ1, ξ2) = (1 − ξ1)ϕi (0, ξ2) + ξ1ϕi (1, ξ2) ,

si (ξ1, ξ2, 0) = Fi (ξ1, ξ2) + (1 − ξ2)[ϕi (ξ1, 0) − Fi (ξ1, 0)]
+ ξ2[ϕi (ξ1, 1) − Fi (ξ1, 1)] , i = 1, 2 .

(10.30)

Iterative Algorithm for Generating Quadrilateral Grids

The problem (10.27) is approximated on the rectangular grid (ih1, jh2, kτ ), h1 =
1/N1, h2 = 1/N2, in the logical domain Ξ 2 × [0, T ], where Ξ 2 is a rectangle
(Fig. 10.1 (left-hand)), by the scheme

sk+1/2 − sk

τ/2
= J p(sk)

{
g

ξ
22[sk]Lh

11[sk+1/2] + g
ξ
11[sk]Lh

22[sk]
− 2gξ

12[sk]Lh
12[sk]

}
− J p(sk)R[sk],

sk+1 − sk+1/2

τ/2
= J p(sk)

{
g

ξ
11[sk]Lh

22[sk+1] − g
ξ
11[sk]Lh

22[sk]
}

,

(10.31)

Fig. 10.1 Two-dimensional quadrilateral and triangular stencils for finite differences
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Fig. 10.2 Stages of the iterative generation of a quadrilateral grid with the use of a singular initial
grid

where sk+α = s(ξ, (k + ατ )), k = 0, 1, 2, . . . , α = 0, 1/2, 1, Lh
i j is a finite-

difference operator approximating the operator ∂2/(∂ξi∂ξ j ), by the central differ-
ences. The derivatives in J , gξ

i j , and R are also approximated by the central differ-
ences. The initial transformation s(ξ, 0) = s0(ξ) is found through the formulas of
transfinite interpolations.

The solution to (10.31) at each step k and k + 1/2 is obtained in the same way as
it was described in Sect. 11.1.

An approximate solution to (10.27) is the solution ski j at a step k such that

max
0≤i≤N1,0≤ j≤N2

1

τ
|sk+1

i j − ski j | ≤ ε , (10.32)

for some sufficiently small ε > 0.
Figure10.2 demonstrates some steps of the grid generation in a two-dimensional

domain by the solution of the inverted Beltrami equations with the iterative algorithm
described. The initial grid is singular (all its interior nodes merge into one node lying
outside of the domain).

Generation of Triangular Grids

The numerical algorithm described above for generating quadrilateral grids is nat-
urally applied to the generation of triangular grids when the logical domain is a
symmetric trapezoid (Fig. 10.1 (right-hand)).

http://dx.doi.org/10.1007/978-3-319-57846-0_11
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Fig. 10.3 Stages for generating a triangular grid by using a singular initial grid

An example of a triangular grid generated by such an algorithm is exhibited by
Fig. 10.3. As it is in Fig. 10.2, the initial grid is singular. All its interior points are
placed into three points, two of which lie outside of the domain.

Algorithm for Generating Grids on Two-Dimensional Surfaces

In the same way as for domains, grids are generated in a two-dimensional surface
Sx2 represented as

x(s) : S2 → R3 , x = (x1, x2, x3) , s = (s1, s2) , (10.33)

by solving the boundary value problem for the inverted two-dimensional diffusion
equations as well as for the corresponding inverted Beltrami equations with respect
to a monitor metric gsi j over S

x2.
Similarly to the case of a two-dimensional domain, we can choose a rectangle or

trapezoid for the logical domain Ξ 2. We can also assume that the boundary trans-
formation

ϕ(ξ) : ∂Ξ 2 → ∂S2 , ϕ = (ϕ1,ϕ2) ,

which is continuous on ∂Ξ 2, has been specified on the boundary grid points of ∂Ξ 2,
for example, by computing it through the algorithm described in Sect. 10.1.

The grid on Sx2 is obtained by mapping, with x(s), the grid nodes computed in
S2 through the numerical solution of the Dirichlet problem with respect to s(ξ) for
the inverted grid equations.

Figure10.4 illustrates a surface triangular adaptive grid generated by the algo-
rithm.
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Fig. 10.4 A triangular adaptive grid on a conical surface

10.2.3 Three–Dimensional Problem

For generating grids in a three-dimensional domain S3 ⊂ R3 with the use of the
inverted Beltrami or diffusion equations in a control metric gsi j , i, j = 1, 2, 3, we
consider boundary value problem (10.11) for n = 3 written in a vector form

Bξ
3 [s] = R[s] ,

s(ξ)

∣∣∣
∂Ξ 3

= ϕ(ξ) ,
(10.34)

where

s(ξ) = (s1(ξ) , s2(ξ , s3(ξ)) , ϕ(ξ) = [ϕ1(ξ),ϕ2(ξ),ϕ3(ξ)] ,

R(s) = (R1(s) , R2(s) , R3(s)) ,

Bξ
3 [v] = gξg

i j
ξ

∂2s
∂ξi∂ξ j

= [gξ
22g

ξ
33 − (g

ξ
23)

2] ∂2s
∂ξ1∂ξ1

+ 2[gξ
23g

ξ
13 − g

ξ
12g

ξ
33]

∂2s
∂ξ1∂ξ2

+ 2[gξ
12g

ξ
23 − g

ξ
22g

ξ
13]

∂2s
∂ξ1∂ξ3

+ [gξ
11g

ξ
33 − (g

ξ
13)

2] ∂2s
∂ξ2∂ξ2

+ 2[gξ
12g

ξ
13 − g

ξ
11g

ξ
23]

∂2s
∂ξ2∂ξ3

+ [gξ
11g

ξ
22 − (g

ξ
12)

2] ∂2s
∂ξ3∂ξ3

,

Ri [s] = J
√

gs
∂

∂ξ j
(
√

gsgims )
(∂sm+1

∂ξ j+1

∂sm+2

∂ξ j+2
− ∂sm+1

∂ξ j+2

∂sm+2

∂ξ j+1

)
,

i, j,m = 1, 2, 3 .

(10.35)

Analogously to the solution of two-dimensional problem (10.27), we find a solu-
tion to (10.34) as a limit with t → ∞ of the solution of the corresponding parabolic
problem

∂s
∂t

= J p
{
Bξ
3 [s] − R(s)

}
,

s(ξ, t) = ϕ(ξ) , ξ ∈ ∂Ξ 3 , t ≥ 0 ,

s(ξ, 0) = s0(ξ) , ξ ∈ Ξ 3 .

(10.36)
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Initial Transformation

The initial transformation

s(ξ, 0) = s0(ξ) : Ξ 3 → S3 .

can be found by propagating the values of ϕ(ξ) into the interior of the unit cube Ξ 3,
for example, through the formula of Lagrange transfinite interpolation. In particular,
for the simplest expressions of the blending functions

αi
0 j (s) = 1 − s , αi

1 j (s) = s ,

we find from (5.26)

Fi
1(ξ

1, ξ2, ξ3) = (1 − ξ1)ϕi (0, ξ2, ξ3) + ξ1ϕi (1, ξ2, ξ3) ,

Fi
2(ξ

1, ξ2, ξ3) = Fi
1(ξ

1, ξ2, ξ3) + (1 − ξ2)[ϕi (ξ1, 0, ξ3)
−Fi

1(ξ
1, 0, ξ3)] + ξ2[ϕi (ξ1, 1, ξ3) − Fi

1(ξ
1, 1, ξ3)] ,

xi (ξ1, ξ2, ξ3) = Fi
2(ξ

1, ξ2, ξ3) + (1 − ξ3)[ϕi (ξ1, ξ2, 0)
−Fi

2(ξ
1, ξ2, 0)] + ξ3[ϕi (ξ1, ξ2, 1) − Fi

2(ξ
1, ξ2, 1)] , i = 1, 2, 3 ,

(10.37)

Three–Dimensional Algorithm

A numerical algorithm for solving problem (10.36) is formulated analogously to
the two-dimensional algorithm reviewed by formula (10.31), namely, by splitting
the process of the numerical solution on the computational domain Ξ 3, exhibited in
Figs. 10.5 and 10.6, into three one-dimensional algorithms:

Fig. 10.5 Computational domain Ξ3 (a) and computational stencil (b) for generating hexahedral
grids

http://dx.doi.org/10.1007/978-3-319-57846-0_5
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Fig. 10.6 Computational domain Ξ3 (a) and computational stencil (b) for generating prismatic
grids

Fig. 10.7 Three-dimensional domain with a prismatic adaptive grid

sk+1/3 − sk

τ/3
= J p(sk)

{
a11[sk]Lh

11[sk+1/3] + a22[sk]Lh
22[sk]

+ a33[sk]Lh
33[sk] + 2a12[sk]Lh

12[sk]
+ 2a13[sk]Lh

13[sk] + 2a23[sk]Lh
23[sk]

}

− J p(sk)R[sk] ,

sk+2/3 − sk+1/3

τ/3
= J p(sk)

{
a22[sk]Lh

22[sk+2/3] − a22[sk]Lh
22[sk]

}
,

sk+1 − sk+2/3

τ/3
= J p(sk)

{
a33[sk]Lh

33[sk+1] − a33[sk]Lh
33[sk]

}
,

(10.38)

where ai j = gξg
i j
ξ = g

ξ
i+1 j+1g

ξ
i+2 j+2 − g

ξ
i+1 j+2g

ξ
i+2 j+1, i, j = 1, 2, 3, i, j, k –

fixed, sk+α = s(ξ, (k + ατ )), k = 0, 1, 2, . . . , α = 0, 1/2, 2/3, 1. Lh
i j is a

finite-difference operator approximating the operator ∂2/(∂ξi∂ξ j ), by the central
differences. The derivatives in J , ai j , and R are also approximated by the central
differences. The initial transformation s(ξ, 0) = s0(ξ) is found through the formulas
of transfinite interpolations.

An example of a three-dimensional prismatic spatial grid generated with the use
of this scheme is demonstrated in Fig. 10.7.
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10.3 Spectral Element Algorithm

The inverted diffusion equations in a divergent form (9.135) may be solved by a par-
allel code, using spectral elements for spatial discretization, Newton-Krylovmethods
for solution, and an adaptive time step.

Spatial discretization by high-order spectral elements is a method of exploiting
the best features of both grid-based methods and global spectral representation.
Grid-based methods, such as the finite difference approach described above, lead
to nearest neighbor coupling and its resultant sparse matrix structure, and lends
itself to parallelization by domain decomposition and that kind of adaptive gridding.
On the other hand, convergence of the spatial truncation error is relatively slow,
typically a low power of the grid spacing h. Global spectral methods overcome the
latter problem, offering exponential convergence with increasing numbers of basis
functions, but lead to large, dense matrices and offer no obvious way to use adaptive
gridding and parallelization by domain decomposition.With spectral elements, there
is a relatively coarse grid, and within each grid cell, there is a local expansion in
basis functions based on orthogonal polynomials. The grid provides nearest-neighbor
coupling while the spectral expansion provides exponential convergence.

All equations for spectral elements are to be expressed in flux-source form,

∂uk

∂t
+ ∇ · Fk = Sk . (10.39)

This very form has the following parabolic system:

∂sk

∂t
− ∂

∂ξ j
(Jw(s)g jk

ξ ) = 0, j, k = 1, . . . , n , (10.40)

with identification u = s, xi = si , obtained from grid equations (9.135) in the same
manner as the system in (10.17) from the Eq. (10.11). The dependent variables uk in
(10.39) within each grid cell are expanded in a spectral basis α j (x),

uk(t, x) ≈
n∑
j=0

ukj (t)α j (x). (10.41)

Spatially discretized equations are obtained through a Galerkin method, taking the
scalar product of (10.39) with each basis function and integrating by parts to obtain

M̈ u̇ = r ≡
∫

Xn

(Skαi + Fk · ∇αi )dx −
∫

∂Xn

Fk
i · n̂dx. (10.42)

with M̈ the mass matrix, Mi, j ≡ (αi ,α j ), and the u the vector of mode amplitudes
ukj (t). Integrals are evaluated by Gaussian quadrature to an order appropriate to the

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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degree of the Jacobi polynomials. Fluxes and sources may depend in an arbitrary
nonlinear manner on t , x, uk , and ∇uk . The code is structured in such a way that the
details of discretization and the specification of physics equations are separated into
different subroutines, making it as simple as possible to encode complex physics.
The discretized flux-source form preserves conservation properties to high order.
Elliptic equations are treated by zeroing the mass matrix.

Time discretization of (10.42) is fully implicit in order to treat multiple time scales
efficiently and accurately,

M̈(
u+ − u−

h
) = θr+(u+) + (1 − θ)r−(u−) (10.43)

with the time-centering parameter θ normally chosen as 1/2 (Crank-Nicholson) for
accuracy. Solution of (10.43) requires finding the roots of the nonlinear residual,

R(u+) ≡ M̈(u+ − u−) − h[θr+ + (1 − θ)r−] = 0, (10.44)

solved by Newton’s iteration,

R + J̈δu+ = 0, δu+ = − J̈−1R(u+), u+ → u+ + δu+ (10.45)

with the Jacobian defined as J̈ ≡ M̈ − hθ{∂r+
i /∂u+

j }.
Efficient solution of the large sparse linear system in (10.45) is greatly enhanced by

the method of static condensation. Because of the C0 nature of the spectral element
representation, discussed above, higher-order elements in one grid cell couple to
those in neighboring grid cells only through the shared linear finite elements which
straddle cell boundaries. To solve a linear system Äx = b, we partition the dependent
variables into (1) element boundary terms and (2) element interior terms, for example,
in two dimensions, the system is expressed in the form

Ä11x1 + Ä12x2 = b1, (10.46)

Ä21x1 + Ä22x2 = b2. (10.47)

Solving (10.47) for x2,
Ä22x2 = b2 − Ä21x1, (10.48)

and substituting it into (10.46), we obtain an equation for the Shur complement,

( Ä11 − Ä12 Ä
−1
22 Ä21)x1 = b1 − Ä12 Ä

−1
22 b2. (10.49)

Equation (10.48), involving the relatively small, dense, local matrix Ä22, is solved
locally using LAPACK routines. It parallelizes perfectly over grid cells, requiring
no communication once x2 is determined. Equation (10.49), greatly condensed in
size from the original system, is solved globally and iteratively by Krylov subspace
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routine GMRES, using the PETSc library, preconditioned by additive Schwarz ILU
factorization with substantial fill-in and overlap. Themost efficient parallel operation
is obtained with one grid cell per processor. This is feasible because the use of high-
order spectral elements makes it possible to achieve good spatial resolution with
relatively few grid cells.

For generating a numerical grid with node clustering in the zones of large values
of a function v(s), the measure of departure from the necessary grid can be expressed
in the form

σ(s) = Z [v](s)gklsx
∂ξi

∂sk
∂ξi

∂sl
, i, k, l = 1, . . . , n (10.50)

where Z [v] is a positive operator such that the function Z [v](s) is large (small)
where v(s) is small (large). This measure for generating adaptive grids in domains
was introduced in Danaev et al. (1980) and Winslow (1981). Consequently, the
contravariant elements of the control metric in Sxn are as follows:

gi j (s) = Z [v](s)gi jsx , i, j = 1, . . . , n . (10.51)

This contravariant metric tensor can also be used for providing node clustering in
the zones of the large variation of a function f(s) by introducing for this purpose a
function v(grad f) such that v is large where |grad f | is large, and vice versa.

We choose in the control metric (10.51) the weight function v(s) and assume
Z [v](s) = 1/v(s), to reflect the spatial truncation error in the spectral element repre-
sentation. In each grid cell Ω̄ , we define the spatial truncation error as the ratio of the
L2 norm of the highest-order polynomial δu(s) and that of the full solution u(s), but
because the spatial discretization error for spectral element methods is exponentially
convergent with an increasing number of terms, we use the log of this norm,

δΩ̄ ≡ 1

2

⎛
⎜⎝

∫
Ω̄

δu2(s)ds

∫
Ω̄

u2(s)ds

⎞
⎟⎠ . (10.52)

Since this function is piecewise constant over each grid cell but we need a smooth
function, we use a least-squares bicubic spline fit. Finally, in order to control the
range of variation of v, we define

v(s) = 1 + α
( δ − δmin

δmax − δmin

)
(10.53)

withα an adjustable constant.When δ = δmin, v(s) = 1, andwhen δ = δmax , v(s) =
1 + α. Figure10.8 (left-hand) shows the resulting grid lines obtained by solution of
equations (10.40) withw(s) = 1/v(s). Note that the grid spacing is coarse where v is
small and fine where v is large. Thus, the grid is refined where the spatial truncation
error is large and rarefied where it is small. Figure10.8 (left-hand) exhibits a grid for
both alignment and adaptation and scaled grid density. Figure10.8 (center) shows the
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Fig. 10.8 Grid lines for both alignment and adaptation (left). Contour plot of alignment error for
both alignment and adaptation (center). Density of grid lines for both alignment and adaptation
(right)

resulting weight function for a magnetic reconnection problem. Figure10.8 (right-
hand) shows a contour plot of the inverse Jacobian of the transformation s(ξ), which
maybe interpreted as grid density. Thepictures inFig. 10.8were formedbyA.Glasser
who used a spectral element method, developed by Glasser and Tang (2004), for
computing plasmas and inverted diffusion grid equations for generating adaptive,
field-aligned grids (see Glasser et al. (2005, 2006)).

10.4 Finite Element Method

The finite element method has diverse applications to problems in engineering and
science.We demonstrate here its application to numerical grid generation by solution
of problem (10.17) for n = 2 whose equations are written as

∂sl

∂t
− (J )p

[
g

ξ
22

∂2sl

∂ξ1∂ξ1
− 2gξ

12

∂2sl

∂ξ1∂ξ2
+ g

ξ
11

∂2sl

∂ξ2∂ξ2
− Rl(s)

]
= 0 , l = 1, 2 .

(10.54)
These equations are replaced by the following relations:

∫

Ξ 2

(∂sl

∂t
vh − (J )p

[
(−1)i+ jg

ξ
3−i3− j

∂2sl

∂ξi∂ξ j
vh − Rlvh

])
dξ = 0 , i, j, l = 1, 2 ,

(10.55)
where vh are trial functions. Choosing a basis ϕ1, . . . ,ϕN for the trial functions at
the interior grid nodes

ϕp(ξk) =
{
1, k = p
0, k �= p,

and another basis φN+1, . . . ,φNΓ , at the boundary grid nodes,

φp(ξk) =
{
1, k = p
0, k �= p,
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where NΓ is a number of interior and boundary grid nodes, we have an expansion
of the functions sl(ξ, t), l = 1, 2

sl(ξ, t) = slΓp φp + slkϕk , k = 1, . . . , N , p = N + 1, . . . , NΓ , l = 1, 2 .

(10.56)
Therefore, from (10.55), we obtain the following system of equations:

∂slk
∂t

∫

Ξ 2

ϕkϕmdξ = −slk

∫

Ξ 2

∂

∂ξi

(
(J )p(−1)i+ jg

ξ
3−i3− jϕk

)∂ϕm

∂ξ j
dξ

−
∫

Ξ 2

(J )p Rlϕmdξ, k,m = 1, . . . , N , i, j, l = 1, 2,
(10.57)

or in a matrix form M = {Mmk}, K = {Kmk}, F = {F1, . . . , Fm}, k, m = 1, . . . , N

M
∂sl

∂t
= Ksl − F , (10.58)

where

Mmk =
∫

Ξ 2

ϕkϕmdξ, Kmk = −
∫

Ξ 2

∂

∂ξi

(
(J )p(−1)i+ jg

ξ
3−i3− jϕk

)∂ϕm

∂ξ j
dξ,

Fm =
∫

Ξ 2

(J )p Rlϕmdξ, k,m = 1, . . . , N , i, j, l = 1, 2.

(10.59)
Solving system (10.58) gives the values slk , l = 1, 2, k = 1, . . . , N , and conse-

quently the values of the grid node coordinates. A more detailed description of the
algorithm was originally published in Vaseva and Liseikin (2011).

Figures10.9 and 10.10 illustrate an application of the finite element method to
generation of adaptive triangle grids based on the solution of inverted diffusion
equations.

Fig. 10.9 Adaptive grid with node clustering near the boundaries of wings specified analytically
(left) and the reference grid in Ξ2 (right)
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Fig. 10.10 Adaptive grid with node clustering near the boundaries of wings specified discretely
(left) and the reference grid in Ξ2 (right)

10.5 Inverse Matrix Method

Sections10.1–10.4 consider algorithms for generating numerical grids by solving a
matrix equation

Ax = y, A = {ai j }, i, j = 1, . . . , M, (10.60)

without finding the inverse matrix A−1. This section describes an algorithm for
finding the inversematrix A−1 provided that there exists a nondegeneratematrix A(s)
whose coefficients are dependent on a parameter s, 0 ≤ s ≤ 1, i.e. A(s) = {ai j (s)}
and A(1) = A, while the inverse matrix A−1(0) of the matrix A(0) is known. For
example, if A = {ai j } is some matrix with a diagonal domination, then A(s) may be
defined as

A(s) = (1 − s)D + sA, i. e. ai j (s) = (1 − s)di j + sai j , i, j = 1, . . . , M,

(10.61)
where D = {di j } is the matrix whose elements equal zero if i �= j , i.e. di j = 0,
i �= j, and its diagonal elements coincide with the diagonal elements of the matrix
A, i.e. dii = aii for every fixed index i = 1, . . . , M . Thus, A(0) = D, D−1 = {bi j },
bi j = 0 if i �= j, bii = 1/aii , i – fixed. Taking into account that ai j (s)b jk(s) = δij ,
i, j = 1, . . . , M, we have

∂

∂alp
(ai j b

jk) = δliδ
p
j b

jk+ai j
∂b jk

∂alp
= δli b

pk+ai j
∂b jk

∂alp
= 0, i, j, k, l, p = 1, . . . , M .

Multiplying these equations by bti and summing over i , we obtain

∂btk(s)

∂alp(s)
= −btl(s)bpk(s) , k, l, p, t = 1, . . . , M .

Therefore, for the elements of the inverse matrix A−1(s) = {bi j (s)}, we obtain a
system of ordinary nonlinear differential equations
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d

ds
bi j (s) = ∂bi j (s)

∂akl(s)

d

ds
akl(s) = −bik(s)bl j (s)

d

ds
akl(s) ,

i, j, k, l = 1, . . . , M, 0 < s ≤ 1 ,

(10.62)

with the initial condition bi j (0), i, j = 1, . . . , M, for s = 0. In particular, for
the matrix {ai j (s)} defined by formula (10.61), we obtain an autonomous system of
ordinary differential equations with the initial condition:

d

ds
bi j (s) = −bik(s)bl j (s)(1 − δkl)akl, i, j, k, l = 1, . . . , M, 0 < s ≤ 1,

bi j (0) = 0, if i �= j, bi j (0) = 1

ai j
, if i = j, i, j = 1, . . . , M .

Solving the initial problem for Eq. (10.62), for example, through the Runge Kutta
method on the numerical grid si = ih, i = 0, . . . , N , h = 1/N , we find for s = 1
approximate values of the elements of thematrix A−1. Then, an approximate solution
of problem (10.60) is obtained as x = A−1 y.

Note that the original description of the method was given in Liseikin (2014a, b).

10.6 Method of Minimization of Energy Functional

This section describes another finite-difference grid generation algorithm based on
the minimization of inverted energy functional (9.23). Following Charakch’yan and
Ivanenko (1988, 1997), the algorithm is first expounded for the two-dimensional
version of the functional in the Euler metric, i.e.

IIS[s] =
∫

Ξ 2

(xξ)
2 + (xη)

2 + (yξ)
2 + (yη)

2

J
dξdη, (10.63)

where J = xξ yη − xη yξ, and then an explanation is given as to how it can be
generalized to monitor metrics and other dimensions. Note that the functional (9.23)
in the Euler metric gsi j = δij , i, j = 1, 2, becomes the functional (10.63) when the
following designations are assumed:

ξ1 = ξ, ξ2 = η, s(ξ, η) = [x(ξ, η), y(ξ, η)].

By the algorithm, the functional (10.63) is approximated by a discrete functional
I h[ ]. This is made by approximating the integrand in (10.63) at each grid cell of the
logical domain Ξ 2 and then carrying out summation over all cells.

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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10.6.1 Generation of Fixed Grids

The problem of grid generation is treated as a discrete analog of the problem of
finding the components x(ξ, η) and y(ξ, η) of the intermediate transformation s(ξ, η)

producing one-to-one mapping of the logical square

0 < ξ < 1, 0 < η < 1

onto a physical domain X2.
Instead of the logical square on the plane ξ, η, the parametric rectangle

1 < ξ < N , 1 < η < M.

is introduced to simplify the computational formulas. This rectangle is associated
with the square grid (ξi , η j ) on the plane ξ, η such that ξi = i, η j = j, i =
1, . . . , N ; j = 1, . . . , M .

It is readily shown that if a smoothmapping of one domain onto anotherwith a one-
to-one transformation between boundaries possesses a positive Jacobian, then such
a mapping will be one-to-one. Hence, the grid coordinate system, generated in the
domain X2, will be non-degenerate if the Jacobian of themapping s(ξ, η) = [x(ξ, η),
y(ξ, η)] is positive:

J = xξ yη − xη yξ > 0. (10.64)

Thus, the problem of the construction of the grid coordinates in the domain X2 can be
formulated as the problem of finding a smooth mapping of the parametric rectangle
onto the domain X2, which satisfies the condition of the Jacobian positiveness.

Formulation of Discrete Functional

Let the coordinates (x, y)i j of grid nodes be given. To construct themapping xh(ξ, η),
yh(ξ, η) of the parametric rectangle onto the domain X2 such that xh(i, j) = xi j and
yh(i, j) = yi j , quadrilateral isoparametric finite elements are used. The square cell
numbered as i + 1/2, j + 1/2 on the plane ξ, η is mapped onto the quadrilateral
cell on the plane x, y, formed by the nodes with coordinates (x, y)i j , (x, y)i j+1,
(x, y)i+1 j+1, (x, y)i+1 j . The cell vertices are numbered from 1 to 4 in the clockwise
direction. The node (i, j) corresponds to the vertex 1, node (i, j + 1) to vertex 2,
and so on. Each vertex is associated with a triangle: vertex 1 with412, vertex 2 with
123, and so on. The doubled area Jk, k = 1, 2, 3, 4, of these triangles is introduced
as follows:

Jk = (xk−1 − xk)(yk+1 − yk) − (yk−1 − yk)(xk+1 − xk)

where one should put k − 1 = 4 if k = 1, k + 1 = 1 if k = 4.
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The functions xh , yh for i ≤ ξ ≤ i + 1, j ≤ η ≤ j + 1 are represented in the
form

xh(ξ, η) = x1 + (x4 − x1)(ξ − i) + (x2 − x1)(η − j)
+(x3 − x4 − x2 + x1)(ξ − i)(η − j),

yh(ξ, η) = y1 + (y4 − y1)(ξ − i) + (y2 − y1)(η − j)
+(y3 − y4 − y2 + y1)(ξ − i)(η − j).

(10.65)

Each side of the square is linearly transformed onto the appropriate side of the
quadrilateral. Consequently, the global transformation xh , yh is continuous on the
cell boundaries. To check the one-to-one property of the transformation (10.65), we
write out the expression for its Jacobian

J h = xhξ y
h
η − xhη y

h
ξ = det

(
x4 − x1 + A(η − j) x2 − x1 + A(ξ − i)
y4 − y1 + B(η − j) y2 − y1 + B(ξ − i)

)
,

where A = x3 − x4 − x2 + x1, B = y3 − y4 − y2 + y1. The function J h is linear,
not bilinear, since the coefficient before ξη in this determinant is equal to zero.
Consequently, if J h > 0 at all corner points of the square, it does not vanish inside
this square. At the corner node 1 (ξ = i, η = j) of the cell i + 1/2, j + 1/2, the
Jacobian equals

J h(i, j) = (x4 − x1)(y2 − y1) − (y4 − y1)(x2 − x1),

i.e. J h(i, j) = J1 is the doubled area of the triangle 412, introduced above. From
this follows that the condition of the Jacobian positiveness xhξ y

h
η − xhη y

h
ξ > 0 is

equivalent to the system of inequalities

[Jk]i+1/2 j+1/2 > 0, k = 1, 2, 3, 4; i = 1, . . . , N −1; j = 1, . . . , M −1. (10.66)

If conditions (10.66) are satisfied, then all the grid cells are convex quadrilaterals.
The set of grids satisfying these inequalities is called a convex grid set and denoted
by D. This set belongs to the Euclidean space RN1 , where N1 = 2(N − 2)(M − 2)
is the total number of degrees of freedom of the grid equal to twice the number of
its interior nodes.

Finally, the problem is formulated as follows. The convex grid, satisfying inequal-
ities (10.66), must be generated in the domain X2 for the given coordinates of the
boundary nodes.

The mapping x(ξ, η), y(ξ, η) is approximated by functions xh(ξ, η), yh(ξ, η)

introduced in (10.65). Substituting those expressions in (10.63) and replacing inte-
grals over square cells by the quadrature formulas with nodes coinciding with the
grid vertices on the plane ξ, η, the following discrete analog of the functional (10.63)
is obtained:

I h =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 , (10.67)
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where Fk is the integrand evaluated in the k - th grid node as

Fk = [(xk+1 − xk)
2 + (xk − xk−1)

2 + (yk+1 − yk)
2 + (yk − yk−1)

2]J−1
k , (10.68)

and Jk is the doubled area of the triangle introduced above.
Notice some properties of the function (10.67). For this purpose, we introduce a

parametric rectangle 0 < ξ < 1, 0 < η < α, where α = (M − 1)/(N − 1) is the
constant, instead of the unit logical square as a domain of integration in (10.63). In
this case, the continuous limit of the expression I h/(N − 1)2 when N , M → ∞ in
such a way, that (M − 1)/(N − 1) = α = const , will be the functional (10.63).

The following identity is readily obtained:

I =
1∫

0

α∫

0

x2ξ + y2ξ + x2η + y2η − 2(xξ yη − xη yξ) + 2(xξ yη − xη yξ)

J
dξdη

=
1∫

0

α∫

0

(xξ − yη)
2 + (xη − yξ)

2

J
dξdη + 2α.

From this follows that the functional (10.63) has a lower bound equal to 2α. If this
minimum is attained, the mapping s(ξ, η) is conformal:

xξ = yη, xη = −yξ .

To find out the corresponding property of discrete analog (10.67) of functional
(10.63), let us consider one term in (10.68) for k = 2. We can assume that x2 = 0
and y2 = 0, since expression (10.68) contains only finite differences of the grid node
coordinates. In this case, we obtain the following identity:

F2 = x21 + y21 + x23 + y23
x1y3 − x3y1

= x21 + y21 + x23 + y23 − 2(x1y3 − x3y1) + 2(x1y3 − x3y1)

x1y3 − x3y1

= (x1 − y3)2 + (x3 + y1)2

x1y3 − x3y1
+ 2.

From this follows that the function I h/(N − 1)2 has on the set D a lower bound
equal to 2(M − 1)/(N − 1). If this minimum is attained, the coordinates of the grid
nodes satisfy a discrete analog of the conformal conditions

x1 = y3, x3 = −y1.

If these conditions are satisfied for all cells, every grid cell will be a square.
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Note that the function (10.67) is not convex and, in principle, multiple solutions
may exist.

The function I h also possesses the following very important property. IfG → ∂D
for G ∈ D, where ∂D is the boundary of the set of convex grids D, i.e. if at least
one of the quantities Jk tends to zero for some cell while remaining positive, then
I h(G) → +∞. In fact, suppose that Jk → 0 in (10.68) for some cell, but I h does not
tend to +∞. Then, the numerator in (10.68) must also tend to zero, i.e. the lengths
of two sides of the cell tend to zero. Consequently, the areas of all triangles that
contain these sides must also tend to zero. Repeating the argument as many times as
necessary, we conclude that the lengths of the sides of all grid cells, including those
at the boundary of the domain, must tend to zero, which is impossible.

Thus, if the set D is not empty, the system of algebraic equations

Rx = ∂ I h

∂xi j
= 0, Ry = ∂ I h

∂yi j
= 0, i = 2, . . . , N −1; j = 2, . . . , M −1, (10.69)

has at least one solution which is a convex grid. To find it, one must first find a certain
initial gridG0 ∈ D, and then use somemethod of unconstrainedminimization. Since
the function (10.67) has the infinite barrier on the boundary of the set D, each step
of the method can be chosen so that the grid always remains convex. Note that in the
common case, the discrete grid-generation Eq. (10.69) may have multiple solutions,
but numerical experiments have not met with such opportunity.

Method of Minimization

First, we consider a method for minimizing the function (10.67) assuming that the
initial grid G0 ∈ D has been found. Suppose the grid at the l-th step of the iterations
is determined. For finding the grid nodes at the (l + 1)-th step, the quasi-Newtonian
procedure for each interior node can be used:

τ Rx + ∂Rx

∂xi j
(xl+1

i j − xli j ) + ∂Rx

∂yi j
(yl+1

i j − yli j ) = 0,

τ Ry + ∂Ry

∂xi j
(xl+1

i j − xli j ) + ∂Ry

∂yi j
(yl+1

i j − yli j ) = 0
(10.70)

where τ is the iteration parameter. Note that (10.70) is not the Newton-Raphson
iteration, because only a part of the second derivatives of (10.67) is taken into account.
The rate of convergence for (10.70) is low by comparison. At the same time, the
Newton-Raphson method gives us a much more complex system of linear equations
at each iteration.

Each of the derivatives in (10.70) is the sum of twelve terms, in accordance with
the number of triangles containing the given node as a vertex. Rather than write out
such cumbersome expressions, the first and second derivatives of the terms in (10.67)
are considered:

∂Fk

∂xk−1
= 2

xk−1 − xk
Jk

− Fk
yk+1 − yk

Jk
, (10.71)
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and so on. Arrays storing the derivatives of the function (10.67) were first cleared,
and then all grid triangles were scanned and the appropriate derivatives added to the
relevant elements of the arrays.

Now, an algorithm is suggested for the choice of the iteration parameter τ in
(10.70), which was used only for the problems with moving boundaries. Recall that
the minimized function (10.67) has the infinite barrier on the boundary of the set of
convex grids D. Since the initial grid G0 is convex, the iteration (10.70) gives, as a
rule, a convex grid for any τ < 1. But in extreme cases when G0 is very close to the
boundary of the set D, the grid G(τ ) can cross the boundary of the set in the first
iterations (10.70). Clearly, such a condition is fatal for the method because the same
barrier on the boundary of the set D does not allow the iterations to return into the set
D in the following iterations. To avoid this, a certain basic parameter τ0 is chosen so
that G(τ0/2) ∈ D and G(τ0) ∈ D. In the beginning, τ0 = 1. If the above-mentioned
conditions are violated, we put τ0 = 1/4 or τ0 = 1/2, depending on whether the
grids G(τ0/2) or G(τ0) leave the set D, and so on.

In fixed boundary problems, the simple choice τ = const · τ0 is used. For time-
dependent problems with moving boundaries, a version of the method of parabolas
was developed. As the controlling quantity, the squared residual of the Eq. (10.70)

W =
∑
i, j

(R2
x + R2

y)i, j

was used. The parabola W (τ ) is constructed from the grids obtained for τ = 0,
τ = τ0/2 and τ = τ0. The parameter τ is then chosen so that W (τ ) = min in the
interval θτ ≤ τ ≤ ατ0. The parameter θ ∼ 0.1 is given a priori and bounds the
value of τ away from zero. The parameter α bounds τ above, i.e. prevents a very
large extrapolation along the parabola. If τ0 = 1, i.e. if the boundary of the set D
is not crossed, we put α = 2. If τ0 < 1, then α = 1. Finally, if the algorithm
gives τ < τ0/2, the condition I h(τ0/2) < I h(0) is checked. In the cases when this
condition is found to be valid, τ = τ0/2 was used.

For one iteration of the above method, a measurement of the computational cost
gives the value of about double (but not three times) the cost of the simple iteration.
The reason is that the second derivatives of the function (10.67) are not used in cal-
culatingW , while they are used in (10.70) to calculate the direction of minimization.

The algorithm described can be used only if the initial grid is convex. Otherwise, it
is necessary either to obtain a convex grid through another algorithm as a preliminary
stage of the method or to modify the computational formulas. The first approach is
based on the minimization of the following function:

ID =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

(
[ε − Jk]i+1/2 j+1/2

)2
+ , ( f )+ = max(0, f ), (10.72)

for some given ε > 0. This is accomplished through the gradient method with a
suitable choice of the iteration parameter. The iterative process is broken off as soon
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as all inequalities (10.66) are satisfied. Thismethodwas used byCharakch’yan (1993,
1994) for studying gas dynamics problems with moving boundaries when the initial
interior grid nodes for minimizing (10.72) were taken from the previous time step.
As a result, the initial grid is either convex or such that a convex grid is obtained
after a few iterations.

In fixed boundary problems, the starting grid may be non-convex, containing
numerous self-intersecting cells. In such a case the preliminary stage of the method
basedonminimizing (10.72) can be unsuitable. Therefore, another approachhadbeen
developed by Ivanenko (1988). The computational formulas (10.70) were modified
so that the initial grid need not belong to the set D of convex grids. The quantities Jk
appearing in the expressions for Rx , Ry and their derivatives are replaced with new
quantities J̃k

J̃k =
{
Jk i f Jk > ε,

ε i f Jk ≤ ε,

where ε > 0 is some sufficiently small quantity.
It is quite important to choose an optimal value of ε so that the convex grid is

constructed as quickly as possible. The method used for specifying the value of ε is
based on the computation of the absolute value of the average area of triangles with
negative areas

ε = max[αS/(N + 0.01), ε1],

where S is twice the absolute value of the total area of triangles with negative areas,
and N the number of these triangles. The quantity ε1 > 0 sets a lower bound on ε to
avoid very large values appearing in the computations. The coefficient α is chosen
experimentally and is in the range 0.3 ≤ α ≤ 0.7.

In practical implementation, an arbitrary set of grid nodes can be marked
as movable during iterations, while all other nodes are considered as station-
ary. All the terms in the function (10.67) which become independent on mov-
able nodes are excluded from computations. Since the boundary nodes are always
marked as stationary, four terms in (10.67) corresponding to “corner” triangles
{(1, 2); (1, 1); (2, 1)}, {(N − 1, 1); (N , 1); (N , 2)}, {(1, M − 1); (1, M); (2, M)},
and {(N − 1, M); (N , M); (N , M − 1)} are always excluded from computations.
As a result, the method becomes applicable to those domains for which the angle
between two intersecting boundaries is greater than or equal to π, despite the fact
that the corresponding grid cell becomes non-convex regardless of the positions of
interior nodes.

Examples of the grids generated by this method are exhibited in Figs. 10.11 and
10.12. Figure10.12 demonstrates the application of the algorithm to generation of a
grid for computing a high-velocity impact of a thin foil (a) upon a conical target CD
Lomonosov et al. (1997).
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Fig. 10.11 Grids in a model domain (a) and for computing a cumulative jet (b)

Fig. 10.12 A fragment of the grid (right) in the vicinity of the point E (left)

10.6.2 Adaptive Grid Generation

Numerical Algorithm
One approach to adaptive grid generation is based on the minimization of the func-
tional (9.23) in the metric of a monitor surface.

Let the monitor surface be defined by a function z = f (x, y) where f ∈ C1. The
expressions for the covariant elements and Jacobian of the monitor metric in the grid
coordinates ξ = ξ1, η = ξ2 are as follows:

g
ξ
11 = gs11

(∂x

∂ξ

)2 + 2gs12
∂x

∂ξ

∂y

∂ξ
+ gs22

(∂y

∂ξ

)2
,

g
ξ
22 = gs11

(∂x

∂η

)2 + 2gs12
∂x

∂η

∂y

∂η
+ gs22

(∂y

∂η

)2
,

gξ = (J )2gs = (J )2[1 + ( fx )2 + ( fy)2],

where
gs11 = 1 + ( fx )2, gs12 = fx fy, gs22 = 1 + ( fy)2.

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Then, functional (9.23) for n = 2, with the identification X2 = S2, ξ = ξ1, η = ξ2,
has the following form:

Ia[x] =
1∫

0

1∫

0

(x2ξ + x2η )[1 + ( fx )2] + (y2ξ + y2η )[1 + ( fy)2] + 2 fx fy(xξ yξ + xη yη)

J [1 + ( fx )2 + ( fy)2]1/2 dξdη.

(10.73)
Now we again consider the grid (x, y)i j , i = 1, . . . , N ; j = 1, . . . , M and, to

simplify the computational formulas, the parametric rectangle 1 < ξ < N , 1 <

η < M substitutes for the unit square 0 < ξ < 1, 0 < η < 1. The functional Ia is
approximated by the function

I ha =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 , (10.74)

Fk = D1[1 + ( fx )2k] + D2[1 + ( fy)2k] + 2D3( fx )k( fy)k
Jk[1 + ( fx )2k + ( fy)2k]1/2

, (10.75)

where
D1 = (xk−1 − xk)

2 + (xk+1 − xk)
2,

D2 = (yk−1 − yk)
2 + (yk+1 − yk)

2,

D3 = (xk−1 − xk)(yk−1 − yk) + (xk+1 − xk)(yk+1 − yk),
Jk = (xk−1 − xk)(yk+1 − yk) − (xk+1 − xk)(yk−1 − yk).

Derivatives ( fx )k and ( fy)k in the k-th cell vertex are equal to the corresponding
values of derivatives, evaluated at the grid node i j

( fx )i j = ( fi+1 j − fi−1 j )(yi j+1 − yi j−1) − ( fi j+1 − fi j−1)(yi+1 j − yi−1 j )

(xi+1 j − xi−1 j )(yi j+1 − yi j−1) − (xi j+1 − xi j−1)(yi+1 j − yi−1 j )
,

( fy)i j = ( fi+1 j − fi−1 j )(xi j+1 − xi j−1) − ( fi j+1 − fi j−1)(xi+1 j − xi−1 j )

(xi+1 j − xi−1 j )(yi j+1 − yi j−1) − (xi j+1 − xi j−1)(yi+1 j − yi−1 j )
.

(10.76)
These formulas must bemodified for the boundary nodes. Indices “leaving” the com-
putational domain must be replaced by the nearest boundary indices. For example,
if j = 1, then (i, j − 1) must be replaced by (i, j).

Function (10.74) possesses the same property as the function (10.67): I ha (G) →
+∞ if G → ∂D for G ∈ D where D is the set of convex grids, and ∂D is the
boundary of the set.

As before, Eq. (10.70) are used to minimize the function I ha . Quantities ( fx )i j and
( fy)i j are assumed to be parameters, and therefore all their derivatives in (10.70)
vanish. Note that if ( fx )i j and ( fy)i j vanish, the function I ha reduces to the function
I h (10.67).

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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The adaptive grid generation algorithm is formulated as follows:
1. Generate a grid for the given domain using the unconstrained minimization

algorithm described.
2. Compute the values of the control function at each grid node. The result is fi j .
3. Evaluate derivatives ( fx )i j and ( fy)i j using the formulas (10.76).
4. Make one step in the minimization process for the function I ha using Eq. (10.70)

and compute new values of xi j and yi j .
5. Repeat starting with Step 2 to convergency.
It is important that at each step of the iterative process the grid remains convex.

Redistribution of Boundary Nodes

There are several ways to redistribute the grid nodes along the boundary ∂X2 of the
domain X2 during adaptation. The simplest one is a fixed position of every point on
∂X2, referred to as the “fixed position.” However, if some physical quantities are not
smooth (e.g. shock waves), then some instability in the mesh generation and, con-
sequently, in the physical problem solution near the points where the discontinuity
joins ∂X2 may arise. In some methods, referred to as “unconstrained minimization”,
the boundary nodes are treated as interior and the vectors of their shift are projected
onto ∂X2. This method can be used only if the discontinuity is nearly orthogonal
to ∂X2. If not, then, when condensing, the boundary nodes overlap, adjacent cells
degenerate, and modeling breaks. The next method, referred to as “1-D minimiza-
tion”, relies on using the 1-D functional along ∂X2. This method is more robust than
the two ones discussed above and can usually be used for adaptation. However, the
1-D and 2-D functionals are, as a rule, inconsistent. For this reason, the parameters
of adaptation for the interior and boundary nodes should be selected separately. It
requires additional work when modeling unsteady flow problems.

In the method suggested by Azarenok (2002), instead of (10.74), the function

Ĩ ha =
N−1∑
i=1

M−1∑
j=1

4∑
k=1

1

4
[Fk]i+1/2 j+1/2 +

∑
i j∈L

λi jGi j = I ha +
∑
i j∈L

λi j Gi j , (10.77)

was minimized where the constraints Gi j = G(xi j , yi j ) = 0 define ∂X2, λi j are the
Lagrange multipliers, and L is the set of the boundary nodes. The function G(x, y)
is assumed to be piecewise differentiable, so the function Ĩ ha holds the infinite barrier
on the boundary of the set of convex grids as I ha does if f ∈ C1.

If the set of convex grids is not empty, the system of algebraic equations

Rx = ∂ I ha
∂xi j

+ λi j
∂Gi j

∂xi j
= 0, Ry = ∂ I ha

∂yi j
+ λi j

∂Gi j

∂yi j
= 0, Gi j = 0, (10.78)

has at least one solution that is a convex mesh. Here, λi j = 0 if i j /∈ L and the
constraints are defined for the boundary nodes i j ∈ L.
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Consider the method of minimizing the function (10.77) assuming the grid to be
convex at the lth step of the iterative procedure. The quasi-Newton procedure for
finding, the coordinates xl+1

i j , yl+1
i j from the system (10.78) was used:

τ Rx + ∂Rx

∂xi j
(xl+1

i j − xli j ) + ∂Rx

∂yi j
(yl+1

i j − yli j ) + ∂Rx

∂λi j
(λl+1

i j − λl
i j )=0,

τ Ry + ∂Ry

∂xi j
(xl+1

i j − xli j ) + ∂Ry

∂yi j
(yl+1

i j − yli j ) + ∂Ry

∂λi j
(λl+1

i j − λl
i j )=0,

τGi j + ∂Gi j

∂xi j
(xl+1

i j − xli j ) + ∂Gi j

∂yi j
(yl+1

i j − yli j ) = 0,

where

∂Rx

∂xi j
= ∂2 I ha

∂x2i j
+ λi j

∂2Gi j

∂x2i j
,

∂Rx

∂yi j
= ∂2 I ha

∂xi j∂yi j
+ λi j

∂2Gi j

∂xi j∂yi j
,

∂Ry

∂xi j
= ∂2 I ha

∂xi j∂yi j
+ λi j

∂2Gi j

∂xi j∂yi j
,

∂Ry

∂yi j
= ∂2 I ha

∂y2i j
+ λi j

∂2Gi j

∂y2i j
,

∂Rx

∂λi j
= ∂Gi j

∂xi j
,

∂Ry

∂λi j
= ∂Gi j

∂yi j
.

Resolving the last equation of (10.79) with respect to yl+1
i j − yli j and substituting

it in the two remaining equations, the system

(
a11 a12
a21 a22

) (
xl+1
i j − xli j

λl+1
i j − λl

i j

)
=

(
a13
a23

)
,

is obtained, where

a11 = ∂Rx

∂xi j
− ∂Rx

∂yi j

∂Gi j

∂xi j

/∂Gi j

∂yi j
,

a12 = ∂Gi j

∂xi j
,

a13 = τ

[
∂Rx

∂yi j
Gi j

/∂Gi j

∂yi j
− Rx

]
,

a21 = ∂Ry

∂xi j
− ∂Ry

∂yi j

∂Gi j

∂xi j

/∂Gi j

∂yi j
,

a22 = ∂Gi j

∂yi j
,

a23 = τ

[
∂Ry

∂yi j
Gi j

/∂Gi j

∂yi j
− Ry

]
.

Denoting  = a11a22 − a12a21, 1 = a13a22 − a23a12, 2 = a11a23 − a21a13 (since
Gi j = 0, the terms a13, a23 are simplified), we obtain

xl+1
i j = xli j + 1/, λl+1

i j = λl
i j + 2/, (10.79)
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while yl+1
i j is determined from the third equation of (10.79). If the constraints are

resolved in y in the form G(x, y) = y − g(x) = 0, then

∂Gi j

∂xi j
= −∂gi j

∂xi j
,

∂Gi j

∂yi j
= 1,

and the upper formulas are simplified. Analogously, the constrains may be resolved
in x in the form G(x, y) = x − g̃(y) = 0. Note that the equation G(x, y) = 0 can
be locally resolved by one of these two forms.

If ∂X2 is specified by parametric functions x = x(t), y = y(t) or tabular
values (x, y)i j , the following algorithm can be used. Assume the index j is fixed
and i is variable. When calculating the coordinates of the (i j)th node, in the interval
(xi−1 j , xi+1 j ), we construct an interpolating parabola t = t (x) using the values in
three nodes (i−1 j) , (i j), and (i+1 j). From (10.79), we compute an intermediate
value x̃ l+1

i j ; further from the interpolation formula, we determine ti j = t (x̃ l+1
i j ) and

final values xl+1
i j , yl+1

i j from the parametric formulas.
Anotherway for redistributing the nodes along ∂X2, given as parametric functions

or by tabular values, employs an unconstrained minimization of the function in a
parametric form and is based on solving the following system of algebraic equations,
referred to as “parametric minimization”:

Rt = Rx
∂xi j
∂ti j

+ Ry
∂yi j
∂ti j

= 0,

via the quasi-Newton procedure

τ Rt + ∂Rt

∂ti j
(t l+1
i j − t li j ) = 0. (10.80)

Here,

∂Rt

∂ti j
= ∂Rx

∂xi j

(
∂xi j
∂ti j

)2

+ ∂Ry

∂yi j

(
∂yi j
∂ti j

)2

+
(

∂Rx

∂yi j
+ ∂Ry

∂xi j

)
∂xi j
∂ti j

∂yi j
∂ti j

+Rx
∂2xi j
∂t2i j

+ Ry
∂2yi j
∂t2i j

, Rx = ∂ I h

∂xi j
, Ry = ∂ I h

∂yi j
.

To the analytical control functions, both the constrained and parametricminimization
give similar results. Real-world 2-D flow computations have shown that it is better
to perform adaptation along the boundary using constrained minimization (10.79),
since the procedure (10.80) may not ensure consistent redistribution of the nodes in
X2 and on ∂X2.

The use of the constrainedminimization without adaptation (i.e. when f =const.)
means that we seek the conformal mapping x(ξ, η), y(ξ, η) of the parametric rec-
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tangle onto the domain X2 with an additional parameter, the so-called conformal
modulus.

10.7 Parallel Mesh Generation

Parallel computing is an efficient tool for handling large multidimensional problems
by distributing the computational effort and/or the memory requirements over the
different computers available.

As to themesh generation step, one parallelization approach consists of construct-
ing the mesh in parallel by means of using a meshing method under interest which
is to be updated in order to incorporate some degree of parallelism. Many classical
methods for mesh generation are amenable to being performed in parallel, in partic-
ular, the Delaunay and quad-octree methods and the mapping methods based on the
numerical solution of elliptic and parabolic equations such as the inverted Beltrami
and diffusion equations.

The second approach to the parallelization of the meshing process consists of
partitioning the domain by means of sub-domains, whose union forms a covering-
up of the entire domain, prior to dispatching these to different processors, each of
them generating a mesh on one sub-domain. Different classes of domain partition are
encountered. Among these, some are based on graph partitions and some are purely
geometric methods directly based on mesh partitions. All these methods apply to
finite element type meshes, since a vicinity graph can be constructed based on the
connections between the elements in a given mesh.

The partition of the domain as well as constructing the corresponding sub-meshes
can be achieved either through a posteriori or a priori partitioning methods. The
posteriori processing starts from the data of a large size fine mesh of the entire
domain and then splits it into sub-meshes, while a priori processing uses the domain
itself or a coarse mesh of it which is split into sub-domains.

For the priori processing, first, a partition of the domain is created. This step may
start from the domain geometry or a reasonable coarse mesh of the entire domain.
Once this partition is available, some sub-domains are then identified and meshed,
each on one processor, thus taking advantage of the parallel capabilities of the com-
puters right from the meshing stage. The global mesh is then achieved by merging
all of the local meshes. The interface between two sub-domains is constructed either
from the data of the coarse mesh or from the data of the domain boundary discretiza-
tion. The meshes can also be constructed by using the meshes of the surfaces that
constitute the interfaces between the sub-domains extracted from the given boundary
mesh. This approach leads to meshing each sub-domain separately after the defini-
tion of the various domain interfaces and after a mesh of these interfaces has been
constructed.

Provided with a fine mesh of the domain under interest, the posteriori partitioning
method consists of splitting this mesh into several sub-meshes in order to distribute
the computational effort over several processors, each of them being responsible
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for the solution of a physical problem for one sub-domain. The global solution is
achieved by merging all of the partial solutions. The most frequent case is element-
based decomposition in which the fine mesh is partitioned by distributing the cells
among the sub-domains i.e. one cell is logically associatedwith one and only one sub-
domain. Another case is node-based decomposition in which the mesh is partitioned
by distributing its nodes among the sub-domains, i.e. one node is logically associated
with one and only one sub-domain. The main drawback of such a method is related
to its memory requirement, as it is necessary to store the initial mesh and, at least,
one of the sub-meshes. Nevertheless, the posteriori methods are widely used.

Of course, in practice, these parallelization approaches are often combined by
taking into account their advantages and weaknesses.

These and different partition methods are presented in greater detail in the books
of Frey and George (2008) and Lo (2015).
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Chapter 11
Control of Grid Properties

This chapter is devoted to practical applications of control metrics gsi j in inverted
Beltrami and diffusion equations for finding intermediate transformations

s(ξ) : Ξ n → Sn, s(ξ) = [s1(ξ), . . . , sn(ξ)], ξ = (ξ1, . . . ξn), ξ ∈ Ξ n

(11.1)
between computational Ξ n and parametric Sn domains. The control metrics provide
necessary grid properties on arbitrary physical geometries Sxn ⊂ R

n+k specified by
parametrizations

x(s) : Sn → Sxn, x(s) = (x1(s), . . . , xn+k(s)), s = (s1, . . . , sn) , (11.2)

in particular, in n-dimensional domains, i.e. when Sxn ≡ Xn , s = x.

11.1 Grid Adaptation to Function Values

11.1.1 Control Operator

Given a function u(s) : Sn → R
m and the grid transformation as a composition of

(11.1) and (11.2)
x(s(ξ)) : Ξ n → Sxn ,

consider the quantity

m(s) = Z [u](s)√gxsgkmsx
∂ξi

∂sk
∂ξi

∂sm
= Z [u](s)√gxs

n∑

i=1

gi iξx , i, j, k,m = 1, . . . , n ,

(11.3)
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where gkmsx (gkmξx ) is the (km)th element of the contravariant metric tensor of Sxn in
coordinates s1, . . . , sn (ξ1, . . . , ξn),

gxs = det{gxs
i j } , gxs

i j = xsi · xs j , g
i j
ξx = gkmsx

∂ξi

∂sk
∂ξ j

∂sm
, i, j, k,m = 1, . . . , n ,

Z [ ] is a positive operator whose values are positive scalar functions. We refer to Z [ ]
as a control operator, while referring to Z [u](s) as a control function.

If Sxn ≡ Sn , then gkmsx = gxs
km = δkm , so formula (11.3) is presented as

m(s) = Z [u](s)
n∑

i=1

gi iξs, i = 1, . . . , n, (11.4)

where

g
i j
ξs = δkm

∂ξi

∂sk
∂ξ j

∂sm
= ∂ξi

∂sk
∂ξ j

∂sk
, i, j, k,m = 1, . . . , n .

To elucidate the effect of the operator Z [ ] on grid adaptation to the values of a
function u(s), notice that the distance lk between a point at the coordinate surface
(line when n = 2) ξk = c and the coordinate surface ξk = c + h on Sxn equals, up to
O(h2), the product of h and the length of the projection of the tangent vector

xξk = ∂

∂ξk
x(s(ξ)), k = 1, . . . , n ,

onto the unit normal nk at this point to the coordinate surface ξk = c (see Fig. 11.1
for n = 2), namely,

lk = h|xξk · nk | + O(h2) ,

where, in accordance with (9.76),

nk = gikξx xξi /

√
gkkξx , i = 1, . . . , n, k fixed . (11.5)

If Sxn ≡ Sn , then, for nk in (11.5), we have

nk = grad ξk(x)/

√
gkkξx =

(
∂ξk

∂x1
, . . . ,

∂ξk

∂xn

)
/

√
gkkξx , k fixed .

Using (11.5) gives for every fixed k = 1, . . . , n

xξk · nk = gikξxg
xξ
ki /

√
gkkξx = 1/

√
gkkξx , k fixed , (11.6)

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Fig. 11.1 Illustration for
defining a grid step

and hence lk ≈ h/
√

gkkξx . Therefore, 1/g
kk
ξx with fixed k is a measure of mesh refine-

ment on Sxn in the direction orthogonal to the coordinate surface ξk = const on Sxn

(see Fig. 11.1 for n = 2).
Consider the minimization of the following functional:

ID[ξ] = 1

2

∫

Sn

m(s)ds = 1

2

∫

Sn

√
gxs Z [u](s)

n∑

i=1

gi iξxds; (11.7)

with the function m(s) from (11.3) for the transformations ξ(s) : Sn → Ξ n , the

expression
n∑

i=1

gi iξx tends to become less at the points where the control function

Z [u](s) takes larger values, and vice versa. Therefore, for the intermediate trans-
formation s(ξ) whose inverse ξ(s) is extremal for functional (11.7) to ensure grid
clustering in required zones (for example, in the zone of flow turbulence), the values
of the control function Z [u](s) at the points of these zones must be smaller than at
the other points of Sxn . Conversely, for mesh rarefaction in required zones of Sxn , the
values of the control function Z [u](s) at the points of these zones must be larger than
at the other points of Sxn . For example, to ensure grid clustering in regions where
the values of |u(s)| are large, we may assume

Z [u](s) = 1

(|u(s)| + c1)α
, c1 > 0, α > 0 . (11.8)

For grid clustering in regionswhere the values of |u(s)| are small, for example, within
small-depth zones in tsunami problems, we may define Z [u](s) as

Z [u](s) = (|u(s)| + c1)
α, c1 > 0 , α > 0 . (11.9)
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11.1.2 Grid Equations

Functional (11.7) is, in fact, the diffusion functional (9.121)

ID[ξ] = 1

2

∫

Sn

w(s)gmj
s

∂ξi

∂sm
∂ξi

∂s j
ds = 1

2

∫

Sn

w(s)
n∑

i=1

gi iξ ds, i, j,m = 1, . . . , n

(11.10)
for w(s) = 1 in a control metric whose contravariant elements in coordinates
s1, . . . , sn are specified as

gi js = √
gxs Z [u](s)gi jsx , i, j = 1, . . . , n . (11.11)

Consequently, the covariant elements of this metric in coordinates s1, . . . , sn are
defined as

gsi j = 1√
gxs Z [u](s)g

xs
i j , i, j = 1, . . . , n . (11.12)

Euler–Lagrange equations for functional (11.10) withw(s) = 1 in this control metric
are diffusion equations

∂

∂s j

(√
gxs Z [u](s)g jk

sx

∂ξi

∂sk

)
= 0, i, j, k = 1, . . . , n . (11.13)

Therefore, the inverted diffusion equations in metric (11.12) for generating grids on
Sxn will be the following equations:

Bxξ
n [sk] = J 2√gxs

Z [u](s)
∂

∂s j
(
√

gxs Z [u](s)g jk
xs ), j, k = 1, . . . , n , (11.14)

where

Bxξ
n [y] = J 2gxsg

i j
ξx

∂2y

∂ξi∂ξ j
, g

i j
ξx = gklsx

∂ξi

∂sk
∂ξ j

∂sl
, i, j, k, l = 1, . . . , n ,

while if Sxn ≡ Sn , they will be

Bsξ
n [sk] = J 2 1

Z [u](s)
∂

∂sk
(Z [u](s)), k = 1, . . . , n , (11.15)

where

Bsξ
n [y] = J 2g

i j
ξs

∂2y

∂ξi∂ξ j
, g

i j
ξs = ∂ξi

∂sk
∂ξ j

∂sk
, i, j, k = 1, . . . , n.

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Fig. 11.2 Fragment of a three-dimensional grid between turbine blades with refinement in zones
of large values of a function (left); a two-dimensional cross section of the grid (right)

Figure11.2 illustrates an adaptive grid in a domain S3, with node clustering in the
zone of large values of a function u(s), obtained by the solution of Eq. (11.15) with
Z [u](s) defined by formula (11.8).

11.2 Grid Generation with Node Clustering Near Isolated
Points

Let x(s) : Sn → Sxn be a parametrization of Sxn . For generating grids with node
clustering in the vicinity of a point x(s0) ∈ Sxn by solving Eqs. (11.14) and
(11.15), we can use control metric (11.12) with a scalar-valued function u(s) as a
composition of

ϕ(s) = ρ(s, s0) = |s − s0| (11.16)

and a positive univariate scalar function σ(t) that takes a small value at t = 0
and grows rapidly in the neighborhood of t = 0, i.e. u(s) = σ(ϕ(s)), and then set
Z [u](s) = u(s). Moreover, the mesh refinement is more localized for a faster grow-
ing functionσ(t). Examples of such univariate functionsσ(t) are layer-type functions
for |t | < T0, as described in Chap.4:

σ1(t) = |th(t/ε)|α + ε1, α > 0, σ2(t) = 1 − e−|t |α/ε + ε1, α > 0,

σ3(t) = 1 − εβ

(ε + |t |α)β
+ ε1, α,β > 0,

σ4(t) = (ε + |t |α)β

(ε + (T0)α)β
, 0 < β < 1, α > 0,

σ5(t) = |t |α + ε1, α > 0, σ6(t) = ln(1 + |t |αε−k)

ln(1 + (T0)αε−k)
+ ε1, α, k > 0,

(11.17)
where ε and ε1 are small positive constants, i.e. 0 < ε, ε1 � 1 (see Fig. 11.3).

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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Fig. 11.3 Plots of layer-type
functions (11.17) for
1 ≥ t ≥ 0, α = 0, 5,
ε = 0, 1, ε1 = 0, 001
β = 0, 5

In accordance with the theoretical results, presented in Liseikin (2001a), the func-
tionsσ1(t),σ2(t), andσ3(t) are efficient for grid clustering in the zones of exponential
boundary and interior layers. The functions σ3(t) and σ4(t) are suitable for providing
grid clustering in the zones of power layers, while the function σ6(t) is useful for
grid clustering in the zones of logarithmic layers. Moreover, the faster the growth of
σi (t) near t = 0, the smaller the zone of grid clustering. The fastest growth has the
functions σ1(t) and σ2(t) (see Fig. 11.3).

Since the functions σi (t), i = 1, . . . , 6 are positive, mesh refinement near the
point x(s0) can be achieved by setting the control function Z [u](s) in the inverted
diffusion equations (11.14) and (11.15) as a linear combination of functionsσi (ϕ(s)),
i.e.

Z [u](s) =
6∑

i=1

ciσi [ϕ(s)], ci ≥ 0 . (11.18)

For mesh rarefaction near the point x(s0), the control function Z [u](s) can be taken
as a linear combination of functions 1/σi (ϕ(s)), i.e.

Z [u](s) =
6∑

i=1

ci
σi [ϕ(s)] , ci ≥ 0 , (11.19)

or as a product of some of these functions.
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Fig. 11.4 Grid obtained by using the inverted Laplace equations (a) and grid obtained by solving
the inverted diffusion equations in control metric (11.14) with node clustering near the points C
and D and with rarefaction near the points A and B (b)

If x(s0) is a boundary point of Sxn , then the use of control function (11.18) in
the numerical solution of inverted diffusion equations (11.14) or (11.15) leads to
attraction of grid cells to some part of the boundary segment containing x(s0). Due
to the application of control function (11.19), the grid nodes are repelled fromapart of
the boundary section of Sxn containing the point x(s0). Therefore, the control metric
(11.12) can be used to eliminate undesirable refinements or rarefactions obtained by
numerically solving the inverted Beltrami equations with Z [u](s) ≡ 1. When Sxn ≡
Sn , these equations are, in fact, the inverted Laplace equations, and the corresponding
grid rarefies near convex segments of the boundary coordinate surface (line at n = 2)
and refines near concave boundary segments (see Fig. 11.4a).

Since the values of functions (11.17) are significantly larger then zero outside
a small neighborhood of the point t = 0, the control function Z [u](s) in (11.11)
providing grid clustering near several isolated points and grid rarefaction at other
isolated points can be defined as the product of the corresponding functions (11.18)
and (11.19). Figure11.4b demonstrates the application of such a control function for
reducing grid rarefaction near the pointsC and D, where the boundary is convex, and
for reducing grid clustering near the points A and B, where the boundary is concave,
in control metric (11.12) with

Z [u](s) = u(s), u(s) = σ′
5(ρ(s,C))σ′

5(ρ(s, D))

σ′′
5 (ρ(s, A))σ′′

5 (ρ(s, B))
,

where σ′
5 and σ′′

5 are functions from (11.17), namely,

σ′
5(ρ(s, v)) = 0, 0002 + ρ3(s, v), σ′′

5 (ρ(s, v)) = 0, 02 + ρ2(s, v).

Figure11.5 exhibits the application of control metric (11.12) for the elimination
of an overlap at a corner point. Specifically, for the corner point s1, the repelling
control function

u1(s) = 1

0, 02 + |s − s1|2
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Fig. 11.5 Application of repelling and refining control functions for the elimination of overlaps
near acute angles: the grids generatedwith the help of the inverted Laplace equations (a) and inverted
diffusion equations (11.15) in metric (11.12) (b)

was taken. While for the point s2, we used the attracting control function

u2(s) = 0, 002 + |s − s2|2 ,

and as a result, the control function Z [u](s) is as follows:

Z [u](s) = u1(s)u2(s) = 0, 002 + |s − s2|2
0, 02 + |s − s1|2 .

To generate a grid that is refined or rarefined near several points si ∈ Sn , i =
1, . . . , N , the function ϕ(s) can be defined as

ϕ(s) = min
i=1,...,N

ρ(s, si ). (11.20)

Specifically, this function can be used to generate grids with refinement on a discrete
set specified in Sn . Figure11.6 demonstrates the application of this function for grid
generation with refinement near the boundaries of an aorta and carotid arteries that
were discretely specified.
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Fig. 11.6 Grid with node clustering near isolated boundary points

11.3 Grids with Node Clustering Near Curves and Surfaces

With the help of control metric (11.12) in inverted diffusion equations (11.14) and
(11.15), one can provide grid clustering in the neighborhood of a surface on Sxn

(curve on Sx2) given by an equation ϕ(s) = 0. In this case, the control function
Z [u](s) in Eqs. (11.14) and (11.15) can be defined through a positive univariate
function σ(t) such that σ(0) < σ(t), |t | > 0 and σ(t) varies rapidly in a small
vicinity of zero, namely, assuming Z [u](s) = σ(ϕ(s)). Similarly, the control func-
tion Z [u](s) = 1/σ(ϕ(s)) provides grid rarefaction in the vicinity of the surface
ϕ(s) = 0. Specifically, any function from (11.17) can be used as σ(t). Figure11.7
demonstrates varied degrees of refinement of grid nodes near the curve defined as

ϕ(s) ≡ s2 − 20(s1 − 0, 5)3 − 0, 5 = 0,

depending on the choice of a function from (11.17).
Examples of three-dimensional adaptive grids with node clustering near a surface

ϕ(s) = 0 for

Z [u](s) = σ[ϕ(s)], σ(t) = (t/10)2 + 0, 01, ϕ(s) = s1 − 3 sin(πs2/10) − 140,

and for
Z [u](s) = σ[ϕ(s)], σ(t) = 1 − e−|t |1.1 + 10−5,

ϕ(s) = (s1)3 + (s2)3 + (s3)3 + 1 − (s1 + s2 + s3 + 1)3

are given in Figs. 11.8 and 11.9, respectively.
If it is necessary to adapt a grid near surfaces (curves for n = 2) ϕ1(s) = 0

and ϕ2(s) = 0, then the control function Z [u](s) is defined as the product of the
corresponding functions Z1[u1](s) and Z2[u2](s). Figure11.10b exhibits a two-
dimensional grid with grid clustering near a convex boundary segment and with
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Fig. 11.7 Application of the layer-type functions σ1, σ4, σ5, σ6 defined by formula (11.17) for
mesh refinement near a given curve for α = 0, 5, ε = 0, 1, ε1 = 0, 001 and β = 0, 5

Fig. 11.8 Fragment of a three-dimensional grid between turbine blades with refinement near a
given surface (left); a two-dimensional cross section of the grid (right)

node rarefaction near a concave boundary segment by applying the following
control function:

Z [u](s) = Z1[u1](s)Z2[u2](s) ,

Z1[u1](s) = u1(s) = |th(ρconvexmin )| + 0, 1 ,

Z2[u2](s) = 1

u2(s)
= 1

|th(ρconcavemin )| + 0, 1
,
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Fig. 11.9 Two-dimensional surface in R3 (left); fragment of a three-dimensional grid with node
clustering near this surface (right)

Fig. 11.10 Gridwith cell rarefaction near a convex boundary segment and cell clustering near a con-
cave boundary segment obtained by solving the inverted Laplace equations (left); grid obtained by
solving inverted diffusion equations (11.15) with cell clustering near the convex boundary segment
and cell rarefaction near the concave boundary segment (right)

ρconvexmin = min
i

ρ(s, arrayconvexi ), ρconcavemin = min
j

ρ(s, arrayconcavej ),

where arrayconvexi and arrayconcavej are discretizations of convex and concave bound-
ary segments, respectively. Notice that the grid obtained by solving the inverted
Beltrami equations with Z [u](s) = 1, in fact, by the inverted Laplace equations, rar-
efies near convex boundary segments and refines near concave boundary segments
(Fig. 11.10a).

If a curve in a three–dimensional domain S3 is defined by two equationsϕ1(s) = 0
and ϕ2(s) = 0, then for generating a grid with node clustering near such a curve, one
may assume in inverted diffusion equations (11.14) and (11.15)
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Fig. 11.11 Curves in S3 (left); fragment of a three-dimensional grid with node clustering near the
curves (right)

Z [u](s) = u(s), u(s) = ασi (ϕ1(s)) + βσ j (ϕ2(s)), α,β > 0, α + β = 1,

where σi (t) are functions from by formula (11.17). An example of such a grid for

Z [u](s) = u(s) = 0, 7σ2(ϕ1(s)) + 0, 3σ6(ϕ2(s)),

ϕ1(s) = (s1)3 + (s2)3 + (s3)3 + 1 − (s1 + s2 + s3 + 1)3, ϕ2(s) = s2 + 0, 5,

σ2(t) = 1 − e−|t |1,1 + 10−5, σ6(t) = 10−6 + |t |2

is exhibited in Fig. 11.11.
If a curve on Sxn is specified by a parametrization x2(t) = x(x1(t)), where

x1(t) : [0, 1] → Sn is a transformation of the interval [0, 1], while x(s) : Sn → Sxn

is a parametrization of Sxn , then for generating a grid with node clustering in the
vicinity of this curve, one may generate a grid in the interval [0, 1] with nodes
t0 = 0, t1, . . . , tN−1, tN = 1, and then use formula (11.20) for the points si = x1(ti ),
i = 0, 1, . . . , N − 1, N , and assume

Z [u](s) = u(s), u(s) = σi (ϕ(s)), i = 1, . . . , 6,

where σi (t) are functions in formula (11.17).
Similarly, one can generate a grid with node clustering in the vicinity of a surface

in Sxn specified by a parametrization

x(x1(t1, t2)) : [0, 1] × [0, 1] → S2 → Sx3 .
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11.4 Generation of Grids with Node Clustering
in the Zones of Large Variations of Functions

11.4.1 Control Metric of a Monitor Surface

Efficient control metric for generating grids on Sxn specified by parametrization
(11.2) with node clustering in the zones of large variations of a function f (x) =
( f 1(x), . . . , f l(x)) is the metric of a monitor hypersurface Srn over Sxn that is
defined by parametrization

r(s) : Sn → R
n+k+l , r(s) = (x(s), f [x(s)]), (11.21)

for which

gsi j = grsi j = rsi · rs j = gxs
i j + ∂ f [x(s)]

∂si
· ∂ f [x(s)]

∂s j
, i, j = 1, . . . , n. (11.22)

Fig. 11.12 Quasiuniform
grid on a monitor surface Sr2

and adaptive grid in a
domain X2
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Fig. 11.13 Adaptive grid with node clustering in the zone of large variations of the function defined
by (11.25) (left); adaptive grid with node clustering in the zone of large gradients of the vector
function f(x) = ( f 1(x), . . . , f 5(x)), where f i (x), i = 1, . . . , 5 is taken from (11.26) (right)

The inverted Beltrami equations in this metric are, in accordance with Chap.10,
presented as

Bξ
n [si ] = −Bξ

n [ f ] · ∂ f (s)
∂si

, i = 1, . . . , n , (11.23)

where

Bξ
n [y] = gξg

i j
ξ

∂2y

∂ξi∂ξ j
, i, j = 1, . . . , n .

The quantity

m(s) = √
gsg jm

s
∂ξi

∂s j

∂ξi

∂sm
, i, j,m = 1, . . . , n (11.24)

for metric (11.22) is a local divergency measure from a uniform grid on Srn and,
consequently, from an adaptive grid on Sxn whose cells are clustering in the zones of
large variations of function f (x(s)) (see Figs. 11.12 and 11.13, left-hand for n = 2
and Sx2 = X2), where

f (x1, x2) = f1(x1, x2) + f2(x1, x2) + f3(x1, x2) + f4(x1, x2) + f5(x1, x2),
(11.25)

where
f1(x1, x2) = th(0, 04 − (x1 − 0, 5)2 − (x2 − 0, 5)2),
f2(x1, x2) = th(0, 04 − x21 − x22 ),
f3(x1, x2) = th(0, 04 − x21 − (x2 − 1)2),
f4(x1, x2) = th(0, 04 − (x1 − 1)2 − (x2 − 1)2),
f5(x1, x2) = th(0, 04 − (x1 − 1)2 − x22 ).

(11.26)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Fig. 11.14 Grids generated with the help of equations (11.23) with node clustering near a closed
curve (left); near an unclosed curve (right)

The metric of a monitor hypersurface can be used for generating grids with
node clustering near a surface on Sxn specified by the equation ϕ(s) = 0 for which
grad ϕ(s) �= 0. For this purpose, the monitor function in inverted Beltrami equations
(11.23) can be specified as f (s) = v(ϕ(s)), where v(t) is a function whose derivative
is large at t = 0, for example, v(t) = th(t/ε), thus f (s) = th(ϕ(s)/ε), 1 � ε > 0.

11.4.2 Spherical Control Metric

Contravariant metric tensor (11.11) can be used in inverted diffusion equations
(11.14) and (11.15) for generating grids with node clustering in the zones of large
variations of some function u(s) = (u1(s), . . . , ul(s)) (see Fig. 11.13). For this pur-
pose, the control function Z [u](s) should be small at the points where |grad u|(s)
is small, for example, assuming Z [u](s) = σi [grad u(s)], i = 1, . . . , 6 with the
functions σi (t) from (11.17).

Notice the following fact. When using inverted Beltrami equations (11.23) for
generating grids with cell clustering near a closed curve (closed surface when n = 3),
nodes are moved to the curve from its interior subdomain, and in its exterior part,
the grid is nearly unchanged (see Fig. 11.14, left-hand). This effect is not observed
by applying diffusion equations (11.14) or (11.15) (see Fig. 11.15, left-hand).

11.5 Application of Layer-Type Functions to Grid Codes

Formulations of general control metrics (9.116) as well as of the metrics (9.140),
(9.162), and (9.163) for generating field-aligned and balanced grids rely on some
weight functions whose role is both to specify metrics and to determine the influence

http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Fig. 11.15 Grids generated with the help of equations (11.15) with node clustering near a closed
curve (left); near an unclosed curve (right)

of individual metrics on the resulting mesh. This section reviews the application of
some basic layer-type univariate mappings to definition of the weight functions.

11.5.1 Specification of Basic Functions

A suitable set of weight functions can be formulated by using three basic functions
ϕi (x, ε), i = 1, 2, 3, x ≥ 0, 0 < ε � 1 which model locally the qualitative behavior
of solutions to singularly perturbed problems along a coordinate transverse to the
layers of their rapid variation.

The first function is the familiar exponential layer-type mapping

ϕ1(x, ε) = exp(−bx/εk) , k > 0 , b > 0 , (11.27)

representing a layer-type function of the first order. The second mapping is a power
function, namely,

ϕ2(x, ε) = εkb

(εk + x)b
, k > 0 , b > 0 , (11.28)

The third mapping is a logarithmic map

ϕ3(x, ε) = ln(1 + xε−k)

ln(1 + ε−k)
, k > 0 . (11.29)

The interval where any function ϕi (x, ε), i = 1, 2, 3, provides a rapid stretching
of the coordinate x coincides with the interval where the first derivative with respect
to x of this function is large. The first derivatives of the basic functions are
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dϕ1

dx
(x, ε) = −bε−k exp(−bx/εk) , k > 0 , b > 0 ,

dϕ2

dx
(x, ε) = − bεkb

(εk + x)b+1
, k > 0 , b > 0 ,

dϕ3

dx
(x, ε) = 1

ln(1 + ε−k)(εk + x)
, k > 0 ,

Thus, the lengths of the intervals of the rapid transition of the functions are equal to

x1 = C1ε
kln(ε−1), x2 = C2ε

kb/(b+1), x3 = C3/ ln(1 + ε−k),

respectively. The intervals [0, x1], [0, x2], and [0, x3] are referred to as layers of
singularity of corresponding functions ϕi (x, ε), i = 1, 2, 3.

The quantities k and b in the expressions for the functions ϕi (x, ε) are positive
constants that control some characteristics of the functions and the layers of their
singularity. In particular, the number k exhibits the scale of a layer. The constant
b controls the type of stretching nonuniformity and the width of the layer. The
parameter ε provides the major contribution to determination of the slopes of the
functions in the vicinity of the point x = 0.

The basic functions ϕi (x, ε), i = 1, 2, 3, have the boundary layers of rapid vari-
ation near the point x = 0. It is evident that the procedures of scaling, shifting, and
matching can yield layer-type functions with arbitrary boundary and interior layers
as well. These procedures are described in detail in themonograph by Liseikin (1999,
2001a).

Originally, the layer-type functions ϕi (x, ε) were used in the so-called stretching
method for specifying grid node clustering in the zones of boundary and interior
layers for the numerical solution of singularly perturbed problems (see Bahvalov
1969 and Liseikin 2001a).

11.5.2 Numerical Grids Aligned to Vector-Fields

Application to Formulation of Field-Aligned Control Metrics

For generating numerical grids in a domain Xn = Sn , aligned to a vector-field B, in
accordance with Chap.10, the contravariant metric components (9.118) can be used.
For specifying these components, two vector-fields B1 and B2 may be chosen by

B1 = B, B2 = kD ,

where D is orthogonal to the field B, and k is a small positive function. Thus, the
contravariant components of the monitor metric for generating field-aligned grids in
the domain Xn are as follows:

gi js = ε(s)δij + Bi B j + k2Di D j , i, j = 1, . . . , n. (11.30)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Since the vector field B is orthogonal to D and |B| = |D|, we find

gs = det{gi js } = [ε(s) + |B|2][ε(s) + k2|B|2]. (11.31)

Taking into account that for n = 2

Bi B j = |B|2δij − Di D j , i, j = 1, 2,

the contravariant metric components (11.30), for n = 2 and l = 2, are as follows:

g
i j
s = [ε(s) + |B|2]δij + (k2 − 1)Di D j

= [ε(s) + k2|B|2]δij + (1 − k2)Bi B j , i, j = 1, 2.
(11.32)

So, the covariant components of the control metric in the Cartesian coordinates s1, s2

are expressed in both forms

gsi j = 1

ε(s) + |B|2
[
δij − k2 − 1

ε(s) + k2|B|2 D
i D j

]
, i, j = 1, 2,

gsi j = 1

ε(s) + k2|B|2
[
δij − 1 − k2

ε(s) + |B|2 B
i B j

]
, i, j = 1, 2,

(11.33)

Thus, the covariant metric components in the grid coordinates ξ1, ξ2 are presented
as

g
ξ
i j = 1

ε(s) + |B|2
[

∂s
∂ξi

· ∂s
∂ξ j

− k2 − 1

ε(s) + k2|B|2 D
m ∂sm

∂ξi
D p ∂s p

∂ξ j

]

= 1

ε(s) + k2|B|2
[

∂s
∂ξi

· ∂s
∂ξ j

− 1 − k2

ε(s) + |B|2 B
m ∂sm

∂ξi
B p ∂s p

∂ξ j

]
,

i, j,m, p = 1, 2.

(11.34)

For generating a grid with the requirement that grid coordinates are aligned with
the vector fieldB,we assume k ∼ 0.01 − 0.1and ε(s) as a functionwith small positive
values when |B| ∼ 1, while ε(s) ∼ 1 when |B| = 0. The second condition for ε(s) is
stipulated by the effect of the solution of inverted diffusive equations: the grid cells
become very small at the points where all elements g

i j
s are small. The functions ε(s)

satisfying these properties are formulated through the boundary layer-type functions
(11.27)–(11.29) assuming ε(s) = ϕ(|B(s)|2, δ), where

ϕ(x, δ) =
⎧
⎨

⎩

Mexp(−x/δ),
Mδα/(δ + x)α, α > 0,
M ln(δ + x)/ ln δ,

for x ≥ 0, 0 < δ << 1, M = const . These boundary layer-type functions help
solutions of grid equations switch from one mode to another.
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In the case of a two-dimensional domain X2 = S2 and a square logical domain
Ξ 2, the boundary conditions at the points of the boundary segments ξ2 = 0; 1 of the
logical square Ξ 2 are found iteratively to satisfy the requirement of orthogonality

∂s
∂ξ1

· ∂s
∂ξ2

= 0.

The conditions at the boundary points of the other coordinate family can be either
specified as fixed or they can be specified at one segment ξ1 = const and com-
puted iteratively at the points of the other segment to satisfy the requirement of the
alignment of grid lines at these points with the vector field

B3 = [B1 + sgnB1ϕ(|B1|2, δ), (1 − ϕ(|B1|2, δ))B2].

This vector field is introduced to rule out, at the corresponding boundary points, the
direction (0, B2) parallel to the boundary segment ξ1 = const for a coordinate curve
ξ2 = const emanating from this segment.

Numerical Experiments

Figures11.16, 11.17, 11.18 and 11.19 demonstrate isocontours (left-hand) of a vector
fieldB in a two-dimensional domain S2 andpictures (right-hand) of the corresponding
grids. The vector field B is formed by a model function ψ(s) via the relation

B =
(

− ∂ψ

∂s2
,

∂ψ

∂s1

)
. (11.35)

This vector field is subject to the natural equation for magnetic fields divB = 0. In
addition, for such a vector field, D = grad ψ. Thus, in this case, the Eq. (11.34)
become

Fig. 11.16 Field-aligned grid (right) for a symmetric vector field (left)
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Fig. 11.17 Field-aligned grid (right) for a vector field with two islands (left)

Fig. 11.18 Field-aligned grid (right) for a nonsymmetric vector field (left)

Fig. 11.19 Example of a triangular field-aligned grid

g
ξ
i j = 1

ε(s) + |B|2
[

∂s
∂ξi

· ∂s
∂ξ j

− k2 − 1

ε(s) + k2|B|2
∂ψ

∂ξi
∂ψ

∂ξ j

]
, i, j = 1, 2.

With these covariant components, the two-dimensional diffusion equations in
(9.134) have the following form:

http://dx.doi.org/10.1007/978-3-319-57846-0_9
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(
g

ξ
22

∂2si

∂ξ1∂ξ1
− 2gξ

12

∂2si

∂ξ1∂ξ2
+ g

ξ
11

∂2si

∂ξ2∂ξ2

)
= Ri , i = 1, 2, (11.36)

where

Ri = (J )2

w[s(ξ)]gs
∂

∂s j
[w(s)gi js ]

= J

w[s(ξ)]gs
{∂s2

∂ξ2
∂

∂ξ1
[w(s)gi1s ] − ∂s2

∂ξ1
∂

∂ξ2
[w(s)gi1s ]

−∂s1

∂ξ2
∂

∂ξ1
[w(s)gi2s ] + ∂s1

∂ξ1
∂

∂ξ2
[w(s)gi2s ]

}
, i, j = 1, 2.

Equations (11.36) become the inverted Beltrami equations after substituting√
gs = 1/

√
gs for w(s).

The Eq. (11.36) were solved with the numerical algorithms reviewed in Chap.10.
The following expressions for ε(s) and ψ(s) were used:

ε(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 exp(−|B|2/0.1), Fig. 11.16;

0.05

(
0.3

0.3 + |B|2
)2

, Fig. 11.17;

0.05 ln(0.005 + |B|2)/ ln(0.005), Fig. 11.18;

0.1exp

(
− |B|
0.07

)
, Fig. 11.19.

ψ(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(s2)(1 − φ(s2))[(s1 − 0.5)2 + 2(φ(s2) − 0.5)2], Fig. 11.16;
φ(s2)(1 − φ(s2))[(s1 − 0.5)2 − 6(φ(s2) − 0.5)2], Fig. 11.17;
φ(s2)(1 − φ(s2))[(s1 − 0.5)2 + 2(φ(s2)
− 0.5 − 0.2s1)2], Fig. 11.18;
φ(s2)(1 − φ(s2))[(s1 − 0.5)2 + 1.5(φ(s2) − 0.5)2], Fig. 11.19.

where

φ(s2) = 0.5

[
1 + tanh

(
s2 − 0.5

0.2

)]
.

An example of a field-aligned grid for the tokamak edge region is exhibited in
Fig. 11.20 (right-hand). The left-hand picture demonstrates an initial grid presented
by A. Glasser. Originally, grids for the tokamak edge region were performed by
Petravic (1987) and Rognlien et al. (2002).

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Fig. 11.20 Initial (left) and final (right) grids for the tokamak edge region

Fig. 11.21 Triangular (left) and quadrangular (right) adaptive grids

11.5.3 Application to Grid Clustering

The basic layer-type functions φi (x, ε), i = 1, 2, 3, can also be used to produce grid
clustering in the vicinity of a hypersurface defined by the equation φ(s) = 0. For this
purpose, one can specify a control metric in the form (11.22) proposed for generating
grids adapting to the gradient of a function f (s) that has large variation near the
hypersurface. One such function is defined by the formula f (s) = tanh[φ(s)/δ],
which includes the layer-type map φ1(x, δ). Figure11.21a demonstrates a grid with
node clustering near the curve φ(s) = 0. Figure11.21b shows grid clustering near
two curves φ1(s) = 0 and φ2(s) = 0.

Figure11.21 shows grids adapting to the gradient of the following functions:
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Fig. 11.22 Adaptive grids generated through a spherical control metric

f (s) =

⎧
⎪⎪⎨

⎪⎪⎩

0.05 tanh

(
φ(s)
0.05

)
, (a);

0.06 tanh

(
φ1(s)
0.05

)
+ 0.08 tanh

(
φ2(s)
0.1

)
, (b);

where
φ(s) = 100(s1 − 0.5)2 + 16(s2 − 0.5)2 − 1,
φ1(s) = (s1 − 0.5)2 + (s2 − 0.5)2 − 0.5,
φ2(s) = s2 − 0.5 − 0.8 sin(6(s1 + 0.3)).

Another (spherical) metric for providing grid clustering is defined by the formula

gi js = ω[z(φ)]δij , i, j = 1, . . . , n,

where the function z(φ) is formulated by the basic layer-type mappings φi (x, ε), i =
1, 2, 3. Figures11.22 and 11.23 exhibit domain grids generated through such ametric
by the numerical solution of the inverted diffusion grid equations. We are reminded
that, in accordance with Sect. 10.5.3, the three-dimensional diffusion equations are
the Beltrami equations in a modified metric.

For Fig. 11.22, it was assumed that

ω[z(φ)] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp(−z2/0.5), z(s) = exp{−[φ(s)]2/0.001}, (a);
(

0.5

0.5 + z2

)2

, z(s) = exp{−[φ(s)]2/0.0005}, (b);

2 exp(−z2/0.3), z(s) = ln{0.0005 + [φ(s)]2}
ln(0.0005)

, (c);

φ(s) =
⎧
⎨

⎩

(s1 − 0.5)2 − 0.8(s2 − 0.5)2 − 0.05, (a);
(s1 − 0.5)2 + (s2 − 0.5)2 − 0.0625, (b);
s2 − 2(s1 − 0.5)2 − 0.2, (c).

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Fig. 11.23 Surface and volume adaptive grids generated through a spherical control metric

Figure11.23 demonstrates two-dimensional and three-dimensional adaptive grids in
the case

ω[z(φ)] = 0.5 exp

[
2 exp

(
− φ(s)2

0.001

)]
,

φ(s) = (s1 − 0.5)2 + (s2 − 0.5)2 + (s3 − 0.5)2,

which provides node clustering near central points of the geometries.

11.6 Generation of Multi-block Smooth Grids

Themapping approaches described above are formulated for generating local single-
block grids. This section reviews some approaches for extending the algorithms for
generating multi-block smooth grids.

11.6.1 Approaches to Smoothing Grids

In this subsection, we describe two iterative approaches, originally presented in
Likhanova et al. (2006), for providing smooth matching of grid lines across adjacent
blocks. These approaches are readily applied to generating smooth grids in the vicin-
ity of fictive edges of faces, as in the case of O- or C-types of meshes. The essential
difference from the previous methods for generating smooth block-structured grids
is that the current approaches are based on the computation of both the position of the
joint boundary segments of the blocks and grid distribution at these segments. The
position of the segments and grid distribution are found (1) through the numerical
solution of grid equations and (2) by the interpolation from the nodes of the grid
hypersurfaces neighboring the joint boundary segment.
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Fig. 11.24 Scheme for generating smooth grids by computing the common points of the block
through grid equations

Computation Through Grid Equations

The idea of this version of the approach is demonstrated in Fig. 11.24, repre-
senting a two-block structured scheme for generating smooth quadrilateral grids
in a domain X2. The left-hand block of the domain is bounded by the curves
A1B1, B1C1, C1D1, and D1A1. Similarly, the right-hand block is bounded by the
segments A2B2, B2C2, C2D2, and D2A2. The curves C1D1 and B2A2 are identical,
presenting the joint boundary of the blocks. By the iterations, the grid in the domain
X2 is computed independently at each block via solving numerically, according to
the methods described in Chap.10 the Dirichlet boundary value problem for grid
equations at the nodes of the corresponding logical domains Ξ 2

1 and Ξ 2
2 with the

identical boundary node distribution at joint segments in X2. These segments and
their grid points are found in the process of iterations by solving the boundary value
problem at the points of a new logical domain ABCD.

Thus, during the first iteration, we specify the joint boundary segment A2B2 =
D1C1 in X2, the grid nodes at this segment, and the transformation at these nodes from
the grid points of the segmentsC1D1 and A2B2 of the corresponding logical domains
Ξ 2

1 and Ξ 2
2 . Then, we compute independently the grid nodes in the both blocks of

X2 through the grid equations. Having done this, we choose in both blocks the
corresponding grid lines AB and CD, for example, neighboring the joint boundary
line C1D1 = B2A2. After this, we solve numerically the boundary value problem
for the grid equations at the points of a new logical domain ABCD. The number
of points at the segments AD in the domain X2 and in this new logical domain
coincides. The boundary points at the segments AB and CD in the logical domain
are mapped at the computed points of the corresponding segments AB and CD
in X2. The transformation of the boundary points at the segments AD and BC

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Fig. 11.25 Triangular nonsmooth (left) and smooth (right) grids

Fig. 11.26 Quadrangular nonsmooth (left) and smooth (right) grids

coincides with the initial boundary transformation from the corresponding points of
the segments A1D1, A2B2 and B1C1, B2C2. In particular, the points E and F are
mapped at the points C1 and D1, respectively. By the computation, the points of
the segment EF in the new logical domain are transformed at the points of a new
joint boundary segment (dotted line) of two new blocks. Then, the iterations continue
up to the point of satisfying a tolerance condition. Similarly, smooth block-structured
triangular grids are generated.

Figures11.25, 11.26, and 11.27 demonstrate nonsmooth grids (left-hand) com-
puted in two-dimensional domains without the use of the smoothing algorithm and
smooth grids (right-hand) found through application of the algorithm.

An analogous procedure is formulated for generating smooth block-structured
surface and three-dimensional domain grids. Figure11.28 exhibits nonsmooth (left-
hand) and smooth (right-hand) grids on a surface.

An essential feature of this approach is that the equations for generating grids
in the blocks and for computing new joint boundary segments of the blocks are
the same. So, such a smoothing process does not breach the properties of the grids
realized by particular control metrics.

11.6.2 Computation by Interpolation

In this approach, the grid point at the i-th level of a new joint boundary segment
(dotted line in Fig. 11.29) is computed through the following procedure: after com-
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Fig. 11.27 C-type nonsmooth (left) and smooth (right) grids

Fig. 11.28 Surface nonsmooth (left) and smooth (right) grids

puting the grid points at both blocks having a joint boundary line with a grid node
D, we choose at the i-th level of grid lines two points neighboring the previous joint
segment point D of one block (the points B and C in Fig. 11.29) and one neighboring
a point of another block (point F in Fig. 11.29). Through these points, we draw a
smooth line, for example, a circle segment. The i-th level of a new joint boundary
point Ewill lie on this segment. Its position at the segment is defined from the relation
CE/EF = AB/BC , where A is the third grid point of the first block computed at
the i-th level (overline means the distance between the corresponding points). When
all grid points of the new joint boundary segment are found in such a way then the
grid points in the blocks are found independently by solving grid equations. The
process continues up until the point of satisfying a required tolerance.

Figure11.30 illustrates an O-type nonsmooth (left-hand) and smooth (right-hand)
surface triangular grid generated by this approach.

Similarly, smooth block-structured three-dimensional domain grids are generated.
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Fig. 11.29 Schema for smoothing grids

Fig. 11.30 Surface triangular nonsmooth (left) and smooth (right) grids
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Chapter 12
Unstructured Methods

12.1 Introduction

Unstructured mesh techniques occupy an important niche in grid generation. The
major feature of unstructured grids consists, in contrast to structured grids, of a nearly
absolute absence of any restrictions on grid cells, grid organization, or grid structure.
Figuratively speaking, unstructured grids manifest the domination of anarchy while
structured grids demonstrate adherence to order. The concept of unstructured grids
allows one to place the grid nodes locally irrespective of any coordinate directions,
so that curved boundaries can be handled with ease and local regions in which the
solution is turbulent or its variations are large canbe resolvedwith a selective insertion
of new points without unduly affecting the resolution in other parts of the physical
domain.

Unstructured grid methods were originally developed in solid mechanics.
Nowadays, these methods influence many other fields of application beyond solid
modeling, in particular, computational fluid dynamics, where they are becoming
widespread.

Unstructured grids can, in principle, be composed of cells of arbitrary shapes
built by connecting a given point to an arbitrary number of other points, but are
generally formed from tetrahedra and hexahedra (triangles and quadrilaterals in two
dimensions). The advantages of these grids lie in their ability to deal with com-
plex geometries, while allowing one to provide natural grid adaptation through the
insertion of new nodes.

At the present time, the methods of unstructured grid generation have reached
the stage in which three-dimensional domains with complex geometry can be suc-
cessfully meshed. The most spectacular theoretical and practical achievements have
been connected with the techniques for generating tetrahedral (or triangular) grids.
There are at least two basic approaches that have been used to generate these meshes:
Delaunay and advancing-front. This chapter presents a review of some popular tech-
niques realizing these approaches.

© Springer International Publishing AG 2017
V.D. Liseikin, Grid Generation Methods, Scientific Computation,
DOI 10.1007/978-3-319-57846-0_12
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Note that the chapter addresses only some general aspects of unstructured grid
methods. The interested reader who wishes to learn more about the wider aspects
of unstructured grids should study, for example, the monographs by Carey (1997)
George and Borouchaki (1998a, b), Frey and George (2008), and Lo (2015).

12.2 Methods Based on the Delaunay Criterion

Much attention has been paid in the development of methods for unstructured dis-
cretizations to triangulations which are based upon the very simple geometrical con-
straint that the hypersphere of each n-dimensional simplex defined by n + 1 points
is void of any other points of the triangulation. For example, in three dimensions, the
four vertices of a tetrahedron define a circumsphere which contains no other nodes
of the tetrahedral mesh. This restriction is referred to as the Delaunay or incircle
criterion, or the empty-circumcircle property. Triangulations obeying the Delaunay
criterion are called Delaunay triangulations. They are very popular in practical appli-
cations, owing to the following properties being valid in two dimensions:

(1) Delaunay triangles are nearly equilateral;
(2) the maximum angle is minimized;
(3) the minimum angle is maximized;
(4) the triangulation is unique if the points are in a general position, i.e. no four

points are cyclic;
(5) if every triangle in a triangulation is non-obtuse, it is a Delaunay triangulation;
(6) any two-dimensional triangulation can be transformed into a Delaunay triangu-

lation by locally flipping of the diagonals of adjacent triangles.

These properties give some grounds to expect that the grid cells of a Delaunay
triangulation are not too deformed.

Based on a sound geometrical concept and the optimality properties, Delaunay
triangulation has important applications in many fields, including data visualization,
terrainmodelling, mesh generation, surface reconstruction and structural networking
for arbitrary point sets. The popularity of Delaunay triangulation is attributed to its
nice geometric properties as a dual of Voronoi tessellation and the speed with which
it can be constructed in two or higher dimensions.

The Delaunay criterion itself is not an algorithm for mesh generation. It merely
provides a rule for connecting a set of existing points in space to form a triangulation.
As a result, although the boundary of the domain is well specified, it is necessary
to devise a scheme to determine the number and the locations of node points to be
inserted within the domain of interest.

The Delaunay criterion does not give any indication as to how the grid points
should be defined and connected.Onemore drawback of theDelaunay criterion is that
it may not be possible to realize it over the whole region with a prespecified bound-
ary triangulation. This disadvantage gives rise to two grid generation approaches of
constrained triangulation which preserve the boundary connectivity and take into
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account the Delaunay criterion. In the first approach of constrained Delaunay trian-
gulation, the Delaunay property is overriden at points close to the boundaries, and
consequently the previously generated boundary grid remains intact. Alternatively,
or in combination with this technique, points can be added in the form of a skeleton
to ensure that breakthroughs of the boundary do not occur. Another approach, which
observes the Delaunay criterion over the whole domain, is to postprocess the mesh
by recovering the boundary simplexes which are missed during the generation of the
Delaunay triangulation and by removing the simplexes lying outside the triangulated
domain.

There are a number of algorithms for generating unstructured grids based on the
Delaunay criterion in constrained or unconstrained forms.

Some methods for Delaunay triangulations are formulated for a preassigned dis-
tribution of points which are specified by means of some appropriate technique, in
particular, by a structured grid method. These points are connected to obtain a tri-
angulation satisfying certain specific geometrical properties which, to some extent,
are equivalent to the Delaunay criterion.

Many Delaunay triangulations use an incremental Bowyer–Watson algorithm
which can be readily applied to any number of dimensions. It starts with an ini-
tial triangulation of just a few points. The algorithm proceeds at each step by adding
points one at a time into the current triangulation and locally reconstructing the tri-
angulation. The process allows one to provide both solution-adaptive refinement and
mesh quality improvement in the framework of the Delaunay criterion. The distinc-
tive characteristic of thismethod is that point positions and connections are computed
simultaneously.

One more type of algorithm is based on a sequential correction of a given trian-
gulation, converting it into a Delaunay triangulation.

12.2.1 Dirichlet Tessellation

A very attractive means for generating a Delaunay triangulation of an assigned set of
points is provided by a geometrical construction first introduced by Dirichlet (1850).

Consider an arbitrary set of points Pi , i = 1, . . . , N , in then-dimensional domain.
For any point Pi , we define a region V (Pi ) in Rn characterized by the property that it
is constituted by the points from Rn which are nearer to Pi than to any other Pj , i.e.

Vi = {x ∈ Rn|d(x, Pi ) ≤ d(x, Pj ) , i �= j , j = 1, . . . , N } ,

where d(a, b) denotes the distance between the points a and b. These areas Vi are
called the Voronoi polyhedrons (see Fig. 12.1 for n = 2). Thus, the polyhedra are
intersections of half-spaces, and therefore they are convex, though not necessarily
bounded. The set of Voronoi polyhedra corresponding to the collection of points Pi
is called the Voronoi diagram or Dirichlet tessellation. The common boundary of
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Fig. 12.1 Voronoi
polyhedron for 4 points

two facing Voronoi regions V (Pi ) and V (Pj ) is an (n − 1)-dimensional polygon. A
pair of points Pi and Pj whose Voronoi polyhedra have a face in common is called a
configuration pair. By connecting only the contiguous points, a network is obtained.
In this network, a set of n + 1 points which are contiguous with one another forms
an n-dimensional simplex. The circumcenter, i.e. the center of the hypersphere, of
any simplex is a vertex of the Voronoi diagram. The hypersphere of the simplex is
empty, that is, there is no point inside the hypersphere. Otherwise, this point would
be nearer to the circumcenter than the points on the hypersphere. Thus, the set of
simplexes constructed in such a manner from the Dirichlet tessellation constitutes a
new tessellation which satisfies the Delaunay criterion and is, therefore, a Delaunay
triangulation. The boundary of the Delaunay triangulation built from the Voronoi
diagram is the convex hull of the set of points Pi (see Fig. 12.2 for n = 2).

It should be noted that Delaunay triangulations and Dirichlet tessellations can be
considered the geometrical duals of each other, in the sense that for every simplex Si ,
there exists a vextex Pi of the tessellation and, conversely, for every Voronoi region
V (Pj ), there exists a vertex Pj of the triangulation. In addition, for every edge of
the triangulation, there exists a corresponding (n − 1)-dimensional segment of the
Dirichlet tessellation.

Fig. 12.2 Voronoi diagram
and Delaunay triangulation
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12.2.2 Incremental Techniques

The empty-hypercircle criterion of the Delaunay triangulation can be utilized to
create incremental triangulation algorithms for arbitrary dimensions. Recall that by
the Delaunay triangulation of a set VN of N points in n-dimensional space, we mean
the triangulation of VN by simplexes with the vertices taken from VN such that no
point lies inside the hypersphere of any n-dimensional simplex.

Here, two incremental methods are presented. In the first method, a new
n-dimensional simplex is constructed during each stage of the triangulation, using
the given set of points for this purpose. In the second technique, each step produces
several simplexes which are generated after inserting a new point.

A-Priori-Given Set of Points

Let a set of points VN in a bounded n-dimensional domain Xn be given. We assume
that these points do not lie in any (n − 1)-dimensional hyperplane. The incremental
technique starts by taking an (n − 1)-dimensional face e (edge in two dimensions and
triangle in three dimensions), commonly the onewith the smallest size, and construct-
ing hyperspheres through the vertices of e and any one of the remaining points of VN .

One of these hyperspheres formed by a point, say, P1, does not contain any point of
VN inside it. The (n − 1)-dimensional simplex e and P1 define a new n-dimensional
simplex. In the next step, the (n − 1)-dimensional simplex e is taken out of consider-
ation. The algorithm stops, and the triangulation is complete, when every boundary
face corresponds to the side of one simplex and every internal (n − 1)-dimensional
simplex forms the common face of precisely two n-dimensional simplexes. It is clear
that this algorithm is well suited to generate a Delaunay triangulation with respect
to a prescribed boundary triangulation.

The set of points used to generate the triangulation can be built with a structured
method or an octree approach, or by embedding the domain into a Cartesian grid.
However, the most popular approach is to utilize the strategy of a sequential insertion
of new points.

Modernized Bowyer–Watson Technique

Another incrementalmethod, proposed byBaker (1989) andwhich is a generalization
of the Bowyer–Watson technique, starts with some triangulation, not necessarily
that of Delaunay, of the set of N points VN = {Pi |i = 1, . . . , N } by an assembly
of simplexes TN = {Sj }. For any simplex S ∈ TN , let RS be the circumradius and
QS the circumcenter of S. In the sequential-insertion technique, a new point P is
introduced inside the convex hull of VN . Let B(P) be the set of the simplexes whose
circumspheres contain the point P, i.e.

B(P) = {S|S ∈ TN , d(P, QS) < RS} ,

where d(P, Q) is the distance between P and Q. All these simplexes from B(P)

form a region Γ (P) surrounding the point P. This region is called the generalized
cavity. The maximal simply connected area of Γ (P) that contains the point P is
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called the principal component of Γ (P) and denoted by ΓP . The point P is checked
to determine if it is visible from all boundary segments of the principal component
or if it is obscured by some simplex. In the former case, the algorithm generates new
simplexes associated with P by joining all of the vertices of the principal component
with the point P . In the latter case, either this point is rejected and a new one is
introduced or the principal component ΓP is reduced by excluding the redundant
simplexes from B(P) to obtain an area whose boundary is not obscured from P by
any simplex. Then, the new simplexes are formed as in the former case. The union of
these simplexes and thosewhich do not form the reduced region of the retriangulation
defines a new triangulation of the set of N + 1 points VN+1 = VN

⋃{P}. In this
manner, the process proceeds by inserting new points, checking visibility, adjusting
theprincipal component, andgeneratingnewsimplexes.Thenew triangulationdiffers
from the previous one only locally around the newly inserted point P.

In two dimensions, we have that if the initial triangulation is the Delaunay tri-
angulation, then the region Γ (P) is of star shape, and consequently the boundary
is visible from the point P and each step of the Bowyer–Watson algorithm pro-
duces a Delaunay triangulation. Thus, in this case, the Bowyer–Watson algorithm
is essentially a “reconnection” method, since it computes how an existing Delaunay
triangulation is to be modified because of the insertion of new points. In fact, the
algorithm removes from the existing grid all the simplexes which violate the empty-
hypersphere property because of the insertion of the new point. The modification
is constructed in a purely sequential manner, and the process can be started from a
very simple initial Delaunay triangulation enclosing all points to be triangulated (for
example, that formed by one very large simplex or one obtained from a given set of
boundary points) and adding one point after another until the necessary requirements
for grid quality have been satisfied.

12.2.3 Approaches for Insertion of New Points

The sequential nature of the Bowyer–Watson algorithm gives rise to a problem of
choosing the position where the new point in the existing mesh will be inserted,
because a poor point distribution can eventually lead to an unsatisfactory triangula-
tion. The new point should be chosen according to some suitable geometrical and
physical criteria which depend on the existing triangulation and the behavior of the
physical solution. The geometrical criteria commonly consist in the requirement for
the grid to be smooth and for the cells to be of a standard uniform shape and a neces-
sary size. The physical criterion commonly requires the grid cells to be concentrated
in some specific zones as the zones of turbulence, large solution variations, or large
solution errors. With respect to the geometrical criterion of generating uniform cells,
the vertices and segments of the Dirichlet tessellation are promising locations for
placing a new point, since they represent a geometrical locus which falls, by con-
struction, midway between the triangulation points. Thus, in order to control the size
and shape of the grid cells, two different ways in which the new point is inserted
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are commonly considered. In the first, the new point is chosen at the vertex of the
Voronoi polyhedron corresponding to the “worst” simplex. In the second way, the
new point is inserted into a segment of the Dirichlet tessellation, in a position that
guarantees the required size of the newly generated simplexes.

12.2.4 Two-Dimensional Approaches

This subsection discusses the major techniques delineated in Sects. 12.2.1–12.2.3 for
generating planar triangulations based on the Delaunay criterion.

Voronoi Diagram

The Delaunay triangulation has a dual set of polygons referred to as the Voronoi
diagram or the Dirichlet tessellation.

The Voronoi diagram can be constructed for an arbitrary set of points in the
domain. Each polygon of the diagram corresponds to the point that it encloses. The
polygon for a given point is the region of the plane which is closer to that point
than to any other points. These regions have polygonal shapes and the tessellation
of a closed domain results in a set of nonoverlapping convex polygons covering the
convex hull of the points. It is clear that the edge of a Voronoi polygon is equidistant
from the two points which it separates, and is thus a segment of the perpendicular
bisector of the line joining these two points. The Delaunay triangulation of the given
set of points is obtained by joining with straight lines all point pairs whose Voronoi
regions have an edge in common. For each triangle formed in this way, there is an
associated vertex of the Voronoi diagram which is at the circumcentre of the three
points which form the triangle. Thus, eachDelaunay triangle contains a unique vertex
of the Voronoi diagram, and no other vertex within the Voronoi structure lies within
the circle centered at this vertex. Figure12.2 depicts the Voronoi polygons and the
associated Delaunay triangulation.

It is apparent from the definition of a Voronoi polygon that degeneracy problems
can arise in the triangulation procedure when

(1) three points of a potential triangle lie on a straight line;
(2) four or more points are cyclic.

These cases are readily eliminated by rejecting or slightly moving the point which
causes the degeneracy from its original position.

Incremental Bowyer–Watson Algorithm

The two-dimensional incremental technique, introduced independently by Bowyer
(1981) andWatson (1981), triangulates a set of points in accordance with the require-
ment that the circumcircle through the three vertices of a triangle does not contain
any other point. The accomplishment of this technique starts from some Delaunay
triangulation which is considered to be an initial triangulation. The initial triangu-
lation commonly consists of a square divided into two triangles which contain the
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Fig. 12.3 Stages of the planar incremental algorithm

given points. With this starting Delaunay triangulation, a new grid node is chosen
from a given set of points or is found in accordance with some user-specified rule
to supply new vertices. In order to define the grid cells which contain this point as a
vertex, all the cells whose circumcircles enclose the inserted point are identified and
removed. The union of the removed cells forms the region which is referred to as
the Delaunay or inserting cavity. A new triangulation is then formed by joining the
new point to all boundary vertices of the inserting cavity created by the removal of
the identified triangles. Figure12.3 represents the stages of the planar incremental
algorithm.

The distinctive feature of the two-dimensional Delaunay triangulations is that all
edges of the Delaunay cavity are visible from this inserted point, i.e. each point of
the edges can be joined to it by a straight line which lies in the cavity.

Properties of the Planar Delaunay Cavity

In order to prove the fact that all boundary edges of the Voronoi cavity are visible
from the introduced point, we consider an edge AB lying on the boundary of the
cavity. Let ABC be the triangle with the vertices A, B, and C, which lies in the
Delaunay cavity formed by the insertion of the point, denoted by P (Fig. 12.4). It is
obvious that all edges of triangle ABC are visible if P lies inside the triangle. Let P

Fig. 12.4 Illustration of the
inserted point P and the
triangles of the Delaunay
cavity
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lie outside the triangle. As this triangle lies in the Delaunay cavity, it follows that P
lies inside circle ABC. In this case, the quadrilateral whose vertices are the points
ABCP is convex. Thus, P has to be visible from edge AB unless we have a situation
like the one depicted in Fig. 12.4, in which some triangle ACD separates the edge
from P. As triangle ACD belongs to the initial Delaunay triangulation, the vertex D
lies outside circle ABC. However, since a chord of a circle subtends equal angles
at its circumference, we readily find that P belongs to circle ACD, i.e. the triangle
lies inside the Delaunay cavity formed by P. Thus, triangle ACD does not prevent
those edges of ABC which are the boundary edges of the cavity from being visible
from P. Repeating the argument with the other triangles, the number of which is
finite, we come to the conclusion that there are no triangles between the boundary
of the Delaunay cavity and P which do not lie in the cavity. Also, we find that the
Delaunay cavity is simply connected. We emphasize that these facts are valid if the
original triangulation satisfies the Delaunay criterion.

Thus, in accordance with the incremental algorithm, the Delaunay cavity is trian-
gulated by simply connecting the inserted point with each of the nodes of the initial
grid that lie on the boundary of the cavity. The union of these triangles with those
which lie outside of the cavity (Fig. 12.3c) completes one loop of the incremental
grid construction. The subsequent steps are accomplished in the same fashion.

It is apparent that in two dimensions, the creation of these new cells results in
a Delaunay triangulation, i.e. the Delaunay criterion is valid for all new triangles.
Here, we present a schematic proof of this fact.

Let AB be an edge of the Delaunay cavity formed by the insertion of point P.

Suppose that the new triangle ABP does not satisfy the Delaunay criterion. Then,
there exists some point D on the same side of AB as P and which lies inside circle
ABP (Fig. 12.5). Consider the original triangle that had AB as an edge. There are
two possibilities: either ABD is this original triangle or there is another point, say, E,

on the cavity boundary lying outside circle ABP. In the former case, P lies outside
circle ABD, i.e. triangle ABD does not lie in the Delaunay cavity, and consequently
edge AB is not the edge of the cavity, contrary to our assumption. In the latter
case, arc ABP lies inside circle ABE .However, this contradicts the assumption that

Fig. 12.5 Illustration of the
proof that the Delaunay
criterion is satisfied by all
new triangles created by the
incremental algorithm
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the original triangulation was of Delaunay type. Therefore„„ circle ABP does not
contain other points, i.e. the triangle ABP satisfies the Delaunay criterion.

Thus, we find that the planar Bowyer–Watson algorithm is a valid procedure for
generating Delaunay triangulations. One more issue that has received attention is
that the point placement selected to generate Delaunay triangulations can be used to
generate meshes with a good aspect ratio.

Initial Triangulation

Because the mesh points are introduced in a sequential manner, in the initial stages
of this construction, an extremely coarse grid containing a small subset of the total
number of mesh points and consisting of a small number of very large triangles can
be chosen. For example, for generating grids in general two-dimensional domains,
an initial triangulation can be formed by dividing a square lying in the domain or
containing it into two triangles. Then, interior and boundary points are successively
added to build successive triangulations until the necessary requirements of domain
approximation are observed.

It is desirable to make the initial triangulation boundary-conforming, i.e. all
boundary edges are included in the triangulation. One natural way is to triangulate
initially only the prescribed boundary nodes, by means of the Bowyer–Watson algo-
rithm. Since the Delaunay triangulation of a given set of points is a unique construc-
tion, there is no guarantee that the triangulation built through the boundary points will
be boundary-conforming. However, through repeated insertion of new mesh points
at the midpoints of the missing boundary edges, a boundary-conforming triangula-
tion may be obtained. Another way to maintain boundary integrity is obtained by
rejecting any point that would result in breaking boundary connectivity.

Diagonal-Swapping Algorithm

Diagonal swapping is a topological operation in which the diagonal of a quadrilateral
formed by two adjacent triangles is swapped to the other position to improve the
overall quality of the two triangles. The diagonal-swapping algorithm makes use
of the equiangular property of a Delaunay-type triangulation, which states that the
minimum angle of each triangle in the mesh in maximized.

Assuming we have some triangulation of a given set of points, the swapping
algorithm transforms it into a Delaunay triangulation by repeatedly swapping the
positions of the edges in the mesh in accordance with the equiangular property.
For this purpose, each pair of triangles which constitutes a convex quadrilateral
is considered. This quadrilateral produces two of the required triangles when one
takes the diagonal which maximizes the minimum of the six interior angles of the
quadrilaterals, as shown in Fig. 12.6. Each time an edge swap is performed, the
triangulation becomes more equiangular. The end of the process results in the most
equiangular (the Delaunay) triangulation.

This technique based on the Delaunay criterion retriangulates a given triangu-
lation in a unique way, such that the minimum angle of each triangle in the mesh
is maximized. This has the advantage that the resulting meshes are optimal for the
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Fig. 12.6 The triangulation
which maximizes the
minimum angle. The dashed
line indicates a possible
original triangulation

given point distribution, in that they do not usually contain many extremely skewed
cells.

12.2.5 Constrained Form of Delaunay Triangulation

One way to ensure that the boundary triangulation remains intact in the process
of retriangulation by inserting new points is to use a constrained version of the
Delaunay triangulation algorithm that does not violate the point connections made
near the boundary.

Principal Component

For the purpose of generating a constrained two-dimensional triangulation, we con-
sider the modernized Bowyer–Watson algorithm for an arbitrary triangulation T that
may not satisfy the Delaunay criterion. Let P be a new, introduced point. The Delau-
nay cavity is the area constituted by all triangles whose circumcircles contain P. Let
this be denoted by Γ (P).

An important fact is that the Delaunay cavity created by the introduction of the
point P contains no points other than P in its interior. In order to show this, we
consider a point A in the triangulation T that is a vertex of at least one triangle in
Γ (P). If there is a triangle S /∈ Γ (P) that has A as a vertex, then the point A is not
an interior point of Γ (P). Thus, we need to show that there exists such a triangle. Let
{Si } be the set of all triangles that have A as a vertex, and let Ci be the circumcircle
associated with triangle Si . Now Si ∈ Γ (P) if and only if the new point P lies inside
Ci . Thus, for vertex A to be an interior point of Γ (P), point P must lie inside

⋂
Ci .

However, if the point A is an interior point of Γ (P), then the interior of
⋂

Ci is
empty, since the vertex A is the only point that lies on all the circles of {Si }. Thus,
at least one triangle of {Si } does not lie in Γ (P), and hence the vertex A is not an
interior point of Γ (P).

In the case of a general triangulation, the cavity Γ (P) need no longer be simply
connected. For the purpose of retriangulation, we consider the maximal simply con-
nected region of the cavity that contains the new point P. This region is called the
principal component of the Delaunay cavity and is designated by ΓP .

It is apparent that the principal component possesses the property that all its
boundary edges are visible from P. To prove this, we first note that ΓP is not empty,
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Fig. 12.7 Illustration of the
principal component

since it includes the triangle containing P. Let this be the triangle ABC (Fig. 12.7).
Now consider all neighboring triangles sharing a common edge with the triangle
ABC . In particular, let triangle BCD lie in ΓP . Point P must, therefore, lie inside
circle BCD. As points P, B, C, and D define a convex quadrilateral, all edges
of this quadrilateral are visible from P. Continuing this process by means of a tree
search through all triangles in ΓP , we clearly see that all edges of ΓP are visible
from P.

Formulation of the Constrained Triangulation

Nowwe can formulate the generation of a constrained planar Delaunay triangulation
developed by Baker (1989).

We assume that certain triangles of a triangulation T are fixed, in particular, those
adjacent to the boundary. Let this subset of T be denoted by T . The triangles from T
do not participate in the building of any Delaunay cavity, i.e. if the cavity created by
the introduction of a new point contains one or more of the fixed triangles, we restrict
the reconnections to the part of the cavity that does not contain any fixed triangle.
Let Υ (P) be this part of the cavity, i.e. Υ (P) = Γ (P) − T . By ΥP , we denote the
maximal simply connected region of Υ (P) that contains P. In analogy with ΓP , we
call the region ΥP the principal component of Υ (P). It is clear that the principal
component ΥP exists only if P does not lie inside any of the triangles belonging to
the collection T of the fixed triangles.

It is apparent that the boundary edges of the principal component ΥP are visible
from P. As the analogous fact has been proved for ΓP , we can restrict our consider-
ation to the case ΓP

⋂
T �= ∅. Let the edges of the principal component ΓP be given

by A1, A2, A2, A3, . . . , An−1, An, An, A1, where {Ai }i = 1, n are the vertices on
the boundary of ΓP . These edges, and consequently the vertices Ai , are visible from
P.The subcavity obtained by removing one of the triangles fromΓP contains at most
three new edges. These internal edges lie wholly inside the cavity ΓP and divide ΓP

into disjoint polygonal regions. The principal component ΥP is the polygonal region
that contains the point P, and this polygon is made up of one of these internal cav-
ity edges and other edges which come from the cavity boundary. The vertices of
the polygon containing P must, therefore, remain visible from P. Hence, all edges
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of the polygon are visible from P. By repeating this argument with other triangles
removed from ΓP , we conclude that the boundary edges of ΥP are visible from P.

Now the vertices of ΥP can be connected with P , thus building the constrained
retriangulation. This retriangulation keeps the fixed triangles of T intact.

Boundary-Conforming Triangulation

A key requirement of a mesh generation procedure is to ensure that the mesh is
boundary-conforming, i.e. the edges of the assembly of triangles conform to the
boundary curve. The procedure of constrained triangulation allows one to keep a
subset of the boundary triangles, built from the edges forming the boundary, intact.
These boundary triangles can be generated by any one of the suitable procedures.
Thus, the resulting triangulation will be boundary-conforming and its interior trian-
gles obey the Delaunay criterion.

Another approach developed by Weatherill and Hassan (1994) to applying the
Delaunay criterion to generate boundary-conforming grids consists in recovering
the boundary edges which are missing during the process of Delaunay triangulation
and then deleting all triangles that lie outside the domain.

12.2.6 Point Insertion Strategies

The Bowyer–Watson algorithm proceeds by sequentially inserting a point inside the
domain at selected sites and reconstructing the triangulation so as to include new
points. This subsection presents two approaches to sequential point insertion which
provide a refinement of planar Delaunay triangulations. In both cases, bounds on
some measures of grid quality, such as the minimum angle, the ratio of maximum to
minimum edge length, and the ratio of circumradius to inradius, are estimated.

Point Placement at the Circumcenter of The Maximum Triangle

One simple but effective approach consists in placing a new point at the circumcenter
of the cell with the largest circumradius and iterating this process until the maximum
circumradius is less than some prescribed threshold. In this way, by eliminating bad
triangles, the quality of the grid is improved at every new point insertion, terminating
with a grid formed only by suitable triangles. In this subsection, it will be shown
that the Bowyer–Watson incremental algorithm together with point insertion at the
circumcenters of maximal triangles will lead to a triangulation with a guaranteed
level of triangle quality.

Unconstrained Triangulation

Let {Tn}, n = 0, 1, . . . , be a sequence of Delaunay triangulations built by the
repeated application of the Bowyer–Watson algorithm with point insertion at the
circumcenter of the maximal triangle. By the maximal triangle of a triangulation,
we mean the triangle with the maximum value of its circumradius. We assume that
the initial Delaunay triangulation T0 conforms to a prescribed set of boundary edges.
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Now let ln, Ln, n = 0, 1, . . . , be the minimum and maximum edge lengths, respec-
tively, of Tn, and let Rn be the radius of the maximal triangle of Tn. Furthermore,
for any triangle S, we denote its circumradius by RS and its inradius by rS . Thus,
Rn = max{RS, S ∈ Tn}. We have the following relations:

(1) Ri+1 ≤ Ri ;
(2) when Rn−1 ≥ l0, then ln = l0, and when Rn−1 < l0, then ln = Rn−1;
(3) when Rn ≤ l0, then Ln/ ln ≤ 2, θ ≥ 30◦ for all angles of the triangulation Tn,

and min RS/rS ≤ 2 + 4
√
3 for all triangles S of Tn.

To prove the first relation, we consider an edge en of the Delaunay cavity of the
triangulation Tn formed by an inserted point P. There exist triangles S1 and S2 in Tn
which share the common edge en , such that S1 lies inside while S2 lies outside the
Delaunay cavity. Let S1 be defined by the points A, B, and C and S2 be defined by
the points A, B, and D. Then, edge en is the line segment AB. Since P lies outside
circle ABD, P lies on the same side of en asC. If the center of circle ABP lies on the
same side of en as D, then angle APB is obtuse and, consequently, the circumradius
of triangle ABP is smaller than the circumradius of triangle ABD. We denote these
circumradii by RABP and RABD, respectively.

If the center of circle ABP lies on the same side of en as C , then the angle θ1
subtended by chord AB at C is less than the angle θ2 subtended at P. Since the
centers of circles ABP and ABC lie on the same side of AB as points C and P , it
follows that θ1 < π/2 and θ2 < π/2. If the length of chord AB is l, then

RABP = l

2 sin θ2
<

l

2 sin θ1
= RABC ,

where RABC is the circumradius of ABC. Thus, we obtain

RABP < RABD and RABP < RABC .

Since this is true for all edges of the Delaunay cavity, we obtain the proof of the first
relation, that the maximum circumradius Rn decreases, i.e. Rn+1 ≤ Rn, with strict
inequality if there is only one triangle with the maximum radius Rn. As there can be
only a limited number of maximal triangles in Tn, after several applications of the
procedure, we obtain Rn+k < Rn .

It follows that the maximum radius can be reduced to any required size after a
sufficiently large number of iterations. When Rn falls below the value of l0, so that
ln+1 = Rn, we obtain the following obvious inequality:

Ln+1 ≤ 2Rn+1 ≤ 2Rn = 2ln+1 . (12.1)

It is evident that repeated point insertion at the circumcenter reduces the value
λ = Ln/ ln to a value no greater than 2. The upper bound of 2 for λ is achieved
when Rn ≤ l0. Let θmin be the minimum angle. We have
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sin θmin ≥ ln+1

2Rn+1
, (12.2)

with equality if the minimum edge length of any maximal triangle is equal to ln+1,

the minimum edge length for the triangulation Tn+1. From the inequalities (12.1) and
(12.2), we obtain

sin θmin ≥ ln+1

2Rn+1
= Rn

2Rn+1
≥ 1

2
, (12.3)

so that

θmin ≥ π/6 .

For each triangle, the quantity μ = R/r, where R is the circumradius and r is the
inradius, is a characteristic of cell deformity. The maximum value of μ occurs for an
isosceles triangle with an angle between sides of θmin and assumes the value

μmax = 1

2 cos θmin(1 − cos θmin)
.

From (12.3), we obtain

μ ≤ 2 + 4/
√
3

after a sufficient number of retriangulations with the insertion of new points at the
circumcenters of maximal triangles.

These considerations prove the properties (2) and (3) stated above.

Generalized Choice of the Insertion Triangles

In the approach considered, a new point is inserted at the circumcentre of the largest
triangle. The choice of the insertion triangle, namely the triangle where the point is
inserted, can be formulated in accordance with more general principles.

One simple formulation is based on the specification of a function f (x) which
prescribes ameasure of grid size or quality, say the radius of the circumscribed circle,
at the point x. The actual expression for f (x) can be obtained by interpolating
prescribed nodal values over a convenient background mesh. The function f (x)

defines a quantity α(S) for each triangle S:

α(S) = RS

f (QS)
,

where QS is the position of the centre of the circle circumscribed around the triangle
S. The largest value of α(S) determines the choice of the insertion triangle S. By
repeatedly inserting the new point at the circumcenters of such triangles, it is possible
eventually to reach a mesh in which maxS α(S) < 1.
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Voronoi-Segment Point Insertion

The second approach proposed by Rebay (1993) to placing a new point consists in
inserting the point along a segment of the Dirichlet tessellation. In contrast to the
first approach, in which the position of the inserted point is predetermined, and the
required cell size is reached after a number of iterations, this technique provides
an opportunity to generate one or possibly several new triangles having, from the
very beginning, the size prescribed for the final grid. This is achieved by choosing
a suitable position for point placement in the Dirichlet tessellation, between a tri-
angle whose circumradius falls below the required value and a neighboring triangle
whose circumradius is still too large. This point insertion results in almost equilateral
triangles over most of the interior of the domain.

Formulation of the Algorithm

At each stage of the process of generating the triangulations Tn, n = 1, 2, . . . , the
triangles of Tn are divided into two groups, which are referred to as the groups of
accepted (small enough) and nonaccepted (too large) triangles, respectively. In most
cases, the accepted triangles are the boundary triangles and those whose circumradii
are below 3/2 times the prescribed threshold. The remaining triangles constitute the
group of nonaccepted triangles.

The algorithm proceeds by always considering a maximal nonaccepted triangle
which borders one of the accepted triangles (Fig. 12.8). Let ABC be the accepted
triangle and ADB the nonaccepted triangle. The Voronoi segment connecting the
circumcenters of these triangles is the interval EF which is perpendicular to the
common edge AB and divides it into two equal parts. In the algorithm, a new point
X is inserted on theVoronoi segment edge EF in a position chosen so that the triangle

Fig. 12.8 Voronoi-segment
point insertion
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formed by connecting X with A and B has the prescribed size. This point is inserted
into the interval between the midpoint M of the common edge and the circumcenter
F of the nonaccepted triangle ADB.

Let p be one half the length of edge AB, and q the length of FM . As point F is
the circumcenter of the triangle ADB, we find that q ≥ p. Let fM be the prescribed
threshold value for the circumradius at the point M . It may seem that we can locate
the new point X on segment EF at the intersection of EF with the circle that passes
through points A and B and has a radius equal to fM . However, it might happen that
this exact value fM for the circumradius is not appropriate, since any circle through
A and B has a radius ρ ≥ p/2. Furthermore, a real intersection point X exists only
for circles having a radius ρ smaller than that of the circle passing through AB and
F , i.e. ρ ≤ (p2 + q2)/2q. For these reasons, the circumradius for the triangle AXB
is defined by the equation

RAXB = min
[
max( fM , p) ,

p2 + q2

2q

]
. (12.4)

Since

p2 + q2

2q
= (p − q)2 + 2pq

2q
≥ p ,

we find that RAXB ≥ p. In accordance with the algorithm, the new point X will lie
on the interval EF between M and F at a distance

d = RAXB +
√

(RAXB)2 − p2 (12.5)

from the point M.

Properties of the Triangulation

The condition

RAXP ≤ p2 + q2

2q

and (12.5) ensure that d ≤ q. We also have, from (12.5), that d ≥ p. Angle AXB is
a right angle when d = p, and it decreases as d increases.

If the accepted triangle ABC is equilateral, then angle AFB must be no greater
than 2π/3, since otherwise the Delaunay triangulation would have given rise to an
edge connecting C to F.

At the first stage, we expect p 	 q. Recall that the threshold of fM is such that
fM < p < 3 fM/2. It follows that fM < p ≤ (p2 + q2)/2q, and hence d = p and
RAXB = p. Thus, triangle AXB has a right angle at vertex X. Since 2 < 3 fM/2,
triangle AXB will be tagged as accepted and each segment AX and XB will be a
candidate for the next accepted triangle, built in the same way as AXB. Now we
denote the quantity p, equal to one half the length of the accepted edge of the i th
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iteration, by pi , and thus p1 = p0/
√
2. Analogously, we use di , Ri , and Mi at the

i th iteration of the procedure. It turns out that on repeating the procedure, pi and di
show the following behavior:

pi → √
3 fMi /2 , di → 3 fMi /2 ,

i.e. the generated triangles tend to become equilateral, with circumradius fMi . To
show this, let

fMn =
( 2√

3
+ εn

)
pn =

( 2√
3

+ εn+1

)
pn+1 . (12.6)

If |εn| is sufficiently small, we obtain pn < fMn so that Rn = fMn and, from (12.5),

dn = fMn +
√

f 2Mn
− p2n .

Furthermore, we have

4p2n+1 = p2n + d2
n = 2

(
f 2Mn

+ fMn

√
f 2Mn

− p2n
)

.

Thus,

p2n+1

p2n
= 1

2

f 2Mn

p2n
+ 1

2

fMn

pn

√
f 2Mn

p2n
− 1 .

Using (12.6), we obtain

p2n+1

p2n
= 1

2

( 2√
3

+ εn

)2 + 1

2

( 2√
3

+ εn

)
√

( 2√
3

+ εn

)2 − 1 ,

which results in

pn+1

pn
= 1 + 3

4

√
3 + εn + O(ε2n) .

From (12.6), we also have

pn+1

pn
= 2/

√
3 + εn

2/
√
3 + εn+1

.

Comparing the last two equations and neglecting terms O(ε2n), we find that

εn+1 � −εn/2 .



12.2 Methods Based on the Delaunay Criterion 467

Thus, for |εn| sufficiently small, the algorithm ensures that εn → 0 and

pn → √
3 fMn/2 .

Therefore, it can be expected that a large number of the interior triangleswill be nearly
equilateral. Close to the boundary, there may be isosceles right-angled triangles,
and in regions where the boundary has large curvature, there may be some obtuse
triangles. A maximum angle of 120◦ and minimum angle of 30◦ may be realized by
an obtuse triangle formed when the vertex D of a nonaccepted triangle is sufficiently
close to an active edge.

In analogywith the first approach to inserting new points, the choice of the triangle
into which the new point is inserted can bemodified by introducing a quality measure
function f (x) and a corresponding control quantity α(S).

12.2.7 Surface Delaunay Triangulation

A surface Delaunay triangulation is defined by analogy with the planar Delaunay
triangulation.

Let Pi be the vertices of the surface triangulation T . A triangle S from T satisfies
the Delaunay criterion if the interior of the circumsphere through the vertices of S
and centered on the plane formed by S does not contain any points. If all triangles
satisfy the Delaunay criterion, then the triangulation T is called a surface Delaunay
triangulation.

In practice, all methods for planar Delaunay triangulations are readily modified
and extended for a surfaceDelaunay triangulation taking into account various surface
geometric characteristics (see Frey and George (2008) and Lo (2015)).

12.2.8 Three-Dimensional Delaunay Triangulation

In three dimensions, the network of the Delaunay triangulation is obtained by joining
the vertices of the Voronoi polyhedrons that have a common face. Each vertex of a
Voronoi polyhedron is the circumcenter of a sphere that passes through four points
which form a tetrahedron and no other point in the construction can lie within the
sphere.

Unconstrained Technique

The most popular three-dimensional algorithm providing a Delaunay structure is
the one based on the Bowyer–Watson sequential process: each point of the grid
is introduced into an existing Delaunay triangulation, which is broken and then
reconnected to form a new Delaunay triangulation.
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In general, the algorithm follows the same steps as in the two-dimensional con-
struction described above. It starts with an initial Delaunay triangulation formed by
a supertetrahedron or supercube, partitioned into five tetrahedrons which contain all
other points. The remaining points which comprise the mesh to be triangulated are
introduced one at a time, and the Bowyer–Watson algorithm is applied to create the
Delaunay cavity and the corresponding retriangulation after each point insertion.

An important feature of a mesh generation procedure is its ability to produce a
boundary-conforming mesh, i.e. the triangular faces of the assembly of tetrahedrons
conform to the boundary surface. Unfortunately, the unconstrained technique does
not guarantee that the boundary faces will be contained within such a triangulation.
Thus, a modified procedure must be introduced to ensure that the resulting triangu-
lation is boundary-conforming.

Constrained Triangulation

The purpose of the constrained Delaunay triangulation is to generate a triangula-
tion which preserves the connections imposed on the boundary points. The three-
dimensional constrained triangulation is carried out in the same way as for two-
dimensional triangulations.

In the first approach, the tetrahedrons whose faces constitute the boundary surface
are fixed during the process of retriangulation. These boundary tetrahedrons are
generated in the first step of triangulation. The next steps include the insertion of a
point, the definition of a star-shaped cavity containing the point, and retriangulation of
the cavity. The resulting grid is boundary-conforming and its interior subtriangulation
is a Delaunay triangulation.

The second approach to the constrained triangulation of a domain developed by
Weatherill and Hassan (1994) starts with inputting the boundary points and boundary
point connectivities of the faces of the boundary triangulation. After performing
a Delaunay triangulation of the boundary points, a new Delaunay triangulation is
built by inserting interior points and applying the Bowyer–Watson algorithm. After
this, the tetrahedrons intersecting the boundary surface are transformed to recover
the boundary triangulation. If a boundary face is not present in the new Delaunay
triangulation, this is due to the fact that edges and faces of the tetrahedrons of the
Delaunay triangulation intersect this face. Since the face is formed from three edges,
it is necessary first to recover the face edges and then the face. This is achieved by
first finding the tetrahedrons which are intersected by the face edges. There is a fixed
combination of possible standard intersections of each tetrahedron by any mixed
boundary edge, which allows one to perform direct transformations to recover the
edge. Having established the intersection types, these tetrahedrons are then locally
transformed into new tetrahedrons so that the required edges are present. A similar
procedure then follows to recover the boundary faces.
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12.3 Advancing-Front Methods

Advancing-front techniques extend the grid into the region in the form of marching
layers, starting from the boundary and proceeding until the whole region has been
covered with grid cells. The region separating the part of the domain already meshed
from those that are still unmeshed is referred to as a front. Advancing-front tech-
niques need some initial triangulation of the boundaries of the geometry, and this
triangulation forms the initial front. The name of this class of methods refers to a
strategy that consists of creating the mesh sequentially, element by element, creating
new points and connecting them with previously created elements, thus marching
into as-yet-unmeshed space and sweeping a front across the domain. The marching
process includes the construction of a new simplex, which is built by connecting
either some appropriate points on the front or some inserted new point with the ver-
tices of a suitable face on the front. The process stops when the front is empty, i.e.
when the domain is entirely meshed.

The advancing-front approaches offer the advantages of high-quality point place-
ment and integrity of the boundary. The efficiency of the grid-marching process
largely depends on the arrangement of grid points in the front, especially at sharp
corners. A new grid point is placed at a position which is determined so as to result
in a simplex with prescribed optimal quality features. In some approaches, the grid
points are positioned along a set of predetermined vectors. To ensure a good grid
quality and to facilitate the advancing process, these vectors are commonly deter-
mined once at each layer mesh point by simply averaging the normal vectors of the
faces sharing the point and then smoothing the vectors. Other approaches to selecting
new points for moving the front use the insertion techniques applied in the Delaunay
triangulations described above.

The fronts continue to advance until either

(1) opposite fronts approach to within a local cell size; or
(2) certain grid quality criteria are locally satisfied.

Grid quality measures which are to be observed in the process of grid generation by
means of the advancing-frontmethod include the cell spacing and sizes of angles. The
desired mesh spacings and other gridding preferences in the region are commonly
specified by calculations on a background grid.

12.3.1 Procedure of Advancing-Front Method

In order to generate cells with acceptable angles and lengths of edges by a marching
process, the advancing-front concept inherently requires a preliminary specification
of local grid spacing and directionality at every point of the computational mesh. The
spacing is prescribed by defining three (two in two dimensions) orthogonal directions
together with some length scale for each direction. The directions and length scales
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are commonly determined from background information, in particular, by carrying
out computations on a coarse grid and interpolating the data.

The advancing-front procedure proceeds by first listing all faces which constitute
the front and then selecting an appropriate face (edge in two dimensions) on the
front. The operation of the selection is very important, since the quality of the final
grid may by affected by the choice. According to a common rule, the face is selected
where the grid spacing is required to be the smallest. A collection of vertices on the
front which are appropriate for connection to the vertices of the selected face to form
a tetrahedron (triangle in two dimensions) is searched. The collection may be formed
by the vertices which lie inside a sphere centered at the barycenter of the face, with
an appropriate radius based upon the height of a unit equilateral tetrahedron. A new
point is also created which is consistent with the ideal position determined from the
background information about grid spacing and directionality. The selected vertices
and the new point are ordered according to their distance from the barycenter of the
selected face. Each sequential tetrahedron formed by the face and the ordered points
is then checked to find out whether it intersects any face in the front. The first point
which satisfies the test and gives a tetrahedron of good quality is chosen as the fourth
vertex for the new tetrahedron. The current triangle is then removed from the list of
front faces, since it is now obscured by the new tetrahedron. This process continues
until there are no more faces in the list of front faces.

In many cases, the use of the background mesh to define the local grid spacing
can be replaced by sources in the form of points, lines, and surfaces.

One of the advantages of such a procedure is that all operations are performed
locally, on neighboring faces only.Additionally, boundary integrity is observed, since
the boundary triangulation constitutes the initial front.

The disadvantages of the advancing-front approach relate mainly to the phase in
which a local direction and length scale are determined and to the checking phase
for ensuring the acceptability of a new tetrahedron.

12.3.2 Strategies for Selecting Out-of-Front Vertices

One of the critical items of advancing-front methods is the placement of new points.
Upon generating a new simplex, a point is placed at a position which is determined
so as to result in the required shape and size of the new simplex. The parameters
which define the desirable cell at each domain position are specified by a function
which is determined a priori or found in the process of computation.

In one approach, the new point is placed along a line which is orthogonal to a
chosen face on the front and passes through its circumcenter. This placement is aimed
at the creation of a new simplex whose boundary contains the chosen face.

If the simplex generated with the new point results in a crossover with the front,
it is discarded. Alternately, if the new point is located very close to a vertex on the
front, it is replaced by this vertex in order to avoid the appearance of a cell with a
very small edge at some later stage.
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Another approach, generally applied in two dimensions, takes into account a ver-
tex on the front and the angle at which the edges cross at this point. The point is
created with the aim of making the angles in the new triangles as near to 60◦ as pos-
sible. In particular, a very large angle between the edges is bisected or even trisected.
On the other hand, if the vertex has a small interior angle, the two adjacent vertices
on the front are connected. This approach can be extended to three dimensions by
analyzing a dihedral angle at the front.

12.3.3 Grid Adaptation

The frontal approach is well suited to generating adaptive grids near the boundary
segments, where the grid cells are commonly required to be highly stretched.

Highly stretched grid cells begin forming individually from the boundary and
march into the domain. However, unlike the conventional procedure in which cells
are added in no systematic sequence, the construction of a stretched grid needs to be
performed by advancing one layer of cells at a time, with the minimum congestion of
the front and a uniform distribution of stretched cells. The new points are positioned
along a set of predetermined vectors in accordance with the value of a stretching
function. The criterion by which the points are evaluated has a significant impact
on the grid quality and the marching process. Because of the requirement of a high
aspect ratio of cells in the boundary layer, the conventional criteria based on the cell
angles are not appropriate for building highly stretched cells.

In a criterion based on a spring analogy, the points forming a new layer are
assumed to be connected to the end points of the face by tension springs. Among
these points, the one with the smallest spring force is considered the most suitable
for forming the new cell, and consequently for changing the front boundary. The
spring concept allows one to indicate when an opposing front is very close to the
new location, namely, when an existing point on the front has the smallest spring
force. The adaptive advancing process terminates on a front face when the local grid
characteristics on the front, influenced by the stretching function, no longer match
those determined by the background grid in that location.When the proximity and/or
grid quality criteria are satisfied on all faces of the front, the process switches from
an advancing-layers method to the conventional advancing-front method to form
regular isotropic cells in the rest of the domain.

12.3.4 Advancing-Front Delaunay Triangulation

A combination of the advancing-front approach and the Delaunay concept gives rise
to the advancing-front Delaunay methods.

If the boundary of a domain is triangulated and a set of points to be triangulated is
given in the interior of the domain, then the advancing-front Delaunay triangulation
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is carried out by forming the cells adjoining the front in accordance with the empty-
circumcircle property.

The procedure for the triangulation can be outlined as follows. A face on the front
is chosen, and a new simplex is tentatively built by joining the vertices of the face
to an arbitrary point on the front, in the interior of the domain with regard to the
front. If this simplex contains any points within its circumcircle, it is not added to
the triangulation. By checking all points, the appropriate vertex which produces a
simplex containing no points interior to its circumcircle is eventually found. The
simplex formed through this vertex is accepted and the front is advanced.

Another algorithm is based on the strategy of placing new points ahead of the
front and triangulating them according to the Delaunay criterion.

12.4 Meshing by Quadtree-Octree Decomposition

Quadtree-octree meshing is based on the idea of partitioning a domain in a pro-
gressive manner so as to produce cells of size compatible with the node spacing
requirement. The use of quadtree decomposition for two-dimensional mesh genera-
tion was developed in the 1980s by Shephard et al. (1988).

In this approach, applied to mesh generation, the n-dimensional domain to be
gridded is first enclosed in a bounding root box (an n-dimensional parallelepiped)
which is approximated with a union of disjoint and variably sized cells whose union
constitutes the final mesh of the domain. The cells are obtained from a recursive
refinement of the root parallelepiped. The current cell is subdivided into four equally
sized cells in a two-dimensional case and into eight equally sized cells in a three-
dimensional case. The stopping criterion used to subdivide a cell can be based on the
local geometric properties of the boundary of the domain (e.g. the local curvature of
the boundary) or user defined level of refinement.

The set of cells composes the tree structure associated with the spatial decompo-
sition. At each stage of the tree construction, each cell of the tree is analyzed and
refined into 2n (with n the space dimension) equally sized cells, based on a specific
criterion. The level of a cell corresponds to its depth in the related tree (i.e. the num-
ber of subdivisions required to reach a cell of this size). The bounding box is at level
0. The depth of the tree corresponds to the maximum level of subdivision.

12.5 Three-Dimensional Prismatic Grid Generation

The use of prismatic cells is justified by the fact that the requirement of high aspect
ratio can be achieved without reducing the values of the angles between the cell
edges.

The procedure for generating a prismatic grid begins by triangulating the bound-
ary surface of a domain. The next stage in the procedure computes a quasinormal
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direction at each node of the surface triangulation. Then, the initial surface is shifted
along these quasinormal directions by a specified distance d. This gives the first layer
of prismatic cells. This shifting process is repeated a number of times using suitable
values of d at each stage and either the same or newly computed normal directions.
The value of the quantity d can be chosen in the formof any of the stretching functions
described in Chap.4.

The efficiency of the algorithm is essentially dependent on the choice of quasi-
normal directions. The generation of the quasinormals is carried out in three stages,
depending on a position of the vertices.

(1) Normals are first computed at the vertices which lie on the corners of the bound-
ary. These are calculated as the angle-weighted average of the adjacent surface
normals. The angle used is the one between the two edges adjacent to the bound-
ary surface and meeting at the corner.

(2) Normals at grid points on the geometrical edges of the boundary surface are
computed. These normals are the average of the two adjacent surface normals.

(3) Finally, the normals at grid nodes on the boundary surfaces are calculated.

12.6 Comments

Unstructured grid methods were originally developed in solid mechanics. The paper
by Field (1995) reviews some early techniques for unstructured mesh generation
that rely on solid modelling. An informal survey that illustrates the wide range of
unstructured mesh generation was conducted by Owen (1998) and described in the
handbook of grid generation edited by Thompson et al. (1999).

Though unstructured technology deals chiefly with tetrahedral (triangular in two
dimensions) elements, some approaches rely on hexahedrons (or quadrilaterals) for
the decomposition of arbitrary domains. Recent results have been presented by Tam
and Armstrong (1991) and Blacker and Stephenson (1991).

Properties of n-dimensional triangulations were reviewed by Lawson (1986). The
relations between the numbers of faces were proved in the monograph by Henle
(1979) and in the papers by Steinitz (1922), Klee (1964), Lee (1976).

The Delaunay triangulation and Voronoi diagram were originally formulated in
the papers of Delaunay (1934, 1947), Voronoi (1908), respectively. Algorithms for
computing Voronoi diagrams have been developed by Green and Sibson (1978),
Brostow et al. (1978), Finney (1979), Bowyer (1981), Watson (1981), Tanemura
et al. (1983), Sloan and Houlsby (1984), Fortune (1985) and Zhou et al. (1990).
Results of studies of geometrical aspects of Delaunay triangulations and their dual
Voronoi diagrams were presented in the monographs by Edelsbrunner (1987), Du
and Hwang (1992), Okabe et al. (1992), Preparata and Shamos (1985). Proofs of the
properties of planar Delaunay triangulations were given by Guibas and Stolfi (1985)
and by Baker (1987, 1989).

http://dx.doi.org/10.1007/978-3-319-57846-0_4
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A technique for creating the Delaunay triangulation of an a priori given set of
points was proposed by Tanemura et al. (1983). The incremental two-dimensional
Delaunay triangulation which starts with an initial triangulation was developed by
Bowyer (1981), Watson (1981). Watson has also shown the visibility of the edges of
the cavity associated with the inserted point. Having demonstrated that the Delaunay
criterion is equivalent to the equiangular property, Sibson (1978) devised and later
Lee and Schachter (1980) investigated a diagonal-swapping algorithm for generating
a Delaunay triangulation by using the equiangular property.

A novel approach, based on the aspect ratio and cell area of the current triangles,
to the generation of points as the Delaunay triangulation proceeds was developed
by Holmes and Snyder (1988). In their approach, a new point is introduced into
the existing triangulation at the Voronoi vertex corresponding to the worst triangle.
Ruppert (1992), Chew (1993) have shown that in the planar case, the procedure
leads to a Delaunay triangulation with a minimum-angle bound of 30 degrees. An
alternative procedure of inserting the new point on a Voronoi segment was proposed
by Rebay (1993). Amodification of the Rebay technique was made by Baker (1994).
Haman et al. (1994) inserted points into a starting Delaunay grid in accordance with
the boundary curvature and distance from the boundary, while Anderson (1994)
added nodes while taking into account cell aspect ratio and proximity to boundary
surfaces.

Approaches to the generation of boundary-conforming triangulations based upon
the Delaunay criterion have been proposed by Lee (1978), Lee and Lin (1986), Baker
(1989), Chew (1989), Cline and Renka (1990), George et al. (1990), Weatherill
(1990), George and Hermeline (1992), Field and Nehl (1992), Hazlewood (1993),
Weatherill and Hassan (1994). All techniques and methods considered in the present
chapter for proving the results associatedwith the constrainedDelaunay triangulation
were described on the basis of papers by Weatherill (1988), Baker (1989, 1994),
Mavriplis (1990), Rebay (1993), Weatherill and Hassan (1994).

Further development of unstructured grid techniques based on the Delaunay crite-
rion and aimed at the solution of three-dimensional problems has been performed by
Cavendish et al. (1985), Shenton and Cendes (1985), Perronet (1988), Baker (1987,
1989), Jameson et al. (1986), Weatherill (1988), Frey and George (2008), Lo (2015).
The application of the Delaunay triangulation for the purpose of surface interpolation
was discussed by DeFloriani (1987).

The octree approach originated from the pioneering work of Yerry and Shephard
(1985). The octree data structure has been adapted by Lohner (1988b) to produce effi-
cient search procedures for the generation of unstructured grids by the moving-front
technique. Octree-generated cells were used by Shephard et al. (1988); Yerry and
Shephard (1990) to cover the domain and the surrounding space, and then to derive
a tetrahedral grid by cutting the cubes. The generation of hexahedral unstructured
grids was developed by Schneiders and Bunten (1995).
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The moving-front technique has been successfully developed in three dimensions
by Peraire et al. (1987), Lohner (1988a) and Formaggia (1991). Somemethods using
Delaunay connectivity in the frontal approach have been created byMerriam (1991),
Mavriplis (1991, 1993), Rebay (1993), Muller et al. (1993), Marcum andWeatherill
(1995).

Advancing-front grids with layers of prismatic and tetrahedral cells were formu-
lated by Lohner (1993). A more sophisticated procedure, basically using bands of
prismatic cells and a spring analogy to stop the advancement of approaching layers,
was described by Pirzadeh (1992). The application of adaptive prismatic meshes
to the numerical solution of viscous flows was demonstrated by Parthasarathy and
Kallinderis (1995).

Some procedures for surface triangulations have been developed by Peraire et al.
(1988), Lohner and Parikh (1988), Weatherill et al. (1993).

A survey of adaptive mesh refinement techniques was published by Powell et al.
(1992). The combination of the Delaunay triangulation with adaptation was per-
formed by Holmes and Lamson (1986), Mavriplis (1990), Muller (1994). The imple-
mentation of solution adaptation into the advancing-front method with directional
refinement and regeneration of the original mesh was studied by Peraire et al. (1987).
Approaches based on the use of sources to specify the local point spacing have been
developed by Pirzadeh (1993), Pirzadeh (1994), Weatherill et al. (1993).

The prospects and trends for unstructured grid generation in its application to com-
putational fluid dynamics were discussed by Baker (1995), Venkatakrishan (1996).
The first application of the Delaunay triangulation in computational fluid dynamics
was carried out by Bowyer (1981), Baker (1987). The advancing-front technique
was introduced, in computational fluid dynamics, primarily by Peraire et al. (1987),
Lohner (1988a), Lohner and Parikh (1988). The techniques of George (1971); Wor-
denweber (1981), Wordenweber (1983), Lo (1985), Peraire (1986) foreshadowed
the more recent advancing-front methods. Muller (1994), Marchant and Weatherill
(1994) applied a combination of frontal and Delaunay approaches to treat problems
with boundary layers. Muller (1994) generated triangular grids in the boundary layer
through a frontal technique, with high-aspect-ratio triangles, and filled the remainder
of the domain with triangles built through the Delaunay approach. Another way to
treat a boundary layer with the advancing-front approachwas applied byHassan et al.
(1994). In the first step, the boundary layer is covered by a single layer of tetrahedral
cells. Then, the newly generated nodes are moved along the cell edges towards the
boundary by a specified distance. These steps, in the original layer, are repeated until
a required resolution has been reached. After this, the advancing front proceeds to
fill up the remainder of the domain.

An algorithm for the generation of a high-quality well-graded quadrilateral ele-
ment mesh from a triangular element mesh was presented by Lee and Lo (1994), Lo
(2015). Very important applications to parallel unstructured mesh generation were
discussed by Chrisochoides (2006) and Ivanov (2008).
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Chapter 13
Applications of Adaptive Grids to Solution
of Problems

This chapter discusses applications of mapping approaches to numerical solutions
of some problems of mechanics, physics, fluids, plasmas, and nano-technologies.

13.1 Application to Unsteady Gas Dynamics Problems

The calculation of hydrodynamical problems on the adaptivemovingmeshes requires
special conservative numerical schemes which update directly the flow parameters
on the moving mesh at the new time level. Another way, in which interpolation of
parameters from the fixed mesh to the moving one is used at every time step, smears
the singularities in the solution, causing a decrease in accuracy of modeling. We
describe here a modification of the Godunov scheme of the second-order accuracy
in time and space on moving meshes, suggested by Azarenok (2000), to compute a
two-dimensional gas flow in the Euler approach.

System of Equations

Two-dimensional equations of gas dynamics, namely, the laws of conservation of
mass, momentum, and total energy, are written in the integral form which can be
derived by transformation of the volume integrals in the space (x, y, t) to the surface
integrals by virtue of Gauss’s theorem:

∫

Ω

(
∂σ

∂t
+ ∂a

∂x
+ ∂b

∂y

)
dΩ =

∫∫

∂Ω

© σdxdy + adydt + bdtdx = 0, (13.1)
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where Ω is an arbitrary control volume in space (x, y, t), and ∂Ω is the boundary
of Ω,

σ =

⎡
⎢⎢⎣

ρ
ρu
ρv

E

⎤
⎥⎥⎦ , a =

⎡
⎢⎢⎣

ρu
ρu2 + p
ρuv

u(E + p)

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ .

Here, u and v are the velocity components, p and ρ are the pressure and density, and
E=ρ[e+0.5(u2+v2)] is the total energy, while e is the specific internal energy. The
equation of state is p = (γ−1)ρe where γ is the ratio of specific heats. Denote the
vector-valued unknown function as f = (u, v, p, ρ)�. The conservation laws (13.1)
hold for any functions f both smooth and discontinuous describing an ideal gas flow.

Numerical Scheme

Let a curvilinear moving grid in the x-y plane be introduced with the coordinate lines
ξ, η, the (i+1/2, j+1/2)th cell of which at the time range (tn, tn+1) is shown in by
a domain Ω in R space (x, y, t), being a hexahedron with planar top and bottom
faces. The bottom (top) face of the hexahedron Ω is the control volume at the time
tn (tn+1).

Integrating (13.1) over the boundary ∂Ω of the hexahedron gives a cell-centered
finite-volume approximation of the governing gas dynamics equations

σn+1
i+1/2 j+1/2A1′2′3′4′ − σn

i+1/2 j+1/2A1234

+Q411′4′ + Q233′2′ + Q122′1′ + Q344′3′ = 0,
(13.2)

whereσn+1
i+1/2 j+1/2 andσn

i+1/2 j+1/2 are the average values ofσ at the time tn+1 and tn

in the center of the top and bottom faces, respectively; A1′2′3′4′ and A1234 are the areas
of the corresponding faces. Each of the four vector values Q411′4′ , Q233′2′ , Q122′1′ and
Q344′3′ is the amount of the mass, momentum, and energy which flows into and out
of the quadrilateral cell 1234 within time �t = tn+1 − tn through the corresponding
moving edges of the cell.

For example, the vector-valuedquantity Q122′1′ that is the change of the parameters
due to the flux through the edge 12 within time �t is given by

Q122′1′ = σ
n+1/2
i+1/2 j A

xy
122′1′ + an+1/2

i+1/2 j A
yt
122′1′ + bn+1/2

i+1/2 j A
tx
122′1′ , (13.3)

where σ
n+1/2
i+1/2 j , a

n+1/2
i+1/2 j , and bn+1/2

i+1/2 j are calculated using the parameters f = (u, v,

p, ρ)� in the center of the face 122′1′, i.e., at the mid-point of edge 12 at the time
tn+1/2 (or at the mid-point of edge 1′′2′′); Axy

122′1′ , A
yt
122′1′ , Atx

122′1′ are the areas of the
projections of the face 122′1′ onto the coordinate planes x-y, y-t , and t-x , respec-
tively, given by
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Axy
122′1′ =

∫

122′1′

dxdy = 0.5[(x2′ − x1)(y1′ − y2) − (x1′ − x2)(y2′ − y1)],

Ayt
122′1′ =

∫

122′1′

dydt = 0.5�t (y2′ + y2 − y1 − y1′),

Atx
122′1′ =

∫

122′1′

dtdx = −0.5�t (x2′ + x2 − x1 − x1′).

These expressions are obtained from the formula for area of the quadrangle 1234

A1234 = A(x1, y1; x2, y2; x3, y3; x4, y4)
= 0.5[(x3 − x1)(y4 − y2) − (x4 − x2)(y3 − y1)] ,

when passing its contour in the anticlockwise direction.
The values f n+1

i+1/2 j+1/2 are updated by two stages using a predictor-corrector pro-

cedure. At the first stage (predictor), we compute the intermediate values f̄
n+1
i+1/2 j+1/2

at the (n+1)th level by using (13.2).
Let us consider the curvilinear coordinate ξ. Assume the function f to be linear

within the cell (i+1/2, j+1/2) in the ξ-direction. The values f ni j+1/2 and f ni+1 j+1/2,
specified at the left and right ends of the segment ((i, j+1/2), (i+1, j+1/2)) at the
time tn , are defined as

f ni j+1/2 = f ni+1/2 j+1/2 − 0.5δ f ni+1/2h
n
i+1/2 ,

f ni+1 j+1/2 = f ni+1/2 j+1/2 + 0.5δ f ni+1/2h
n
i+1/2 .

Here, δ f ni+1/2 is the “effective” derivative in the ξ-direction, while the spacing hni+1/2
is the length of the underlying segment. Note that δ f ni+1/2 and h

n
i+1/2 are the notations

for (δ f nξ )i+1/2 j+1/2 and (hnξ )i+1/2 j+1/2, respectively. When determining δ f ni+1/2, to
suppress spurious oscillations in the vicinity of discontinuities, the monotonicity
algorithm should be applied. The spacing hni+1/2 is given by

hni+1/2 =
0.5

√
(xni+1 j + xni+1 j+1 − xni j − xni j+1)

2 + (yni+1 j + yni+1 j+1 − yni j − yni j+1)
2.

By analogy, the values f ni+1/2 j and f ni+1/2 j+1 are calculated at the left and right
ends of the segment in the η-direction in the cell. Note that since we interpolate f
along the curvilinear coordinate lines ξ and η the order of interpolation, in general,
is less than 2 and equals 2 only if the mesh is rectangular and quasiuniform.

In order to find the values Q122′1′ we substitute in (13.3) the determined values
of f at the mid-point of the lateral edge 12 of the quadrilateral 1234, i.e., at the time
tn instead of the ones at the time tn+1/2. The values Q411′4′ , Q233′2′ , and Q344′3′ can
be found in a similar way. Finally, from (13.2), we obtain the intermediate values

f̄
n+1
i+1/2 j+1/2 at the (n+1)th level.
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We now discuss the second stage corrector. For this purpose, we set the effective

derivatives at tn+1 equal to the ones at tn, i.e., δ f̄
n+1
i+1/2=δ f ni+1/2. Then, the values in

the center of the faces 122′1′ and 344′3′, namely, at the mid-point of the edges 12
and 34 at the time tn+1/2, are

f n+1/2
i j+1/2 = 0.5[ f ni+1/2 j+1/2 + f̄

n+1
i+1/2 j+1/2 − 0.5δ f ni+1/2(h

n
i+1/2 + hn+1

i+1/2)] ,

f n+1/2
i+1 j+1/2 = 0.5[ f ni+1/2 j+1/2 + f̄

n+1
i+1/2 j+1/2 + 0.5δ f ni+1/2(h

n
i+1/2 + hn+1

i+1/2)] .

We can obtain f n+1/2
i+1/2 j and f n+1/2

i+1/2 j+1 in a similar way. These four vector values are
used as the pre-wave states in the center of the corresponding lateral faces of the
hexahedron for the Riemann problem.

Let us consider the face 122′1′. To get the postwave states f n+1/2 in the center of
this face (for brevity we omit subscripts i, j), i.e., at the mid-point of the segment
(1′′, 2′′), we solve the Riemann problem with the pre-wave states (r, p, ρ)n+1/2 at
this point on both sides of the face. One state (r, p, ρ)

n+1/2
+ relates to the underlying

hexahedron and the other (r, p, ρ)
n+1/2
− to the hexahedron adjacent to the face 122′1′

(corresponding to the (i+1/2, j−1/2)th cell). Here, rn+1/2 is the normal component
of the velocity to the segment (1′′, 2′′). We also use the tangential components of the
velocity qn+1/2 on those sides. The normal and tangential components of the velocity
are given by

rn+1/2 = nxu
n+1/2 + nyv

n+1/2 , qn+1/2 = nyu
n+1/2 − nxv

n+1/2 ,

where nx , ny are the components of the outward unit normal vector to the segment
(1′′, 2′′).

After solving the Riemann problem, the post-wave values (r, p, ρ)
n+1/2
R in the

face center are defined. The post-wave tangential component of the velocity qn+1/2
R

is given by

qn+1/2
R =

{
qn+1/2

+ if w12 ≤ dcont ,

qn+1/2
− otherwise ,

(13.4)

where dcont is the contact discontinuity speed in the Riemann problem, w12 is the
velocity of the edge 12 in the normal direction to this edge, and qn+1/2

+ , qn+1/2
− are the

pre-wave tangential components of the velocity in the underlying hexahedron and
the one adjacent to the face 122′1′, respectively. This condition expresses the fact
that the tangential component of the velocity is discontinuous across the tangential
discontinuity. The velocity w12 can be derived from the equality

�tl1′′2′′ w12 = Axy
122′1′ , (13.5)

where l1′′2′′ is the length of the segment (1′′, 2′′). Next, we restore the Cartesian
components of the post-wave velocity in the center of the face 122′1′
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un+1/2
R = nxr

n+1/2
R + nyq

n+1/2
R , v

n+1/2
R = nyr

n+1/2
R − nxq

n+1/2
R .

Given the post-wave values (u, v, p, ρ)
n+1/2
R in the center of the face 122′1′, we

calculate Q122′1′ via (13.3). Similarly, we treat the Riemann problem in the center of
the other three faces to obtain Q411′4′ , Q233′2′ , and Q344′3′ .

The final values of f n+1
i+1/2 j+1/2 at the time tn+1 are obtained by using (13.2). This

scheme is of second-order accuracy in the domains of smooth flow provided that the
mesh is quasiuniform and close to rectangular.

Riemann Problem on the Moving Mesh

To demonstrate how to take into account the movement of grid nodes, let us consider
the midpoint of the segment (1′′2′′) within the time interval (tn+1/2, tn+1). There
are 5 cases of location of the segment ((x, y)n+1/2

i j+1/2, (x, y)
n+1
i j+1/2) in the wave pat-

tern depending on the velocity w12 of the edge 12. As the post-wave values are
(r, p, ρ)

n+1/2
R , we take:

1. (r, p, ρ)
n+1/2
R = (r, p, ρ)

n+1/2
− ifw12 < dsh, where dsh is the speed of the left shock

in the l-axis direction.
2. (r, p, ρ)

n+1/2
R = (r, p, ρ)

n+1/2
2 ifdsh < w12 < dcont,where thevector (r, p, ρ)

n+1/2
2

defines the flow parameters behind the shock, and dcont is the speed of the contact
discontinuity which equals the velocity u in that domain.

3. (r, p, ρ)
n+1/2
R = (r, p, ρ)

n+1/2
3 ifdcont < w12 < d lft

rar,where thevector (r, p, ρ)
n+1/2
3

defines the parameters in the domain between the contact discontinuity and left
characteristic of the rarefaction wave expanding with the speed d lft

rar.
4. (r, p, ρ)

n+1/2
R = φ(α) if d lft

rar < w12 < d rght
rar , i.e., we calculate the flow parameters

in the rarefaction wave using the similarity variable α = l/(t − tn+1/2). Here,
d rght
rar is the speed of the right characteristic in the rarefaction fan.

5. (r, p, ρ)
n+1/2
R = (r, p, ρ)

n+1/2
+ if w12 > d rght

rar .

Note that in the first-order Godunov scheme the above algorithm is applied at the
time tn .

Stability Condition

To demonstrate how the stability condition on moving mesh is obtained, let us con-
sider the one-dimensional case with the (i+1/2)th cell. At the nth time level in this
cell, the local time step is determined by

�ti+1/2 = hni+1/2

max(drghti − wi+1 , −dl f ti+1 − wi )
, (13.6)

where drghti and dl f ti+1 are the extreme right and left wave speeds at the points xni
and xni+1, respectively, obtained by solving the Riemann problem at tn+1/2, and wi

is the velocity of the node xi , i.e., the slope of the intercell boundary (xni , x
n+1
i ).

The condition (13.6) implies that we estimate the time within which the left-going
characteristic (in the linearized analysis, this is a straight line), emanating from the
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(i+1)th node, arrives at the i th node moving with the velocity wi , as well as the
time within which the right characteristic, emanating from the i th node, arrives at
the (i+1)th node moving with the velocity wi+1. From these two time steps, we take
the minimal one. The resulting time step over the mesh is given by

�t = ccf l min
i

�ti+1/2 . (13.7)

The coefficient ccfl is a correction to the non-linearity of the Eq. (13.1). To calculate
the node velocity wi , on one hand, it is necessary to know the time step �t , and on
the other hand, to take into account that wi participates in determining �t . By these
reasons, at the time level n+1, we use �t obtained at the preceding level n. The
coefficient ccfl<1, usually about 0.5, may be corrected during the computation.

In the 2D case, the choice of the admissible step �t may be estimated in the
energetic norm to the underlying Eq. (13.1) written in a differential form as a t-
hyperbolic by Friedrichs’s system. The step �t in the (i+1/2, j+1/2)th cell is
given by

�ti+1/2 j+1/2 = �t
′ �t

′′

�t ′ + �t ′′ , (13.8)

where

�t
′ = h

′

max(d rght
14 − w23;−d lft

23 + w14)
,

�t
′′ = h

′′

max(d rght
12 − w34;−d lft

34 + w12)
,

h
′ = A1234

0.5
√

(x4 + x3 − x1 − x2)2 + (y4 + y3 − y1 − y2)2
,

h
′′ = A1234

0.5
√

(x3 + x2 − x4 − x1)2 + (y3 + y2 − y4 − y1)2
. (13.9)

Here, �t
′
and �t

′′
are the admissible time steps to the one-dimensional scheme

in the ξ and η-direction, respectively; h
′
, h

′′
are the “average heights” of the bottom

face 1234, and w is the velocity of the corresponding cell edge. For example, w12

is the velocity of the edge 12 in the normal direction determined via (13.5). Next,
d rght
12 and d rght

14 are the “extreme right wave” speeds defined from solving the Riemann
problem to the faces 122′1′ and 11′4′4, respectively; d lft

23 and d lft
34 are the “extreme

left wave” speeds to the faces 233′2′ and 433′4′, respectively.
The resulting time step over the mesh is given by

�t = ccfl min
i j

�ti+1/2 j+1/2 .
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Fig. 13.1 Supersonic flow in the mach wind tunnel containing a step. The boundary nodes are
distributed using constrained minimization. Adaptive mesh with fragments I, I I, I I I near the
boundary and I V comprising the triple point

13.1.1 Numerical Examples

Robustness, of the adaptive mesh method is demonstrated in the two numerical
examples.

The first is a test presented by Fig. 13.1 of the planar unsteady supersonic flow
in the wind tunnel containing a step (for details, see Colella and Woodward 1984).
This test was performed by Azarenok and Ivanenko (2001) on the adaptive grids by
applying the above flow solver when, as a monitor function f in the inverted energy
functional (9.32), the modulus of velocity |V | was used. The boundary nodes were
adapted by applying 1-D minimization. One of the main difficulties was to capture
the triple point, caused by the irregular reflection of the bow shock from the top wall,
with clustered grid lines that required special efforts.

The use of constrained minimization for the boundary nodes allows us both to
eliminate the above difficulty connected with capturing the triple point (see fragment
I V of the mesh in Fig. 13.1) and to perform robust node clustering in the domains
where the shocks are attached to the boundary or reflected from it (see fragments
I–I I I ). The shock waves are smeared over 2 to 3 cells. Compression of grid lines
to the contact discontinuity emanating from the triple point is also demonstrated.

The second example is related to the modeling motion of a detonation wave.
The adaptive mesh, obtained when modeling the unstable detonation wave motion
(for details, see Azarenok and Tang (2005)), is presented in Fig. 13.2. The pressure
is used as a monitor function. To perform a stable mesh adaptation, the constrained

http://dx.doi.org/10.1007/978-3-319-57846-0_9


488 13 Applications of Adaptive Grids to Solution of Problems

Fig. 13.2 Adaptive mesh (a) and its fragments (b), (c)

minimization for the redistribution of boundary nodes was also employed. The figure
exhibits clustering of the grid lines to the main incident shock and transverse waves.

The calculations related to Figs. 13.1 and 13.2 were carried out by B. Azarenok.

13.2 Applications to Numerical Simulations of Tsunami
Run-Up

This section is devoted to an implementation of adaptive grid technologies to numer-
ical simulations of the successive reproduction of the edge of inundation caused by
a tsunami wave.

13.2.1 Mathematical Model

It has been shown that many coastal effects of tsunamis can be described by a set
of depth-averaged hydrostatic equations of motion, known as shallow-water wave
equations (Leffe et al. 2010):
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∂H

∂t
+ ∂Hu

∂x
+ ∂Hv

∂y
= 0,

∂Hu

∂t
+ ∂Hu2

∂x
+ ∂Huv

∂y
+ g

2

∂H 2

∂x
= gH

∂h

∂x
− uHCR,

∂Hv

∂t
+ ∂Huv

∂x
+ ∂Hv2

∂y
+ g

2

∂H 2

∂y
= gH

∂h

∂y
− vHCR,

(13.10)

where H(x, y, t), h(x, y) are functions of the water depth and bottom elevation,
respectively, u(x, y, t), v(x, y, t) the cartesian components of the velocity vector
u(x, y, t), g the gravitational acceleration, CR , the bottom friction coefficient deter-
mined by the formula:

CR = gn2

H 4/3
|u|,

in which n denotes an empirical roughness coefficient (Chesy coefficient). The solu-
tion domain of the system (13.10) is a rectangle D{0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly}. All
parameters in (13.10) for the subdomain in D corresponding to the dry land area are
considered as being equal to zero.

13.2.2 Dynamically Adaptive Numerical Grid

The solution of system (13.10) was carried out by a method of large particles rep-
resented as water columns (Leffe et al. 2010; Belotserkovsky et al. 1982) on non-
stationary grid cells clustering only in the zone of D corresponding to the tsunami
run-up edge. The numerical grid is obtained through the use of a time-dependent
coordinate transformation

x(t, ξ) : Ξ 2 → X2, x(t, ξ) = (x1(t, ξ), x2(t, ξ)), ξ = ξ1, ξ2, (13.11)

with the identification x1 = x , x2 = y. The coordinate transformation is found at the
points of the uniform grid in the reference domainΞ 2{0 ≤ ξ1, ξ2 ≤ 1} by numerical
solution of two-dimensional inverted diffusion equations:

g22
∂2xk

∂ξ1∂ξ1
− 2g12

∂2xk

∂ξ1∂ξ2
+ g11

∂2xk

∂ξ2∂ξ2
= J 2 1

Z(x, t)

∂

∂xk
Z(x, t), k = 1, 2,

(13.12)
where

gi j = ∂x1

∂ξi
∂x1

∂ξ j
+ ∂x2

∂ξi
∂x2

∂ξ j
, J = det

{∂xi

∂ξ j

}
, i, j = 1, 2 ,

and Z(x, t) is a control function. The function Z(x, t) is determined by the formula
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Fig. 13.3 Adaptive grid with node clustering near the wave edge (left); fragment of the grid (right)

Z(x, t) = (ϕ(x, t))α + ε, ϕ(x, t) = min
i=1,...,N

ρ(x, xi (t)), α > 0, 0 < ε � 1,

(13.13)
where xi (t), i = 1, . . . , N , are the points in D at time t corresponding to the wave
run-up edge (dry-wet interface),α = 1.7, ε = 0.01.The coordinates of these points in
the domain D are calculated by the solution of equations (13.10). Thus, in accordance
with Sect. 11.2, the nodes of the grid obtained by the solution of equations (13.12)
are clustering in the vicinity of the points xi (t), i = 1, . . . , N , which approximate
the projection of the wave run-up edge on the domain D, and vice-versa, rarefying in
other parts of the domain, including parts corresponding to dry land area. The solution
to equations (13.12) at each time step t was found through the scheme described in
Sect. 11.2. Figure13.3 demonstrates such a grid in D with cells clustering on the
projection of the wave run-up edge.

13.2.3 Equations in Dynamic Curvilinear Coordinates

The coordinate transformation (13.11) also allows one to find solutions to the tsunami
problem on a uniform grid in the reference domain Ξ 2. For this purpose, Eq. (13.10)
are rewritten in the curvilinear coordinates t, ξ1, ξ2 in a divergent form with the help
of the tensor identity (2.97) connecting the expressions in the cartesian t, x1, . . . , xn

and curvilinear t, ξ1, . . . , ξn coordinates:

∂A0

∂t
+

n∑
i=1

∂Ai

∂xi
= 1

J

( ∂

∂t
(J A0) +

n∑
j=1

∂

∂ξ j
[J (A

j − A0w j )]
)

,

http://dx.doi.org/10.1007/978-3-319-57846-0_11
http://dx.doi.org/10.1007/978-3-319-57846-0_11
http://dx.doi.org/10.1007/978-3-319-57846-0_2
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where

J = det
{∂xi

∂ξ j

}
, A

j =
n∑

i=1

Ai ∂ξ j

∂xi
, w j =

n∑
i=1

∂xi

∂t

∂ξ j

∂xi
.

With the help of this identity, system (13.10) is rewritten in the variables t, ξ1, ξ2 in
the following divergent form:
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(13.14)

where J = ∂x

∂ξ1
∂y

∂ξ2
− ∂x

∂ξ2
∂y

∂ξ1
.

The components x(t, ξ), y(t, ξ) of the coordinate transformation (13.11), as well
as the parameters of the water flow in system (13.14), are found at the points of the
uniform rectangular grid in the reference domain Ξ 2. There is therefore no need for
interpolation of the flow parameters, in contrast to the solution of equations (13.10)
on a nonuniform moving grid in the physical domain D.

13.2.4 Numerical Algorithm

A realization of the method of large particles for solution of equations (13.14) was
carried out in two stages. In the first stage, all convective terms in (13.14) were
deleted, resulting in the system:
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During the second stage, the transition equations
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(13.16)

were solved. An explicit scheme of the first order on the uniform rectangular grid in
Ξ 2 was applied to solution of equations (13.15) and (13.16). The grid functions Hi, j

and hi, j were specified at the grid nodes (circles in Fig. 13.4), the velocity component
u was specified between the nodes at the points marked by squares (in Fig. 13.4), and
the velocity component v by triangles.

The numerical scheme for Eq. (13.15) is written in the following form:

Fig. 13.4 Structure of the
reference grid
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J H̃i, j = (J H)ni, j ,
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.

Equations (13.16) are approximated by a similar scheme.
In order to fulfill the condition of hydrostatic fluid equilibrium, the value of the

Jacobian J in system (13.16) at each time step was calculated from the differential
identity

∂ J

∂t
+ ∂
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∂ξ2
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∂t

∂x

∂ξ2

]}
+ ∂

∂ξ2

{[
−∂y

∂t

∂x

∂ξ1
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∂y

∂ξ1

]}
≡ 0.

In order to provide the stability criteria for schemes (13.15) and (13.16), the step
size was taken from the inequality, following from (2.91) for n = 2

Δt ≤ α · min

{
Δx

|u| + √
gH

,
Δy

|v| + √
gH

}
,

computed at all grid nodes, where 0 < α < 1 is an empirical coefficient. In the
present calculations, α = 0.5.

13.2.5 Some Results of Calculations

Themethod of adaptive grids described abovewas applied to calculations of a solitary
wave run-up on the coastal region of Tohoku (Japan tsunami, 2011) (Shimozono
et al. 2012). The height of the wave traveling across the ocean to the coast was
taken as 0.6 m. Figure13.5 demonstrates the projection of the wave-front run-up
calculated by the solution of equations (13.10) on an adaptive grid with 300 × 225
nodes, represented in Fig. 13.3. The identical results are obtained by the solution of
equations (13.15) and (13.16) with the adaptive coordinate transformation but on
the uniform rectangular grid (300 × 225 nodes) in the logical domain Ξ 2, to the
solution of equations (13.10) on the adaptive grid generated by the same coordinate

http://dx.doi.org/10.1007/978-3-319-57846-0_2
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Fig. 13.5 Computation with
an adaptive coordinate
transformation (300 × 225
nodes): 1 – initial line of
wave run-up edge, 2 – final
line of wave run-up edge

Fig. 13.6 Computation on a
uniform grid (1500 × 1200
nodes) in D: 1 – initial line of
wave run-up edge, 2 – final
line of wave run-up edge

transformation. Figure13.6 exhibits the similar results obtained by the solution of
equations (13.10) on the uniform grid in the physical domain D but with 1500 ×
1200 nodes. Thus, the application of adaptive coordinate transformations allows one
to reduce the number of cells up to 20 times.
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13.3 Application to Singularly-Perturbed Equations

As an example of the application of the comprehensive grid technology described,
we consider a numerical solution of the following boundary value problem for a
singularly perturbed equation:

−εΔu + a(s) · ∇u + f (s, u) = 0, s ∈ Sn,
u(s) = u0(s), s ∈ ∂Sn,

(13.17)

where

Δu =
n∑

i=1

∂2u

∂si∂si
, i = 1, . . . , n, ∇u =

( ∂u

∂s1
, . . . ,

∂u

∂sn

)
,

Sn ⊂ Rn is a bounded domain, a(s) = (a1(s), . . . , an(s)) is the convection vector,
f (s, u) is a specified function, while 0 < ε � 1 is the coefficient of diffusion.
Depending on the function a(s), the solution to (13.17) has boundary and/or

interior layers when the coefficient ε is small (Liseikin 2001).

13.3.1 Numerical Algorithm

The boundary value problem (13.17) is written out in the grid coordinates ξi as

−εBsξ
n [u] + F[u] = 0,

u(ξ) = ϕ(ξ) , ξ ∈ ∂Ξ n ,
(13.18)

where ϕ(ξ) = u0[s(ξ)],

F[u] = {(J )2ai [s(ξ)] + εBsξ
n [si ]} ∂u

∂ξ j

∂ξ j

∂si
+ (J )2 f (s(ξ), u) , i, j = 1, . . . , n ,
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i j
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g
i j
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∂sk
∂ξ j

∂sk
, gsξ = (J )2 , J = det

{ ∂si

∂ξ j

}
, i, j, k = 1, . . . , n .

Similarly to (10.17), the problem (13.18) is replaced by the following nonstation-
ary problem with respect to the function u(ξ, t):

∂u

∂t
= (J )p{εBsξ

n [u] − F[u]},
u(ξ, t) = ϕ0(ξ) , ξ ∈ ∂Ξ n,

u(ξ, 0) = u0(ξ) , ξ ∈ Ξ n .

(13.19)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Since the operator Bsξ
n is, in fact, the operator Bξ

n in (10.17) with the identification
g

ξ
i j = g

sξ
i j , the problem (13.19) is solved by the same method described in Chap.11

for problem (10.17) with n = 3 and the condition (10.15), namely, for

∂si

∂t
= (J )p

{
Bsξ
n [si ] − J 2

Z [u](s)
∂

∂si
Z [u](s)

}
, i = 1, . . . , n ,

si (ξ, t) = ψi (ξ), ξ ∈ ∂Ξ n, t ≥ 0 ,

si (ξ, 0) = si0(ξ) , ξ ∈ Ξ n .

(13.20)

This method was applied to the generation of the intermediate transformation s(ξ).
The grids are obtained by the numerical solution of the invertedBeltrami equations

in (13.20) in the spherical metric tensor (9.149) with n = 3 and

Z [u](s) =
√
c+

( ∂u

∂s1

)2+
( ∂u

∂s2

)2+
( ∂u

∂s3

)2
,

Z [u](s(ξ)) =
√
c + g

i j
ξs

∂u(s(ξ))

∂ξi
∂u(s(ξ))

∂ξ j
, i, j = 1, 2, 3

(Figure13.7) and in control metric (9.10) of the monitor hypersurface Sr3 over S3

with f (s) = u(s) (Fig. 13.8). Bothmetrics provide node clustering in the zones of the

interior and boundary layers of u(s). The expressions J
∂ξ j

∂sm
in (13.19) and (13.20)

were replaced in accordance with the following formula:

J
∂ξ j

∂sm
= ∂sm+1

∂ξ j+1

∂sm+2

∂ξ j+2
− ∂sm+1

∂ξ j+2

∂sm+2

∂ξ j+1
, m, j = 1, . . . , n, (13.21)

Fig. 13.7 Three-dimensional adaptive grid with node clustering near the boundary layers of the
solution u(s) to problem (13.17)with a(s) = 0 (left). The solution at the points of a two-dimensional
coordinate surface (right)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_11
http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_9
http://dx.doi.org/10.1007/978-3-319-57846-0_9
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Fig. 13.8 Three-dimensional adaptive gridwith node clustering near an interior layer of the solution
of problem (13.17) (left). The solution at the points of a two-dimensional coordinate surface (right)

where, for each superscript or subscript index, say, l, l + 3 is equivalent to l.
Figures13.7 and 13.8 show numerical solutions to the coupled problems (13.19)

and (13.20) for n = 3, both with p = 1, and the resulting three-dimensional adaptive
grids.

13.4 Problem of Heat Transfer in Plasmas

Adaptive grid generation for computational studies of magnetized plasmas is a novel
challenge because of their extreme degree of anisotropy. The nature of magnetic con-
finement is to restrict the motion of particles across, but not along, the magnetic field.
For relatively collisional plasmas described by fluid equations in the grid coordinates
ξ1, . . . , ξn

∂T

∂t
= ∇ · (χ · ∇T ) = 1

J

∂

∂ξi

(
Jχ : ∇ξi∇ξ j ∂T

∂ξ j

)
, i, j = 1, 2, 3 , (13.22)

this results in a ratio of parallel to transverse thermal conductivities 1010. Discretiza-
tion errors which cause a small amount of the large parallel heat flux to “leak” into
the transverse direction can fatally compromise the validity of the results. Anisotropy
also strongly affects the propagation of magnetohydrodynamic waves; waves prop-
agating normal to the magnetic field have much smaller phase velocity than those
propagating along the field. Since these slow waves are the most readily destabilized
by magnetic field gradients and curvature, accurate representation of small parallel
gradients is essential for the accurate modeling of linear and nonlinear instabilities.



498 13 Applications of Adaptive Grids to Solution of Problems

Such accurate representation of the small parallel gradients requires the generation of
magnetic-field-aligned numerical grids. One more requirement for the grids consists
in their nonsingularity. In addition to alignment and nonsingularity, grid adapta-
tion to large transverse gradients characteristic of resistive instabilities and magnetic
reconnection is also needed.

The most successful method of dealing with anisotropy has been the use of a flux
coordinate system in which at least one coordinate is chosen to be orthogonal to the
magnetic field. This has previously been implemented only for static, axisymmetric
magnetic fields. As the magnetic field evolves due to currents in the plasma and
external coils, the static grid is left behind and loses its alignment. While the initial
configurationmaybe axisymmetric, forwhich nestedflux surfaces are known to exist,
the field may evolve into a nonaxisymmetric configuration in which no exact flux
surfaces exist, but rather there are regions of multiple small islands and stochasticity.
For such situations, the approach that uses the flux lines as a family of coordinate
lines produces singular numerical grids.

The method applied to generating numerical grids with the requirements of mag-
netic field alignment, adaptation, and nonsingularity is based on the solution of
inverted diffusion and Beltrami equations with respect to control metrics that serve
to provide these grid properties. The principal task in applying this method to a spe-
cific problem is the choice of a suitable control metric. It has been illustrated that
the efficiency of the inverted diffusion and Beltrami’s nonlinear elliptic equations for
harmonic grid generation produces nonsingular grids aligned with a given magnetic
field. Also, it has been demonstrated that the nature of the grid depends strongly on
the topology of the initial conditions, which is preserved in the process of iterating
to a solution. Thus, the quality of the alignment obtained for a logically rectangular
grid in the magnetic reconnection problem is not as good as that obtained for a more
complicated topology in the tokamak edge problem. The results accomplished have
also illustrated the use of a nonlinear diffusion-type equation to obtain a grid adapted
to a specified function related to spatial truncation error, producing a fine grid where
that function is large and a coarse grid where it is small.

Figure13.9 (left-hand) is a contour plot of the flux function for an intermediate
stage in a magnetic reconnection problem, the Eq. (13.22) computed numerically
with the same spectral element code described in Chap.10 used to solve the grid
generation system (10.40) for n = 2. The top and bottom boundaries are surfaces of

Fig. 13.9 Magnetic flux function ψ(s) (left). Grid lines aligned with the magnetic field (center).
Contour plot of alignment error |B · ∇ξ2| (right)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_10
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constant ψ, while the left and right boundaries are periodic. There is an x-point in
the middle of the computational domain, where B = 0, and a separatrix dividing the
domain into non-simply-connected regions, where ψ is, respectively, positive and
negative.

Figure13.9 (center) shows the resulting grid lines obtained by the solution of
the system (10.40) with g

i j
s specified by (10.51). Using the spectral element code, a

smooth, continuous solution is found for themapping s(ξ) and used tomap a uniform
Cartesian grid in Ξ 2 into the parametric domain S2.

The initial condition used for relaxation to this solution is a simple Cartesian grid,
s1 = ξ1, s2 = ξ2. The final grid is constrained to have the same topology as the
initial condition, which forces it to cut across the magnetic field lines. This occurs
in the region where B is small but nonzero, minimizing the overall misalignment.
Figure13.9 (right-hand) is a contour plot of the alignment error |B · ∇ξ2|, with
maximum value 0.025 in the region near the midplane and RMS average value
0.0085. Outside the separatrix, the alignment is very good. This type of aligned grid
is adequate for small magnetic islands for which alignment inside of the island is not
essential and simplicity of grid topology is more important.

The pictures in Fig. 13.9 were created by A. Glasser, who used a spectral element
method for computing plasmas and inverted diffusion grid equations for generating
adaptive, field-aligned grids (see Glasser et al. 2005a, b).

13.4.1 The Tokamak Edge Region

The region at the edge of the tokamak is of critical importance to its performance as
a potential fusion reactor. Figure13.10 shows the tokamak (left-hand) and magnetic
field lines (right-hand) in this region. There is an x-point connected to a separatrix
dividing the domain into closed field lines in the hot core where the main fusion
reactions occur, and open field lines further out, which make contact with material
walls. MHD edge-localized modes (ELMs) bridging the pedestal region at the edge
of the core and the scrape-off layer outside create a region of turbulence which
determine the presence or absence of a transport barrier, and thus the quality of
confinement in the core. Hot plasma from the core escapes from the pedestal region
to the scrape-off region and encounters metallic divertor plates (see Fig. 13.10 (left-
hand)), where ionization and recombination occur and the plasma is subjected to
impurities. Accurate modeling of this region is essential to an understanding of the
tokamak. Adaptive grid generation can make important contributions to the accuracy
and efficiency of such a model.

The final grid preserves the topology of the initial conditions, which is a sim-
ply connected and logically rectangular grid for the case of Fig. 13.9, resulting in
imperfect alignment inside the separatrix. For the tokamak edge region, that is not
an acceptable solution; it is essential to have good alignment in the whole neigh-
borhood of the x-point and the separatrix, and that cannot be done with a single
simply-connected, logically rectangular grid. Figure13.10 (right-hand) shows the

http://dx.doi.org/10.1007/978-3-319-57846-0_10
http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Fig. 13.10 Tokamak and numerical grid aligned with magnetic field

Fig. 13.11 Magnetic vector field flux (left) and balanced grid (right)

result of the grid generated through the control metric (11.32) with the coefficient
ε(s) defined by the layer type function (11.29):

ε(s) = 0.001
ln(1000|B|2 + 1)

ln(1000)
.

13.4.2 Computations on Balanced Grids

Figures13.11 (right-hand) and 13.12 (below) exhibit adaptive grids aligned with a
magnetic field and clustering in the zones of large solution error. Computations of
Eq. (13.22) and adaptive numerical grids were carried out by A. Glasser.

http://dx.doi.org/10.1007/978-3-319-57846-0_11
http://dx.doi.org/10.1007/978-3-319-57846-0_11
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Fig. 13.12 Magnetic vector field flux (top) and balanced grid (bottom)

13.5 Evaluations of Temperature-Profile Discrepancies

This section demonstrates some results of a numerical modeling of temperature
gauged in burning solid fuel by an inserted thermocouple. Their detailed description
is presented in Liseikin et al. (2011a, b).

Subsurface thermocouple sensors are very important technical devices employed
to gauge heat fluxes in complicated heat-stressed frameworks (Borovkova et al.
2008), in various heat-diffusion mechanisms (Franco et al. 2007), and in burning
solid fuels (Zenin 1962, 1963; Asay et al. 2005). Incidental problems related to the
accuracy of the sensors’ temperature data may appear. The major source of inaccu-
racy is the difference in thermal properties of the materials of the thermocouple and
the surrounding medium. High gradients of temperature in heated materials lead, as
a rule, to increased heat transfer from the surface, since the thermal conductivity of
metallic thermocouples is higher than that of the surrounding substance. Additional
problems may appear due to variation in distances to the surface of heat transfer
caused by the pyrolysis of the substance. A numerical investigation of this problem
in the axisymmetric formulation was discussed in Rychkov et al. (2010).



502 13 Applications of Adaptive Grids to Solution of Problems

Fig. 13.13 Principal scheme of a thermocouple (left) and a domain of solution (right)

13.5.1 Mathematical Model for the Interaction of Heat Wave
with Thermocouple

Let us consider a process of temperature-profile gauging of a condensed substance
pyrolyzed by an external heat source. This process is formulated as an unsteady three-
dimensional problem of heat transfer between the solid material and an embedded
thermocouple (Fig. 13.13), assuming that both the pyrolysis velocity and the surface
heat flux are constant.

The thermocouple head is a bead in radius Rm , which is connected under angle
2α to two cylindrical conductors (wires), each in radius rm (Fig. 13.13 left-hand).
Since there are two planes of symmetry, the domain for physical modelling can be
taken as a quarter of the whole domain (Fig. 13.13 right-hand). The magnitudes of
the angle α range from α = 00 to α = 600. In the case α = 00, both conductors are
assumed to be a single conductor with an area double its cross-section. In the Carte-
sian coordinates x, y, z, the modelling domain is a parallelepiped D{xs(y, z, t) ≤
x ≤ xmax , 0 ≤ y ≤ ymax , 0 ≤ z ≤ zmax , t ≥ 0}, whose external boundary segments
are separated from the thermocouple bead by a significant distance to make their
influence on the temperature data negligible. The left-hand boundary of the domain
is a plane surface of pyrolysis which moves with a constant velocity rb, and thus
xs(y, z, t) = xs(y, z, 0) + rbt . The center of the coordinates is settled at the center
of the thermocouple bead. The process is simulated by the following heat equation:

∂(ρCT )

∂t
−

( ∂

∂x
(λ

∂T

∂x
) + ∂

∂y
(λ

∂T

∂y
) + ∂

∂z
(λ

∂T

∂z
)
)

= 0 , (13.23)
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whereC, ρ, λ - are the specific heat, density, and thermal conductivity, respectively.
These coefficients are not continuous, but break at the boundary surface of the ther-
mocouple. The divergent form of Eq. (13.23) provides a correct computation of the
thermal fluxes in the case of discontinuous coefficients. The applicable boundary
conditions for Eq. (13.23) are specified as follows:

T (xs, y, z, t) = Ts ; ∂T (x, y, z, t)

∂x

∣∣
x=xmax

= 0 ;
∂T (x, y, z, t)

∂y

∣∣
y=ymax

= ∂T (x, y, z, t)

∂y

∣∣
y=y0

= 0 ;
∂T (x, y, z, t)

∂z

∣∣
z=zmax

= ∂T (x, y, z, t)

∂z

∣∣
z=z0

= 0 .

(13.24)

The initial conditions are specified in accordance with Mihelson’s distribution,
which describes the temperature of a plane heat wave moving along the axis OX
with a constant velocity rb:

T (x, y, z, 0) = T0 + (Ts − T0)exp(−rb(x − xs(0))Cpρp/λp) ,

where the index p is related to the parameters of the substance; Ts , T0 are the tem-
perature of pyrolysis and the initial temperature, respectively, and both are constant.
The initial placement of the left-hand boundary segment x = xs(0) is sufficiently far
from the thermocouple bead to provide a temperature distribution in the thermocou-
ple close to T0.

Numerical Algorithm

A numerical solution of equation (13.23) with boundary conditions (13.24) is found
using the method of finite volumes, which allows one to apply arbitrary meshes. The
equation was rewritten in the integral form for every cell V of the mesh:

∫
V

∂

∂t
QdV +

∮
S
FdS = 0 , (13.25)

where Q = CρT ; F = −λ∇T is the heat flux through a normally oriented segment
dS of the boundary S of V . Let us designate by Vi, j,k the volume of the cell V , and
by Qn

i, j,k the middle quantity of Q at the center of V at the time nτ . Then, Eq. (13.25)
is approximated by the following scheme of the second order with respect to space
and time:

4Qn+1
i, j,k − 3Qn

i, j,k + Qn−1
i, j,k

2τ
Vi, j,k + [

(F · S)n+1
i+1/2 − (F · S)n+1

i−1/2

+(F · S)n+1
j+1/2 − (F · S)n+1

j−1/2 + (F · S)n+1
k+1/2 − (F · S)n+1

k−1/2

] = 0 ,

(13.26)

where τ is the time step. The scalar products in the square brackets are heat fluxes
through the corresponding faces of V , factored by the unit normals to these faces.
A description of their calculations was given in Vinokur (1989). Scheme (13.26) is
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implicit, and to its solution was applied the following iterative algorithm, based on
the introduction of quasitime at each τn:

Qn+1,s+1
i, j,k − Qn+1,s

i, j,k

τ1
+ 4Qn+1,s

i, j,k − 3Qn,s
i, j,k + Qn−1,s

i, j,k

2τ
Vi, j,k

+[
(F · S)

n+1,s
i+1/2 − (F · S)

n+1,s
i−1/2 + (F · S)

n+1,s
j+1/2 − (F · S)

n+1,s
j−1/2

+(F · S)
n+1,s
k+1/2 − (F · S)

n+1,s
k−1/2

] = 0 ,

(13.27)

where τl is the quasitime step, and s is the number of the iteration. A solution to
(13.27) was found by the prediction-correction method (Yanenko 1971):

δs+1/3 − δs

τ1
Vi, j,k − Λ1δ

s+1/3 = 4Qn+1,s
i, j,k − 3Qn,s

i, j,k + Qn−1,s
i, j,k

2τ
Vi, j,k

+[
(F · S)

n+1,s
i+1/2 − (F · S)

n+1,s
i−1/2 + (F · S)

n+1,s
j+1/2 − (F · S)

n+1,s
j−1/2

+(F · S)
n+1,s
k+1/2 − (F · S)

n+1,s
k−1/2

]
,

δs+2/3 − δs+1/3

τ1
Vi, j,k + Λ2δ

s+2/3 = 0,

δs+1 − δs+2/3

τ1
Vi, j,k + Λ3δ

s+1 = 0, Qn+1,s+1 = Qn+1,s + δs+1 ,

(13.28)

where δs is a correction of Q, and Λ1, Λ2 and Λ3 are the difference operators, each
taking into account the second derivatives in one corresponding direction only. The
solution to the problem (13.28) relaxes to the solution to (13.23) as δs → 0. At the
points of the left-hand boundary segment, we assume δs = 0, while “mild” boundary
conditions were specified on the other boundary segments. Since quantities Q−1

i, j,k are
not known, a scheme of the first order with respect to τ was applied for calculating
Q0

i, j,k in (13.28).

13.5.2 Generation of Adaptive Grid

The nodes of a grid were calculated by a numerical solution of inverted diffusion
equations (10.11) for n = 3, namely,

[gsξ22gsξ33 − (g
sξ
23)

2] ∂2sk

∂ξ1∂ξ1
+ [gsξ11gsξ33 − (g

sξ
13)

2] ∂2sk

∂ξ2∂ξ2

+[gsξ11gsξ22 − (g
sξ
12)

2] ∂2sk

∂ξ3∂ξ3
+ 2[gsξ23gsξ13 − g

sξ
12g

sξ
33]

∂2sk

∂ξ1∂ξ2

+2[gsξ12gsξ23 − g
sξ
22g

sξ
13]

∂2sk

∂ξ1∂ξ3
+ 2[gsξ13gsξ12 − g

sξ
23g

sξ
11]

∂2sk

∂ξ2∂ξ3

= J 2

Z(s)
∂Z(s)
∂sk

,

i, j = 1, 2, 3.

(13.29)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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Equations (13.29) were solved bymeans of the iterative algorithm applied to (10.17).
The control function Z(s) was used to provide grid clustering near the boundary of
the thermocouple. This function Z(s) was specified as

Z(s) = u1(s)u2(s),

u1(s) = 1

0.01 + ∣∣x2(s) + z2(s) − r2m
∣∣ ,

u2(s) = 1

0.01 + ∣∣x2(s) + y2(s) + z2(s) − R2
m

∣∣ ,

where
x(s) = s1 sinα − s2 cosα ,

y(s) = s1 cosα + s2 sinα ,

z(s) = s3 .

The function u1(s)makes the grid nodes cluster near the conductor, while u2(s) does
this near the bead. The final grid is demonstrated in Fig. 13.14.

Since the grid nodes may not lie on the boundary of the thermocouple, the coeffi-
cients of the thermal conductivity on the boundaries of cells were taken to be middle
values of the coefficients at the centers of the neighboring cells. The quantity C · ρ
was calculated at the center of the cell. The accuracy of numerical solutions was
estimated through calculations on sequences of grids. It was established that the grid
75× 100× 50 provides a relative accuracy of 0.1%.

Fig. 13.14 Fragment of a three-dimensional adaptive grid (α = 600)

http://dx.doi.org/10.1007/978-3-319-57846-0_10
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13.5.3 Results of Numerical Experiments

Calculationswere run for various radiuses Rm of the thermocouple bead. The radiuses
of the wire conductors were specified by the relation rm/Rm = 0.2 and rm/Rm =
0.75. The thermal parameters were taken as follows:

ρp = 1.6 [g/sm3], ρm = 8 [g/sm3], Cp = 0.3 [kal/g · K], Cm = 0.2 [kal/g · K],
λp = 0.00072 [kal/(sm · s · K)], λm = 0.16 [kal/(sm · s · K)],

where the indexes m and p are related to the material of the thermocouple and of the
surrounding substance, respectively. The temperature of the pyrolysis surface was
Ts = 650K, and the initial temperature was T0 = 300K.

The calculations were carried out up to the point when the pyrolysis surface
touched the thermocouple bead. The temperature at the center of the beadwas defined
by the formula

Tav =
∫∫

V

∫
T (x, y, z, t)dx dy dz /

∫∫

V

∫
dx dy dz,

while the relative discrepancy of the temperature measurement was determined as

δ = T∞ − Tav

T∞
· 100%,

where T∞ = T (0, ymax , zmax , t).
A total of two series of calculations were run, namely, for the pyrolysis velocities

rb = 0.1 [sm/s] and rb = 1 [sm/s]. The results are illustrated in Figs. 13.15, 13.16,

13.17, 13.18, 13.19 and 13.20 for the function δ(ξ), where ξ = Rm − xs(t)

Δ
is the

dimensionless distance between the pyrolysis surface and the thermocouple bead,

and Δ = λp

Cpρprb
is the width of the thermal front of the pyrolysis wave. The dotted

lines correspond to the quantity q

q =
[(

−λp
∂T

∂x

)∣∣∣x=xs

y=0

z=0

]
/
[(

−λp
∂T

∂x

)∣∣∣x=xs

y=ymax

z=zmax

]
.

In the first series of calculations, the width of the heat front was Δ = 150µm, and
the pyrolysis velocity was rb = 0.1 [sm/s], while in the second series, the width of
the heat front was Δ = 15µm, and the pyrolysis velocity rb = 1 [sm/s].

The figures show that the surface temperature discrepancy depends on the angle
α and the radius of the bead. Figures13.15 and 13.16, illustrating the results related
to the pyrolysis velocity rb = 1 [sm/s], demonstrate that the temperature discrepancy
decreases when the radius of the bead is increased. In particular, the temperature
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Fig. 13.15 Plot of δ(ξ) for
Rm = 45µm

Fig. 13.16 Plot of δ(ξ) for
Rm = 120µm

discrepancy is negative when Rm > 40µm because heating is delayed when the
width of the heat wave is larger than the size of the bead. When the pyrolysis front
nears the thermocouple, heat loss from the bead increases, whereas when ξ is small,
the heating of the bead increases, leading to a decrease of δ(ξ). This accounts for
the pike shape of the quantity δ(ξ) in Figs. 13.17, 13.18, 13.19 and 13.20, with its
maximum value in the interior of the interval ξ.

Analogous behaviour of δ(ξ), depicted in Fig. 13.21, occurs when the pyrolysis
velocity is low while the bead is large. When the quantities rm and Rm are subject to
the relation rm/Rm = 0.75 and rm is large, then themeasurement error is significantly
larger (Fig. 13.22), because, in this case, the heat transfer is faster from the bead.
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Fig. 13.17 Plot of δ(ξ) for
Rm = 12µm
(rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

Fig. 13.18 Plot of δ(ξ) for
Rm = 20µm
(rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

The results obtained show that the temperature data in the solidmaterial subsurface
layermay be incorrectwhen the thickness of the layer is of the same order as thewidth
of the heat wave front of the pyrolysis. Furthermore, heat transfer to the thermocouple
leads to a significant loss of heat from the pyrolysis surface when it is close to the
thermocouple, which can result in a change of the pyrolysis velocity near the bead.

The behaviour of this quantity is also dependent on the bead radius and pyrolysis
velocity, which may be an additional source of the temperature discrepancy.
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Fig. 13.19 Plot of δ(ξ) for
Rm = 45µm
(rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

Fig. 13.20 Plot of δ(ξ) for
Rm = 120µm
(rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

Conclusions

• Numerical experiments demonstrate that temperature measurements of solid sub-
stances by thermocouples may be highly inaccurate, and that the discrepancy is
dependent on both the pyrolysis velocity and the geometric size of the thermocou-
ple.

• The results obtained can be used for correcting temperature measurements of
pyrolized solids by thermocouples.
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Fig. 13.21 Plot of δ(ξ) for
Rm = 400µm
(rb = 0.1 [sm/s];
rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

Fig. 13.22 Plot of δ(ξ) for
Rm = 400µm
(rb = 0.1 [sm/s];
rm/Rm = 0.2). 1 − α = 00;
2 − α = 150; 3 − α = 450;
4 − α = 600

13.6 Numerical Modeling of Nanopore Formation
in Aluminium Oxide Films

13.6.1 Introduction

Fabrication of ordered nanostructures has received a great deal of attention due to
its potential application in various fields, such as in electronic, photonic, magnetic,
biochemical devices, etc. Anodic alumina is known as a typical nanoporous material
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that shows a tendency to form self-organized pore arrays of triangular symmetry,
one that has been extensively studied, especially with bulk aluminum foils. Alumina
pores grown with aluminum films that are deposited on foreign substrates would
potentially offer much broader application than those on bulk aluminum foils.

Although a general description of anodization electrochemistry can be found in
standard references, the precise chemical, physical, and electrical processes occurring
in porous oxide growth during aluminum anodization are still not well understood.
Mechanistic and kinetic investigations of the aluminum anodization system have
established the presence of two dynamic, coupled interfaces (metal oxide and oxide
electrolyte), but the nature of their coupling and their roles in the pore formation
mechanism remain largely unknown.

One such mechanism is the dependence of the activation energies of the interfa-
cial reactions on the Laplace pressure, arising at the curved interfaces due to surface
energy. Although the surface energy is known to have an important stabilizing influ-
ence on the development of patterns observed in other electrochemical systems, such
as porous silicon and electropolished aluminum, its effect on the formation of porous
aluminum oxide has not yet been examined.

Another possibly significant factor in porous aluminum oxide formation is the
elastic stress caused by the volume expansion associated with the oxidation reaction
at the metal-oxide interface.

13.6.2 Mathematical Model

One mathematical model of nanopore formation on the surface of aluminum oxide
was described in detail in Sample and Golovin (2006), Singh et al. (2006). Here, we
give a concise excerption related to the model from these papers.

Since the electrical conductivities of the aluminum and the electrolyte are much
larger than that of the oxide, it can be assumed that the main part of the voltage
drop occurs in the oxide layer. Consequently, the potential from the metal side of the
metal-oxide interface is fixed at the applied voltage V , and the potential from the
electrolyte side of the oxide-electrolyte interface is fixed at zero. The charge flux, or
current density, J in the oxide layer is given by

J = −σgradϕ,

where ϕ(x, y, z, t) is the electric potential and σ is the oxide conductivity that, for
simplicity, is assumed to be constant. The conservation of charge in the oxide layer,

div · J = 0,

then reduces to the Laplace equation

∇2ϕ = 0. (13.30)
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The perturbation of the electric field due to ion migration is neglected, and at the
metal-oxide interface, the effect of the electric double layer is ignored, as well as the
dependence of the oxidation reaction rate on the electric potential (due to the low
activation energy of the oxidation reaction). The potential at this interface is simply
fixed at the applied voltage,

ϕ = V on z = ξ1(x, y, t), (13.31)

where ξ1(x, y, t) is an evolving metal-oxide interface. At an oxide-electrolyte inter-
face ξ2(x, y, t), however, the double layer induces a jump in the potential across
the interface. The electric current across this interface is sustained by the transport
of oxygen or hydroxyl ions and depends exponentially on the potential jump, as
prescribed by the Butler–Volmer relation,

− σ
∂ϕ

∂n
= k+eαϕ − k−e−αϕ on z = ξ2(x, y, t), (13.32)

where k± are kinetic coefficients characterizing the interfacial current of oxygen or
hydroxyl ions produced by the forward (+) and reverse (−) reactions, respectively.
The constant α = qe/(2kBT ), where qe is the electron charge, kB is the Boltzmann
constant, T is the absolute temperature, and 1/2 is the symmetry factor, assumed
equal for the forward and reverse reactions. The differential operator ∂/(∂n) is the
normal derivative, where n is the outward normal pointing into the electrolyte for
the surface z = ξ2(x, y, t).

The normal velocity vn = (v1
n, v2

n) of an interface is given by

v1
n = aσ

∂ϕ

∂n
on z = ξ1(x, y, t),

v2
n = −b+k+eαϕ + b−k−e−αϕ on z = ξ2(x, y, t),

(13.33)

where a and b+, b− are Faradaic coefficients relating the rate of the interface motion
to the interfacial currents.

We now study the stability of the stationary basic state of the oxide layer. The
steady velocity vs is used to introduce a moving coordinate frame attached to the
planar metal-oxide interface. In this frame,

∂ls
∂t

= 0, ls = ξ2 − ξ1.

The stationary basic-state solution in the moving frame is perturbed as

ϕ = (U − Es) + ϕ̃(z)φ(x, y, t), ξ(1)(x, y, t) = 0 + ξ̃(1)φ(x, y, t),
ξ(2)(x, y, t) = ls + ξ̃(2)φ(x, y, t),

(13.34)
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where the hats denote the perturbations,φ(x, y, t) = eiq·x+ωt is the normalmode x =
(x, y), q = |q|, q = (qx , qy) is the wave vector, and qx and qy are the perturbation
wave numbers in the x and y directions, respectively.

We insert the expansions (13.34) into the governing equations (13.30)–(13.33),
linearize in the perturbed variables, and solve the resulting linear system to obtain
the dispersion relation in the form,

ω2 + A(q)ω + B(q) = 0, (13.35)

where the coefficients A(q) and B(q) are also functions of the physical parameters.
The two roots of the quadratic equation (13.35) describe two modes ω1(q) and

ω2(q). The wavelength selection exhibited in ω1(q) is determined by the balance
between the destabilizing effect of the electric-field-dependent chemical reactions
and the stabilizing effect of the surface energy, expressed through the dependence of
the activation energies on the Laplace pressure. The presence of the zero mode,
ω1(0) = 0, indicates the translation symmetry of the problem, and a long-wave
expansion of ω1(q) gives

ω1(q) = a1q
2 − a2q

4 for q � 1 . (13.36)

Finally, the solvability condition gives the Kuramoto–Sivashinsky equation

∂t u + a1∇2u + a2∇4u − vs

2
(∇u)2 = 0. (13.37)

Note that the coefficients a1 and a2 in (13.37) are determined by the long-wave
limit of the dispersion relation (13.36). The nonlinear term describes the correction
of the interface velocity projection in the z direction for a slightly slant interface.
The Kuramoto–Sivashinsky equation (13.37) is a generic equation that describes the
weakly nonlinear evolution of many systems characterized by translation invariance
and a monotonic instability with the long-wave spectrum of the type (13.36). Solu-
tions to the Kuramoto–Sivashinsky equation (13.37) are known to have the form
of spatiotemporally chaotic cells, splitting and merging, and having a well-defined
average size.

In the case of two variables x and y, Eq. (13.37) can be written as

ut = −a[uxx + uyy] − b[uxxxx + 2uxxyy + uyyyy] + c[uxux + uyuy]. (13.38)

Using periodic boundary conditions allows one to model the process on the whole
surface composed of equal d × d cells:

u(x + d, y, t) = u(x, y, t); u(x, y + d, t) = u(x, y, t).

The initial condition for (13.38) is defined as u(x, y, 0) = ls .
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Fig. 13.23 Scheme of
nanopore formation

We consider an axially symmetric problem whose domain D = {Γ1(r, t) ≤ x ≤
Γ3(r, t), Γ2(x, t) ≤ r ≤ Γ4} has left, right and bottom movable boundary segments,
shown schematically in Fig. 13.23. As the process is axially symmetric, the function
ϕ is dependent on x , r , that is, ϕ = ϕ(x, r), and consequently the Laplace equation
(13.30) in the coordinates x , r is presented as

∂2

∂x2
(rϕ) + ∂

∂r
(r

∂ϕ

∂r
) = 0 (13.39)

with boundary conditions

ϕ
∣∣
Γ1

= ϕ
∣∣
Γ2

= 0; ϕ
∣∣
Γ3

= V ; ∂ϕ

∂r

∣∣∣∣
Γ4

= 0, (13.40)

where V – is specified voltage.
Electric current density J c into the oxide layer is defined as

J c = −[A exp(kd Ec) − B exp(kcEc)]nc,

where Ec = |grad ϕ|, nc is the unit normal vector to the interface, A, B, kd , kc are
empirical coefficients.

Electric current density Jm from the oxide–metal interface Γ3 is defined as

Jm = J c
Em

Ec
,

where Em = |grad ϕ| on the interface Γ3.
Displacement of the electrolyte–oxide interface caused by J c, Jm is defined by

equations
dRc

dt
= [α A exp(kd Ec) − β B exp(kcEc)]nc, (13.41)

dRm

dt
= −γ Jm, (13.42)
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where Rc, Rm are the radius–vectors of the points at the electrolyte–oxide interface
and oxide–metal, respectively; α, β are coefficients satisfying Faraday relations; γ
is an empirical coefficient.

13.6.3 Numerical Approximation

Equation (13.39) with boundary conditions (13.40) was solved through an itera-
tive process. For this purpose, Eq. (13.39) was replaced by the following parabolic
equation:

∂ϕ

∂t
= ∂2

∂x2
(rϕ) + ∂

∂r

(
r
∂ϕ

∂r

)
, (13.43)

which was written in the integral form

∫

S

∂

∂t
ϕ dS −

∮

Γ

J d l = 0, (13.44)

where J = grad rϕ is the current flux, and l is a normal to the boundary segment Γ
of an area S. In the domain D, a two-dimensional quadrilateral grid was generated.
Equation (13.44) was approximated by the following scheme:

ϕn+1
i, j − ϕn

i, j

τ
Si, j − [

(J · l)n+1
i+1/2 − (J · l)n+1

i−1/2+
+(J · l)n+1

j+1/2 − (J · l)n+1
j−1/2

] = 0,
(13.45)

where τ is a time step.
For solving system (13.45), the following iterative scheme based on the introduc-

tion of a pseudo time s was used:

[ϕ
n+1,s+1
i, j − ϕn+1,s

i, j

τ1
+ ϕn+1,s

i, j − ϕn
i, j

τ
]Si, j − [

(J · l)n+1,s
i+1/2−

−(J · l)n+1,s
i−1/2 + (E · l)n+1,s

j+1/2 − (J · l)n+1,s
j−1/2

] = 0,
(13.46)

where Si, j is the area of a cell, ϕn
i, j is the middle value of ϕ on the nth layer, and τ

is the pseudo time step.
For a realization of (13.46), a splitting scheme was used:

δs+1/2 − δs

τ1
Si, j − Λ1δ

s+1/2 = ϕn+1,s
i, j − ϕn

i, j

τ
Si, j − [

(J · l)n+1,s
i+1/2

−(J · l)n+1,s
i−1/2 + (J · l)n+1,s

j+1/2 − (J · l)n+1,s
j−1/2

]
,

δs+1 − δs+1/2

τ1
Si, j − Λ2δ

s+1 = 0, ϕn+1,s+1 = ϕn+1,s + δs+1.

(13.47)
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Fig. 13.24 Computational
domain

Here, δs is a correction toϕ;Λ1,Λ2 are difference operators of second derivatives
related to corresponding directions. Boundary conditions for δs were specified as
follows: δs = 0 on Γ1, Γ2, Γ3, on Γ4 –“soft” boundary condition.

13.6.4 Grid Generation

For solving Eq. (13.39) numerically, an adaptive quadrilateral grid with node clus-
tering near the interface Γ2 was generated in D. A computational domain Ξ 2 was
specified as a rectanglewith a cut (see Fig. 13.24). The reference grid inΞ 2 is uniform
with square cells. The boundary segments Γ ′

1, Γ
′
2, Γ

′
3, and Γ ′

4 in the computational
domain Ξ 2 were mapped onto the corresponding boundary segments Γ1, Γ2, Γ3,
and Γ4 in the domain D. The corner point at the segment Γ ′

2 in Ξ 2 was mapped
on the point xm on the curve Γ2 in D. The point xm was defined in such way that
the cells were not too skewed (Fig. 13.25). For convenience, the interface Γ2 was
partitioned into two segments Γ2 and Γ ox

2 , Γ2 = Γ2 ∪ Γ ox
2 . The nodes of the refer-

ence grid in Ξ 2 were mapped in the domain D by means of the numerical solution
of two-dimensional inverted diffusion equations (11.15) for n = 2 with respect to a
spherical control metric:

g
sξ
22

∂2sk

∂ξ1∂ξ1
− 2gsξ12

∂2sk

∂ξ1∂ξ2
+ g

sξ
11

∂2sk

∂ξ2∂ξ2
= J 2

Z [u](s)
∂Z [u](s)

∂sk
,

k = 1, 2,
(13.48)

where s1, s2 is identified with x , r , respectively.
The control function Z(u(s)) for providing grid clustering near the interfaceΓ2 =

Γ2 ∪ Γ ox
2 was defined in the following form:

Z [u(s)] = u1(s)u2(s),
u1(s) = α + (ρmin)

2, 10−4 ≤ α ≤ 10−2,

u2(s) = β + (ρoxmin)
1.2, 10−2 ≤ β ≤ 10−1,

ρmin = min
i

ρ(s, arrayi ),

ρoxmin = min
j

ρ(s, arrayoxj ),

http://dx.doi.org/10.1007/978-3-319-57846-0_11


13.6 Numerical Modeling of Nanopore Formation in Aluminium Oxide Films 517

where arrayi and array
ox
j are discretizations of Γ2 and Γ ox

2 , respectively, α and β are
parameters.

13.6.5 Numerical Experiments

Numerical computation of a nonstationary nanopore formation was carrying out in
the following way. It was assumed initially that the nanopore shape (interface Γ2)
was specified. Then, an adaptive numerical grid was generated in the domain D,
and Eq. (13.40) was solved on this grid, after which with the help of Eqs. (13.41)
and (13.42), new locations of interfaces Γ1, Γ2, and Γ3 were defined at time t + Δt .
Then, a new grid was generated in D and the process continued on. The number of
nodes was taken from 3600 up to 7500, which provided a calculation accuracy on
nearly 0.5%.

Figures 13.26, 13.27 and 13.28 demonstrate some numerical results obtained by
Rychkov (Liseikin et al. 2011a, b) at time t = 0, t = 10min, and t = 20min.

Fig. 13.25 Fragment of a numerical grid

Fig. 13.26 Illustrations: a – isolines of field potential, b – numerical grid at time t = 0 min
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Fig. 13.27 Illustrations: a – isolines of field potential, b – numerical grid at time t = 10 min

Fig. 13.28 Illustrations: a – isolines of field potential, b – numerical grid at time t = 20 min

13.7 Grids for Boundary Immersing Methods

13.7.1 Introduction

Despite the considerable success achieved in grid-generation technologies, develop-
ment of more efficient and sophisticated algorithms and computer codes for generat-
ing grids remains an important problem. Serious difficulties arise in grid generation
in domainswith complicated boundary geometries, especially in geometrieswith dis-
cretely defined segments and in cases when grids have to be adapted to singularities
such as boundary and interior layers, shock-waves, detonation waves, combustion
fronts, high-speed jets, and phase-transition zones. For domains with discretely spec-
ified boundaries, popular methods are based on applying the Delaunay criterion to
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the whole domain, or, if this is not possible, to some part of the domain. Such meth-
ods involve triangulation of the domain boundary, followed by triangulation of the
interior of the domain.

For a domain with discretely specified boundary sections, an approach to grid
generation is described here that does not involve the initial triangulation of its
boundary. In this approach, a global numerical grid is first constructed in a larger
domain, with mesh refinement near the specified boundary points. Next, boundary
and interior cells of the domain under consideration are selected, whichwill comprise
its numerical grid with immersed boundary points. As a result, a grid with thin cells
near the boundary is obtained. The thinner these cells, the better the approximation
of the domain. The global grid may be generated by using the inverted diffusion
equations for a spherical metric tensor. Following this approach, one can generate
gridswith the help of other equations, for example, Beltrami equations. The approach
is also suitable for domains with boundaries specified by an implicit analytic function
ϕ(x) = 0. Originally, the approach was formulated in Kofanov and Liseikin (2013).

This approach to grid generation is also suitable for generating grids for solving
problems through boundary immersing methods which were originally founded by
Peskin (1972), who developed the technique in 1972 to study blood flow around
heart valves.

The term Immersed BoundaryMethods designates the class of boundary methods
for which the calculations are performed on a grid that does not conform to the
shape of a domain. The boundary conditions on the domain are not imposed directly;
instead, an extra term, called the forcing function, is added to the governing equations
or the discrete numerical scheme is altered near the boundary.

13.7.2 Formulation of the Method

In accordance with Chap.11 the inverted diffusion equations

Bξ
n [xk] = J 2 1

Z(x)

∂

∂xk
Z(x) , k = 1, . . . , n , (13.49)

where

Bξ
n [y] = J 2

n∑
i, j=1

g
i j
ξx

∂2y

∂ξi∂ξ j
, J = det

{∂xi

∂ξ j

}
,

g
i j
ξx =

n∑
k=1

∂ξi

∂xk
∂ξ j

∂xk
, i, j = 1, . . . , n ,

can be used for generating grids in an n-dimensional domain Xn with refinement in
the zone where the control function Z(x) is small and with rarefaction in the zone
where Z(x) is large. The control function in the examples considered in Chap.11
was specified as

http://dx.doi.org/10.1007/978-3-319-57846-0_11
http://dx.doi.org/10.1007/978-3-319-57846-0_11
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Z(x) =
5∑

i=1

ciσi [ϕ(x)], ci ≥ 0, (13.50)

and

Z(x) =
5∑

i=1

ci
σi [ϕ(x)] , ci ≥ 0, (13.51)

where σi (t) are the following layer-type functions:

σ1(t) = |tanh(t/ε)|α + ε1, α > 0, σ2(t) = 1 − e−|t |/ε + ε1,

σ3(t) = 1 − εβ

(ε + |t |α)β
+ ε1, σ4(t) = |t |α + ε1, α,β > 0,

σ5(t) = ln(1 + |t |αε−k)

ln(1 + (T0)αε−k)
+ ε1, α, k > 0,

(13.52)

ε and ε1 are small positive constants, i.e., 0 < ε, ε1 � 1.With such specification, the
grid obtained by solving Eq. (13.49) is refined if the control function Z(x) is defined
by (13.50) and rarefied if Z(x) is defined by (13.51) in the zones where the values
of ϕ(x) are small. In particular, for generating a grid with refinement near several
points xi , i = 1, . . . , N , the function ϕ(x) in formula (13.50) can be defined as

ϕ(x) = min
i=1,...,N

ρ(x, xi ). (13.53)

To generate a grid with rarefaction near the same points, the functionϕ(x) in formula
(13.51) can be defined by the same formula (13.53). In particular, functions (13.50)
and (13.53) can be used to generate grids with refinement near a discretely specified
set in the domain Xn .

To solve Eq. (13.49), the values of function (13.53) have to be found at all grid
nodes. Accordingly, for each grid node, the nearest point from the given set xi ,
i = 1, . . . , N has to be found at each iteration step. The more points in this set, the
higher the computational costs, which are especially critical in the three-dimensional
case, when the grid cells can number in the billions. However, since the set of points
xi , i = 1, . . . , N , is given and remains unchanged, the search for a minimum in
(13.53) can easily be parallelized over this set at a single iteration step. Moreover,
since the shift in the grid after each iteration step is small, there is no need to verify all
the points in the set in order to find the nearest one to each node at the next iteration.
For example, for each xi , i = 1, . . . , N , we can store the set of points lying in its
δ-neighborhood for some δ > 0 and verify only the points from this set, since the
other points are farther away. In this approach, more storage is needed for such sets,
but the CPU time required for grid generation can be reduced significantly.

Examples of such zones, which are typically found through numerical compu-
tations, are interfaces between different media, high-speed jets, combustion fronts,
shock waves, detonation waves, etc. Let Γ denote the boundary of such a zone in
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Fig. 13.29 A section of an adaptive grid with node clustering in the vicinity of a valve and blood
vessel (left). A fragment of the heart valve surface (right)

some domain Xn and let B be a discrete set of points approximating Γ . To generate
a grid in Xn with refinement near Γ , there is no need to first construct cells approx-
imating Γ and then add cells of higher dimension covering the domain Xn . Instead,
we can generate a global grid in Xn with refinement near B, as was proposed above.
In this case, the cells containing the points of B approximate Γ better when the grid
near B is finer and when Γ is better approximated by B.

This approach can be used to generate a grid in a physical domain Xn whose
boundary is specified by a discrete set of points B. For engineering applications,
the boundary surfaces defined by discrete data are widely adopted, for instance, in
the presentations of complex molecules, human organs, and visualizations. For this
purpose, the set B is enclosed in a domain Y n of a simple shape, for example, in an
n-dimensional parallelepiped (see Fig. 13.29 for a heart vessel with the valve closed).
Then, a global grid with refinement in the neighborhood of B is constructed in this
domain. Next, two sets of cells are determined, namely, the cells approximating a
thin layer covering the boundary of Xn and the cells lying inside Xn . These cells
comprise a grid in Xn . This approach to grid generation resembles the well-known
octreemethod (Yerry and Shephard 1985). Note that the discrete 3D-models required
for the generation of the adaptive grids demonstrated below are freely available
for research purposes and can be found at http://www-roc.inria.fr/gam.ma/gamma/
download/.

With an arbitrary chosen set B approximating the boundaryΓ in a zone of interest
within a domain Xn , we may not generate an adequately refined mesh. This occurs,
for example, if there is a point that is far away from the nearest point in B, in which
case, the mesh refinement lines go around this point and poorly approximate Γ

http://www-roc.inria.fr/gam.ma/gamma/download/
http://www-roc.inria.fr/gam.ma/gamma/download/
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Fig. 13.30 Numerical grid for rarefied points

(Fig. 13.30). In such situations, more points have to be added to B, which can be
accomplished by triangulating Γ by the points from B and then adding points to the
resulting cells by applying standardmethods. These operations can be executed using
software packages, most of which can be found at http://www.robertschneiders.de/
meshgeneration/software.html.

13.7.3 Determination of Boundary Cells

The union of all cells, each including at least one point from the set B approximating
the boundary Γ of Xn or a certain zone of Xn , may not include all the points of Γ . In
this case, for a more complete choice of cells approximating the layer covering Γ ,
we can set a small constant c > 0 and choose all the nodes of cells separated from
B by a distance less than c. The grid cells containing these nodes comprise the set
of cells approximating the layer covering Γ . The resulting configuration is a narrow
strip containing Γ in the case of a two-dimensional domain, and a thin-walled layer
in the case of a three-dimensional domain. The strip or the wall is thinner for smaller
values of c. However, if c is too small, we can obtain a configuration with holes. Note
also that the width of the strip, or the thickness of the wall, depends substantially
on the constant ε in equations (13.12) and on the steepness of the function σi (t)
near t = 0. The functions σ1(t) and σ2(t) have the greatest steepness; hence, they
ensure the smallest values of the width or thickness. Figure13.31 demonstrates a
boundary grid simulating the walls of an aorta and carotid arteries. The coordinates
of the boundaries were taken from the site http://www-roc.inria.fr/gamma/gamma/
download/ANATOMY/index0.php. Figure13.32 illustrates a boundary grid for an
aircraft.

http://www.robertschneiders.de/meshgeneration/software.html
http://www.robertschneiders.de/meshgeneration/software.html
http://www-roc.inria.fr/gamma/gamma/download/ANATOMY/index0.php
http://www-roc.inria.fr/gamma/gamma/download/ANATOMY/index0.php
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Fig. 13.31 Hexahedral mesh modelling the walls of an aorta and carotid arteries

Fig. 13.32 A surface of an SU-34 aircraft formed by hexahedral cells

13.7.4 Algorithm for Determining Interior Cells

In the considered algorithm for mesh generation in Xn , we know all the cells adjacent
to a given cell, i.e., the cells sharing a face in the case of a three-dimensional domain,
and an edge in the case of a two-dimensional domain. If this cell is interior, it is
adjacent to six cells in the three-dimensional case and to four cells in the two-
dimensional case. Therefore, after the boundary cells of Xn are chosen, to select
all interior cells of this domain, we begin by finding at least one interior cell. The
other cells are found by means of the adjacency relationship, in a manner similar
to the advancing-front method, adjacent cells are sequentially added to the set of
interior cells if they do not belong to the set of chosen boundary cells. If Xn is a
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single-connected domain, all its interior cells are found in this way. If Xn is multi-
connected, then this operation is executed in each single-connected subdomain.

Alternatively, we can obtain the interior cells of Xn by using the same approach to
find cells lying outside of Xn and those covering the boundary of Xn , and eliminating
them from the set of all cells.

13.7.5 Mesh Adaptation

In the above algorithm for mesh generation, cells are refined near a discretely defined
boundary, specifically, near the boundary of the domain. Mesh refinement in other
zones can be achieved by applying the same inverted diffusion equations (13.49)
with

Z(x) =
k∏

l=1

Zl(x),

where Zl(x) is a control function for mesh refinement in the lth zone. Figures13.33
and 13.34 give an example of such a grid generated in the domain containing an
aircraft with mesh refinement near the boundary of the aircraft and around a surface
that qualitatively simulates a shock wave.

Fig. 13.33 Longitudinal and transversal sections of an adaptive grid in the vicinity of an aircraft
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Fig. 13.34 Fragments of an adaptive grid in the vicinity of an airplane

This subsection only gives examples of hexahedral three-dimensional grids. Grids
with cells of other shapes can be generated in a similar manner. For this purpose, a
reference grid with the required cells is to be specified in the computational domain
Ξ n .
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Cylindrical block, 22

D
Deformation rate, 73
Delaunay

cavity, 456
criterion, 450
triangulation, 450
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Density, 68
Diffeomorphism, 204
Dirichlet tessellation, 451
Divergence theorem, 259
Domain

concave, 206
convex, 204, 206
decomposition, 37, 39
intermediate, 129
parametric, 48, 293
physical, 6, 130

E
Elasticity, 73
Empty-circumcircle property, 450
Energy, 133, 230
Energy density, 284
Equation

algebraic, 10
Beltrami, 234
biharmonic, 231, 248
boundary layer, 26
Cauchy–Riemann, 237
convection–diffusion, 68
diffusion, 368
elliptic, 202
Euler–Lagrange, 258
gas-dynamics, 481
Gauss, 308
generalized Laplace, 367
hyperbolic, 31, 236
inverted, 213
Laplace, 68, 203
linear wave, 79
Navier–Stokes, 26, 84
parabolic, 30, 78, 236
Poisson, 30, 66
quasilinear, 344
Serret–Frenet, 89
Weingarten, 309

Equidistribution, 137, 138
Euclidean

metric, 285
space, 285

Euler theorem, 8
Exponential singularity, 144

F
Face nonorthogonality, 110
First fundamental form, 95, 310
Function

admissible, 33, 256, 257
basic, 128, 150
blending, 29, 176, 189, 190
boundary contraction, 163
contraction, 129
control, 31, 213, 216, 220, 229, 230
distribution, 39
Eriksson, 160
exponential, 143, 436
general, 188
interior contraction, 163
layer-type, 436
local stretching, 161
logarithmic, 145, 436
monitor, 137
power, 144, 151, 436
spline, 188
stretching, 128, 130
tangent, 160
univariate, 130, 135, 195
weight, 137

Functional
adaptation, 276, 278
diffusion, 277, 358
dimensionless, 265
discrete, 407
eccentricity, 271
energy, 285, 287, 306
grid torsion, 272
grid warping, 272
inhomogeneous diffusion, 287
Jacobian-weighted, 282, 283
metric-weighted, 278, 289
normal-length-weighted, 276
orthogonality, 316
smoothness, 269, 308, 336
tangent-length-weighted, 276

G
Gauss

curvature, 98, 102, 112
identities, 309
relation, 62

Generalized cavity, 453
Gradient, 132, 156
Grid

adaptive triangular, 196
balanced, 379
block-structured, 21
boundary-conforming, 11, 19
Cartesian, 18
characteristic, 87, 255
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coordinate, 18, 19
deformation, 10
density, 117, 316
distribution, 175
elliptic, 201
equidistant, 238
hybrid, 26
movement, 82, 245
moving, 19, 73
multi-block, 444
organization, 9
quality, 29, 87
quasiuniform, 40
reference, 47, 300
size, 7, 265
smoothing, 444
structured, 18, 19, 26, 87
topology, 23
uniform, 15, 298
unstructured, 20

H
Harmonic function theory, 284
Homeomorphic, 303
Hyper-ellipsoid, 274
Hypersurface, 327

I
Incircle criterion, 450
Incremental triangulation, 453
Inserting cavity, 456
Interactive, 169
Interactive system, 38
Interpolation

bidirectional, 178
Hermite, 191–193
Lagrange, 186, 189, 192
outer boundary, 180, 184
three-dimensional, 175, 179
transfinite, 175, 179
two-boundary, 177, 179
unidirectional, 176, 180

Intersection, 97
Intersection angle, 224
Invariant, 101
Inverse, 49, 53, 88

J
Jacobi matrix, 48
Jacobian, 48, 51

L
Lagrange polynomial, 187
Layer

boundary, 134, 144, 150
combined, 145
exponential, 152
interior, 132, 146
mixed, 131
power, 152
shear, 127
width, 151, 153

Layer width , 437
Left-handed orientation, 51
Length, 88

M
Mach number, 230
Manifold

monitor, 362
Mapping approach, 14
Marching, 235, 236
Maximum principle, 30, 204, 216, 224
Measure

of aspect-ratio, 110
of deformation, 122
of departure, 110
of deviation, 106
of deviation from conformality, 121
of error, 138, 272
of grid clustering, 308
of grid concentration, 116
of grid density, 263
of grid nonorthogonality, 115
of grid skewness, 266
of grid spacing, 239
of grid torsion, 122
of grid warping, 122
of lengths change, 121
of line bending, 90
of quality, 87

Method
advancing-front, 471
algebraic, 29
Bowyer–Watson, 451
deformation, 246
Delaunay, 471
diagonal swapping, 458
differential, 29, 296
elliptic, 201
finite-difference, 9
finite-volume, 9
generalized Bowyer–Watson, 453
hybrid grid, 32, 242
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hyperbolic, 32, 235
incremental, 453
minimization of functional, 405, 409
octree, 36
of lines, 243
stretching, 128, 129, 131
variational, 29, 275

Metric tensor, 51, 55
Monitor surface, 93, 98, 304

N
Nagumo inequality, 135

O
Orthogonality, 119, 219, 220
Orthonormal basis, 90, 334

P
Partition, 26
Point distribution, 188, 212, 218
Pressure, 71, 230
Principal

component, 454
minor, 101, 103

Problem
boundary value, 132, 232, 340
Dirichlet, 135, 205
ill-posed, 241, 270
initial value, 142, 236
nonstationary, 244
well-posed, 33, 237, 238, 255, 260

Product
cross, 58
dot, 51
tensor, 61, 177

R
Radius of curvature, 89
Rate of twisting, 91
Reaction-diffusion-convection process , 134
Recursive form of interpolation, 179
Relative eccentricity, 105

Reynolds number, 128
Riemannian manifold, 40
Right-handed orientation, 51

S
Second fundamental form, 96, 112, 310
Shell thickness, 128, 131
Shock wave, 127, 132
Simplex, 5
Singularity, 136, 143
Skewness, 87, 109
Source term, 31, 213, 219, 224
Stationary point, 255
Straightness, 106, 220
Stretching, 87, 128, 129
Surface

metric tensor, 94
warping, 96

T
Torsion, 87, 90, 91
Transformation

algebraic, 196, 197
coordinate, 15
polar, 196
univariate, 129, 131, 135, 160

Triad, 59, 310
Trial functions , 155
Turbulence, 7, 26

V
Variational principle, 257
Vector

binormal, 89
curvature, 89, 105, 107
normal, 52, 60, 93
tangential, 50, 51, 88

Viscosity, 71, 128, 133
Voronoi

diagram, 451
polygon, 455
polyhedra, 452

Vorticity, 230
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