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Abstract. Psychological experiments on syllogistic reasoning have
shown that participants did not always deduce the classical logically valid
conclusions. In particular, the results show that they had difficulties to
reason with syllogistic statements that contradicted their own beliefs. We
consider a syllogistic reasoning task carried out by Evans, Barston and
Pollard, who investigated the belief-bias effect with respect to syllogisms.
We propose a formalization of the belief-bias effect for human syllogistic
reasoning under the Weak Completion Semantics, a logic programming
approach that aims at adequately modeling human reasoning.

1 Introduction

Evans et al. [15] carried out a psychological study about deductive reasoning,
which demonstrated possibly conflicting processes in human reasoning. Partici-
pants were presented different syllogisms for which they had to decide whether
they accepted these syllogisms as valid. Consider Svit :

Premise 1 No nutritional things are inexpensive.
Premise 2 Some vitamin tablets are inexpensive.
Conclusion Some vitamin tablets are not nutritional.

The Conclusion necessarily follows from the premises under classical logic.
However, about half of the participants said that the syllogism was not valid.
They were explicitly asked to logically validate or invalidate various syllogisms,
but did not seem to have the intellectual capability to do so. Even worse, they
were not even aware about their inabilities. Participants reflectively read the
instructions and understood well that they were required to reason logically
from the premises to the conclusion. However, the results show that their intu-
itions were stronger and delivered a tendency to say ‘yes’ or ‘no’ depending on
whether the syllogism was believable [14]. The responses of participants for var-
ious syllogisms, which differed with respect to their validity and whether they
were believable in the contextual setting, were evaluated in [15]. Four of them
are depicted in Table 1. The first two premises of all four cases are of the same
logical form, namely No A are B. Some C are B. The first two cases differ from
the last two cases with respect to the conclusions: In the first two cases the
conclusions correspond to the logical form Some C are A and in the last two
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Table 1. Four types of syllogisms taken from [11]. The percentages of the participants
that accepted the syllogism as being valid are shown in the last column.

Type Case %

Sdog Valid and believable No police dogs are vicious 92

Some highly trained dogs are vicious

Some highly trained dogs are not police dogs

Svit Valid and unbelievable No nutritional things are inexpensive 46

Some vitamin tablets are inexpensive

Some vitamin tablets are not nutritional

Srich Invalid and unbelievable No millionaires are hard workers 8

Some rich people are hard workers

Some millionaires are not rich people

Scig Invalid and believable No addictive things are inexpensive 92

Some cigarettes are inexpensive

Some addictive things are not cigarettes

cases the conclusions correspond to the logical form Some A are C. The first two
syllogisms are indeed valid under classical logic, whereas the last two are not.
However, as the last column shows, the percentage of the participants that vali-
dated the syllogism, does not necessarily comply with the results under classical
logic. Evans, Barston and Pollard asserted that the participants were influenced
by their own beliefs, their so-called belief bias.

Khemlani and Johnson-Laird [24] have compared the predictions of 12 cog-
nitive theories to participants’ responses in syllogistic reasoning. The Verbal
Model Theory [28] performed best with an accurate prediction of 84%, closely
followed by the Mental Model Theory [21], which achieved 83%. Recently, [3]
developed a logical form for the representation of syllogisms under the logic pro-
gramming approach, the Weak Completion Semantics, and predicted even 89%
of the participants’ responses.

The Weak Completion Semantics is a new cognitive theory, which originates
from [30], but is mathematically sound [19], and has been successfully applied –
among others – to the suppression task [8], the selection task [9] to reasoning
about conditionals [5,7] and to spatial reasoning [6]. As the Weak Completion
Semantics aims at modeling human reasoning adequately and predicted well
the participants’ responses in syllogistic reasoning, a natural question to ask, is
whether the belief-bias effect in syllogistic reasoning can be modeled within this
approach.
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After briefly discussing the belief-bias effect, we introduce the Weak Comple-
tion Semantics. Taking [3,4] as starting point, Sects. 4 and 5 present six principles
for modeling quantified statements in human reasoning and show their represen-
tations in logic programs. Finally, Sect. 6 presents how the belief-bias effect can
be modeled under the Weak Completion Semantics by discussing the four cases
in Table 1.

2 The Belief-Bias Effect

Evans et al. [13] distinguish between the negative and the positive belief bias:
The negative belief bias describes the case when the support for an unbelievable
conclusion is suppressed. On the other hand, the positive belief bias describes the
case when the acceptance for a believable conclusion is raised. Consider again
Table 1: The negative belief bias happens for 46% of the participants in the case
of Svit and the positive belief bias happens for 92% of the participants in the
case of Scig .

As pointed out in [16], Wilkins [31] already observed that syllogisms which
conflict with our beliefs are more difficult to solve. Since then, various theo-
ries have tried to explain why humans deviate from the classical logically valid
answers. Some conclusions can be explained by converting the premises as pro-
posed in [2] or by assuming that the type of the premises creates an atmosphere
which influences the acceptance for the conclusion [16,32]. Johnson-Laird and
Byrne [22] proposed the mental model theory [21], which additionally supposes
the search for counterexamples when validating the conclusion. Later, Stenning
and van Lambalgen [30] explain why certain aspects influence the interpretations
made by humans when evaluating syllogisms and discuss this in the context of
mental models. Evans et al. [10,15] proposed a theory, which in the literature
is sometimes referred to as the selective scrutiny model [1,16]. First, humans
heuristically accept any syllogism having a believable conclusion, and only pro-
ceed with a logical evaluation if the conclusion contradicts their belief. Adler and
Rips [1] claim that this behavior is rational in the sense of efficient belief mainte-
nance. Yet another approach, the selective processing model [12], accounts only
for a single preferred model: If the conclusion is neutral or believable, humans
attempt to construct a model that supports it. Otherwise, they attempt to con-
struct a model that rejects it.

According to Garnham and Oakhill [16] the belief-bias effect can take place
at several stages: First, beliefs can influence our understanding of the premises.
Second, in case a statement contradicts our belief, we might search for alternative
models and check whether the conclusion is plausible. This seems to comply with
Stenning and van Lambalgen’s proposal to model human reasoning by a two
step procedure [30]. The first step, the representational part, determines how
our beliefs influence the understanding of the premises. The second step, the
procedural part, determines whether we search for alternative models based on
the plausibility of the conclusion.

In this paper we will follow up on this distinction when modeling the belief-
bias effect.
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Table 2. �, ⊥, and U denote true, false, and unknown, respectively.

F ¬F
� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ � U ⊥
� � � �
U � U U
⊥ � U ⊥

← � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔ � U ⊥
� � U ⊥
U U � U
⊥ ⊥ U �

3 Weak Completion Semantics

The general notation, which we will use in the paper, is based on [18,25].

3.1 Logic Programs

We restrict ourselves to datalog programs, i.e., the set of terms consists only of
constants and variables.

A ← L1 ∧ . . . . . . ∧ Ln. (1)
A ← �. (2)
A ← ⊥. (3)

A is an atom and the Li with 1 ≤ i ≤ n are literals. The atom A is called
head of the clause and the subformula to the right of the implication symbol is
called body of the clause. If the clause contains variables, then they are implicitly
universally quantified within the scope of the entire clause. A ground clause is a
clause not containing variables. Clauses of the form (2) and (3) are called facts
and assumptions, respectively. The notion of falsehood appears counterintuitive
at first sight, but programs will be interpreted under their (weak) completion
where we replace the implication by the equivalence sign. We assume a fixed set of
constants, denoted by C, which is nonempty and finite. constants(P) denotes the
set of all constants occurring in P. If not stated otherwise, we assume that C =
constants(P). gP denotes ground P, which means that P contains exactly all
the ground clauses with respect to the alphabet. atoms(P) denotes the set of all
atoms occurring in gP. If atom A is not the head of any clause in P, then A is
undefined in gP. The set of all atoms that are undefined in gP is undef(P).

3.2 Three-Valued �Lukasiewicz Logic

We consider the three-valued �Lukasiewicz logic [26], for which the corresponding
truth values are �, ⊥ and U, which mean true, false and unknown, respectively.
A three-valued interpretation I is a mapping from formulas to the set of truth
values {�,⊥,U}. The truth value of a given formula under I is determined
according to the truth tables in Table 2. We represent an interpretation as a
pair I = 〈I�, I⊥〉 of disjoint sets of atoms where I� is the set of all atoms that
are mapped to � by I, and I⊥ is the set of all atoms that are mapped to ⊥
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by I. Atoms, which do not occur in I� ∪ I⊥, are mapped to U. Let I = 〈I�, I⊥〉
and J = 〈J�, J⊥〉 be two interpretations: I ⊆ J iff I� ⊆ J� and I⊥ ⊆ J⊥.
I(F ) = � means that a formula F is mapped to true under I. M is a model of
gP if it is an interpretation, which maps each clause occurring in gP to �. I is
the least model of gP iff for any other model J of gP it holds that I ⊆ J .

3.3 Reasoning with Respect to Least Models

Consider the following transformation for P: 1. Replace all clauses in gP with
the same head A ← body1, A ← body2, . . . by the single expression A ←
body1 ∨ body2,∨ . . . . 2. Replace all occurrences of ← by ↔. The resulting set of
equivalences is called the weak completion of P (wcP). The model intersection
property holds for weakly completed programs, which guarantees the existence
of a least model for every P [20]. Stenning and van Lambalgen [30] devised the
following operator, which has been generalized for first-order programs in [19]:
Let I be an interpretation in ΦP(I) = 〈J�, J⊥〉, where

J� ={A | there exists A ← body ∈ gP and I(body) = �},
J⊥ ={A |A �∈ undef(P) and for all A ← body ∈ gP we find that I(body) = ⊥}.

As shown in [19] the least fixed point of ΦP is identical to the least model of the
weak completion of gP under three-valued �Lukasiewicz logic (lmwcP). Starting
with I = 〈∅, ∅〉, lmwcP is computed by iterating ΦP . Given a program P and a
formula F , P |=wcs F iff lmwcP(F ) = � for formula F .

3.4 Integrity Constraints

A set of integrity constraints IC comprises clauses of the form U ← body ,
where body is a conjunction of literals. Given P and IC, P satisfies IC iff for
all U ← body ∈ IC, we find that P |=wcs U ← body (i.e. P �|=wcs body).

3.5 Abduction

We extend two-valued abduction [23] for three-valued semantics. The set of
abducibles AP may not only contain facts but can also contain assumptions:

AP = {A ← � | A ∈ undef(P)} ∪ {A ← ⊥ | A ∈ undef(P)}.

Let 〈P,AP , IC, |=wcs〉 be an abductive framework, E ⊂ AP and observation O
a non-empty set of literals.

O is explained by E given P and IC iff P ∪ E |=wcs O and P ∪ E |=wcs IC.
O is explained given P and IC iff there exists E s.t. O is explained by E given

P and IC.
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We assume that explanations are minimal, i.e. there is no other explanation E ′ ⊂
E for O. We distinguish between skeptical and credulous reasoning in abduction
as follows:

F follows skeptically from P, IC and O iff O can be explained given P and IC,
and for all minimal E for O given P and IC, it holds that P ∪ E |=wcs F .

F follows credulously from P, IC and O iff there exists a minimal E for O given
P and IC, and it holds that P ∪ E |=wcs F .

In the following, we are interested in deriving skeptically entailed information.
The entailment relation |=s

wcs is an abbreviation to express that a formula follows
skeptically, i.e. P, IC,O |=s

wcs F denotes that F follows skeptically from P, IC
and O.

4 Six Principles on Quantified Statements

We introduce six principles for developing the representation of quantified state-
ments and reasoning with respect to them, originally developed in [3]. Some are
motivated by ideas from the area of Logic Programming and others are motivated
by findings from Cognitive Science.

4.1 Licenses for Inferences (lice)

Stenning and van Lambalgen [30] propose to formalize conditionals in human
reasoning not by inferences straight away, but rather by licenses for inferences.
For instance, the conditional ‘if y(X) then z(X)’ is represented by the program,
which consists of

z(X) ← y(X) ∧ ¬abyz(X). abyz(X) ← ⊥.

The first clause states that ‘z(X) if y(X) and ¬abyz(X)’. The second clause
represents the closed-world assumption with respect to abyz(X), where abyz(X)
is an abnormality predicate. We call this principle licenses for inferences (lice).

4.2 Negation by Transformation (trans)

The logic programs we consider under the Weak Completion Semantics do not
allow heads of clauses to be negative literals. In order to represent a negative
conclusion ¬y(X), we introduce an auxiliary formula y′(X) together with the
clause y(X) ← ¬y′(X) and the integrity constraint U ← y(X) ∧ y′(X). This
is a widely used technique in logic programming. Together with the principle
introduced in Sect. 4.1 (lice), this additional clause is extended by the following
two clauses:

y(X) ← ¬y′(X) ∧ ¬abnyy(X). abnyy(X) ← ⊥.

Additionally, the integrity constraint U ← y(X) ∧ y′(X) states that an object
cannot belong to both, y and y′. We call this principle negation by transformation
(trans).
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4.3 Existential Import and Gricean Implicature (import)

Normally, we do not quantify over objects that do not exist. Accordingly, ‘all
y are z ’ implies ‘some y are z ’, which is referred to as existential import and
implied by Gricean implicature [17]. Existential import is assumed by the theory
of mental models [21] or mental logic [29]. Likewise, humans require existential
import for a conditional to be true [30]. Furthermore, the quantifier ‘some y are
z ’ often implies that ‘some y are not z ’, which again is implied by the Gricean
implicature [24]: Someone would not state ‘some y are z ’ if that person knew
that ‘all y are z ’. As the person does not say ‘all y are z ’ but ‘some y are z ’, we
assume that ‘not all y are z ’, which in turn implies ‘some y are not z ’. We call
this principle existential import and Gricean implicature (import).

4.4 Unknown Generalization (unkGen)

Humans seem to distinguish between ‘some y are z ’ and ‘some z are y ’ [24].
However, if we would represent ‘some y are z ’ by ∃X(y(X) ∧ z(X)) then this is
semantically equivalent to ∃X(z(X)∧y(X)) because conjunction is commutative
in first-order logic. Likewise, as we have discussed in Sect. 4.3, humans seem to
distinguish between ‘some y are z ’ and ‘all y are z ’. Accordingly, if we only
observe that an object belongs to y and z then we do not want to conclude
both, ‘some y are z ’ and ‘all y are z ’. Therefore we introduce the following
principle: If we know that ‘some y are z ’ then there must not only be an object,
which belongs to y and z (by Gricean implicature) but there must be another
object, which belongs to y and for which it is unknown whether it belongs to z.
We call this principle unknown generalization (unkGen).

4.5 No Derivation Through Double Negation (dNeg)

Under the Weak Completion Semantics, a positive conclusion can be derived
from double negation within two conditionals. Consider the following two con-
ditionals with each having a negative premise: If not x, then y. If not y then z.
Additionally, assume that x is true. Let P = {z ← ¬y, y ← ¬x, x ← �} be the
program that encodes this information. The lmwcP is 〈{x, z}, {y}〉: x is true
because it is a fact and y is false because the negation of x is false. z is true by
the negation of y. However, considering the results in [24], humans seem not to
draw conclusions through double negatives. Accordingly, we block them with the
abnormalities introduced by principle (import) in Sect. 4.1. We call this principle
no derivation through double negation (dNeg).

4.6 Search for Alternative Models (searchAlt)

Consider again Srich and Sadd : The premises are about things which contra-
dict the conclusion. We assume that in case there seems no conclusion possible,
humans might try to search for alternative models by explaining some part of
the information that is presented. We call this principle Search for Alternative
Models (searchAlt).
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5 Representation of Quantified Statements as Programs

Based on the first five principles of the previous section, we encode the quanti-
fied statements in logic programs, where y and z will later be replaced by the
properties of the corresponding objects. Note that, different to the principles in
Sects. 4.1 to 4.5, principle (searchAlt) in Sect. 4.6 is not about the representa-
tion of the quantified statements but about the reasoning process, which will be
discussed later. Note that the capital letters in brackets in the title of each of
the following subsections, A, E, I and O are the classical abbreviations for the
quantifiers All, No, Some and Some not.

5.1 All y are z (Ayz)

‘All y are z ’ is represented by the program PAyz, which consists of the following
clauses:

z(X) ← y(X) ∧ ¬abyz(X). (lice)
abyz(X) ← ⊥. (lice)

y(o) ← �. (import)

The least model of the weak completion of PAyz, lmwcPIyz, is 〈{y(o), z(o)},
{abyz(o)}〉.

5.2 No y is z (Eyz)

Under FOL ‘No y is z’ is represented as ∀X(y(X) → ¬z(X)), which is equivalent
to ∀X(z(X) → ¬y(X)). PEyz consists of the following clauses:

y′(X) ← z(X) ∧ ¬abzny(X). (trans & lice)
abzny(X) ← ⊥. (lice)

y(X) ← ¬y′(X) ∧ ¬abnyy(X). (trans & lice)
z(o) ← �. (import)

abnyy(o) ← ⊥. (lice & dNeg)

We have the following integrity constraint: U ← y(X) ∧ y′(X). (trans)
Note that the last clause in PEyz cannot be generalized to all X, because oth-
erwise we allow conclusions by double negatives: principle (dNeg) states that we
should block conclusions through double negatives. The least model of the weak
completion of PEyz, lmwcPEyz, is 〈{y′(o), z(o)}, {abzny(o), abnyy(o), y(o)}〉.

5.3 Some y are z (Iyz)

‘Some y are z ’ is represented by the program PIyz:

z(X) ← y(X) ∧ ¬abyz(X). (lice)
abyz(o1) ← ⊥. (unkGen & lice)

y(o1) ← �. (import)
y(o2) ← �. (unkGen)
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lmwcPIyz is 〈{y(o1), y(o2), z(o1)}, {abyz(o1)}〉.
Nothing about abyz(o2) is stated in PIyz. Accordingly, z(o2) stays unknown in
lmwcPIyz.

5.4 Some y are Not z (Oyz)

‘Some y are not z ’ is represented by the program POyz:

z′(X) ← y(X) ∧ ¬abynz(X). (trans & lice)
abynz(o1) ← ⊥. (unkGen & lice)

z(X) ← ¬z′(X) ∧ ¬abnzz(X). (trans & lice)
y(o1) ← �. (import)
y(o2) ← �. (unkGen)

abnzz(o1) ← ⊥. (dNeg & lice)
abnzz(o2) ← ⊥. (dNeg & lice)

We have the following integrity constraint: U ← z(X) ∧ z′(X). (trans)
The first four clauses as well as the integrity constraint are derived as in
the program PEyz except that object o1 is used instead of o and abynz is
restricted to o1 as in PIyz. The fifth clause of POyz is obtained by princi-
ple (unkGen). The last two clauses are not generalized to all objects for the
same reason as discussed in Sect. 5.2: The generalization of abnzz to all objects
would lead to conclusions through double negation in case there would be a sec-
ond premise. The least model of the weak completion of POyz, lmwcPOyz, is
〈{y(o1), y(o2), z′(o1)}, {abynz(o1), abnzz(o1), abnzz(o2), z(o1)}〉.

5.5 Entailment of the Quantified Statements

We specify when Ayz, Eyz, Iyz or Oyz are entailed by a model.

– P |= Ayz iff there exists an object o such that P |=wcs y(o) and for all
objects o we find that if P |=wcs y(o) then P |=wcs z(o).

– P |= Eyz iff there exists an object o such that P |=wcs z(o) and for all
objects o we find that if P |=wcs z(o) then P |=wcs ¬y(o).

– P |= Iyz iff there exists an object o1 such that P |=wcs y(o1)∧z(o1) and there
exists an object o2 such that P |=wcs y(o2) and P �|=wcs z(o2).

– P |= Oyz iff there exists an object o1 such that P |=wcs y(o1) ∧ ¬z(o1) and
there exists an object o2 such that P |=wcs y(o2) and P �|=wcs ¬z(o2).

If nothing can be concluded, i.e. if P �|= Ayz, P �|= Eyz, P �|= Iyz and P �|= Oyz,
then principle (searchAlt) applies and we search for alternative models by trying
to explain y. Later, y refers to the first property in the conclusion of the syllogism
and z refers to the two properties left. For instance, consider Sdog : y refers to
highly trained dogs (high trai) and z is either police dogs (pol dog) or vicious
(vic). If nothing between either high trai and pol dog or between high trai and
vic can be derived, we try to explain high trai .
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6 Modeling the Belief-Bias Effect

According to the observations made in Sect. 2, we model the belief-bias effect
in two stages: (1) the belief can influence the representation, i.e. how the given
information is understood, or (2) the belief can influence the reasoning, i.e. how
new information is gained, if nothing can be derived. In the following, we model
(1) with help of abnormalities, motivated by principle (lice). (2) is modeled by
means of skeptical abduction, motivated by principle (searchAlt). The follow-
ing four syllogisms are modeled according to the logic program representations
proposed in Sects. 5.2 and 5.4.

6.1 No Belief-Bias Effect

Pdog represents the first two premises of Sdog and consists of

pol dog ′(X) ← vic(X) ∧ ¬abpol dog′(X). (trans & lice)
abpol dog′(X) ← ⊥. (lice)
pol dog(X) ← ¬pol dog ′(X) ∧ ¬abpol dog(X). (trans & lice)

vic(o1) ← �. (import)
abpol dog(o1) ← ⊥. (lice & dNeg)

vic(X) ← high trai(X) ∧ ¬abvic(X). (lice)
abvic(o2) ← ⊥. (unkGen & lice)

high trai(o2) ← �. (import)
high trai(o3) ← �. (unkGen)

We have the following integrity constraint: U ← pol dog(X)∧pol dog ′(X). (trans)
lmwcPdog = 〈I�, I⊥〉, is as follows:

I� = {high trai(o2), high trai(o3), pol dog ′(o1), pol dog ′(o2), vic(o1), vic(o2)},
I⊥ = {pol dog(o2), pol dog(o1), abpol dog′(o1), abpol dog′(o2), abpol dog′(o3),

abpol dog(o1), abvic(o2)},

Indeed, this model entails the Conclusion of Sdog , Some highly trained
dogs are not police dogs: There exists an object, o2, such that Pdog |=wcs

high trai(o2) ∧ ¬pol dog(o2) and there exists another object, o3, such that
Pdog |=wcs high trai(o3) and Pdog �|=wcs ¬pol dog(o3). According to [15], Sdog

is logically valid and psychologically believable. No conflict arises either at the
psychological or at the logical level. The majority validated the syllogism, which
complies with what is entailed by lmwcPdog .

6.2 Belief-Bias Effect in Representation Stage

Pvit represents the first two premises of Svit and consists of
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nutri ′(X) ← inex (X) ∧ ¬abnutri′(X). (trans & lice)
abnutri′(X) ← ⊥. (lice)
nutri(X) ← ¬nutri ′(X) ∧ ¬abnutri(X). (trans & lice)
inex (o1) ← �. (import)

abnutri(o1) ← ⊥. (lice & dNeg)
inex (X) ← vitamin(X),¬abinex (X). (lice)

abinex (o2) ← ⊥. (unkGen & lice)
vitamin(o2) ← �. (import)
vitamin(o3) ← �. (unkGen)

We have the following integrity constraint: U ← nutri ′(X)∧nutri(X). (trans)

The corresponding lmwcPvit = 〈I�, I⊥〉, is as follows:

I� = {vitamin(o2), vitamin(o3), inex (o1), inex (o2),nutri ′(o1),nutri ′(o2)}
I⊥ = {nutri(o1),nutri(o2), abinex (o2), abnutri(o1), abnutri′(o1), abnutri′(o2),

abnutri′(o3)},

Indeed this model entails the Conclusion of Svit , that Some vitamin
tablets are not nutritional : There exists an object, o2, such that Pvit |=wcs

vitamin(o2)∧¬nutri(o2) and there exists another object, o3, such that Pvit |=wcs

vitamin(o3) and Pvit �|=wcs ¬nutri(o3). The results of the psychological study in
Table 1 indicate that there seemed to be two groups of participants: The group
that validated the syllogism was not influenced by the bias with respect to nutri-
tional things. Their understanding of the syllogism is reflected by Pvit and their
conclusion complies with what is entailed by lmwcPvit . The participants who
chose to invalidate the syllogism belong to the other group that has apparently
been influenced by their belief. The belief bias occurred in the representation
stage. Accordingly, we model this aspect with help of abnormality predicates as
follows: Regarding both premises, it is commonly known that

The purpose of vitamin tablets is to aid nutrition.

This belief in the context of Premise 1 leads to

If something is a vitamin tablet, then it is abnormal. (regardingPremise 1
of Svit)

We extend Pvit accordingly, which results in

Pbias
vit = Pvit ∪ {abnutri′(X) ← vitamin(X)}.

Observe that abnutri′(X) ← vitamin(X) overrides abnutri′(X) ← ⊥ under the
weak completion of Pbias

vit . lmwcPbias
vit = 〈I�, I⊥〉 is

I� = {inex (o1), inex (o2), vitamin(o2), vitamin(o3), abnutri′(o2), abnutri′(o3)},
I⊥ = {nutri ′(o2),nutri ′(o3), abnutri(o1), abinex (o2)}.
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In this case, the Conclusion of Svit , that Some vitamin tablets are not nutri-
tional, is not entailed. Actually, nothing is stated about the relation between
vitamin tablets and them (not) being nutritional. However, as trivally Some
vitamin tablets are inexpensive holds, principle (searchAlt) does not apply and
we are done. According to [15], Svit is logically valid but psychologically unbe-
lievable. There arises a conflict at the psychological level because we generally
assume that the purpose of vitamin tablets is to aid nutrition. The participants
who have been influenced by this belief did not validate the syllogism, which
complies to the result above, as the Conclusion is not entailed by lmwcPbias

vit

either.

6.3 Belief-Bias Effect in Reasoning Stage

Prich represents the first two premises of Srich and consists of

mil ′(X) ← hard wor(X) ∧ ¬abmil′(X). (trans & lice)
abmil′(X) ← ⊥. (lice)

mil(X) ← ¬mil ′(X) ∧ abmil(X). (trans & lice)
hard wor(o1) ← �. (import)

abmil(o1) ← ⊥. (lice & dNeg)
hard wor(X) ← rich(X) ∧ ¬abhard wor (X). (lice)
abhard wor (o2) ← ⊥. (unkGen & lice)

rich(o2) ← �. (import)
rich(o3) ← �. (unkGen)

We have the following integrity constraint: U ← mil(X) ∧ mil ′(X). (trans)
Its least model of the weak completion, 〈I�, I⊥〉, is as follows:

I� = {hard wor(o1), hard wor(o2),mil ′(o1),mil ′(o2), rich(o2), rich(o3)},
I⊥ = {mil(o1),mil(o2), abhard wor (o2), abmil(o1), abmil′(o1), abmil′(o2),

abmil′(o3)},

and does not confirm the Conclusion of Srich , that some millionaires are not
rich people. Actually, the Conclusion in Srich states something which contra-
dicts Premise 2, and cannot be about any of the previously introduced con-
stant o1, o2 or o3. As nothing can be derived about the relation between mil and
hard wor nor between mil and rich, principle (searchAlt) applies: According to
our background knowledge, we know that ‘normal’ millionaires exist, i.e. million-
aires for whom we do not assume anything abnormal with respect to them being
millionaires. Additionally, we cannot be sure that all millionaires are normal, i.e.
we know that millionaires exist for whom we simply don’t know whether they
are normal. We formulate this as an observation about two newly introduced
constants, let’s say o4, representing a normal millionaire,1 and o5, representing
a millionaire for whom it is unknown whether he or she is normal:

O = {mil(o4),¬abmil′(o4),¬abmil(o4),mil(o5)}.

1 This implies that all abnormalities about mil or mil ′ are false with respect to o4.
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If we want to find an explanation for O with respect to Pmil , we can no
longer assume that C = constants(Pmil), because APmil

does not contain
any facts or assumptions about o4 and o5, as o4 and o5 do not occur in
Pmil . Therefore, we specify that the new set of constants under consideration
is C = {o1, o2, o3, o4, o5}. Given that lmwc (Pmil) = 〈I�, I⊥〉 as defined above,
lmwc (PC

mil) = 〈I�, I⊥ ∪ {abmil′(o4), abmil′(o5)}〉. The set of abducibles, APC
mil

,
contains six facts and six assumptions about o4 and o5:

rich(o4) ← �. abmil(o4) ← �. abhard wor (o4) ← �.
rich(o4) ← ⊥. abmil(o4) ← ⊥. abhard wor (o4) ← ⊥.
rich(o5) ← �. abmil(o5) ← �. abhard wor (o5) ← �.
rich(o5) ← ⊥. abmil(o5) ← ⊥. abhard wor (o5) ← ⊥.

We find six (minimal) explanations for O = {mil(o4),¬abmil′(o4),¬abmil(o4),
mil(o5)}, where there are three from which the Conclusion of Srich does
not follow. Consider one of them, E = {abhard wor (o4) ← �, abmil(o4) ←
⊥, abmil(o5) ← �}: Given that lmwc (Pmil) = 〈I�, I⊥〉, lmwc (Pmil ∪ E)C =
〈J�, J⊥〉 is

J� = I� ∪ {abhard wor (o4),mil(o4),mil(o5), abmil(o5)},
J⊥ = I⊥ ∪ {abmil(o4), abmil′(o4), hard wor(o4),mil ′(o4), abmil′(o5)}.

According to the definition for skeptical abduction in Sect. 3.5, one explanation
for which the Conclusion of Srich , Some millionaires are not rich people, does
not follow, is enough to show that the Conclusion does not follow skeptically
from PC

mil , IC and O. According to [15] this case is neither logically valid nor
believable. Almost no one validated Srich , which complies to the result above,
as the Conclusion is not skeptically entailed by PC

mil , IC and O either.

6.4 Belief-Bias Effect in Representation and Reasoning Stage

Pcig represents the first two premises of Scig and consists of

add ′(X) ← inex (X) ∧ ¬abadd′(X). (trans & lice)
abadd′(X) ← ⊥. (lice)
add(X) ← ¬add ′(X) ∧ ¬abadd(X). (trans & lice)
inex (o1) ← �. (import)

abadd(o1) ← ⊥. (lice & dNeg)
inex (X) ← cig(X) ∧ ¬abinex (X). (lice)

abinex (o2) ← ⊥. (unkGen & lice)
cig(o2) ← �. (import)
cig(o3) ← �. (unkGen)

We have the following integrity constraint: U ← add(X) ∧ add ′(X). (trans)
It is commonly known that Cigarettes are addictive. This belief in the context
of Premise 1 leads to
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If something is a cigarette, then it is abnormal. (regarding Premise 1 of
Scig)

Pcig is extended accordingly. The new program is

Pbias
cig = Pcig ∪ {abadd′(X) ← cig(X)}.

Observe that abadd′(X) ← cig(X) overrides abadd′(X) ← ⊥ under the weak com-
pletion of Pbias

cig . The least model of the weak completion of Pbias
cig , lmwcPbias

cig , is

〈{cig(o2), cig(o3), inex (o1), inex (o2)}, {abadd(o1), abinex (o2)}〉.

Similarly to the previous syllogism, this model does not state anything about
the Conclusion, that some addictive things are not cigarettes. Again, the Con-
clusion of Scig is about something, which cannot be o1, o2 or o3. As nothing can
be derived about the relation between add and inex nor between add and cig ,
principle (searchAlt) applies: According to our background knowledge, we know
that ‘normal’ addictive things exist, i.e. addictive things for which we do not
assume anything abnormal with respect to them being addictive things. Addi-
tionally, we cannot be sure that all addictive things are normal, i.e. we know
that addictive things exist for which we simply don’t know whether they are
normal. We formulate this as an observation about two newly introduced con-
stants, let’s say o4, representing normal addictive things2 and o5 representing
addictive things for which it is unknown whether they are normal:

O = {add(o4),¬abadd′(o4),¬abadd(o4), add(o5)}.

Let us define C = {o1, o2, o3, o4, o5}. lmwcPbias,C
cig does not state anything

about o4 nor o5: All atoms about o4 and o5 are unknown in this least model.
Given Pbias,C

cig , the set of abducibles, APbias,C
cig

contains six facts and six assumptions
about o4 and o5:

cig(o4) ← �. abadd(o4) ← �. abinex (o4) ← �.
cig(o4) ← ⊥. abadd(o4) ← ⊥. abinex (o4) ← ⊥.
cig(o5) ← �. abadd(o5) ← �. abinex (o5) ← �.
cig(o5) ← ⊥. abadd(o5) ← ⊥. abinex (o5) ← ⊥.

The only three (minimal) explanations are

E1 = E ′ ∪ {cig(o5) ← ⊥}, E2 = E ′ ∪ {abinex (o5) ← ⊥}, and E3 = E ′ ∪ {cig(o5) ← �},

where E ′ = {cig(o4) ← ⊥, abadd(o4) ← ⊥, abadd(o5) ← ⊥}. Given that
lmwc (Pbias

cig ) = 〈I�, I⊥〉 as defined above, the least models of the weak com-
pletion of Pbias,C

cig together with the corresponding explanations, are as follows:

2 This implies that all abnormalities about add or add ′ are false with respect to o4.
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lmwc (Pbias,C
cig ∪ E1) = 〈I� ∪ {add(o4), add(o5)},

I⊥ ∪ {cig(o4), inex (o4), abadd(o4), abadd′(o4), add ′(o4),
abadd(o5), cig(o5), abadd′(o5), inex (o5), add ′(o5)}〉,

lmwc (Pbias,C
cig ∪ E2) = 〈I� ∪ {add(o4), add(o5), abinex (o5)},

I⊥ ∪ {cig(o4), inex (o4), abadd(o4), abadd′(o4), add ′(o4),
abadd(o5), inex (o5), add ′(o5)}〉,

lmwc (Pbias,C
cig ∪ E3) = 〈I� ∪ {add(o4), add(o5), cig(o5), abadd′(o5)},

I⊥ ∪ {cig(o4), inex (o4), abadd(o4), abadd′(o4), add ′(o4),
abadd(o5), add ′(o5)}〉.

The Conclusion of Sadd , Some addictive things are not cigarettes, follows
skeptically from Pbias,C

add and O, as the following derivation follows from all
explanations for O: There exists an object, o4, such that Pbias,C

cig ,O |=s
wcs

add(o4)∧¬cig(o4) and there exists another object, o5, such that Pbias,C
cig ,O |=s

wcs

add(o5) and Pbias,C
cig ,O �|=s

wcs cig(o5). According to [15], Scig is classical logi-
cally invalid but psychologically believable and therefore causes a conflict: People
are biased and search for a model that confirms their beliefs. This complies with
what is entailed skeptically by Pbias,C

cig , IC and O.
Note that in this case we need the restriction that explanations are minimal,

otherwise E ′ ∪ {abinex (o4) ← �, cig(o5) ← ⊥} ⊃ E1 would be an explanation
for O as well, and we could not derive that the Conclusion of Sadd follows
skeptically anymore.

7 Conclusion

By taking the principles presented in [3] as starting point and extending them
with the additional principle Search for Alternative Models, we show how the
belief-bias effect can be modeled by discussing the four cases of Evans et al.’s [15]
syllogistic reasoning task. The belief-bias effect can be modeled in two stages:
The first stage is where the belief bias seems to occur in the representational part
of the syllogism, for instance in Svit . In this case, the belief bias can be modeled
by means of abnormality predicates. The belief bias in Scig seems to occur in
the representational and the reasoning part of the syllogism. The reasoning part
can be modeled with skeptical abduction. Additionally, as the last case shows,
explanations are required to be minimal.

To the best of our knowledge, the syllogistic reasoning tasks discussed in the
literature have never accounted for providing the option ‘I don’t know’ to the
participants. As has been discussed in [27], participants who say that no valid
conclusion follows, might have problems to actually find a conclusion easily,
possibly meaning that they do not know the answer. The authors also point
to [28], who suggested that if a conclusion is stated as being not valid this can
mean that the reasoning process is exhausted. An experimental study, which
allows the participants to distinguish between I don’t know and not valid, might
give us more insights about their reasoning processes.
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