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Abstract We study the singularity (multifractal) spectrum of the convex hull of the
typical/generic continuous functions defined on Œ0; 1�d. We denote by Eh

� the set of
points at which � W Œ0; 1�d ! R has a pointwise Hölder exponent equal to h. Let
Hf be the convex hull of the graph of f , the concave function on the top of Hf is
denoted by �1;f .x/ D maxfy W .x; y/ 2 Hf g and �2;f .x/ D minfy W .x; y/ 2 Hf g
denotes the convex function on the bottom of Hf . We show that there is a dense Gı

subset G � CŒ0; 1�d such that for f 2 G the following properties are satisfied. For
i D 1; 2 the functions �i;f and f coincide only on a set of zero Hausdorff dimension,
the functions �i;f are continuously differentiable on .0; 1/d, E0

�i;f
equals the boundary

of Œ0; 1�d, dimH E1
�i;f

D d � 1, dimH EC1
�i;f

D d and Eh
�i;f

D ; if h 2 .0; C1/ n f1g.

1 Introduction

We started with J. Nagy to study multifractal properties of typical/generic functions
in [2] where multifractal properties of generic monotone functions on Œ0; 1� were
treated. The higher dimensional version of this question was considered in [4]
where with S. Seuret we investigated the Hölder spectrum of functions monotone in
several variables. In [3] we also showed that typical Borel measures on Œ0; 1�d satisfy
a multifractal formalism. Multifractal properties of typical convex continuous
functions defined on Œ0; 1�d are discussed in [5].

In [1] the convex hull of typical continuous functions f 2 CŒ0; 1� is considered
by A.M. Bruckner and J. Haussermann. In this case the boundary of this convex hull
decomposes into two functions (in our notation) �1;f and �2;f see Fig. 1. The upper
one �1;f is concave, the lower one �2;f is convex. It is shown that for the typical
f these functions are continuously differentiable on .0; 1/ and at the endpoints
they have infinite derivatives. The aim of our paper is to describe the multifractal
spectrum of these functions in the multidimensional setting, that is, generic/typical
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Fig. 1 f , �1;f and �2;f in 1D

continuous functions f in CŒ0; 1�d in the sense of Baire category. The topology on
CŒ0; 1�d is the supremum metric. We also prove the multidimensional version of the
above-mentioned results of A.M. Bruckner and J. Haussermann.

The convex hull of the graph of f 2 CŒ0; 1�d is denoted by Hf , that is, Hf D
convex hull of f.x; f .x// W x 2 Œ0; 1�dg:

We are interested in two functions: �1;f .x/ D maxfy W .x; y/ 2 Hf g is the function
on the top of Hf , and �2;f .x/ D minfy W .x; y/ 2 Hf g is the function on the bottom
of Hf . In Fig. 1 these functions are illustrated in dimension one.

The points where f and �i;f coincide are denoted by Ei;f D fx W �i;f .x/ D f .x/g,
i D 1; 2.

The Hölder exponent and singularity spectrum for a locally bounded function is
defined as follows.

Definition 1.1. Let f 2 L1.Œ0; 1�d/. For h � 0 and x 2 Œ0; 1�d, the function f
belongs to Ch

x if there are a polynomial P of degree less than Œh� and a constant C
such that, for x0 close to x,

jf .x0/ � P.x0 � x/j � Cjx0 � xjh: (1)

The pointwise Hölder exponent of f at x is hf .x/ D supfh � 0 W f 2 Ch
xg:

Definition 1.2. The singularity spectrum of f is defined by

df .h/ D dimH Eh
f ; where Eh

f D fx W hf .x/ D hg:
Here dimH denotes the Hausdorff dimension (see, for example, [7] or [8]), and

dim ; D �1 by convention.
We will also use the sets

Eh;�
f D fx W hf .x/ � hg � Eh

f and Eh;<
f D fx W hf .x/ < hg: (2)
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The faces of Œ0; 1�d are

F0;j D f.x1; : : :; xj�1; 0; xjC1; : : :; xd/ 2 Œ0; 1�dg
and

F1;j D f.x1; : : :; xj�1; 1; xjC1; : : :; xd/ 2 Œ0; 1�dg:
Then @.Œ0; 1�d/ D [2

iD1 [d
jD1 Fi;j.

Since our functions are defined on Œ0; 1�d at points of @.Œ0; 1�d/ we can consider
only one-sided partial derivatives. For example, for a point x 2 F0;1 we denote by
@1;Cf .x/ the one-sided partial derivative in the first variable pointing in the direction
of the interior of Œ0; 1�d, while for points x 2 F1;1 we need to use @1;�f .x/.

The main result of our paper is the following theorem:

Theorem 1.3. There exists a dense Gı set G � CŒ0; 1�d such that for every f 2 G
for i D 1; 2

• �i;f is continuously differentiable on .0; 1/d;
• if x 2 @.Œ0; 1�d/, then

h�i;f .x/ D 0 (3)

hence d�i;f .0/ D d � 1 and E0
�i;f

\ .0; 1/d D ;;
• d�i;f .1/ D d � 1;
• d�i;f .C1/ D d;
• d�i;f .h/ D �1, that is, Eh

f D ; for h 2 .0; C1/ n f1g;
• for j D 1; : : :; d if x 2 F0;j, then

@j;C�i;f .x/ D .�1/iC1.C1/ (4)

if x 2 F1;j, then

@j;��i;f .x/ D .�1/i.C1/I (5)

• dimH Ei;f D 0.

2 Notation and Preliminary Results

The open ball with center x and of radius r > 0 is denoted by B.x; r/. We use
similar notation for open neighborhoods of subsets, for example, if A � R

d, then
B.A; r/ D fx 2 R

d W dist.x; A/ < rg:
For subsets A � R

d we denote the diameter of the set A by jAj while @A denotes
its boundary.

The j’th basis vector in R
d is denoted by ej D .0; : : :; 0; 1

"
j

; 0; : : :; 0/:
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In our proofs we use a standard fixed countable dense set ffng1
nD1 in CŒ0; 1�d. We

assume that the functions fn are in C1Œ0; 1�d. (Taking an arbitrary countable dense
set fef ng in CŒ0; 1�d by using a mollifier function it is easy to obtain such a dense set
of C1 functions.)

Definition 2.1. We say that f W Œ0; 1�d ! R is piecewise linear if there is a partition
Zj, j D 1; : : :; n� of Œ0; 1�d into simplices such that for each j the set f.x; f .x// W
x 2 Zjg is the subset of a hyperplane in R

dC1.
We say that f is independent piecewise linear if it is piecewise linear and if V

denotes the collection of the vertices of the simplices Zj, j D 1; : : :; n� for a suitable
partition, then

• from x1; : : :; xk 2 V , xi 6D xj, i 6D j, the points .xj; f .xj//, j D 1; : : :; k are on the
same d-dimensional hyperplane in R

dC1 it follows that k � d C 1,
• from x1; : : :; xk 2 V \ .0; 1/d, xi 6D xj, i 6D j, the points xj, j D 1; : : :; k are on the

same .d � 1/-dimensional hyperplane in R
d it follows that k � d.

The second assumption in the above definition is void in the one dimensional
case since the zero dimensional hyperplanes are just points.

Lemma 2.2. Suppose f 2 CŒ0; 1�d. For any x0 2 Œ0; 1�d there exist xi 2 E1;f ;

i D 1; : : :; d C 1 and pi � 0,
PdC1

iD1 pi D 1, such that x0 D PdC1
iD1 pixi and

�1;f .x0/ D
dC1
X

iD1

pi�1;f .xi/ D
dC1
X

iD1

pif .xi/:

Remark 2.3. We remark that in the above lemma some pi’s can equal zero, or some
xi’s coincide.

Proof. By Carathéodory’s theorem (see, for example, [6]) from .x0; �1;f .x0// 2 Hf

it follows that one can find (not necessarily different) xi 2 Œ0; 1�d, pi � 0, i D
1; : : :; d C 1,

PdC1
iD1 pi D 1 such that

PdC1
iD1 pixi D x0,

PdC1
iD1 pif .xi/ D �1;f .x0/: If for

an i0 we had f .xi0/ < �1;f .xi0/, then letting

y0 D
0

@

dC1
X

iD1; i6Di0

pif .xi/

1

AC pi0�1;f .xi0/

we would obtain .x0; y0/ 2 Hf contradicting that �1;f .x0/ D maxfy W .x0; y/ 2 Hf g.

Lemma 2.4. There exists a dense Gı set G0;d � CŒ0; 1�d such that for every f 2 G0;d

and for every x0 2 F0;d

@d;C�1;f .x0/ D C1; @d;C�2;f .x0/ D �1 and (6)

h�i;f .x0/ D 0 for i D 1; 2: (7)
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Remark 2.5. For j D 1; : : :; d a version of Lemma 2.4 can provide dense Gı sets
G0;j � CŒ0; 1�d such that (6) and (7) hold with d replaced by j. If we use the faces
F1;j instead of F0;j in analogous versions of Lemma 2.4 we can obtain dense Gı sets
G1;j � CŒ0; 1�d.

Taking

G0 D
d
\

jD1

G0;j \ G1;j (8)

for any f 2 G0 we have (3)–(5) satisfied.

Proof. Without limiting generality we prove the statement for �1;f .
Suppose x0 D .x0;1; : : :; x0;d�1; 0/ 2 F0;d. By Lemma 2.2 there exist xi 2 E1;f �

Œ0; 1�d, and pi � 0, i D 1; : : :; d C 1, such that
PdC1

iD1 pi D 1,

dC1
X

iD1

pixi D x0 and
dC1
X

iD1

pif .xi/ D
dC1
X

iD1

pi�1;f .xi/ D �1;f .x0/: (9)

This and x0 2 F0;d imply

xi 2 F0;d; i D 1; : : :; d C 1: (10)

Put Mn D jjf 0
njj1 � j@dfn.x/j for all x 2 Œ0; 1�d. We also let

fn;m.x/ D fn.x/ C 1

n C m
.dist.x; F0;d//1=m and ın;m D 1

.n C m/2.nCm/
: (11)

It is clear that Gm D [1
nD1B.fn;m; ın;m/ is dense and open in CŒ0; 1�d and G0;d

defD\1
mD1

Gm is dense Gı . Suppose f 2 G0;d. Then there exists a sequence nm, m D 1; : : : such
that f 2 B.fnm;m; ınm;m/. Since xi 2 F0;d by (11) we have

f .xi/ � fnm;m.xi/ C ınm;m D fnm.xi/ C ınm;m; i D 1; : : :; d C 1:

Therefore, using (9)

�1;f .x0/ �
 

dC1
X

iD1

pifnm.xi/

!

C ınm;m:

On the other hand, since �1;f is concave

�1;f .x0 C ted/ �
 

dC1
X

iD1

pi�1;f .xi C ted/

!

�

dC1
X

iD1

pif .xi C ted/ �
 

dC1
X

iD1

pifnm;m.xi C ted/

!

� ınm;m �
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[using (10) and (11)]

�
 

dC1
X

iD1

pifnm.xi C ted/

!

C 1

nm C m
t1=m � ınm;m:

Taking difference

�1;f .x0 C ted/ � �1;f .x0/ �
 

dC1
X

iD1

pi.fnm.xi C ted/ � fnm.xi//

!

� 2ınm;m C 1

nm C m
t1=m � (12)

(by the Mean value Theorem and the choice of Mn)

� 1

nm C m
t1=m � 2ınm;m � Mnt:

Choosing tm D 2�.nmCm/ by (11) we obtain

ınm;m D tm
1

nm C m
:

Hence,

lim sup
m!1

�1;f .x0 C tmed/ � �1;f .x0/

t˛m
D C1 for any ˛ > 0:

This implies (7).
Taking ˛ D 1 and using concavity of �1;f we also obtain @d;C�1;f .x0/ D C1.

This implies (6).

Lemma 2.6. There exists a dense Gı set G1 � CŒ0; 1�d such that for every f 2 G1

the functions �1;f and �2;f are both continuously differentiable on .0; 1/d.

Remark 2.7. This also implies that h�i;f .x/ � 1 for any x 2 .0; 1/d, that is, E1;<
�i;f

\
.0; 1/d D ; for f 2 G1 and i D 1; 2:

Proof. Again we start with fn 2 C1Œ0; 1�d, n D 1; : : : a countable dense set in
CŒ0; 1�d. This time we select

Mn � 1 such that j@2
j fnj � Mn; j D 1; : : :; d:

We also put

ın;m D
�

1

m � Mn

�2

: (13)
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Recall that G0 was defined in Remark 2.5. We put

G1 D G0 \
\

m

[

n

B.fn; ın;m/

and select f 2 G1: Then we can choose nm such that f 2 B.fnm ; ınm;m/:

Suppose x 2 .0; 1/d. We need to verify that @j�i;f .x/ exists and continuous for
any j D 1; : : :; d and i D 1; 2.

Since the other cases are similar we can suppose that i D 1, j D 1.
Since �1;f .x C te1/ is a concave function in t it is sufficient to verify that its

derivative exists at t D 0 for any choice of x 2 .0; 1/d. This will imply that
@1�1;f .xC te1/ is monotone decreasing in t, without any jump discontinuities, hence
for a fixed x it is continuous as a function of one variable. In the end of this proof we
will provide a standard argument showing that from the concavity and continuity of
�1;f one can deduce that @1�1;f is continuous on .0; 1/d.

From now on x 2 .0; 1/d is fixed.
By Carathéodory’s theorem we can select xi 2 E1;f , pi � 0, i D 1; : : :; d C1 such

that
PdC1

iD1 pi D 1,
PdC1

iD1 pixi D x and

�1;f .x/ D
dC1
X

iD1

pi�1;f .xi/ D
dC1
X

iD1

pif .xi/:

By the assumption that f 2 G0 for x 2 .0; 1/d the points xi are in .0; 1/d. Suppose

hm D 1

m � Mnm

: (14)

By the one dimensional Taylor’s formula one can find cnm;i;˙ such that
jcnm;i;˙j < hm and

fnm.xi ˙ hme1/ D fnm.xi/ ˙ @1fnm.xi/hm C @2
1fnm.xi C cnm;i;˙e1/

2Š
h2

m �

fnm.xi/ ˙ @1fnm.xi/hm � Mnm

2
h2

m: (15)

This implies

�1;f .x ˙ hme1/ �
dC1
X

iD1

pi�1;f .xi ˙ hme1/ �

dC1
X

iD1

pif .xi ˙ hme1/ �
 

dC1
X

iD1

pifnm.xi ˙ hme1/

!

� ınm;m � (16)



78 Z. Buczolich

[using (15)]

�
 

dC1
X

iD1

pifnm.xi/

!

˙
 

dC1
X

iD1

pi@1fnm.xi/

!

hm � Mnm

2
h2

m � ınm;m � ~

using jf � fnm j < ınm;m, f .xi/ D �1;f .xi/ and
PdC1

iD1 pif .xi/ D �1;f .x/ we can
continue by

~ � �1;f .x/ � ınm;m ˙
 

dC1
X

iD1

@1fnm.xi/

!

hm � Mnm

2
h2

m � ınm;m:

By (13) and (14) we obtain that

�1;f .x/ � �1;f .x � hme1/

hm
�
 

dC1
X

iD1

@1fnm.xi/

!

C
�

Mnm

2
C 2

�

hm

and similarly

�1;f .x C hme1/ � �1;f .x/

hm
�
 

dC1
X

iD1

@1fnm.xi/

!

�
�

Mnm

2
C 2

�

hm

and hence,

�1;f .x/ � �1;f .x � hme1/

hm
� �1;f .x C hme1/ � �1;f .x/

hm
�

.Mnm C 4/hm D
�

Mnm C 4

Mnm

�

� 1

m
� 5

m
:

Since �1;f is concave this implies that @1�1;f .x/ exists.
Next we verify that @1�1;f is continuous on .0; 1/d. We have seen that @1�1;f .x C

te1/ is a monotone decreasing continuous function in t for a fixed x 2 .0; 1/d. We
need to show that @1�1;f is continuous as a function of several variables at any x 2
.0; 1/d. This is quite standard. Suppose x 2 .0; 1/d and " > 0 are fixed. Choose
t0 > 0 such that

x ˙ 2t0e1 2 .0; 1/d; j@1�1;f .x ˙ 2t0e1/ � @1�1;f .x/j <
"

2
:

The function �1;f is continuous as the “top part” of the convex hull Hf of the
continuous function f . By uniform continuity of �1;f choose ı1 > 0 such that

j�1;f .w/ � �1;f .w0/j <
"t0
4

if jjw � w0jj < ı1 and w; w0 2 .0; 1/d: (17)
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Now suppose that

z D .z1; : : :; zd/ is a vector with z1 D 0 and jjzjj < ı1: (18)

Then by (17)

ˇ

ˇ

ˇ

�1;f .x C z C 2t0e1/ � �1;f .x C z C t0e1/

t0
� (19)

�1;f .x C 2t0e1/ � �1;f .x C t0e1/

t0

ˇ

ˇ

ˇ <
"

2
:

By the Mean Value Theorem there exist cx and cz in .t0; 2t0/ such that

�1;f .x C z C 2t0e1/ � �1;f .x C z C t0e1/

t0
D @1�1;f .x C z C cze1/ (20)

and

�1;f .x C 2t0e1/ � �1;f .x C t0e1/

t0
D @1�1;f .x C cxe1/:

By monotonicity of @1�1;f we have

j@1�1;f .x C cxe1/ � @1�1;f .x/j < j@1�1;f .x C 2t0e1/ � @1�1;f .x/j <
"

2
: (21)

From (19)–(21) it follows that

j@1�1;f .x/ � @1�1;f .x C z C cze1/j < " where t0 < cz: (22)

A similar argument can show that there is c0
z 2 .t0; 2t0/ such that

�1;f .x C z � t0e1/ � �1;f .x C z � 2t0e1/

t0
D @1�1;f .x C z � c0

ze1/

and

j@1�1;f .x/ � @1�1;f .x C z � c0
ze1/j < " where t0 < c0

z: (23)

By monotonicity of @1�1;f .x C z C te1/ this implies that for �t0 � t � t0 we have

j@1�1;f .x C z C te1/ � @1�1;f .x/j < ":

Since this holds for any z satisfying (18) we obtain that @1�1;f is continuous on
.0; 1/d.
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Lemma 2.8. There exists a dense Gı set G2;1 in CŒ0; 1�d such that for every f 2 G2;1

dimH.E1;f / D 0; dimH.E�1
�1;f

\ .0; 1/d/ D d � 1; (24)

Eh
�1;f

\ .0; 1/d D ; for 1 < h < C1; and dimH.EC1
�1;f

/ D d:

Proof. We choose again a countable dense set fn 2 CŒ0; 1�d. The functions fn are
uniformly continuous and for 1

16.nCm/
we choose �n;m > 0 such that

jfn.x/ � fn.y/j <
1

16.n C m/
if jjx � yjj < �n;m; x; y 2 Œ0; 1�d: (25)

We partition Œ0; 1�d into non-overlapping simplices Zj, j D 1; : : :; �n;m such that the
diameter of each simplex is less than �n;m. We assume that V.n; m/ is the set of
vertices of these simplices. We can also assume that these vertices are sufficiently
independent, that is, from x1; : : :; xk 2 V.n; m/ \ .0; 1/d, xi 6D xj, i 6D j, the points
xj, j D 1; : : :; k are on the same d � 1-dimensional hyperplane in R

d it follows that
k � d. This means that the second assumption in Definition 2.1 is satisfied.

We denote by ef n;V.n;m/ the function which is defined on V.n; m/ and for any
x 2 V.n; m/;ef n;V.n;m/.x/ D fn.x/: In Fig. 2 we illustrate the procedure of selecting
fn;m. On the left half of this figure there is fn with the little circles on its graph.
We suppose that on Œ0; 1�1 we used the “simplices,” which are equally spaced line
segments of length 0:2. The functionef n;V.n;m/ is defined on these points and its graph
is represented by the little circles on the graph of fn.

1 1

fn

1 1

1,fn,m

fn,mfn,V(n,m)

y y

φ

Fig. 2 The functions fn, fn;V.n;m/, fn;m, and �1;fn;m
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Now we perturb ef n;V.n;m/ a bit in order to obtain an “independent” function
f n;V.n;m/ such that

jf n;V.n;m/ �ef n;V.n;m/j <
1

16.n C m/
(26)

and if x0; : : :; xk 2 V.n; m/, xi 6D xj if i 6D j, and .xj; f n;V.n;m/.xj//, j D 1; : : :; k are on
the same hyperplane in R

dC1, then k � d C 1. This implies that the first assumption
of Definition 2.1 is satisfied for f n;V.n;m/.

If x 2 Œ0; 1�d n V.n; m/ and x is in the simplex Zj, j 2 f1; : : :; �n;mg with vertices
zj;1; : : :; zj;dC1 2 V.n; m/ we define fn;V.n;m/.x/ so that .x; fn;V.n;m/.x// is on the
hyperplane determined by the points

.zj;1; f n;V.n;m/.zj;1//; : : :; .zj;dC1; f n;V.n;m/.zj;dC1//:

Therefore, fn;V.n;m/ is an independent piecewise linear function (recall Definition 2.1
and see the illustration on the left half of Fig. 2).

By (25) and (26)

jfn;V.n;m/.x/ � fn.x/j <
1

4.n C m/
: (27)

Now we want to perturb the functions fn;V.n;m/ a little further. Let �.x/ D maxf1�
jjxjj; 0g and for a � > 0 put

�V.n;m/;� .x/ D 	Œ0;1�d .x/
X

v2V.n;m/

�

�

x � v
�

�

:

Then lim�!0C �V.n;m/;� .x/ D 	V.n;m/.x/:

We denote by 
.n; m/ the minimum distance among points of V.n; m/ and will
select a sufficiently small �n;m > 0 later. We put

fn;m D fn;V.n;m/ C 1

4.n C m/
�V.n;m/;�n;m :

On both halves of Fig. 2 one can see 1
4.nCm/

�V.n;m/;�n;m which is the function with
the equally spaced small peaks at the points which are multiples of 0:2. On the right
half of Fig. 2 one can see fn;m which is obtained from fn;V.n;m/ (pictured on the left
half of Fig. 2) after we added the small peaks.

We suppose that

�n;m <

.n; m/

100
(28)
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and if G.n; m/ denotes the maximum of the norms of the gradients of the
hyperplanes in the definition of fn;V.n;m/, then

1

�n;m
> 100 � G.n; m/: (29)

This way if we take the convex hull of fn;m, then

E1;fn;m D fx W fn;m.x/ D �1;fn;m.x/g

will be a subset of V.n; m/. See the right half of Fig. 2. We remark that the resolution
of our drawings does not make it possible to take into all the above assumptions and
hence they are distorted, but we hope that they can help to understand our procedure.

Our next aim is to select a sufficiently small ın;m > 0: It is clear that given
rn;m > 0 if ın;m is sufficiently small, then f can coincide with �1;f only close to
some points in V.n; m/, that is, for any f 2 B.fn;m; ın;m/ and any x 2 E1;f there is
wx 2 V.n; m/ such that

jjwx � xjj < rn;m: (30)

On the left half of Fig. 3 one can see fn;m and f . We also graphed the functions
�1;fn;m and �1;f which will be very close to each other. The latter function is not
exactly piecewise linear but a close approximation to such a function, namely to
�1;fn;m . In the one dimensional case, like in Fig. 3 the nonlinear parts (not pictured)
are very close to some elements of V.n; m/. The higher dimensional case is a bit
more complicated and we discuss it below.

We will select a sufficiently small rn;m > 0 later. At this point we suppose that

rn;m <

.n; m/

1000
: (31)

Fig. 3 On the left: fn;m and f , on the right: S� and ˚�;f when d D 2
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This implies that for any x 2 E1;f there is a unique wx 2 V.n; m/. That is, f will
“almost” look like a piecewise linear function. This implies that if f 2 B.fn;m; ın;m/,
then

E1;f can be covered by the set [w2V.n;m/ B.w; rn;m/: (32)

We can suppose that rn;m is chosen so small, that

#.V.n; m// � r1=m
n;m < 1=m: (33)

This estimate will imply that dimH E1;f D 0 for the typical f 2 CŒ0; 1�d, that is for
f 2 G2;1.

By the choice of �n;m if we consider �1;fn;m , then it is an independent piecewise
linear function. There is a system of non-overlapping simplices

S� D fSk W k D 1; : : :; s�g

such that .x; �1;fn;m.x// for any x 2 Œ0; 1�d is on a hyperplane determined by a
simplex Sk containing x. On the left half of Fig. 3 the one dimensional case is
illustrated and these simplices are simply the line segments Œ0; 0:4�, Œ0:4; 0:6�, and
Œ0:6; 1�. The endpoints 0:4 and 0:6 are points where this function “breaks” and these
points are on two non-parallel lines (“hyperplanes”). These breakpoints/folding
regions will be used to find those points where the Hölder exponent is 1. On the
right half of Fig. 3 the two dimensional case d D 2 is illustrated. This time we
have simplices (triangles) in Œ0; 1�d bounded by solid lines on which �1;fn;m is linear.
On the right half of Fig. 3 only the domain of �1;fn;m is shown. The system of the
simplices (triangles) bounded with dashed lines will be simplices corresponding to
�1;f . Later we will explain this in more detail.

By the independence property of fn;V.n;m/ the hyperplanes determined by the
simplices Sk are different for different Sk.

We denote by V� the set of the vertices of the simplices Sk, k D 1; : : :; s�: Clearly,
V� � V.n; m/: The union of the faces of these simplices will be denoted by ˚� D
[s�

kD1@.Sk/: If x0 2 @.Sk/ \ @.Sk0/ with k 6D k0, then f.x; �1;fn;m.x// W x 2 Skg
and f.x; �1;fn;m.x// W x 2 Sk0g are on different hyperplanes and hence the graph
of �1;fn;m “breaks” at x0. This implies that we can choose �1;n;m such that for any
x� 2 ˚� \ .0; 1/d and for any hyperplane Lx passing through .x�; �1;fn;m.x�// one
can choose a point x0

� such that

�1;n;m � dist.x0
�; ˚�/ � 1

n C m
; (34)

and

jLx.x0
�/ � �1;fn;m.x0

�/j � jjx� � x0
� jj1C 1

m � �1;n;m
1C 1

m ; (35)

where we used that (34) implies jjx0
� � x� jj > �1;n;m. See Fig. 4.
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Fig. 4 The breaking point at
.x�; �1;fn;m .x�//

It is also clear that if f is a good approximation of fn;m, then one can see similar
“breaking” properties on �1;f . This time there are no “folding edges” like in the case
of fn;m on ˚� \ .0; 1/d but there are regions around ˚� where we can see similar
phenomena.

Using that fn;m and �1;fn;m are both independent piecewise linear functions one
can see that

�1;n;m.ı/ D supfj�1;fn;m.x/ � �1;f .x/j W x 2 Œ0; 1�d; f 2 B.fn;m; ı/g ! 0 (36)

as ı ! 0 C : Apart from (31) and (33) we also assume that rn;m > 0 is chosen so
small that

rn;m <
�1;n;m

100
(37)

and (using that dimH ˚� D d � 1)

B.˚�; rn;m/ can be covered by balls Bi such that (38)

jBij <
1

n C m

and

X

i

jBij.d�1/C 1
m <

1

m
: (39)
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Recall that we started to make assumptions about ın;m in the paragraph contain-
ing (30). The smaller rn;m we need to use the smaller ın;m. Next we suppose that
using (36) we chose a ın;m such that in addition to our other assumptions we have

�1;n;m.ın;m/ <
1

100
�1;n;m

1C 1
m : (40)

Now we want to use the folding property in (34) and (35) for functions f which
approximate fn;m. This time the “folding edges” are not any more .d�1/-dimensional
surfaces, but some neighborhoods of them. By (38) and (39) we will be able to
bound the dimension of these regions.

Suppose Sk 2 S� with k 2 f1; : : :; s�g with vertices zk;1; : : :; zk;dC1. Since fn;m

and �1;fn;m are both independent piecewise linear functions there is ı�;k > 0 such
that if f 2 B.fn;m; ı�;k/, then one can choose vertices zk;j;f , j D 1; : : :; d C 1 such that

jjzk;j � zk;j;f jj < rn;m and zk;j;f 2 E1;f ; j D 1; : : :; d C 1; (41)

moreover if Sk;f denotes the simplex determined by fzk;j;f W j D 1; : : :; d C 1g, then
f.x; f .x// W x 2 Sk;f g is on the surface of Hf inside a hyperplane determined by
f.zk;j;f ; f .zk;j;f // W k D 1; : : :; d C 1g, that is, f.x; �1;f .x// W x 2 Sk;f g is a “face” of
�1;f approximating f.x; �1;fn;m.x// W x 2 Skg. On the right half of Fig. 3 we have
the two dimensional illustration. The simplices (triangles) Sk 2 S� are bounded by
solid lines. The simplices (triangles) Sk;f are bounded by dashed lines.

We can suppose that ın;m < minfı�;k W k D 1; : : :; s�g and by using independent
piecewise linearity of fn;m and �1;fn;m we obtain that the hyperplanes containing
f.x; �1;f .x// W x 2 Sk;f g are different for different k’s.

Hence the simplices Sk;f are non-overlapping.
Put

˚�;f D .0; 1/d n [s�

kD1int.Sk;f /: (42)

These sets ˚�;f will replace the folding edges ˚� \ .0; 1/d. In Fig. 3 this is the
region which is not covered by the interiors of the simplices (triangles) bounded by
dashed lines.

From jjzk;j � zk;j;f jj < rn;m in (41) it follows that any point x in Sk which is of
distance no less than rn;m from @.Sk/ is covered by Sk;f .

Thus ˚�;f � B.˚�; rn;m/ and hence by (38) and (39)

˚�;f can be covered by balls Bi such that (43)

jBij <
1

n C m
and

X

i

jBijd�1C 1
m <

1

m
:

Using all the above restrictions we can select ın;m > 0.
Set G2;1 D \1

mD1 [1
nD1 B.fn;m; ın;m/.

It is clear that G2;1 is a dense Gı set in CŒ0; 1�d.
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Suppose f 2 G2;1. Then there exists a sequence nm such that f 2 B.fnm;m; ınm;m/.
For each m we can define the “folding region” as in (42). Since these regions depend
on m we denote them by ˚�;f ;m. Set ˚f D \1

mD1˚�;f ;m. If x 2 .0; 1/d n˚f , then there
exists an m such that x 2 int.Sk;f ;m/ with a simplex Sk;f ;m and f.x; �1;f .x// W x 2
Sk;f ;mg is the subset of a hyperplane in R

dC1. This implies that �1;f is locally linear
in a neighborhood of x and h�1;f .x/ D C1.

Using (43) one can easily see that dimH.˚f / � d�1: On the other hand, from (43)
it also follows that if S � .0; 1/d is a simplex such that its vertices are z1; : : :; zdC1 2
E1;f , then there exists m0 such that for m � m0, S 6� ˚�;f ;m. Since S is a “face” of
�1;f if x 2 @.S/, then x cannot belong to the interior of any other “face” of �1;f .
Hence @.S/ � ˚f : Since dimH @.S/ D d � 1 we obtain that dimH.˚f / D d � 1. If
x 2 ˚f , then (34) and (35) imply that hf .x/ � 1:

The property dimH E1;f D 0 follows from (32) and (33).

Proof (Proof of Theorem 1.3). We can take G0 from (8) in Remark 2.5 and for any
f 2 G0 we have (3)–(5) satisfied.

By Lemma 2.6 there exists a dense open set G1 � CŒ0; 1�d such that for any
f 2 G1 the functions �1;f and �2;f are continuously differentiable on .0; 1/d.

There is nothing special about �1;f in Lemma 2.8. A similar lemma can provide
a dense Gı set G2;2 such that for any f 2 G2;2 we have (24) for E2;f and �2;f .

If we take G D G0 \G1 \G2;1 \G2;2, then taking into consideration Remark 2.7
as well any f 2 G satisfies the conclusions of Theorem 1.3.
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