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Abstract Bernoulli convolutions form a one-parameter family of self-similar mea-
sures on the unit interval. We suggest to study their two-dimensional density which
has an intricate combinatorial structure. Visualizing this structure we discuss results
of Erdös, Jóo, Komornik, Sidorov, de Vries, Jordan, Shmerkin and Solomyak, Feng
and Wang. We emphasize the role of finite orbits of associated multivalued maps
and mention a few new properties and examples.

1 Introduction

The Bernoulli convolution with parameter ˇ 2 .1; 2�; or t D 1
ˇ

; is the unique
probability measure � on Œ0; 1� which fulfills

�.A/ D 1

2
�.g0.A// C 1

2
�.g1.A// for all Borel sets A � Œ0; 1�; (1)

where

g0 W Œ0; t� ! Œ0; 1�; g0.x/ D ˇx and g1 W Œ1� t; 1� ! Œ0; 1�; g1.x/ D ˇxC1�ˇ

are linear functions with the same slope ˇ and fixed points 0 and 1, respectively.
We choose t D 1

ˇ
as parameter in Œ 1

2
; 1/ and write � D �t if necessary. If A is

not contained in the overlap interval Œ1 � t; t�, then either g0 or g1 is not defined
on a part of A, and this part is ignored in the corresponding term of (1). From the
viewpoint of fractals, � is a self-similar measure with respect to the contractions
f0.x/ D tx; f1.x/ D tx C 1 � t which are the inverse maps of g0; g1. The support of �

is always the unit interval.
These are the simplest fractal constructions with overlap, and their structure is

not yet understood. Only for a countable set of Garsia numbers ˇ it is known that �

has a density [18]. Already 1939 Erdös proved that a density of � does not exist for
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Pisot numbers ˇ which also form a countable set [11]. (Pisot and Garsia numbers
are defined at the end of this section.) For all other parameters ˇ; including all
rational numbers, it is not yet known whether � is singular or absolutely continuous.
However, Solomyak [29] proved 1995 that the set of “singular parameters” ˇ has
Lebesgue measure zero. Recently, Shmerkin [26] applied a technique of Hochman
to show that this set even has Hausdorff dimension zero. See the surveys [25, 30] for
more information on the history of Bernoulli convolutions and [15, 16, 20, 21, 26]
for some recent results. Very recently, Varju [32] proved that all algebraic numbers
ˇ < 1 C "; where " depends on the Mahler measure of ˇ; will lead to absolutely
continuous measures. No estimate for " was given, however. If " is astronomically
small, the result is difficult to interpret since � for ˇ ! 1 converges to the Dirac
measure at 1

2
:

In this note, we give a non-technical introduction to the combinatorial structure
of all Bernoulli convolutions. We focus on computer-generated figures and refer to
[5] for details. Solomyak’s theorem, in the L2 version given by Peres and Solomyak
[24], can be reformulated as follows.

Theorem 1.1 (2D Density of Bernoulli Convolutions [24, 29]) There is an L2

function ˚ W Œ 1
2
; 1� � Œ0; 1� ! Œ0; 1/ such that for Lebesgue almost all parameters

t D 1=ˇ 2 Œ 1
2
; 1�; the density of the Bernoulli convolution �t is the function

˚.t; x/; x 2 Œ0; 1�:

Thus instead of a bundle of different measures �t; we study one function
of two variables describing the whole Bernoulli scenario. For t in Œ 1

2
; 0:76�; the

function ˚.t; y/ is sketched in Fig. 1 as color-coded map. The apparent structure
is connected with results of different authors and will be explained below. Our
algorithms generating the measures �t include the “chaos game,” inverse iteration
[6, Chapter 8], and approximation by Markov chains.

Fig. 1 The function ˚ for 0:5 � t � 0:76: Bernoulli convolutions for 1000 values t D 1=ˇ were
approximated by histograms with 20,000 bins and visualized as vertical sections. The color code
on the right indicates that D D f.t; y/j t � y � 1 � tg contains large values
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In Sect. 2 we start with some carefully calculated histograms of Bernoulli
convolutions to get an idea of their properties. The numerical appearance of �t is
chaotic when t goes down to 1

2
; for all parameters, not only Pisot. On the other

hand, singular �t for Pisot parameters look more harmless than one would expect.
Obviously there is large variation, and there are also higher peaks, compared with
neighboring parameters. However, within ordinary numerical accuracy—histogram
bars of width greater 10�8; say—we could not find values larger than 10.

In Sect. 3 we explain the basic overlap structure. In Sect. 4 results of [9, 12, 19, 21,
27, 28] on points with unique addresses are illustrated with the function ˚ . Section 5
discusses kneading sequences, related to work in [1, 10]. In Sect. 6, intersections of
kneading curves are studied, and results in [15, 17] improved. For details we refer
to [5]. A related question was considered in [7].

Polynomials of ˇ arise as repeated compositions of g0; g1; and ˇ is a root of a
polynomial with integer coefficients if certain higher-level overlaps in the fractal
construction coincide. Let us mention some terminology. A root of a polynomial
with integer coefficients and leading coefficient one is called an algebraic integer.
We consider only positive real roots ˇ: There is a minimal polynomial, the other
roots of which are called conjugates of ˇ: If all conjugates are strictly smaller than
one in modulus, ˇ is called a Pisot number. If the conjugates’ modulus is not greater
than one, and equal one for at least one conjugate, ˇ is termed Salem number. If
the modulus of all conjugates is larger one, and the constant term of the minimal
polynomial is 2 or �2, ˇ is called a Garsia number. If ˇ is strictly greater than the
modulus of all its conjugates, we call ˇ a Perron number. When the inequality need
not be strict, ˇ is a weak Perron number.

2 Five Phases of Bernoulli Convolutions

A few pictures of single Bernoulli convolutions will show what kind of vertical
sections of ˚.t; y/ are put together. We roughly distinguish five phases. A specimen
for each phase is given in Figs. 2 and 3. The concept of zero will be made precise
below.

1. 1 < ˇ � p
2; or 0:707 � t < 1: The density functions are smooth. Most of them

resemble a normal distribution.
2.

p
2 < ˇ < 1

2
.1 C p

5/ D �; or 0:618 < t < 0:707: The density functions are not
smooth, but continuous and strictly positive.

3. 1
2
.1 C p

5/ � ˇ � ˇKL; or 0:5595 � t � 0:618: The densities have countably
many zeros.

4. ˇKL < ˇ < �3; or 0:5437 < t < 0:5595: There are uncountably many zeros
outside the overlap interval Œt; 1 � t� and finite or countably many zeros inside
that interval.

5. �3 � ˇ < 2; or 0:5 < t � 0:5437: There are Cantor sets of zeros inside and
outside the overlap region. The dimension of these Cantor sets approaches one
when t goes to 0.5. The density functions seem to have almost vertical slope
everywhere.
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Fig. 2 Bernoulli convolutions for different t; indicating phases 1, 2, 3. Histograms with 2000
bins in black and 50,000 bins in grey. The bar indicates the overlap interval. The last example is
assumed to be singular (Salem number)

Our description of phases is not a rigorous mathematical statement. For certain
exceptional numbers ˇ it is definitely false. The Fibonacci number � and the
Tribonacci number �3 D 1:8393; the root of x3 � x2 � x � 1; are Pisot numbers
for which no density exists. ˇKL D 1:7872 is the parameter found by Komornik and
Loreti [22]. Positivity, continuity, and smoothness of the functions can be proved
only for very particular parameters like

p
2; since in general we do not even know

whether a density exists. Sidorov [28] called phases 3, 4, 5 the lower, middle, and
top order. He proved that in phase 5 there is at least one zero inside the overlap
region. In general, there seems to be a Cantor set of zeros. Some other illustrations
of Bernoulli convolutions can be found in [2, 30].

Note that zeros of the density functions usually do not exist in a numerical sense.
Even if we draw the graph of a density function as a histogram with ten million bars,
there will be no proper zero in phase 5. The assertion on Hausdorff dimension of
zeros was shown rigorously in [21]. Nevertheless, zeros are so thin that they are not
recognized numerically.
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Fig. 3 Bernoulli convolutions for different t, indicating phases 3, 4, 5. Histograms with 2000 bins
in black and 50,000 bins in grey. The bar indicates the overlap interval. The first example is a
density function (Garsia number)

On the other hand, even for parameters where densities cannot be bounded,
as on bottom of Fig. 2, the maximum values of our functions are between 2 and
4, depending on the resolution of the picture. To study the resolution effect, our
histograms were drawn with 2000 bins in black and 50,000 bins in grey. For
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phases 1 and 2, differences are hardly visible but they matter: we could not decide
numerically for which t near 1 the density is increasing up to x D 1

2
: In phases 3-5,

resolution differences seem tremendous. The two examples for phase 3 include a
Salem number for which Feng [15] proved that a bounded density function cannot
exist, and a Garsia number with bounded density which equals zero in the central
point 1

2
: The Salem parameter leads to larger peaks and slightly larger variation.

This discussion shows how difficult it is to study Bernoulli convolutions one by
one. The treatment of the two-dimensional density ˚ will be easier.

3 Overlap Region and Horns

The most obvious feature of Fig. 1 is the overlap region D D f.t; y/j t � y � 1 � tg;
a big triangle with large values of ˚: It represents the overlap intervals D D Œ1� t; t�
on the first level of the fractal construction (we should write Dt but omit t). In the
definition (1) of �.A/; one of the terms on the right-hand side becomes zero if A \
D D ; so the density is smaller outside the overlap region. However, there are other
“horns” which come out from the big triangle and which represent the overlaps on
higher level, for example, D0 D f0.D/ which is given by t2 � y � t.1 � t/: The
general form is Dw D fw.D/ where w D w1: : :wn is a 0-1-word, and fw D fw1 : : : fwn :

Since Dw is mapped by gw on D; the interior structure of the horn Dw reflects the
interior structure of D; at least to some extent, according to (1). The equations of
lower and upper border of Dw are y D fw.1�t/ and y D fw.t/: These are polynomials
in t with coefficients ˙1 and zero, already studied by Garsia [18]. Lower borders
do not intersect each other and meet in .1; 0/: Upper borders do not intersect and
meet in .1; 1/: Landmarks are obtained from intersection points of lower and upper
borders of different horns. The corresponding parameters ˇ are algebraic integers.

Figure 4 shows the seven horns D; D0; D1; D00; D01; D10; D11: Up to six horns
intersect in a point .t; y/ with t � 0:76 which means y has up to 7 addresses when

Fig. 4 A low-order
approximation of ˚: There
are 0 up to 6 horns of levels 0,
1, and 2 which meet in a point
.y; t/; or 1 up to 7 values of
g3

t .y/ in Sect. 5. Landmark
points ˇ are algebraic integers
like golden mean and

p
2; cf.

Table 1. Borders as in Fig. 1
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Table 1 Landmarks in Fig. 4

Pisot numbers Garsia numbers

t D 1=ˇ p.ˇ/ t D 1=ˇ p.ˇ/

0.618 ˇ2 � ˇ � 1 0.707 ˇ2 � 2

0.570 ˇ3 � 2ˇ2 C ˇ � 1 0.648 ˇ3 � 2ˇ2 C 2ˇ � 2

0.682 ˇ3 � ˇ2 � 1 0.739 ˇ3 � ˇ2 C ˇ � 2

0.755 ˇ3 � ˇ � 1 0.794 ˇ3 � 2

Pisot parameters include golden mean, its doubling counterpart, plastic number, first Pisot
number. Garsia polynomials obtained by adding ˇ � 1

only three levels of iteration are studied. The two parameters of degree two, obtained
from the intersection of D0 with D and D1; are the golden mean at t D 0:618; and
the Garsia number

p
2; t D 0:707: Further landmarks ˇ in Fig. 4 are on the curve

y.t/ D t � t2 C t3 D f0f1.1 � t/ describing the upper border of D01 with tip at
y. 1

2
/ D 3

8
: The intersection with curves 1 � t and 1 � t2 of lower order horns D; D1

leads to well-known Pisot numbers at t D 0:570 and t D 0:6823 while intersections
with horns D10; D11 of the same order yield Garsia numbers at t D 0:648 and t D
0:739: Parameters in the last row of Table 1 come from intersections of D00 with D1

and D11:

On this level, all landmark points correspond to the two classes of numbers which
have been thoroughly studied in connection with Bernoulli convolutions. Moreover,
polynomials of Garsia numbers are obtained by adding ˇ � 1 to the corresponding
Pisot polynomial. On higher level, the situation is more complicated. Not all horns
will intersect, and we often get only Perron numbers [5].

In the sequel we focus our study on two regions: those points which are not
contained in any horn, and the points inside D: Due to symmetry, it suffices to
consider points .t; y/ with y � 1

2
: In this note, we shall concentrate on phases 3-

5 where the structure of ˚ is most apparent. Figure 5 shows a magnification of this
part of Fig. 1.

4 Points with Unique Addresses

Already before 1990, it was discovered that for t < 0:618 there are points which
have a unique address in the fractal construction. For t > 0:618 all points y 2 Œ0; 1�

have a continuum of addresses while for the golden mean parameter t D 0:618 all
points have infinitely many addresses, where a countable dense set of points has
only a countable number of addresses. See Daroczy and Katai [9], Erdös et al. [12],
Glendinning and Sidorov [19], Sidorov [27, 28], and various other papers quoted
there.

An address of y is a 01-sequence s D s1s2: : : with y D limn!1 fs1 : : : fsn.x0/

where the initial point x0 does not matter. Points in the overlap region have at least
two addresses, and so do all points in all horns fw.D/: Thus the points with a unique
address coincide with the points which do not belong to any horn.



46 C. Bandt

0.5

0.46

0.42

0.38

0.34

0.52 0.54 0.56 0.58 0.6 0.62

1

2

3

Fig. 5 ˚ for 0:5 � t � 0:63; 0:325 � y � 0:5: Right of the golden mean, the structure
becomes blurred. At t D 0:618; a periodic point appears outside D; describing a dark curve which
hits the y-axis at 1=3

In Fig. 5 these points are recognized by their dark color. Why? Because the
measure of an "-neighborhood B.y; "/ D Œy�"; yC"� of a point y with unique address
decreases very fast with ". The appropriate parameter is local dimension. Roughly
speaking, a measure � has dimension d D dy.�/ at a point y if �.B.y; "// � "d for
small "; and Lebesgue measure on R

d is a basic model for this concept. The precise
definition is

dy.�/ D lim
"!0

log �.B.y; "//

log "
: (2)

We consider only cases where the limit exists, so we need not distinguish upper and
lower local dimension. See [13] for details.

If for a Bernoulli measure y has only one address, then on each level n of the
fractal construction, y is contained in a single piece, an interval of length tn and
�-measure 2�n: Putting this interval as approximation of B.y; tn/ into (2) we obtain
dy.�t/ D log 2

log ˇ
> 1: For proofs of related statements, see [5, Proposition 4], [16].

A more basic concept is the density of � at y;

D�.y/ D lim
"!0

�.B.y; "//

2"
:

This function of y is called the density function of � when the limit exists for all y:

If the local dimension of a measure � at y is greater than 1, then clearly D�.y/ D 0:

Conjecture For Bernoulli measures �t the converse seems to be true: density zero
implies local dimension greater than 1. We further conjecture that with exception
of weak Perron parameters ˇ discussed in [5, Theorem 6], the only value of local
dimension larger one of a Bernoulli convolution equals log 2

log ˇ
:
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This value describes all cases where y has finite or countable number of
addresses. Certainly log 2

log ˇ
is the largest possible local dimension since every point

has at least one address. Sidorov and Baker studied various examples of points with
two, three, or countably many addresses [3–5, 28], but points with unique address
are much more frequent.

Local dimension explains why points with unique addresses are so apparent in
the graph of ˚: Jordan et al. [21, Theorem 1.5] found sets QAt of local dimension log 2

log ˇ

for 1
2

< t < 0:618; and proved that their Hausdorff dimension tends to 1 for t ! 1
2
:

As it turns out, the QAt contain exactly the points with unique addresses studied by
other authors.

Figure 5 shows that the value log 2

log ˇ
matters a lot. At t D 0:618 this value is 1.44

and there is a very thick dark line in Fig. 5 which corresponds to a broad valley
of the density, as on the bottom of Fig. 2. For t � 1

2
the largest local dimension

approaches 1. This implies average coloring in Fig. 5 and extremely narrow valleys
on the bottom of Fig. 3. The points 0 and 1 have a unique address for every t; which
yields the dark margin of Fig. 1. For t ! 1 the local dimension at 0 and 1 converges
to infinity.

Remark At all points .t; y/ with unique address, the local dimension of the two-
variable function ˚ equals 1 C log 2

log ˇ
: Thus d.t;y/.˚/ assumes all values between 2

and infinity.

Sketch of Proof For the second assertion, it is enough to consider y D 0 for all t: So
let us prove the first assertion only for this case. Local dimension of ˚ is defined
with the associated measure �.A � B/ D R

A

R
B ˚.t; y/d�t.y/dt. Take a point .t; 0/

with 1
2

< t < 1: Choose " so that A D Œt�"; tC"� is a subset of . 1
2
; 1/ and B D Œ0; "�

fulfills 1
2
�t.B/ � �s.B/ � 2�t.B/ for all s 2 A: Then "�t.B/ � �.A � B/ � 4"�t.B/

and

lim
"!0

log �.A � B/

log "
D 1 C lim

"!0

log �t.B/

log "
D 1 C log 2

log ˇ
:

For a general proof we need the fact that each .t; y/ with t > 1
2

and unique address
lies on a differentiable curve yb.t/: This will be shown below.

5 Quantile Curves and Conjugacy with the Doubling Map

Here we stress the fact that points with unique addresses appear on differentiable
curves and thus constitute a smooth element in an otherwise chaotic scenario. We
start with an example.

The remarkable phase transition at 0.618 is essentially caused by a single periodic
orbit x0 D t

1Ct ; x1 D 1
1Ct : We have g0.x0/ D x1 and g1.x1/ D x0 for every t: Thus

if x0; x1 are outside the overlap triangle—and this happens exactly for t < 0:618—
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then x0 has the unique address 0101: : : D 01 and x1 has unique address 10: Thus
the smooth function y.t/ D t

1Ct consists for 1
2

� t < 0:618 entirely of points with
unique addresses and provides the prominent curve seen in Fig. 5.

From the definition (1) and the period 2 property of x0; x1 it follows that
�tŒ0; x0� D �tŒx0; x1� D �tŒx1; 1� D 1

3
; cf. [5, Proposition 2]. Thus, in probabilistic

terms, the function y.t/ D t
1Ct defines the 1

3
-quantile of all measures �t with

1
2

� t < 0:618: This fact will now be generalized.

Definition 5.1 (Doubling Map and Bernoulli Map) The function g.x/ D 2x
mod 1 defined for 0 � x � 1 is called the doubling map. For each t 2 . 1

2
; 1/

the function gt.x/ D fg0.x/; g1.x/g is the Bernoulli map. It is two-valued on
D D Œ1 � t; t�: The map Ft.x/ D �tŒ0; x� is the cumulative distribution function
of �t:

Proposition 5.2 (Conjugacy of Bernoulli and Doubling Map) For each t 2
. 1

2
; 1/ the function Ft defines a conjugacy between the action of gt on Œ0; 1� n D

and the doubling map g on a corresponding subset of Œ0; 1�: That is,

Ft � gt.x/ D g � Ft.x/ for x 2 Œ0; 1� n D :

This is proved by applying (1) to B D Œ0; x�; see [5]. To get a conjugacy between
dynamical systems, we have to restrict ourselves to points x for which the orbit
under gt does not intersect D: This means x has unique address, thus t � 0:618: For
the borderline cases x D 1 � t and x D t; the images g1.1 � t/ D 0 and g0.t/ D 1

will be neglected, to get a closed domain for gt:

Definition 5.3 (Binary Itineraries and Kneading Sequences) A 01-sequence
b1b2: : : and the corresponding binary number b D :b1b2: : : are called kneading
sequence with respect to the doubling map if no number g.k/.b/ D :bkbkC1: : : with
k D 1; 2; : : : is nearer to 1

2
than b: All preimages x 2 g�m.b/ of a kneading sequence

b for some m D 1; 2; : : : are called itineraries. The function yb.t/ D 1�t
t � P1

kD1 bktk

is called the address curve corresponding to b:

Itineraries and kneading sequences were introduced in the context of one-
dimensional dynamics by Milnor and Thurston [23] in slightly different form.
Binary itineraries are exactly those 01-sequences which do not contain n consecutive
equal symbols 0 or 1, for some n: The corresponding kneading sequence is obtained
by determining the orbit closure of :b1b2: : : under the doubling map, and taking the
point (or one of the two points) nearest to 1

2
: If b is a kneading sequence, then so is

1 � b: So it suffices to study b < 1
2

or b1 D 0:

Similar functions were introduced by Milnor and Thurston to determine the
topological entropy of unimodal maps. The standardizing factor 1�t

t comes from
our choice of mappings g0; g1 which define all measures on Œ0; 1�: The following
theorem says that all address curves with b1 D 0 can be seen in Fig. 1 as parallel
blue curves.
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Theorem 5.4 (Address Curves Define Quantiles [5]) For each itinerary b D
:b1b2: : :; the address curve y D yb.t/ describes the points for which Ft.y/ D b;

for all Bernoulli measures �t with 1
2

� t � t� where t� > 1
2

depends on b:

If b itself is a kneading sequence with b1 D 0; then t� is simply the solution of
yb.t/ D 1 � t: For kneading sequences b with b1 D 1; we have to solve the equation
yb.t/ D t: If b is not a kneading sequence, we determine t� from the corresponding
kneading sequence. In all cases, t� marks the right endpoint of the dark curve yb.t/
in Fig. 1.

In the setting of one-dimensional unimodal maps, itineraries are the addresses
of points, and kneading sequences are the addresses of the critical point. A 01-
sequence is an address for different points in different maps, but in a well-behaved
parametric family of maps it will appear only once as a kneading sequence, and
then it disappears. For Bernoulli convolutions we have a similar situation. Itineraries
are unique addresses of certain points, describing the quantile given by the binary
number b: At the point t� they become critical which means that the corresponding
kneading sequence is a boundary point of the overlap interval D D Œ1 � t; t�: When
they enter D; they cease to have a unique address, and to be points of minimal
local dimension of �t: As we shall see, the curves yb.t/ remain important beyond t�
although in Fig. 1 yb.t�/ seems to be their endpoint.

Early results on connections between kneading sequences and Bernoulli convo-
lutions, mostly formulated in the setting of ˇ-expansions, include the calculation of
the Komornik–Loreti parameter [22] which corresponds to the Feigenbaum point,
the description of parameters with unique ˇ-expansion by de Vries and Komornik
[10], and the detection of the Sharkovskii ordering in the set of periodic unique
ˇ-expansions by Allouche et al. [1].

There is a clear one-to-one correspondence between itineraries of unimodal
maps, and the unique addresses considered here. To each quadratic map qr.x/ D
rx.1 � x/ without stable periodic points there is a unique corresponding Bernoulli
measure �t� : The periodic windows of the “Feigenbaum diagram” [8] correspond
to the horns of the two-dimensional Bernoulli density which intersect the central
horn D: The dynamic phenomena are quite different, however. Periodic windows
correspond to stable periods while the expanding maps g0; g1 do not admit stable
periodic points. As a consequence the width of horns near the Komornik–Loreti
parameter decreases like a double exponential, while the length of periodic windows
near the Feigenbaum point follows a famous asymptotically geometric sequence
[8]. This particular detail is hardly visible in our figures. Many other details, as, for
instance, windows of higher order, are more apparent here. When landmark points
are determined for the quadratic family, we have polynomials of degree 2k for the
k-fold iteration of qr while we get polynomials of degree k for the iteration of gt:

This correspondence seems to deserve more attention. The question for the
existence of an absolutely continuous invariant measure of qr; for example, is wide
open as the question for density functions of Bernoulli measures. There could
be some connection. For instance, there are parameters with known absolutely
continuous measure for qr which correspond to Garsia numbers. One example is
given below. It should also be mentioned that Tiozzo [31] recently related the
combinatorial structure of kneading sequences to continued fractions and the Gauss
map.
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Itineraries correspond only to a nowhere dense set of parameters r of quadratic
maps, and t� of Bernoulli measures. One difference between the Bernoulli scenario
and real quadratic maps is that there are many dynamic changes between parameters
t� inside the horns, as we shall see below, while there are no dynamic changes within
periodic windows of the quadratic family. In this respect the Bernoulli scenario
rather resembles the Mandelbrot set and its abstract model, Thurston’s quadratic
minor lamination, where windows are replaced by bubbles with rich boundary
structure. The overlaps in the Bernoulli scenario lead to other phenomena, however.

6 Inside the Overlap Region

So far we have dealt with the simple part of the Bernoulli scenario. Inside the horn
D and its copies Dw we see the chaotic part. Figure 6 indicates that the curves yb.t/
remain structure-forming elements of ˚: However, there are two families of curves
which meet inside the horn D W the increasing functions yb.t/ with b < 1

2
seen in

Fig. 1, and the family of decreasing functions yc.t/ with c D 1 � b > 1
2
: They look

like two wavefronts which interfere with each other. Actually, the situation is more
complicated since two families can already meet inside the smaller horns Dw; and
then these horns will meet D; and meet each other within D: (See the upper picture of
Fig. 6. The wavefront in the foreground which approaches the line y D 1�t does not
consist of parallel waves. In the picture below these waves are in the background.)
As a result the continuity of curves is lost. There are fractal mountains. We shall
give an explanation for the impression that there are rather few and rather isolated
peaks or clusters of peaks while there are many valleys.

A rigorous study of the intersections of itinerary curves confirms this observation.
To obtain large values of ˚ in the intersection point, rather restrictive conditions
must be fulfilled. We must have two different periodic addresses, which implies
that the corresponding parameter ˇ is a weak Perron number, and the growth of
addresses must be sufficiently fast. We formulate the statement in non-technical
form, refer to [5] for more details, and give a few examples to clarify the situation.

Theorem 6.1 (Intersections of Kneading Curves) Let b D :0b2b3: : : and c D
:1c2c3: : : be itineraries, and let the two curves yb.t/; yc.t/ intersect in the point .s; z/
inside the central horn D: For (i) and (ii) we assume that no point of the forward
image of z under gs lies in D:

(i) If both b and c have infinite or preperiodic orbit with respect to the doubling
map, then z has two addresses, and the local dimension of �s assumes the
maximum value log 2

log 1=s (except when two “pre-periods” coincide).
(ii) If one sequence is periodic and the other one is preperiodic or infinite, then

z has a countable number of addresses, and the local dimension is dz.�s/ D
log 2

log 1=s :



The Two-Dimensional Density of Bernoulli Convolutions 51

2.5

1.5

0.5

0.5

0.48

0.46

0.44

0.42

2.5

1.5

0.5

0.42 0.44
0.46 0.48 0.5

0.6

0.59

0.58

0.57

0.56

1

2

0.56

0.57

0.58

0.59

0.6

2

1

Fig. 6 Three-dimensional representation of ˚ for 0:55 � t � 0:6; 0:4 � y � 0:5 from two
different viewpoints, cf. Fig. 5. The quantile curves on both sides of the overlap region D act like
two wavefronts which interfere in D: There are many valleys and few peaks

(iii) If both b and c are periodic with respect to the doubling map, with periods m
and n; then z has uncountably many addresses. If .2s/�m C .2s/�n > 1; then
the local dimension dz.�s/ is smaller than 1, and �s cannot have a bounded
density.

We illustrate the statement with periodic and preperiodic kneading sequences.
Thus the orbit of z under g0; g1 will be finite. In this case 1=s must be a weak
Perron number [5]. The assumption that the orbit remains outside D is restrictive.
For 0:570 < t < 0:618; for instance, we have only the kneading sequences 1

3
D 0:01

and 2
3

D 0:10 (that is, t� < 0:57 for other kneading sequences). Thus preperiodic
itineraries have the form ; w10 with a 01-word w; corresponding to the binary
representation of k=.3 � 2n/ for some integer k:
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Examples for Case (i) The curve yb.t/ D t � t2 C t2

1Ct for 5
12

D b D 0:0110 can be
seen inside D in Fig. 5 as a dark broken line. The reason is the above theorem: there
are so many crossing points with other curves coming from above which force the
density of �s to be zero. One of these curves yc.t/ with 13

24
D c D 0:10001 intersects

yb.t/ at t D 0:618; z D 0:472: This curve can also be followed inside D because
of its zeros. The curve yd.t/ with 25

48
D c D 0:100001 is less apparent but it has a

very clear intersection point with yb.t/ at s D 0:585; z D 0:459 visible in Fig. 5 as
a dark crossing. Sidorov [4, 28] found this example and proved that ˇ D 1=s is the
smallest parameter where a point has exactly two addresses.

Example for Case (ii) There are many other points on the curve yb.t/ with s < t <

0:618 where crossings can be seen. They all correspond to case (ii) in Theorem 6.1
where we have a countable number of addresses. To give just one example, 8

15
D

c D 0:1000 with yc.t/ D .1 � t/=.1 � t4/ leads to s D 0:592; z D 0:463:

Bernoulli Convolution with Zero at y D 1
2

We combine 11
24

D b D 0:01110 with
13
24

D c D 0:10001: When c D 1 � b; we obtain s as the root of yc.t/ D 1
2

D z: In
our case we get s D 0:565; and ˇ D 1

s is a Garsia number with minimal polynomial
ˇ3 � 2ˇ � 2: This is the smallest ˇ for which the central point 1

2
has only two

addresses. Zero density is visible in the top picture of Fig. 3, and the dark crossing
is apparent in Fig. 4. At first glance, one would think that 1

2
usually is a point of

maximal density of �t: Except for phase 1, however, this case is indeed an exception.
Figure 7 shows that in phase 5 dark crossings are abundant and form Cantor

carpets instead of isolated spots. The reason is the abundance of infinite orbits
outside D: All these examples belong to cases (i) and (ii) of Theorem 6.1.

0.51

0.5

0.49

0.48

0.47

0.51 0.52 0.53 0.54

1

2

3

4

Fig. 7 Phase 5: ˚ for 0:5 � t � 0:55; 0:46 � y � 0:51: Even near the Tribonacci parameter
on the right, the pattern of peaks seems discrete. At the tip t D y D 1

2
of the overlap triangle D the

scenario looks self-similar, with scaling factor two
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Fig. 8 ˚ for 0:55 � t � 0:58; 0:455 � y � 0:485; with address curves of
3=7; 4=9; 8=15; 16=31 (fat lines) and 55=127 thin line. Intersections lead to Pisot and Perron
parameters where a density of the Bernoulli measure cannot be bounded

Pisot Examples for Case (iii) Now we combine two periodic addresses. These
examples indicate parameters s where �s does not possess a bounded density, and
perhaps is even singular. We study the peaks of Fig. 6, and show a close-up of an
important part of phase 3 in Fig. 8 above. The curves yb.t/ with b D 3=7 D 0:011

and b D 4=9 D 0:011100 and yc.t/ with c D 8=15 D 0:1000 and c D 16=31 D
0:10000 go through this region. We can determine their four intersection points of
type (iii), providing the Pisot parameter s D 0:570 from Table 1 and three other Pisot
parameters s D 0:552; 0:560; 0:576: Thus we have singularities of the function ˚;

according to the old result of Erdös.
There is some more information about local dimensions, however, and even for

Pisot numbers other than multinacci, such information is far from being obvious
[14, 15, 20]. The growth rate � of a point lying on the intersection of two cycles
of length m; n is at least as large as the positive root of r�m C r�n D 1: For 3=7

and 8=15 we have m D 3; n D 4, and � � 1:22. The local dimension then is
log 2

�
= log ˇ � 0:895; much smaller than all local dimensions for the Fibonacci

parameter. For 4=9 and 8=15 we obtain the same growth: since 4=9 D 0:011100 has
the form w.1 � w/ with w D 011 we can also take m D 3: When we replace 8=15

by 16=31; this means n D 5 and � � 1:19: Local dimensions are between 0.87 and
0.89.

Are There Non-Pisot Parameters with Singularities? This question was studied by
Feng and Wang [17], based on work of Peres and Solomyak, and for Salem numbers
in greater detail by Feng [15]. A main result of [17] says that a root t of a polynomial
of degree n with coefficients 0; ˙1 which fulfills t < 2�n=.nC1/ gives rise to a
Bernoulli convolution �t which cannot have a bounded density. Our theorem above
allows to find new parameters t and to give an interpretation of the type of singularity
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which we have: there is a finite orbit of the multivalued map gt which has growth
leading to a local dimension smaller than 1 [5]. At the points of this orbit, and at all
their preimages under gt; we must have poles when a density exists. Thus we would
have a dense set of poles. These poles can be verified as in Fig. 2. Conclusions
concerning the multifractal spectrum similar to the results in [14, 15, 20] can be
easily drawn, but here we confine ourselves to a simple example.

A New Perron Number with No Bounded Density Take the address curve of b D
55=127 D 0:0110111; drawn as thin line in Fig. 8, with formula yb.t/ D .t�t3Ct4�
t7/=.1�t7/: Since this b is an itinerary, not a kneading sequence, the curve intersects
not only the yc.t/ coming from above, but also some yb.t/ leading upwards. The
intersection with the curve of 4=9 leads to another Pisot parameter at t D 0:5735:

However, the intersection with the curve of c D 16=31 leads to t D 0:5546; with
minimal polynomial t9 C t8 C2t7 C t6 C2t5 C t4 C t3 C t �1: The number ˇ D 1=t is
Perron, not Pisot. The Feng–Wang result does not apply since t > 2�9=10 D 0:536: If
there was a polynomial with coefficients 0; ˙1, then 2�n=.nC1/ would be still smaller.

We have the intersection of two periodic orbits with m D 7 and n D 5; and
the inequality of the theorem is fulfilled. The local dimension can be estimated as
above: � � 1:1237 > 1:11 � 2t and dz.�s/ D log 2

�
= log ˇ � 0:98:

It should be noted that the intersection of yb.t/ with the curve of c D 8=15 also
yields a Perron parameter, but for this intersection point the inequality in (iii) is
not satisfied. However, there are many kneading sequences b which lead to Perron
parameters for which �t has non-trivial multifractal spectrum. This will not be
discussed in this introductory note. It seems possible that all poles and local maxima
of the function ˚ can be represented as intersections of address curves.
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