
(S)PDE on Fractals and Gaussian Noise
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Abstract In the first part of this paper we give a survey on results from Hinz
and Zähle (Potential Anal 36:483–515, 2012) and Issoglio and Zähle (Stoch PDE
Anal Comput 3:372–389, 2015) for nonlinear parabolic (S)PDE on certain metric
measure spaces of spectral dimensions less than 4 with applications to fractals. We
consider existence, uniqueness, and fractional regularity properties of mild function
solutions in the pathwise sense. In the second part we apply this to the special case
of fractal Laplace operators as generators and Gaussian random noises.

Furthermore, we show that random space-time fields Y.t; x/ like fractional
Brownian sheets with Hurst exponents H in time and K in space on general Ahlfors
regular compact metric measure spaces X possess a modification whose sample
paths are elements of C˛.Œ0; t0�; Cˇ.X// for all ˛ < H and ˇ < K. This is used
in the above special case of SPDE on fractals.

1 Introduction

Deterministic elliptic and parabolic PDE without noises on classes of fractals and
more general metric measure spaces have been studied, e.g., in [1, 6–8, 11, 25].

In the present paper we give a survey on some of the results obtained together
with Hinz [16] and Issoglio [19] and further complementary material concerning
the following parabolic nonlinear Cauchy problem on a locally compact separable
metric measure space .X; d; �/, where � is a Radon measure.

@u

@t
D �Au C F.u/ C G.u/ � Pz; t 2 .0; t0�; u.0/ D f : (1)

Here t0 > 0 is arbitrary, �A is the generator of a Markovian strongly continuous
symmetric semigroup fT.t/; t � 0g on L2.�/ admitting the heat kernel estimate
HKE(ˇ), and F and G are sufficiently regular functions. The noise term Pz denotes a
fractional space-time perturbation which will be made more precise later on. In the

M. Zähle (�)
Institute of Mathematics, Friedrich Schiller University, 07737 Jena, Germany
e-mail: martina.zaehle@uni-jena.de

© Springer International Publishing AG 2017
J. Barral, S. Seuret (eds.), Recent Developments in Fractals and Related Fields,
Trends in Mathematics, DOI 10.1007/978-3-319-57805-7_13

295

mailto:martina.zaehle@uni-jena.de


296 M. Zähle

Euclidean case it can be interpreted as a formal time derivative of a time dependent
spatial distribution, where the latter may be defined by a distributional gradient
of a non-differentiable function via Fourier analysis, cf. [15]. Solutions to (1) are
considered in the mild form, formally given by

u.t/ D T.t/f C
Z t

0

T.t � s/F.u.s//ds C
Z t

0

T.t � s/G.u.s//dz.s/: (2)

In [16] the second integral is determined by means of fractional time derivatives and
pointwise products of functions and “distributions”. The spaces used to describe the
regularity of the solution to (2) are fractional Sobolev spaces defined on metric
measure spaces using the associated semigroup. The spatial distributions z.s/ are
introduced as elements of appropriate dual spaces. In [19] the time regularity of the
solution is also expressed in terms of Hölder exponents.

These notions and results are summarized in Sects. 2 and 3. For the proofs we
refer to [16] and [19].

In Sect. 4 this is applied pathwise to SPDE with Gaussian noise, i.e.,

z.t/ D .A C Id/� Y.t; �/ ;

for certain exponents � > 0, where Y.t; x/ is a real valued centered Gaussian random
field in time and space with certain covariance structure. In order to check the
conditions on z from the previous sections the existence of strong Hölder continuous
modifications for such Gaussian random fields and an embedding result for the
corresponding function spaces are used.

References to related literature for the Euclidean case may be found in [16] and
[19].

Then we consider the special case of semigroups determined by local regular
Dirichlet forms associated with Neumann Laplace operators � D �A on compact
fractal spaces. Here such Gaussian fields are constructed by means of series
expansion with the usual methods of spectral analysis. Examples are p.c.f. self-
similar sets, generalized Sierpinski carpets, or certain products of fractals.

The whole approach is low dimensional and works only for spectral dimension
less than 4.

As an auxiliary tool of independent interest we show in Sect. 5 the following
extension of a classical result. Let Y.t; x/ be a centered Gaussian random space-
time field on a general Ahlfors regular compact metric measure space .X; d; �/. If
its mean quadratic increments satisfy upper estimates like for Euclidean fractional
Brownian space-time sheets with Hurst exponents H in time and K in space, then Y
has a modificationeY such that a.s.eY 2 C� .Œ0; t0�; C� .X// for all � < H and � < K.

Here and in the sequel the letter c denotes a general finite constant which might
change from step to step.
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2 Semigroups, Fractional Sobolev Spaces, and Their Dual
Spaces

We now recall some background from the literature and related results which are
used or shown in [16] and [19].

In the case of metric measure spaces the analogues of the classical fractional
Sobolev (or Bessel potential) spaces in the literature are introduced by means of the
given semigroup fT.t/; t � 0g, i.e., of its generator �A:

The generalized Bessel potential operator on L2.�/ is defined for � � 0 as

J� .�/ WD .A C Id/��=2:

To each operator there corresponds a potential space defined as

H� .�/ WD J� .L2.�//

and equipped with the norm kukH� .�/ WD kukL2.�/ C kA�=2ukL2.�/, which is
equivalent to k.A C Id/�=2ukL2.�/. In fact these spaces correspond to the domains of
fractional powers of A, i.e., D..A C Id/�=2/ D D.A�=2/ D H� .�/. In particular, for
any ˛ � 0 the operator J˛ acts as an isomorphisms between H� .�/ and H˛C� .�/.
Analogously one can define the potential spaces corresponding to the generators
�Ap; 1 < p < 1, of Markovian semigroups on Lp.�/. They are denoted by H�

p .�/

and clearly H�
2 .�/ D H� .�/. We also consider the spaces

H�1.�/ WD H� .�/ \ L1.�/

normed by k � kH� .�/ C k � k1, with slight abuse of notation. Here the norm k � k1
in L1.�/ is given by the essential supremum.

Furthermore, the dual spaces of H�
p .�/ are used in the sequel: for 1 < p < 1;

� � 0 they are denoted by

H��
q .�/ WD �

H�
p .�/

��
;

where 1
p C 1

q D 1. In case p D 2 we do not write p explicitly.

Remark 2.1 The operators .A C Id/�=2 can be extended to dual spaces as follows.
For 0 < � < � < 1 the bijective linear mappings

.A C Id/�=2 W H�
q .�/ ! H���

q .�/ (3)

are well defined by the dual pairing

˝
g; .A C Id/�=2f

˛ WD ˝
.A C Id/.���/=2g; .A C Id/�=2f

˛
;
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where g 2 H���
p .�/ and f 2 H�

q .�/ with p; q as before. Then there are unique
extensions of the above operators acting as in (3) such that

.A C Id/� ı .A C Id/� D .A C Id/�C�

for all �; �; � 2 R and q > 1.
For the regularity in time of the solution to (2) we consider the following spaces
frequently used in the literature: Let 0 < � < 1 and .B; k � kB/ be a normed
space. Then W�.Œ0; t0�; Y/ denotes the space of mappings v W Œ0; t0� ! B such
that kvk�;B < 1, where

kvk�;B WD sup
0�t�t0

�
kv.t/kB C

Z t

0

kv.t/ � v.s/kB

.t � s/�C1
ds

�

is the norm in W�.Œ0; t0�; B/.
Furthermore, C�.Œ0; t0�; B/ is the corresponding space of Hölder continuous

mappings of order � with the usual norm. In the sequel B is a fractional Sobolev
space or a Hölder space on X.

Throughout the paper we use the short notations for the following norms:

k � k˛;1 WD k � kH˛
1.�/ and k � k˛ WD k � kH˛.�/ for each ˛ 2 R :

Then we recall that for 	 � 0 and t > 0 the operators T.t/ and A	 commute on D.A	/

and satisfy the following well-known estimates (see, e.g., [22]) for u; v 2 D.A	/:

kT.t/vjj	 � ct�
	
2 kvk0 ; (4)

and for 0 < 	 < 1,

kT.t/u � uk0 � ct	kuk2	 ; (5)

where 0 < t � t0.
The symmetry of the semigroup fT.t/; t � 0g has been used in order to extend

it to elements from the dual spaces. If w 2 H�ˇ.�/, then T.t/w is the element of
L2.�/ determined by the duality relation

hv; T.t/wi WD hT.t/v; wi ; v 2 L2.�/ :

Then we get

j hv; T.t/wi j D j hT.t/v; wi j � kT.t/vkˇkwk�ˇ

and hence,

kT.t/wk0 � ct�
ˇ
2 kwk�ˇ
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in view of (4). Applying the latter again and using T.t/ D T. t
2
/ ı T. t

2
/ we infer

kT.t/wkı � ct� ı
2 � ˇ

2 kwk�ˇ (6)

for any ı; ˇ > 0.
Similarly one obtains from (5)

kT.t/w � wk�ˇ�2	 � ct	kwk�ˇ ; (7)

for any ˇ > 0, w 2 H�ˇ.�/ and 0 < 	 < 1.
Note that the constants in the estimates depend on the associated parameters 	,

ˇ, and ı.
The main results in [16] and [19] are derived under the following additional

condition:

Assumption (HKE(ˇ)) The transition kernel Pt.x; dy/ associated with the semi-
group T.t/; t � 0 admits a transition density Pt.x; dy/ D p.t; x; y/�.dy/ which
satisfies for almost all x; y 2 X the following heat kernel estimate:

t�
dH
w ˚1.t� 1

w d.x; y// � p.t; x; y/ � t�
dH
w ˚2.t� 1

w d.x; y//

if 0 < t < R0 for some constants R0 > 0, w � 2 and nonnegative bounded
decreasing functions ˚i on Œ0; 1/, where dH is the Hausdorff dimension of .X; d/

and w is called the walk dimension of the semigroup. Moreover, for a given
ˇ > 0,1 Z 1

0

sdHCˇw=2�1˚2.s/ds < 1 :

For t � R0, p.t; x; y/ � pt and pt decreases in t.

Remark 2.2 In this case the semigroup is ultracontractive, i.e.,

kT.t/kL1.�/ � ptkf kL2.�/ ;

where pt WD c t�dS=4, if t < R0, and the value dS D 2dH
w agrees with its spectral

dimension. (For this the integrability condition is not needed.)
Heat kernels of this type have been studied in Grigor’yan et al. [11], Grigor’yan

and Kumagai [10], and related references therein. Further relationships are pre-
sented in the recent survey [12] of Grigor’yan, Hu, and Lau. In particular, the
heat kernel estimates HKE(ˇ) imply that the measure � is Ahlfors regular of order
dH , i.e.,

c�1rdH � �.B.x; r// � crdH (8)

for all x 2 X and 0 < r < R0, where B.x; r/ WD fy 2 X W d.x; y/ � rg (cf. [11, 18]).

1In [16] the w is missing in the exponent.
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For smooth domains in Euclidean spaces and various classes of fractal spaces
.X; d; �/ the following special case has been investigated: The semigroup fT.t/; t �
0g is generated by a (fractal) Laplacian � associated with a local regular Dirichlet
form .E ; D.E // on X, i.e., �A D �. Moreover, for those classes the corresponding
heat kernels exist and satisfy Assumption (HKE(ˇ)) for all ˇ > 0 (see, e.g., Barlow
and Bass [2] and [3], Barlow et al. [4], Fitzsimmons et al. [9], Hambly and Kumagai
[13], Kigami [21], Barlow et al. [5], and the references therein).

In order to make the integral in (2) precise we need pointwise products of
functions and dual elements from the potential spaces. In [16] the following is
proved which also extends related results for the Euclidean case.

Proposition 2.3 [16, Corollary 4.1] Suppose (HKE(ˇ)) for 0 < ˇ < ı <

min. dS
2

; 1/. Then for q D dS
ı

the product gh of g 2 Hı.�/ and h 2 H�ˇ
q .�/ is

well defined in H�ˇ.�/ by the duality relation hf ; ghi WD hfg; hi ; f 2 Hı.�/, and
the following estimate holds true:

kghk�ˇ � ckgkıkhk
H

�ˇ
q .�/

:

Furthermore, for applications to the random case the following embedding relation-
ship is useful. Recall that the semigroup T.t/ is called conservative if T.t/1 D 1 for
any t.

Proposition 2.4 Suppose that the semigroup is conservative and the underlying
metric measure space .X; d; �/ is compact. Then for 0 < � 0 < � the Hölder space

C� .X/ is embedded into H� 02=w
q .�/ for any q, if the semigroup satisfies the upper

estimates in (HKE(ˇ)) for ˇ D � 02=w.
This can be seen, e.g., from the arguments around Proposition 5.6 in [18] concerning
the upper estimate of the inverse of the Bessel potential operator. (See also the proof
of [16, Proposition 4.1].)

3 The Integral Equation and Mild Solution

A rigorous definition for the second integral and a contraction principle for the
solution to Eq. (2) are given in [16] by means of fractional calculus in Banach
spaces, in particular under the following additional conditions.

Assumption (FG) The nonlinear functions F and G are such that F 2 C1.Rn/,
F.0/ D 0 and F has bounded Lipschitz derivative F0 and G 2 C2.Rn/; G.0/ D 0

and G has bounded Lipschitz second derivative G
00

.

For the parameters we here consider the case II from [16].

Assumption (P) 0 < ˛ < 
 , 0 < ˇ < ı < min. dS
2

; 1/, 
 < 1�˛ � ˇ

2
� dS

4
, where

ˇ and dS are from (HKE(ˇ)), and q D dS
ı

.

We now will briefly summarize the construction.
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If u 2 W
 .Œ0; t0�; Hı1.�// the operator U.tI s/ W H�ˇ
q .�/ ! Hı1.�/ is defined as

U.tI s/w WD T.t � s/ .G.u.s//w/ (9)

for w 2 H�ˇ
q .�/. Here Proposition 2.3 is used for the products G.u.s//w. Then

under the above assumptions on the function G and the parameters (P) for any
0 < � < 
 the left-sided Weyl–Marchaud fractional derivative of order � is
determined by

D�
0CU.tI s/ WD 1.0;t/.s/

� .1 � �/

�
U.tI s/

s�
C �

Z s

0

U.tI s/ � U.tI �/

.s � �/�C1
d�

�

as an element of L1.Œ0; t�; L.H�ˇ
q .�/; Hı.�// (in the sense of Bochner integration).

This is shown in [16, Lemma 5.2, (ii)].2

Let us now consider the regulated version of z 2 C1�˛.Œ0; t0�; H�ˇ
q / on Œ0; t� given

by zt.s/ WD �.0;t/.s/.z.s/ � z.t//. If additionally 1 � � < 1 � ˛, which is always
possible in view of (P), one can define the right-sided Weyl–Marchaud fractional
derivative of zt of order 1 � � by

D1��
t� zt.s/ WD .�1/1��1.0;t/.s/

� .�/

�
z.s/ � z.t/

.t � s/1��
C .1 � �/

Z t

s

z.s/ � z.�/

.� � s/.1��/C1
d�

�

as an element of L1.Œ0; t�; H�ˇ
q .�//.

For more details on these fractional derivatives we refer the reader to Samko et al.
[23]. The corresponding generalized Lebesgue–Stieltjes integral was introduced in
[26, 27], see [14] for the Banach space version. (It coincides with the Young integral
and other forward integrals on the joint domains of definition.) This type of integral
is used for the term concerning the noise in the integral equation (2) for the mild
solution:

Proposition 3.1 [16, Lemma 5.1] Suppose (HKE(ˇ)), (FG), the parameter condi-
tions (P) and z 2 C1�˛.Œ0; t0�; H�ˇ

q .�//. Then for the operator U.tI s/ D T.t �
s/.G.u.s/�/ as in (9) with t 2 Œ0; t0� and u 2 W
 .Œ0; t0�; Hı1.�// the integralR t

0
U.tI s/dz.s/ is well defined by

Z t

0

U.tI s/dz.s/ WD .�1/�

Z t

0

D�
0CU.tI s/D1��

t� zt.s/ds; (10)

independently of the choice of � with � < 
 and 1 � � < 1 � ˛. (In particular, the
integrand on the right side is a Lebesgue integrable real function.)

2We remark that there is a typo in [16, Lemma 5.2], namely in (ii) and (iii) the right-hand side of
the main condition on the parameters should read 2 � 2� � ˇ instead of 2 � 2� � .ˇ _ dS

2
/.
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(Note that the complex fractional powers of �1 are cancelled by those of the right
sided fractional derivatives. They guarantee an integration-by-part rule including the
marginal case � D 1 in the limit.)

We now can formulate the main results from [16] and [19] concerning existence,
uniqueness, and Hölder regularity of the mild solution to (1).

Theorem 3.2 Suppose (HKE(ˇ)), (FG), and (P), i.e., 0 < ˛ < 
 , 0 < ˇ < ı <

min. dS
2

; 1/, 
 < 1 � ˛ � ˇ

2
� dS

4
, and q D dS

ı
. If z 2 C1�˛.Œ0; t0�; H�ˇ

q .�// and the

initial condition f is an element of HıC2
C"1 .�/ for some " > 0, then we have the
following.

(a) [16, Theorem 1.2] There exists a unique solution u to Eq. (2) for the defini-
tion (10) of the integral such that u 2 W
 .Œ0; t0�; Hı1.�//.

(b) [19, Theorem 1.2] The unique solution u 2 W
 .Œ0; t0�; Hı1.�// is also an
element of C
 .Œ0; t0�; Hı.�//.

With slightly more restrictive assumptions on the noise it follows that the unique
solution u belongs to the spaces W
 .Œ0; t0�; Hı1.�//, and thus to C
 .Œ0; t0�; Hı.�//,
for all .
; ı/ such that ˛ < 
 < 1 � ˛ � ˇ

2
� dS

4
and ˇ < ı < min. dS

2
; 1/.

Corollary 3.3 ([19, Corollary 3.6]) Suppose (HKE(ˇ)), (FG) and that the given
parameters ˛; ˇ satisfy 0 < ˛ < 1

2
and 0 < ˇ < min. dS

2
; 1 � 2˛; 2.1 � ˛/ � dS

2
/.

Suppose that z 2 C1�˛.Œ0; t0�; H�ˇ
q .�// for any 1 < q < dS

ˇ
and f 2 H2.1�˛/�ˇ1 .�/.

Then for any ˇ < ı < min. dS
2

; 1/ and ˛ < 
 < 1 � ˛ � ˇ

2
� dS

4
Eq. (2) has a

unique solution in the space W
 .Œ0; t0�; Hı1.�// and hence, it has a unique solution
belonging to these spaces for all such 
; ı.

Moreover, this solution is an element of C
 .Œ0; t0�; Hı.�// for all 
 and ı as
before.
This will be applied in the next section to the random case with Gaussian noise.
Some extensions are discussed in [19].

4 Application to an SPDE with Gaussian Noise

The above approach can be applied stochastic models where the noise Pz is random
and satisfies the previous conditions with probability 1. Then the integral equation
for the mild solution is understood in the pathwise sense.

As an example we consider the following. Suppose additionally that the metric
space .X; d/ is compact and let Y.t; x/ be a real valued Gaussian random field on
Œ0; t0� � X with mean zero such that

E.Y.s; x/ � Y.t; x//2 � c js � tj2H (11)

E.Y.t; x/ � Y.t; y//2 � c d.x; y/2K (12)
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E
�
Y.s; x/ � Y.t; y/ � .Y.s; x/ � Y.t; y//

�2 � c js � sj2Hd.x; y/2K (13)

for all s; t 2 Œ0; t0� and x; y 2 X.
(In the Euclidean case the equalities hold for the corresponding fractional

Brownian space-time sheet.) Note that (12) is a special case of (13) if Y.0; x/ D 0

a.s..

Theorem 4.1 Suppose that the metric space .X; d/ is compact and the semigroup
T.t/ is conservative. If the Gaussian space-time field Y fulfills the above conditions,
then it has a modificationeY such that a.s.

eY 2 C� .Œ0; t0�; H� 2=w
q .�//

for all q > 1, 0 < � < H and 0 < � < K provided that the corresponding upper
heat kernel estimates (HKE(� 2=w)) are satisfied. Furthermore, for fixed ˇ� > 0 set

z.t/ WD .A C Id/.ˇ��K2=w/=2eY.t; �/ : (14)

Then we get a.s. that

z 2 C� .Œ0; t0�; H�ˇ
q .�//

for all � < H, ˇ > ˇ� and q > 1.
In this way we can obtain a random noise z satisfying the conditions of Corollary 3.3.

Proof Below we will show that under the conditions (11)–(13) the random field Y
has a modificationeY such that a.s.

eY 2 C� .Œ0; t0�; C� .X//

for all � < H and � < K, see Theorem 5.2. Therefore the embedding property from
Proposition 2.4 implies the first statement. From this one infers the second assertion
by means of Remark 2.1
In order to construct an example of such a Gaussian field Y on an appropriate space
we now consider the situation mentioned in Sect. 2. Let .X; d; �/ be a compact
metric measure space admitting a conservative semigroup fT.t/; t � 0g generated
by a (fractal) Neumann Laplacian � associated with a local regular Dirichlet form
.E ; D.E // on X, i.e., �A D �. Equation (1) reads then

@u

@t
D �u C F.u/ C G.u/ � Pz; t 2 .0; t0�; u.0/ D f : (15)

Recall that for various classes of fractals the corresponding Neumann heat kernels
exist and satisfy Assumption (HKE(ˇ)) for any ˇ > 0 (see, e.g., [2–5, 9, 13, 21]
and the references therein). Moreover, for these cases there exists a complete
orthonormal system e0; e1; e2; : : : of eigenfunctions of �� in L2.�/ with the
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corresponding eigenvalues �i, where �0 D 0 and limn!1 �n D 1. An equivalent
condition in the general case is that the operator A has a compact resolvent. We
additionally suppose that we have, up to an exceptional set,

jei.x/ � ei.y/j � c�
a=2
i d.x; y/K (16)

for some positive constants a and K.
If we work with the resistance distance R.x; y/ w.r.t. the Dirichlet form E , then

this estimate holds true for a D K D 1. Under some mild additional assumptions on
such fractals in Euclidean spaces the resistance metric R satisfies R.x; y/ � cjx�yjK
for some K > 0, see Hu and Wang [17]. Hence, in this case (16) is also fulfilled for
the Euclidean metric.

Then a standard example for the auxiliary Gaussian field Y is the following:

Corollary 4.2 Let the metric measure space and the semigroup be as above
with eigenfunctions ei and eigenvalues �i of the generator �� satisfying (16).
BH

1 .t/; BH
2 .t/; : : : are i.i.d. fractional Brownian motions in R with Hurst exponent

1
2

< H < 1, b WD max.a; dS=2/, and qi are real coefficients such that

1X
iD1

q2
i �b

i < 1 : (17)

Then we have the following:

(i) The Gaussian random field

Y.t; x/ WD
1X

iD1

BH
i .t/ qi ei

determined by convergence in the mean squared satisfies conditions (11)–(13).
The corresponding noise z in (14) is a stochastic modification of the seriesP1
iD1 BH

i .t/ .1 C �i/
.ˇ��K2=w/=2qi ei.

(ii) If 0 < ˇ� < min
� dS

2
; 2H � 1; 2H � dS

2

�
, then for any 1 � H < 
 < H � ˇ�

2
�

dS
4

and ˇ� < ı < min
� dS

2
; 1
�

Eq. (15) with initial condition f 2 H2H�ˇ�

1 .�/

has a pathwise unique solution in W
 .Œ0; t0�; Hı1.�//. It is also an element
of C
 .Œ0; t0�; Hı.�//. Consequently, the unique solution belongs to all these
spaces with parameters 
 and ı satisfying the above inequalities.

Proof It suffices to show (i), since (ii) follows then from Corollary 3.3.
We first consider the increments in time.

E.Y.s; x/ � Y.t; x//2
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D
1X

iD0

q2
i E.BH

i .s/ � BH
i .t//2jei.x/j2

D
1X

iD0

q2
i js � tj2Hjei.x/j2

�
 

q2
0ke0k1 C

1X
iD1

q2
i c�

dS=2
i

!
js � tj2H

D c js � tj2H

which yields (11). (Recall that c denotes a varying constant.) Here we have used
that the above ultracontractivity of the semigroup [cf. (HKE(ˇ))] implies keik1 �
c�

dS=4
i for i � 1 and then the convergence of the series (17).
Note that convergence of the series defining Y may be considered as a special

case setting s D 0, since BH.0/ D 0 a.s..
Furthermore,

E
�
Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//

�2

D
1X

iD0

q2
i E.BH

i .s/ � BH
i .t//2.ei.x/ � ei.y//2

D
1X

iD0

q2
i js � tj2H.ei.x/ � ei.y//2

�
1X

iD0

q2
i js � tj2Hc�a

i d.x; y/2K

� c js � tj2Hd.x; y/2K

in view of (16) and (17). Hence, (13) is fulfilled. Equation (12) is here the special
case where s D 0.
For p.c.f. fractals with regular harmonic structures we have dS D 2dH

dHC1
< 2, see

Kigami [20]. Examples with spectral dimension greater than 2 are provided by
generalized Sierpinski carpets, see Barlow and Bass [3], or by certain products of
fractals, see Strichartz [24, 25].

According to Corollary 4.2 function solutions to Eq. (15) which are Hölder
regular in time can be found for dS D 2dH

w < 4, H > 1
2

C ˇ�

2
C dS

8
and 0 < ˇ� < dS

2
.

(Recall that dH denotes the Hausdorff dimension of X and w the walk dimension of
the semigroup.)
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5 Modifications of Gaussian Space-Time Fields on Ahlfors
Regular Metric Measure Spaces

In the classical setting of Gaussian fields in Euclidean spaces there are several
methods for obtaining Hölder regular modifications. In this paper we extend the
approach via the Borel–Cantelli lemma going back to Kolmogorov and Chentsov to
space-time fields on more general metric spaces. Recall the following notion.

Definition 5.1 For D > 0 a compact metric measure space .X; d; �/ is called
(Ahlfors) regular of order D if

c�1rD < �.B.x; r// < c rD ; x 2 X ; r � diam X :

It is well known that in this case the number D agrees with the Hausdorff dimension
dH of X. In view of (8) the compact spaces considered in the previous sections are
Ahlfors regular.

We show now that in such spaces Gaussian random fields with properties like
fractional Brownian space-time sheets possess Hölder continuous modifications in
the following strong sense.

Theorem 5.2 Let .X; d; �/ be an Ahlfors D-regular compact metric measure space
and Y a Gaussian field on Œ0; t0� � X with mean zero and

(a) E.Y.s; x/ � Y.t; x//2 � c js � tj2H

(b) E.Y.t; x/ � Y.t; y/2 � c d.x; y/2K

(c) E
�
Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//

�2 � c js � tj2Hd.x; y/2K

for some 0 < H < 1, K > 0 and all s; t 2 Œ0; t0�, x; y 2 X.
Then Y has a modificationeY such that a.s.eY 2 C˛.Œ0; t0�; Cˇ.X// for all ˛ < H

and ˇ < K.
For brevity we write C˛;ˇ WD C˛.Œ0; t0�; Cˇ.X// in the sequel.

An auxiliary tool for proving this theorem is the sufficient part of the following
criterion.

Proposition 5.3 Let (X,d) be a separable metric space. Then a random space-time
field Y on Œ0; t0� � X admits a C˛;ˇ-modification if and only if the following two
conditions are fulfilled:

1. Y.t; x/ is stochastically continuous w.r.t. the product metric.
2. Y is in C˛;ˇ restricted to a countable dense subset of Œ0; t0��X with probability 1.

This can be shown in the same way as in the classical case of Hölder continuous
modifications for real valued stochastic processes: One determines the new random
field a.s. by continuous extension of the primary one from the countable dense
subset from Condition 2 to the whole space. Then it easily follows from stochastic
continuity that this is a modification.
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Proof (of Theorem 5.2) According to Proposition 5.3 it suffices to show that
Conditions 1 and 2 are fulfilled in our case.

First recall that the N-th moment of a centered Gaussian random variable is equal
to a multiple of the N

2
-th power of the second moment. Therefore the Chebyshev

inequality together with (a), (b), and (c) yields for any " > 0 and N 2 N,

P

� jY.s; x/ � Y.t; x/j
js � tj˛ > "

�
� cN "�N js � tj.H�˛/N (18)

P

� jY.t; x/ � Y.t; y/j
d.x; y/ˇ

> "

�
� cN "�Nd.x; y/.K�ˇ/N (19)

P

� jY.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//j
js � tj˛d.x; y/ˇ

> "

�

� cN "�N js � tj.H�˛/Nd.x; y/.K�ˇ/N : (20)

In particular, (20) implies that Y is stochastically continuous, i.e., Condition 1.
To construct a countable dense subset as in Condition 2 is more extensive. We do

this by adapting the Euclidean set of dyadic rational numbers to our metric measure
space.

Let D1 be a set of centers of disjoint closed balls of radius 1
2

which form an
optimal packing of X, i.e., the number of such balls is maximal. Then we define
inductively DnC1 to be a set of centers of disjoint closed balls of radius 1

2nC1 such
that Dn � DnC1 and the number of these balls is maximal. Since those numbers are
maximal one infers the covering property

[
x2Dj

B

�
x;

1

2j

�
D X for any j 2 N : (21)

The classical family D0
m WD ˚

k
2m t0 W k D 0; : : : ; 2m

�
, m 2 N, of sets on Œ0; t0� has

analogous properties with respect to the Euclidean distance.
Denote Dm;n WD D0

m � Dn We will prove now that for the countable dense set

D WD
1[

mD1

1[
nD1

Dm;n � Œ0; t0� � X

Condition 2 holds true. To this aim we first show that any two points in
S1

nD1 Dn

can be connected by a chain of successive neighbors. In view of (21) for fixed n, any
q � n and x D xq 2 Dq there exists a sequence .xn; : : : ; xq�1/ such that xj 2 Dj and
d.xj; xjC1/ � 1

2j for j D n; : : : ; q � 1. For y D yq 2 Dq let .yn; : : : ; yq�1/ be defined
similarly. Then one obtains
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d.xn; yn/ �
q�1X
jDn

d.xj; xjC1/ C d.x; y/ C
q�1X
jDn

d.yj; yjC1/

�
q�1X
jD0

1

2j
C

p�1X
jDn

1

2j
C d.x; y/ � 2

1

2n
C d.x; y/

and hence,

d.xn; yn/ � 3

2n
; if d.x; y/ � 1

2n
: (22)

The same procedure works on the time interval Œ0; t0�. For fixed m, p � m and
s; t 2 D0

p let sp D s, tp D t and .sm; : : : ; sp�1/, .tm; : : : ; tp�1/ be defined analogously.
Next we consider on the basic probability space the sets

Am;n W D
[

n
s2D0

m;t2D0

mC1
\B0.s; 3

2m /
o

[
fx2Dn;y2DnC1\B.x; 3

2n /g
�

! W ˇ̌Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//
ˇ̌

>
1

2m˛

1

2nˇ

�
:

From (19) we get for s; t; x; y as in the union sets

P

�ˇ̌
ˇ̌Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//

ˇ̌
ˇ̌ >

1

2m˛

1

2nˇ

�

� ecN
1

2N m.H�˛/

1

2Nn.K�ˇ/

for some constant ecN and arbitrary N 2 N.
At the end of the proof we will derive from D-regularity of the compact metric

measure space .X; d; �/ that the number of the sets in the union in the definition of
Am;n is bounded by c 2m2Dn.

Choosing N large enough so that N.H � ˛/ > 1 and N.K � ˇ/ > D we infer that
the series

P1
m;nD1 P.Am;n/ converges. Therefore the Borel–Cantelli lemma yields

P

� 1[
m0D1

1[
n0D1

1\
mDm0

1\
nDn0

Ac
m;n

�
D 1 ;

i.e., for a.a. ! there exist m0.!/ 2 N and n0.!/ 2 N such that for any m � m0.!/,
n � n0.!/, s 2 D0

m, t 2 D0
mC1 \ B.s; 3

2m /, x 2 Dn, y 2 DnC1 \ B.x; 3
2n / we have

ˇ̌
ˇ̌Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//

ˇ̌
ˇ̌ � 1

2m˛

1

2nˇ
: (23)
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For such ! this property can be extended to arbitrary space-time points by means of
the above chain construction:

Let now .s; x/; .s; y/; .t; x/; .t; y/ 2 D be such that t0
2mC1 < js � tj � t0

2m for some

m � m0.!/ and 1

2nC1 < d.x; y/ � 1
2n for some n � n0.!/.

First note that, x; y 2 Dq for some q � n. Choosing the chains .xn; : : : ; xq/ and
.yn; : : : ; yq/ with xq D x and yq D y we use for any t 2 Œ0; t0� the decomposition

Y.t; x/ � Y.t; y/ D
q�1X
jDn

�
Y.t; xj/ � Y.t; xjC1/

�

�
q�1X
jDn

�
Y.t; yj/ � Y.t; yjC1/

� � .Y.t; xn/ � Y.t; yn// :

Secondly, s; t 2 D0
p for some p � m. Choosing the chains .sm; : : : ; sp/ and

.tm; : : : ; tp/ with sp D s and tp D t as above we can further decompose
Y.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//

D
p�1X
iDm

q�1X
jDn

�
Y.si; xj/ � Y.si; xjC1/ � .Y.siC1; xj/ � Y.siC1; xjC1//

�

�
p�1X
iDm

q�1X
jDn

�
Y.si; yj/ � Y.si; yjC1/ � .Y.siC1; yj/ � Y.siC1; yjC1//

�

�
p�1X
iDm

q�1X
jDn

�
Y.ti; xj/ � Y.ti; xjC1/ � .Y.tiC1; xj/ � Y.tiC1; xjC1//

�

C
p�1X
iDm

q�1X
jDn

�
Y.ti; yj/ � Y.ti; yjC1/ � .Y.tiC1; yj/ � Y.tiC1; yjC1//

�

�
p�1X
iDm

�
Y.si; xn/ � Y.si; yn/ � .Y.siC1; xn/ � Y.siC1; yn//

�

C
p�1X
iDm

�
Y.ti; xn/ � Y.ti; yn/ � .Y.tiC1; xn/ � Y.tiC1; yn//

�

�.Y.sm; xn/ � Y.tm; yn// :

For the absolute values of all summands on the right-hand side the inequality (23)
holds true for i and j instead of m and n. Therefore we conclude

jY.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//j
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� 4

p�1X
iDm

q�1X
jDn

1

2i˛

1

2jˇ
C 2

p�1X
iDm

1

2i˛

1

2nˇ
C 1

2m˛

1

2nˇ
� c

1

2m˛

1

2nˇ
:

Recall that .s; x/; .s; y/; .t; x/; .t; y/ 2 D are such that t0
2mC1 < js � tj � t0

2m and
1

2nC1 < d.x; y/ � 1
2n , where m � m0.!/ and n � n0.!/. Hence,

jY.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//j � cjs � tj˛d.x; y/ˇ

for a.a. ! and .s; x/; .t; y/ from D with the property js� tj < ı1.!/, d.x; y/ < ı2.!/.
Using that the space Œ0; t0� � X is compact we conclude that

jY.s; x/ � Y.s; y/ � .Y.t; x/ � Y.t; y//j � c.!/js � tj˛d.x; y/ˇ

for all .s; x/; .s; y/; .t; x/; .t; y/ 2 D .
The proofs that for a.a. !,

jY.s; x/ � Y.t; x/j � c.!/js � tj˛

jY.t; x/ � Y.t; y/j � c.!/d.x; y/ˇ ;

for any .s; x/; .s; y/; .t; x/; .t; y/ 2 D are similar, but simpler. Therefore Condition 2
is fulfilled.

In order to complete the proof it remains to show that the numbers of elements
of the sets

˚
.s; t/ W s 2 D0

m; t 2 D0
mC1 \ B0.s; 3

2m /
�

and f.x; y/ W x 2 Dn; y 2 DnC1

\B.x; 3
2n /
�

are bounded by c2m and c2Dn, respectively. (Cf. the definition of Am;n.)
We derive only the second bound, since the first one can be considered as a special
case. (In fact, the dyadic construction of the sets D0

m provides here more direct
arguments.)

By definition, for fixed x 2 Dn the balls B.y; 1

2nC2 / for different y 2 DnC1 \
B.x; 3

2n / are disjoint and all are contained in B.x; 3
2n C 1

2nC2 /. Then we infer for the
measure �,

X
y2DnC1\B.x; 3

2n /

�

�
B

�
y;

1

2nC2

��
� �

�
B

�
x;

3

2n
C 1

2nC2

��
:

The D-regularity of � implies �
	

B.y; 1

2nC2 /



� c12�nD and

�
	

B.x; 3
2n C 1

2nC2 /



� c22�nD for some constants c1; c2. Therefore the number

of elements of the set DnC1 \ B.x; 3
2n / is uniformly bounded by a constant.

Consequently, it suffices to show that the number of elements in Dn is bounded
by c2Dn for some constant c. This follows by similar arguments, since



(S)PDE on Fractals and Gaussian Noise 311

X
x2Dn

�

�
B

�
x;

1

2nC1

��
� �.X/ < 1

and �
�
B.x; 1

2nC1 /
� � c32�Dn.
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