
A Survey on the Dimension Theory in
Dynamical Diophantine Approximation

Baowei Wang and Jun Wu

Abstract Dynamical Diophantine approximation studies the quantitative
properties of the distribution of the orbits in a dynamical system. More precisely,
it focuses on the size of dynamically defined limsup sets in the sense of measure
and dimension. This quantitative study is motivated by the qualitative nature of
the density of the orbits and the connections with the classic Diophantine
approximation. In this survey, we collect some recent progress on the dimension
theory in dynamical Diophantine approximation. This includes the systems of
rational maps on its Julia set, linear map on the torus, beta dynamical system,
continued fractions as well as conformal iterated function systems.

1 Introduction

Classic Diophantine approximation concerns how well an irrational number can
be approximated by rational numbers. This is motivated by the density of rational
numbers. Since the density property is only of qualitative nature, one is led to study
the quantitative properties of the distribution of rational numbers. More importantly,
this constitutes the main theme of the metric Diophantine approximation [61].

Analogously, there are also many evidences saying that in a dynamical system,
the orbit of a generic point is dense. Let’s cite two well-known results [71].

Theorem 1.1 (Poincaré’s Recurrence Theorem) Let .X;B; �;T/ be a measure
theoretical dynamical system with � a finite Borel measure. For any measurable set
B 2 B with positive measure, for almost all x 2 B, Tnx 2 B for infinitely many
n 2 N. If there is a compatible metric d, then for almost all x 2 X,

lim inf
n!1 d.x;Tnx/ D 0:
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Theorem 1.2 (Corollary of Birkhoff’s Ergodic Theorem) Let .X;B; �;T/ be an
ergodic dynamical system with a compatible metric d. For any y in the support of
�, for almost all x 2 X,

lim inf
n!1 d.Tnx; y/ D 0:

Similar to the density of rational numbers, these are also only of qualitative nature.
Then it is desirable to know the quantitative properties and leads to the study on
the quantitative properties of the distribution of the orbits. More precisely, one is
interested in the size of the following limsup sets:

n
? 2 X W Tn.x/ 2 B.y; rn/; i.o. n 2 N

o

where frngn�1 is a sequence of decreasing real numbers and i.o. denotes infinitely
often. Here ? can refer to x or y or even the pair .x; y/. So, in general, there are three
types of questions.

In many cases, instead of considering a general form, one usually focuses on the
following more concrete questions:

• Prob1. Let fzngn�1 be a sequence of elements in X and  W N ! R
C. One cares

about the points whose orbit can be well approximated by the given sequence
fzng with the given speed. Namely, the size of the set

n
x 2 X W jTnx � znj <  .n/; i.o. n 2 N

o
:

We call it the shrinking target problems with given targets or shrinking target
problems by following Hill and Velani [28].

• Prob2. Let  W N ! R
C. One cares about the point whose orbit will come back

to shrinking neighbors of the initial point infinitely often. Namely the size of
the set

n
x 2 X W jTnx � xj <  .n/; i.o. n 2 N

o
:

We call it the quantitative Poincaré recurrence properties.
• Prob3. Let y0 2 X be given in advance. One cares about which points can be well

approximated by the orbit of y0. Namely the size of the set

n
x 2 X W jTny0 � xj <  .n/; i.o. n 2 N

o
:

We call it the dynamical covering problems as its analogy with the random
covering problem [35].

We call the studies on these dynamically defined limsup sets as Dynamical
Diophantine approximation.
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Another type of questions designed for studying the quantitative properties of
the distribution of the orbits is called as recurrence time and waiting time. For any
x; y 2 X and r > 0, define

�r.x; y/ D inffn � 1 W Tn.x/ 2 B.y; r/g;

i.e., the first time needed for the orbit of x entering the ball B.y; r/ with radius r
and center y. When x D y, �r is called the recurrence time and when x ¤ y, it
is called waiting time. One concerns the scaling properties of �r with respect to r.
One is referred to the series works of Saussol, Galatolo, Kim and Galatolo, etc. and
the references therein (see, for example, [4, 20, 21, 23–26, 33, 53–56]). This is not
included in this short survey.

2 Relationship with the Classic Diophantine Approximation

There are close connections between dynamical Diophantine approximation and the
classic Diophantine approximation. Let us present two examples to illustrate this.

2.1 Irrational Rotation and Inhomogeneous Diophantine
Approximation

Inhomogeneous Diophantine approximation concerns the Diophantine inequality

kn˛ � yk <  .n/

with ˛ 2 Œ0; 1� an irrational, y 2 Œ0; 1� a real number and k � k denotes the distance
to the nearest integer.

Naturally there are two types of questions by fixing one parameter and letting the
other vary. More precisely, one concerns the following two sets:

C.˛;  / WD
n
y 2 R W kn˛ � yk <  .n/; i.o. n 2 N

o
I

and

W.y;  / WD
n
˛ 2 Œ0; 1� W kn˛ � yk <  .n/; i.o. n 2 N

o
:

Let R˛.x/ D x C ˛ .mod 1/ be the irrational rotation. Then the set C.˛;  /
concerns just the covering problem of the orbit of 0 while the set W.y;  / is another
type of dynamical Diophantine approximation defined on the parameter space f˛ W
˛ 2 Qcg.
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2.2 Continued Fractions and Homogeneous Diophantine
Approximation

At first, let’s recall the Gauss map which induces the continued fraction expansion.
The Gauss transformation T W Œ0; 1/ ! Œ0; 1/ is given by

T.0/ WD 0; T.x/ D 1=x (mod 1); for x 2 .0; 1/:

Let a1.x/ D bx�1c (b�c stands for the integer part) and an.x/ D a1.Tn�1.x// for
n � 2. Each irrational number x 2 Œ0; 1/ admits a unique infinite continued fraction
expansion of the form

x D 1

a1.x/C 1

a2.x/C 1

a3.x/C : : :

: (1)

The integers an are called the partial quotients of x. The nth convergent pn.x/=qn.x/
of x is given by pn.x/=qn.x/ D Œa1; : : : ; an�.

It is already well known that continued fractions are attached great importance
to homogeneous Diophantine approximation. This is due to two old theorems [37]:

Theorem 2.1 (Lagrange) The convergents of a real number x 2 Œ0; 1� are its best
rational approximants. More precisely, for any q < qn.x/ and 0 � p � q,

jx � p=qj > jx � pn.x/=qn.x/j:

Theorem 2.2 (Legendre) Let p=q be a rational number. Then

ˇ̌
x � p

q

ˇ̌
<

1

2q2
H) p

q
D pn.x/

qn.x/
; for some n � 1:

Legendre’s theorem tells us that if a real number x can be well approximated by
some rational, this rational must be a convergent of x. So to find good rational
approximations of an irrational, we only need focus on its convergents.

Due to these tight connections of continued fractions with homogeneous Dio-
phantine approximation, the two fundamental results in metric number theory, i.e.
Khintchine’s theorem [36] and Jarník’s theorem [34], were originally proved by
using continued fractions.

Let’s recall a simple form of the Jarník set: for any v > 2, define

Wv D
n
x 2 Œ0; 1� W jx � p=qj < q�v; i.o. n 2 N

o
:
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Noting that

ˇ̌
ˇx � pn.x/

qn.x/

ˇ̌
ˇ D Tn.x/

qn.qn C Tn.x/qn�1.x//
� Tn.x/

q2n.x/
:

and q2n.x/ � e.log T0.x/C���Clog jT0.Tn�1.x//j/, the set Wv can be reformulated as (almost)

Wv D
n
x 2 Œ0; 1� W jTn.x/ � 0j < e� v�2

2 .log T0.x/C���Clog jT0.Tn�1.x//j/; i.o. n 2 N

o
:

So, Jarník set can be viewed as a special case of the shrinking target problem in the
dynamical system of continued fractions.

3 Partial Results in Measure

In this section, we give a short review on partial results on measure of the dynamical
Diophantine approximation. For more results, one can be referred to subsequent
works of those cited below.

3.1 Shrinking Target Problems

Recall that shrinking target problems concern the size of the set

n
x 2 X W jTnx � znj <  .n/; i.o. n 2 N

o

or more generally the set

W WD
n
x 2 X W Tnx 2 Bn; i.o. n 2 N

o

where fBng is a sequence of measurable sets decreasing in measure.
Clearly W is a limsup set, so Borel-Cantelli Lemma is used naturally to quantify

its measure. The convergence part of the Borel-Cantelli Lemma works well,
while the divergence part may not, since the events fT�nBng may no longer be
independent. But this can be compensated by some strong mixing properties of the
system .X;T; �/.

Philipp [51] considered this in the systems of b-adic expansion, ˇ-expansion
as well as continued fractions, while a first general result is due to Chernov and
Kleinbock [12].
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Theorem 3.1 ([12]) Let fBng be a sequence of �-measurable sets. Then for
�-almost all x 2 X, the iterates Tnx 2 Bn infinitely often if

X
n�1

�.Bn/ D 1 and
X

1�n�m�N

Rn;m � C
NX

nD1
�.Bn/; (2)

where Rn;m stands for the decay of correlations Rn;m WD j�.T�nBn \ T�mBm/ �
�.Bn/�.Bm/j:

For the special case when fBng is a sequence of balls with a common center, C.
Bonanno, S. Isola, and S. Galatolo proved that

Theorem 3.2 ([7]) Let .X;B;T; �/ be a measure theoretic dynamical system with
� a finite Borel measure. Then for any y, for �-almost all x one has

lim inf
n!1 n˛d.Tn.x/; y/ D 1; ˛ > d�.y/;

where d�.y/ is the lower local dimension of y with respect to the measure �:

d�.y/ D lim inf
r!0

log�.B.y; r//

log r
:

For a piecewise expanding map on an interval [38] or some hyperbolic maps
[12, 15], it is known that given y for �-almost all x one has

lim inf
n!1 n˛d.Tn.x/; y/ D 1; ˛ D d�.y/:

3.2 Quantitative Recurrence Properties

For the quantitative recurrence properties, M.D. Boshernitzan presented the follow-
ing outstanding result for general systems.

Theorem 3.3 (Boshernitzan [8]) Let .X;T; �; d/ be a measure dynamical system
with a metric d. Assume that, for some ˛ > 0, the ˛-dimensional Hausdorff measure
H ˛ of the space X is � -finite. Then for �-almost all x 2 X,

lim inf
n!1 n

1
˛ d.Tnx; x/ < 1:

If, moreover, H ˛.X/ D 0, then for �-almost all x 2 X,

lim inf
n!1 n

1
˛ d.Tnx; x/ D 0:
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Later, L. Barreira and B. Saussol showed that the above convergence exponent ˛
may relate to the local dimension of the point in the sense that

Theorem 3.4 (Barreira and Saussol [3]) Let T W X ! X be a Borel measurable
transformation on a measurable set X � R

m for some m 2 N, and � be a
T-invariant probability measure on X. Then �-almost surely, for any ˛ > d�.x/,

lim inf
n!1 n1=˛d.Tnx; x/ < 1:

3.3 Dynamical Covering Problems

For covering problems, the system of irrational rotation is paid constant attention to
(see [19, 39, 40, 66]). Recently, Fuchs and Kim [22] gave a complete characteriza-
tion of the size of the set

W1. / WD
n
y 2 Œ0; 1� W kn˛ � yk <  .n/; i.o. n 2 N

o
:

Theorem 3.5 (Fuchs and Kim [22]) Let  .n/ be a positive, non-increasing
sequence and ˛ be an irrational number with convergents pk=qk in its continued
fraction expansion. Then, for almost all y 2 R,

kn˛ � yk <  .n/ i.o. n 2 N

if and only if

1X
kD1

qkC1�1X
nDqk

min
˚
 .n/; kqk˛k� D 1:

When T is an expanding Markov map, Fan et al. [18] and Liao and Seuret [45]
made excellent contributions to this topic. We will introduce their work in Sect. 13.

4 Hausdorff Dimension and Hausdorff Measure

From this section on, we focus our attention on the dimensional theory of the
three types questions presented above. In this short section, we give briefly the
definition of Hausdorff measure and Hausdorff dimension. Mainly, we cite the Mass
distribution principle which is a classic tool to determine the Hausdorff dimension
of a set from below.
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The Hausdorff measure and dimension have been a widely used tool to discrimi-
nate null sets in a measure space. They can be defined in any space endowed with a
metric. Before recall the definitions, we fix some notation.

Let .X; d/ be a metric space and F be a subset of X. The diameter supfjx � yj W
x; y 2 Ug of a non-empty subset U of X will be denoted by d.U/. A collection
fUngn�1 is called a �-cover of F if

F �
[
n�1

Un; and 0 < d.Un/ < �; for all n � 1:

A dimension function f W RC ! R
C is a continuous, non-decreasing function

such that f .r/ ! 0 as r ! 0.
The Hausdorff f -measure of the set F with respect to the dimension function f

will be denoted throughout by H f and is defined as

H f .F/ D lim
�!0

inf

8
<
:

X
n�1

f .d.Un// W fUngn�1 is a � cover of F

9
=
; :

In the case that f .r/ D rs .s � 0/, the measure H f is the usual s-dimensional
Hausdorff measure H s and the Hausdorff dimension dimH F of a set F is defined by

dimH F WD inf
n
s W H s.F/ D 0

o
D sup

n
s W H s.F/ D 1

o
:

For further details see [16, 47].
A general and classical method for obtaining a lower bound for the Hausdorff

f -measure of an arbitrary set F is the following mass distribution principle [16,
Proposition 4.2].

Lemma 4.1 Let � be a probability measure supported on a subset F. Suppose there
are positive constants c and ro such that for any ball B.x; r/ with r < ro,

�.B/ � cf .r/;

then

H f .F/ � �.F/=c:

At the end, we introduce the pressure function, which are tightly related to the
dimension of the shrinking target problems. Let .X; d/ be a compact metric space
with a transformation T W X ! X. Call Fn."/ an .n; "/-separated set of X, if for any
x ¤ y 2 Fn."/,

jTk.x/ � Tk.y/j � "; for some 0 � k � n:
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Let  W X ! R be a function on X. The pressure function P with respect to the
potential  is defined as

P.T;  / D lim
"!0

lim sup
n!1

1

n
log sup

Fn."/W.n;"/ separated set

X
x2Fn."/

eSn .x/;

where we use Sn .x/ to denote the ergodic sum  .x/C  .Tx/C � � � C  .Tn�1x/:
When the system .X;T/ is identified with a full shift symbolic space .�N; �/,

another form of the pressure function can be given as

P.T;  / D lim
n!1

1

n
log

X
w1;:::;wn2�n

sup
x2In.w1;:::;wn/

eSn .x/; (3)

where In.w1; : : : ;wn/ is the set of points whose symbolic representations begin with
.w1; : : : ;wn/.

5 Shrinking Target Problems: b-adic Expansion

In a dynamical system .X;T/, the shrinking target problems mainly study the size
of the following set:

n
x 2 X W jTnx � yj <  .n; x/; i.o. n 2 N

o

where  W X � N ! R
C is a positive function and may depend on x.

The shrinking target problems were studied for the first time by Hill and Velani
[28] in the system when T is an expanding rational map and X its corresponding
Julia set. But to illustrate the ideas in attacking the shrinking target problems, in this
section, we consider a most simple case, namely when T is the b-adic expansion
with b � 2 being an integer.

Fix an integer b � 2 and define the b-adic transformation T as Tx D bx .mod 1/.
Then every x 2 Œ0; 1� can be expanded into a finite or infinite series

x D "1.x/

b
C � � � C "n.x/C Tnx

bn
D "1.x/

b
C "2.x/

b2
C � � � : (4)

where

"1.x/ D bbxc; "n.x/ D "1.T
n�1x/; for n � 2

are called the digit sequence of x.
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Let � D f0; 1; : : : ; b � 1g. For any integers ."1; : : : ; "n/ 2 �n, we use
In."1; : : : ; "n/ to denote an nth order cylinder in the b-adic expansion, namely,

In."1; : : : ; "n/ D
n
x 2 Œ0; 1� W "k.x/ D "k; 1 � k � n

o
;

which is an interval of length b�n.
In such a symbolic space, the pressure function P with a potential  is

expressed as

P. / D lim
n!1

1

n
log

X
0�"1;:::;"n<b

sup
x2In."1;:::;"n/

eSn .x/:

Theorem 5.1 Let b � 2 be an integer and T the b-adic transformation. Let f W
Œ0; 1� ! R

C be a continuous function. Then for any y0 2 Œ0; 1�, the dimension of
the set

Dz0 .f / WD
n
x 2 Œ0; 1� W jTnx � y0j < e�Snf .x/; i.o. n 2 N

o

is given by the solution to the pressure function

P.�s.log jT 0j C f // D 0:

In the definition of Wf , the shrinking rate e�Snf .x/ depends on x, we try to release
a little bit on this dependence. For any x 2 Œ0; 1�, let In.x/ be the nth cylinder
containing x. We choose arbitrarily a point xn in In.x/. Then by the continuity of
f , for any ı > 0, when n is large, for any x 2 Œ0; 1�,

jSnf .x/ � Snf .xn/j < nı:

Thus, it follows that

Dz0 .f C ı/ � Dz0 .f / � Dz0 .f � ı/:

Then by the continuity of the pressure function, we need only pay attention to
dimension of the set

D0
z0 .f / D

n
x 2 Œ0; 1� W jTnx � y0j < e�Snf .xn/; i.o. n 2 N

o

where xn can be chosen as any point in In.x/.
In the following, when we need take a point in a cylinder In."1; : : : ; "n/, we write

it as Œ"1; : : : ; "n�.
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5.1 Upper Bound of dimH D0
z0.f/

The upper bound is established by using a natural cover of D0
z0 .f /. So at first, we

give an expression to reflect the limsup nature of D0
z0 .f /:

D0
z0 .f / D

\
ND1

1[
nDN

[
."1;:::;"n/2�n

n
x 2 In."1; : : : ; "n/ W

jTnx � y0j < e�Snf .Œ"1;:::;"n�/
o
:

This gives a collection of natural covers of D0
z0 .f /.

Now we estimate the length of

Jn."1; : : : ; "n/ WD
n
x 2 In."1; : : : ; "n/ W jTnx � y0j < e�Snf .Œ"1;:::;"n�/

o
:

By (4), it follows that

Tnx D bn
�

x � "1

b
� � � � � "n

bn

�
:

Substituting it in the inequality in Jn."1; : : : ; "n/, it follows that Jn."1; : : : ; "n/ is an
interval with length

ˇ̌
Jn."1; : : : ; "n/

ˇ̌ � 1

bn
e�Snf .Œ"1;:::;"n�/:

As a result, the s-dimensional Hausdorff measure of D0
z0 .f / can be estimated as

H s.D0
z0 .f // � lim inf

N!1

1X
nDN

X
0�"1;:::;"n<b

�
e�Snf .Œ"1;:::;"n�/

bn

�s

:

So, for any s larger than the solution to P.�s.log jT 0j C f // D 0, one has
H s.D0

z0 .f // D 0. This gives the upper bound of dimH D0
z0 .f /.

5.2 Lower Bound of dimH D0
z0.f/

The lower bound is obtained by a classic way: at first construct a Cantor subset of
D0

z0 .f /; then define a suitable mass distribution sitting on such Cantor subset; at last
the mass distribution is applied. Here we only give the first two steps, while omit
the technical estimation of the last step.
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Cantor Subset

Bearing in mind that D0
z0 .f / is a limsup set, the events

Wn WD ˚
x 2 Œ0; 1� W jTnx � y0j < e�Snf .xn/

�
(5)

should be realized infinitely often.
In a symbolic space, it would be quite convenient to locate a point by determining

its symbolic representation. Thus to realize the event (5), we transfer the ball B.z0; r/
to a family of cylinders G . Since we are interested in the dimension, it does not need
a strict equality:

B.z0; r/ D [In2G In:

We only need that there is a family of “good” cylinders G such that

[
In2G

In � B.z0; r/;

P
In2G jInj

r
� c;

for an absolute constant c > 0.
For b-adic expansion, this is realized in the following lemma. Write the b-adic

digit sequence of z0 as .b1; b2; : : :/. It is possible that bn D 0 ultimately.

Lemma 5.2 Fix a word ."1; : : : ; "n/ in �n and xn 2 In."1; : : : ; "n/. Let t be the
integer such that

jIt.b1; : : : ; bt/j < e�Snf .xn/ � jIt�1.b1; : : : ; bt�1/j:
Choose G D fIt.b1; : : : ; bt/g. Then clearly one has

InCt."1; : : : ; "n; b1; : : : ; bt/ �
n
x 2 In."1; : : : ; "n/ W jTnx � z0j < e�Snf .xn/

o
:

The Cantor subset is constructed level by level in the following way.

• The first level of the Cantor set.

Let t0 D 0. Fix an integer m1 	 t0. Let n1 D m1 C t0. We construct a
subset of Wn1 , i.e. realizing the event for the first time at n D n1. For each word
."1; : : : ; "m1 / 2 �n1 , let t1 be the integer given in Lemma 5.2. Then we have a
collection of intervals

In1Ct1 ."1; : : : ; "n1 ; b1; : : : ; bt1 /; ."1; : : : ; "m1 / 2 �m1 ;

which is a subset of Wn1 .
It should be mentioned that t1 depends on the word ."1; : : : ; "m1 /. This

dependence will not play a role in the argument, thus will not be explicitly
addressed.
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The first level of the Cantor set is then defined as

F1 D
[

."1;:::;"n1 /2�n1

In1Ct1 ."1; : : : ; "n1 ; b1; : : : ; bt1 /:

The intervals in F1 are called fundamental cylinders of the first level.

• The second level of the Cantor set.

For each fundamental interval In1Ct1 .w1/ in the first level F1, we select a
collection of its sub-cylinders to constitute a subfamily of the second level of the
Cantor set which will realize the event Wn for the second time.

Fix an integer m2 which is much larger than

supfn1 C t1 W ."1; : : : ; "n1 / 2 �n1g:
Fix a fundamental cylinder In1Ct1 .w1/ in F1. For each ."1; : : : ; "m2 / 2 �m2 , let t2

be the integer given in Lemma 5.2 with respect to the word .w1; "1; : : : ; "m2 /.
Let n2 D n1 C t1 C m2. Then we have a collection of intervals

In2Ct2 .w1; "1; : : : ; "m2 ; b1; : : : ; bt2 /; ."1; : : : ; "m2 / 2 �m2 ;

which are subsets of Wn2 .
The second level of the Cantor set is then defined as

F2 D
[

In1Ct1 .w1/2F1

[
."1;:::;"m2 /2�m2

In2Ct2 .w1; "1; : : : ; "m2 ; b1; : : : ; bt2 /:

The other levels can be constructed similarly. Then the desired Cantor set is
defined as

F1 D
1\

nD1
Fn:

It is clear that

F1 � D0
z0 .f /:

Mass Distribution

We will define a sequence of real numbers which are tightly related to the dimension
of F1. For each integer m � 1, define sm being the solution to the equation

X
."1;:::;"m/2�m

�
jIm."1; : : : ; "m/j � e�Smf .x0

m/
�sm D 1;
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where x0
m 2 Im."1; : : : ; "m/. By the definition of the pressure function (3), it is

clear that

Lemma 5.3 Let s1 be the solution to the pressure function P.�s.log jT 0jCf // D 0.
Then

lim
m!1 sm D s1:

Now we define a mass distribution supported on F1. This is given by distributing
a suitable mass on each fundamental cylinders defining F1. We express a general
fundamental cylinder constituting F1 as

InkCtk.wk/ D InkCtk

�
wk�1; ".k/1 ; : : : ; "

.k/
mk
; b1; : : : ; btk

� 2 Fk

where Ink�1Ctk�1 .wk�1/ 2 Fk�1. Then we define a measure � as

�
�

InkCtk

�
wk�1; ".k/1 ; : : : ; "

.k/
mk
; b1; : : : ; btk

��

D �
�

Ink�1Ctk1 .wk�1/
�

�
�
jImk

�
"
.k/
1 ; : : : ; "

.k/
mk

�je�Smk f .x0

mk
/
�smk

;

where x0
mk

2 Imk."
.k/
1 ; : : : ; "

.k/
mk /.

To apply the mass distribution principle (Lemma 4.1), we need compare the
length of InkCtk.wk/ and its �-measure. It should be noticed that its length satisfies

jInkCtk.wk/j D jInk�1Ctk�1 .wk�1/j � jImk

�
"
.k/
1 ; : : : ; "

.k/
mk

�je�Snk f .xnk /

where xnk 2 Ink instead of in Imk."
.k/
1 ; : : : ; "

.k/
mk /. But this will not cause much

complexity, since

jSnk f .xnk/ � Smk f .x0
mk
/j � .nk�1 C tk�1/kf k1 D o.mk/:

One can conclude that the dimension of F1 is s1. The left task is to verify the
condition in Lemma 4.1 is satisfied, so the detailed estimation is omitted.

6 Shrinking Target Problem: Expanding Rational Maps

Let T be an expanding rational map on the Riemann sphere acting on its Julia set
J. Let f W J ! R

C be a Hölder continuous map with f 0.x/ � log jT 0j for all x 2 J.
Define

Dz0 .f / WD
n
x 2 J W x 2 B

�
y; e�Snf .x/

�
; y 2 In.z0/; i.o. n 2 N

o
;

where In D fy W Tny D z0g is the n-th inverse of z0.
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Theorem 6.1 ([28, 29]) The Hausdorff dimension of Dz0 .f / is given by the unique
solution s.f / to the pressure function

P.T;�sf / D 0:

Theorem 6.2 ([32]) Let s.f / be Hausdorff dimension of Dz0 .f /. Then the s.f /-
dimensional Hausdorff measure of Dz0 .f / is either zero or infinity.

6.1 Key Properties

Three key properties of the system .J;T/ are used in the proof of these theorems.
The first one is the bounded distortion property; the second one concerns the
distribution of the inverse of z0, while the third says that there exists a good measure
supported on J.

Lemma 6.3 (Köbe Distortion Theorem) Let � � C be a topological disc with
boundary containing at least two points and let V � � be compact. Then there exists
a constant K.�;V/ such that for any univalent holomorphic function F W � ! C it
holds that

sup
x;y2V

jF0.x/j
jF0.y/j � K.�;V/:

As a consequence, the bounded distortion property holds, namely, there exists a
constant K such that if f is a univalent holomorphic function defined on B.x; 2r/ in
C, then

B
�
F.z/;K�1rjF0.z/j� � F

�
B.z; r/

� � B
�
f .z/;KrjF0.z/j�:

In the proof, F is taken to be the inverse branches of Tn for any n � 1.

Lemma 6.4 Let T be an expanding rational map with Julia set J. Then there is a
neighborhood U of J such that T�1.U/ � U and for any ball B � U, all inverse
branches of iterates of T are defined on B.

Let z0 2 J. There exist constants C1;C2 and an integer n0 such that for all n � n0,

J �
[

yWTnyDz0

B
�
y;C1j.Tn/0.y/j�1�I

and the following union
[

yWTnyDz0

B
�
y;C2j.Tn/0.y/j�1�

are disjoint.

Lemma 6.5 When f is Hölder continuous, there exists an �s.f /f -conformal
measure.
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7 Shrinking Target Problem: Finite Kleinian Group

Diophantine approximation of real numbers by rationals can be seen geometrically
in terms of the orbit of infinity under the Möbius action of the modular group
SL.2;Z/. So, the classic Jarník-Besicovitch theorem on the size of 	 -well approx-
imable points can be seen as a special case of the shrinking target problems in the
system of group actions.

Let G be a non-elementary, geometrically finite Kleinian group acting on the
unit ball model BkC1 of .k C 1/-dimensional hyperbolic space with Poincaré metric
� derived from the differential

d� D jdxj=.1 � jx2j/:

Thus G is a discrete subgroup of Möb.BkC1/, the group of orientation-preserving
Möius transformations preserving BkC1. By assumption, there is some finitely sided
convex fundamental polyhedron for the action of G on BkC1. Since G is non-
elementary, the limit set J of G (the set of limit points in the unit sphere Sk of
any orbit of G in BkC1) is uncountable.

The analogue of the set of 	 -well approximable points in hyperbolic space
.BkC1; �/ is the set of points in the limit set of a Kleinian group G which are “very
close” to infinitely many images of a “distinguished” point y in the limit set J. More
precisely, for any 	 � 1, define

Wy.	/ D
n
x 2 J W jx � g.y/j < g0.0/	 ; i.o. g 2 G

o
:

The classical set of 	 -well approximable points corresponds to the case when y
is the parabolic fixed point at infinity of the modular group SL.2;Z/ and its images
are the rationals.

The dimension of Wy.	/ was treated according to when the geometrically finite
group G is without or with parabolic elements. The result for the first case is due to
Dodson et al. [14] and [70], while the second case is due to Hill and Velani [30].

Theorem 7.1 ([14, 70]) Assume that the geometrically finite group G is without
parabolic elements, and let the “distinguished” point y be a hyperbolic fixed point
of G. Then

dimH Wy.	/ D ı

	
;

where ı is the Hausdorff dimension of the limit set J.
Now assume the geometrically finite group G has parabolic elements and let the

“distinguished” point y be a parabolic fixed point p of G. The stabilizer Gp D fg 2
G W g.p/ D pg of p is an infinite group which contains a free abelian subgroup of
finite index and of rank rk.p/ 2 Œ1; k�: Refer to rk.p/ as the rank of the parabolic
fixed point p. Then it was proved that
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Theorem 7.2 ([30]) Let G be a geometrically finite group with parabolic elements
and let rk.p/ denote the rank of the parabolic fixed point p. Then for 	 � 1,

dimH Wp.	/ D min

	
ı C rk.p/.	 � 1/

2	 � 1 ;
ı

	



:

For partial results, one is referred to Stratmann [62], Velani [68, 69], and the
references therein.

8 Shrinking Target Problems: Parabolic Rational Maps

Let T be a parabolic rational maps T W C ! C and J.T/ be its Julia set. Recall that
for parabolic rational maps it is well known that

J.T/ D Jr.T/ [ Jp.T/;

i.e., the Julia set J.T/ admits a disjoint decomposition into the radial Julia set Jr.T/
and the countable set of pre-parabolic points

Jp.T/ WD
[
!2˝

[
n2N

T�n.!/;

where ˝ denotes the set of rationally indifferent periodic points.
For each ! 2 ˝, define the canonical balls B.c.!/; rc.!// associated to ! as

follows. Let I.!/ WD T�1.!/ n f!g. Then, for each integer n � 0, define the
canonical radius r
 at 
 2 T�n.I.!// by

r
 WD j.Tn/0.
/j�1;

and call the ball B.
; r
 / the canonical ball at 
 . Roughly speaking, canonical
balls are all the holomorphic inverse iterates of B.!; r!/ which is a standard
neighborhood of !.

Then the shrinking target problem in this setting can be formulated as a Jarník-
Julia sets. For ! 2 ˝ and � > 0, define

J !
� .T/ WD

\
n2N

[
rc.!/<1=n

B.c.!/; rc.!//; J� D
[
!2˝

J !
� :

Call J� .T/ the � -Jarník-Julia set and J !
� .T/ the .�; !/-Jarník-Julia set.

It was proved by Stratmann and Urbański that

Theorem 8.1 ([63]) Let T be a parabolic rational map with Julia set J.T/ of
Hausdorff dimension h. For ! 2 ˝ and � > 0, the Hausdorff dimension of
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� -Jarník-Julia set and the .�; !/-Jarník-Julia set are determined by the following,
where p.!/ denotes the number of attracting petals associated with !, and pmin WD
min�2˝ p.�/:

• If h < 1, dimH J� .T/ D h=.1C �/,
• If h � 1,

dimH J !
� .T/ D

(
h

1C� ; for � � h � 1;
hC�p.!/

1C�.1Cp.!// ; for � < h � 1.

An essential ingredient in the proof of this theorem is to show that, much as
for Kleinian groups, for parabolic rational maps there exists a generalization of
Dirichlet’s Theorem in number theory. Roughly speaking, this result shows that the
Julia set admits economical, arbitrarily fine coverings and packings by finitely many
canonical balls whose radii are diminished in a dynamically controlled way.

A similar results hold for the so-called tame parabolic iterated function sys-
tems [64].

9 Shrinking Target Problem: Markov Expanding Systems

Definition 9.1 (Expanding Markov Map) Let V D fVigi2� be a countable family
of disjoint subintervals of the unit interval with non-empty interior. Let T be a map
from [i2�Vi to Œ0; 1�. Given w D .w1; : : : ;wn/ 2 �n for some n 2 N, let Vw D
\n

iD1T�iVwi .
Call T W [i2�Vi ! Œ0; 1� is an expanding Markov map if T satisfies the following

conditions.

• For each i 2 �, TjVi is a C1 map which maps the interior of Vi onto open unit
interval .0I 1/,

• There exists 
 > 1 and N 2 N such that for all n � N and all x 2 [w2�n Vw, we
have j.Tn/0.x/j > 
n,

• There exists some sequence �n with limn!1 �n D 0 such that for all n � N,
w 2 �n, and all x; y 2 Vw,

e�n� � j.Tn/0.x/j
j.Tn/0.y/j � en�:

The repeller J of an expanding Markov map is the set of points for which every
iterate of T is well defined,

J WD
n
x 2 Œ0; 1� W Tn.x/ 2 [i2�Vi; for all n 2 N

o
:
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Clearly this system includes the b-adic expansion and continued fraction expan-
sion as special cases.

The shrinking target problem in this system is formulated as

Dz0 .f / D
n
x 2 J W jTnx � z0j < e�Snf .x/; i.o. n 2 N

o
:

Theorem 9.2 ([52]) Let T be a expanding Markov map with J its attractor. Let f be
a continuous map on J and z0 2 J. Then the Hausdorff dimension of Dz0 .f / is the
unique solution s to the pressure function

P
�
T;�s.log jT 0j C f /

� � 0:

Urbański [67] considered this system for the first time with some restriction on z0,
namely, the orbit of z0 under T falls into only finitely many generating intervals fVig.
The case for the system of continued fraction expansion is solved by Li et al. [43].
A complete result is achieved by Reeve [52].

Let’s give words to compare the argument in proving the above theorem with that
for the case of b-adic expansion.

Similar to b-adic expansion, there is a symbolic space corresponding to this
Markov expanding system, so one would like to work it in the symbolic space.
In such a sense, one can define cylinders as usual. Compared with the b-adic, a main
difference for Markov expanding system lies in Lemma 5.2. In other words, the ball
B.z0; e�Snf .x// may not be well packed by merely one cylinder, so more cylinders
should be taken into account.

For the case of continued fractions, this is conquered by the following observa-
tion:

Lemma 9.3 ([43]) Let B.z; r/ be a ball with center z 2 Œ0; 1� and radius 0 <
r < e�4. Then there exist integers t � �4 log r, b1; : : : ; bt�1 and bt; bt such that
3 � bt < bt and the family

G D
n
It.b1; : : : ; bt�1; bt/ W bt < bt � bt

o

satisfies the following three conditions.
.1/ All the cylinders in G are of comparable length:

1=24 � jIt.b1; : : : ; bt�1; bt/j
jIt.b1; : : : ; bt�1; b0

t/j
� 24; for all bt < bt; b

0
t � bt: (6)

.2/ All the cylinders It in G are contained in the ball B.z; r/.

.3/ The cylinders in G pack the ball B.z; r/ sufficiently; that is

2r �
X

bt<bt�bt

ˇ̌
It.b1; : : : ; bt�1; bt/

ˇ̌ � r

46
: (7)
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For the general case, Reeve proved the following property:

Lemma 9.4 ([52]) Let B.z0; r/ be a ball with z0 2 J and r > 0. Define

U.z0; n; r/ WD
n
Vw W w 2 �n;Vw � B.z0; r/

o
:

There exists a sequence of natural numbers nr with limr!0 nr D 1 and
lim supr!0 n�1

r log r < 0 such that

lim sup
r!0

1

r

X
Vw2U.z0;nr ;r/

jVwj > 0:

Both of the above two lemmas serve as the same role that a ball can be well
packed a collection of cylinders.

10 Shrinking Target Problems: ˇ-Expansions

Fix a real number ˇ > 1. The ˇ-transformation is defined as

Tˇ.x/ D ˇx .mod 1/; x 2 Œ0; 1�:
Then every x 2 Œ0; 1� be expanded as a series expansion

x D "1

ˇ
C "2

ˇ2
C � � � ;

where "1.x/ D bˇxc, "n D "1.Tn�1x/ are called the digit sequence of x (with respect
to the base ˇ).

The digit sequence of 1 plays an important role in ˇ-expansions. If the ˇ-
expansion of 1 terminates, i.e. there exists m � 1 such that "m.1; ˇ/ � 1 but
"n.1; ˇ/ D 0 for n > m, ˇ is called a simple number. Whence, we put

�
"�
1 .ˇ/; "

�
2 .ˇ/; "

�
3 .ˇ/; : : :

� D ."1.1; ˇ/; : : : ; "m�1.1; ˇ/; "m.1; ˇ/ � 1/1 ;

where ."/1 denotes the periodic sequence ."; "; "; : : :/. If ˇ is not a simple number,
we also denote by ."�

1 .ˇ/; "
�
2 .ˇ/; "

�
3 .ˇ/; : : :/ the ˇ-expansion of 1. In both cases, we

say that the sequence ."�
1 .ˇ/; "

�
2 .ˇ/; "

�
3 .ˇ/; : : :/ is the ˇ-expansion of unity.

Definition 10.1 A finite or an infinite sequence ."1; : : : ; "n; : : :/ is called ˇ-
admissible, if there exists an x 2 Œ0; 1� such that the ˇ-expansion of x begins with
"1; : : : ; "n; : : :.

Theorem 10.2 (Parry [49]) Let ˇ > 1 be given. A non-negative integer sequence
."1; "2; : : :/ is ˇ-admissible if and only if, for any k � 1,

."k; "kC1; : : :/ <lex
�
"�
1 .ˇ/; "

�
2 .ˇ/; : : :

�
;

where ."�
1 .ˇ/; "

�
2 .ˇ/; : : :/ is the ˇ-expansion of unity.
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When ˇ is a Parry number, the corresponding system is a finite Markov system.
But as far as a general ˇ is concerned, this is no longer the case.

For any admissible sequence ."1; : : : ; "n/, we define the cylinder set as

In."1; : : : ; "n/ WD
n
x 2 Œ0; 1� W "1.x/ D "1; : : : ; "n.x/ D "n

o
:

When ˇ is a Parry number, every cylinder has a regular lengths:

cˇ�n � jIn."1; : : : ; "n/j � ˇ�n:

for an absolute constant c > 0. But for a general ˇ, it may happen that

jIn."1; : : : ; "n/j � ˇ�n2 
 ˇ�n:

So, one has to find an alternate of Lemma 5.2. This is done by the following
property. Call a cylinder In."1; : : : ; "n/ full if

jIn."1; : : : ; "n/j D ˇ�n:

Lemma 10.3 ([10]) Among .n C1/ consecutive cylinders of order n, there exists at
least one full cylinder.
Thus for any � > 0, there exists r� such that for any ball B.z; r/ with r < r�, one
can find a full cylinder In such that

In � B.z; r/; jInj � r1C�:

The above structure appears for the first time in [60].

Theorem 10.4 ([10]) Let ˇ > 1 and f a positive continuous function on Œ0; 1�. Then
the Hausdorff dimension of Dz0 .f / is the unique solution s to the pressure function

P.T;�s.logˇ C f // D 0:

11 Shrinking Target: Matrix Transformations on Torus

Let T be a d � d matrix with integral coefficients. Then T determines a self-map
of the d-dimensional torus X D R

d=Zd. Let fB.n/gn�1 be a sequence of cubes in X
with the diameters frng decreasing. Define

W D
n
x 2 X W x 2 T�nB.n/; i.o.; n 2 N

o
:
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Hill and Velani [31] proved the following results. Let

	 D lim inf
n!1

� log jrnj
n

:

Theorem 11.1 Let T W X ! X be a matrix transformation of the torus X D R
d=Zd.

Let e1; : : : ; ed be the absolute values of the eigenvalues of T (with multiplicity).
Suppose these are ordered: e1 � � � � � ed. Then for 	 � log ed=e1, one has

dimH W D min
iD1;:::;d

(
i C log ei C Pd

jDiC1 log ej

	 C ei
:

)

Theorem 11.2 Let T W X ! X be diagonalizable over Q, and let e1; : : : ; ed 2 Z be
the eigenvalues of T arranged in increasing order. Then one has

dimH W D min
iD1;:::;d

(
i C log ei � P

jWej>eie	
.log ej � log ei � 	/C Pd

jDiC1 log ej

	 C ei
:

)

Let’s give some words on this setting. The main difficulty is that W is the limsup
of a collection of subsets of X which are far from being circular since T may expand
in one direction and contract in others.

To make the difficulty more clear, we assume that T is a diagonalizable matrix
even expanding in every direction. Then

T�n
�
Œ0; 1�d

�
; and T�n.B.n//

are collections of rectangles with sidelengths e�n
1 ; : : : ; e

�n
d and e�n

1 rn; : : :, e�n
d rn,

respectively, instead of balls.
In the definition of Hausdorff measure, we use balls to cover a fractal set. So,

for the limsup set W defined above, there is no natural covers. A general idea is to
partition the rectangles into small balls. Even this, one need also pay attention to
the relative positions of the rectangles. It means that if these rectangles are close
enough, when one covers one rectangle by balls, it is possible that these balls may
also cover the other rectangles in part. The extra condition in the first result that
	 � log ed=e1 excludes this possibility. Without this extra condition, as one sees in
the second result, there is an extra term in dimension W and the dimension drops.

12 Shrinking Target Problem on the Parameter Space

Let fT˛ W ˛ 2 ˝g be a family of transformations defined on a metric space X
where˝ is a subset of another metric space. Instead of considering the Diophantine
properties of the orbits under one fixed transformation, one can also consider the set
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of parameters where the orbit of some point satisfies some Diophantine properties.
More precisely, fix x0; z0 2 X. One considers the set

W.�/ WD
n
˛ 2 ˝ W jTn

˛.x0/ � z0j < �.n/; i.o.; n 2 N

o
:

Such a setting fits well for irrational rotations and beta expansions.

12.1 Irrational Rotation

Let ˝ D Œ0; 1� and X D Œ0; 1�. For each ˛ 2 Œ0; 1�, T˛ is the irrational rotation:

T˛ W Œ0; 1� ! Œ0; 1�; T˛.x/ D x C ˛ .mod 1/:

Then the set W.�/ can be rewritten as

W.�/ D
n
˛ 2 Œ0; 1� W kn˛ � yk < �.n/; i.o. n 2 N

o

where k � k denotes the distance to the integers and y is a given point in Œ0; 1�. This
is nothing but the inhomogeneous Diophantine approximation.

The dimension of W.�/ was obtained by Lebesley [41].

Theorem 12.1 ([41]) Let � be a decreasing function on Œ0; 1�. Then

dimH W.�/ D 2

1C 	
; 	 D lim inf

n!1
� log�.n/

log n
:

Y. Bugeaud, S. Harrap, S. Kristensen and S. Velani studied the set of points y
which are badly approximated by the orbit of ˛ (in high dimensional case). Namely,
the dimension of the set

BadA WD
n
y 2 Œ0; 1�n W 9 c.x/ > 0; kAq � yk > c.x/

qm=n
; for all q 2 Z

m n f0g
o

where A is an n � m real matrix. It was proved that

Theorem 12.2 ([11]) For any n � m real matrix A, dimH BadA D n.

12.2 ˇ-Expansions

Schmeling [57] proved that for any x0; y 2 Œ0; 1�,

lim inf
n!1 jTn

ˇ.x0/ � yj D 0
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for Lebesgue almost all ˇ > 1. This is a beginning of the study ˇ-expansions on the
parameter space fˇ W ˇ > 1g.

Now we are interested in the dimension of the following set

E
�f`ngn�1; x0; y

� D
n
ˇ > 1 W jTn

ˇx0 � yj < ˇ�`n ; i.o. n 2 N

o
:

One has

Theorem 12.3 For any x0; y 2 Œ0; 1�,

dimH E
�f`ngn�1; x0; y

� D 1

1C b
; where b D lim inf

n!1
`n

n
:

Schmeling and Persson [50] proved the case when x0 D 1 and y D 0; for the case
of a general y, it was obtained by Li et al. [42]. The full general result is proved by
Lü and Wu recently [46].

12.3 Two Parameters

As mentioned in the introduction, one can also consider the case that two parameters
are both involved.

Dodson [13] considered the case of irrational rotations and got the following
result.

Theorem 12.4 Let � be a decreasing positive function defined on N. Then

n
.˛; y/ 2 Œ0; 1�2 W kn˛ � yk < �.n/; i.o. n 2 N

o

is of Hausdorff dimension

1C 2

t C 1
; where t D lim inf

n!1
� log�.n/

n
:

For the case of ˇ-expansions, Ge and Lü [27] obtained that

Theorem 12.5 Let � be a decreasing positive function defined on N. Then

n
.x; y/ 2 Œ0; 1�2 W jTn

ˇ.x/ � yj < �.n/; i.o. n 2 N

o

is of Hausdorff dimension

1C 2

t
; where t D lim inf

n!1
� log�.n/

n logˇ
:
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13 Dynamical Covering Problem

Let .X; d/ be a metric space with a transformation T W X ! X. Fix a point x0 2 X.
One considers the set of points which can be well approximated by the orbit of
x0, i.e.

C.�/ WD
n
y 2 X W jTnx0 � yj < �.n/; i.o. n 2 N

o
:

The covering problem is closely related to the classical random covering prob-
lem. Namely, consider an independent and identically distributed (i.i.d.) sequence
fxng uniformly distributed on the unit circle with respect to Lebesgue measure, a
decreasing sequence of positive numbers f`ng and the associated random intervals
.xn � `n=2 .mod 1/; xn C `n=2 .mod 1//. Then one concerns how many or which
points can be covered by these random intervals infinitely often [35].

Instead of a uniformly distribution sequence fxng, in our setting, xn is driven by
the orbit of a given point. So we call the setting here a dynamical covering problem.

13.1 Irrational Rotation

When T is the irrational rotation x ! x C ˛ .mod 1/ with ˛ irrational, the set C.�/
can be written as

C.�/ WD
n
y 2 Œ0; 1� W kn˛ � yk < �.n/; i.o. n 2 N

o
:

The Hausdorff dimension of C.�/ was considered for the first time by Bernik
and Dodson [6] with partial results. Bugeaud [9] and Schmeling and Troubetzkoy
[58] independently proved the following result.

Theorem 13.1 ([9, 58]) Let �.n/ D n�t for some t > 1, the dimension of C.�/
is 1=t.

Schmeling and Troubetzkoy proved it by using the Three Gap Theorem of the
distribution of fn˛ W n 2 Ng, while Bugeaud proved it by introducing the weak
regular system (Regular system was introduced by Baker and Schmidt [1]). However
at present, this is a consequence of the Minkowski’s theorem by using the powerful
mass transference principle established by Beresnevich and Velani [5].

Let’s first recall the Minkowski’s theorem.

Theorem 13.2 ([48] Minkowski’s Theorem) Let ˛ 2 Œ0; 1� be an irrational
number. For any y ¤ k˛ C m with k;m 2 Z, one has

kn˛ � yk < 1=4n; i.o. n 2 N:
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Mass transference principle discloses a deep phenomenon that Lebesgue measure
theoretical statements for limsup sets can imply Hausdorff measure theoretical
statements. Let B.x; r/ be a ball in R

k. Denote Bf for the ball B.x; f .x/1=k/.

Theorem 13.3 ([5] Mass Transference Principle) Let fBigi2N be a sequence of
balls in R

k with r.Bi/ ! 0 as i ! 1. Let f be a dimension function such that
xkf .x/ is monotonic and suppose that for any ball B in R

k.

H k
�

B \ lim sup
i!1

Bf
i

�
D H k.B/

Then, for any ball B in R
k

H f
�

B \ lim sup
i!1

Bi

�
D H f .B/:

The above results or methods work well when �.n/ D n�t. And in this special
case, the dimension is independent of the irrational number ˛. But this is not the
case as far as a general error function � is concerned [17]. For an optimal bound
estimations on the dimension of W.�/, one is referred to a result by Liao and
Rams [44].

Theorem 13.4 ([44]) For any ˛ with Diophantine type ˇ, one has

min

	
u�;max

	
`�;

1C u�
1C ˇ




� dimH C.�/ � u�;

where

u� D lim sup
n!1

log n

� log�.n/
; `� D lim inf

n!1
log n

� log�.n/
:

13.2 Doubling Map

Let T be the doubling map x ! 2x.mod 1/. Fan et al. [18] considered the problem
that how well 2nx .mod 1/ approximates a point y. More precisely, the set

C.�/ WD
n
y 2 Œ0; 1� W k2nx � yk < �.n/; i.o. n 2 N

o
:

This set depends on the point x, since it is clear that when x is rational, C.�/
contains only finitely many points. Thus, instead of considering every x, the authors
considered C.�/ as a random set of x with respect to an invariant Gibbs measure as
the probability measure.
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Let 
'; 
 be two T-invariant probability Gibbs measures on Œ0; 1� associated
with normalized Hölder potentials ' and  . The measure 
' is used to describe the
randomness of the set C.�/ with respect to x and the measure 
 to describe sizes
of sets.

Let the error function �.n/ D n�� . Write emax D R �'.x/dx; and h
' for the
measure theoretic entropy of 
' .

The first result concerns the 
 -measure of C.�/ for a 
'-generic point x.

Theorem 13.5 ([18])

sup
n
� W 
 .C.�// D 1; 
'-a.e. x

o
D 1R

'd
 
:

The second result concerns the dimension of C.�/.

Theorem 13.6 ([18]) For 
'-almost all x,

dimH C.�/ D
8
<
:
1=�; when 1=� � h
' ;
E.1=�/; when h
' < 1=� < emax;
1; when 1=� � emax,

where E.t/ is the dimension spectrum of 
' , which is defined by

E.t/ WD dimH

n
y W lim

r!0

log 
'.y � r; y C r/

log r
D t:

o
:

13.3 Expanding Markov Maps

Liao and Seuret [45] got the corresponding result successfully in the setting of
finite Markov expanding systems. Let’s first recall the definition of finite Markov
expanding maps.

Definition 13.7 A transformation T W Œ0; 1� ! Œ0; 1� is an expanding Markov map
with finite partitions if there is a subdivision faig0�i�m of Œ0; 1� (denoted by I.k/ D
�ak; akC1Œ for 0 � k � Q � 1) such that:

• (Expanding property) there is a positive integer n and a real number � > 1 such
that

j.Tn/0.x/j � � > 1I

• (Piecewise monotonicity) T is strictly monotonic and can be extended to a C2

function on each I.i/;
• (Markov property) if I.j/ \ T.I.k// ¤ ;, then I.j/ � T.I.k//;
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• (Mixing) there is an integer R such that I.j/ � [R
nD1Tn.I.k// for every k and j;

• (Rényi’s condition) For every 0 � k < m,

sup
x;y;z2I.k/

jT 00.x/j
jT 0.y/jjT 0.z/j < 1:

Let �max be the Gibbs measure associated with the potential  D � log jT 0j,
which is known to be equivalent to Lebesgue measure. Define

˛max D
R �'d�maxR � log jT 0jd�max

:

Theorem 13.8 ([45]) Let T W Œ0; 1� ! Œ0; 1� be an expanding Markov map.
Let 
' be the Gibbs measure with a Hölder potential ' and the error function
�.n/ D n�� .

1. For 
'-almost all x,

dimH C.�/ D
8<
:
1=�; when 1=� � dimH 
';
E.1=�/; when dimH 
' < 1=� < ˛max;
1; when 1=� � ˛max,

where E.t/ is the dimension spectrum of 
' , which is defined by

E.t/ WD dimH

n
y W lim

r!0

log 
'.y � r; y C r/

log r
D t:

o
:

2. For 
'-almost all x, the Lebesgue measure of C.�/ is 0 if 1=� < ˛max and is full
if 1=� > ˛max.

It should be emphasized that there is much difference between the general
Markov expanding system and the doubling map. For example, for the doubling
map, since the Lyapunov exponents are constant, the intervals of generation n have
same lengths. While for the Markov maps their lengths may be of very different
order. The non-constant Lyapunov exponents bring many difficulties. Also there are
essential differences in illustrating the dimension of C.�/ from below (for a general
result, see [2]).

14 Quantitative Recurrence Properties

Quantitative recurrence properties concerns the Hausdorff dimension of the follow-
ing sets in a metric dynamical system .X;T/:

R.f / WD
n
x 2 X W jTnx � xj < e�Snf .x/; i.o. n 2 N

o
:
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14.1 ˇ-Expansions

A general idea in tackling the dimensional theory in ˇ expansion is that one focuses
on the points for which the cylinders containing them have regular lengths. This
is called an approximating method. But the risk is that, since one neglects some
points, one may not get the right result by such a method. In [65], Tan and Wang
observed a fact for ˇ expansion which can be used to show that in many cases the
approximating method works.

Write the ˇ-expansion of 1 as

1 D "�
1

ˇ
C "�

2

ˇ2
C � � � :

Define a sequence of ˇN approximating ˇ from below: let ˇN > 1 be the solution to

1 D "�
1

x
C � � � C "�

N

xN
:

Given a ˇ-admissible block ! D .!1; : : : ; !n/ with length n, one can obtain
a ˇN-admissible sequence ! by changing the blocks .!�

1 .ˇ/; : : : ; !
�
N.ˇ// in w

from the left to the right with non-overlaps to .!�
1 .ˇ/; : : : ; !

�
N.ˇ/ � 1/. Denote the

resulting sequence by !.

Proposition 14.1 ! 2 ˙n
ˇN

.
Define the map �N W ˙n

ˇ ! ˙n
ˇN

as �N.!/ D !.

Proposition 14.2 For any ! 2 ˙n
ˇN

,

]��1
N .!/ � 2

n
N ;

i.e., the number of the inverse of ! 2 ˙n
ˇN

is at most 2
n
N .

Corollary 14.3 Let g be a continuous function on Œ0; 1�. The pressure function
P.g;Tˇ/ is continuous with respect to ˇ.

This enables one to show that

Theorem 14.4 ([65]) Let ˇ > 1 and f a positive continuous function on Œ0; 1�. Then
the Hausdorff dimension of R.f / is the unique solution s to the pressure function

P
�
T;�s.logˇ C f /

� D 0:



290 B. Wang and J. Wu

14.2 Conformal Iterated Function Systems

Let ˚ D f�i W i 2 �g be a conformal iterated function system on Œ0; 1�d with � a
countable index set. Denote by J the attractor of ˚ .

It would be clear that there is natural dynamical system on J, but since the points
in J may have multiple coding representations, the transformation may not be well
defined at those points. So instead of using a transformation, we use the inverse
of ��1.

Let f W Œ0; 1�d ! R
C be a positive function, Snf .x/ be the sum f .x/Cf .��1

w1 .x//C
� � � C f ..�w1 ı � � � ı �wn�1 /

�1.x// (analogous to an ergodic sum).
In this conformal system, the set R.f / can be formulated as

n
x 2 J W ˇ̌

x � .�w1 ı � � � ı �wn/
�1.x/

ˇ̌
< e�Snf .x/;wi 2 �; 1 � i � n; i.o. n 2 N

o
:

Theorem 14.5 ([59]) Let ˚ be a conformal IFS on Œ0; 1�d with open set condition,
and let f W Œ0; 1�d ! R

C be a continuous function. Then

dimH R.f / D inf
˚
t � 0 W P.�t.log j.˚�1/0j C f // � 0

�
: (8)

15 Remarks on Shrinking Target Problem

In this last section, we give a possible conjecture on the size of the shrinking target
problems:

W.�/ WD
n
x 2 X W Tnx 2 B.z; �.n//; i.o. n 2 N

o
:

Or we can consider another form

W.f / WD
n
x 2 X W x 2 B

�
y; e�Snf .y/

�
; y 2 In; i.o. n 2 N

o
;

where In WD fy W Tny D zg. These two sets may not be equal but closely related.
In most of these concrete systems cited above, the dimension of W.f / is usually

given by a unified formula: [28, 29, 43, 52, 67],

dimH W.f / D inf
n
s � 0 W P.T;�sf / � 0

o
; (9)

where P is the pressure function.
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Recall that in those cases, the dimension of the phase space X is given by the
Bowen-Manning-McCluskey formula:

dimH X D inf
n
s � 0 W P.T;�s log jT 0j/ � 0

o
; (10)

Now we pose some conditions on .X;T/: Assume there exist c1 > c2 > 0 such
that for every n � 1,

• Covering: X � S
z2In

B.z; c1j.Tn/0.z/j�1/;
• Disjointness: fB.z; c2j.Tn/0.z/j�1/; z 2 Ing are pairwise disjoint.
• T is expanding.

We pose the following conjecture for a general system as far as possible.

Conjecture 15.1 Under the conditions given above on the system .X;T/, if

dimH X D inffs � 0 W P.T;�s log jT 0j/ � 0g

then one would have

dimH W.f / D inffs � 0 W P.T;�sf / � 0g:

One can also compare the situation here (the third item below) with the mass
transference principle in the classic Diophantine approximation developed by
Beresnevich and Velani [5]. So we call the formula (10) a dimension transference
principle.

Let’s give some evidences supporting the conjecture:

• It is clear that (10) is a natural upper bound of dimH W.f /.
• Recall the definition of the pressure function:

P.T;�sf / D lim
n!1

1

n
log

X
xWTnxDy

e�sSnf .x/;

which concerns also about the distribution of the pre-images. With suitable
normalization, the quantity e�sSnf .x/ can be used to define a �-measure of the
ball B.x; j.Tn/0.x/j/. So the solution s to P.T;�sf / D 0 is tightly related to a
Hölder exponent of the measure � in average. This leads to the dimension from
below of the support of � by the classic mass distribution principle [16].

• Notice that j.Tn/0.z/j�1 D �Sn.log jT 0j/.z/. Comparing the first condition on X
with the definition of W.f /, it looks like that in defining W.f /, one shrinks the
ball B.z; e�Sn log jT0j.z// in defining X to the ball B.z; e�Snf .z//.
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