
20Epilogue

Abstract
This chapter is the concluding chapter in which we summarize the journey that
we have travelled in this book.

Keywords
Future of Software Engineering

We embarked on a long journey in this book and set ourselves the objective of
providing a concise introduction to the software engineering field to students and
practitioners. The book was based on the author’s experience at leading industrial
companies, and it covered both theory and practice. The objective was to give the
reader a grasp of the fundamentals of the software engineering field, as well as
guidance on how to apply the theory in an industrial environment.

Customers today have very high expectations on quality and expect high-quality
software to be consistently delivered on time and on budget. The focus on quality
requires that sound software engineering practices be employed to enable
quality software to be consistently produced. Further, it is an accepted view in the soft-
ware qualityfield that the quality of the delivered software is closely related to the quality
of the underlying processes used to build the software and on adherence to them.

Many processes are employed in the design and development of software, and
companies need to determine the extent to which the underlying processes used to
design, develop, test andmanage software projects arefit for purpose. The processwill
need to be continuously improved, and often, model-based improvement using a
framework such as the Capability Maturity Model Integration (CMMI) is employed.
There is also the need to focus on best practice in software engineering, as well as
emerging technologies from various research programmes. Piloting or technology
transfer of innovative technology is an important part of continuous improvement.
Companies need to focus on customer satisfaction and software quality, and they need
to ensure that the desired quality is built into the software product.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-57750-0_20

317



We discussed project planning and tracking, software lifecycles, software
inspections and testing, configuration management, software quality assurance, etc.
The CMMI was discussed, and it provides a framework that assists organizations in
software process improvement. The appraisal of an organization against the CMMI
allows the organization to determine the current capability or maturity of selected
software processes and to prioritize improvements. It reveals strengths and weak-
nesses of the management and engineering processes in the organization. The
output from the appraisal is used to formulate an improvement plan, which is then
tracked to completion.

We provided an introduction to project management and discussed project
estimation; project planning and scheduling, project monitoring and control, risk
management and managing project quality.

We discussed requirements engineering including activities such as requirements
gathering, requirements elicitation, requirements analysis, requirements manage-
ment, and requirements verification and validation.

We then discussed design and development, including the high-level architec-
tural design, the low-level design of individual programmes, and software devel-
opment and reuse. The views of Hoare and Parnas on software design were
discussed, and we discussed function-oriented design and object-oriented design.
We discussed software development topics such as software reuse, customized-
off-the-shelf software (COTS), and open-source software development.

We then moved on to discuss configuration management and discussed the
concept of a baseline. Configuration management is concerned with identifying
those deliverables that are subject to change control and controlling changes to
them.

We discussed software inspections including Fagan inspections, as well as the
less formal review and walk-through methodologies. Software testing was then
discussed, including the various types of testing that may be carried out, and we
discussed test planning, test case definition, test tracking, test metrics, test reporting
and testing in an e-commerce environment.

We then discussed the selection and management of a software supplier and
described how candidate suppliers may be formally evaluated, selected and man-
aged during the project.

We discussed software quality assurance and the importance of process quality,
and the discussion included audits and described how they are carried out. We then
discussed metrics and problem-solving, including the balanced score card and
GQM, as well as presenting a collection of sample metrics for an organization.

We then discussed software reliability and dependability and covered topics such
as software reliability and software reliability models; the Cleanroom methodology;
system availability; safety and security critical systems, and dependency
engineering.

We discussed formal methods, which are often employed in the safety critical
and security critical fields. These consist of a set of mathematical techniques to
specify and derive a programme from its specification. Formal methods may be
employed to rigorously state the requirements of the proposed system; they may be

318 20 Epilogue



employed to derive a programme from its mathematical specification; and they
provide a rigorous proof that the implemented programme satisfies its specification.

We discussed the Z specification language, which was developed at the Pro-
gramming Research Group at Oxford University in the early 1980s. Z specifications
are mathematical and the use of mathematics ensures precision and allows incon-
sistencies and gaps in the specification to be identified. Theorem provers may be
employed to demonstrate that the software implementation meets its specification.

We then discussed the unified modelling language (UML), which is a visual
modelling language for software systems, and it is used to present several views of
the system architecture. We presented various UML diagrams such as use case
diagrams, sequence diagrams and activity diagrams.

We then discussed the important field of software process improvement, dis-
cussed the idea of a software process and discussed the benefits that may be gained
from software process improvement.

We gave an overview of the CMMI model, and discussed its five maturity levels
and their constituent process areas. We discussed both the staged and continuous
representations of the CMMI.

We then discussed a selection of tools to support various software engineering
activities, including tools to support project management, requirements engineer-
ing, configuration management, design and development activities and software
testing.

We discussed the Agile methodology which is a popular lightweight approach to
software development. Agile has a strong collaborative style of working, and it
advocates adaptive planning and evolutionary development,

We then discussed some innovative developments in the computer field, such as
distributed systems, service-oriented architecture, software as a service, cloud
computing and embedded systems. This led to a discussion of the many innovations
in the software engineering and the need for continuous innovation.

20.1 The Future of Software Engineering

Software engineering has come a long way since the 1950s and 1960s, when it was
accepted that the completed software would always contain lots of defects and that
the coding should be done as quickly as possible, to enable these defects to be
quickly identified and corrected.

The software crisis in the late 1960s highlighted problems with budget and
schedule overruns, as well as problems with the quality and reliability of the
delivered software. This led to the birth of software engineering as a discipline in its
own right and the realization that programming is quite distinct from science and
mathematics.

The software engineering field is highly innovative and many new technologies
and systems have been developed over the decades. These include object-oriented
design and development; formal methods and UML; the waterfall and spiral

20 Epilogue 319



models; software inspections and software testing; software process improvement
and the CMMI; and the Agile methodology.

Software engineering will continue to be fundamental to the success of projects.
There is not a one size that fits all: some companies (e.g. in the safety critical or
security critical fields) are likely to focus on formal methods and software process
maturity models such as the CMMI. For other areas, the lightweight Agile
methodology may be the appropriate software development methodology.

Companies are likely to measure the cost of poor quality in the future, as driving
down the cost of poor quality will become more important. Software components
and the verification of software components are likely to become important, in order
to speed up software development and to shorten time to market. Software reuse
and open-source software development are likely to grow in popularity, and con-
tinuous innovation will continue in the software engineering field.

320 20 Epilogue


	20 Epilogue
	Abstract
	20.1 The Future of Software Engineering


