
1Background

Abstract
This chapter presents a broad overview of software engineering and discusses
various software lifecycles and the phases in software development. We discuss
requirements gathering and specification, software design, implementation,
testing and maintenance. The lightweight Agile methodology is introduced, and
it has become very popular in industry. Mathematics may potentially assist
software engineers in delivering high-quality software products that are safe to
use and the extent to which mathematics should be employed remains a topic of
active debate.

Keywords
Standish chaos report � Software lifecycles � Waterfall model � Spiral model �
Rational Unified Process � Agile development � Software inspections � Software
testing � Project management

1.1 Introduction

The approach to software development in the 1950s and 1960s has been described
as the “Mongolian Hordes Approach” by Brooks [1].1 The “method” or lack of
method was applied to projects that were running late, and it involved adding a
large number of inexperienced programmers to the project, with the expectation that
this would allow the project schedule to be recovered. However, this approach was
deeply flawed as it led to inexperienced programmers with inadequate knowledge

1The “Mongolian Hordes” management myth is the belief that adding more programmers to a
software project that is running late will allow catch-up. In fact, as Brooks says adding people to a
late software project actually makes it later.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Software Engineering, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-57750-0_1

1



of the project attempting to solve problems, and they inevitably required significant
time from the other project team members.

This resulted in the project being delivered even later, as well as subsequent
problems with quality (i.e. the approach of throwing people at a problem does not
work). The philosophy of software development back in the 1950/1960s was
characterized by:

The completed code will always be full of defects.
The coding should be finished quickly to correct these defects.
Design as you code approach.

This philosophy accepted defeat in software development and suggested that
irrespective of a solid engineering approach, the completed software would always
contain lots of defects and that it therefore made sense to code as quickly as
possible and to then identify the defects that were present, so as to correct them as
quickly as possible to solve a problem.

In the late 1960s, it was clear that the existing approaches to software devel-
opment were deeply flawed and that there was an urgent need for change.
The NATO Science Committee organized two famous conferences to discuss
critical issues in software development [2]. The first conference was held at Gar-
misch, Germany, in 1968, and it was followed by a second conference in Rome in
1969. Over fifty people from eleven countries attended the Garmisch conference,
including Edsger Dijkstra, who did important theoretical work on formal specifi-
cation and verification. The NATO conferences highlighted problems that existed in
the software sector in the late 1960s, and the term “software crisis” was coined to
refer to these. There were problems with budget and schedule overruns, as well as
the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its own
right and the realization that programming is quite distinct from science and
mathematics. Programmers are like engineers in that they build software products,
and they therefore need education in traditional engineering as well as the latest
technologies. The education of a classical engineer includes product design and
mathematics. However, often computer science education places an emphasis on
the latest technologies, rather than on the important engineering foundations of
designing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them to
build products that are safe for the public to use. This includes a solid foundation on
design and on the mathematics required for building safe software products.
Mathematics plays a key role in classical engineering, and in some situations, it
may also assist software engineers in the delivery of high-quality software products.
Several mathematical approaches to assist software engineers are described in [3].

There are parallels between the software crisis in the late 1960s and serious
problems with bridge construction in the nineteenth century. Several bridges col-
lapsed or were delivered late or overbudget, due to the fact that people involved in
their design and construction did not have the required engineering knowledge.

2 1 Background



This led to bridges that were poorly designed and constructed, leading to their
collapse and loss of life, as well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organization speci-
fied a core body of knowledge that the engineer is required to possess, and the
licensing body verifies that the engineer has the required qualifications and expe-
rience. This helps to ensure that only personnel competent to design and build
products actually do so. Engineers have a professional responsibility to ensure that
the products are properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 1.1) on the extent of problems
with IT projects since the mid-1990s. These studies were conducted in the USA, but
there is no reason to believe that European or Asian companies perform any better.
The results indicate serious problems with on-time delivery of projects and projects
being cancelled prior to completion.2 However, the comparison between 1995 and
2009 suggests that there have been some improvements with a greater percentage of
projects being delivered successfully and a reduction in the percentage of projects
being cancelled.

Fred Brooks argues that software is inherently complex and that there is no silver
bullet that will resolve all of the problems associated with software development
such as schedule or budget overruns [1, 4]. Poor software quality can lead to defects
in the software that may adversely impact the customer and even lead to loss of life.
It is therefore essential that software development organizations place sufficient
emphasis on quality throughout the software development lifecycle.

The Y2K problem was caused by a two-digit representation of dates, and it
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of the
date, which would have required minimal changes for year 2000 compliance.
Instead, companies spent vast sums of money to rectify the problem.

Fig. 1.1 Standish report—
results of 1995 and 2009
survey

2These are IT projects covering diverse sectors including banking and telecommunications, rather
than pure software companies. Software companies following maturity frameworks such as the
CMMI generally achieve more consistent results.

1.1 Introduction 3



The quality of software produced by some companies is impressive.3 These
companies employ mature software processes and are committed to continuous
improvement. There is a lot of industrial interest in software process maturity
models for software organizations, and various approaches to assess and mature
software companies are described in [5, 6].4 These models focus on improving the
effectiveness of the management, engineering and organization practices related to
software engineering and in introducing best practice in software engineering. The
disciplined use of the mature software processes by the software engineers enables
high-quality software to be consistently produced.

1.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version pro-
grams. The IEEE 610.12 definition of software engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes the following:

1. Methodologies to design, develop and test software to meet customers’ needs.
2. Software is engineered. That is, the software products are properly designed,

developed and tested in accordance with engineering principles.
3. Quality and safety are properly addressed.
4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the safety
critical nature of the product. Systematic peer reviews and rigorous testing will
often be sufficient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.
6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to state
precisely the requirements that the software product is to satisfy and then to produce
designs that will meet these requirements. The project needs to be planned and

3I recall projects at Motorola that regularly achieved 5.6r-quality in a L4 CMM environment
(i.e. approx. 20 defects per million lines of code. This represents very high quality).
4Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and
organizational practices required in software engineering. The emphasis is on defining software
processes that are fit for purpose and consistently following them. The process maturity models
focus on what needs to be done rather how it should be done. This gives the organization the
freedom to choose the appropriate implementation to meet its needs. The models provide useful
information on practices to consider in the implementation.

4 1 Background



delivered on time and budget. The requirements must provide a precise description
of the problem to be solved, i.e. it should be evident from the requirements what is
and what is not required.

The requirements need to be rigorously reviewed to ensure that they are stated
clearly and unambiguously and reflect the customer’s needs. The next step is then
to create the design that will solve the problem, and it is essential to validate the
correctness of the design. Next, the software code to implement the design is
written, and peer reviews and software testing are employed to verify and validate
the correctness of the software.

The verification and validation of the design is rigorously performed for safety
critical systems, and it is sometimes appropriate to employ mathematical techniques
for these systems. However, it will usually be sufficient to employ peer reviews or
software inspections as these methodologies provide a high degree of rigour. This
may include approaches such as Fagan inspections [7], Gilb’s inspections [8] or
Prince 2’s approach to quality reviews [9].

The term “engineer” is a title that is awarded on merit in classical engineering. It
is generally applied only to people who have attained the necessary education and
competence to be called engineers and who base their practice on classical engi-
neering principles. The title places responsibilities on its holder to behave profes-
sionally and ethically. Often, in computer science, the term “software engineer” is
employed loosely to refer to anyone who builds things, rather than to an individual
with a core set of knowledge, experience and competence.

Several computer scientists (such as Parnas5) have argued that computer
scientists should be educated as engineers to enable them to apply appropriate
scientific principles to their work. They argue that computer scientists should
receive a solid foundation in mathematics and design, to enable them to have the
professional competence to perform as engineers in building high-quality products
that are safe for the public to use. The use of mathematics is an integral part of the
engineer’s work in other engineering disciplines, and so the software engineer
should be able to use mathematics to assist in the modelling or understanding of the
behaviour or properties of the proposed software system.

Software engineers need education6 on specification, design, turning designs
into programs, software inspections and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

5Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques in software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented design.
6Software companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualification of staff prior to assigning staff to performing specific tasks. The
appropriate qualifications and experience for the specific role are considered prior to appointing a
person to carry out the role. Many companies are committed to the education and continuous
development of their staff and on introducing best practice in software engineering into their
organization.

1.2 What Is Software Engineering? 5



Parnas has argued that software engineers have responsibilities as professional
engineers.7 They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions
and actions8 and have a responsibility to object to decisions that violate professional
standards. Engineers are required to behave professionally and ethically with their
clients. The membership of the professional engineering body requires the member
to adhere to the code of ethics9 of the profession. Engineers in other professions are
licensed, and therefore, Parnas argues a similar licensing approach be adopted for
professional software engineers10 to provide confidence that they are competent for
the particular assignment. Professional software engineers are required to follow
best practice in software engineering and the defined software processes.11

Many software companies invest heavily in training, as the education and
knowledge of its staff are essential to delivering high-quality products and services.
Employees receive professional training related to the roles that they are per-
forming, such as project management, software design and development, software
testing and service management. The fact that the employees are professionally
qualified increases confidence in the ability of the company to deliver high-quality
products and services. A company that pays little attention to the competence and
continuous development of its staff will obtain poor results and suffer a loss of
reputation and market share.

7The ancient Babylonians used the concept of accountability, and they employed a code of laws
(known as the Hammurabi Code) c. 1750 B.C. It included a law that stated that if a house
collapsed and killed the owner, then the builder of the house would be executed.
8However, it is unlikely that an individual programmer would be subject to litigation in the case of
a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility
for problems rather than a guarantee of quality accompanies most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and it
would be potentially difficult for an outside party to prove that the cause of a particular problem is
due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from
litigation. However, greater legal protection for the customer can be built into the contract between
the supplier and the customer for bespoke software development.
9Many software companies have a defined code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.
10The British Computer Society (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information System Examination Board (ISEB) which allows IT professionals to
be qualified in service management, project management, software testing and so on.
11Software companies that are following the CMMI or ISO 9001 standards will employ audits to
verify that the processes and procedures have been followed. Auditors report their findings to
management, and the findings are addressed appropriately by the project team and affected
individuals.

6 1 Background



1.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish group was dis-
cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on
project cost overruns in the US indicated that 33% of projects are between 21 and
50% overestimate, 18% are between 51 and 100% overestimate and 11% of pro-
jects are between 101 and 200% overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The use
of software metrics is an objective way to do this, and improvements in estimation
will be evident from a reduced variance between estimated and actual effort. The
project manager will determine and report the actual versus estimated effort and
schedule for the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project and to manage them
appropriately. The probability of each risk occurring and its impact is determined,
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software lead to a negative perception of
the company and may potentially lead to damage to the customer relationship with a
subsequent loss of market share.

There is a strong economic case to building quality into the software, as less time
is spent in reworking defective software. The cost of poor quality (COPQ) should
be measured and targets set for its reductions. It is important that lessons are learned
during the project and acted upon appropriately. This helps to promote a culture of
continuous improvement.

A number of high-profile software failures are discussed in [6]. These include
the millennium bug (Y2K) problem; the floating-point bug in the Intel micropro-
cessor; the European Space Agency Ariane-5 disaster; and so on. These failures led
to embarrassment for the organizations, as well as the associated cost of replace-
ment and correction.

Fig. 1.2 Standish 1998
report—estimation accuracy

1.3 Challenges in Software Engineering 7



The millennium bug was due to the use of two digits to represent dates rather
than four digits. The solution involved finding and analysing all code that had a
Y2K impact; planning and making the necessary changes; and verifying the cor-
rectness of the changes. The worldwide cost of correcting the millennium bug is
estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in its
Pentium microprocessor and in providing adequate information on its impact to
its customers. It incurred a large financial cost in replacing microprocessors for its
customers. The Ariane-5 failure caused major embarrassment and damage to the
credibility of the European Space Agency (ESA). Its maiden flight ended in failure
on 4 June 1996, after a flight time of just 40 s.

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs to correct the software, loss of credibility of the company or even loss of life.

1.4 Software Processes and Lifecycles

Organizations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many processes
such as those for defining requirements; processes for project estimation and
planning; and processes for design, implementation, testing, and so on.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes and compliance to them.
Therefore, it is necessary to focus on the quality of the processes as well as the
quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use
is institutionalized in the organization. That is, all employees need to follow the
processes consistently. This requires that the employees are trained on the processes
and that process discipline is instilled with an appropriate audit strategy that ensures
compliance to them. Data will be collected to improve the process. The software
process assets in an organization generally consist of:

– A software development policy for the organization,
– Process maps that describe the flow of activities,
– Procedures and guidelines that describe the processes in more detail,
– Checklists to assist with the performance of the process,
– Templates for the performance of specific activities (e.g. design, testing),
– Training materials.

8 1 Background



The processes employed to develop high-quality software generally include the
following:

– Project management process,
– Requirements process,
– Design process,
– Coding process,
– Peer review process,
– Testing process,
– Supplier selection and management processes,
– Configuration management process,
– Audit process,
– Measurement process,
– Improvement process,
– Customer support and maintenance processes.

The software development process has an associated lifecycle that consists of
various phases. There are several well-known lifecycles employed such as the
waterfall model [10], the spiral model [11], the Rational Unified Process [12] and
the Agile methodology [13] which have become popular in recent years. The choice
of a particular software development lifecycle is determined from the particular
needs of the specific project. The various lifecycles are described in more detail in
the following sections.

1.4.1 Waterfall Lifecycle

The waterfall model (Fig. 1.3) starts with requirements gathering and definition. It
is followed by the system specification (with the functional and non-functional
requirements), the design and implementation of the software, and comprehensive
testing. The testing generally includes unit, system and user acceptance testing.

The waterfall model is employed for projects where the requirements can be
identified early in the project lifecycle or are known in advance. We are treating the
waterfall model as the “V” life cycle model, with the left-hand side of the “V”

Fig. 1.3 Waterfall V
lifecycle model

1.4 Software Processes and Lifecycles 9



detailing requirements, specification, design and coding and the right-hand side
detailing unit tests, integration tests, system tests and acceptance testing. Each
phase has entry and exit criteria that must be satisfied before the next phase
commences. There are several variations to the waterfall model.

Many companies employ a set of templates to enable the activities in the various
phases to be consistently performed. Templates may be employed for project
planning and reporting; requirements definition; design; testing; and so on. These
templates may be based on the IEEE standards or industrial best practice.

1.4.2 Spiral Lifecycles

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [11], and
it is useful for projects where the requirements are not fully known at project
initiation, or where the requirements evolve as a part of the development lifecycle.
The development proceeds in a number of spirals, where each spiral typically
involves objectives and an analysis of the risks, updates to the requirements, design,
code, testing and a user review of the particular iteration or spiral.

Fig. 1.4 SPIRAL lifecycle model … public domain

10 1 Background



The spiral is, in effect, a reusable prototype with the business analysts and the
customer reviewing the current iteration and providing feedback to the development
team. The feedback is analysed and used to plan the next iteration. This approach is
often used in joint application development, where the usability and look and feel of
the application are a key concern. This is important in Web-based development and
in the development of a graphical user interface (GUI). The implementation of part
of the system helps in gaining a better understanding of the requirements of the
system, and this feeds into subsequent development cycles. The process repeats
until the requirements and the software product are fully complete.

There are several variations of the spiral model including rapid application
development (RAD); joint application development (JAD) models; and the
dynamic systems development method (DSDM) model. The Agile methodology
(discussed in Chap. 18) has become popular in recent years, and it employs sprints
(or iterations) of 2- to 4-week duration to implement a number of user stories.
A sample spiral model is shown in Fig. 1.4.

There are other life-cycle models such as the iterative development process that
combines the waterfall and spiral lifecycle model. An overview of Cleanroom is
presented in Chap. 11, and the methodology was developed by Harlan Mills at
IBM. It includes a phase for formal specification, and its approach to software
testing is based on the predicted usage of the software product, which allows a
software reliability measure to be calculated. The Rational Unified Process
(RUP) was developed by Rational, and it is discussed in the next section.

1.4.3 Rational Unified Process

The Rational Unified Process [12] was developed at the Rational Corporation (now
part of IBM) in the late 1990s. It uses the unified modelling language (UML) as a
tool for specification and design, where UML is a visual modelling language for
software systems that provides a means of specifying, constructing and docu-
menting the object-oriented system. It was developed by James Rumbaugh, Grady
Booch and Ivar Jacobson, and it facilitates the understanding of the architecture and
complexity of the system.

RUP is use case driven, architecture centric, iterative and incremental and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement and configuration control (Fig. 1.5). Software projects may be very
complex, and there are risks that requirements may be incomplete or that the
interpretation of a requirement may differ between the customer and the project
team. RUP is a way to reduce risk in software engineering.

Requirements are gathered as use cases, where the use cases describe the
functional requirements from the point of view of the user of the system. They
describe what the system will do at a high level and ensure that there is an
appropriate focus on the user when defining the scope of the project. Use cases also
drive the development process, as the developers create a series of design and
implementation models that realize the use cases. The developers review each

1.4 Software Processes and Lifecycles 11

http://dx.doi.org/10.1007/978-3-319-57750-0_18
http://dx.doi.org/10.1007/978-3-319-57750-0_11


successive model for conformance to the use case model, and the test team verifies
that the implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and
factors such as the platform that the software is to run on, deployment considera-
tions, legacy systems and the non-functional requirements.

RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product.
The iteration consists of one or more steps in the workflow and generally leads to
the growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather than the entire product. In other
words, RUP is a way to mitigate risk in software engineering.

1.4.4 Agile Development

There has been a massive growth of popularity among software developers in
lightweight methodologies such as Agile. This is a software development
methodology that is more responsive to customer needs than traditional methods
such as the waterfall model. The waterfall development model is similar to a wide
and slow moving value stream, and halfway through the project, 100% of the
requirements are typically 50% done. However, for agile development, 50% of
requirements are typically 100% done halfway through the project.

This methodology has a strong collaborative style of working, and its approach
includes the following:

Fig. 1.5 Rational Unified Process

12 1 Background



– Aims to achieve a narrow fast flowing value stream,
– Feedback and adaptation employed in decision-making,
– User stories and sprints are employed,
– Stories are either done or not done (no such thing as 50% done),
– Iterative and incremental development is employed,
– A project is divided into iterations,
– An iteration has a fixed length (i.e. time boxing is employed),
– Entire software development lifecycle is employed for the implementation of

each story,
– Change is accepted as a normal part of life in the Agile world,
– Delivery is made as early as possible,
– Maintenance is seen as part of the development process,
– Refactoring and evolutionary design employed,
– Continuous integration is employed,
– Short cycle times,
– Emphasis on quality,
– Stand-up meetings,
– Plan regularly,
– Direct interaction preferred over documentation,
– Rapid conversion of requirements into working functionality,
– Demonstrate value early,
– Early decision-making.

Ongoing changes to requirements are considered normal in the Agile world, and
it is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to define all of the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and early regular feedback are an essential part of the
process.

A story may be a new feature or a modification to an existing feature. It is
reduced to the minimum scope that can deliver business value, and a feature may
give rise to several stories. Stories often build upon other stories, and the entire
software development lifecycle is employed for the implementation of each story.
Stories are either done or not done, i.e. there is such thing as a story being 80%
done. The story is complete only when it passes its acceptance tests. Stories are
prioritized based on a number of factors including:

– Business value of story,
– Mitigation of risk,
– Dependencies on other stories.

The Scrum approach is an Agile method for managing iterative development,
and it consists of an outline planning phase for the project followed by a set of

1.4 Software Processes and Lifecycles 13



sprint cycles (where each cycle develops an increment). Sprint planning is per-
formed before the start of the iteration, and stories are assigned to the iteration to fill
the available time. Each Scrum sprint is of a fixed length (usually 2–4 weeks), and
it develops an increment of the system. The estimates for each story and their
priority are determined, and the prioritized stories are assigned to the iteration. A
short morning stand-up meeting is held daily during the iteration and attended by
the Scrum master, the project manager12 and the project team. It discusses the
progress made the previous day, problem reporting and tracking, and the work
planned for the day ahead. A separate meeting is held for issues that require more
detailed discussion.

Once the iteration is complete, the latest product increment is demonstrated to an
audience including the product owner. This is to receive feedback and to identify
new requirements. The team also conducts a retrospective meeting to identify what
went well and what went poorly during the iteration. This is for continuous
improvement of the future iterations. Planning for the next sprint then commences.
The Scrum master is a facilitator who arranges the daily meetings and ensures that
the Scrum process is followed. The role involves removing roadblocks so that the
team can achieve their goals and communicating with other stakeholders.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives in
decision-making and a broader understanding of the issues.

Software testing is very important, and Agile generally employs automated
testing for unit, acceptance, performance and integration testing. Tests are run
frequently with the goal of catching programming errors early. They are generally
run on a separate build server to ensure that all dependencies are checked. Tests are
rerun before making a release. Agile employs test-driven development with tests
written before the code. The developers write code to make a test pass with ideally
developers only coding against failing tests. This approach forces the developer to
write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refactoring
is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identified. It helps in improving the
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in showing that the integrity of the software is main-
tained following refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all of the
automated tests to be run, thereby identifying problems earlier. Agile is discussed in
more detail in Chap. 18.

12Agile teams are self-organizing and the project manager role is generally not employed for small
projects (<20 staff).

14 1 Background

http://dx.doi.org/10.1007/978-3-319-57750-0_18


1.5 Activities in Waterfall Lifecycle

The waterfall software development lifecycle consists of various activities including
the following:

• User (Business) requirements definition,
• Specification of system requirements,
• Design,
• Implementation,
• Unit testing,
• System testing,
• UAT testing,
• Support and maintenance.

These activities are discussed in the following sections, and the description is
specific to the non-Agile world.

1.5.1 User Requirements Definition

The user (business) requirements specify what the customer wants and define what
the software system is required to do (as distinct from how this is to be done). The
requirements are the foundation for the system, and if they are incorrect, then the
implemented system will be incorrect. Prototyping may be employed to assist in
the definition and validation of the requirements. The process of determining the
requirements, analysing and validating them and managing them throughout the
project lifecycle is termed requirements engineering.

The user requirements are determined from discussions with the customer to
determine their actual needs, and they are then refined into the system requirements,
which state the functional and non-functional requirements of the system. The
specification of the user requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding
of what is to be developed and tested.

Requirements gathering involves meetings with the stakeholders to gather all
relevant information for the proposed product. The stakeholders are interviewed,
and requirements workshops are conducted to elicit the requirements from them. An
early working system (prototype) is often used to identify gaps and misunder-
standings between developers and users. The prototype may serve as a basis for
writing the specification.

The requirements workshops are used to discuss and prioritize the requirements,
as well as identifying and resolving any conflicting requirements. The collected
information is consolidated into a coherent set of requirements. Changes to the
requirements may occur during the project, and these need to be controlled. It is

1.5 Activities in Waterfall Lifecycle 15



essential to understand the impacts (e.g. schedule, budget and technical) of a pro-
posed change to the requirements prior to its approval.

Requirements verification is concerned with ensuring that the requirements are
properly implemented (i.e. building it right) in the design and implementation.
Requirements validation is concerned with ensuring that the right requirements are
defined (building the right system) and that they are precise, complete and reflect
the actual needs of the customer.

The requirements are validated by the stakeholders to ensure that they are
actually those desired and to establish their feasibility. This may involve several
reviews of the requirements until all stakeholders are ready to approve the
requirements document. Other validation activities include reviews of the prototype
and the design, and user acceptance testing.

The requirements for a system are generally documented in a natural language
such as “English”. Other notations that are employed include the visual modelling
language UML [14] and formal specification languages such as VDM or Z for the
safety critical field.

The Agile software development methodology argues that as requirements
change so quickly that a requirements document is unnecessary, since such a
document would be out of date as soon as it was written.

1.5.2 Specification of System Requirements

The specification of the system requirements of the product is essentially a state-
ment of what the software development organization will provide to meet the
business (user) requirements. That is, the detailed business requirements are a
statement of what the customer wants, whereas the specification of the system
requirements is a statement of what will be delivered by the software development
organization.

It is essential that the system requirements are valid with respect to the user
requirements, and they are reviewed by the stakeholders to ensure their validity.
Traceability may be employed to show that the business requirements are addressed
by the system requirements.

There are two categories of system requirements, namely functional and
non-functional requirements. The functional requirements define the functionality
that is required of the system, and it may include screenshots, report layouts or
desired functionality specified as use cases. The non-functional requirements will
generally include security, reliability, availability, performance and portability
requirements, as well as usability and maintainability requirements.

1.5.3 Design

The design of the system consists of engineering activities to describe the archi-
tecture or structure of the system, as well as activities to describe the algorithms and

16 1 Background



functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design and data structure design. There are often
several possible design solutions for a particular system, and the designer will need
to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The
notation may include flow charts, or various UML diagrams such as sequence
diagrams, state charts and so on. Program description languages or pseudocode may
be employed to define the algorithms and data structures that are the basis for
implementation.

Function-oriented design is mainly historical, and it involves starting with a
high-level view of the system and refining it into a more detailed design. The
system state is centralized and shared between the functions operating on that state.

Object-oriented design has become popular, and it is based on the concept of
information hiding developed by Parnas [15]. The system is viewed as a collection
of objects rather than functions, with each object managing its own state infor-
mation. The system state is decentralized, and an object is a member of a class. The
definition of a class includes attributes and operations on class members, and these
may be inherited from superclasses. Objects communicate by exchanging
messages.

It is essential to verify and validate the design with respect to the system
requirements, and this will be done by traceability of the design to the system
requirements and design reviews.

1.5.4 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g. C++ or Java), and it involves writing or generating the actual
code. The development team divides up the work to be done, with each programmer
responsible for one or more modules. The coding activities often include code
reviews or walk-throughs to ensure that quality code is produced and to verify its
correctness. The code reviews will verify that the source code conforms to the
coding standards and that maintainability issues are addressed. They will also verify
that the code produced is a valid implementation of the software design.

Software reuse provides a way to speed up the development process. Compo-
nents or objects that may be reused need to be identified and handled accordingly.
The implemented code may use software components that have either being
developed internally or purchased off the shelf. Open-source software has become
popular in recent years, and it allows software developed by others to be used
(under an open-source licence) in the development of applications.

The benefits of software reuse include increased productivity and a faster time to
market. There are inherent risks with customized-off-the shelf (COTS) software, as
the supplier may decide to no longer support the software, or there is no guarantee

1.5 Activities in Waterfall Lifecycle 17



that software that has worked successfully in one domain will work correctly in a
different domain. It is therefore important to consider the risks as well as the
benefits of software reuse and open-source software.

1.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing and
user acceptance testing. These are described below:

Unit Testing

Unit testing is performed by the programmer on the completed unit (or module) and
prior to its integration with other modules. The programmer writes these tests, and
the objective is to show that the code satisfies the design. The unit test case is
generally documented, and it should include the test objective and the expected
results.

Code coverage and branch coverage metrics are often generated to give an
indication of how comprehensive the unit testing has been. These metrics provide
visibility into the number of lines of code executed, as well as the branches covered
during unit testing.

The developer executes the unit tests; records the results; corrects any identified
defects; and retests the software. Test-driven development (TDD) has become
popular (e.g. in the Agile world) this involves writing the unit test cases (and
possibly other test cases) before the code, and the code is then written to pass the
defined test cases.

Integration Test

The development team performs this type of testing on the integrated system, once
all of the individual units work correctly in isolation. The objective is to verify that
all of the modules and their interfaces work correctly together and to identify and
resolve any issues. Modules that work correctly in isolation may fail when inte-
grated with other modules. The developers generally perform this type of testing.

System Test

The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specification of system test cases,
and the execution of the test cases will verify that the system requirements have
been correctly implemented. An independent test group generally conducts this type
of testing, and the system tests are traceable to the system requirements.

18 1 Background



Any system requirements that have been incorrectly implemented will be
identified and defects logged and reported to the developers. The test group will
verify that the new version of the software is correct, and regression testing is
conducted to verify system integrity. System testing may include security testing,
usability testing and performance testing.

The preparation of the test environment requires detailed planning, and it may
involve ordering special hardware and tools. It is important that the test environ-
ment is set up early to allow the timely execution of the test cases.

Performance Test

The purpose of performance testing is to ensure that the performance of the system
is within the bounds specified by the non-functional requirements. It may include
load performance testing, where the system is subjected to heavy loads over a long
period of time, and stress testing, where the system is subjected to heavy loads
during a short time interval.

Performance testing often involves the simulation of many users using the
system and involves measuring the response times for various activities. Test tools
are employed to simulate a large number of users and heavy loads. It is also
employed to determine whether the system is scalable to support future growth.

User Acceptance Test

UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation and will judge whether or not the system
is fit for purpose.

The objective is to demonstrate that the product satisfies the business require-
ments and meets the customer expectations. Upon its successful completion, the
customer is happy to accept the product.

1.5.6 Support and Maintenance

This phase continues after the release of the software product to the customer.
Software systems often have a long lifetime, and the software needs to be con-
tinuously enhanced over its lifetime to meet the evolving needs of the customers.
This may involve regular new releases with new functionality and corrections to
known defects.

Any problems that the customer identifies with the software are reported as per
the customer support and maintenance agreement. The support issues will require
investigation, and the issue may be a defect in the software, an enhancement to the
software or due to a misunderstanding. The support and maintenance team will
identify the causes of any identified defects and will implement an appropriate
solution to resolve. Testing is conducted to verify that the solution is correct and

1.5 Activities in Waterfall Lifecycle 19



that the changes made have not adversely affected other parts of the system. Mature
organizations will conduct post-mortems to learn lessons from the defect13 and will
take corrective action to prevent a reoccurrence.

The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identified post-release. The goal of building a
correct and reliable software product the first time is very difficult to achieve, and the
customer is always likely to find some issues with the released software product. It is
accepted today that quality needs to be built into each step in the development process,
with the role of software inspections and testing to identify asmany defects as possible
prior to release and minimize the risk that serious defects will be found post-release.

The effective in-phase inspections of the deliverables will influence the quality
of the resulting software and lead to a corresponding reduction in the number of
defects. The testing group plays a key role in verifying that the system is correct and
in providing confidence that the software is fit for purpose and ready to be released.
The approach to software correctness involves testing and retesting, until the testing
group believes that all defects have been eliminated. Dijkstra [16] comments on
testing are well known:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said with
absolute confidence that all defects have been found in the software. Testing pro-
vides increased confidence that the program is correct, and statistical techniques
may be employed to give a measure of the software reliability.

Many software companies may consider one defect per thousand lines of code
(KLOC) to be reasonable quality. However, if the system contains one million lines
of code, this is equivalent to a thousand post-release defects, which is unacceptable.

Some mature organizations have a quality objective of three defects per million
lines of code, which was introduced by Motorola as part of its Six-Sigma (6r)
program. It was originally applied it to its manufacturing businesses and subse-
quently applied to its software organizations. The goal is to reduce variability in
manufacturing processes and to ensure that the processes performed within strict
process control limits.

1.6 Software Inspections

Software inspections are used to build quality into software products. There are a
number of well-known approaches such as the Fagan methodology [17]; Gilb’s
approach [8]; and Prince 2’s approach.

13This is essential for serious defects that have caused significant inconvenience to customers (e.g.
a major telecoms outage). The software development organization will wish to learn lessons to
determine what went wrong in its processes that prevented the defect from been identified during
peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented.

20 1 Background



Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step
process that identifies and removes errors in work products. The process mandates
that requirement documents, design documents, source code and test plans are all
formally inspected by experts independent of the author of the deliverable to ensure
quality.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the par-
ticular deliverable, and the author is the creator of the deliverable and has a special
interest in ensuring that it is correct. The tester role is concerned with the test
viewpoint.

The inspection process will consider whether the design is correct with respect to
the requirements, and whether the source code is correct with respect to the design.
Software inspections play an important role in building quality into software and in
reducing the cost of poor quality in the organization.

1.7 Software Project Management

The timely delivery of quality software requires good management and engineering
processes. Software projects have a history of being delivered late or overbudget,
and good project management practices include the following activities:

– Estimation of cost, effort and schedule for the project,
– Identifying and managing risks,
– Preparing the project plan,
– Preparing the initial project schedule and key milestones,
– Obtaining approval for the project plan and schedule,
– Staffing the project,
– Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality,
– Taking corrective action,
– Replanning and rescheduling,
– Communicating progress to affected stakeholders,
– Preparing status reports and presentations.

The project plan will contain or reference several other plans such as the project
quality plan; the communication plan; the configuration management plan; and the
test plan.

Project estimation and scheduling are difficult as often software projects are
breaking new ground and may differ from previous projects. That is, previous
estimates may often not be a good basis for estimation for the current project. Often,
unanticipated problems can arise for technically advanced projects, and the

1.6 Software Inspections 21



estimates may often be optimistic. Gantt charts are often employed for project
scheduling, and these show the work breakdown for the project, as well as task
dependencies and allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty, and the risk management cycle involves14 risk
identification; risk analysis and evaluation; identifying responses to risks; selecting
and planning a response to the risk; and risk monitoring. The risks are logged, and
the likelihood of each risk arising and its impact is then determined. The risk is
assigned an owner and an appropriate response to the risk determined.

1.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering. It is an internationally recognized
model for software process improvement and assessment and is used worldwide by
thousands of organizations. It provides a solid engineering approach to the devel-
opment of software, and it supports the definition of high-quality processes for the
various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing field to the software
field. They developed the original CMM model and its successor CMMI.
The CMMI states what the organization needs to do to mature its processes rather
than how this should be done.

The CMMI consists of five maturity levels with each maturity level consisting of
several process areas. Each process area consists of a set of goals, and these goals
are implemented by practices related to that process area. Level two is focused on
management practices; level three is focused on engineering and organization
practices; level four is concerned with ensuring that key processes are performing
within strict quantitative limits; and level five is concerned with continuous process
improvement. Maturity levels may not be skipped in the staged representation of
the CMMI, as each maturity level is the foundation for the next level. The CMMI
and Agile are compatible, and CMMI v1.3 supports Agile software development.

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized
lead appraiser. The results of the appraisal are generally reported back to the SEI,
and there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle.
The CMMI is discussed in more detail in Chap. 16.

14These are the risk management activities in the Prince 2 methodology.

22 1 Background

http://dx.doi.org/10.1007/978-3-319-57750-0_16


1.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to derive
the program from its specifications using mathematics and to employ mathematical
proof to demonstrate its correctness with respect to the specification. This offers a
rigorous framework to develop programs adhering to the highest quality constraints.
However, in practice, mathematical techniques have proved to be cumbersome to
use, and their widespread use in industry is unlikely at this time.

The safety-critical area is one domain to which mathematical techniques have
been successfully applied. There is a need for extra rigour in the safety and security
critical fields, and mathematical techniques can demonstrate the presence or
absence of certain desirable or undesirable properties (e.g. “when a train is in a
level crossing, then the gate is closed”).

Spivey [18] defines a “formal specification” as the use of mathematical notation
to describe in a precise way the properties which an information system must have,
without unduly constraining the way in which these properties are achieved. It
describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Further, the unambiguous
nature of mathematical notation avoids the problem of ambiguity in an imprecisely
worded natural language description of a system.

The formal specification thus becomes the key reference point for the different
parties concerned with the construction of the system and is a useful way of
promoting a common understanding for all those concerned with the system. The
term “formal methods” is used to describe a formal specification language and a
method for the design and implementation of computer systems.

The specification is written precisely in a mathematical language. The derivation
of an implementation from the specification may be achieved via stepwise refine-
ment. Each refinement step makes the specification more concrete and closer to the
actual implementation. There is an associated proof obligation that the refinement
be valid and that the concrete state preserves the properties of the more abstract
state. Thus, assuming the original specification is correct, and the proofs of cor-
rectness of each refinement step are valid; then, there is a very high degree of
confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, artificial intelligence, specification of standards, specification and
verification of programs. They are described in more detail in Chap. 12.

1.9 Formal Methods 23

http://dx.doi.org/10.1007/978-3-319-57750-0_12


1.10 Review Questions

1. Discuss the research results of the Standish group the current state of IT
project delivery?

2. What are the main challenges in software engineering?
3. Describe various software lifecycles such as the waterfall model and the

spiral model.
4. Discuss the benefits of Agile over conventional approaches. List any risks

and disadvantages?
5. Describe the purpose of the CMMI? What are the benefits?
6. Describe the main activities in software inspections.
7. Describe the main activities in software testing.
8. Describe the main activities in project management?
9. What are the advantages and disadvantages of formal methods?

1.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to these.
The conference led to the realization that programming is quite distinct from sci-
ence and mathematics and that software engineers need to be properly trained to
enable them to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the
delivery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their training. The education of traditional engineers includes training on product
design and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version pro-
grams. It is a systematic approach to the development and maintenance of the soft-
ware, and it requires a precise statement of the requirements of the software product
and then the design and development of a solution to meet these requirements. It
includes methodologies to design, develop, implement and test software as well as
sound project management, quality management and configuration management
practices. Support and maintenance of the software needs to be properly addressed.

24 1 Background



Software process maturity models such as the CMMI have become popular in
recent years. They place an emphasis on understanding and improving the software
process to enable software engineers to be more effective in their work.

References

1. F. Brooks, The Mythical Man Month (Addison Wesley, Boston, 1975)
2. Petrocelli, in Software Engineering, eds. by IN. Buxton, P. Naur, B. Randell. Report on two

NATO Conferences held in Garmisch, Germany (October 1968) and Rome, Italy (October
1969) (1975)

3. G. O’Regan, Mathematical Approaches to Software Quality (Springer, London, 2006)
4. F. Brooks, No Silver Bullet. Essence and Accidents of Software Engineering. Information

Processing (Elsevier, Amsterdam, 1986)
5. G. O’Regan, Introduction to Software Process Improvement (Springer, London 2010)
6. G. O’Regan, Introduction to Software Quality (Springer, Switzerland, 2014)
7. M. Fagan, design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)
8. T. Gilb, D. Graham, Software Inspections. (Addison Wesley, Boston, 1994)
9. Office of Government Commerce, Managing Successful Projects with PRINCE2 (2004)

10. W. Royce, in The Software Lifecycle Model (Waterfall Model). Proceedings of WESTCON,
August, 1970

11. B. Boehm, A spiral model for software development and enhancement. Computer 21(5),
61–72 (1988)

12. J. Rumbaugh et al., The Unified Software Development Process (Addison Wesley, Boston,
1999)

13. K. Beck, Extreme Programming Explained. Embrace Change (Addison Wesley, Boston,
2000)

14. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Modelling Language User Guide
(Addison-Wesley, Boston, 1999)

15. D. Parnas, On the criteria to be used in decomposing systems into modules. Commun. ACM
15(12), 1053–1058 (1972)

16. E.W. Dijkstra, Structured Programming (Academic Press, Cambridge, 1972)
17. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)
18. J.M. Spivey, The Z Notation. A Reference Manual. Prentice Hall International Series in

Computer Science, 1992

1.11 Summary 25


	1 Background
	Abstract
	1.1 Introduction
	1.2 What Is Software Engineering?
	1.3 Challenges in Software Engineering
	1.4 Software Processes and Lifecycles
	1.4.1 Waterfall Lifecycle
	1.4.2 Spiral Lifecycles
	1.4.3 Rational Unified Process
	1.4.4 Agile Development

	1.5 Activities in Waterfall Lifecycle
	1.5.1 User Requirements Definition
	1.5.2 Specification of System Requirements
	1.5.3 Design
	1.5.4 Implementation
	1.5.5 Software Testing
	1.5.6 Support and Maintenance

	1.6 Software Inspections
	1.7 Software Project Management
	1.8 CMMI Maturity Model
	1.9 Formal Methods
	1.10 Review Questions
	1.11 Summary
	References


