Storing and Querying DICOM Data
with HYTORMO

Danh N guyen-Congl(g), Laurent d’Orazio', Nga Tran?,
and Mohand-Said Hacid®

' LIMOS Laboratory, UMR 6158 CNRS,
Blaise Pascal University Clermont-Ferrand II, 63173 Aubi¢re, France
{nguyenda, dorazio}@isima. fr
2 HPE Vertica, Cambridge, MA, USA
nga. tran@hpe. com
> LIRIS - University of Claude Bernard Lyon 1,
43, boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
mshacid@liris.univ-1lyonl. fr

Abstract. In the health care industry, DICOM (Digital Imaging and Commu-
nication in Medicine) standard has become very popular for storage and
transmission of digital medical images and reports. The ever-increasing size,
high velocity and variety of the DICOM data collections make them more and
more inefficient to be stored and queried them using a single data storage
technique, e.g., a row store or a column store. In this study, we first highlight
challenges in DICOM data management. We then describe HYTORMO, a new
model to store and query the DICOM data. HYTORMO uses a hybrid data
storage strategy that is aimed not only to leverage the advantage of both row and
column stores, but also to attempt to keep a trade-off among reducing disk I/O
cost, reducing tuple construction cost and reducing storage space. In addition,
Bloom filters are applied to reduce network I/O cost during query processing.
We prototyped our model on the top of Spark. Our preliminary experiments
validate the proposed model in real DICOM datasets and show the effectiveness
of our method.

Keywords: DICOM - Medical image data - Hybrid store - Bloom filter

1 Introduction

In the health care industry, the management of ever-increasing volumes of medical
image data becomes a real challenge. The development of imaging technologies, the
long-term retention of medical data imposed by medical laws and the increase of image
resolution are all causing a tremendous grow in data volume. In addition, the different
acquisition systems (Philips, Olympus, etc.) to be used, the distinct specialties (gas-
troenterology, gynaecology, etc.) to be considered as well as preferences of physicians,
nurses or other health-care professionals lead to a high variety, even if data follow the
widely adopted DICOM (Digital Imaging and Communication in Medicine) standard
[1]. The huge volume, high velocity and variety of the medical image data make this

© Springer International Publishing AG 2017
F. Wang et al. (Eds.): DMAH 2016, LNCS 10186, pp. 43-61, 2017.
DOI: 10.1007/978-3-319-57741-8_4

44 D. Nguyen-Cong et al.

domain a concrete example of Big Data [2]. In this paper, we focus on storing and
querying medical image data that follow the DICOM standard.

With the widely use of the DICOM standard nowadays, there have been some
studies on DICOM data management [3-6]. However, complex characteristics of
DICOM data make efficient storing and querying non-trivial tasks. The proposed
solutions limited themselves to query types and could have negative impacts on per-
formance and scalability. Most state-of-the-art DICOM data management systems
employ traditional row-oriented databases (“row-RDBMS/row stores”). Using a
row-RDBMS typically requires a query processor to read the entire database table into
memory. This causes a lot of unnecessary disk I/O even when only a few attributes are
used. In addition, the current studies have not introduced solutions to reduce a large
amount of useless intermediate results created during query processing even if the final
result is very small. As a result, in large-scale distributed database systems, running a
computing cluster, these useless intermediate results can generate a lot of unnecessary
network I/O to exchange data between cluster nodes.

In recent years, some studies have already proposed read-optimized databases to
avoid reading unnecessary data from query processing. The read-optimized databases
can include either column-oriented databases (“column-RDBMS/column stores”), such
as MonetDB [7] and C-Store [8], or hybrid row/column-oriented databases, such as
Fractured Mirrors [9], HYRISE [10], and SAP HANA [30]. The advantage of these
databases is to reduce disk I/O cost. However, their tuple reconstruction cost is high
and thus cannot cope with the high heterogeneity and evolution of DICOM data.

On the other side, cloud-based systems have provided solutions of high perfor-
mance computing together with reliable and scalable storage to facilitate growth and
innovation at lower operational costs. Hadoop [23] has become one of the de facto
industry standards in this area. MapReduce has also shown a very good scalability for
batch-oriented data processing. However, since they are designed for general-purpose,
the major challenge is how to build a specialized system to effectively store and query
DICOM data.

In this paper, we introduce a novel model, called HYTORMO, to store and query
DICOM data. It provides a novel hybrid data storage strategy using both row and
column stores to avoid reading unnecessary data as well as to reduce tuple construction
cost and storage space. In addition, Bloom filters [11] are integrated into query pro-
cessing to reduce intermediate results in join sequences.

Our major contributions can be summarized as follows: (1) We determine the
characteristics of DICOM data that cause challenges in data management. (2) We
propose a hybrid data storage strategy using both row and column stores to reduce disk
I/O cost, tuple reconstruction cost and storage space. (3) We provide a query processing
strategy with Bloom filters to reduce network I/O cost. (4) We finally present prelimi-
nary experiments with real DICOM data to show the effectiveness of our approaches.

The rest of this paper is organized as follows. Section 2 highlights problem defi-
nition. Section 3 describes the architecture of HYTORMO and the details of its com-
ponents. Section 4 presents preliminary experimental results. Section 5 discusses
related works. Finally, we conclude the paper and give an outlook on future works in
Sect. 6.

Storing and Querying DICOM Data with HYTORMO 45

2 Problem Definition

In this Section, we introduce DICOM standard, its challenges in data management,
current database techniques, and problem formulation of our study.

2.1 DICOM Standard and Its Challenges

The DICOM standard was initially developed in 1983 by a joint committee of
American College of Radiology and the National Electrical Manufacturers Association
[1]. After many changes, in 1993 DICOM Version 3.0 was published to be widely
used. The primary objective of this standard is to define data layouts and exchange
protocols for storage and transmission of digital medical images and reports between
medical imaging systems. Here we are mainly interested in data in DICOM files. The
structure of a DICOM file is divided into three portions: (i) @ header (to recognize if it
is a DICOM file), (ii) metadata (to store information related to the image), and
(iii) pixel data (to store the actual image pixels). The metadata contains attributes
which encode attributes of real-world entities (Patients, Studies, Series, etc.) related to
the image. For instance, information about Patient is stored in attributes such as Name,
Identity Number, Date of Birth, and Ethnic Group.

The following characteristics of DICOM data mainly cause challenges in data
management: Heterogeneous Schema. The number of attributes in a DICOM file is
very large, about 3000 attributes. Some of them are mandatory while others are
optional. However, the number of attributes that are really used at a time varies dra-
matically depending on the availability of information acquired through performing a
particular examination modality (CT, MRI, etc.) using a certain DICOM device (CT
scanner, MRI scanner, etc.). Evolutive Schema. For instance, modalities or image
acquisition devices are modified or added newly. Variety. Images and metadata.
Voluminous Data. The storage space requirements of image databases are very large
(e.g., terabyte) and ever-increasing tremendously. For instance, in France, information
and tests results of a patient should be stored for up to 30 years [13].

So far, current solutions have provided limited supports to handle the above-
mentioned characteristics. We present current database techniques in next Subsection.

2.2 Row- vs. Column-Oriented Databases

Most traditional databases (Oracle, SQL Server, etc.) are row-oriented databases that
employ a row-oriented layout, moving horizontally across the table and storing attri-
butes of each tuple consecutively on disk. This architecture is optimized for
write-intensive online transaction processing (OLTP) because it is easily to add a new
tuple and to read all attributes from a tuple. Their disadvantage is that if only a few
attributes are accessed per query at once, the entire tuple still needs to be read into
memory from disk before projecting. This wastes the I/O bandwidth [27]. Therefore
row-oriented databases are not efficient in the case of highly heterogeneous data. In
contrast, column-oriented databases (MonetDB, C-Store, etc.) are optimized for

46 D. Nguyen-Cong et al.

read-intensive workloads (OLAP). By storing data in columns rather than rows, only
necessary attributes are read per a query. This saves I/O bandwidth [28]. However, their
tuple reconstruction cost is higher than that cost of row-oriented databases.

2.3 MapReduce vs. Spark

Most of current row- and column-oriented databases have been developed to be used
for structured data in relational database systems. They do not scale well and are
ineffective to process semi/unstructured data. In contrast, MapReduce is originally
developed to process extremely large amounts of semi/un/structured data. It provides a
scalability and elasticity solution for Big Data. Unfortunately, batch processing data
model of MapReduce is suitable for long running queries [29]. It does not support
efficiently for users to execute interactive applications (e.g., ad hoc queries to explore
data) because these applications have to share data (between parallel operations) across
multiple steps of MapReduce and thus need overhead costs in both data replication and
disk I/O. In contrast, Spark is an in-memory cluster computing system which can run
on Hadoop [14]. Spark improves upon MapReduce by removing the need to write data
to disk between steps. We are justified to use Spark due to its high performance for
interactive queries and scalability.

2.4 Problem Formulation

Storing and querying DICOM data have been challenged by the complex characteristics
of DICOM data (i.e., huge/ever-growing data size, variety, and heterogeneous/evolutive
schema). We transform these problems into optimization problems of query perfor-
mance and storage space. In this way, our study focuses on reducing I/O costs and
storage space. We determine four main technical challenges: disk I/O cost, network I/O
cost, tuple reconstruction cost, and storage space. We propose the HYTORMO model
for efficient storing and querying DICOM data. The following design rules are con-
sidered to build this model:

— Reduce disk I/O, tuple reconstruction cost, and storage space by a hybrid data
storage strategy using both row and column stores.

— Transparently rewrite user queries to access to data in row and column stores,
without the need for any user intervention.

— Reduce network I/O cost by minimizing the intermediate results during query
processing. An application of Bloom filters will help us to achieve this goal.

3 HYTORMO Architecture

HYTORMO is aimed to cope with heterogeneity, evolution, variety and huge volume
of DICOM data. Its architecture consists of two components: Centralized System and
Distributed Nodes, as shown in Fig. 1. The query processing is tightly integrated in

Storing and Querying DICOM Data with HYTORMO 47

SQL Query

Centralized System

Global Schema
[Parser | m Metadata Store
Parsed Q';)e'y v . Global Schema \tistorical
ecomposer | - oy
T d ' Candidate Global an " | statistics
ransformed Query Execution Plan asiern
[_Execution Plan Generator |z Cost
Execution Plan |, wat‘-’d Cost
Final | Query Execution Engine n
Result M orTd .. <——] Bloom Filter Generator |
7I AN

Distributed
Nodes

Node 1 Node 2 Nodec

Legend: RS:Rowstore CS:Columnstore IMG: Images

Fig. 1. The overall architecture of HYTORMO.

both Centralized System and Distributed Nodes. DICOM data are distributedly stored
in nodes of Distributed Nodes (using both row and column stores).

3.1 Data Storage Strategy

The main goals of data storage strategy are to reduce disk I/O, tuple reconstruction cost,
and storage space. Metadata and pixel data of DICOM files are extracted and stored in
Hadoop distributed file system (HDFS) in a manner to achieve these goals. However, in
the scope of this paper, we mainly concern about storing the metadata portion as the
full-content images can be easily accessed from the metadata via links.

We propose a hybrid data storage strategy using both row and column stores for the
metadata. Due to the complexity characteristics of DICOM data, identifying
which attributes should be put in a particular store is a challenge work. We present a
novel vertical data partitioning schema that is based on attribute classification.

First, we create entities and use an entity-relationship (ER) model to represent the
logical relationships between the entities such as Patient, Study, Series, Gen-
erallnfoTable, SequenceAttributes, and Image. Each entity is described by a set of
attributes, e.g., Patient(UID, Patient Name, Patient ID, Patient Birth Date, Patient Sex,
Ethnic Group, Issuer Of Patient ID, Patient Birth Time, Patient Insurance Plan Code
Sequence, Patient Primary Language Code Sequence, Patient Primary Language
Modifier Code Sequence, Other Patient IDs, Other Patient Names, Patient Birth Name,
Patient Telephone Numbers, Smoking Status, Pregnancy, Last Menstrual Date, Patient
Religious Preference, Patient Comments, Patient Address, Patient Mother Birth Name,
Insurance Plan Identification), where UID is an unique identifier. The ER model then
is converted into a relational data model that consists of relations.

48 D. Nguyen-Cong et al.

Second, attributes of each relation will be classified to fall into one of three cate-
gories: (1) Mandatory: Attributes are not allowed to get null values and are
frequently-accessed-together. (2) Frequently-accessed-together: Attributes are allowed
to get null values and frequently accessed together. (3) Optional/Private/Seldom-ac-
cessed: Attributes are allowed to get null values and not frequently accessed together
(for short, we sometimes call them “Optional”).

Finally, attributes of the same category will be stored in the same table as below:

— Attributes of the first two categories are stored in tables of row stores, called “row
tables”. The aim is to reduce tuple reconstruction cost. For instance, Patient Name,
Patient ID, Patient Birth Date, Patient Sex, and Ethnic Group are classified as
“Mandatory” and stored in a row table. Pregnancy and Last Menstrual Date are
classified as “Frequently-accessed-together” and stored in another row table.

— Atributes of the last category are stored in tables of column stores, called “column
tables”. The aim is to save the I/O bandwidth if only a few attributes are accessed
per query at once. For instance, the rest of attributes of the Patient entity are
classified as “Optional” and stored in a column table.

The above vertical data partitioning schema is non-overlapping, that is an attribute
only belongs to a table except UID. In addition, to reduce storage space, we do not
store rows with only null values.

3.2 Query Processing Strategy

The goal of query processing strategy can be briefly described as follows: It is given
that DICOM data are distributedly stored across row and column stores. Find a query
processing strategy to minimize the intermediate results.

Global Description of the Strategy. The actual query processing includes query
parsing, query decomposition, query optimization, and query execution. These phases
are shown in Fig. 1. The query is parsed by the Parser. It then is decomposed into
sub-queries by Decomposer. The query decomposition increases the efficiency of the
query by directing sub-queries only to the corresponding row and column tables that
contain the required data, leading to a significant reduction of query input size. This
also allows HYTORMO to utilize benefits of both row and column stores. The query
optimization is performed by Execution Plan Generator that evaluates possible exe-
cution plans (i.e., different join strategies for combing results of sub-queries) and
chooses the one with minimum cost. Since a given query could have a large number of
execution plans due to different join ordering possibilities, an exhaustive search for an
optimal execution plan is too expensive. We thus adopt to use a left-deep sequential
tree plan introduced by Steinbrunn et al. [15]. In this plan, a join that yields a smaller
intermediate result will be computed first. Metadata Store keeps metadata of database
tables (schemas, cardinality of tables, etc.) that can be used during query processing.
Finally, Query Execution Engine processes the query execution plan. It sends
sub-queries to be executed on Distributed Nodes and retrieves intermediate results. In
the end, it returns the final result to the front end. Distributed Nodes is mainly

Storing and Querying DICOM Data with HYTORMO 49

responsible for storing DICOM data and executing tasks that are assigned by the
Centralized System. Bloom Filter Generator generates Bloom filters to remove irrele-
vant data out of inputs of joins if their benefits are found.

Query Decomposition. Our study focus on Select-Project-Join (SPJ) queries that
involve selection conditions followed by equi-joins on surrogate attributes (UIDs) of
row and column tables. In order to avoid loss of generality, we use a general form of
SQL query to present a user query Q as given below.

Q: SELECT T.UID®", Tratt,*", Tp.att,", Tr.att,"™, Tp.att,*', Ty.att,®
FROM (T, T) Tg}
WHERE {T,.UID®® = T,.UID®®} AND {T,.UID®® = Ty.UIDR¢}
{TpLatt,*™0 value,*™} AND {Tp.att," 0 value,"} AND
{T.att*™ 0 value,X™} AND {Tx.att,C 0 value,©}

where:

T, T; Tx: entity tables

T(UID®C, ar B .. aztﬁRf, e attﬁC, ...): schema of T}

TAUID® att ®", ..., att ™, ... att €, ...): schema of T,

T(UIDRC, atr ®m . ann ™, ... atr € ...): schema of Ty

attﬁRf - a frequently-accessed-together attribute is stored in a row table
attﬁC: an optional/private/seldom-accessed attribute is stored in a column table

, value ™, value ©: constant values
0: one of {<,<,=,>,>, LIKE, NOT LIKE}

value "

o
o
o
o
o att ®: a mandatory attribute is stored in a row table
o
o
o
O

We use superscripts Rm, Rf, and C to indicate that the corresponding attribute will be
stored in a row table of mandatory attributes, a row table of frequently-accessed-together
attributes, or a column table of optional/private/seldom-accessed attributes, respectively.
A superscript RC is to indicate that the corresponding attribute is stored in both row and
column tables. However, these superscripts are not shown to the user.

The plan tree of query Q is given in Fig. 2(a). Here, T}, T,, and T are entity tables
whose names, e.g., Patient, Study, Series, etc., are used in Q by the user. We assume
that each of these tables, has been vertically partitioned into several “child” tables, i.e.,
row and column tables, by applying the data storage strategy presented in Sect. 3.1.
However, only some of the child tables are required by Q. We also assume that Q is
decomposed into sub-queries Q;, O, and Qg that are further decomposed into smaller
sub-queries Q;;, Or2, Qs Q2 and Qg ; to able to directly map to child tables
containing required attributes. As presented in Fig. 2(b), Q;; and Q;, access to T; and
T, respectively, that are child tables of 7;. Similarly, Q,; and Q, access to T and T,
respectively, that are child tables of 7. Qg ; only accesses to Ty, a child table of Tk.

HYTORMO uses a left-deep sequential tree plan for joining intermediate results of
sub-queries. It will automatically determine a join as an inner or a left outer join.
Because Q is a user query, entity tables are used in Q. Thus the type of a join between
two entity tables is explicitly identified by the user. For instance, Q in Fig. 2(a) can be

50 D. Nguyen-Cong et al.

Qx.1

v i

Legend: [C]: Entity table

E : Row table of mandatory attributes
E : Row table of frequently-accessed-together attributes
[I:l] : Column table of optional attributes

Fig. 2. Plan tree of the SQL query

written as Q = Q; X y;p O; Myp Ok, only using inner joins. However, it is necessary
to evaluate some joins between sub-queries as left outer joins to prevent data loss
caused by the tuples discarded by inner joins.

We consider two cases in which a left outer join should be used. First, in a join
between two child tables of the same entity table, if the left table is a row table of
mandatory attributes while the right table is either a column table of optional attributes or
a row table of frequently-accessed-together attributes, this join should be evaluated as a
left outer join. For instance, in Fig. 2(b), both sub-queries Q; ; My;p O;, and O, ; Myp
0,2 will evaluated as left outer joins. This is because Q;; and Q; ; are mapped to row
tables of mandatory attributes 7; and T3, respectively, while O, ; and Q, ; are mapped to a
column table of optional attributes 7, and a row table of frequently-accessed-together
attributes T, respectively. Second, in a join between two entity tables, if the right table
has been changed to either a column table of optional attributes or a row table of
frequently-accessed-together attributes, this join should be evaluated as a left outer join.
For instance, in Fig. 2(b), Ok ; is mapped to column table of optional attributes, thus the
join using the result of Qg ; is rewritten to a left outer join.

In the scope of this paper, we concern on inner joins and the two above-mentioned
cases of left outer joins. To improve performance of a query, we need to reduce the
number of left outer joins and to apply Bloom filters.

Reducing the Number of Left Outer Joins. We use the following heuristic rule for
deciding whether or not a left outer join should be rewritten as an inner join: Given a
left outer join T; MNyp T, if the right table T, does not contain non-null constraints on
its attributes, the left outer join is kept no change. In contrast, if the right table T,
contains non-null constraints on its attributes, the left outer join should be rewritten as
an inner join that might improve query performance.

Storing and Querying DICOM Data with HYTORMO 51

The above heuristic rule is based on the fact that, in the left outer join 7; Ny;p T>,
if T, does not contain non-null constraints on its attributes, the left outer join returns all
matching tuples between 7; and 75, like an inner join. The unmatched tuples are also
preserved from T; and are supplied with nulls from T5,. Thus, in this case, the left outer
join is kept no change. However, if T, contains non-null constraints on its attributes,
these constraints must be evaluate to TRUE to form a tuple in the result. They also
eliminate any nulls of attributes from 75. In this case, a left outer join is unnecessary,
the left outer join thus should be rewritten as an inner join.

(®)

Fig. 3. Rebuilding the plan tree after reducing the number of left outer joins

Figure 3(a) presents a plan tree that has been introduced in Fig. 2. To apply the
above heuristic rule to this plan tree, we look at right tables of left outer joins. Assume
that o¢, and o, are non-null constraints on attributes of tables T, and T, respectively.
Then left outer joins in Q; ; M y;p O; 2 and (Q; Myyp Q) Myip Ok, ; are rewritten as inner
joins Q; ; Myp O;- and (Q; Myp O)) Myp Ok ;. respectively, as given in Fig. 3(b).

Application of Bloom Filters. Bloom filter (BF) is a space-efficient probabilistic data
structure with little error allowable when used to test whether an element is a member
of a set [11]. In our case, we consider to apply an intersection Bloom filter (IBF) rather
than BFs because of its benefit in removing irrelevant data, as presented in [12]. The
way how to apply an /BF to HYTORMO is given below.

We consider a general form of queries in HYTORMO. Assume that a query Q can
be decomposed into a set of sub-queries Q;, Oy, ..., Ok, each of which can be further
decomposed into smaller sub-queries to able to map to input tables, i.e., row- and
column-oriented tables T;, T, ..., Ty. Q is in form of a multi-way join on common join
attributes. Because HYTORMO uses a left-deep sequential tree plan, we focus on the
application of the IBF for this plan.

Although input tables T, T5,..., Ty might have some common join attributes, in the
scope of this paper, we assume these tables only share the common join attribute UID.
In this case, we can build a common /BF on the join attribute UID of a subset of the
input tables. After built, the IBF can be probed to filter these input tables.

The build and probe phases of the IBF are illustrated in Fig. 4(a) and (b),
respectively. We assume that the heuristic rule has been applied to reduce the number

52 D. Nguyen-Cong et al.

of left outer joins to obtain a plan tree (see Fig. 4(a)). In the build phase, we first
compute a set of BFs of the same size and the same hash functions on the join attribute
UID for intermediate result tables D;, D,, ..., Dy that have been created as results of
sub-queries Qy;, Oz, Oy, Oy2, and Qg ;. We use DataFrames [14] of Spark to store
these intermediate result tables. The IBF then is computed by bitwise ANDing the BFss.
It is worthy to note that we do not compute a BF for the right table of a left outer join if
it does not contain non-null constraints on its attributes. For instance, we do not
compute a BF for D, (intermediate result table of Q,;) because there do not exist
non-null constraints in Q;, (i.e., Qs ;Xyp Q> is not equivalent to Q; ;Myp O2).
Thus, building a BF for D, can cause data loss caused by tuples discarded by ANDing
this BF with others. The IBF is probed to filter input tables before a join occurs (see
Fig. 4(b)).

i
[Mp: [ID: [D*]DS (D (Mo~

v v
BF1 BF: BF; v
v v v BFw
[IBE =BFi ABE2ABFs A .. ABFn |¢-
(@) (®)

Fig. 4. Build (a) and Probe (b) phases of an IBF.

Cost Effectiveness of IBF. Our goal is to evaluate the effect of using or not using an
IBF to query performance.

Fig. 5. The approximate left-deep sequential tree plan with the IBF.

Storing and Querying DICOM Data with HYTORMO 53

For the sake of simplicity, we present an approximate cost estimate for the /BF on a
sequential join sequence of N tables. For this approximation, we assume BFs are
computed for all input tables D, D,, ..., Dy. The IBF is computed from these BFs and
probed to filter all of these input tables. We also assume that the sequential join
sequence only includes inner joins, as illustrated in Fig. 5. Let that the multi-way join
operation be Q = D; My;p Dy Wyp ... Xyp Dy, where |D)| < |Diy|, forevery i € [1,
N — 1]. The sequential join sequence for the left-deep sequential tree plan is:

Q = ((((D; 2y D) »ayip ...) My Dy.1) My D).

Tables D;, D,, ..., Dy and intermediate result tables I;, I, ..., Iy—; are used as
inputs of joins. Here, we are setting I; = D; and Iy = final query result.

The performance of a multi-way join in a cluster is usually determined by network
I/0 cost and disk I/O cost. We thus use these costs to analysis the effectiveness of the
IBF. We start this work by giving definitions and basic mathematical concepts. Assume
that BFs and IBF have been built from tables D;, D, ..., Dy.; with the same con-
figuration: using a vector of m bits and k hash functions %;(v), hx(v), ..., hy(v), where
v is a value of join attribute. Table 1 shows notations used in cost models.

Table 1. Notations of cost models.

Notation | Description

D, Table is used as either a build or a probe table

I; Intermediate result table of sequential join sequence

BF; Bloom filter is built on table D;

IBF Intersection Bloom filter

Pp, Selectivity of table D;

PBF, Selectivity of Bloom filter BF; that is associated to table D;
PIBF Selectivity of IBF that is built on tables D;, D, ..., Dy
Pgr, False positive of BF; of table D; due to hash collisions
Pisr False positive of IBF that is built on tables D;, D, ..., Dy

The probability of a false positive of a Bloom filter BF; due to hash collisions is
calculate by (1) [16], where BF; is representing a set of n; values of the join attribute
UID of table D; in a vector of m bits and using k independent hash functions.

n\ K k
Ppr, = (1 - (1= m’l)k) ~ (1 - ek”"/’") . (1)
We define the selectivity of Bloom filter BF; of table D; in (2).
s, = Po, + (1 = pp,)-Psr, (2)

where (1 — ,OD,-)-PBF,- is the fraction of tuples from the probe table D; that are not
discarded by BF; and do not join with any tuples in the build table.

54 D. Nguyen-Cong et al.

Given the selectivity of Bloom filters of tables D;, D,, ..., Dy that have been
calculated by (2), the selectivity of the IBF is determined by (3).

N
Pir =11, PBF- 3)

The false positive of the IBF can be calculated by (4).

Pigr = Hj\,:l Ppr, = Hj\]:l (1 - (1 - m_l)kﬂi)k. (4)

where N is the number of BFs with assumption that there exists a BF for each table D,.
A comparison between (1) and (4) shows that value of Py is less than value of
Pgr,. This means that applying an IBF will give a lower amount of false positive errors
than only applying a single BF. The larger value of N, the smaller value of PgF.
In order to estimate network I/O cost and disk I/O cost, we depend on build and
probe phases of the IBF, as given in Fig. 4(a) and (b), that include the following steps:

Execute sub-queries to create intermediate result tables D;, D,, ..., Dy.

Compute BF,;, BF,, ..., BFy on values of UIDs of D;, D, ..., Dy, respectively.
Compute the IBF = BF; N BF, A ... N BFy

Broadcast the IBF to all slave nodes of the cluster.

Apply the IBF to input tables D;, D, ..., Dy to obtain results Djyyereap ---»

Nk B

DN(ﬁltered).
6. Execute the sequential join sequence using tables D jiyereay ---» Digfitterea) 4 INputs.

The first three steps are in the build phase while the rest are in the probe phase.
Assume that the first step has been done. We start to estimate costs from step 2.

Network I/0 Cost. Since each join operation in the sequential join sequence will join
an intermediate result table (created by the previous join) with an input table D;. The
network I/0 cost when the IBF is not used,C?®F', can be calculated by (5).

CloIBF _ Zi: size(D;) + Z size(l;) X size(Diy1) X pp, | 1,- (5)

where size(D;) and size(I;) are size of input table D; and intermediate result table I;,
respectively. pp, | 1s selectivity factor (ratio of the joined tuples of D;,; with ;).

The cost Cﬁg{BF consists of cost of sending input tables and intermediate result
tables over the network. We assume that no replication is done on input tables.
The network I/O cost when the IBF is used, Cﬁf , can be computed by (6).

. N 7
CIBF — ¢ slze(IBF)+ Z —, 5iz¢(Di(fiierea))
+ Z SlZ€ >< SiZE(Di+1(fthered)) X P, (filtered) I

where c is the number of slave nodes of the cluster.

Storing and Querying DICOM Data with HYTORMO 55

The cost Cllfef consists of cost of sending (broadcast) the IBF to all of slave nodes of
the cluster and cost of sending filtered input tables and intermediate result tables over
the network. Here, we do not apply the IBF to filter intermediate results.

A comparison between (5) and (6) shows that ¢ size(IBF') is usually small and
size(Di(finerea)) < size(D;). Therefore CIBI is less than CNO/EF.

Disk I/0 Cost. The disk I/O cost without using IBF, Cﬁ%BF , can be calculated by (7).

N-1 N
Cf%BF = Zi:l [size(I;) + size(D; 1)) + Zi:z size(l;). (7)

where:

N-1
— > [size(I;) + size(D; +1)]: reading intermediate results and input tables for joins.
i=1

|
Amz

size(I;): writing intermediate results to disk (here we are setting I; = D).
=2

When the IBF is used, the disk I/O cost, Cﬁg, can be calculated by (8).

N N
Cf% =2x Y size(D;)+ Zsize (Ditfitterea))
i=1 i=1
1 N
+ [size(li) +size(D,~+1(ﬁl,md>)] + Zsize(li).
i=1 i=2

=

where:

- 2X vazl size(D;): reading the input tables two times (to build and to apply the
IBF).

- N size (Di(fiterea) : Writing filtered input tables to disk after applying the IBF.
SVt [size(I;) + size (D; + 1 (fiterea)) | - reading intermediate results and filtered input
tables to be used as inputs of joins.

- Ziv:z size(I;): writing intermediate results to disk (here we are setting I; = D).

We assume that the BFs and the IBF are small enough to be stored in internal
memories of slave nodes so that no disk I/O cost is needed for them. A comparison
between (7) and (8) shows that C;% includes extra costs to read and to write input
tables during build and probe phases. However, then join operations will use filtered
tables as their inputs. Therefore, if size(Djijerea)) = size(D;), there is no benefit when

applying the IBF. However, if size(Dj(iyerea)) < size(D;), we can achieve

IBF ~_ (NoIBF
CI/O ~ C1/0 :

56 D. Nguyen-Cong et al.

4 Preliminary Experimental Results

This Section presents preliminary experimental results. We first describe experimental
environment, datasets and experimental query. We then compare query performance
against various storage strategies and effectiveness of I/BF.

4.1 Experimental Environment

We have used Hadoop 2.7.1, Hive 1.2.1 and Spark 1.6.0 to create a cluster of seven
different nodes (one master node and six slave nodes). The hardware of each node is the
same and has the following configuration: Intel(R) core(TM) i7-3770 CPU @
3.40 GHz, 16 GB RAM and 500 GB hard disk. We use the standard configuration with
a modification: we change the replication factor of HDFS from 3 to 2 in order to save
space. We implement the execution plan for the experimental query using Spark [14].

4.2 Datasets

We have used a mixed DICOM dataset of [17-21]. The metadata and pixel data are
extracted from DICOM files using the library dem4che-2.0.29 [22]. The attributes of
metadata are classified and stored in a fashion as discussed in Sect. 3.1. We use
sequence files and ORC files in Hive [23] to store row and column tables, respectively.
A statistic of the DICOM datasets are given in Table 2.

Table 2. DICOM datasets used in the experiment.

Datasets Number Number of Size of Total size
of files extracted attributes | extracted of files
metadata
CTColonography [17] | 98,737 86 7.76 GB 48.6 GB
Dclunie [18] 541 86 86.0 MB 45.7 GB
Idoimaging [19] 1,111 86 53.9 MB 369 MB
LungCancer [20] 174,316 86 1.17 GB 76.0 GB
MIDAS [21] 2,454 86 63.4 MB 620 MB

Although there are many entities for DICOM data, below we only present schemas
of entities required in the experimental query. The superscripts Rm, Rf, C and RC are
the same as mentioned in Sect. 3.2.

— Patient(UIDRC, PatientName®™, PatientID®™, PatientBirthDate®™, PatientSex®™,
EthnicGroupRm, IssuerOfPatientIDC, PatientBirthTimeC, PatientInsurancePlanCode
Sequence®, PatientPrimaryLanguageCodeSequence®, PatientPrimaryLanguage
ModiﬁerCodeSequenceC, OtherPatientIDsC, OtherPatientNamesC, PatientBirth
Name®, PatientTelephoneNumbers©, SmokingStatusC, Pregnancy®", LastMenstrual
DateRf, PatientReligiousPreferenceC, PatientCommentsC, PatientAddressC, Patient-

MotherBirthNameC, InsurancePlanIdentiﬁcationC)

Storing and Querying DICOM Data with HYTORMO 57

Table 3. Row and column tables are used by hybrid data storage strategy.

Entity Row table of “Rm” Row table of Column table of “C”
attributes “Rf” attributes attributes

Patient RowPatient RowPregnancy ColPatient

Study RowStudy - ColStudy

GenerallnfoTable - - ColGenerallnfoTable

SequenceAttributes | RowSequenceAttributes | — -

— Study(UIDRC, StudyInstanceUIDRm, StudyDateR"', StudyTimeRm, Refer-
ringPhysicianName®™, StudyID®™, AccessionNumber®™, StudyDescription®™,
PatientAgeC, PatientWeightC, PatientSizeC, Occupationc, AdditionalPatientHis-
toryC, MedicalRecordLocatorC, MedicalAlertsC)

- GeneralInfoTable(UIDRC, GeneralTagsC, GeneralVRs®, GeneralNames®,
GeneralValues®)

— SequenceAttributes(UID®C, SequenceTags®™, SequenceVRs®™, SequenceNa-
mes™™, SequenceValues®™)

Table 3 shows the corresponding row and column tables that are used to store the
above schemas. Because our experiment will compare the query performance against
various storage strategies, these schemas also need to be stored in only row tables and
only column tables.

4.3 Experimental Query

We measure the execution time of the query using three different storage strategies: row
store only, column store only, and hybrid store (hybrid data storage strategy). We also
validate the effect of using or not using the IBF to query performance.

The experimental query is given in Fig. 6(a). It is to retrieve the information stored
in X-ray DICOM files of men who are non-smoking, greater than or equal to x years
old. The query is based on TPC-H query 3 and 4 [24], but here we only focus on SPJ
queries. The attributes used in SELECT and WHERE clauses are also marked by
superscripts to indicate that they are being stored in row or a column tables. Five tables
RowPatient, ColPatient, ColStudy, ColGenerallnfoTable, and RowSequenceAttribute
are required by the query. The query is decomposed into four subqueries sQI, sQ2,
sQ3, and sQ4, as given in Fig. 6(b). The query processing strategy presented in
Sect. 3.2 is applied to build a left-deep processing tree step by step while trying to keep
intermediate results as small as possible.

4.4 Preliminary Query Performance

We ran the query for (i) storing all tables in row stores (RS), (ii) storing all tables in
column stores (CS), and (iii) storing all tables in the proposed hybrid store (HS).

58 D. Nguyen-Cong et al.

SELECT p.UIDRC, p PatientID®=,
p.PatientName®®, p PatientBirthDate®®,
p-PatientSex®=, p EthnicGroup®=,
p-SmokingStatusC, s.PatientAge®, s.PatientWeight®,
s.PatientSizeC, 1.GeneralNamesC, 1.General Values€,
q.UIDRC, q.SequenceTags™, q.Sequence VRs®=,
q.SequenceNames®*, q.SequenceValues®™®
FROM Patient p, Study s, GeneralInfoTable i,
SequenceAttributes q

WHERE p.UIDRC = s UIDRC

AND p.UIDRC = | UIDRC

/" OPatiertSex= \.I

O'SmomgStam\oan(E YES' ‘;’
if

I
AND p.UIDXC = g, UIDRC
AND p.PatientSex®= = "M’ A EMI | 1: lF ‘#ﬂ} | e
AND p.SmokingStatus© NOT LIKE ‘YES’ Magaeer T e

AND s.PatientAge® >=x DRI RS . e -
AND q.SequenceNames®® LIKE ‘%X-ray%’ Legend: E row table of “Rm” attributes [[]] : column table

(a) (b)

Fig. 6. The experimental query (a) and its execution plan tree (b)

The selectivity of the query vary depending on the predicates on attributes PatientAge,
PatientSex, SmokingStatus, and SequenceNames. In our experiment, we vary the
selectivity of the predicate on PatientAge to be 0.06 (PatientAge >= 90), 0.42
(PatientAge >= 60), and 0.88 (PatientAge >= 10) but fix the selectivity of the others.

The chart in Fig. 7 shows that, for all cases of the selectivity, storing all schemas in
only row stores or only column stores leads to higher execution time than that in a
hybrid store. The rationale behind the query performance is in the own benefit of each
data storage strategy. With the use of the hybrid store, storing mandatory attributes in
row tables, e.g., RowPatient and RowSequenceAttribute, helped to reduce tuple
reconstruct cost because most of these attributes are accessed together by the query. In
contrast, only a few of optional/private/seldom-used attributes are required by the
query. They thus should be stored in column tables, e.g., ColPatient, ColStudy, and
ColGenerallnfoTable to save 1/0 bandwidth because only relevant attributes need to be
read. If we store these attributes in row tables, the entire rows still have to be read from
disk no matter how many attributes are accessed per query at once. This causes a waste
of I/O bandwidth. Therefore, depending on a good understanding about the workload
of regular queries, we can choose a right store for each attribute extracted from DICOM
files to improve the query performance.

To evaluate the effect of using an IBF, we build an IBF from BF's that are computed
for all tables except ColGenerallnfoTable since it is the right table of a left outer join.
The accuracy of a BF is decided by ratio m/n where m is length of bit vector and n is
size of set (i.e., cardinality of UID list of an input table). m = 8n has been considered a
good balance between accuracy and space usage [24]. We thus apply this setting with
n is the biggest cardinality value among tables (RowPatient in our case).

The chart in Fig. 8 gives a comparison between HYTORMO with (HS + IBF) and
without (HS) using the IBF. In the best case, where the query is very highly selective
(PatientAge >= 90), the IBF helped to reduce 80% of execution time, whereas in the
worst case, where the query is lowly selective (PatientAge >= 10), the IBF increased

Storing and Querying DICOM Data with HYTORMO 59

1200

A1 E

042
SELECTIVITY OF PATIENTAGE

EXECUTION TIME (S)

Fig. 7. Comparison of different storage strategies

ms
g8
=g

-3
=3
=)

B HS

N
=3
=3

W HS+IBF

EXECUTION TIME (S)
=
o
o
B

)

0,06 0,42
SELECTIVITY OF PATIENT AGE

Fig. 8. A comparison of the effect of the IBF.

14% of the execution time. When PatientAge >= 60, the IBF helped to reduce 41% of
the execution time. This is because in the best case the IBF removed a large amount of
irrelevant tuples from joins. However, in the worst case, most of tuples of input tables
are required in the final result and thus there are not much useless data to be removed
by the IBF. The overhead costs incurred by build and probe phases of the IBF decrease
query performance.

5 Related Works

There already exist several solutions to implement a DICOM data storage system.
PACSs [25] mostly use row-RDBMSs to store, retrieve, and distribute medical image
data. These systems are expensive but only support queries with predefined attributes
and thus do not cope with heterogeneous schemas. eDiaMoND [2] stores DICOM data
using a Grid-enabled medical image database that is built from row-RDBMSs. The
system aims to provide inter-operability, scalability and flexibility. However, the
development of query optimization techniques have not been introduced. Some com-
mercial row-RDBMSs [4] have provided features to store and manage large-scale
repositories of DICOM files. They add a new data type that enables any column of this
type to store a DICOM content in their database table. Since a new separate object is
created for each DICOM file, the storage space is quickly increased and thus decrea-
ses the overall performance of system. DCMDSM [5] is based on the original DSM
[26] to vertically partition DICOM metadata into multiple small tables. The method is
able to cope with the evolutive/heterogeneous schemas of DICOM data and saves I/O

60 D. Nguyen-Cong et al.

bandwidth. Unfortunately, the method already uses a centralized database approach
developed on the top of a row-RDBMS and has not been designed to operate in a
clustering environment. NoSQL document-based storage system [6] shares the
schema-free non-relational design of standard key-value stores. It thus can handle the
evolution of metadata. However, unlike traditional row-RDBMSs, there is no stan-
dardized query language for the proposed system.

6 Conclusion and Future Work

The high-performance DICOM data management becomes a real challenge. The cur-
rent solutions still exist limitations to cope with the high heterogeneity, evolution,
variety, and high volume of DICOM data. In this paper, we propose HYTORMO,
using a hybrid data storage strategy and query processing strategy with BFs. Our
preliminary experimental results have showed that it is necessary to carefully choose
the right stores for attributes extracted from DICOM files. The use of both row and
column stores results in lower execution time because it helps to reduce disk 1/O, tuple
reconstruction cost, and storage space. The application of the /BF helped to reduce
network I/O cost because it removed irrelevant tuples out of inputs of joins. Our query
performance is promising.

The next steps of our work is to reduce the overhead cost of BF's, a new cost model
needs to be built to specify a threshold for selectivity factor of input tables so that BFs
are only computed for tables that can be reduced large enough. Our future work also
will include a comparison of HYTORMO to other methods such as commercial
row-RDBMS [4] that use tables of a row-RDBMS to store schemas of metadata and
use a single column of Object type in a table to store image content. SDSS SkyServer
[31] also proposed a similar method, but to manage astronomy data. Furthermore, we
consider to generate a bushy execution plan, instead of a left-deep tree plan.

References

1. Pianykh, O.S.: Digital Imaging and Communications in Medicine (DICOM): A Practical
Introduction and Survival Guide. Springer, Heidelberg (2008)

2. Merelli, L., et al.: Managing, analysing, and integrating big data in medical bioinformatics:
open problems and future perspectives. BioMed. Res. Int. 1-13 (2014)

3. Power, D., Politou, E., Slaymaker, M., Harris, S., et al.: A relational approach to the capture
of DICOM files for grid-enabled medical imaging databases. In: SAC, pp. 272-279 (2004)

4. Annamalai, M., Guo, D., Susan, M., Steiner, J.: An oracle white paper: oracle database 11 g
DICOM medical image support (2009)

5. Savaris, A., Hérder, T., von Wangenheim, A.: DCMDSM: a DICOM decomposed storage
model. J. Am. Med. Inform. Assoc. 21, 917-924 (2014)

6. Rascovsky, S.J., et al.: Informatics in radiology: use of CouchDB for document-based
storage of DICOM objects. Radiographics 32, 913-927 (2012)

7. Boncz, P., et al.: MonetDB/X100: hyper-pipelining query execution. In: CIDR (2005)

8. Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: VLDB, pp. 553-564 (2005)

11.

12.

13.

14.
15.

16.

17.
18.
19.
20.
21.
22.
23.
24,
25.

26.
27.

28.

29.

30.

31.

Storing and Querying DICOM Data with HYTORMO 61

. Ramamurthy, R., DeWitt, D.: A case for fractured mirrors. VLDB 12, 89-101 (2003)
. Grund, M., et al.: HYRISE: a main memory hybrid storage engine. VLDB 4, 105-116

(2010)

Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13, 422-426 (1970)

Phan, T.C., Orazio, L.D., Rigaux, P.: Toward intersection filter-based optimization for joins
in MapReduce. In: Workshop Proceedings of the Cloud-I (2013)

OECD: Genetic Testing: A Survey of Quality Assurance and Proficiency Standards. OECD
Publishing, Paris (2007)

Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: SIGMOD (2015)
Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the
join ordering problem. VLDB J. 6, 191-208 (1997)

Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet
Math. 1(4), 485-509 (2004)

CT Colonography. https://idash.ucsd.edu. Accessed 11 Oct 2015

David Clunie’s Medical Image Format Site. http://www.dclunie.com. Accessed Oct 2015
Sample Data. http://idoimaging.com/wiki/. Accessed 12 Oct 2015

Lung Cancer Datasets. http://giveascan.org. Accessed 11 Oct 2015

MIDAS Datasets. http://www.insight-journal.org. Accessed 12 Oct 2015

Open Source Clinical Image and Object Management. http://www.dcm4che.org

White, T.: Hadoop: The Definitive Guide. 4th edn. O’Reilly Media, Inc., California (2015)
TPC-H specification 2.8.0. http://www.tpc.org/tpch/

Moller, M., Mukherjee, S.: Context-driven ontological annotations in DICOM images:
towards semantic PACS. In: Proceedings of HEALTHINF (2009)

Copeland, G., Khoshafian, S.: A decomposed storage model. In: SIGMOD (1985)
Harizopoulos, S., et al.: Performance tradeoffs in read-optimized databases. In: VLDB
(2006)

Floratou, A., Minhas, U.F., Ozcan, F.: SQL-on-Hadoop: full circle back to shared-nothing
database architectures. VLDB 7, 1295-1306 (2014)

Popescu, A.D., Dash, D., Kantere, V., Ailamaki, A.: Adaptive query execution for data
management in the cloud. In: CloudDB, pp. 17-24 (2010)

Rosch, P., Dannecker, L., Férber, F., Hackenbroich, G.: A storage advisor for hybrid-store
databases. Proc. VLDB 5(12), 1748-1758 (2012)

Szalay, A.S., et al.: The SDSS Skyserver: public access to the sloan digital sky server data.
In: Proceedings of SIGMOD, pp. 570-581. ACM (2002)

https://idash.ucsd.edu
http://www.dclunie.com
http://idoimaging.com/wiki/
http://giveascan.org
http://www.insight-journal.org
http://www.dcm4che.org
http://www.tpc.org/tpch/

	Storing and Querying DICOM Data with HYTORMO
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 DICOM Standard and Its Challenges
	2.2 Row- vs. Column-Oriented Databases
	2.3 MapReduce vs. Spark
	2.4 Problem Formulation

	3 HYTORMO Architecture
	3.1 Data Storage Strategy
	3.2 Query Processing Strategy

	4 Preliminary Experimental Results
	4.1 Experimental Environment
	4.2 Datasets
	4.3 Experimental Query
	4.4 Preliminary Query Performance

	5 Related Works
	6 Conclusion and Future Work
	References

