Benchmarking Spark Distributed Data
Structures: A Sequence Analysis Case Study

Umberto Ferraro Petrillo®) and Roberto Vitali

Universita di Roma “La Sapienza”, 00185 Roma, Italy
{umberto.ferraro,roberto.vitali}@uniromal.it

Abstract. Big Data technologies are recognized by many as a promis-
ing solution for the efficient management and analysis of the enormous
amount of genomic data available thanks to Next-Generation Sequenc-
ing technologies. Despite this, they are still used in a limited number
of cases, mostly because of their complexity and of their relevant hid-
den computational constants. The introduction of Spark is changing this
scenario, by delivering a framework that can be used to write very com-
plex and efficient distributed applications using only few lines of codes.
Spark offers three types of distributed data structures that are almost
functionally equivalent but are very different in their implementations.
In this paper, we briefly review these data structures and analyze their
advantages and disadvantages, when used to solve a paradigmatic bioin-
formatics problem on a Hadoop cluster: the k-mer counting.

Keywords: Spark * k-mers Counting * Distributed computing - Perfor-
mance analysis

1 Introduction

The introduction of next-generation sequencing technologies (in short, NGS) has
changed the landscape of biology [1,2], thanks to the possibility of sequencing
DNA at a much faster speed than the one achievable with traditional Sanger
sequencing approach [3]. This advancement has raised also new methodological
and technological challenges. One of these is about the proper approach to adopt
for managing and processing timely the vast amount of data that is produced
thanks to NGS technologies.

A solution that is gaining popularity is to resort to the technologies that
have been developed for dealing with Big Data. By this term, we refer to the
problem of storing, managing and processing data that may be significantly big
with respect to several dimensions like size, diversity or generation rate. A very
popular approach to Big Data processing, allowing for the analysis of enormous
datasets, is the one based on MapReduce [4]. It is a computational paradigm that
works by organizing an elaboration in two consecutive steps. In the first step, a
map function is used to process, filter and/or transform input data. In the second
step, a reduce function is used to aggregate the output of the map functions. Map
© Springer International Publishing AG 2017

F. Rossi et al. (Eds.): WIVACE 2016, CCIS 708, pp. 77-88, 2017.
DOT: 10.1007/978-3-319-57711-1_7

78 U. Ferraro Petrillo and R. Vitali

and reduce functions are executed as tasks on the nodes of a distributed system,
namely, a network of computational nodes that cooperate, sending messages
each other, to achieve a common goal. The most used implementation of this
paradigm is Apache Hadoop [5]. Despite being the first framework to provide a
full implementation of the MapReduce paradigm, Hadoop is often criticized for a
number of issues, first being its disappointing performance when used for running
iterative tasks (see, e.g., [6]). A competing framework is gaining a lot of attention
in the very recent years: Apache Spark [7]. It is a sort of evolution of Hadoop,
but with some important differences allowing it to outperform its predecessor in
many application scenarios. First of all, wherever there is enough RAM, Spark
is able to perform iterative computations in-memory, without having to write
intermediate data on disk, as required by Hadoop. In addition, it is more flexible
than Hadoop, because it provides a rich set of distributed operations other than
the ones required for implementing the MapReduce paradigm.

Indeed, one of the aspects that has the deepest impact on the performance
of a distributed application, is the pattern used to distribute and process data
among the different nodes of a network. This is especially the case of bioinformat-
ics application, where even a single genomic sequence may be several gigabytes
long. In this context, a poor data layout may prevent even an efficient algo-
rithm to exploit the parallelism of a distributed system. From this viewpoint,
the Spark feature that most marks the difference with respect to Hadoop is the
availability of ready-to-use distributed data structures. These allow to manage
and process in a standard and consistent way the data of an application while
leaving to Spark the responsibility of partitioning this data and their elabora-
tion. It is interesting to note that Spark offers three different types of distributed
data structures. These are almost functionally identical and choosing which of
them to use when developing a bioinformatics application may not be simple.

The goal of this paper is to investigate the complexity and the performance
of the different distributed data structures offered by Spark, with the aim of
providing useful hints to the bioinformatics community about which is the best
option to choose, and when. This has been done by analyzing the three different
solutions when used for the implementation of a typical sequence analysis algo-
rithmic pattern: the counting of the distinct k-mers existing in an input sequence
of characters. The three implementations we developed have been tested on a
reference dataset to determine their relative performance and provide insightful
hints about which of them to prefer when dealing with such a scenario.

Organization of the paper. The paper is structured as follows. In Sect.2, we
briefly discuss the current state of adoption of Big Data technologies for genomic
computation. The Spark framework and the distributed data structures it offers
are presented in Sect.3. In Sect.4, we state the objective of this paper and
present the k-mer counting problem that has adopted as reference scenario for
evaluating the different types of Spark distributed data structures. In Sect.5 we
outline the setting of our experiments and briefly discuss their results. Finally,
in Sect. 6 we provide some concluding remarks for our work.

Benchmarking Spark Distributed Data Structures 79

2 Related Work

The adoption of Big Data related technologies for accelerating the solution of
bioinformatics problems has proceeded at a slow pace in the past years for several
reasons. One of these is that the complexity of a framework like Hadoop adds
to a distributed computation a significant amount of overhead, thus making it
convenient only when processing enormous amount of data and/or when using
distributed facilities counting hundreds or thousands of nodes. Instead, the same
computation carried on a stand-alone workstation is able to exploit almost all
the processing power of the underlying machine as the logic required to coordi-
nate several concurrent processes running on the same machine is much simpler.
Despite this, there are several relevant contributions worth to be mentioned.

One of the first and most noteworthy is GATK (see [8]). It introduces a struc-
tured programming framework designed to ease the development of efficient and
robust analysis tools for next-generation DNA sequencers using MapReduce. A
problem that often arises when writing an Hadoop sequence analysis application is
the adaptation of the formats used for maintaining genomic sequences to the stan-
dard file format used by Hadoop. This problem has been addressed by Niemenmaa
et al. in [9]. They proposed a software library for the generic and scalable manip-
ulation of aligned next-generation sequencing data stored using the BAM format.
The same problem has been further addressed by Massie et al. in [10]. In this case,
the authors did not resort to an existing file format, like in [9], but proposed a new
file format (i.e., ADAM) explicitly designed for indexing and managing genomic
sequences on a distributed MapReduce system like Hadoop or Spark. There have
also been several contributions about the usage of MapReduce and Hadoop for the
solution of specific application problems. To name some, the work by Cattaneo
et al. in [11,12] describes a MapReduce distributed framework based on Hadoop
able to evaluate the alignment-free distance among genomic sequences using a vari-
ety of dissimilarity functions and in a scalable way.

The advent of Spark is slowly changing this scenario, as there is an increasing
number of contributions developed using this technology and aiming at intro-
ducing solutions that are not only scalable but also efficient. This is the case of
SparkSeq, a general-purpose, flexible and easily extendable library for genomic
cloud computing presented in [13]. It can be used to build genomic analysis
pipelines and run them in an interactive way. Another work worth to be men-
tioned is the one described in [14]. It provides a comprehensive study on a set of
distributed algorithms implemented in Spark for genomic computation adopting
efficient statistical approaches. The main objective is the study of the perfor-
mance of the proposed algorithms with respect to more traditional ones.

3 Spark

Spark is a framework for general-purpose distributed processing of Big Data. It
is able to exploit the computational capabilities of several calculators at once, by
providing an uniform and abstract view of these as a computing cluster. Spark

80 U. Ferraro Petrillo and R. Vitali

Worker Node

M Executor |Cache

Driver Program

/

y
.
——)‘ Cluster Manager K
3

N

SparkSession

“\y | Worker Node

Executor |Cache

Fig. 1. Spark architecture

can be seen as a sort of evolution of Hadoop, as inherits the same MapReduce
based distributed programming paradigm. In addition, it offers a wide range of
ready-to-use operators and transformations that are often needed when devel-
oping a distributed application and that, although being possible with Hadoop,
would require some work to be developed from scratch.

The Spark architecture (see Fig. 1) is composed by three main components:
(a) the driver program, that is in charge to setup the Spark environment and
launch the computation; (b) a cluster manager service, that is in charge of
managing the distributed computation, assigning resources and scheduling the
execution of one or more tasks on each node of the cluster; (c) several different
worker nodes, in charge of carrying out the real computation, where each node
is able to execute one or more tasks in parallel by spanning a corresponding
number of ezecutors. Notice that, apart from the cluster manager available with
Spark, it is also possible to use third-party managers, such as Hadoop YARN [5].

3.1 The Programming Model

In a typical Spark application, the driver program begins the execution by load-
ing the input data in a distributed data structure. This is essentially a collection
of objects that is partitioned over the nodes of a cluster. Once data has been
loaded, the execution proceeds by means of a sequence of distributed operations.
Following the same move computation close to data philosophy that inspired
Hadoop, Spark tries to run these operations directly on the nodes hosting the
data that they are required to process. This is done to reduce the overhead that
will be otherwise required to transfer big amount of data over the network for
processing them elsewhere.

Distributed data structures available with Spark support two types of dis-
tributed operations: Actions and Transformations. The former may essentially
be divided in three categories:

— reduce: apply a cumulative operation to the elements of a distributed collec-
tion of objects, so that multiple input objects are aggregated and combined
in a single object belonging to an output distributed collection of objects;

— collect: gather all the objects of a distributed collection, or a subset of them,
and send them to the driver program, where these are made available as a
collection of local objects;

Benchmarking Spark Distributed Data Structures 81

— save: writes the elements of distributed collection of objects on an external
storage.

The latter may essentially divided in the three categories:

— map: map a distributed collection of objects in another distributed collection
of objects. The new objects result from the application of a given function on
each of the input objects;

— filter: filter the elements of a distributed collection of objects, returning a new
distributed collection containing only elements satisfying an input-provided
condition;

— set operations: combine two distributed collection of objects in a single one
by means of a set operator.

The distributed part of an application run with Spark is logically divided in
stages, where each stage corresponds to a transformation or an action. Stages
related to transformations are run by Spark in a lazy way. This means that they
are not run as soon as they are encountered during the execution of a program
but only when and if their result is needed to accomplish a subsequent step of
the application.

3.2 Distributed Data Structures

Spark provides three types of distributed data structures: Resilient Distributed
Dataset, DataFrame and DataSet. These data structures share some relevant
properties. First, they do all support in-memory computations. This means that,
provided that there is enough memory space, their content may be partially or
entirely cached in memory. This is especially useful when executing subsequent
or iterative tasks targeting the same data. If the available memory is not enough,
as when processing very large amount of data, their content may be selectively
spilled to disk and retrieved in memory when required. The developer can choose
also if and how to replicate this data, so to make the computation resilient with
respect to hardware or network faults (see [7] for examples).

Resilient Distributed Dataset. The Resilient Distributed Dataset (in short, RDD)
has been the first type of distributed data structure available with Spark. It
is a virtual data structure encapsulating a collection of object-oriented datasets
spread over the nodes of a computing cluster. The object-oriented nature of these
datasets implies all the advantages and the disadvantages of this paradigm. For
instance, it is the developer that chooses how the data stored in a RDD can be
processed, by defining some proper methods on the objects storing that data.
RDDs can be created by importing a dataset from an external storage or from the
network, by issuing some special-purpose functions provided by Spark for making
distributed a local dataset or as the result of the execution of a transformation
over another RDD.

RDDs have also some drawbacks. For example, every time there is need to
transfer elsewhere the content of a RDD (e.g. when performing a reduce oper-
ation), Spark has to marshall and encode, one-by-one, all the elements of that

82 U. Ferraro Petrillo and R. Vitali

RDD as well as their associated metadata. The reverse of this operation, then, has
to be performed on each node receiving those elements. Similarly, whenever the
content of a RDD is destroyed, the underlying java virtual machine has to claim
back the memory used by each of the objects contained in the RDD. Since RDDs
are often used to maintain collections counting millions or billions of elements,
this overhead may severely burden the performance of a Spark application.

DataFrame. The DataFrame is a distributed data structure introduced in Spark
to overcome some of the performance issues of RDDs. Instead of using a collection
of objects, DataFrames maintain data in a relational-database fashion, providing
a flat table-like representation supported by the definition of a schema. This has
several important advantages. First, manipulation of large amount of data can
be carried out using an SQL-like engine rather than requiring the execution of
methods on each of the element to be processed. Second, by avoiding the usage
of objects for storing the individual elements of a collection, the transmission of
a chunk of a DataFrame to a node tends to be very fast. Third, since the meta-
data describing the elements of a collection are the same for all these elements
and are known in advance, there is no need of transmitting them when mov-
ing parts of a DataFrame, thus achieving a substantial saving in communication
time. Finally, the adoption of an SQL based approach to the processing of data
allows for several optimizations (see [15]). Even DataFrames suffer of some seri-
ous drawbacks. To name one, the dismissal of the object-oriented approach in
favor of the SQL-like engine makes the resulting applications less robust as it is
virtually impossible for the compiler to verify the type-safety of an application.

DataSet. The DataSet is a distributed data structure introduced to mix the
best of the two previous technologies by guaranteeing the same performance of
DataFrames while allowing to model data after the object oriented paradigm, as
when using RDDs. This is mainly achieved thanks to two solutions. The first is the
introduction of a new encoding technology able to marshall quickly and in a step
a collection of objects. We recall that RDD need to marshall individually each
object of a collection by means of the Java standard serialization framework.
The second is the possibility of operating on the elements of a DataSet using an
object-oriented interface while retaining their internal relational representation.
On a side, this allows to perform the safety checks at compile time, thus making
the applications more robust. On the other side, this allow to maintain all the
performance advantages introduced with DataFrames.

4 Objective of the Paper

The three types of distributed data structures available with Spark, as well as the
wide range of transformations and actions they provide, allow to write complex
distributed applications in a few lines of code and without requiring advanced
programming skills. This is a relevant feature as, typically, one of major issues
preventing from using a distributed approach to solve a problem is the time and

Benchmarking Spark Distributed Data Structures 83

the cost required to develop such a solution. However, this simplicity comes at
a cost. By delegating to Spark most of the work about how to organize and
process distributed data structures, the developer takes the risk of sacrificing
the efficiency of his code.

In this paper, we deal with this problem by focusing on assessing the per-
formance trade-offs related to the choice of the distributed data structure type
among the three offered by Spark, when developing a bioinformatics application.
We use as a case study a simple problem that is fundamental when performing
genomic sequence analysis: the k-mer counting problem.

4.1 The k-mer Counting Problem

Given a string S, we denote with term k-mer all the possible substrings of S
having size k. The k-mer counting problem refers to the problem of counting the
number of occurrences of each k-mer k in S. It is a very common and (apparently)
simple task that is often used as a building block in the development of more
complex sequence analysis applications such as genome assembly or sequence
alignment (see, e.g., [16]).

The problem of counting the k-mers of a sequence is paradigmatic with
respect to the class of problems that would benefit from the adoption of a
distributed solution. On a side, it is apparently easy to solve as its algorith-
mic formulation is very simple and straightforward. This simplifies as well its
distributed reformulation, as it represents a typical case of an embarrassingly
parallel problem. On the other side, real-world scenarios often require to process
either a huge number of sequences or sequences having a huge size (i.e., gigabytes
of characters). Consequently, there is both a time-related problem (i.e., process-
ing huge amount of data using a single machine could require days or weeks) and
a memory-related problem (i.e., the memory required to keep the k-mers counts
may span also tens or hundreds of gigabytes when using large values of k and
huge sequences). The convenience of this approach is also witnessed by the sev-
eral scientific contributions proposed so far (see, e.g., [11,12,17,18]), introducing
clever solutions for counting k-mers in a parallel or distributed setting.

5 Experimental Study

In our experimental study we first developed three different solutions to the
k-mer counting problem using Spark. These solutions are identical in their out-
put, provided the same input, but differ in the distributed data structures they
use. Then, we performed a comparative experimental analysis of these codes by
measuring their performance when run on a reference testing dataset.

5.1 The Proposed Implementations

We report in Listings 1.1, 1.2 and 1.3 the pseudo-code of our three implementa-
tions (full source code not reported and available upon request): RDD, DataSet

84 U. Ferraro Petrillo and R. Vitali

Listing 1.1. Pseudo-code of k-mer counting implemented using Resilient Distributed
Datasets

1 input = readTextFile(filename);

2 kmers = input.flatMapToPair (new KMerExtractor ());

3 kmers_count = kmers.reduceByKey(new KMerAggregator ()
)

4 writeFile (kmers_count) ;

and DataFrame. As already said, the three solutions are equivalent, except for
the particular type of distributed data structure used by each of them.

The first solution (Listing 1.1) uses a RDD to collect all the string lines of
an input file, where each line corresponds a different genomic sequence. Then,
it applies to each line a map function, KMerExtractor, that scans it returning
all the k-mers it contains as a RDD of pairs (k-mer,1) (line 2). All these pairs
are aggregated by the KMerAggregator reduce function (line 3), thus returning
a RDD containing the final counts. The result is saved to file (line 4).

The second solution (Listing 1.2) extracts the k-mers from an input file as
the first solution (line 1-2). Then, it builds a new schema definition, needed to
establish the structure of the DataFrame used for storing the k-mers (line 3).
Then, a new DataFrame is created using this definition and the collection of
extracted k-mers (line 4). Once the DataFrame is ready, it is queried through an
SQL query (line 5-6) for the k-mer counts. The result is saved to file (line 7).

The third solution (Listing 1.3) mimics the second one, but without the need
of defining an explicit schema. In details, it first extracts k-mers from an input
file as in the previous cases (line 1-2). The results of the extraction is saved in
a Dataset. Its schema is automatically determined according to the data type of
the k-mers. Then, it is queried (line 3) by running some of the standard methods
available with this data structure (i.e., groupBy and count), instead of using an
SQL query. The k-mer counts resulting from the query is saved to file (line 4).

Listing 1.2. Pseudo-code of k-mer counting implemented using DataFrames

input = readTextFile(filename);

kmers = input.flatMap(new KMerExtractor());

schema = CreateNewSchema(schema definition);

createDataFrame ("kmers", schema, kmers);

String q = "select kmer, count(kmer) as count from
kmers group by kmer";

kmers_count = spark.sql(q);

7 writeFile (kmers_count) ;

[

Benchmarking Spark Distributed Data Structures 85

Listing 1.3. Pseudo-code of k-mer counting implemented using DataSets

input = readTextFileasDataset(filename) ;
kmers = input.flatMap(new KMerExtractor());
kmers_count = kmers.groupBy("kmer").count ();
writeFile (kmers_count);

AW N =

5.2 Dataset

The experiments have been conducted on a dataset of four randomly-generated
FASTA [19] files of increasing size. Each file has been generated as a collection
of short-sequences, with each sequence being introduced by a text comment line
and containing at most 100 characters drawn from the alphabet {A,C,G,T}.
The overall size of the used files is, respectively, of about: 512 MB, 2 GB, 8 GB.
These sizes have been chosen to represent the class of problems that are difficult
to manage with a sequential approach and would benefit of a distributed solution.

5.3 Configuration

Our experiments have been conducted on a five-nodes Hadoop cluster, with
one node acting as resource manager for the cluster and the remaining nodes
being used as worker nodes. Each node of this cluster is equipped with a 16-
core Intel Xeon E5-2630@2.40 GHz processor, with 64 GB of RAM. During the
experiments, we varied the number of executors on each node from 1 to 4, to
assess the scalability of the proposed solutions. Moreover, we organized input files
in blocks having size at most 64MB, with each block available on two different
nodes of the cluster. Such configuration allows for a better distribution of the
workload but without affecting the performance of the whole system.

5.4 Results

In our first experiment, we have measured the performance of RDD, DataFrame
and DataSet when run on sequences of increasing size and using increasing
values of k. Its purpose has been to analyze the behavior of the three types of
distributed data structures in a context where the size of these data structures
could exceed the RAM memory available to a node. The experimental result,
reported in Fig. 2, shows that when dealing with very small sized problems (i.e.,
size = 512 MB, k = 7) RDD is the implementation achieving the best performance.
We recall that in this setting the number of possible distinct k-mers is very small.
Consequently, RDD has to manage a very small number of objects. As soon as the
size of the problem increases, the performance of this implementation quickly
deteriorates because of the too many k-mers to be handled. Instead, the other
two implementations exhibit an increase in their execution time that is linear
with respect to the size of the problem. This is clearly due to their different
strategy used to maintain k-mers in memory, that reveals to be much more

86 U. Ferraro Petrillo and R. Vitali

100 3000

— RDD —— DataFrame DataSet — RDD —— DataFrame DataSet

75

25 /
0 2 4 [8 0 2 4 3]

Input size (Gigabytes) input size (Gigabytes)

(a) k=7 (b) k=14

Execution time (seconds)
o
= S
Execution time (seconds)
o
(=]
2

—— RDD —— DataFrame DataSet

6000

4000

2000

Execution time (seconds)

0
0 2 4 6 8
Input size (Gigabytes)

(c) k=28

Fig. 2. Execution time, in seconds, of RDD, DataFrame and DataSet when processing
random sequences of increasing size under different assignments of k

efficient when the number of k-mers to manage increases. We notice also that
DataSet performs slightly better than DataFrame, mostly because it is able to
encode k-mers faster (see Sect. 3.2).

In our second experiment, we have measured the scalability of the three con-
sidered implementations when run on a small problem instance and on a large
problem instance using a cluster of increasing size. The two cases are representa-
tive of a scenario where the distributed data structures are either small enough to
fit in the main memory or large enough to require their partial backup on exter-
nal memory. The increasing size of the cluster has been simulated by increasing
the number of executors per node (see Sect. 3), for an overall number of 4, 8 and
16 executors.

The experimental results on the small problem instance dataset, reported in
Fig. 3, confirm that DataSet is the fastest of the three implementations. How-
ever, we notice that the scalability of RDD is much better. As expected, this
phenomenon is due to the fact that, for such a small dataset, the usage of a high
number of executors allows RDD to keep all the k-mers counts in memory, thus
becoming competitive with the other two implementations. For the same reason,
RDD enjoys a linear speed-up proportional to the number of executors. Instead,
the performance of DataSet offers small room for improvement, as there is no
noticeable gain when switching from 8 executors to 16 executors. Speaking of the
large problem instance, we observe that none of the three codes is able to scale
linearly with the number of executors. This may be explained by considering the

Benchmarking Spark Distributed Data Structures 87

100 16000

—— RDD —— DataFrame Dataset —— RDD —— DataFrame DataSet

12000
8000

4000 S
e ———

Execution time (seconds)
o
c g =} U
Execution fime (seconds)

o 5 10 19 20 0] 10 15 20
Number of executors Number of executors

(a) 2GB 7-sized k-mers (b) 8 GB 28-sized k-mers

Fig. 3. Scalability of RDD, DataFrame and DataSet on a cluster with an increasing
number of executors, when extracting k-mers from: (a) a 2 GB random sequences with
k = 7; (b) a 8 GB random sequences with k = 28;

I/O bound nature of the k-mer counting activity, that becomes more evident
when processing very large files. In such a scenario, most of the time is spent
reading data from the external memory. Running several executors on the same
node implies that they will contend the access to the disk when trying to read
at the same time their respective input blocks, thus preventing the possibility of
fully exploiting their computational resources.

6 Conclusion

The objective of this work has been to assess how the choice of the particular type
of distributed data structure to be used for implementing a sequence analysis
application with Spark affects its performance. We observed that three variants
of the same code (a k-mer counting algorithm), having an identical behavior
and undistinguishable in their output, but using different types of distributed
data structures, exhibit very different performance. A direction worth to be
investigated would be the analysis of more complex sequence analysis application
patterns. This would allow to better assess the architectural peculiarities of the
different types of the Spark distributed data structures. Moreover, given the
internal complexity of Spark and the availability of a large number of settings
influencing its performance, another promising direction would be to repeat these
experiments on a larger scale and under a much broader range of configurations.

References

1. Pop, M., Salzberg, S.L.: Bioinformatics challenges of new sequencing technology.
Trends Genet. 24(3), 142-149 (2008)

2. Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nature
200(8), 16-18 (2007)

3. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating
inhibitors. Proc. Natl. Acad. Sci. 74(12), 5463-5467 (1977)

88

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

U. Ferraro Petrillo and R. Vitali

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Apache: Hadoop. http://hadoop.apache.org/

Zhang, Y., Gao, Q., Gao, L., Wang, C.: iMapReduce: a distributed comput-
ing framework for iterative computation. J. Grid Comput. 10(1), 47-68 (2012).
http://dx.doi.org/10.1007/s10723-012-9204-9

Apache: Spark. http://spark.apache.org/

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernyt-
sky, A., Kiran, G., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.:
The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20(9), 1297-1303 (2010).
http://genome.cshlp.org/content/20/9/1297.abstract

Niemenmaa, M., Kallio, A., Schumacher, A., Klemeld, P., Korpelainen, E., Hel-
janko, K.: Hadoop-BAM: directly manipulating next generation sequencing data
in the cloud. Bioinformatics 28(6), 876-877 (2012)

Massie, M., Nothaft, F., Hartl, C., Kozanitis, C., Schumacher, A., Joseph, A.D.,
Patterson, D.A.: ADAM: Genomics formats and processing patterns for cloud scale
computing. University of California, Berkeley Technical report, No. UCB/EECS-
2013 207 (2013)

Cattaneo, G., Ferraro-Petrillo, U., Giancarlo, R., Roscigno, G.: Alignment-free
sequence comparison over Hadoop for computational biology. In: Proceedings of
44th International Conference on Parallel Processing Workshops, ICPPW, pp. 184—
192 (2015)

Cattaneo, G., Ferraro-Petrillo, U., Giancarlo, R., Roscigno, G.: An effective exten-
sion of the applicability of alignment-free biological sequence comparison algo-
rithms with Hadoop. J. Supercomputing. 73(4), 14671483 (2017)

Wiewiérka, M.S., Messina, A., Pacholewska, A., Maffioletti, S., Gawrysiak, P.,
Okoniewski, M.J.: SparkSeq: fast, scalable, cloud-ready tool for the interactive
genomic data analysis with nucleotide precision. Bioinformatics (2014)

Bahmani, A., Sibley, A.B., Parsian, M., Owzar, K., Mueller, F.: SparkScore: lever-
aging apache spark for distributed genomic inference. In: 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops, pp. 435-442, May
2016

Xin R., R.J.: Project tungsten: Bringing Spark closer to bare metal. https://
databricks.com/blog/2015/04 /28 /project-tungsten-bringing-spark-closer-to-bare-
metal.html

Giancarlo, R., Rombo, S.E., Utro, F.: Epigenomic k-mer dictionaries: shedding light
on how sequence composition influences in vivo nucleosome positioning. Bioinfor-
matics (2015)

Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC2: fast and
resource-frugal k-mer counting. Bioinformatics 31, 1569-1576 (2015)

Ferraro Petrillo, U., Roscigno, G., Cattaneo, G., Giancarlo, R.: FASTdoop: a ver-
satile and efficient library for the input of FASTA and FASTQ files for MapReduce
Hadoop bioinformatics applications. Bioinformatics (2017). https://dx.doi.org/10.
1093 /bioinformatics/btx010

Wikipedia: FASTA format — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/wiki/FASTA _format

http://hadoop.apache.org/
http://dx.doi.org/10.1007/s10723-012-9204-9
http://spark.apache.org/
http://genome.cshlp.org/content/20/9/1297.abstract
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://dx.doi.org/10.1093/bioinformatics/btx010
https://dx.doi.org/10.1093/bioinformatics/btx010
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTA_format

	Benchmarking Spark Distributed Data Structures: A Sequence Analysis Case Study
	1 Introduction
	2 Related Work
	3 Spark
	3.1 The Programming Model
	3.2 Distributed Data Structures

	4 Objective of the Paper
	4.1 The k-mer Counting Problem

	5 Experimental Study
	5.1 The Proposed Implementations
	5.2 Dataset
	5.3 Configuration
	5.4 Results

	6 Conclusion
	References

