
GPU-Based Parallel Search of Relevant Variable
Sets in Complex Systems

Emilio Vicari1, Michele Amoretti1, Laura Sani1, Monica Mordonini1,
Riccardo Pecori1,4, Andrea Roli2, Marco Villani3, Stefano Cagnoni1(B),

and Roberto Serra3

1 Dipartimento di Ingegneria ed Architettura, Università di Parma, Parma, Italy
stefano.cagnoni@unipr.it

2 Dip. di Informatica, Scienza e Ingegneria,
Università di Bologna - Sede di Cesena, Cesena, Italy
3 Dip. Scienze Fisiche, Informatiche e Matematiche,
Università di Modena e Reggio Emilia, Modena, Italy

4 SMARTest Research Centre, Università eCAMPUS, Novedrate, CO, Italy

Abstract. Various methods have been proposed to identify emergent
dynamical structures in complex systems. In this paper, we focus on the
Dynamical Cluster Index (DCI), a measure based on information the-
ory which allows one to detect relevant sets, i.e. sets of variables that
behave in a coherent and coordinated way while loosely interacting with
the rest of the system. The method associates a score to each subset
of system variables; therefore, for a thorough analysis of the system, it
requires an exhaustive enumeration of all possible subsets. For large sys-
tems, the curse of dimensionality makes the problem solvable only using
metaheuristics. Even within such approaches, however, DCI computa-
tion has to be performed for a huge number of times; thus, an efficient
implementation becomes a mandatory requirement. Considering that a
candidate relevant set’s DCI can be computed independently of the oth-
ers, we propose a GPU-based massively parallel implementation of DCI
computation. We describe the algorithm’s structure and validate it by
assessing the speedup in comparison with a single-thread sequential CPU
implementation when analyzing a set of dynamical systems of different
sizes.

Keywords: GPU-based parallel programming · Complex systems ·
Relevant sets

1 Introduction

The behavior of a complex system can be described by identifying emergent
dynamical structures within it, i.e., subsets of variables whose members tightly
interact with (depend on) one another, as well as hierarchically, by identifying
higher-level interactions that occur between such sets.

The study of complex systems is related to the identification of emergent
properties of systems whose components are usually well-known and defined in
c© Springer International Publishing AG 2017
F. Rossi et al. (Eds.): WIVACE 2016, CCIS 708, pp. 14–25, 2017.
DOI: 10.1007/978-3-319-57711-1 2



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 15

terms of state variables. To describe the organization of complex systems several
measures of complexity have been proposed, many of which based on information
theory (as, for instance, in [4,6]).

Many different systems can be described effectively in terms of coordinated
dynamical behavior of groups of elements; for example, relevant examples in the
domain of neuroscience can be found in [8,9].

Tononi et al. [10], and later other authors (Sporns et al. [9], Villani et al. [12])
introduced a method to identify relevant structures in complex systems. Based on
a data-set including samples of the system status at different times, one can asso-
ciate each possible subset of variables with an index Tc. Such an index quantifies
how much its behavior deviates from the behavior of a reference (homogeneous)
system, in which the variables have, individually, the same distribution as in
the data-set, but are homogeneously correlated. Therefore, the higher its Tc, the
higher the degree of correlation/interaction between the variables in a subset.
The subsets characterized by high Tc values are referred to as Candidate Rele-
vant Sets (CRSs), the properly called Relevant Subsets (RSs) being candidates
that do not include (or are not included in) other candidate sets with higher Tc

values [12].
For a complete description of the dynamical system, Tc must be computed

for each possible set, which becomes unfeasible as the dimension of the system
increases. Subsets of variables describing high-dimensional systems can therefore
be identified by using a metaheuristic which smartly explores the search space [7].
Even in this case, Tc computation must be repeated hundreds of thousands to
millions of times. An efficient implementation of such a function is therefore
definitely necessary. Considering that the computation of Tc for each candidate
RS is independent of the others, using GPU-based parallel code seems to be the
most efficient way of computing the index.

We have developed a set of CUDA C1 kernels that provide a fine-grained
parallel implementation of the main building blocks needed to compute the Tc

index, upon which smart and efficient search algorithms can be designed.
The parallel functions were developed to accomplish three different goals in

our study:

1. Speeding up an exhaustive sequential search by computing the Tc values of
several candidate RSs in parallel;

2. Providing a computationally-efficient objective function for a metaheuristic
that searches for the RSs of large dynamical systems for which an exhaustive
search is impractical;

3. Making it possible to explore more complex systems and detect possible hier-
archical dependencies between RSs.

In the next section, we briefly introduce the basics of the method for which we
have developed the CUDA kernels. Then we analyze the computational problem,
identifying the algorithm blocks that are most amenable to parallelization, and
describe their GPU-based implementation. We conclude our paper by reporting
1 https://developer.nvidia.com.

https://developer.nvidia.com


16 E. Vicari et al.

the results of the tests in which we compare the performance of our parallel code
with respect to a standard single-CPU sequential implementation. Finally, in the
last section, we foresee possible future steps in our research that we expect the
development of the parallel code to make feasible.

2 Method

In this section we succinctly illustrate the procedure for computing the Tc. The
interested reader can find more details in [3,12].

Let the system under exam be modeled by means of a set U of N variables,
which assume finite and discrete values. The cluster index of a subset S of
variables in U , S ⊂ U , as defined by Tononi et al. [10], estimates the ratio
between the amount of information integration among the variables in S and the
amount of integration between S and U . These quantities depend on Shannon’s
entropy of both the single elements and the sets of elements in U .

The entropy of an element xi is defined as:

H(xi) = −
∑

v∈Vi

p(v) log p(v) (1)

where Vi is the set of the possible values of xi and p(v) the probability of occur-
rence of symbol v. The entropy of a pair of elements xi and xj is defined by
means of their joint probabilities:

H(xi, xj) = −
∑

v∈Vi

∑

w∈Vj

p(v, w) log p(v, w) (2)

Equation 2 can be extended to sets of k elements considering the probability
of occurrence of vectors of k values. This approach deals with observational data,
therefore probabilities are estimated by means of relative frequencies.

The cluster index C(S) of a set S of k elements is defined as the ratio between
the integration I(S) of S and the mutual information between S and the rest of
the system U − S.

The integration of subset S is defined as:

I(S) =
∑

x∈S

H(x) − H(S) (3)

I(S) represents the deviation from statistical independence of the k elements
in S. The mutual information M(S;U − S) is defined as:

M(S;U − S) ≡ H(S) + H(S|U − S) = H(S) + H(U − S) − H(S,U − S) (4)

where H(A|B) is the conditional entropy and H(A,B) the joint entropy. Finally,
the cluster index C(S) is defined as:

C(S) =
I(S)

M(S;U − S)
(5)



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 17

Since C is defined as a ratio, it is undefined in all those cases where
M(S;U − S) vanishes. In this case, the subset S is statistically independent
from the rest of the system and needs to be analyzed separately. As C(S) scales
with the size of S, cluster index values of systems of different size need to be
normalized. To this aim, a reference system is defined, i.e., the homogeneous
system Uh, randomly generated according to the probability distribution of each
state of the original system U . Then, for each subsystem size of Uh the aver-
age integration 〈Ih〉 and the average mutual information 〈Mh〉 are computed.
Finally, the cluster index value of S is normalized by means of an appropriate
normalization constant:

C ′(S) =
I(S)
〈Ih〉 /

M(S;U − S)
〈Mh〉 (6)

Furthermore, to assess the significance of the differences observed in the
cluster index values, a statistical index Tc is computed:

Tc(S) =
C ′(S) − 〈C ′

h〉
σ(C ′

h)
(7)

where 〈C ′
h〉 and σ(C ′

h) are the average and the standard deviation of the popula-
tion of normalized cluster indices with the same size as S from the homogeneous
system.

We emphasize that the indices in 5–7 are defined without any reference to
a particular type of system. In their original papers, Edelman and Tononi con-
sidered the fluctuations of a neural system around a stationary state. In our
approach, this measure is applied to time series of data generated by a dynam-
ical model. In general, these data lack the stationary properties of fluctuations
around a fixed point. Moreover, depending upon the case at hand, either tran-
sients from arbitrary initial states to a final attractor, or collections of attractor
states can be considered, as well as responses to perturbations of attractor states.
In all these cases we will use Eq. 5, that will therefore be called the Dynamical
Cluster Index (DCI), as it aims at detecting subsets of variables that are relevant
to the system’s dynamics.

The search for relevant subsets of variables of a dynamical system by means
of the DCI requires first the collection of observations of the variables’ values at
different times. In order to find such sets, in principle, all the possible subsets
of system variables should be considered and their DCI computed. In practice,
this procedure is feasible only for small-size subsystems in a reasonable amount
of time. This paper presents a parallel DCI computation algorithm developed to
address this issue.

3 Parallel Algorithm

When large systems are analyzed, the sequential implementation soon reaches
unrealistic requirements for computation resources, because the number of



18 E. Vicari et al.

possible CRSs increases exponentially with the number of system variables. A
possible solution to mitigate this problem consists of a parallel implementation
of the main building blocks of the code needed to compute the Tc index.

The GPU is specialized for compute-intensive and highly parallel computa-
tion and is capable of addressing highly arithmetically-intense problems that can
be expressed as data-parallel computations. The computation of Tc for each CRS
is independent of the others, thus a GPU-based parallel code seems to be the
most efficient way of computing such an index. That is why we have developed
CUDA C code for searching RSs in complex systems.

In order to understand how our code is organized we should consider that the
exhaustive computation of the Tc index for all the CRSs of a dynamical system
can be divided into the following steps:

1. Computation of the probability distribution function for each system variable;
2. Generation of the homogeneous system;
3. DCI computation for each subset of variables of the homogeneous system;
4. Tc computation for each CRS of the system variables.

From the point of view of the implementation:

– Each sample is stored in a memory area including S adjacent unsigned ints
large enough to contain the Nbit bits needed to represent the N variables
of the system. For example, if we consider a system consisting of N binary
variables, then Nbit = N and S = �Nbit/sizeof(unsigned int)�. If M is the
number of samples, then the system data can be stored in an array of M · S
unsigned integers.

– Each CRS is represented as a bitmask of Nbit bits, where the ith bit is set to
1 if the ith variable is contained in the CRS.

3.1 Computation of the Probability Distribution Function

Each variable of the system is examined individually in order to compute its
probability distribution function. In case of binary variables, for example, the
distribution of the ith variable is defined by the frequency of the values 0 and
1 (fi0 and fi1). The frequency information thus obtained will be used for the
generation of the homogeneous system as described in Sect. 3.2.

The frequencies of occurrence of the variables are also used to compute the
entropy of each variable, necessary for the computation of the DCI as described
in Sect. 3.3. If we consider a binary variable, then the entropy is defined by:

Hi = −fi0 · log2fi0 − fi1 · log2fi1

3.2 Homogeneous System Generation

The homogeneous system (HS) is generated from N random variables, homoge-
neously correlated with one another, having the same probability distribution as
the corresponding variables of the dynamical system to be studied.



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 19

We obtain M samples by assigning to the ith variable, for each sample, a
randomly generated value from the previously estimated distribution.

In case of a system described by binary variables, the ith variable of the
homogeneous system, for each sample, will be 0 with probability fi0 and 1 with
probability fi1. In this way, the HS meets the homogeneity requirement while,
at the same time, it maintains a relationship with the dynamical system under
consideration.

3.3 DCI Computation on the Homogeneous System

All possible CRS sizes (or classes) from 2 to N − 1 are analyzed in order to
compute, for each of them, the mean value and the standard deviation of the
DCI. If the considered size is r, then the CRSs to be examined are selected by
scanning all possible permutations of an N -bit string containing r bits set to 1
and N − r bits set to 0.

The selected CRSs are grouped into grids of T threads each, where each
thread is responsible for computing the DCI of one CRS. We have T = NBNT ,
where NB is the number of blocks per grid and NT is the number of threads
per block. Each CRS of a certain size is coupled with its complementary clus-
ter, whose entropy is necessary for computing the mutual information. In other
words, each grid is composed of T/2 complementary CRS pairs. By synchroniz-
ing the execution of parallel threads in order for the entropy of one CRS to be
available at the right time, it is possible to compute the statistics of classes r
and N − r at the same time, halving the computation time with respect to the
original algorithm.

The outputs of this processing step are the mean value and the standard
deviation of the DCI for each CRS class of the homogeneous system, which are
necessary for computing the Tc index.

3.4 Tc Computation

In the following, we describe the main modules involved in the computation of
the Tc index, as shown in Fig. 1.

DCI Module: The computation of the DCI of a CRS consists of three phases:

1. Creation of the frequency histogram; the number of occurrences of each value
of the CRS is counted; the result is a list of value/number of occurrence pairs;

2. Entropy computation; based on the list obtained in the previous phase, the
entropy is computed according to Eq. 1;

3. Computation of the final output ; the threads of the block are synchronized
to make the complementary entropy available to each CRS. This enables the
computation of the mutual information, which, along with the integration, is
used to compute the DCI.

Calculating the frequency histogram is, computationally, the heaviest step.
In particular we need:



20 E. Vicari et al.

Fig. 1. Tc computation.

– Processing resources to extract the value of the variables in the CRS from
each sample of the system;

– Memory to store the frequency histogram of the CRS.

To obtain a good trade-off between performance and memory usage, we gen-
erate a hash map, pre-allocated for each thread to be managed by the GPU
kernel that computes the histogram (Sect. 3.5).

T c Module: The module that computes the Tc statistical index is a simple
extension of the one which computes the DCI, that takes advantage of the above-
mentioned organization into coupled threads. Particularly, in this case, the CRSs
of each class, ranging from 2 to N/2, are placed aside their complementary
CRSs and are inserted, as for the DCI computation for the homogeneous system,
in parallel computation batches, each composed of T threads. Once the DCI
has been computed, it is sufficient to normalize it according to the statistics
(expected value and standard deviation) of the homogeneous system that were
obtained earlier (see Sect. 3.3). As the Tc module simply extends the DCI module,
both call the same CUDA kernel to perform their computations; the calls differ
only in the input parameters.

Once the Tc indices of all the CRSs of the system are obtained, they are
compared to select the CRSs having the highest index values.

3.5 Resource Occupation and Scalability

If N is the number of variables that compose the system, the total number of
possible CRSs is 2N−1. Thus, the computational complexity of the problem is
O(2N ). Parallelizing the computation allows one to obtain a relevant reduction
of the execution time. However, this is still not enough to perform an exhaustive
search on systems characterized by a large number of variables.

Different considerations can be made regarding memory occupation. Our
implementation is based on a simple fact: it is not possible for a CRS to assume a
number of configurations that is higher than the number of available samples M ,
which is usually much lower than the total number of possible CRS configurations



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 21

(i.e., M � 2N ). Thus, for each CRS it is possible to pre-allocate a hash table
with maximum size M . For this reason, the device memory that is necessary
to contain the hash tables of a grid of threads is directly proportional to three
independent variables, namely:

– T : number of threads per grid;
– Nbit: number of bits needed to store a sample;
– M : number of samples.

Accordingly, the memory occupation increases linearly with the problem size. A
good estimation of the device memory needed is:

MEMTOT = M · T · (S + 2) · sizeof(unsigned int) (8)

where S is the number of unsigned int that are necessary to store Nbit bits. On a
device provided with 2 GB of memory, it is possible, for example, to launch 1024
parallel threads and compute the Tc of the same number of CRSs from a system
characterized by 1000 binary variables, with M = 10000 available samples (in
this case, MEMTOT 	 1.4 GB).

These considerations show that, to analyze large systems, the exponential
dependence on the problem size makes an exhaustive search computationally
unfeasible. However, an approach based on a metaheuristic would definitely be,
as the device memory occupation scales linearly with the problem size.

4 Experimental Results

In this section we illustrate the experimental results we have obtained on four
different dynamical systems. The algorithm was evaluated on both artificial and
biological systems.

The first case study (referred to as LF) is described by 10 variables and
consists of three independent groups, each of which replicates a simple leader-
followers dynamic. The model abstracts situations where agents modify their
opinion agreeing with (or contrasting the) opinion of other specific agents,
called leaders. The system is simply composed of a vector of 10 binary vari-
ables x1, x2, ..., x10 that represent, for example, the positive or negative opinion
of 10 agents about a given proposal. The model generates a series of 10 binary
vectors (each vector representing an observation of the system) according to the
following rules:

– variables are divided into three groups, G1 = [x1, ..., x3], G2 = [x4, ..., x6] and
G3 = [x7, ..., x10];

– x1 is a leader; at each step its value is a random value in {0, 1};
– the values of the followers x2 and x3 are set as a copy of x1 with probability

1 − pnoise and randomly with probability pnoise;
– x4 and x7 are “second order” leaders; in each step their values are randomly

assigned in {0, 1} with probability 1 − pcopy; otherwise x4 is a copy of x1 and
x7 is a copy of x4;



22 E. Vicari et al.

– the values of the followers x5 and x6 are set as a copy of x4 with probability
1 − pnoise and randomly with probability pnoise;

– the values of the followers x8, x9 and x10 are set as a copy of x7 with proba-
bility 1 − pnoise and randomly with probability pnoise.

It is therefore possible to tune the integration among elements in G1, G2 and
G3 and the mutual information between G1 and G2, and between G2 and G3
by changing pnoise and pcopy [2,12].

The second and third cases model simplified gene regulatory networks. In
particular, the second case study (referred to as AT) models the gene regulatory
network shaping the developmental process of Arabidopsis Thaliana; although
the whole network is largely unknown, a certain subsystem has been identified as
responsible for the floral organ specification. The network is modeled by means
of a Boolean network described in [1], having 15 nodes and 10 different attractors
(all fixed points): in order to perform an analysis we built a data series containing
a number of repetitions of these attractors proportional to the size of their basins
of attraction.

The third case (referred to as TH) features 23 Boolean variables, used in [5]
to model the regulatory network controlling the T-helper cell differentiation;
also in this case we built a data series containing a number of repetitions of the
Boolean system attractors proportional to the size of their basins of attraction.
We will not discuss about the adequacy of these simplified models, but we will
take them for granted and apply our method to test whether it can discover
significant MDSs (Mesolevel Dynamical Structures).

The fourth case study is a deterministic simulation of a catalytic chemical
system (Catalytic Reaction System - CRS - in the following), characterized by
26 variables, in which there are two distinct reaction pathways: a linear chain
and an autocatalytic circle. The reactions happen in an open well-stirred chemo-
stat (CSTR) with a constant influx of feed molecules and a continuous outgo-
ing flux of all the molecular species proportional to their concentration. The
dynamics of the system is described adopting a deterministic approach whereby
the reaction scheme is translated into a set of ordinary differential equations
integrated by means of a Euler method with step-size control. The asymptotic
state of this system consists of constant concentrations. In order to apply our
analysis, however, one needs to observe the feedbacks in action: thus, we per-
turbed the concentration of some molecules in order to trigger a response (i.e.,
a series of changes) in the concentration of (some) other species. The perturba-
tions consisted of temporarily setting to zero the concentration of some species
after the system reached its stationary state. To analyze the system response
we used a three-level coding where, for each species, the digit ‘0’, ‘1’ and ‘2’
stand respectively for “decreasing concentration”, “no change” and “increasing
concentration” (Fig. 2) [11,12].

The four cases present different dynamics and representations: in particular,
the first test case consists of a binary time series, whereas the second and third
cases are the juxtaposition of the binary states of several different attractors,
and the fourth case is the encoding of a continuously perturbed situation into a



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 23

Fig. 2. (a) The reaction scheme of the Catalytic Reaction System (CRS): white ellipses
represent the chemicals injected in the incoming flux, meshed ellipses represent the
chemicals produced inside the CSTR vessel, hexagons represent the reactions; contin-
uous arrows represent the consumptions/productions and dashed arrows represent the
catalytic activities. Chemical BB does not participate in any reaction, and it is used as
reference. The six reactions are arranged into two independent groups: a linear chain
and an autocatalytic circle. (b) A time series of the six produced chemicals and the
corresponding three-level encoding.

three-level representation. The method we implemented on GPU is able to find
the correct relevant sets in all situations (some of them being discussed in details
in [11,12]): in this paper, however, we focus our interest on the performance of
the sequential and parallel algorithms.

The parallel algorithm (PA) has been evaluated in terms of correctness and
efficiency (speedup), compared to the sequential algorithm (SA). To this purpose,
we have used a Linux server provided with CPU Intel(R) Xeon(R) 2.10 GHz, 64
GB of RAM and a GPU NVIDIA GeForce GTX 1070. We have executed 10 inde-
pendent runs for each example, using different random seeds when generating
the homogeneous system.

Table 1 summarizes the algorithms’ performance in relation to the system
size (expressed as number of variables) and to the number of samples.

In all these case studies the results are correct: they are equal to the ones
obtained by the sequential implementation, but they have been computed in a

Table 1. Performance summary of the sequential (SA) and parallel (PA) algorithms

System #Variables #Samples Time (SA) Time (PA) Speedup

LF 10 500 2.15 s 11 ms 195.5

AT 15 5000 861 s 0.23 s 3743.5

TH 23 5000 60 ha 27.5 s 7854.5

CRS 26 751 20 da 245 s 7053.1
aEstimated



24 E. Vicari et al.

significantly shorter time. Using our parallel implementation we can now exhaus-
tively analyze systems of up to 35 variables in less than 24 h.

The speedup with respect to the sequential CPU implementation is very
relevant.

5 Conclusion and Final Remarks

In this paper we have presented a fine-grained parallel implementation of the
main building blocks needed to compute the Tc index. In summary, the most
relevant choices, aiming at algorithm efficiency, are:

– Subgroup-wise parallelization (as opposed to a possible system data-wise par-
allelization);

– “Smart” allocation of threads/data (like using a hashmap for each thread,
implemented on the graphics device).

These choices produce an algorithm which obtains a large speedup, but they are
a little more critical as concerns memory allocation.

In the benchmarks we took into consideration, the algorithm obtained a
dramatic speedup with respect to the sequential implementation, allowing us to
detect RSs in dynamical systems of much larger size than previously possible.

When large systems are analyzed, the increasing number of CRSs makes it
impossible to compute the Tc index for every possible subset, even using mas-
sively parallel hardware such as GPUs, so we need to design efficient strategies to
quickly identify the most promising subsets, limiting the extension of the search.

Considering multi-GPU implementations, the structure of the parallel algo-
rithm is such that the computation of each Tc index is totally independent of
the others, which suggests that the number of Tc computations scales almost
perfectly linearly with the number of GPUs.

Smart and efficient search algorithms can be easily designed upon our paral-
lel implementation. For example, in [7], we proposed a metaheuristic based on a
genetic algorithm that draws the search towards the basins of attraction of the
main local maxima in the search space, along with a local search that improves
the results by exploring those regions more finely and extensively. Such a meta-
heuristic computes the fitness function using the GPU-based implementation
of the Tc computation described in this paper. The speedups achieved by our
parallel implementation of the metaheuristic made it possible for us to analyze
systems consisting of up to 137 variables in a reasonable time. Using an exhaus-
tive approach based on a sequential implementation, the same time would have
allowed us to analyze only very simple and rather uninteresting systems.

References

1. Chaos, A., Aldana, M., Espinosa-Soto, C., de León, B.G.P., Arroyo, A.G., Alvarez-
Buylla, E.R.: From genes to flower patterns and evolution: dynamic models of gene
regulatory networks. J. Plant Growth Regul. 25, 278–289 (2006)



GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems 25

2. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some prop-
erties of information theoretical measures for the study of complex systems in
advances in artificial life and evolutionary computation. Commun. Comput. Inf.
Sci. 445, 140–150 (2014)

3. Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisa-
tion of complex systems through the dynamical interactions among their relevant
subsets. In: Andrews, P., et al. (ed.) Proceedings of the European Conference on
Artificial Life 2015 (ECAL 2015), pp. 286–293. The MIT Press (2015)

4. Gershenson, C., Fernandez, N.: Complexity and measuring emergence, self-
organization, and homeostasis at multiple scales. Complexity 18(2), 29–44 (2012)

5. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualita-
tive dynamical systems of regulatory networks. Theor. Biol. Med. Model. 3(1), 13
(2006)

6. Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on
complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

7. Sani, L., et al.: Efficient search of relevant structures in complex systems. In:
Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI),
vol. 10037, pp. 35–48. Springer, Cham (2016). doi:10.1007/978-3-319-49130-1 4

8. Shalizi, C.R., Camperi, M.F., Klinkner, K.L.: Discovering functional communities
in dynamical networks. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A.,
Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 140–157. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73133-7 11

9. Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: relating anatom-
ical and functional connectivity in graphs and cortical connection matrices. Cereb.
Cortex 10(2), 127–141 (2000)

10. Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: identify-
ing strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149
(1998)

11. Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detec-
tion of intermediate level emergent structures and patterns. In: Liò, P., Miglino,
O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of ECAL2013, The 12th
European Conference on Artificial Life. MIT Press (2013)

12. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search
for candidate relevant subsets of variables in complex systems. Artif. Life 21(4),
412–431 (2015)

http://dx.doi.org/10.1007/978-3-319-49130-1_4
http://dx.doi.org/10.1007/978-3-540-73133-7_11

	GPU-Based Parallel Search of Relevant Variable Sets in Complex Systems
	1 Introduction
	2 Method
	3 Parallel Algorithm
	3.1 Computation of the Probability Distribution Function
	3.2 Homogeneous System Generation
	3.3 DCI Computation on the Homogeneous System
	3.4 Tc Computation
	3.5 Resource Occupation and Scalability

	4 Experimental Results
	5 Conclusion and Final Remarks
	References


