
On Termination and Boundedness of Nested
Updatable Timed Automata

Yuwei Wang, Xiuting Tao, and Guoqiang Li(B)

School of Software, Shanghai Jiao Tong University, Shanghai, China
{wangywgg,xiutingtao,li.g}@sjtu.edu.cn

Abstract. We introduce a model named nested updatable timed
automata (NeUTAs), which can be regarded as a combination of nested
timed automata (NeTAs) and updatable timed automata with one updata-
ble clock (UTA1s). The model is suitable for soft real-time system analy-
sis, since the updatable clock representing a deadline can be updated due
to environments. A NeUTA behaves as a UTA1, in which all clocks can
be tested/updated and a special clock can be incremented/decremented.
It also behaves as a pushdown system, in which a UTA1 can be pushed to
a stack or popped from a stack. When time elapses, all clocks (clocks in
the current running UTA1 or in the stack) proceed uniformly. We show
the termination and boundedness of NeUTAs are decidable.

1 Introduction

Recently, numerous extensions of Alur and Dill’s timed automata (TAs) have
been proposed to model and reason real-time systems. They increase the expres-
sive power of TAs in various ways, such as augmenting a stack, adding more
operations on clocks, and extending the original deterministic reset operation to
a non-deterministic update operation.

Nested timed automata (NeTAs) [1,2] are pushdown systems whose control
locations and stack alphabet are TAs. A control location describes a working TA,
and the stack presents a pile of interrupted TAs. A NeTA can either behaves
as the top TA in the stack, or switches from one TA to another by pushing,
popping, or changing the top TA of the stack. It is a natural model for analyzing
real-time systems with context switches, e.g., interrupt systems. The reachability
problem for NeTAs is shown to be decidable.

Updatable timed automata (UTAs) [3] are extensions of TAs having the abil-
ity to update clocks in a more elaborate way (i.e. increment and decrement)
besides the normal operations. The reachability problem of UTAs is undecid-
able, which can be easily verified by encoding two counter machine with UTAs.
However, there are still many decidable subclasses of UTAs by restricting the
expressive power. Among them, updatable timed automata with one updatable
clock (UTA1s) [4] is an interesting decidable subclass by restricting the number
of updatable clocks to be one.

The aim of this paper is to combine NeTAs and UTA1s as a new model and
to study the verification problems. More precisely, we replace TAs in NeTAs with
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 15–31, 2017.
DOI: 10.1007/978-3-319-57708-1 2

16 Y. Wang et al.

UTA1s and thus get nested updatable timed automata (NeUTAs). Such kind of
model is suitable for soft real-time system analysis, since the updatable clock
of each UTA1 is used to describe the soft deadline, which is adjusted due to
different environment. Termination and boundedness of the model are proved
to be decidable, by encoding NeUTAs to vector pushdown systems, after digitiz-
ing dense time. The properties of the latter model are proved to be decidable
by extending the reduced reachability tree proof technique of pushdown vector
addition systems [5]. Note that pushdown vector addition systems assume the
set of locations is a WQO, while the stack alphabet is finite. vector pushdown
systems assume the set of locations is finite, while stack alphabet is a WQO.

Related Work. Timed automata (TAs) [6], proposed by Alur and Dill, are
finite automata augmented with a finite set of clocks. Clocks can be used to
record precisely how much time has elapsed in a dense manner and constrain
the behaviour of the model. Although the theory of timed automata is successful
in modeling and analyzing real-time systems with a large number of problems
having been studied, it is so low-level that it is hard to apply it to verification
of systems in reality directly. Actually many researchers are devoted to study
subclasses or extensions of timed automata.

Hybrid automata [7–9] can be regarded as a generalization of timed
automata. It is a mathematical model for mixed discrete-continuous systems, in
which a discrete problem is embedded in continuous changing environments. The
decidability of reachability problem is undecidable for general hybrid automata,
while initialized rectangular automata form a maximum decidable subclass of
hybrid automata that lies in the boundary of decidability.

Dense timed pushdown automata (DTPDAs) [10] play an essential role of the
prove in this paper. DTPDAs extend timed automata with an additional stack,
where a stack symbol with an age can be pushed to the stack. When time elapses,
all clocks together with ages in the stack proceed uniformly. When popping, the
value of the age in the top stack frame can be checked. The reachability problem
for DTPDAs is shown to be EXPTIME-complete.

Interrupt timed automata (ITAs) [11,12] intend to model timed multi-task
systems with different priority levels. As extensions of TAs, each control state in
ITAs is in an interrupt level, ranged from 1 to n, with exactly one active clock
recording time in each interrupt level. When ITAs are in a given interrupt level,
all clocks of lower interrupt levels are suspended and those of higher interrupt
levels are undefined. The reachability problem for ITAs is shown to be in NEX-
PTIME and PTIME when the number of clocks is fixed. Though both ITAs and
NeTAs can be used to model interrupt systems, they are different in what they
are focus on. ITAs focus on the interrupt level, while NeTAs focus on context
switches.

Paper Organization. The remainder of this paper is structured as follows:
In Sect. 2 we introduce basic notations and models. Section 3 defines syntax
and the semantics of UDTPDA1s. Section 4 shows that the termination and

On Termination and Boundedness of Nested Updatable Timed Automata 17

boundedness of UDTPDA1s are decidable. Section 5 introduces NeUTAs and
shows the decidability on termination and boundedness by encoding NeUTAs to
UDTPDA1s. Section 6 concludes this paper with summarized results.

2 Preliminaries

Let R
≥0 and N be the sets of non-negative real and natural numbers, respec-

tively. Let Nω :=N∪ {ω}, where ω is the least limit ordinal. I denotes the set of
intervals, which are (a, b), [a, b], [a, b) or (a, b] for a ∈ N and b ∈ Nω.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 denotes the clock valuation assigning
each clock in X to 0. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)
(x) = ν(x) + t, for x ∈ X. A clock assignment function ν[y ← b] is defined by
ν[y ← b](x) = b if x = y, and ν(x) otherwise. Further, multiple clock assignment
function ν[y1 ← b1, · · · , yn ← bn] is defined by ν[y1 ← b1, · · · , yn ← bn](x) = bi

if x = yi for 1 ≤ i ≤ n, and ν(x) otherwise. Val(X) is used to denote the set of
clock valuation of X.

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.
we denote the set of finite multisets over D by MP(D), and the union of two
multisets M,M ′ by M � M ′. We regard a finite set as a multiset with the
multiplicity 1, and a finite word as a multiset by ignoring the ordering.

2.1 Updatable Timed Automata

Updatable timed automata (UTAs) [13,14] are extensions of timed automata,
based on the possibility to update the clocks in a elaborate way such as incre-
ment and decrement operations and assignments to arbitrary values. However,
generally, the reachability problem of updatable timed automata is undecidable.
Several decidable subclasses are investigated, based on restriction on the update
abilities [3]. In [4], we proposed another decidable subclass by restricting the
number of updatable clocks to be one. We will adopt the restriction in the fol-
lowing content paper.

Definition 1 (Updatable Timed Automata with One Updatable
Clock). An updatable timed automaton with one updatable clock (UTA1) is
a tuple A = 〈Q, q0,X, c,Δ〉, where

– Q is a finite set of control locations, with the initial control location q0 ∈ Q,
– X = {x1, . . . , xk} is a finite set of normal clocks, and c is the singleton

updatable clock,
– Δ ⊆ Q×Actions+A ×Q is a finite set of actions. A (discrete) transition δ ∈ Δ

is a sequence of actions (q1, φ1, q2) . . . (qi, φi, qi+1), written as q1
φ1;...;φi−−−−−→ qi+1,

in which φj (for 1 ≤ j ≤ i) is one of the following

18 Y. Wang et al.

Local ε, an empty operation,
Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
Assignment x ← I, where x ∈ X ∪ {c} and I ∈ I,
Increment c := c + 1, and
Decrement c := c − 1.

Similar to the definitions in [2], for an easier encoding later, a transition as

a sequence of actions q1
φ1;··· ;φi−−−−−→ qi+1 prohibits interleaving time progress. This

can be encoded with an extra clock by resetting it to 0 and checking it still 0
after transitions, and introducing fresh control states.

Given a UTA1 A ∈ A , we use Q(A), q0(A), X(A), c(A) and Δ(A) to repre-
sent the set of control locations, the initial location, the set of normal clocks, the
updatable clock and the set of actions, respectively. We will use similar notations
throughout the paper.

Definition 2 (Semantics of UTA1s). Given a UTA1 A = 〈Q, q0,X, c,Δ〉, a
configuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν
on X ∪ {c}. The transition relation of the UTA1 is represented as follows,

– Progress transition: (q, ν) t−→ (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→ (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,

• Local φ = ε, then ν1 = ν2. This operation only changes the control
location and leaves the clock valuation unaltered.

• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds. The transition can be
performed only if the value of x belongs to I.

• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I. Clock x is assigned
to a non-deterministic value in I.

• Increment φ = c := c + 1, ν2 = ν1[c ← ν1(c) + 1]. The value of the
updatable clock c is incremented by 1.

• Decrement φ = c := c − 1, ν2 = ν1[c ← ν1(c) − 1] and ν1(c) ≥ 1 holds.
The value of the updatable clock c is decremented by 1.

The initial configuration is (q0, ν0).

Proposition 1. The reachability problem of UTA1 under diagonal-free con-
straints is decidable [4].

2.2 Dense Timed Pushdown Automata

Dense timed pushdown automata [2,10] extend timed pushdown automata with
time updating in the stack. Each symbol in the stack is equipped with a local
clock named an age, and all ages in the stack proceed uniformly. An age in each
context is assigned to the value of a clock when a push action occurs. A pop
action pops the top symbol to assign the value of its age to a specified clock.

Definition 3 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple D = 〈Q, q0, Γ,X,Δ〉 ∈ D , where

On Termination and Boundedness of Nested Updatable Timed Automata 19

– Q is a finite set of control locations with the initial control location q0 ∈ Q,
– Γ is a finite stack alphabet,
– X is a finite set of clocks, and
– Δ ⊆ Q × Actions+D × Q is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (q1, ϕ1, q2), · · · , (qi, ϕi, qi+1)
written as q1

ϕ1;··· ;ϕi−−−−−→ qi+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X and I ∈ I,
– Push push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X, and
– Pop pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X.

Definition 4 (Semantics of DTPDAs). For a dense timed pushdown
automaton 〈Q, q0, Γ,X,Δ〉, a configuration is a triplet (q, w, ν) with a control
location q ∈ Q, a stack w ∈ (Γ × R

≥0)∗, and a clock valuation ν on X. In
a stack w = (γ1, t1). · · · .(γn, tn), γi is a stack symbol and ti is an age. t-time
passage on the stack increases all ages in the stack by the same value, which
is denoted by w + t = (γ1, t1 + t). · · · .(γn, tn + t). The transition relation of a
DTPDA is represented as follows.

– Progress transition: (q, w, ν) t−→D (q, w + t, ν + t), where t ∈ R
≥0. When time

elapses, all clocks together with all ages in the stack proceed uniformly.
– Discrete transition: (q1, w1, ν1)

ϕ−→D (q2, w2, ν2), if q1
ϕ−→ q2, and one of the

following holds,
• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Push ϕ = push(γ, x), then ν1 = ν2, w2 = (γ, ν1(x)).w1. The stack symbol

γ and an age of the value of clock x are pushed to the stack.
• Pop ϕ = pop(γ, x), then ν2 = ν1[x ← t], w1 = (γ, t).w2. The top stack

frame (γ, t) is popped from the stack and the clock x is assigned with the
value of the age t.

The initial configuration �0 = (q0, ε, ν0).

Remark 1. For simplicity of the later proofs, the definition of DTPDAs follows
Definition 1 in [2], slightly modified from the original [10]. The former can encode
the later easily.

3 Updatable Dense Timed Pushdown Automata

An updatable dense timed pushdown automaton with one updatable clock
(UDTPDA1) is different from Definition 3 at:

20 Y. Wang et al.

– besides the set X of normal clocks (of the fixed number k), an updatable clock
c is introduced. We refer to the normal clocks as x1, x2, ..., xk and sometimes
we refer to the updatable clock c as x0 for simplicity.

– a tuple of ages (for simplicity, we fix the length of a tuple to be k + 1) is
pushed on the stack and/or popped from the stack.

Definition 5 (UDTPDA1s). A UDTPDA1 is a tuple U = 〈S, s0, Γ,X, c,Δ〉 ∈
U , where

– S is a finite set of control locations with the initial control location s0 ∈ S,
– Γ is a finite stack alphabet,
– X is a finite set of local clocks (with |X| = k),
– c is the singleton updatable clock and
– Δ ⊆ S × Action+

U × S is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (s1, ϕ1, s2), · · · , (si, ϕi,

si+1) written as s1
ϕ1;··· ;ϕi−−−−−→ si+1, in which ϕj (for 1 ≤ j ≤ i) is one of the

followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X ∪ {c} and I ∈ I,
– Increment c := c + 1,
– Decrement c := c − 1,
– Push push(γ), where γ ∈ Γ , and
– Pop pop(γ), where γ ∈ Γ .

Definition 6 (Semantics of UDTPDA1s). For a UDTPDA1 〈S, s0, Γ,
X, c,Δ〉, a configuration is a triplet (s, w, ν) with a control location s ∈ S, a
stack w ∈ (Γ × (R≥0)k+1)∗, and a clock valuation ν on X ∪ {c}. In a stack
w = (γ1, t̄1). · · · .(γn, t̄n), γi is a stack symbol and t̄i = (t0i , · · · , tki) is a k + 1-
tuple of ages. t-time passage on the stack increases all ages in the stack by the
same value t, which is denoted by w + t = (γ1, t̄1 + t). · · · .(γn, t̄n + t) where
t̄i + t = (t0i + t, · · · , tki + t).

The transition relation of a UDTPDA1 is represented as follows.

– Time progress: (s, w, ν) t−→U (s, w + t, ν + t), where t ∈ R
≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→U (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,

• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2, and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Increment c := c + 1, then w1 = w2, and ν2 = ν1[c ← ν1(c) + 1],
• Decrement c := c−1, then w1 = w2, ν2 = ν1[c ← ν1(c)−1] and ν1(c) ≥ 1

holds,
• Push ϕ = push(γ), then ν2 = ν0, w2 = (γ, (ν1(c), ν1(x1), · · · , ν1(xk))).w1

for X = {x1, · · · , xk}. The values of k+1 clocks are pushed as ages in the
stack.

On Termination and Boundedness of Nested Updatable Timed Automata 21

• Pop ϕ = pop(γ), then ν2 = ν1[c ← t0, x1 ← t1, · · · , xk ← tk], w1 =
(γ, (t0, · · · , tk)).w2. The values of k+1 clocks are recovered with ages in
the top stack frame.

The initial configuration �0 = (s0, ε, ν0). We use ↪→ to range over these transi-
tions, and ↪→∗ is the reflexive and transitive closure of ↪→.

Example 1. The figure shows transitions �1 ↪→ �2 ↪→ �3 ↪→ �4 of a UDTPDA1
with S = {•} (omitted in the figure), X = {x1, x2} and Γ = {a, b, d}. All values
which are changed in a transition are in bold. At �1 ↪→ �2, the values of c, x1

and x2 (2.3, 0.5 and 3.9) are pushed to the stack with d. After pushing, value of
c, x1 and x2 will be reset to zero, At �2 ↪→ �3, time elapses 2.6. At �3 ↪→ �4, a
increment occurs which increases the value of c from 2.6 to 3.6.

(a, (1.5, 1.9, 4.5))
(b, (3.2, 6.7, 2.9))
(a, (3.3, 3.1, 5.2))
(d, (2.7, 4.2, 3.3))

c ← 2.3
x1 ← 0.5
x2 ← 3.9

(d, (2.3,0.5,3.9))
(a, (1.5, 1.9, 4.5))
(b, (3.2, 6.7, 2.9))
(a, (3.3, 3.1, 5.2))
(d, (2.7, 4.2, 3.3))

c ← 0
x1 ← 0
x2 ← 0

(d, (4.9,3.1,6.5))
(a, (4.1,4.5,7.1))
(b, (5.8,9.3,5.5))
(a, (5.9,5.7,7.8))
(d, (5.3,6.8,5.9))

c ← 2.6
x1 ← 2.6
x2 ← 2.6

(d, (4.9, 3.1, 6.5))
(a, (4.1, 4.5, 7.1))
(b, (5.8, 9.3, 5.5))
(a, (5.9, 5.7, 7.8))
(d, (5.3, 6.8, 5.9))

c ← 3.6
x1 ← 2.6
x2 ← 2.6

�1
push(d)−−−−−−−−−−−−→U �2

2.6−−−−−−−−−−−−−→U �3
c := c+1−−−−−−−−−−−−→U �4

4 Termination and Boundedness of UDTPDA1s

In this section, we show that the termination and boundedness of UDTPDA1s are
decidable. We first introduce vector pushdown systems and prove its decidability
on termination and boundedness. Then we describe the digitization technique in
UDTPDA1s using digitized configuration and its operations, which intend to sim-
ulate configurations and transitions of UDTPDA1s, respectively. Finally, the spe-
cific encoding from a UDTPDA1 to a snapshot vector pushdown system is given.

4.1 Vector Pushdown Systems

Definition 7 (Vector Pushdown Systems). A vector pushdown system is a
tuple P = (Q,Γ,Nk,Δ), where Q is a finite set of states, Γ is a finite stack
alphabet, Nk is k-dimension natural number vectors, and Δ ⊆ P × (Γ ×N

k)≤2 ×
P × (Γ × N

k)≤2. We use α, β, γ, · · · to range over Γ × N
k, and w, v, · · · over

words in (Γ × N
k)∗.

A configuration of P is a pair 〈q, w〉, where a state q ∈ Q and a stack
w ∈ (Γ × N)∗. A transition relation =⇒ between configurations of P is defined
by

(p, γ → p′, γ′) ∈ Δ

〈p, γw〉 ↪→ 〈p′, γ′w〉 Inter
(p, γ → p′, αβ) ∈ Δ

〈p, γw〉 ↪→ 〈p′, αβw〉 Push

(p, γ → p′, ε) ∈ Δ

〈p, γw〉 ↪→ 〈p′, w〉 Pop
(p, ε → p′, α) ∈ Δ

〈p,w〉 ↪→ 〈p′, αw〉 Simple-Push

22 Y. Wang et al.

(p, αβ → p′, γ) ∈ Δ

〈p, αβw〉 ↪→ 〈p′, γw〉 Nonstandard-Pop

Remark 2. In a pushdown system, the Simple-Push and Nonstandard-Pop
rules can be encoded by other three rules. However, in a vector pushdown system,
since the stack symbols in Γ × N

k are essential unbounded, thus all of the five
rules are necessary.

Let |w| denotes the length of word w and w[i] denotes the i-th symbol in
w. The head h(p,w) of a configuration 〈p,w〉 is (p,w[1]) if w = ε; otherwise,
h(p,w) = (p,⊥). Since a finite set is well-quasi-ordered and (Nk,≤) is well-quasi-
ordered, by Dickson’s Lemma, we can obtain the set of heads of configurations
is well-quasi-ordered.

Besides, we denote a1a2 . . . am � b1b2 . . . bn, if m = n and, for each i, ai ≤ bi

holds, and w�v if w�v and w = v.
The reachability tree of a VPS V = (Q,Γ,Nk,Δ) with an initial configuration

c0 is a rooted unordered tree defined as follows. Each node of the tree is labeled
by a configuration of V. The root r is labeled by the initial configuration c0,
denoted by r : c0. Each node n : cn has a child m : cm when cn ↪→ cm. Note that
the reachability tree of V is finitely branching since Δ is finite.

Termination Problem. The termination problem asks whether all runs of a
given system are finite, we have the following definition.

Definition 8. A node s : 〈p,w〉 pumps a node t : 〈q, v〉 if

– there is a path from s to t, and every node t′ : 〈p′, w′〉 on it satisfies |w′| ≥ |w|.
– h(〈p,w〉) � h(〈q, v〉), i.e., p � q and either w = ε or w[1] ≤ v[1].

We call a node pumpable if there exists a node pumping it. The notion of
pumpable nodes is similar to subsumed nodes in [5], but we consider the increase
of heads instead of states. Let the reduced reachability tree be the largest prefix
of the reachability tree such that every pumpable node has no children.

The intuition of pumpable nodes is that if the run from 〈p,w〉 to 〈q, v〉 only
changes the top element of w, then we can simulate this run from 〈q, v〉 to some
〈q′, v′〉 by monotonicity, satisfying p � q � q′, and w[1] ≤ v[1] ≤ v′[1]. We can
construct an infinite run by repeating this process.

Conversely, assume 〈p0, w0〉 ↪→ 〈p1, w1〉 · · · is an infinite run, we can extract
an infinite subsequence, say 〈pi0 , wi0〉, 〈pi1 , wi1〉, · · · , such that each node is cho-
sen if it has the minimal depth of the stack in its suffix run. Note that each pair
of 〈pik , wik〉 and 〈pij , wij 〉 with k < j in this subsequence satisfies the first con-
dition of pumpable nodes. By the fact that the set of heads is well-quasi-ordered,
it must contain a pumpable node.

Theorem 1. A VPS has an infinite run if, and only if, its reduced reachability
tree contains a pumpable node.

On Termination and Boundedness of Nested Updatable Timed Automata 23

Boundedness Problem. The boundedness asks whether the reachability set
is finite. We know that any infinite run has a pumpable node. If a pumpable
node is exactly the same as the one that pumps it, still an infinite run keeps
the reachability set finite. Otherwise, a VPS enlarges reachable configurations
infinitely.

Definition 9. A node s : 〈p,w〉 strictly pumps a node t : 〈q, v〉 if s pumps t,
and either |w| < |v| or h(〈p,w〉) � h(〈q, v〉).

Theorem 2. A VPS has an infinite reachability set if, and only if, its reduced
reachability tree contains a strictly pumpable node.

Proof. (Only-if) Assume a VPS V has an infinite reachability set. Let T be the
largest prefix of its reachability tree such that, on each branch, all nodes have
distinct labels. The tree T is infinite since every configuration in the reachability
set is a node in T .

By König’s lemma, it follows that T contains finitely many branches in which
all nodes are distinct. Since the reduced reachability tree of V is finite, among
finitely many branches, there are two nodes n : (p,w) and m : (q, v) such that
they are in the reduced reachability tree and n pumps m.

Thus, (p,w) = (q, v) and (p,w) pumps (q, v). By definition of pumpable
nodes, we have two cases: (1) |w| < |v|, and (2) |w| = |v|. In case (2), either
w � v or p ≺ q holds. w[2, |w|] = v[2, |v|] implies either w[1] < v[1] or p ≺ q.
Thus, both cases, n strictly pumps m.

(If) Similar to that of Theorem 1. The path from the root to a strictly pumpable
node yields a run

(p0, w0)
op1−→ . . .

opk−→ (pk, wk)
opk+1−→ . . .

opl−→ (pl, wl)

such that (pk, wk) strictly pumps (pl, wl), which leads an infinite run by iterating
the sequence of operations opk+1, ..., opl. As the case analysis, if |w| < |v|, the
resulting infinite run enlarges the length of the stack infinitely; if w[1] < v[1],
the resulting infinite run enlarges the top element of the stack infinitely.

4.2 Digitized Configuration and Its Operations

Let 〈S, s0, Γ,X, c,Δ〉 be a UDTPDA1, and let n be the largest integer (except
for ω) appearing in Δ. For v ∈ R

≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

The idea of the next digitization is inspired by [15–17].

Definition 10 (Digitization). Let frac(t) = t − floor(t) for t ∈ R
≥0. A

digitization function digi : MP(({c} ∪ X ∪ Γ) ×R
≥0) → MP(({c} ∪ X ∪ Γ) ×

Intv(n))∗ is defined as follows.
For Ȳ ∈ MP(({c} ∪ X ∪ Γ) × R

≥0), let Y0, Y1, · · · , Ym be multisets that
collect (x, proj(t))’s having the same frac(x, t) for (x, t) ∈ Ȳ. Among them,

24 Y. Wang et al.

Y0 (which is possibly empty) is reserved for the collection of (x, proj(t)) with
frac(t) = 0. We assume that Yi’s except for Y0 is non-empty (i.e., Yi = ∅
with i > 0 is omitted), and Yi’s are sorted by the increasing order of frac(t)
(i.e., frac(t) < frac(t′) for (x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈ Yi+1). Thus,
digi(Ȳ) is a word Ȳ = Y0Y1 · · · Ym.

For a stack frame v = (γ, (t0, · · · , tk)) of a UDTPDA1, we denote a word
(γ, t0) · · · (γ, tk) by dist(v). Given a clock valuation ν, we denote a clock word
(c, ν(c))(x1, ν(x1)) . . . (xn, ν(xk)) by time(ν) where c is the singleton updatable
clock and xi ∈ X for 1 ≤ i ≤ k.

Example 2. In Example 1, we assume n = 6 and have 13 intervals illustrated
below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the configuration �1 = (•, v4 · · · v1, ν) in Example 1, let Ȳ = dist(v4) �
time(ν) be a word, and Ȳ = digi(Ȳ), then

Ȳ = {(a, 1.5), (a, 1.9), (a, 4.5), (c, 2.3), (x1, 0.5), (x2, 3.9)}
Ȳ = {}{(c, r5)}{(x1, r1), (a, r3), (a, r9)}{(x2, r7), (a, r3)}

Definition 11 (Digiword). A word Ȳ ∈ MP(({c} ∪ X ∪ Γ) × Intv(n))∗ is a
digiword if the following is satisfied:

– Let a k + 1-pointer ρ̄ of Ū is a tuple of k + 1 pointers to mutually different
k+1 elements in Ū . Then there are a pair of k+1-pointers (ρ̄1, ρ̄2) in Ȳ that
point to clocks and ages in the topmost stack frame, respectively.

– For every element in Ȳ , either ρ̄1 or ρ̄2 points to it.

We refer the element (γ, r) pointed by the i-th pointer by ρ̄[i] where 0 ≤ i ≤ k.
Let the set Digi contains all digiwords. Digi is a finite set by observing that at
most 2k + 2 elements exist in a digiword.

A digiword Ȳ intends to be the digitization of the current clock valuation
(pointed by ρ̄1) and the topmost stack frame (pointed by ρ̄2) in a UDTPDA1.
More precisely, for 0 ≤ i ≤ k, ρ̄1[i] points to (xi, proj(ν(xi))) for (xi, ν(xi)) ∈
time(ν) where ν is the clock valuation and ρ̄2[i] points to (γ, proj(ti)) for (γ, ti) ∈
dist(v) where v is the topmost stack frame.

Definition 12 (Digitized Configuration). A digitized configuration is a
tuple Ū ∈ Digi × N2, which contains a digiword and a pair of natural num-
bers. The pair of natural numbers intend to roughly record the time passage
when the value of updatable clocks in the current clock valuation and the top-
most stack frame exceed the maximum integer n. Each time the updatable clocks
value exceeds n and meanwhile its value changes between integer and non-integer
with time elapsing, we increase the corresponding natural number by one.

On Termination and Boundedness of Nested Updatable Timed Automata 25

Example 3. The word Ȳ in Example 2 can be extended to a digitized configu-
ration Ū by adding a pair of 3-pointers (ρ̄1, ρ̄2) (pointers are marked with the
numbered overlines and underlines). and a pair of numbers (0, 0).
Ū = ({}{(c, r5)

0}{(x1, r1)
1
, (a, r3)

0
, (a, r9)

2
}{(x2, r7)

2
, (a, r3)

1
}, 0, 0)

Pointers are given more explicitly below:
ρ̄1(0) = (c, r5) ρ̄1(1) = (x1, r1) ρ̄1(2) = (x2, r7)
ρ̄2(0) = (a, r3) ρ̄2(1) = (a, r3) ρ̄2(2) = (a, r9)

Definition 13 (Operations on Digitized Configuration). Let Ū = (Y0 · · ·
Ym, num1, num2), Ū ′ = (Y ′

0 · · · Y ′
m′ , num′

1, num′
2), V̄ = (Y ′′

0 · · · Y ′′
m, num′′

1 ,
num′′

2) ∈ Digi × N
2 are digitized configurations such that Ū (resp. Ū ′ and V̄) has

a pair of k + 1-pointers (ρ̄1, ρ̄2) (resp. (ρ̄′
1, ρ̄

′
2) and (ρ̄′′

1 , ρ̄′′
2)). We define operations

as follows which are used to simulate transitions of UDTPDA1s in the next sub-
section. Note that except for Rotate, Map, and Propogate, the k + 1-pointers
ρ̄1 is changed corresponding to the operation to ensure that properties of digiwords
are still satisfied after operations. Namely when an element is removed, the pointer
which points to it is set to empty. And when an element (xi, r) for xi ∈ {c} ∪ X is
added, the pointer ρ̄1[i] is modified to point to that new element.

– Insertx: insertx(Ū , (x, ri)) for x ∈ X inserts (x, ri) to Ū (may nondeter-
ministically) at
⎧
⎨

⎩

either put into Yj for j > 0, or
put the singleton set {(x, ri)} at any place after Y0 if i is odd

put into Y0 if i is even

– Insertc: insertc(Ū , (c, ri)) for the updatable clock c inserts (c, ri) to Ū and
updates natural number num1 in one of three following ways:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) either put (c, ri) into Yj for j > 0, or
put the singleton set {(c, ri)} at any place after Y0

and num1 = 0 if i ≤ 2n and i is odd
(2) put (x, ri) into Y0 and num1 = 0 if i ≤ 2n and i is even
(3) either put (c, ri) into Yj for j ≥ 0, or

put the singleton set {(c, ri)} at any place after Y0

and num1 = d, where d is a positive integer
and d is odd if (c, ri) is put into Y0 otherwise even if i = 2n+ 1

– Init: For Ū = (Y0 · · · Ym, num1, num2), init(Ū) is obtained by updating Y0

with Y0 � {(xi, r0) | xi ∈ {c} ∪ X} and num1 with 0.
– Delete: delete(Ū , x) for x ∈ {c} ∪ X is obtained from Ū by deleting the

element (x, r) indexed by x.
– Increase: increase(Ū) is obtained from Ū by replacing the element (c, ri)

indexed by c with element (c, rmin{i+2,2n+1}) and updating num1 as follows:
⎧
⎨

⎩

num1 := num1 if i < 2n − 1
num1 := num1 + 1 if i = 2n − 1
num1 := num1 + 2 otherwise

26 Y. Wang et al.

– Decrease: decrease(Ū) is obtained from Ū by replacing the element (c, ri)
indexed by c with element (c, rj) and updating num1 as follows:

⎧
⎨

⎩

j = max(i − 2, 0) and num1 := num1 if num1 ≤ 1
j = i − 1 and num1 := 0 else if num1 = 2
j = i and num1 := num1 − 2 otherwise

– Rotate: Rotate intends to simulate the time progress transition. A rotation
Ū = (Y0 · · · Ym, num1, num2) ⇒ Ū ′ = (Y ′

0 · · · Y ′
m′ , num′

1, num′
2) is defined as

follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ū ′ = (Y ′
0 · · · Y ′

m+1, if Y0 = ∅, Y ′
0 = ∅, Y ′

1 = {(γ, rmin{i+1,2n+1})
num′

1, num′
2) | (γ, ri) ∈ Y0}, Y ′

j = Yj−1 for j ∈ [2..m + 1],
num′

1 = num1 + 1 if (c, ri) ∈ Y0 and i ≥ 2n
otherwise num1, and num′

2 = num2 + 1 if
ρ̄1[0] = (γ, ri) ∈ Y0 and i ≥ 2n, otherwise
num2 + 1.

Ū ′ = (Y ′
0 · · · Y ′

m−1, otherwise, Y ′
0 = {(γ, rmin{i+1,2n+1}) | (γ, ri) ∈ Ym},

num′
1, num′

2) Y ′
j = Yj for j ∈ [1..m − 1], num′

1 = num1 + 1,
if (c, ri) ∈ Ym and i ≥ 2n, otherwise num1,
and num′

2 = num2 + 1 if ρ̄1[0] = (γ, ri) ∈ Ym

and i ≥ 2n, otherwise num2.

(ρ̄1, ρ̄2) are updated to correspond to the permutation accordingly. As conven-
tion, we define ⇒∗ as reflexive transitive closure of ⇒.

– Map: Map intends to simulate the push transition. map(Ū , γ) for γ ∈ Γ is
obtained from Ū by the following operations. First delete all elements pointed
by ρ̄2. Then replace (x, rj) pointed by ρ̄1 for x ∈ {c} ∪ X with (γ, rj) and set
ρ̄2 to point to that. Finally assign value of num1 to num2.

– Propogate: Propogate intends to simulate the pop transition. propogate(Ū ,
Ū ′, γ) for γ ∈ Γ is set to be V̄ which is obtained by finding a rotation Ū ′ ⇒∗ V̄
such that ρ̄′′

1 of V̄ matches the original ρ̄2 of Ū . That is to say, for 0 ≤ i ≤ k,
ρ̄′′
1 [i] = (x, rm) and ρ̄2[i] = (γ, rn), we have m = n.

Example 4. We begin with the digitized configuration Ū in Example 3, to sim-
ulate transitions �1 ↪→∗ �4 in Example 1.

– push(d) is simulated by Ū1 = init(map(Ū , d)).
Ū1 = ({(c, r0)

0
, (x1, r0)

1
, (x2, r0)

2}{(d, r5)
0
}{(d, r1)

1
}{(d, r7)

2
}, 0, 0)

– Time elapse of 2.6 time units is simulated by Ū1 ⇒∗ Ū2

Ū2 = ({}{(d, r7)
1
}{(d, r13)

2
}{(c, r5)

0
, (x1, r5)

1
, (x2, r5)

2}{(d, r9)
0
}, 0, 0)

– c := c + 1 is simulated by Ū3 = increase(Ū2).
Ū3 = ({}{(d, r7)

1
}{(d, r13)

2
}{(c, r7)

0
, (x1, r5)

1
, (x2, r5)

2}{(d, r9)
0
}, 0, 0)

On Termination and Boundedness of Nested Updatable Timed Automata 27

4.3 Snapshot Vector Pushdown System

A snapshot vector pushdown system (snapshot VPS) keeps the digitization of
clock valuation and ages in the top stack frame and a pair of natural numbers
that record roughly how much the current updatable clock pointed by ρ̄1[0] and
the age of element pointed by ρ̄2[0] exceed the maximum integer n in the top
stack frame, as a digitized configuration.

We show that a UDTPDA1 is encoded into its digitization, called a snap-
shot VPS. The keys of the encoding are, when a pop occurs, the time progress
recorded at the top stack symbol is propagated to the next stack symbol after
finding a series of rotations by matching between k + 1-pointers ρ̄2 and ρ̄′

1.
Using digitized configuration and its operations defined in the last subsection,
the encoding is quite natural.

Definition 14. Let π : �0 = (s0, ε, ν0) ↪→∗ � = (s, w, ν) be a transition sequence
of a UDTPDA1 from the initial configuration. If π is not empty, we refer the
last step as λ : �′ ↪→ �, and the preceding sequence by π′ : �0 ↪→∗ �′. Let w =
vm · · · v1. A snapshot is a digitized configuration snap(π) = (Ȳ , num1, num2),
where num1 = 2 × (floor(ν(c)) − n) + ceiling(frac(ν(c))), num2 = 2 ×
(floor(t0) − n) + ceiling(frac(t0)) if w is not empty and vm = (γ, t0, · · · , tk),
otherwise num2 = 0, and Ȳ = digi(dist(vm) � time(ν)).

In snap(π), we define the k + 1-pointer ρ̄1[i] = (xi, ν(xi)) for 0 ≤ i ≤ k.
We also define ρ̄2[i] = (γ, proj(ti)) for (γ, ti) ∈ dist(vm) if w is not empty,
otherwise ρ̄2 is left undefined. A snapshot configuration Snap(π) is inductively
defined from Snap(π′).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(s0, snap(ε)) if π = ε.
(s′, snap(π) tail(Snap(π′))) if λ is Timeprogress,Local,Test,

Assign, Increment and Decrement.
(s′, snap(π) Snap(π′)) if λ is Push.
(s′, snap(π) tail(tail(Snap(π′)))) if λ is Pop.

Definition 15. For a UDTPDA1 〈S, s0, Γ,X, c,Δ〉, we define the correspond-
ing encoded snapshot VPS 〈S, s0,Digi,N2,Δd〉 with the initial configuration
〈s0, snap(ε)〉. Then Δd consists of:

Time progress 〈s, Ū〉 ↪→S 〈s, Ū ′〉 for Ū ⇒∗ Ū ′.
Local (s ε−→ s′ ∈ Δ) 〈s, Ū〉 ↪→S 〈s′, Ū〉.
Test (s x∈I?−−−→ s′ ∈ Δ with x ∈ X ∪ {c}) If ri ⊆ I and (x, ri) ∈ Ȳ , where

Ū = (Ȳ , num1, num2), 〈s, Ū〉 ↪→S 〈s′, Ū〉.
Assign (s x←I−−−→ s′ ∈ Δ with x ∈ X) For ri ⊆ I,

〈s, Ū〉 ↪→S 〈s′, (insertx(delete(Ū , x), (x, ri)))〉.
Assign (s c←I−−−→ s′ ∈ Δ) For ri ⊆ I,

〈s, Ū〉 ↪→S 〈s′, (insertc(delete(Ū , c), (c, ri)))〉.
Increment (s c := c+1−−−−−→ s′ ∈ Δ)

〈s, Ū〉 ↪→S 〈s′, increase(Ū)〉.

28 Y. Wang et al.

Decrement (s c := c−1−−−−−→ s′ ∈ Δ)
〈s, Ū〉 ↪→S 〈s′, decrease(Ū)〉.

Push (s
push(γ)−−−−−→ s′ ∈ Δ)

〈s, Ū〉 ↪→S 〈s′, (init(map(Ū , γ)))Ū〉.
Pop (s

pop(γ)−−−−→ s′ ∈ Δ)
〈s, Ū Ū ′〉 ↪→S 〈s′, propagate(Ū , Ū ′, γ)〉.

By induction on the number of steps of transitions, the encoding relation
between a UDTPDA1 with a single updatable clock and a snapshot VPS is
observed.

Lemma 1. Let us denote �0 and � (resp. 〈s0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a UDTPDA1 (resp. its snapshot VPS S).

(Preservation) If π : �0 ↪→∗ �, there exists 〈s, w̃〉 such that 〈s0, w̃0〉 ↪→∗
S 〈s, w̃〉

and Snap(π) = 〈s, w̃〉.
(Reflection) If 〈s0, w̃0〉 ↪→∗

S 〈s, w̃〉, there exists π : �0 ↪→∗ � with Snap(π) =
〈s, w̃〉.

5 Nested Updatable Timed Automata

5.1 Nested Updatable Timed Automata

Nested Updatable Timed Automata(NeUTAs) extend NeTAs [1,2] by replacing
every TA in NeTAs to a UTA1. A NeUTA has internal transitions, in which
it will behave as a individual UTA1 having local, test, assign, increment and
decrement transitions, and push and pop transitions. The stack of a NeUTA
contains a pile of UTA1s which have been pushed.

Definition 16 (Nested Updatable Timed Automata). A nested updatable
timed automaton (NeUTA) is a quadruplet N = (T,A0,X, c,Δ), where

– T is a finite set {A0,A1, · · · ,Am} of UTA1s, with the initial UTA1 A0 ∈ T .
We assume the sets of states of Ai, denoted by S(Ai), are mutually disjoint,
i.e., S(Ai)∩S(Aj) = ∅ for i = j. We denote the initial state of Ai by q0(Ai).

– X is the finite set of k local clocks and c is the updatable clock.
– Δ ⊆ Q× (Q∪{ε})×Actions×Q× (Q∪{ε}) describes transition rules below,

where Q = ∪Ai∈T S(Ai).

Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working UTA1 (placed at a control location) with q, q′ ∈ Ai.

Push (q, ε, push, q0(Ai′), q), which interrupts the currently working UTA1 Ai

at q ∈ S(Ai). Then, a UTA1 Ai′ newly starts.
Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ S(Ai′) after Ai

has finished at q ∈ S(Ai).

On Termination and Boundedness of Nested Updatable Timed Automata 29

Definition 17 (Semantics of NeUTAs). Given a NeUTA (T,A0,X, c,Δ),
the current control state is referred by q. Let ValX = {ν : X ∪ {c} → R

≥0}. A
configuration of a NeUTA is an element in (Q × ValX , (Q × ValX)∗).

– Time progress transitions: (〈q, ν〉, v) t−→ (〈q, ν + t〉, v + t) for t ∈ R
≥0, where

v + t set ν′ := ν′ + t of each 〈q′, ν′〉 in the stack.
– Discrete transitions: κ

ϕ−→ κ′ is defined as follows.
• Internal (〈q, ν〉, v)

ϕ−→ (〈q′, ν′〉, v), if 〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in Definition 2.
• Push (〈q, ν〉, v)

push−−−→ (〈q0(Ai′), ν0〉, 〈q, ν〉.v). The current working UTA1
(including its control location and clock valuation) is pushed to the stack.

• Pop (〈q, ν〉, 〈q′, ν′〉.w)
pop−−→ (〈q′, ν′〉, w). The current working UTA1 is

replaced with the topmost UTA1 in the stack and the topmost stack frame
is removed.

The initial configuration of NeUTA is (〈q0(A0), ν0〉, ε), where ν0(x) = 0 for
x ∈ X∪{c}. We use −→ to range over these transitions, and −→∗ is the reflexive
and transitive closure of −→.

5.2 Termination and Boundedness of NeUTAs

In this subsection we present a trivial encoding from NeUTAs to UDTPDA1s
and so the termination and boundedness of NeUTAs are decidable.

Let N = (T,A0,X, c,Δ) be a NeUTA. We define a corresponding UDTPDA1
E(N) = 〈S, s0, Γ,X, c,∇〉, such that

– S = Γ =
⋃

Ai∈T S(Ai) is the set of all locations of UTA1s in T , with
– s0 = q0(A0) is the initial location of the initial UTA A0 of N .
– X = {x1, . . . , xk} is the set of k local clocks, and c is the singleton updatable

clock.
– ∇ is the union

⋃
Ai∈T Δ(Ai)

⋃
H(N) where

{
Δ(Ai) = {Local,Test,Assign, Increment,Decrement},
H(N) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ Δ(N)

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε)) ∈ Δ(N)

Definition 18. Let N be a NeUTA (T,A0,X, c,Δ) and let E(N) be a UDT-
PDA1 〈S, s0, Γ,X, c,∇〉. For a configuration κ = (〈A, q, ν〉, v) of N such that
v = (A1, q1, ν1) . . . (An, qn, νn), �κ� denotes a configuration (q, w(κ), ν) of E(N)
where w(κ) = w1 · · · wn with wi = (qi, νi).

Lemma 2. For a NeUTA N , a UDTPDA1 E(N), and configurations κ, κ′ of N ,

(Preservation) if κ −→N κ′, then �κ� ↪→∗
E(N) �κ′�, and

(Reflection) if �κ� ↪→∗
N �, there exists κ′ with � ↪→∗

E(N) �κ′� and κ −→∗
N κ′.

By this encoding, we have our main result in Theorem 3.

Theorem 3. The termination and boundedness of a NeUTA (T,A0,X, c,Δ) are
decidable.

30 Y. Wang et al.

6 Conclusion

This paper investigates termination and boundedness of NeUTAs, which extend
NeTAs by replacing TAs with UTA1s. The proof of decidability can be seen as
two phases of encoding, first an encoding NeUTAs to UDTPDA1s, then the one
from UDTPDA1s to snapshot vector pushdown systems which extends the idea
of digitization. Finally, the decidability of termination and boundedness of vector
pushdown systems is obtained by the reduced reachability tree technique. The
future work includes consider more verification problems of NeUTAs, as well as
vector pushdown systems, such as coverability, reachability, and temporal logic
model checking [18–21] et al..

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China with grant No. 61472240, 91318301, 61261130589, and the NSFC-JSPS
bilateral joint research project with grant No. 61511140100.

References

1. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman,
V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40229-6 12

2. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In:
Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
189–205. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 13

3. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theoret.
Comput. Sci. 321(2–3), 291–345 (2004)

4. Wen, Y., Li, G., Yuen, S.: On reachability analysis of updatable timed automata
with one updatable clock. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL 2015. LNCS,
vol. 9559, pp. 147–161. Springer, Cham (2016). doi:10.1007/978-3-319-31220-0 11

5. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown vec-
tor addition systems. In: Proceeding of the 29th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2014), pp. 63:1–63:10. ACM (2014)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

7. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

8. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57, 94–124 (1998)

9. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000). doi:10.1007/978-3-642-59615-5 13

10. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS
2012), pp. 35–44. IEEE Computer Society (2012)

11. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: verification and
expressiveness. Formal Methods Syst. Des. 40(1), 41–87 (2012)

http://dx.doi.org/10.1007/978-3-642-40229-6_12
http://dx.doi.org/10.1007/978-3-319-22975-1_13
http://dx.doi.org/10.1007/978-3-319-31220-0_11
http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/978-3-642-59615-5_13

On Termination and Boundedness of Nested Updatable Timed Automata 31

12. Bérard, B., Haddad, S.: Interrupt timed automata. In: Alfaro, L. (ed.) FoSSaCS
2009. LNCS, vol. 5504, pp. 197–211. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00596-1 15

13. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are timed automata updatable?
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 464–479.
Springer, Heidelberg (2000). doi:10.1007/10722167 35

14. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Expressiveness of updatable timed
automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp.
232–242. Springer, Heidelberg (2000). doi:10.1007/3-540-44612-5 19

15. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic
in Computer Science (LICS 2004), pp. 54–63. IEEE Computer Society (2004)

16. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B.
(ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998).
doi:10.1007/BFb0054179

17. Abdulla, P., Jonsson, B.: Model checking of systems with many identical time
processes. Theoret. Comput. Sci. 290(1), 241–264 (2003)

18. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press,
Beijing (2005)

19. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

20. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

21. Tian, C., Duan, Z., Zhang, N.: An efficient approach for abstraction-refinement in
model checking. Theoret. Comput. Sci. 461, 76–85 (2012)

http://dx.doi.org/10.1007/978-3-642-00596-1_15
http://dx.doi.org/10.1007/978-3-642-00596-1_15
http://dx.doi.org/10.1007/10722167_35
http://dx.doi.org/10.1007/3-540-44612-5_19
http://dx.doi.org/10.1007/BFb0054179

	On Termination and Boundedness of Nested Updatable Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Updatable Timed Automata
	2.2 Dense Timed Pushdown Automata

	3 Updatable Dense Timed Pushdown Automata
	4 Termination and Boundedness of UDTPDA1s
	4.1 Vector Pushdown Systems
	4.2 Digitized Configuration and Its Operations
	4.3 Snapshot Vector Pushdown System

	5 Nested Updatable Timed Automata
	5.1 Nested Updatable Timed Automata
	5.2 Termination and Boundedness of NeUTAs

	6 Conclusion
	References

