Applying SOFL to a Railway Interlocking
System in Industry

Juan Luo', Shaoying Liu*®9, Yangin Wang', and Tingliang Zhou'

U Casco Signal Ltd., R&D Center, Shanghai, China
{luojuan, wangyanqin, zhoutingliang}@casco. com. cn
2 Department of Computer Science, Hosei University, Tokyo, Japan

sliu@hosei.ac. jp

Abstract. This paper describes another application of the SOFL three-step
specification approach in specifying a railway interlocking system in industrial
setting. We also explore the way of deriving hazard conditions from formal
specifications, and propose a way to analyze the conditions for the assurance of
the safety of the interlocking system in the early stage of the development. Our
experience shows that SOFL is much more accessible by ordinary practitioners
than other existing well-known formal methods and effective in helping prac-
titioners deepen their understanding of the system details.

Keywords: Formal specification + Hazard condition - Analysis - Interlocking
system

1 Introduction

Railway signaling system is a kind of safety critical system whose failure is likely to
cause catastrophic disaster. The reliability and safety of such a system can be achieved
not only through the redundant architecture of hardware, but also the high quality of the
software deployed for the control purpose in the system. High quality software must
function as expected and must not trigger safety problems for the system.

To ensure the high quality for a software system, capturing correct and complete
requirements is essential, simply because it is almost impossible to achieve a high
quality implementation from incorrect or incomplete requirements. Traditional
requirements analysis, design, and testing methods based on natural language
descriptions can hardly guarantee that all functional and safety requirements are
implemented correctly. In the industrial practice, system functional requirements are
mainly documented in natural language and their implementation is verified by testing.
Safety requirements are usually ensured by first using hazard log to record potential
hazard and then carrying out hazard analysis in different development phases. How-
ever, this kind of practice suffers from the following two disadvantages:

(1) Requirements specifications in natural language are likely to cause ambiguity in
design and implementation, which may lead to significant errors.

© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 160-177, 2017.
DOI: 10.1007/978-3-319-57708-1_10

Applying SOFL to a Railway Interlocking System in Industry 161

(2) Since test cases of traditional testing methods are mainly generated manually, the
functional scenarios of an operation may not be considered completely, which is
likely to result in the incompleteness of test case design.

It is well recognized that the later the faults are found, the higher the cost for
removing the faults will become [1]. This is especially true of railway signaling sys-
tems that involve complex operations in both hardware and software.

To detect faults in requirements, especially those related to human decisions on
both functional and safety requirements, formal methods are considered to be an
effective technique [2]. Formal methods are built on strict mathematical definitions and
have precise mathematical semantics. This advantage can help resolve requirements
and property ambiguity in natural language descriptions. There are many well-known
formal methods, such as VDM [3], Z [4], Event-B [5], SCADE [6], and SOFL [7], and
each has its own characteristics. Although they share some common features, such as
using the concepts of pre- and post-conditions in specifications, their differences in
syntax, style, and requiring different level of mathematical skills provide different
accessibility to practitioners, which help them make appropriate choices in practice.

We have been making all kinds of attempts to use several formal methods on our
products in CASCO Shanghai. For example, we applied SCADE to the design of a
zone controller subsystem, Event-B for modeling and verification of the zone control
subsystem, and formal proof for verifying the interlocking system. After these attempts,
we derive the following conclusions based on our experience:

(1) SCADE performs well for system design, but when it comes to requirements
analysis phase, it becomes unsuitable due to the lack of effective mechanism for
functional abstraction.

(2) Event-B can be used throughout the entire development process. The formal
refinement adopted in Event-B is an ideal technique that integrates formal veri-
fication and design into refinement laws for developing correct programs, but
since it requires too much mathematical knowledge and manipulation skills for the
developers, our experience suggests that it is beyond our capability and not
cost-effective as well.

(3) There are also some formal verification tools (e.g. Gatel and Prover iLock) that
can be used to verify the safety and functional requirements, but they do not
provide specific guidelines for carrying out formal modeling and formal verifi-
cation of related properties. They do not seem to be able to guarantee the cor-
rectness of the system either, even if the verification is successfully done.

Due to the disadvantages above, we turn to SOFL. SOFL, standing for Structured
Object-Oriented Formal Language, provides a formal engineering method for practical
formal modeling and verification. In particular, the practicality of the formal modeling
mainly comes from the SOFL three-step approach that emphasizes the importance of
writing a formal specification based on the construction of an informal specification

162 J. Luo et al.

and a semi-formal specification. After about fourteen hours training, we realized that
SOFL is easy to understand and to use; it also requires much less mathematical skills
than Event-B. We therefore decided to apply it to the interlocking system specification
and verification as a trial testing project.

Our major contributions in this paper are three fold. Firstly, we explain how
practitioners with little experience of SOFL can use the SOFL three-step approach
properly to writing formal specifications on the basis of first writing informal and then
semi-formal specifications. We chose the interlocking system as the target for speci-
fication and discuss how the domain knowledge can be effectively utilized to formalize
properly the requirements with different features. Secondly, we describe how hazard
conditions can be systematically extracted from a formal requirements specification.
A hazard condition is a logical formula whose implementation may cause hazards to
the system. Finally, we present a testing-based verification method for analyzing the
hazard conditions.

The rest of the paper is organized as follows. Section 2 briefly introduces the
interlocking system model to pave the way for readers to understand the subsequent
sections. Section 2 focuses on the construction of the informal, semi-formal, and for-
mal specifications of the interlocking system. Section 3 describes how hazard condi-
tions can be extracted from formal specifications. Section 4 discusses our experience of
using SOFL and the interesting problems encountered during the application. Section 5
briefly introduces some related applications of formal methods to interlocking systems.
Finally, in Sect. 6, we conclude the paper and point out future research directions.

2 Specification for Interlocking System

In this section, we first give a brief introduction to the interlocking system used in our
project, and then describe how the formal specification for its functional requirements
can be constructed based on an informal specification and a semi-formal specification.

2.1 Introduction of the Interlocking System

In railway signaling system, interlocking subsystem (calls CBI, Computer based
interlocking) is a signal control system that completes interactive interlocking check
between signal, switch and route to set routes for trains and to prevent conflicting
movements of trains. Once the route is set and the other routes conflict with the set
route, they are not allowed to set and the associated interlocking operations, such as
point move, are not allowed to perform. CBI should be designed to make it impossible
to display a dangerous status for signal in any case and to prevent from the mistakenly
release of route to ensure the safety of train operations. Only when they satisfy required
interlocking relations, are trains to be allowed to proceed to the planned route in order

Applying SOFL to a Railway Interlocking System in Industry 163

to prevent accidents or hazards, such as head-on collision, side collision, rear-end
collision, inappropriate route entering, switch splitting, or trains derailing during
operation. Since interlocking systems are safety-critical and must have safety integrity
(meaning the likelihood of a system satisfactorily performing the required safety
functions under all the stated conditions within a stated period of time), according to
the European standard EN50129, the safety integrity level of interlocking system is
defined as SIL4. Safety Integrity Level SIL of a function is determined by the Tolerable
Hazard Rate THR per hour. If 10-9 < THR < 10-8, then the SIL of the function is
defined as SIL4, which is a number indicating the required degree of confidence that a
system meets its specified safety functions with respect to systematic failures.

As Fig. 1 shows, the interlocking system used in our project is divided into three
layers: man-machine session layer, interlocking computation layer, and execution
layer. Each layer is divided into several functional modules according to the partition
of the functions. The man-machine session layer is responsible for processing the
man-machine interface information by means of three modules, man-machine interface
module, communication module, and information indication module. The interlocking
computation layer carries out the interlocking computing through a dispatching module
or real time operating system and a group of other modules, such as basic interlocking
module, self-diagnosing module, special interlocking module, and adjacent interlock-
ing system interface module. The execution layer controls the output of commands to
the field devices through the field device state input module and the field device control
command output module.

Man-machine Communication
interface module module

Information
indication module

L A T Man-machine session
Y layer
‘ Dispatching module or real time OS ‘ Interlocking
Y Y computation layer
i. A A L
| basIe > Special interlocking Adjacent interlocking
interlocing diagnosing : N
module system interface module

field device state input field device control command
module output module

T i Execution
layer

‘ field device ‘

Fig. 1. The structure of an interlocking system

164 J. Luo et al.

2.2 Basic Interlocking Function

We use SOFL mainly for the basic interlocking model that is used to realize the
interlocking relations in the system. The devices controlled are mainly signals,
switches, and track circuits, and these devices are controlled in a route or individually.
Figure 2 is an example of part of some railway station layout that illustrates how field
devices are arranged and related with each other in the interlocking system.

X D3, D9 D19
p 9 3-11DG qj p 13 19 p
X3JG ' IAG v 3 d 13DG v
19DG
D23
D7 D13
s IAG p p 23 17-25DG ' G
T T T H
SILQ '_w 9 790G 7 17 q
XF il
25) 1G
H

S1

Fig. 2. Station layout example

The basic interlocking function is route controlling, including route setting, route
locking, signal opening, keeping signal opening, normal route release, abnormal route
release, manual switch operation and general route call-on locking. Since there are
different kinds of routes, such as train route, shunting route, calling-on route, succes-
sive route, and special shunting route, and each function has different requirements for
each kind of route, we need to first specify the functionality of operations for each kind
of route and then investigate how the related specifications are connected to form the
whole specification for the entire system.

2.3 Specific Ways to Write SOFL Specifications

As mentioned previously, the final formal specifications of various operations are
achieved by means of writing an informal specification first and then refining it into a
semi-formal specification, and finally formalizing the semi-formal specification into a
formal specification.

2.3.1 Informal Specification

We build the informal interlocking requirements specification as advocated by the
SOFL three-step approach. In this section, we focus our discussion on how the informal
specification is written. According to the SOFL approach, an informal specification is
composed of three sections: functions, data resources, and constraints.

Applying SOFL to a Railway Interlocking System in Industry 165

The basic interlocking functional requirements are mainly learnt from the informal
interlocking technical descriptions of the controlled devices, system states that need
checking, and properties or constraints the system must satisfy. According to the form
of SOFL informal specification, we treat the operations for checking the system states
as bottom level functions, the devices (e.g., routes, signals, switches) to be controlled
by the system as data resources, and the properties that the system must satisfy as
constraints. For the sake of both confidentiality of the original specification and space
limit, we only give the informal specification of a switch normal operation below as an
example to show the general structure of an informal specification.

Informal specification for the switch normal operation:

1. Functions:
1.1 switch operation
1.1.1 switch normal operation
1.1.1.1 check that the switch is not locked
1.1.1.2 check that the switch has position indication
1.1.1.3 check that there is no reverse operation command output
1.1.1.4 check that time is not out for the switch to operate
1.1.2 switch reverse operation
2. Data resources:
2.1 switch
2.2 route
3. Constraints:
3.1 If the switch is already in normal position when receiving a normal operation
request, then the system will not output the normal operation command.
3.2 If the max time for switch operation is expired, the operation for switch move
must be stopped.

In this informal specification, the description of each item is deliberately kept short
and its style is not restrictive. However, to make the specification comprehensible, each
functional description uses the verb-object structure; each data item is described using a
noun; and each constraint is presented as a condition. The application of this principle
can be flexible for other domains in practice.

2.3.2 Semi-formal Specification
After finishing the informal specification, we refine and transform it into a semi-formal
specification. At this step, three things are done to fulfill the task. Firstly, we group the
related functions, data resource items, and constraints in the informal specification into
SOFL modules. Secondly, we declare all of the necessary constant identifiers, type
identifiers, and state variables formally in SOFL. Finally, we define the functionality of
each process in the module using pre- and post-conditions properly.

As far as constructing each module is concerned, we take the following guideline to

166 J. Luo et al.

define the corresponding items in the module. Each function in the informal specifi-
cation is refined into a process in the SOFL module because each process fulfills a
function by defining how its input can be used to produce its output. Each data resource
item in the informal specification is transformed into a state variable declaration
because it is likely to be shared by several processes. Each constraint in the informal
specification is refined into either an invariant or part of some process functionality in
the module, considering its role in the system.

For transforming the data resource items in the informal specification to the dec-
larations in the semi-formal specification module, we apply the following principle. For
each data resource item, we declare a state variable using a well-defined type in the
module. If the type is not defined yet using the SOFL notation, we need to declare it
properly in the section named “type” of the same module. For each declared type, its
constraints, if any, can be defined as invariants in the section named “inv” of the same
module. Each invariant is a condition described in natural language in the semi-formal
specification. For each state variable, its properties that must be sustained throughout
the entire system can also be defined as invariants in the “inv” section in the similar
way to type invariants.

As far as refining each function in the informal specification into a process in the
module is concerned, we use pre- and post-conditions to specify its functionality.
To this end, we first need to determine all of the necessary input variables, output
variables, and the state variables the process uses, and then formally declare them using
well-defined types. The pre-condition presents a constraint on the input and state
variables before the execution of the process, and the post-condition gives another
constraint for the output and the updated state variables to satisfy. In the semi-formal
specification, both the pre- and post-conditions are described in a structured natural
language in order to strike a good balance between the usability and the rigor for a high
cost-effectiveness. The structured natural language expression is actually a disjunctive
normal form in which each term is described in natural language but the logical
connectors are formally defined operators (e.g. and, or, not).

As an example, below we show part of the semi-formal specification of the process
for the normal switch operation. The partial specification is expressed as a disjunction
of several functional scenarios (FS). Each FS is a conjunction of terms described in
English. Specifically, the semi-formal specification describes how the switch functions
when the system receives a route setting request. First it needs to check the position of
the switch. If the position is not the same as the route requests, the system should
execute the switch normal or reverse operation. After the operation is done, the system
should show the result. In this example, we only describe the semi-formal specification
of normal switch operation.

Part of the semi-formal specification of the process for switch operation:

Applying SOFL to a Railway Interlocking System in Industry

module switch operation Decom/switch operation;

type
CLOCK = nat0;/*time type*/

POSITION = composed of
normal_ indicate: bool

reverse_indicate: bool
end;

TIMER = composed of
acc: CLOCK /*the current time value*/
delay: nat0 /*maximum time delay*/
start : bool /*timing flag*/
end;

POINT = composed of
sw_id: nat0
track id: natO0 /*track which the switch is in*/
pos: POSITION /*switch position indication*/
lock: bool /*switch lock state*/
pt_timer: TIMER /*switch operation timer*/
end;

ROUTE = composed of
points: seq of POINT/*switches in the route*/
pt_reqg pos: seq of POSTION/*switch requested position by
route*/
tracks: set of TRACK/*tracks in the routes*/
start_sig : SIGNAL/*start signal*/
end_sig: SIGNAL/*end signal*/
locked: bool/*route lock state*/
permissive: bool/*route permissive state*/

idle: bool /*route idle state*/

end;

var
rt: ROUTE
pt: POINT

process switch normal operation(normal request: sign | normal cmd:
sign)normal op ok: sign | trail alarml: sign | normal cmd: sign, nor-
mal cmd output: sign
ext wr pt

wr rt
pre true

post

167

168 J. Luo et al.

/*FS1l: receives a normal operation request, outputs normal operation
command and starts the timer*/

normal operation request is received and

switch is not locked and

switch is in reverse position and

normal operation command is sent out and

the timer is started

or

/*FS2: switch is moving but not getting into normal position, time is
not out, output normal operation command and continue timing*/
the normal operation command in the last cycle is sent out and
switch is not locked and

switch is moving and

time is not out and

normal operation command is sent out and

timer is continuing

or

/*FS3: switch is already in normal position, output success flag*/
The switch is in normal position and

The success flag is sent out and

not normal operation command is sent out and

the timer is terminated and reset

or

/*FS4: switch is moving but time is out, not output normal operation
command and reset the timer, output fail flag*/

the normal operation command in the last cycle is sent out and
time is out and

not normal operation command is sent out and

the timer is terminated and reset

end process;

process switch _position_check(route set_req: sign)

normal request: sign | no_operation: sign |reverse request: sign
end_process;

process switch reverse operation(reverse_ request: sign | reverse_cmd:
sign)reverse op ok: sign | trail alarm2: sign | reverse_cmd: sign,

reverse cmd_output: sign

end_process;
process switch op result(normal op ok: sign | trail alarml: sign |
no_operation: sign | reverse op_ ok: sign | trail alarm2:

sign)switch op ok: sign | trail alarm: sign

end_process;

end module

2.3.3 Formal Specification

To ultimately resolve the ambiguity in the semi-formal specification, we need to
completely formalize all of the informal expressions, such as “switch is not locked” in
the above process for normal switch operation. However, since some processes in the

Applying SOFL to a Railway Interlocking System in Industry 169

specification may depend on other processes in terms of data flows, our experience
suggests that it can reduce the chances of modifications of the formal specifications of
the processes if their dependency relation can first be defined using a the graphical
notation called Condition Data Flow Diagram (CDFD). Taking this into account, we
need to fulfill two tasks in constructing the formal specification:

(1) Draw a CDFD to describe the dependency relation between processes.
(2) Formalize the pre- and post-conditions of each process occurring in the CDFD.

The CDFD not only reflects the dependency relation between processes, but also
reflects the architecture of the system. In the architecture, the signature of each process
in terms of its name, input, output, and the related data store variables is precisely
defined, and all of the relevant processes are connected in terms of data flows and data
stores.

When formalizing the pre- and post-conditions of each process in the corresponding
module of the CDFD, we need to choose appropriate operators defined in the relevant
data types to formally express the informal statements in the semi-formal specification.
In some circumstances, we may find that some variables cannot be declared using
existing types or some type definitions are not complete. In that case, we need to
modify or add some type definitions.

As an example, we show the formal specification for the switch operation, which
includes the CDFD in Fig. 3 and the corresponding module given below. For the sake
of space, we only give the details of the formal specification of the process for switch
normal operation.

/’_ switch_normal_o [
4 peration

d switch_op_ol
normal fequest cm |_switch_op_oky,

switch_op_result [

_route_set_re SWitch_position_c [____rereemmereems7 traiCalamy
heck H T >

switch_reverse_o [
peration

e

Fig. 3. CDFD of the switch operation module

170

J. Luo et al.

module switch_operation_Decom/switch_operation;
type

. /*inherent from the semi-formal specification.*/

var

process switch_normal_ operation(normal_request: sign | normal_cmd:
sign)normal_op_ok: sign | trail_alarml: sign | normal_cmd: sign, nor-
mal_cmd_output: sign

ext wr pt

wr rt
pre true

post

/*FS1: receives a normal operation request, outputs normal operation
command and starts the timer*/

bound (normal_request)and

not (~pt.locked) and

~pt.pos.reverse_indicate and

not ~pt.pos.reverse_indicate and

normal_cmd and

normal_cmd_output and

pt.pt_timer.start

pt.pt_timer.acc := 0

or

/¥*FS2: the switch is moving but not getting into normal position, time
is not out, output normal operation command and continue timing*/
bound (~normal_cmd) and

not (~pt.locked) and

not ~pt.pos.reverse_indicate and

not ~pt.pos.normal_indicate and

~pt.pt_timer.start and

~pt.pt_timer.acc< ~pt.pt_timer.delay and

normal_cmd and

normal_cmd_output

or

/*FS3: switch is already in normal position, output success flag*/
~pt.pos.normal_indicate and

not ~pt.pos.reverse_indicate and

success and

not pt.pt_timer.start

or

/*FS4: the switch is moving but time is out, not output normal oper-
ation command and reset the timer, output fail flag*/

bound (~normal_cmd) and

~pt.pt_timer.start and

~pt.pt_timer.acc>= ~pt.pt_timer.delay and

trail_alarm and

not pt.pt_timer.start

end_process;

. /*inherent from the semi-formal specification */

end module

Since the formal specification preserves the structure of the corresponding

semi-formal specification of the same process, we do not repeat the explanation of its
meaning here for brevity.

Applying SOFL to a Railway Interlocking System in Industry 171

3 Derivation and Analysis of Hazard Conditions

A complete formal specification of a safety critical system should be defined in the way
that the functionality of the system must imply the required safety properties. To ensure
this point, it is necessary to derive the hazard conditions from the relevant formal
expressions that present a potential violation of the safety requirements and to check
whether they are valid with respect to the safety requirements. A general distinction
between a functional requirement and a safety requirement is that the functional
requirement indicates that something must be done, while the safety requirement shows
that the result of functional requirement do not lead to hazards [8]. In this section, we
present a systematic way to derive hazard conditions from a formal process specifi-
cation and then discuss how they can be analyzed to determine their validity.

3.1 Derivation of Hazard Conditions

Our previous research [9] shows that any formal process specification can be converted
into an equivalent functional scenario form (FSF).

Definition 3.1. Let S, denote the pre-condition and S, the post-condition of process
S, respectively. Let S,,,,, = G; and D, or G; and D, or...or G, and D,, where G;(i =
,...,n) is known as a guard condition containing only input variables and D; is known
as a defining condition containing at least one output variable. Then, the following form

is called an FSF of S:

Syre and G and D, or S,,,. and G, and D; or...or S,,. and G, and D,, and each
S,re and G; and D; is called a functional scenario (FS), defining an independent
function.

Our way to derive hazard conditions focuses on each functional scenario. Let T;
and D; represents a general functional scenario, where T; = S, and G; is called test
condition of the scenario. Our discussions below always refer to this FS. The specific
rules for hazard condition derivation are given as follows:

(1) If D; defines a safety-related operation on some field device, then Ti and not Di
may describe a hazard condition. For example, suppose

some switch on a route has no position indication and the start signal of the route is restrictive

is a functional scenario in relation to the safety requirements, then we can derive the
hazard condition:

some switch on a route has no position indication and not (the start signal of the route is
restrictive).

This can further be simplified into the following more intuitive one:

some switch on a route has no position indication and the start signal of the route is permissive.

172 J. Luo et al.

Obviously, this hazard condition is likely to produce a hazard if it is implemented in
the system, because if some switch has no position indication and the start signal of the
route is permissive, when the train runs into the route, it will likely derail or roll over.

(2) If T; describes a critical guard condition (i.e., the violation of it may jeopardize the
safety), then not T; and D; will become a hazard condition. For instance, suppose

(all switches in the route are in right position and the route is out of obstacles and no
conflicting route is set) and the start signal of the route is permissive

is a functional scenario, then the following hazard condition can be derived:

not (all switches on the route are in right position and the route is out of obstacle and no
conflicting route is set) and the start signal of the route is permissive.

It can further be simplified into:

not all switches in the route are in right position and the start signal of the route is permissive or
not the route is out of obstacles and the start signal of the route is permissive or
not no conflicting route is set and the start signal of the route is permissive,

which implies three different kinds of hazards.

To apply these rules effectively, the relevant functional scenarios have to be selected
manually based on the safety-related knowledge in the domain in general. The reason is
that formal expressions may not make sense if they are not interpreted in the context of
the related domain. What our method can help is to systematically and automatically
derive a hazard condition after the related specific functional scenario is selected.

3.2 Hazard Condition-Based Testing

After deriving all possible hazard conditions, we need to analyze whether each hazard
condition is really implemented into code. To this end, a hazard condition-based
testing can be carried out.

Specifically, for each derived hazard condition, we generate some test data for the
input variables that satisfy the test condition of the hazard condition. Then, we use the
test data to run the corresponding program that is supposed to implement the specified
functionality of the related process. After obtaining the result of the test, which is the
output of the program, we can evaluate the corresponding “defining” condition of the
hazard condition. If the defining condition is true, that implies the hazard is already
implemented in the code.

Given the hazard condition T; and not D; where T; is the test condition and not D; is
the defining condition, applying the above technique, we can generate a test data, say ¢,
to satisfy 7}, and then use 7 as the input to execute the corresponding program. Suppose
we get the result r, then we need to check whether the following condition is true:

T;(t) = not D;(r)

Applying SOFL to a Railway Interlocking System in Industry 173

If the implication evaluates to true, that indicates the fact that the hazard is
implemented in the code. For example, considering the hazard condition:

some switch on a route has no position indication and not the start signal of the route is
restrictive.

Suppose it is formalized as
switch_trail and not signal_restrictive,

we generate a test data “true” for the boolean variable switch_trail, and use it to run the
corresponding program, say P. Assume we get the value “false” as the result for the
boolean variable signal_restrictive, we then substitute this value for the variable in the
hazard condition to check whether the following implication is true:

switch_trail = not signal_restrictive.

Obviously, this is true because switch_trail is true and not signal_restrictive is true,
which means the hazard may happen. This indicates the existence of bugs in the
implementation of the related process specification. The same practice can be applied to
the other hazard conditions.

As far as test data generation from a hazard condition is concerned, we can treat the
hazard condition as a “normal” functional scenario derived from a process specifica-
tion, and then apply the test data generation criteria proposed in our previous publi-
cations [10-12]. Since there is no new discovery about this point in our research, we
omit the detailed discussions for brevity.

4 Experience and Difficulties

In this section, we first describe our experience of using SOFL in our project, and then
point out some difficulties we have faced. Some of the difficulties have already been
resolved through expert consultation, while a few still need to be addressed in the
future practice.

4.1 Experience

Our project is planned as a one-year project and our experience of using SOFL so far
can be summarized as the following points:

(1) When writing the semi-formal and formal specifications for a process, organizing
the post-condition as a disjunctive normal form can significantly help the analyst
(i.e., the person who writes the specification) write the specification, achieve its
good readability, and check its completeness. The reason is that each conjunctive
clause in the disjunctive normal form clearly defines a relatively independent
functional scenario, showing under what condition what output is expected.

174

(@)

3

4.2

J. Luo et al.

We found that the way also offers us a clear guideline by which we can rather
systematically think about what to write in the specification.

The mechanism for decomposing a high level process into a low level CDFD for
defining its functionality in detail is effective to help us formalize some func-
tionally complex processes. In particular, when the formal description of the
process functionality inevitably involves the sequential operations, the decom-
position of the process into a CDFD is rather straightforward and helpful, because
the CDFD notation offers comprehensible graphical representation of sequential
operations, parallel operations, and some simple data flow loop structures. One
important thing in conducting the decomposition, however, is to keep the con-
sistency between the interface of the high level process and that of the CDFD
resulted from the decomposition.

We found that the combination of semi-formal specifications and formal speci-
fications for our system is cost-effective. For some complex processes whose
functionality description requires necessary repetition of applying other processes,
writing a complete formal specification can be difficult and time-consuming. In
this case, we keep the description semi-formal in which only the process signature
is precisely defined while the pre- and post-conditions are described in natural
language.

Difficulties

We have also encountered some difficulties in applying SOFL, which include the
following aspects:

ey

(@)

SOFL does not allow the invocation of another process in the formal specification
of a process in order to avoid semantic ambiguity. But this may cause a difficulty
for the practitioners who have got used to programming style. How to properly do
abstraction in the formal specification to avoid the necessity of calling another
process is a challenge to industrial practitioners. To handle this challenge, we turn
to SOFL explicit specification. An explicit specification of a process is an abstract
program in which the normal program constructs, such as sequence, selection,
iterations, and process invocations, can be used to form the program structure and
the data types and logical available in the SOFL notation can be used to form
conditions and/or statements. However, since the explicit specification involves
considerable considerations on the design of algorithm, it may not be suitable for
abstract description of process functionality. Another perhaps more balanced way
is to use semi-formal statements to express the idea of using another process’s
functionality in the pre- or post-conditions of the process under specification.

Another problem we have faced is that the formal specification may not be clear
enough for the programmer to understand the whole story of the entire system.
This will require the programmer to make creative efforts in designing the pro-
gram structure and the necessary algorithms. To help attack this difficulty, during
the process of writing the semi-formal specification, we try to describe the state
transitions of each device, which is declared as a data store variable in our

Applying SOFL to a Railway Interlocking System in Industry 175

specification, and to get the feedback from the domain expert to clarify the
ambiguities and to improve the specification. That is, we take an evolutionary
approach to finally complete the formal specification.

5 Related Work

There are some studies about formal methods in railway systems. Haxthausen and
Peleska present an abstract algebraic specification and verification for railway signaling
system with simple railway network module [13]. The SACEM system [14] used in the
RER line in Paris is a successful case of B method. Matra (now is part of Siemens) uses
B method in the designing of many similar railway control systems. One of the famous
applications is line 14 of RATP (Paris Metro), it used B method to refine the
requirement specifications and correct some requirement errors [15]. Zou et al. studies
how to formalize and verify the SRS (System Requirement Specification) of CTCS-3
(Chinese Train Control System 3) [16]. HCSP (Hybrid Communicating Sequential
Processes) is used to model each basic functional scenario and HHL(Hybrid Hoare
Logic) is used to describe the system attributes, and whether the specific HCSP model
satisfies the given HLL attributes is formally verified. They also studied how to
transform Simulink figures into HCSP and use the HHL to verify HCSP model. The
related research results have been applied successfully in the verification of CTCS-3
[17]. Horste et al. formalizes the functional requirements about the ETCS (European
Train Control System) [18]. The Ansaldo STS project uses model checking technique
to verify the RBC subsystem of ECTS [19]. Many Interlocking systems in lines
belonging to RATP (Paris Metro) and NYTC (New York City Transit Authority) were
also verified using a model checking tool from Prover technology [20].There have been
several years when CASCO started to study and try on formal methods, for the last
several years the research is mainly about formal design and verification of ZC sub-
system [21, 22]. And from this year, formal modeling and verification techniques have
been applied on the interlocking system.

After several years’ research before our current project using SOFL, we realized
that the formal methods used in the cases mentioned above are quite difficult for
practitioners in our company to use, and may not be able to deliver expected results in a
short period of time. We also found that the main difficulty for developing a highly
reliable and safe system lies in the requirements analysis and specification phases. Our
experience so far suggests that SOFL has a much better capability to help us effectively
carry out requirements analysis and specification construction, and benefit the subse-
quent activities in design, coding, testing, and verification of the system.

6 Conclusion and Future Work

We discussed how the SOFL specification language and its three-step approach to
writing formal specifications can be applied to an interlocking system in our company.
The project is planned for one year and still ongoing. Currently, we have finished the

176 J. Luo et al.

semi-formal specification and part of the formal specification during which many
ill-defined or incomplete requirements in natural language were identified. We are
continuing the construction of the formal specification and the derivation of hazard
conditions until the end of the project.

After the current project, we will try to carry out specification-based and hazard
condition-based testing and verification for the implementation. We will further
investigate how adequate test data can be generated from the specification and hazard
conditions, and how bugs can be effectively uncovered. If our current project succeeds
in terms of providing sufficient benefits or profits to our company, we will extend our
experience and practice to more railway signaling systems in the future.

Acknowledgment. This work was supported by CASCO. Shaoying Liu was also partly sup-
ported by JSPS KAKENHI grant Number 26240008.

References

1. Boehm, B.W., Basili, V.R.: Software defect reduction top 10 list. IEEE Comput. 34(1),
135-137 (2001)

2. Bowen, J., Stavridou, V.: Safety-critical methods and systems, formal standards. Softw. Eng.
J. 8(4), 189-209 (1993)

3. Bjemer, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978). doi:10.1007/3-540-08766-4

4. Diller, A.: Z: an introduction to formal methods 23(9), 10-23 (1990). Wiley

5. Abrial, J.-R.: Modeling in Event-B System and Software Engineering. Cambridge University
Press, Cambridge (2010), ISBN-13 978-0-521-89556-9

6. Efficient Development of Safe Railway Applications Software with EN 50128 Objectives
Using SCADE Suite, 3rd edn.. Esterel Technologies, SA (2012)

7. Liu, S.: Formal engineering for industrial software development using the SOFL method.
Springer, Heidelberg (2004), ISBN 3-540-20602-7

8. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTR. IEEE Trans. Softw. Eng. 18(9), 785—
793 (1992)

9. Liu, S., Chen, Y., Nagoya, F., McDermid, J.A.: Formal specification-based inspection for
verification of programs. IEEE Trans. Softw. Eng. 38(5), 1100-1122 (2012)

10. Liu, S., Chen, Y.: A relation-based method combining functional and structural testing for
test case generation. J. Syst. Softw. 81(2), 234-248 (2008)

11. Liu, S., Nakajima, S.: A decompositional approach to automatic test case generation based
on formal specifications. In: 4th IEEE International Conference on Secure Software
Integration and Reliability Improvement, Singapore, 9—11 June, pp. 147-155 (2010)

12. Liu, S., Nakajima, S: A “Vibration” method for automatically generating test cases based on
formal specifications. In: 18th Asia Pacific Conference on Software Engineering (APSEC
2011), 5-8 December, pp. 73-80. IEEE CS Press, VNU-HCM, Vietnam (2011)

13. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway
control system. IEEE Trans. Softw. Eng. 26(8), 369-387 (2000)

http://dx.doi.org/10.1007/3-540-08766-4

14.

15.

16.

17.

18.

19.

20.
21.

22.

Applying SOFL to a Railway Interlocking System in Industry 177

DaSilva, C., Dehbonei, B., Mejia, F.: Formal specification in the development of industrial
applications: subway speed control system. In: IFIP Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE), Perros-Guirec,
France, 13—16 October, pp. 199-213 (1992)

Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application of B in a
large project. In: Wing, Jeannette M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol.
1708, pp. 369-387. Springer, Heidelberg (1999). doi:10.1007/3-540-48119-2_22

Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Yu.: Verifying Chinese train
control system under a combined scenario by theorem proving. In: Cohen, E., Rybalchenko,
A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 262-280. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54108-7_14

Zou, L., Zhan, N., Franzle, M., Qin, S.: Verifying simulink diagrams via a hybrid hoare logic
pover. In: International Conference on Embedded Software (EMSOFT), Montreal, QC, 29
September 2013—4 October 2013, pp. 1-10 (2013)

Horste, M., Hungar, A., Schnieder, E.: Modelling functionality of train control systems using
petri nets. In: FM-RAIL-BOK Workshop, Madrid, Spain, September 23-24, 2013, pp. 46—
50 (2013)

Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, 1., Rizzo, T., Roveri, M., Sanseviero, A.,
Tchaltsev, A.: Formal verification and validation of ERTMS industrial railway train spacing
system. In: Madhusudan, P., Seshia, Sanjit A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 378-
393. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_29

Study cases of Prover technology, http://www.prover.com/company/casestudies/

Qian, J., Liu, J., Chen, X., Sun, J.: Formal design and verification of zone controller. In: 21st
Asia-Pacific Conference on Software Engineering (APSEC 2014), 1-4 December 2014,
pp- 375-382. IEEE CS Press, Jeju (2014)

Qian, J., Liu, J., Chen, X., Sun, J.: Modeling and verification of zone controller: the SCADE
experience in china’s railway systems. In: ICSE Workshop on Complex Faults and Failures
in Large Software Systems (COUFLESS), 23 May 2015, pp. 48-54. IEEE, Florence (2015)

http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/978-3-642-54108-7_14
http://dx.doi.org/10.1007/978-3-642-54108-7_14
http://dx.doi.org/10.1007/978-3-642-31424-7_29
http://www.prover.com/company/casestudies/

	Applying SOFL to a Railway Interlocking System in Industry
	Abstract
	1 Introduction
	2 Specification for Interlocking System
	2.1 Introduction of the Interlocking System
	2.2 Basic Interlocking Function
	2.3 Specific Ways to Write SOFL Specifications
	2.3.1 Informal Specification
	2.3.2 Semi-formal Specification
	2.3.3 Formal Specification

	3 Derivation and Analysis of Hazard Conditions
	3.1 Derivation of Hazard Conditions
	3.2 Hazard Condition-Based Testing

	4 Experience and Difficulties
	4.1 Experience
	4.2 Difficulties

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgment
	References

