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Preface

In spite of extensive research on formal methods and many efforts on transferring the
technology to industry over the last three decades, how to enable practitioners to easily
and effectively use formal techniques still remains challenging. The Structured
Object-Oriented Formal Language (SOFL) has been developed to address this chal-
lenge by providing a comprehensive specification language, a practical modeling
method, various verification and validation techniques, and tool support through
effective integration of formal methods with conventional software engineering tech-
niques. SOFL integrates data flow diagram, Petri nets, and VDM-SL to offer a visu-
alized and formal notation for constructing specification; a three-step approach to
requirements acquisition and system design; specification-based inspection and testing
methods for detecting errors in both specifications and programs; and a set of tools to
support modeling and verification. The Modeling, Simulation and Verification Lan-
guage (MSVL) is a parallel programming language. Its supporting toolkit MSV has
been developed to enable us to model, simulate, and verify a system in a formal
manner.

Following the success of the previous SOFL+MSVL workshops, the 6th interna-
tional workshop on SOFL+MSVL 2016 was jointly organized in Tokyo by Shaoying
Liu’s research group at Hosei University, Japan, and Zhenhua Duan’s research group at
Xidian University, China, with the aim of bringing together industrial, academic, and
government experts and practitioners of SOFL or MSVL to communicate and to
exchange ideas. Also, one invited keynote talk was on verification of Web applications.
The keynote speaker was Prof. Huaikou Miao, Shanghai University, China. The
workshop attracted 26 submissions on specification-based testing, specification
inspection, model checking, formal verification, formal semantics, and formal analysis.
Each submission was rigorously reviewed by two or more Program Committee
members on the basis of its technical quality, relevance, significance, and clarity, and
13 papers were accepted for publication in the workshop proceedings. The acceptance
rate is 50%.

We would like to thank ICFEM 2016 for supporting the organization of the
workshop, all of the Program Committee members for their great efforts and cooper-
ation in reviewing and selecting the papers, and our postgraduate students for their
various help. We would also like to thank all of the participants for attending pre-
sentation sessions and actively joining discussions at the workshop. Finally, our
gratitude goes to Alfred Hofmann and Christine Reiss of Springer for their continuous
support in the publication of the workshop proceedings.

November 2016 Cong Tian
Fumiko Nagoya

Shaoying Liu
Zhenhua Duan



Organization

Program Committee

Shaoying Liu (General
Chair)

Hosei University, Japan

Zhenhua Duan
(General Chair)

Xidian University, China

Cong Tian (Program
Co-chair)

Xidian University, China

Fumiko Nagoya
(Program Co-chair)

Nihon University, Japan

Gihwon Kwon Kyonggi University, Korea
Guoqiang Li Shanghai Jiao Tong University, China
Haitao Zhang Lanzhou University, China
Hong Zhu Oxford Brookes University, UK
Huaikou Miao Shanghai University, China
Jing Sun The University of Auckland, New Zealand
Jinyun Xue Jiangxi Normal University, China
Karl Leung Hong Kong Institute of Vocational Education, SAR China
Kazuhiro Ogata JAIST, Japan
Richard Lai La Trobe University, Australia
Shengchao Qin Teesside University, UK
Shin Nakajima National Institute of Informatics, Japan
Stefan Gruner University of Pretoria, South Africa
Weikai Miao East China Normal University, China
Wuwei Shen Western Michigan University, USA
Xi Wang Shanghai University, China
Xiaobing Wang Xidian University, China
Xiaohong Li TianJin University, China
Xinfeng Shu Xi’an University of Posts and Telecommunications, China
Yuting Chen Shanghai Jiao Tong University, China



A CEGAR Based Approach to Verifying
Web Application

(Abstract of Invited Talk)

Huaikou Miao1,2

1 School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China

hkmiao@shu.edu.cn
2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,

Shanghai 201114, China

Abstract. How to model and verify navigational behaviors of Web application
is the key issue to ensure the reliability of Web engineering. The feature of user
behaviors includes inputting URLs to Web browser’s address bar, clicking the
hyperlink in Web page and clicking the back or forward button of Web browser.
The dynamic behaviors should be verified. In recent years, model checking has
been used for Web application modeling and verification. But Web application’s
behaviors and interactions are prone to the states space explosion problem, in
which the computation, validation, and complexity will also rapidly increase.

After analyzing the interactive interactions between the user and Web
browser, we propose a CEGAR method + On-the-fly approach. We apply
On-the-fly strategy and Counterexample-Guided Abstraction Refinement
(CEGAR) method to Web application modeling, abstraction refinement and
verification. Carrying out the verification in on-the-fly model can implement
doing verification while building the model. The verification can be carried out
when the part of model is generated, the counterexample can be identified before
modeling all behaviors. It can be used to save the memory and time con-
sumption during verification. For example, when the navigation model is con-
structed on the fly, a verification property based incremental state abstraction
approach is used to generate the corresponding abstract navigation model.
The CTL is used to describe the safety property. Then, an equivalence
classes-based abstraction refinement is introduced to eliminate the spurious
counterexample if the abstract counterexample is verified to be false. It models
Web pages, and checks the validity of counterexample by using abstraction
refinement. In conclusion, our approach can effectively alleviate the state
explosion problem of Web application verification. In my talk, a Web appli-
cation, an audit system, is taken as an example to demonstrate the approach we
proposed.

Keywords: Web application � Navigation model � Abstraction refinement �
Model checking � Spurious counterexample

This work is supported by National Natural Science Foundation of China (NSFC) under grant
No. 61572306.
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Orchestration Combinators in Apla+
Language

Zhen You1,2(&) and Jinyun Xue1,2

1 State International S&T Cooperation Base of Networked Supporting Software,
Jiangxi Normal University, Nanchang 330022, China

youzhenjxnu@163.com, jinyun@vip.sina.com
2 Provincial Key Lab of High-Performance Computing,
Jiangxi Normal University, Nanchang 330022, China

Abstract. Concurrency has been rapidly gaining a concern for mainstream
software development, caused by widespread adoption of multicore processing
architectures and cloud computing. This paper elaborates an abstract concurrent
mechanism by introducing Bundle and Orchestration Combinators, which
conservatively absorbed some features of Orc calculus and Orc language
designed by J. Misra et al. This concurrent mechanism would be merged into
our abstract sequential programming language Apla, then it evolved into a
unified sequential and concurrent language Apla+. A typical concurrent dining
philosophers problem are designed by using Apla+ language. Finally, we pre-
sent some comparison between our work and other related concurrent pro-
gramming or modelling language.

Keywords: Orchestration combinators � Orc calculus � Orc language � Apla+
language

1 Introduction

The widespread adoption of the Internet and the rapid development of service-oriented
architecture and cloud computing has fostered a concurrent and distributed environ-
ment, where many components or services are available. There is great demand to
orchestration of concurrent and distributed components or services in face of com-
munication, free-deadlock, free-starvation and high-performance. As a result, an
increasing number of researchers and developers have to pursue their work on con-
current programming.

But so far, academia and industry are generally considered that theory and tech-
nology of concurrent programming is more complex and harder to control. Undoubt-
edly, developing efficient and reliable concurrent programs is more difficult than the
sequential programs, and developing concurrent programs is a hard task even for the
expert. This difficulty resulted from the following four aspects: (1) the diversity of
concurrent and distributed architectures, (2) more complicated intra-features (such as
Non-Determinism, Synchronization and Cooperation, Mutual Exclusion), (3) low-level
of synchronization control mechanism about concurrent-units (such as process, thread,

© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 3–14, 2017.
DOI: 10.1007/978-3-319-57708-1_1



task and action), (4) lack of simple and abstract concurrent language and its related
development environment or CASE tools.

Therefore, many researchers paid more attention on proposing an abstract, simple,
convenient concurrent mechanism and its specification, modelling or programming
language. RSL (RAISE Specification Language) [1, 2] was proposed by RAISE
Company, and its concurrent mechanism is based on process calculus, such as CCS and
CSP. Professor Jim Woodcock designed a concurrent language for refinement Circus
[3, 4] and a refinement-oriented formal notation SCJ-Circus [5], which supports the
specification and verification of low-level programming models. A concurrent
object-oriented programming model SCOOP [6–9] was invented by Bertrand Meyer’s
research team based on contracts. MSVL language and its tools [10–12] was developed
to support the modeling, simulating and verification of concurrent software system.
Prof. Jayadev Misra, who once proposed UNITY [13] concurrent programming theory
and Seuss [14] programming theory for distributed applications, have done some
research on Orc calculus and Orc structured concurrent programming language [16–18].

After comparison of the above abstract concurrent mechanism and analysis of Orc
concurrent combinators semantics in our previous paper [19], we make decision that
our new orchestration combinators borrow the virtues of Orc. Our Apla+ language
provides common, simple, and abstract underlying concurrent mechanism, through
which varied styles of concurrent codes and synchronizations, which could smoothly
interact and evolve, and easier to understood, designed, verified by programmers.

The primary contributions of our work on Apla+ are summarized as follows.
(1) We proposed a new concurrent mechanism based on Orc four combinators;
(2) Apla+ extends our abstract sequential programming language by adding the new
concurrent mechanism, so it becomes a unified language supported sequential and
concurrent programming; (3) A prototype implementation called Apla+2Java Gener-
ator is under developing, and this CASE tool can automatically translated abstract Apla
+ concurrent program into concrete Java multi-threads program.

In this paper, we mainly discuss the orchestration combinators in Apla+ language.
The paper is organized as follows. In Sect. 2, we describe our previous work and
concurrent primitives of Orc. Section 3 is our major work of elaborating five con-
current orchestration combinators in Apla+ language and a case study. Then we present
some comparison of the related works in Sect. 4. Finally, we conclude our works in the
last section.

2 Background on Apla and Overview of Orc

Apla+ language is a conservative extension of our abstract sequential programming
language Apla, and its concurrent mechanism partly absorbed some features of Orc
calculus and Orc language, designed by J. Miras et al. Let us review the background on
Apla and the description of Orc.

4 Z. You and J. Xue



2.1 PAR Method and PAR Platform

PAR method was first proposed by Prof. Jinyun Xue in 1997 [20]. In the beginning,
PAR (partition-and- recur) method is a unified approach for developing, formal
deriving and verifying efficient and correct algorithmic programs. The approach con-
vers several well-known algorithm design techniques, e.g. dynamic programming,
greedy, divide-and-conquer and enumeration, etc. With twenty-year work of our
research team, PAR method and PAR platform (abbreviation as “PAR”) [21] become a
general programming environment and tools, which can support software development
process, including algorithm-design based on recursive-relations, abstract program
design, database application, multimedia development, component-based software
development.

PAR pay special attention on derivation, verification and generation of software,
and it consists of the following six parts.

• Radl Modeling language, used to describe specification and algorithm
• Apla Abstract Programming Language, used to design algorithmic program
• New Definition of Loop Invariant and its two development strategies
• Transformation Rules, used to formal derivation and verification
• Radl2Apla Generator, used to transform Radl algorithm to Apla program
• Apla2C++ Generator, Apla2Java Generator, Apla2C# Generator, used to transform

abstract Apla program to concrete C++/Java/C# program.

In the following sections, we mainly presented the concurrent mechanism of
orchestration combinators, which would be imported into Apla Language. Hence, Apla
is upgraded to a new version language, called Apla+. Firstly, let’s review some basic
concepts of Apla. Apla Language [22] is based-object abstract programming language,
and its syntax is similar to control structure of Dijkstra guard command language. Until
now, our research group have already successfully used PAR method/PAR platform
and its Apla Language to design lots of programs, including Knuth’s program that
translates a binary fraction to a decimal fraction [23], Hopcroft-Tarjan planarity testing
algorithm [24, 25], linear In-situ algorithm for the cyclic permutation [26], bank
database management system [27], transport operation system [28], multi-media
database system [29], local and distributed transaction processing system [29].

2.2 Overview of Orc

Orc was originally presented as a process calculus and a programming model for task
orchestration [15]. It had now evolved into a full structured concurrent programming
language [17, 18]. As pointed out by its websites, the power of Orc is that it is not only
a general purpose programming language, a web scripting language, but also an exe-
cutable specification language. A key aspect of Orc is that the orchestrations of
components/web-services may be performed concurrently.

Orchestration Combinators in Apla+ Language 5



2.2.1 Sites
Orc was used to be a computation model as a calculus for wide area computing. An Orc
program is conceived as one of orchestrating components or web-services, where each
components or web-services is abstracted as a site. A site [18] is a service of any kind
that a program can call and from which it may receive responses. It is called like a
traditional procedure or function and it responds with some number of values, called
publications.

2.2.2 Orc Combinators
An Orc program is an expression. A combinator combines two expressions to form an
expression. Expressions are site calls connected by combinators. Orc calculus has four
combinators, more details and their semantics could be found in our previous paper [19].

• Parallel combinator f | g do f and g in parallel
• Sequential combinator f > x > g for all x from f do g
• Pruning combinator f < x < g for some x from g do f
• Otherwise combinator f; g if f halts without publishing do g

3 Orchestration Combinators in Apla+ Language

Orc is an inherent concurrent programming language from the moment of its birth. Orc
calculus and its four combinators all implied explicit concurrency or implicit concurrency.

Different from initial advocating concurrency in Orc, our goal is to extend con-
current function in Apla sequential language, then it upgraded to Apla+ language,
which support both sequential and concurrent programming. Hence, we selectively
absorb and improve the original Orc four combinators.

3.1 Bundle

The notion of a computational unit is fundamental to computing. Similar to sites in Orc,
we import a new concept Bundle for expressing Component/Service. Bundle is an even
more general notion of computational unit, which could be a function or procedure, a
subprogram, a component, or a web service. In Apla+ language, a Bundle is defined as
follows.

Bundle:: <procedure/function definition>
Bundle:: <subprogram definition>
Bundle:: <component definition>
Bundle:: <service definition>

3.2 Design of Orchestration Combinators

In the new concurrent mechanism, we originally proposed five combinators selectively
borrow some properties from Orc. After analysis of orchestration of Bundles, these five

6 Z. You and J. Xue



combinators could be divided into two kinds, non-communicative combinators and
communicative combniators.

• Non-communicative Combinator:
– Sequential Combinator: F; G
– Parallel Combinator: F | G
– Otherwise Combinator: F # G

• Communicative Combinator:
– Transfer Combinator: F||G(x) or (F1|F2|…|Fn) || G(x)
– Pruning Combinator: F > G(x) or (F1|F2|…|Fn) > G(x)

Bundles could be also classified into two types. (1) Simple Bundle without any
combinator; (2) Composed Bundle combined Bundles with at least one or more
combinators. Let us show some details about combinators.

3.2.1 Sequential Combinator
Traditional sequential composition is a special case of expression by using Orc’s
sequential combinator like this f �g, which means that if f just publishes a signal when
it has completed its execution, then f �g behaves like a program in which g follows f.

Different from sequential composition f �g in Orc language, Apla is an abstract
sequential modeling language. As a mature sequential language, it provided traditional
sequential composition F;G means that execute Bundle G after completed the execu-
tion of Bundle F. Hence, different meaning from otherwise combinator’s notation “;” in
Orc, a semicolon indicates the ending symbol in Apla+ program.

3.2.2 Parallel Combinator
The syntax and semantics parallel combinator in Apla+ language are same as parallel
combinator in Orc calculus. Parallel composition F|Gmeans that executes Bundle F and
BundleG concurrently and publishes whatever either Bundles. If Bundle F publishes the
value of u, and Bundle G publishes the value of v, then F|G publishes the value of <u,
v> or <v,u> because of the non-determinism of parallel execution. There is no direct
communication between Bundle F and Bundle G during the execution.

Example 3.1
add(1,2) | add(3,4) publishes <3,7> or <7,3>

Parallel combinator in Apla+ language is also is commutative and associative, that
is, F|G is equivalent to G|F and (F|G) |H to F|(G|H).

Let’s consider the transformation from Apla+ parallel composition to Java
multi-threads program. Parallel composition F|G would be translated into two different
concurrent-units (such as thread in Java), that executes Bundle F in a concurrent-unit
thread_F and executes Bundle G in another concurrent-unit thread_G. There is no
direct communication between thread_F and thread_G during the execution.

3.2.3 Otherwise Combinator
The notion of Orc’s otherwise combinator “;” is replaced by symbol “#” in Apla+
language. But their semantics are similar. Otherwise composition F#G means

Orchestration Combinators in Apla+ Language 7



execution of F is firstly started. If F halted without publications, then G is started, and
F if ever publishes a value, then is G ignored. If Bundle F publishes the value of u, then
F#G publishes the value of u, or If Bundle F halted with no-publications and Bundle
G publishes the value of v, then F#G publishes the value of v. There is also no direct
communication between Bundle F and Bundle G during the execution.

Example 3.2. There are two servers S1 and S2, which could provide the same com-
putation. When a client C send a web-request to two servers, where S1 has a form of
priority because of its higher-performance of hardware and its wider bandwidth for
transferring data.

C.send(request, S1) # C.send(request, S2)

Let’s consider the transformation from Apla+ otherwise composition to Java
multi-threads program. Otherwise composition F#G would be translated into two
different concurrent-unites (such as thread in Java), that firstly executes Bundle F in
thread_F, if no publication from F, then executes Bundle G in thread_G.

3.2.4 Transfer Combinator
Transfer combinator of Apla+ language borrows some features from Orc’s sequential
combinator, but they have distinguishing syntax and different semantics. The notion of
Orc’s sequential combinator “�” is replaced by symbol “||” in Apla+ language.
Transfer compositions could be classified into two types: simple transfer composition
F||G(x) and complex transfer composition (F1|F2|…|Fn) || G(x), where x is universal
variable, defined by keyword “Uvar” in Apla+ language. There is date communica-
tion from left Bundle to right Bundle during the execution.

1. Simple Transfer Composition F || G(x), means that execute F firstly, and halted
with a publication, which is bound to universal variable x, then executes G with x.

2. Complex Transfer Composition (F1|F2|…|Fn) || G(x), means executed n Bundles
concurrently, then binds each of its publication to a different instance of universal
variable x, then executes a separate instance of G for each such binding.

Example 3.3. There are two clients C1 and C2, which could send a web-request to a
server S. Each request from clients could be bound to universal variable x, and then
executes two requests from C1 and C2 in a server S.

(C1.send(request, S) | C2.send(request, S)) || S.receive(x)

Undoubtedly, simple transfer composition is traditional data communication
between from Bundle F to Bundle G. Let’s consider the transformation from Apla+
complex transfer composition to Java multi-threads program. Complex transfer com-
position (F1|F2|…|Fn)||G(x) would be translated into n different concurrently
executed-unites (thread_1, thread_2,…thread_n), for each thread_i ð1 � i � n) means
firstly executes Bundle Fi with its publication bound to variable x, then executes G with
each value of x.

8 Z. You and J. Xue



3.2.5 Pruning Combinator
Pruning combinator of Apla+ language also absorbs some features from Orc’s pruning
combinator, and its syntax is similar to the above transfer composition. Pruning
combinator also use symbol “>”, substitute of “�” of Orc. Pruning compositions also
can be divided into two types: simple pruning composition F > G(x) and complex
pruning composition (F1|F2|…|Fn) > G(x), where x is universal variable, defined by
keyword “Uvar”. There is date communication from left Bundle to right Bundle
during the execution.

1. Simple Pruning Composition F > G(x), means that execute F firstly, and halted
with a publication, which is bound to universal variable x, then executes G with x.

2. Complex Pruning Composition (F1|F2|…|Fn) > G(x), the left part F1|F2|…| Fn

means executed n Bundles concurrently, when get the first publication from a
Bundle Fk ð1 � k � n), then stop execution of other Bundles. Finally, execute
G with the universal variable x, which binds to the first publication from left
Bundle.

Example 3.4. A client C need to search information from two servers S1 and S2. After
getting the first result from S1 or S2, stop process of searching from another server, then
execute computation in client C.

(S1.search(information) | S2.search(information)) > C.computation(x)

Similarly, simple pruning composition is traditional data communication between
two Bundles. Let’s consider the transformation from Apla+ complex pruning com-
position to Java multi-threads program. For complex pruning composition (F1|F2|…|
Fn) > G(x), it firstly concurrently starts n different executed-unites (thread_1, thread_2,
…thread_n), for each executes a Bundle from left part F1|F2|…|Fn. After getting the
first publication from one thread thread_k ð1 � k � n), stops execution of other n-1
threads (if they are not halted), and binds the first publication to variable x, then
executes G with first value of x.

3.3 Case Study

In this section, we will design Apla+ programs with above orchestration combinators to
solve a typical concurrent problem–Dining Philosophers Problem. In concurrent algo-
rithm design, the dining philosophers’ problem could be often used to illustrate syn-
chronization issues. Dining Philosophers Problem was firstly introduced for a ring
topology by Dijkstra [30]. Five silent philosophers sit around a circular table with bowls
of spaghetti. Forks are placed between each pair of adjacent philosophers. Each
philosopher must alternately think and eat. However, a philosopher can only eat spaghetti
when he has both left and right forks. Each fork can be held by only one philosopher. After
he finishes eating, he needs to put down both forks so they become available to others.

Orc program for dining philosophers problem was given in Orc websites [31], and
its TLA + semantics and verification of safety, liveness properties were presented in our
previous paper [19]. The following Apla+ program for dining philosophers problem is

Orchestration Combinators in Apla+ Language 9



designed by using our concurrent mechanism, including Bundle and Orchestration
Combinators, and its functionality and solution strategy are same as Orc program.
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In the above Apla+ program for dining philosophers problem, we defined five
Bundles, which used to describe behavior of philosophers. This problem was designed
to illustrate the challenges of avoiding deadlock, a system state in which no progress is
possible. Besides use of Semaphore, which is a constraint condition for
mutual-exclusively acquirement of forks, we also adopt to a proposal in Bundle pick,
which import randomly pick left or right fork firstly and then another one. On the other
hand, otherwise composition combined by binary operator “#” successfully broke one
of deadlock’s necessary condition–Hold and wait or resource holding. We formally
verified its free-deadlock in previous paper [19] based on the random-picking strategy
for avoiding deadlock.

Five philosophers’ processes of thinking- > hungry/pick-forks- > eating- > drop-
forks would be concurrently executed with share-resources (forks). Parallel composi-
tion combined by binary parallel operator “|” could presents concurrent execution of
five philosophers.

4 Comparing with Related Work

Until now, there are many research works about general concurrent programming
language and abstract concurrent programming/modelling language.

Some general programming languages (such as Java, C, C#, FORTRAN, etc.) also
included concurrent library and explicit concurrent units (such as process, thread, task,
feature, etc.). This allows programmer to choose between different concurrent tools and
library. However, the explicit encoding of concurrency also tends to cause some
problems when multiple different concurrent libraries need to work together, diversity
resulted in complicated communication and interaction, or low-level control mecha-
nism (such as semaphore, monitor, lock, etc.) could easily lead to unsafe state (such as
deadlock, starvation, unfairness, busy waiting, etc.). Different from importing con-
current library and explicit concurrent units in these general programming language,
our primary purpose is to design five abstract Apla+ orchestration combinators, which
hide low-level details for implicit concurrent execution, increase readability and
understandability of concurrent program, and reduce the gap between concurrent
design and its formal verification.

Based on process algebras, concurrent combinators of RSL(RAISE Specification
Language) [1, 2] is similar to CSP and CCS. Circus (Concurrent Integrated Refinement
CalculUS) [3, 4] is a concurrent specification language that integrates imperative CSP,
Z, and the refinement calculus in the setting of Hoare and He’s UTP. Circus support
simultaneous refinement of behavior by process and actions. The distinction between
RSL, Circus and Apla+ is that RSL and Circus are used to formal specification and
modeling concurrent behavior of software system, but Apla+ is used to develop an
abstract concurrent program, which could be translated into executable Java program
with aid of Apla+2Java Generator.

SCOOP (Simple Concurrent Object-Oriented Programming) [6–9] is a popular
concurrent model, and now it have been successfully added to Eiffel programming
language [32, 33] and its Integrated Development Environment—EiffelStudio [34].
The simplicity and platform-independence are pursuing goals of SCOOP model and

Orchestration Combinators in Apla+ Language 11



Apla+ concurrent mechanism, the main different between them is that SCOOP extends
only one keyword “separate” in sequential program to express implicit locak, wait by
contracts and wait by necessity, while Apla+ employs five orchestration combinators to
express concurrent operation.

There are some similar characteristics between Apla+ concurrent mechanism and
Orc calculus/language [16–18]. Bundle of Apla+ is similar to site of Orc. On the other
hand, five orchestration combinators of Apla+ is absorbed some functional features
from Orc’s four combinators. As for their comparison, three differences are summa-
rized as follows. Firstly, Orc originally presented as a calculus and language for task
concurrent orchestration. By importing five orchestration combinators, Apla+ is
evolved from a sequential programming language Apla, which has mature program
structure, abundant data types and supporting tools. Secondly, we abandon the Orc’s
expression, and make full use of statements and Bundles of Apla. Finally, syntax of
combinators is distinguished from each other, and Apla+ reduced the levels of recur-
sive and nested use of orchestration combinators, in order to more-conveniently
translate abstract Apla+ program to concrete Java program.

5 Conclusion and Future Work

Many domains lend themselves naturally to concurrency. Concurrent programming
provides a different method of conceptualizing program solutions to problems. With the
advent of multiple processors on machines, concurrent program would be distributed
over several machines, either locally or through the Internet. Concurrent programming
language provides an efficient way to speed the execution of programs on machines. In
this paper, we firstly proposed Bundle as component or service, and designed five
orchestration combinators, and then the new concurrent mechanism were merged into a
sequential and concurrent programming language, called Apla+. A typical concurrent
program of dining philosophers problem is developed by using Apla+ language.

In the future, we will pursue research about semantics of orchestration combinators,
rules of translation from Apla+ implicit concurrent-units to Java multi-threads,
development of Apla+2Java Generator, which supporting automatically generating
executable Java program from abstract Apla+ concurrent program.
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Abstract. We introduce a model named nested updatable timed
automata (NeUTAs), which can be regarded as a combination of nested
timed automata (NeTAs) and updatable timed automata with one updata-
ble clock (UTA1s). The model is suitable for soft real-time system analy-
sis, since the updatable clock representing a deadline can be updated due
to environments. A NeUTA behaves as a UTA1, in which all clocks can
be tested/updated and a special clock can be incremented/decremented.
It also behaves as a pushdown system, in which a UTA1 can be pushed to
a stack or popped from a stack. When time elapses, all clocks (clocks in
the current running UTA1 or in the stack) proceed uniformly. We show
the termination and boundedness of NeUTAs are decidable.

1 Introduction

Recently, numerous extensions of Alur and Dill’s timed automata (TAs) have
been proposed to model and reason real-time systems. They increase the expres-
sive power of TAs in various ways, such as augmenting a stack, adding more
operations on clocks, and extending the original deterministic reset operation to
a non-deterministic update operation.

Nested timed automata (NeTAs) [1,2] are pushdown systems whose control
locations and stack alphabet are TAs. A control location describes a working TA,
and the stack presents a pile of interrupted TAs. A NeTA can either behaves
as the top TA in the stack, or switches from one TA to another by pushing,
popping, or changing the top TA of the stack. It is a natural model for analyzing
real-time systems with context switches, e.g., interrupt systems. The reachability
problem for NeTAs is shown to be decidable.

Updatable timed automata (UTAs) [3] are extensions of TAs having the abil-
ity to update clocks in a more elaborate way (i.e. increment and decrement)
besides the normal operations. The reachability problem of UTAs is undecid-
able, which can be easily verified by encoding two counter machine with UTAs.
However, there are still many decidable subclasses of UTAs by restricting the
expressive power. Among them, updatable timed automata with one updatable
clock (UTA1s) [4] is an interesting decidable subclass by restricting the number
of updatable clocks to be one.

The aim of this paper is to combine NeTAs and UTA1s as a new model and
to study the verification problems. More precisely, we replace TAs in NeTAs with
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 15–31, 2017.
DOI: 10.1007/978-3-319-57708-1 2
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UTA1s and thus get nested updatable timed automata (NeUTAs). Such kind of
model is suitable for soft real-time system analysis, since the updatable clock
of each UTA1 is used to describe the soft deadline, which is adjusted due to
different environment. Termination and boundedness of the model are proved
to be decidable, by encoding NeUTAs to vector pushdown systems, after digitiz-
ing dense time. The properties of the latter model are proved to be decidable
by extending the reduced reachability tree proof technique of pushdown vector
addition systems [5]. Note that pushdown vector addition systems assume the
set of locations is a WQO, while the stack alphabet is finite. vector pushdown
systems assume the set of locations is finite, while stack alphabet is a WQO.

Related Work. Timed automata (TAs) [6], proposed by Alur and Dill, are
finite automata augmented with a finite set of clocks. Clocks can be used to
record precisely how much time has elapsed in a dense manner and constrain
the behaviour of the model. Although the theory of timed automata is successful
in modeling and analyzing real-time systems with a large number of problems
having been studied, it is so low-level that it is hard to apply it to verification
of systems in reality directly. Actually many researchers are devoted to study
subclasses or extensions of timed automata.

Hybrid automata [7–9] can be regarded as a generalization of timed
automata. It is a mathematical model for mixed discrete-continuous systems, in
which a discrete problem is embedded in continuous changing environments. The
decidability of reachability problem is undecidable for general hybrid automata,
while initialized rectangular automata form a maximum decidable subclass of
hybrid automata that lies in the boundary of decidability.

Dense timed pushdown automata (DTPDAs) [10] play an essential role of the
prove in this paper. DTPDAs extend timed automata with an additional stack,
where a stack symbol with an age can be pushed to the stack. When time elapses,
all clocks together with ages in the stack proceed uniformly. When popping, the
value of the age in the top stack frame can be checked. The reachability problem
for DTPDAs is shown to be EXPTIME-complete.

Interrupt timed automata (ITAs) [11,12] intend to model timed multi-task
systems with different priority levels. As extensions of TAs, each control state in
ITAs is in an interrupt level, ranged from 1 to n, with exactly one active clock
recording time in each interrupt level. When ITAs are in a given interrupt level,
all clocks of lower interrupt levels are suspended and those of higher interrupt
levels are undefined. The reachability problem for ITAs is shown to be in NEX-
PTIME and PTIME when the number of clocks is fixed. Though both ITAs and
NeTAs can be used to model interrupt systems, they are different in what they
are focus on. ITAs focus on the interrupt level, while NeTAs focus on context
switches.

Paper Organization. The remainder of this paper is structured as follows:
In Sect. 2 we introduce basic notations and models. Section 3 defines syntax
and the semantics of UDTPDA1s. Section 4 shows that the termination and
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boundedness of UDTPDA1s are decidable. Section 5 introduces NeUTAs and
shows the decidability on termination and boundedness by encoding NeUTAs to
UDTPDA1s. Section 6 concludes this paper with summarized results.

2 Preliminaries

Let R
≥0 and N be the sets of non-negative real and natural numbers, respec-

tively. Let Nω :=N∪ {ω}, where ω is the least limit ordinal. I denotes the set of
intervals, which are (a, b), [a, b], [a, b) or (a, b] for a ∈ N and b ∈ Nω.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 denotes the clock valuation assigning
each clock in X to 0. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)
(x) = ν(x) + t, for x ∈ X. A clock assignment function ν[y ← b] is defined by
ν[y ← b](x) = b if x = y, and ν(x) otherwise. Further, multiple clock assignment
function ν[y1 ← b1, · · · , yn ← bn] is defined by ν[y1 ← b1, · · · , yn ← bn](x) = bi

if x = yi for 1 ≤ i ≤ n, and ν(x) otherwise. Val(X) is used to denote the set of
clock valuation of X.

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.
we denote the set of finite multisets over D by MP(D), and the union of two
multisets M,M ′ by M � M ′. We regard a finite set as a multiset with the
multiplicity 1, and a finite word as a multiset by ignoring the ordering.

2.1 Updatable Timed Automata

Updatable timed automata (UTAs) [13,14] are extensions of timed automata,
based on the possibility to update the clocks in a elaborate way such as incre-
ment and decrement operations and assignments to arbitrary values. However,
generally, the reachability problem of updatable timed automata is undecidable.
Several decidable subclasses are investigated, based on restriction on the update
abilities [3]. In [4], we proposed another decidable subclass by restricting the
number of updatable clocks to be one. We will adopt the restriction in the fol-
lowing content paper.

Definition 1 (Updatable Timed Automata with One Updatable
Clock). An updatable timed automaton with one updatable clock (UTA1) is
a tuple A = 〈Q, q0,X, c,Δ〉, where

– Q is a finite set of control locations, with the initial control location q0 ∈ Q,
– X = {x1, . . . , xk} is a finite set of normal clocks, and c is the singleton

updatable clock,
– Δ ⊆ Q×Actions+A ×Q is a finite set of actions. A (discrete) transition δ ∈ Δ

is a sequence of actions (q1, φ1, q2) . . . (qi, φi, qi+1), written as q1
φ1;...;φi−−−−−→ qi+1,

in which φj (for 1 ≤ j ≤ i) is one of the following
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Local ε, an empty operation,
Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
Assignment x ← I, where x ∈ X ∪ {c} and I ∈ I,
Increment c := c + 1, and
Decrement c := c − 1.

Similar to the definitions in [2], for an easier encoding later, a transition as

a sequence of actions q1
φ1;··· ;φi−−−−−→ qi+1 prohibits interleaving time progress. This

can be encoded with an extra clock by resetting it to 0 and checking it still 0
after transitions, and introducing fresh control states.

Given a UTA1 A ∈ A , we use Q(A), q0(A), X(A), c(A) and Δ(A) to repre-
sent the set of control locations, the initial location, the set of normal clocks, the
updatable clock and the set of actions, respectively. We will use similar notations
throughout the paper.

Definition 2 (Semantics of UTA1s). Given a UTA1 A = 〈Q, q0,X, c,Δ〉, a
configuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν
on X ∪ {c}. The transition relation of the UTA1 is represented as follows,

– Progress transition: (q, ν) t−→ (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→ (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,

• Local φ = ε, then ν1 = ν2. This operation only changes the control
location and leaves the clock valuation unaltered.

• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds. The transition can be
performed only if the value of x belongs to I.

• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I. Clock x is assigned
to a non-deterministic value in I.

• Increment φ = c := c + 1, ν2 = ν1[c ← ν1(c) + 1]. The value of the
updatable clock c is incremented by 1.

• Decrement φ = c := c − 1, ν2 = ν1[c ← ν1(c) − 1] and ν1(c) ≥ 1 holds.
The value of the updatable clock c is decremented by 1.

The initial configuration is (q0, ν0).

Proposition 1. The reachability problem of UTA1 under diagonal-free con-
straints is decidable [4].

2.2 Dense Timed Pushdown Automata

Dense timed pushdown automata [2,10] extend timed pushdown automata with
time updating in the stack. Each symbol in the stack is equipped with a local
clock named an age, and all ages in the stack proceed uniformly. An age in each
context is assigned to the value of a clock when a push action occurs. A pop
action pops the top symbol to assign the value of its age to a specified clock.

Definition 3 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple D = 〈Q, q0, Γ,X,Δ〉 ∈ D , where
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– Q is a finite set of control locations with the initial control location q0 ∈ Q,
– Γ is a finite stack alphabet,
– X is a finite set of clocks, and
– Δ ⊆ Q × Actions+D × Q is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (q1, ϕ1, q2), · · · , (qi, ϕi, qi+1)
written as q1

ϕ1;··· ;ϕi−−−−−→ qi+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X and I ∈ I,
– Push push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X, and
– Pop pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X.

Definition 4 (Semantics of DTPDAs). For a dense timed pushdown
automaton 〈Q, q0, Γ,X,Δ〉, a configuration is a triplet (q, w, ν) with a control
location q ∈ Q, a stack w ∈ (Γ × R

≥0)∗, and a clock valuation ν on X. In
a stack w = (γ1, t1). · · · .(γn, tn), γi is a stack symbol and ti is an age. t-time
passage on the stack increases all ages in the stack by the same value, which
is denoted by w + t = (γ1, t1 + t). · · · .(γn, tn + t). The transition relation of a
DTPDA is represented as follows.

– Progress transition: (q, w, ν) t−→D (q, w + t, ν + t), where t ∈ R
≥0. When time

elapses, all clocks together with all ages in the stack proceed uniformly.
– Discrete transition: (q1, w1, ν1)

ϕ−→D (q2, w2, ν2), if q1
ϕ−→ q2, and one of the

following holds,
• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Push ϕ = push(γ, x), then ν1 = ν2, w2 = (γ, ν1(x)).w1. The stack symbol

γ and an age of the value of clock x are pushed to the stack.
• Pop ϕ = pop(γ, x), then ν2 = ν1[x ← t], w1 = (γ, t).w2. The top stack

frame (γ, t) is popped from the stack and the clock x is assigned with the
value of the age t.

The initial configuration �0 = (q0, ε, ν0).

Remark 1. For simplicity of the later proofs, the definition of DTPDAs follows
Definition 1 in [2], slightly modified from the original [10]. The former can encode
the later easily.

3 Updatable Dense Timed Pushdown Automata

An updatable dense timed pushdown automaton with one updatable clock
(UDTPDA1) is different from Definition 3 at:
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– besides the set X of normal clocks (of the fixed number k), an updatable clock
c is introduced. We refer to the normal clocks as x1, x2, ..., xk and sometimes
we refer to the updatable clock c as x0 for simplicity.

– a tuple of ages (for simplicity, we fix the length of a tuple to be k + 1) is
pushed on the stack and/or popped from the stack.

Definition 5 (UDTPDA1s). A UDTPDA1 is a tuple U = 〈S, s0, Γ,X, c,Δ〉 ∈
U , where

– S is a finite set of control locations with the initial control location s0 ∈ S,
– Γ is a finite stack alphabet,
– X is a finite set of local clocks (with |X| = k),
– c is the singleton updatable clock and
– Δ ⊆ S × Action+

U × S is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (s1, ϕ1, s2), · · · , (si, ϕi,

si+1) written as s1
ϕ1;··· ;ϕi−−−−−→ si+1, in which ϕj (for 1 ≤ j ≤ i) is one of the

followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X ∪ {c} is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X ∪ {c} and I ∈ I,
– Increment c := c + 1,
– Decrement c := c − 1,
– Push push(γ), where γ ∈ Γ , and
– Pop pop(γ), where γ ∈ Γ .

Definition 6 (Semantics of UDTPDA1s). For a UDTPDA1 〈S, s0, Γ,
X, c,Δ〉, a configuration is a triplet (s, w, ν) with a control location s ∈ S, a
stack w ∈ (Γ × (R≥0)k+1)∗, and a clock valuation ν on X ∪ {c}. In a stack
w = (γ1, t̄1). · · · .(γn, t̄n), γi is a stack symbol and t̄i = (t0i , · · · , tki ) is a k + 1-
tuple of ages. t-time passage on the stack increases all ages in the stack by the
same value t, which is denoted by w + t = (γ1, t̄1 + t). · · · .(γn, t̄n + t) where
t̄i + t = (t0i + t, · · · , tki + t).

The transition relation of a UDTPDA1 is represented as follows.

– Time progress: (s, w, ν) t−→U (s, w + t, ν + t), where t ∈ R
≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→U (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,

• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2, and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Increment c := c + 1, then w1 = w2, and ν2 = ν1[c ← ν1(c) + 1],
• Decrement c := c−1, then w1 = w2, ν2 = ν1[c ← ν1(c)−1] and ν1(c) ≥ 1

holds,
• Push ϕ = push(γ), then ν2 = ν0, w2 = (γ, (ν1(c), ν1(x1), · · · , ν1(xk))).w1

for X = {x1, · · · , xk}. The values of k+1 clocks are pushed as ages in the
stack.
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• Pop ϕ = pop(γ), then ν2 = ν1[c ← t0, x1 ← t1, · · · , xk ← tk], w1 =
(γ, (t0, · · · , tk)).w2. The values of k+1 clocks are recovered with ages in
the top stack frame.

The initial configuration �0 = (s0, ε, ν0). We use ↪→ to range over these transi-
tions, and ↪→∗ is the reflexive and transitive closure of ↪→.

Example 1. The figure shows transitions �1 ↪→ �2 ↪→ �3 ↪→ �4 of a UDTPDA1
with S = {•} (omitted in the figure), X = {x1, x2} and Γ = {a, b, d}. All values
which are changed in a transition are in bold. At �1 ↪→ �2, the values of c, x1

and x2 (2.3, 0.5 and 3.9) are pushed to the stack with d. After pushing, value of
c, x1 and x2 will be reset to zero, At �2 ↪→ �3, time elapses 2.6. At �3 ↪→ �4, a
increment occurs which increases the value of c from 2.6 to 3.6.

(a, (1.5, 1.9, 4.5))
(b, (3.2, 6.7, 2.9))
(a, (3.3, 3.1, 5.2))
(d, (2.7, 4.2, 3.3))

c ← 2.3
x1 ← 0.5
x2 ← 3.9

(d, (2.3,0.5,3.9))
(a, (1.5, 1.9, 4.5))
(b, (3.2, 6.7, 2.9))
(a, (3.3, 3.1, 5.2))
(d, (2.7, 4.2, 3.3))

c ← 0
x1 ← 0
x2 ← 0

(d, (4.9,3.1,6.5))
(a, (4.1,4.5,7.1))
(b, (5.8,9.3,5.5))
(a, (5.9,5.7,7.8))
(d, (5.3,6.8,5.9))

c ← 2.6
x1 ← 2.6
x2 ← 2.6

(d, (4.9, 3.1, 6.5))
(a, (4.1, 4.5, 7.1))
(b, (5.8, 9.3, 5.5))
(a, (5.9, 5.7, 7.8))
(d, (5.3, 6.8, 5.9))

c ← 3.6
x1 ← 2.6
x2 ← 2.6

�1
push(d)−−−−−−−−−−−−→U �2

2.6−−−−−−−−−−−−−→U �3
c := c+1−−−−−−−−−−−−→U �4

4 Termination and Boundedness of UDTPDA1s

In this section, we show that the termination and boundedness of UDTPDA1s are
decidable. We first introduce vector pushdown systems and prove its decidability
on termination and boundedness. Then we describe the digitization technique in
UDTPDA1s using digitized configuration and its operations, which intend to sim-
ulate configurations and transitions of UDTPDA1s, respectively. Finally, the spe-
cific encoding from a UDTPDA1 to a snapshot vector pushdown system is given.

4.1 Vector Pushdown Systems

Definition 7 (Vector Pushdown Systems). A vector pushdown system is a
tuple P = (Q,Γ,Nk,Δ), where Q is a finite set of states, Γ is a finite stack
alphabet, Nk is k-dimension natural number vectors, and Δ ⊆ P × (Γ ×N

k)≤2 ×
P × (Γ × N

k)≤2. We use α, β, γ, · · · to range over Γ × N
k, and w, v, · · · over

words in (Γ × N
k)∗.

A configuration of P is a pair 〈q, w〉, where a state q ∈ Q and a stack
w ∈ (Γ × N)∗. A transition relation =⇒ between configurations of P is defined
by

(p, γ → p′, γ′) ∈ Δ

〈p, γw〉 ↪→ 〈p′, γ′w〉 Inter
(p, γ → p′, αβ) ∈ Δ

〈p, γw〉 ↪→ 〈p′, αβw〉 Push

(p, γ → p′, ε) ∈ Δ

〈p, γw〉 ↪→ 〈p′, w〉 Pop
(p, ε → p′, α) ∈ Δ

〈p,w〉 ↪→ 〈p′, αw〉 Simple-Push
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(p, αβ → p′, γ) ∈ Δ

〈p, αβw〉 ↪→ 〈p′, γw〉 Nonstandard-Pop

Remark 2. In a pushdown system, the Simple-Push and Nonstandard-Pop
rules can be encoded by other three rules. However, in a vector pushdown system,
since the stack symbols in Γ × N

k are essential unbounded, thus all of the five
rules are necessary.

Let |w| denotes the length of word w and w[i] denotes the i-th symbol in
w. The head h(p,w) of a configuration 〈p,w〉 is (p,w[1]) if w = ε; otherwise,
h(p,w) = (p,⊥). Since a finite set is well-quasi-ordered and (Nk,≤) is well-quasi-
ordered, by Dickson’s Lemma, we can obtain the set of heads of configurations
is well-quasi-ordered.

Besides, we denote a1a2 . . . am � b1b2 . . . bn, if m = n and, for each i, ai ≤ bi

holds, and w�v if w�v and w = v.
The reachability tree of a VPS V = (Q,Γ,Nk,Δ) with an initial configuration

c0 is a rooted unordered tree defined as follows. Each node of the tree is labeled
by a configuration of V. The root r is labeled by the initial configuration c0,
denoted by r : c0. Each node n : cn has a child m : cm when cn ↪→ cm. Note that
the reachability tree of V is finitely branching since Δ is finite.

Termination Problem. The termination problem asks whether all runs of a
given system are finite, we have the following definition.

Definition 8. A node s : 〈p,w〉 pumps a node t : 〈q, v〉 if

– there is a path from s to t, and every node t′ : 〈p′, w′〉 on it satisfies |w′| ≥ |w|.
– h(〈p,w〉) � h(〈q, v〉), i.e., p � q and either w = ε or w[1] ≤ v[1].

We call a node pumpable if there exists a node pumping it. The notion of
pumpable nodes is similar to subsumed nodes in [5], but we consider the increase
of heads instead of states. Let the reduced reachability tree be the largest prefix
of the reachability tree such that every pumpable node has no children.

The intuition of pumpable nodes is that if the run from 〈p,w〉 to 〈q, v〉 only
changes the top element of w, then we can simulate this run from 〈q, v〉 to some
〈q′, v′〉 by monotonicity, satisfying p � q � q′, and w[1] ≤ v[1] ≤ v′[1]. We can
construct an infinite run by repeating this process.

Conversely, assume 〈p0, w0〉 ↪→ 〈p1, w1〉 · · · is an infinite run, we can extract
an infinite subsequence, say 〈pi0 , wi0〉, 〈pi1 , wi1〉, · · · , such that each node is cho-
sen if it has the minimal depth of the stack in its suffix run. Note that each pair
of 〈pik , wik〉 and 〈pij , wij 〉 with k < j in this subsequence satisfies the first con-
dition of pumpable nodes. By the fact that the set of heads is well-quasi-ordered,
it must contain a pumpable node.

Theorem 1. A VPS has an infinite run if, and only if, its reduced reachability
tree contains a pumpable node.
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Boundedness Problem. The boundedness asks whether the reachability set
is finite. We know that any infinite run has a pumpable node. If a pumpable
node is exactly the same as the one that pumps it, still an infinite run keeps
the reachability set finite. Otherwise, a VPS enlarges reachable configurations
infinitely.

Definition 9. A node s : 〈p,w〉 strictly pumps a node t : 〈q, v〉 if s pumps t,
and either |w| < |v| or h(〈p,w〉) � h(〈q, v〉).

Theorem 2. A VPS has an infinite reachability set if, and only if, its reduced
reachability tree contains a strictly pumpable node.

Proof. (Only-if) Assume a VPS V has an infinite reachability set. Let T be the
largest prefix of its reachability tree such that, on each branch, all nodes have
distinct labels. The tree T is infinite since every configuration in the reachability
set is a node in T .

By König’s lemma, it follows that T contains finitely many branches in which
all nodes are distinct. Since the reduced reachability tree of V is finite, among
finitely many branches, there are two nodes n : (p,w) and m : (q, v) such that
they are in the reduced reachability tree and n pumps m.

Thus, (p,w) = (q, v) and (p,w) pumps (q, v). By definition of pumpable
nodes, we have two cases: (1) |w| < |v|, and (2) |w| = |v|. In case (2), either
w � v or p ≺ q holds. w[2, |w|] = v[2, |v|] implies either w[1] < v[1] or p ≺ q.
Thus, both cases, n strictly pumps m.

(If) Similar to that of Theorem 1. The path from the root to a strictly pumpable
node yields a run

(p0, w0)
op1−→ . . .

opk−→ (pk, wk)
opk+1−→ . . .

opl−→ (pl, wl)

such that (pk, wk) strictly pumps (pl, wl), which leads an infinite run by iterating
the sequence of operations opk+1, ..., opl. As the case analysis, if |w| < |v|, the
resulting infinite run enlarges the length of the stack infinitely; if w[1] < v[1],
the resulting infinite run enlarges the top element of the stack infinitely.

4.2 Digitized Configuration and Its Operations

Let 〈S, s0, Γ,X, c,Δ〉 be a UDTPDA1, and let n be the largest integer (except
for ω) appearing in Δ. For v ∈ R

≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}

The idea of the next digitization is inspired by [15–17].

Definition 10 (Digitization). Let frac(t) = t − floor(t) for t ∈ R
≥0. A

digitization function digi : MP(({c} ∪ X ∪ Γ ) ×R
≥0) → MP(({c} ∪ X ∪ Γ ) ×

Intv(n))∗ is defined as follows.
For Ȳ ∈ MP(({c} ∪ X ∪ Γ ) × R

≥0), let Y0, Y1, · · · , Ym be multisets that
collect (x, proj(t))’s having the same frac(x, t) for (x, t) ∈ Ȳ. Among them,
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Y0 (which is possibly empty) is reserved for the collection of (x, proj(t)) with
frac(t) = 0. We assume that Yi’s except for Y0 is non-empty (i.e., Yi = ∅
with i > 0 is omitted), and Yi’s are sorted by the increasing order of frac(t)
(i.e., frac(t) < frac(t′) for (x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈ Yi+1). Thus,
digi(Ȳ) is a word Ȳ = Y0Y1 · · · Ym.

For a stack frame v = (γ, (t0, · · · , tk)) of a UDTPDA1, we denote a word
(γ, t0) · · · (γ, tk) by dist(v). Given a clock valuation ν, we denote a clock word
(c, ν(c))(x1, ν(x1)) . . . (xn, ν(xk)) by time(ν) where c is the singleton updatable
clock and xi ∈ X for 1 ≤ i ≤ k.

Example 2. In Example 1, we assume n = 6 and have 13 intervals illustrated
below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the configuration �1 = (•, v4 · · · v1, ν) in Example 1, let Ȳ = dist(v4) �
time(ν) be a word, and Ȳ = digi(Ȳ), then

Ȳ = {(a, 1.5), (a, 1.9), (a, 4.5), (c, 2.3), (x1, 0.5), (x2, 3.9)}
Ȳ = {}{(c, r5)}{(x1, r1), (a, r3), (a, r9)}{(x2, r7), (a, r3)}

Definition 11 (Digiword). A word Ȳ ∈ MP(({c} ∪ X ∪ Γ ) × Intv(n))∗ is a
digiword if the following is satisfied:

– Let a k + 1-pointer ρ̄ of Ū is a tuple of k + 1 pointers to mutually different
k+1 elements in Ū . Then there are a pair of k+1-pointers (ρ̄1, ρ̄2) in Ȳ that
point to clocks and ages in the topmost stack frame, respectively.

– For every element in Ȳ , either ρ̄1 or ρ̄2 points to it.

We refer the element (γ, r) pointed by the i-th pointer by ρ̄[i] where 0 ≤ i ≤ k.
Let the set Digi contains all digiwords. Digi is a finite set by observing that at
most 2k + 2 elements exist in a digiword.

A digiword Ȳ intends to be the digitization of the current clock valuation
(pointed by ρ̄1) and the topmost stack frame (pointed by ρ̄2) in a UDTPDA1.
More precisely, for 0 ≤ i ≤ k, ρ̄1[i] points to (xi, proj(ν(xi))) for (xi, ν(xi)) ∈
time(ν) where ν is the clock valuation and ρ̄2[i] points to (γ, proj(ti)) for (γ, ti) ∈
dist(v) where v is the topmost stack frame.

Definition 12 (Digitized Configuration). A digitized configuration is a
tuple Ū ∈ Digi × N2, which contains a digiword and a pair of natural num-
bers. The pair of natural numbers intend to roughly record the time passage
when the value of updatable clocks in the current clock valuation and the top-
most stack frame exceed the maximum integer n. Each time the updatable clocks
value exceeds n and meanwhile its value changes between integer and non-integer
with time elapsing, we increase the corresponding natural number by one.
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Example 3. The word Ȳ in Example 2 can be extended to a digitized configu-
ration Ū by adding a pair of 3-pointers (ρ̄1, ρ̄2) (pointers are marked with the
numbered overlines and underlines). and a pair of numbers (0, 0).
Ū = ({}{(c, r5)

0}{(x1, r1)
1
, (a, r3)

0
, (a, r9)

2
}{(x2, r7)

2
, (a, r3)

1
}, 0, 0)

Pointers are given more explicitly below:
ρ̄1(0) = (c, r5) ρ̄1(1) = (x1, r1) ρ̄1(2) = (x2, r7)
ρ̄2(0) = (a, r3) ρ̄2(1) = (a, r3) ρ̄2(2) = (a, r9)

Definition 13 (Operations on Digitized Configuration). Let Ū = (Y0 · · ·
Ym, num1, num2), Ū ′ = (Y ′

0 · · · Y ′
m′ , num′

1, num′
2), V̄ = (Y ′′

0 · · · Y ′′
m, num′′

1 ,
num′′

2) ∈ Digi × N
2 are digitized configurations such that Ū (resp. Ū ′ and V̄ ) has

a pair of k + 1-pointers (ρ̄1, ρ̄2) (resp. (ρ̄′
1, ρ̄

′
2) and (ρ̄′′

1 , ρ̄′′
2)). We define operations

as follows which are used to simulate transitions of UDTPDA1s in the next sub-
section. Note that except for Rotate, Map, and Propogate, the k + 1-pointers
ρ̄1 is changed corresponding to the operation to ensure that properties of digiwords
are still satisfied after operations. Namely when an element is removed, the pointer
which points to it is set to empty. And when an element (xi, r) for xi ∈ {c} ∪ X is
added, the pointer ρ̄1[i] is modified to point to that new element.

– Insertx: insertx(Ū , (x, ri)) for x ∈ X inserts (x, ri) to Ū (may nondeter-
ministically) at
⎧
⎨

⎩

either put into Yj for j > 0, or
put the singleton set {(x, ri)} at any place after Y0 if i is odd

put into Y0 if i is even

– Insertc: insertc(Ū , (c, ri)) for the updatable clock c inserts (c, ri) to Ū and
updates natural number num1 in one of three following ways:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 ) either put (c, ri) into Yj for j > 0, or
put the singleton set {(c, ri)} at any place after Y0

and num1 = 0 if i ≤ 2n and i is odd
(2 ) put (x, ri) into Y0 and num1 = 0 if i ≤ 2n and i is even
(3 ) either put (c, ri) into Yj for j ≥ 0, or

put the singleton set {(c, ri)} at any place after Y0

and num1 = d, where d is a positive integer
and d is odd if (c, ri) is put into Y0 otherwise even if i = 2n+ 1

– Init: For Ū = (Y0 · · · Ym, num1, num2), init(Ū) is obtained by updating Y0

with Y0 � {(xi, r0) | xi ∈ {c} ∪ X} and num1 with 0.
– Delete: delete(Ū , x) for x ∈ {c} ∪ X is obtained from Ū by deleting the

element (x, r) indexed by x.
– Increase: increase(Ū) is obtained from Ū by replacing the element (c, ri)

indexed by c with element (c, rmin{i+2,2n+1}) and updating num1 as follows:
⎧
⎨

⎩

num1 := num1 if i < 2n − 1
num1 := num1 + 1 if i = 2n − 1
num1 := num1 + 2 otherwise
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– Decrease: decrease(Ū) is obtained from Ū by replacing the element (c, ri)
indexed by c with element (c, rj) and updating num1 as follows:

⎧
⎨

⎩

j = max(i − 2, 0) and num1 := num1 if num1 ≤ 1
j = i − 1 and num1 := 0 else if num1 = 2
j = i and num1 := num1 − 2 otherwise

– Rotate: Rotate intends to simulate the time progress transition. A rotation
Ū = (Y0 · · · Ym, num1, num2) ⇒ Ū ′ = (Y ′

0 · · · Y ′
m′ , num′

1, num′
2) is defined as

follows.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ū ′ = (Y ′
0 · · · Y ′

m+1, if Y0 = ∅, Y ′
0 = ∅, Y ′

1 = {(γ, rmin{i+1,2n+1})
num′

1, num′
2) | (γ, ri) ∈ Y0}, Y ′

j = Yj−1 for j ∈ [2..m + 1],
num′

1 = num1 + 1 if (c, ri) ∈ Y0 and i ≥ 2n
otherwise num1, and num′

2 = num2 + 1 if
ρ̄1[0] = (γ, ri) ∈ Y0 and i ≥ 2n, otherwise
num2 + 1.

Ū ′ = (Y ′
0 · · · Y ′

m−1, otherwise, Y ′
0 = {(γ, rmin{i+1,2n+1}) | (γ, ri) ∈ Ym},

num′
1, num′

2) Y ′
j = Yj for j ∈ [1..m − 1], num′

1 = num1 + 1,
if (c, ri) ∈ Ym and i ≥ 2n, otherwise num1,
and num′

2 = num2 + 1 if ρ̄1[0] = (γ, ri) ∈ Ym

and i ≥ 2n, otherwise num2.

(ρ̄1, ρ̄2) are updated to correspond to the permutation accordingly. As conven-
tion, we define ⇒∗ as reflexive transitive closure of ⇒.

– Map: Map intends to simulate the push transition. map(Ū , γ) for γ ∈ Γ is
obtained from Ū by the following operations. First delete all elements pointed
by ρ̄2. Then replace (x, rj) pointed by ρ̄1 for x ∈ {c} ∪ X with (γ, rj) and set
ρ̄2 to point to that. Finally assign value of num1 to num2.

– Propogate: Propogate intends to simulate the pop transition. propogate(Ū ,
Ū ′, γ) for γ ∈ Γ is set to be V̄ which is obtained by finding a rotation Ū ′ ⇒∗ V̄
such that ρ̄′′

1 of V̄ matches the original ρ̄2 of Ū . That is to say, for 0 ≤ i ≤ k,
ρ̄′′
1 [i] = (x, rm) and ρ̄2[i] = (γ, rn), we have m = n.

Example 4. We begin with the digitized configuration Ū in Example 3, to sim-
ulate transitions �1 ↪→∗ �4 in Example 1.

– push(d) is simulated by Ū1 = init(map(Ū , d)).
Ū1 = ({(c, r0)

0
, (x1, r0)

1
, (x2, r0)

2}{(d, r5)
0
}{(d, r1)

1
}{(d, r7)

2
}, 0, 0)

– Time elapse of 2.6 time units is simulated by Ū1 ⇒∗ Ū2

Ū2 = ({}{(d, r7)
1
}{(d, r13)

2
}{(c, r5)

0
, (x1, r5)

1
, (x2, r5)

2}{(d, r9)
0
}, 0, 0)

– c := c + 1 is simulated by Ū3 = increase(Ū2).
Ū3 = ({}{(d, r7)

1
}{(d, r13)

2
}{(c, r7)

0
, (x1, r5)

1
, (x2, r5)

2}{(d, r9)
0
}, 0, 0)
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4.3 Snapshot Vector Pushdown System

A snapshot vector pushdown system (snapshot VPS) keeps the digitization of
clock valuation and ages in the top stack frame and a pair of natural numbers
that record roughly how much the current updatable clock pointed by ρ̄1[0] and
the age of element pointed by ρ̄2[0] exceed the maximum integer n in the top
stack frame, as a digitized configuration.

We show that a UDTPDA1 is encoded into its digitization, called a snap-
shot VPS. The keys of the encoding are, when a pop occurs, the time progress
recorded at the top stack symbol is propagated to the next stack symbol after
finding a series of rotations by matching between k + 1-pointers ρ̄2 and ρ̄′

1.
Using digitized configuration and its operations defined in the last subsection,
the encoding is quite natural.

Definition 14. Let π : �0 = (s0, ε, ν0) ↪→∗ � = (s, w, ν) be a transition sequence
of a UDTPDA1 from the initial configuration. If π is not empty, we refer the
last step as λ : �′ ↪→ �, and the preceding sequence by π′ : �0 ↪→∗ �′. Let w =
vm · · · v1. A snapshot is a digitized configuration snap(π) = (Ȳ , num1, num2),
where num1 = 2 × (floor(ν(c)) − n) + ceiling(frac(ν(c))), num2 = 2 ×
(floor(t0) − n) + ceiling(frac(t0)) if w is not empty and vm = (γ, t0, · · · , tk),
otherwise num2 = 0, and Ȳ = digi(dist(vm) � time(ν)).

In snap(π), we define the k + 1-pointer ρ̄1[i] = (xi, ν(xi)) for 0 ≤ i ≤ k.
We also define ρ̄2[i] = (γ, proj(ti)) for (γ, ti) ∈ dist(vm) if w is not empty,
otherwise ρ̄2 is left undefined. A snapshot configuration Snap(π) is inductively
defined from Snap(π′).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(s0, snap(ε)) if π = ε.
(s′, snap(π) tail(Snap(π′))) if λ is Timeprogress,Local,Test,

Assign, Increment and Decrement.
(s′, snap(π) Snap(π′)) if λ is Push.
(s′, snap(π) tail(tail(Snap(π′)))) if λ is Pop.

Definition 15. For a UDTPDA1 〈S, s0, Γ,X, c,Δ〉, we define the correspond-
ing encoded snapshot VPS 〈S, s0,Digi,N2,Δd〉 with the initial configuration
〈s0, snap(ε)〉. Then Δd consists of:

Time progress 〈s, Ū〉 ↪→S 〈s, Ū ′〉 for Ū ⇒∗ Ū ′.
Local (s ε−→ s′ ∈ Δ) 〈s, Ū〉 ↪→S 〈s′, Ū〉.
Test (s x∈I?−−−→ s′ ∈ Δ with x ∈ X ∪ {c}) If ri ⊆ I and (x, ri) ∈ Ȳ , where

Ū = (Ȳ , num1, num2), 〈s, Ū〉 ↪→S 〈s′, Ū〉.
Assign (s x←I−−−→ s′ ∈ Δ with x ∈ X) For ri ⊆ I,

〈s, Ū〉 ↪→S 〈s′, (insertx(delete(Ū , x), (x, ri)))〉.
Assign (s c←I−−−→ s′ ∈ Δ) For ri ⊆ I,

〈s, Ū〉 ↪→S 〈s′, (insertc(delete(Ū , c), (c, ri)))〉.
Increment (s c := c+1−−−−−→ s′ ∈ Δ)

〈s, Ū〉 ↪→S 〈s′, increase(Ū)〉.
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Decrement (s c := c−1−−−−−→ s′ ∈ Δ)
〈s, Ū〉 ↪→S 〈s′, decrease(Ū)〉.

Push (s
push(γ)−−−−−→ s′ ∈ Δ)

〈s, Ū〉 ↪→S 〈s′, (init(map(Ū , γ)))Ū〉.
Pop (s

pop(γ)−−−−→ s′ ∈ Δ)
〈s, Ū Ū ′〉 ↪→S 〈s′, propagate(Ū , Ū ′, γ)〉.

By induction on the number of steps of transitions, the encoding relation
between a UDTPDA1 with a single updatable clock and a snapshot VPS is
observed.

Lemma 1. Let us denote �0 and � (resp. 〈s0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a UDTPDA1 (resp. its snapshot VPS S).

(Preservation) If π : �0 ↪→∗ �, there exists 〈s, w̃〉 such that 〈s0, w̃0〉 ↪→∗
S 〈s, w̃〉

and Snap(π) = 〈s, w̃〉.
(Reflection) If 〈s0, w̃0〉 ↪→∗

S 〈s, w̃〉, there exists π : �0 ↪→∗ � with Snap(π) =
〈s, w̃〉.

5 Nested Updatable Timed Automata

5.1 Nested Updatable Timed Automata

Nested Updatable Timed Automata(NeUTAs) extend NeTAs [1,2] by replacing
every TA in NeTAs to a UTA1. A NeUTA has internal transitions, in which
it will behave as a individual UTA1 having local, test, assign, increment and
decrement transitions, and push and pop transitions. The stack of a NeUTA
contains a pile of UTA1s which have been pushed.

Definition 16 (Nested Updatable Timed Automata). A nested updatable
timed automaton (NeUTA) is a quadruplet N = (T,A0,X, c,Δ), where

– T is a finite set {A0,A1, · · · ,Am} of UTA1s, with the initial UTA1 A0 ∈ T .
We assume the sets of states of Ai, denoted by S(Ai), are mutually disjoint,
i.e., S(Ai)∩S(Aj) = ∅ for i = j. We denote the initial state of Ai by q0(Ai).

– X is the finite set of k local clocks and c is the updatable clock.
– Δ ⊆ Q× (Q∪{ε})×Actions×Q× (Q∪{ε}) describes transition rules below,

where Q = ∪Ai∈T S(Ai).

Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working UTA1 (placed at a control location) with q, q′ ∈ Ai.

Push (q, ε, push, q0(Ai′), q), which interrupts the currently working UTA1 Ai

at q ∈ S(Ai). Then, a UTA1 Ai′ newly starts.
Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ S(Ai′) after Ai

has finished at q ∈ S(Ai).
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Definition 17 (Semantics of NeUTAs). Given a NeUTA (T,A0,X, c,Δ),
the current control state is referred by q. Let ValX = {ν : X ∪ {c} → R

≥0}. A
configuration of a NeUTA is an element in (Q × ValX , (Q × ValX)∗).

– Time progress transitions: (〈q, ν〉, v) t−→ (〈q, ν + t〉, v + t) for t ∈ R
≥0, where

v + t set ν′ := ν′ + t of each 〈q′, ν′〉 in the stack.
– Discrete transitions: κ

ϕ−→ κ′ is defined as follows.
• Internal (〈q, ν〉, v)

ϕ−→ (〈q′, ν′〉, v), if 〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in Definition 2.
• Push (〈q, ν〉, v)

push−−−→ (〈q0(Ai′), ν0〉, 〈q, ν〉.v). The current working UTA1
(including its control location and clock valuation) is pushed to the stack.

• Pop (〈q, ν〉, 〈q′, ν′〉.w)
pop−−→ (〈q′, ν′〉, w). The current working UTA1 is

replaced with the topmost UTA1 in the stack and the topmost stack frame
is removed.

The initial configuration of NeUTA is (〈q0(A0), ν0〉, ε), where ν0(x) = 0 for
x ∈ X∪{c}. We use −→ to range over these transitions, and −→∗ is the reflexive
and transitive closure of −→.

5.2 Termination and Boundedness of NeUTAs

In this subsection we present a trivial encoding from NeUTAs to UDTPDA1s
and so the termination and boundedness of NeUTAs are decidable.

Let N = (T,A0,X, c,Δ) be a NeUTA. We define a corresponding UDTPDA1
E(N ) = 〈S, s0, Γ,X, c,∇〉, such that

– S = Γ =
⋃

Ai∈T S(Ai) is the set of all locations of UTA1s in T , with
– s0 = q0(A0) is the initial location of the initial UTA A0 of N .
– X = {x1, . . . , xk} is the set of k local clocks, and c is the singleton updatable

clock.
– ∇ is the union

⋃
Ai∈T Δ(Ai)

⋃
H(N ) where

{
Δ(Ai) = {Local,Test,Assign, Increment,Decrement},
H(N ) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ Δ(N )

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε)) ∈ Δ(N )

Definition 18. Let N be a NeUTA (T,A0,X, c,Δ) and let E(N ) be a UDT-
PDA1 〈S, s0, Γ,X, c,∇〉. For a configuration κ = (〈A, q, ν〉, v) of N such that
v = (A1, q1, ν1) . . . (An, qn, νn), �κ� denotes a configuration (q, w(κ), ν) of E(N )
where w(κ) = w1 · · · wn with wi = (qi, νi).

Lemma 2. For a NeUTA N , a UDTPDA1 E(N ), and configurations κ, κ′ of N ,

(Preservation) if κ −→N κ′, then �κ� ↪→∗
E(N ) �κ′�, and

(Reflection) if �κ� ↪→∗
N �, there exists κ′ with � ↪→∗

E(N ) �κ′� and κ −→∗
N κ′.

By this encoding, we have our main result in Theorem 3.

Theorem 3. The termination and boundedness of a NeUTA (T,A0,X, c,Δ) are
decidable.
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6 Conclusion

This paper investigates termination and boundedness of NeUTAs, which extend
NeTAs by replacing TAs with UTA1s. The proof of decidability can be seen as
two phases of encoding, first an encoding NeUTAs to UDTPDA1s, then the one
from UDTPDA1s to snapshot vector pushdown systems which extends the idea
of digitization. Finally, the decidability of termination and boundedness of vector
pushdown systems is obtained by the reduced reachability tree technique. The
future work includes consider more verification problems of NeUTAs, as well as
vector pushdown systems, such as coverability, reachability, and temporal logic
model checking [18–21] et al..
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Abstract. The Clock Constraint Specification Language (CCSL), first intro-
duced as a companion language for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), has now evolved beyond the time specification
of MARTE, and has become a full-fledged domain specific modeling language
widely used in many domains. This paper shows the clock model, for infinite
clock, interpreted over natural number domain based on instant as well as state.
The differences and the relations between the two representations are discussed.
A state-transition system and its abstract form is proposed in order to analyze
CCSL specification’s features, such as potential deadlock, inconsistencies
caused by introducing new constraints, and periodicity of admissible behavior.
Finally, we examine some interesting features on a simple application by
improving specification step by step.

Keywords: CCSL � Clock model � State transition system � Infinite clock

1 Introduction

The UML Profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [1], adopted in November 2009, has introduced a Time Model [2] that
extends the informal simple time of the Unified Modeling Language (UML 2.x). This
time model is general enough to support different forms of time (discrete or dense,
chronometric or logical). Its so-called clocks allow enforcing as well as observing the
occurrences of events and the behavior of annotated UML elements. The Time Model
comes with a companion language named the Clock Constraint Specification Language
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(CCSL) [3] defined in an annex of the MARTE specification. Initially devised as a
language for expressing constraints between clocks of a MARTE model, CCSL has
evolved and has been developed independently of the UML. CCSL is now equipped
with a formal semantics [3] and is supported by a software environment (TimeSquare
[4]) that allows for the specification, solving, and visualization of clock constraints.

MARTE promises a general modeling framework to design and analyze systems.
Lots of works have been published on the modeling capabilities offered by MARTE,
much less on verification techniques supported. Inspired by the works about state-based
semantics interpretation for the kernel CCSL operators [5]. This paper further show a
kind of clock model, integrating the interpretations based on instant and state. For the
sake of clarity and simplicity, we only take the infinite clock into account. This clock
model owns the advantages for proving some properties expressed in different views.

Section 2 gives some preliminaries about logical clock and instant. Sections 3 and
4 introduce clock structure and state-based semantics for CCSL. Section 5 analyzes
several kinds of CCSL via state-transition system associated with specification. This
analysis technique gives some analysis result on a case study in Sect. 6. Finally, Sect. 7
makes a comparison with related work, and Sect. 8 concludes the contribution and
outlines some future work.

2 Preliminaries

This section briefly introduces the time model [2] of MARTE and the Clock Constraint
Specification Language (CCSL). MARTE Time model deals with both discrete and
dense time. In MARTE, a clock gives access to a time structure. A clock can be either
chronometric or logical. The former is related to “physical time” while the latter is not.
This paper focuses on discrete-time logical clocks—referred to as logical clocks—and
time is qualified as logic.

The notion of multiform logical time has first been used in the theory of syn-
chronous languages [6] and its polychronous extensions. CCSL provides a concrete
syntax to make the polychronous clocks first-class citizens of UML-like models.
Logical clocks in CCSL are used to measure times of occurrences of events in a system.
A clock c can be seen as a totally ordered set of instants, I c. In the following, i and j are
instants. A time structure is a set of clocks C and a set of relations over instants set
I ¼ S

c2C I c. CCSL considers two kinds of relations: causal and temporal ones. The
basic causal relation is causality/dependency, a binary relation on I : 4 � I � I . i ≼
j means i causes j or j depends on i. ≼ is a pre-order on I , i.e., it is reflexive and
transitive. The basic temporal relations are precedence (≺), coincidence (�), and
exclusion (#), three binary relations on I . For any pair of instants i; jð Þ 2 I � I in a
time structure, i ≺ j means that the only acceptable execution traces are those where
i occurs strictly before j (i precedes i). ≺ is transitive and asymmetric. i � j imposes
instants i and j to be coincident, i.e., they must occur at the same execution step, both of
them or none of them. � is an equivalence relation, i.e., it is reflexive, symmetric and
transitive. i # j forbids the coincidence of the two instants, i.e., they cannot occur at the
same execution step. # is irreflexive and symmetric. A consistency rule is enforced
between causal and temporal relations. i ≼ j can be refined either as i ≺ j or i � j,
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but j can never precede i. CCSL defines a concrete syntax to specify instant relation or
more generally clock relations, which represent infinitely many instant relations.
Section 3 introduces semantics of some CCSL relations/constraints.

In this paper, we consider discrete sets of instants only, so that the instants of a
clock can be indexed by natural numbers. For a clock c 2 C, and for any k 2 ℕ > 0,
c[k] denotes the kth instant of c.

3 Stated-Based Time Structure

A clock belongs to a clock set C. During the execution of a system, an execution step is
defined and at a given step, every clock in C can tick or not according to the constraints
used in the specification. A schedule captures what happens during one particular
execution.

Definition 1 (Schedule). Given a clock set C, a schedule r over C is a function
N[ 0 ! 2Cn; . ■

Given an execution step i 2 ℕ>0, and a schedule r, r(i) denotes the set of clocks
that tick at step i. 8i; r ið Þ 6¼ ; asserts that all the stuttering steps without ticking any
clock is unallowed along r.

For a given schedule, the configurations of the clocks tell us the advance of the
clocks, relative to the others.

Definition 2 (Clock configuration). For a given schedule r, clock c 2 C and a natural
number n 2 ℕ, the configuration vr : C � N ! N is defined recursively as:

vr c; nð Þ ¼
0 if n ¼ 0

vr c; n� 1ð Þ if c 62 r nð Þ
vr c; n� 1ð Þþ 1; if c 2 rðnÞ

8<
: ð1Þ

■

Lemma 1 (Non-decreasing Configuration). 8c 2 C, i, j 2 ℕ, i � j ⟹ vr(c, i)
� vr(c, j). ■

Lemma 1 is easily proved by induction on j via transitivity of � over ℕ.

Lemma 2 (Invariant Configuration). During the interval in which clock c doesn’t
tick, the corresponding configuration keeps unchanged:

8i; j 2 N; i� j; ðvr c; ið Þ ¼ vr c; jð Þ if and only if 8k 2 iþ 1::j½ �; c 62 r kð ÞÞ: ■

Proof of Lemma 2:

(i) If direction: It is easily proved by induction on k with the definition of vr as well
as transitivity of = over ℕ.

(ii) Only if direction: i.e. assume 8i, j 2 ℕ, i � j, vr(c, i) = vr(c, j), we want prove
8k 2 [i + 1..j], c 62 r(k). We suppose the contrary:
9k 2 [i + 1..j], c 2 r(k), which implies vr(c, k) = vr(c, k−1) + 1 by Definition 1.

34 Q. Xu et al.



By Lemma 1, we have vr(c, j) 	 vr(c, k) > vr(c, k−1) 	 vr(c, i) implied by
j 	 k > k−1 	 i.
Then we have vr(c, j) > vr(c, i), which contradicts the assumption vr(c, i) =
r(c, j). Therefore the supposition is incorrect, so 8k 2 [i + 1..j], c 62 r(k). ■

Lemma 2 tells us there are no more ticks between the successive two ticks of a
given clock.

For a clock c 2 C, and a step n 2 ℕ, vr(c,n) counts the number of times the clock
c has ticked at step n for the given schedule r. Therefore, the value of vr(c,n) denotes
the index of a certain instant for clock c. Over a schedule r, c can tick k > 0 times if
and only if 9n 2 ℕ > 0, vr(c,n) = k.

For a given schedule r, and a clock c 2 C, here we interpret I c as
Ic;r ¼ fi : N[ 0jc 2 rðiÞg, which is a subset of ℕ>0, containing and only containing
the step i such that rðiÞ. includes the clock c. A step i 2 Ic;r coincides with the

vrðc; iÞth instant c½vrðc; iÞ�, i.e., i � c½vrðc; iÞ� if i 2 Ic;r.

Definition 3 (Time Structure). For a given clock set C and a schedule r over C,
ðIC;r; �Þ is a time structure, where IC;r ¼ S

c2C IC;r. ■

Based on Definition 3 inspired by [7], the clock instant set in Definition 3 can be
modeled as a subset of nonnegative natural number set, the three basic temporal relations
precedence(≺), coincidence(�) and exclusion(#) are correspondingly interpreted as <
, = and 6¼ over ℕ>0, i.e., ≺ ≜ < , � ≜ = , and # ≜ 6¼ . It is so-called timed structure
because of causality finiteness: the set fi0 2 IC;rji0 
 ig is finite for all i 2 IC;r.

Lemma 3 (Instant Index). For a clock c 2 C and a given schedule r over C, the index
of any instant ic 2 Ic;r�IC;r of clock c, denotes as Idxr;cðicÞ, is computed by vr.

Meanwhile, the vrðc; icÞth instant is ic.

Idxr;cðicÞ ¼ vrðc; icÞ
cr vrðc; icÞ½ � ¼ ic

■

Proof of Lemma 3 is direct from Definition 2 and omitted here.
We can easily deduce that Idxr;c : Ic;r ! N[ 0 is an injective, monotonically

strictly increasing function, whose domain is set of the time slots in which clock c ticks.
This paper only care about the infinite clocks, this requires that every clock in C will
tick forever, i.e., 8c 2 C; vr c; nð Þ is boundless with n increases. The fact boundlessness
of vr(c,n) is fated by the infinity of c’s instant set: 8i 2 N[ 0; 9j[ i; c 2 rðjÞ.
Therefore, the clock constraints involving the termination clock is not in our discussion
scope. It is noted that Idxr,c becomes a bijective (one-to-one correspondence) function
under such assumption. Meanwhile, clock c’s instant access operator cr½ � : N[ 0 !
Ic;r is the inverse function of Idxr,c.

Lemmas 1, 2, 3 can be proved via the proof assistor PVS based on the written PVS
specification in our previous work [8].

It is possible for one concrete instant belongs to not only one clock. In such case,
the instant of these different clocks coincide each other.
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4 Clock Constraint

4.1 Specification and Its Component

Definition 4 (CCSL specification). A CCSL specification SPEC is a pair \C;<[ ,
where C is a set of clocks, clock constraint ℜ is a formula (see Definition 6 below) used
to specify the relations among the clocks over the set C. ■
CCSL specification is used to specify a set of valid schedules. There are usually an
infinite number of schedules that satisfy a given specification. If there is no satisfying
schedule, then we say the specification is unsatisfiable. The detail properties about the
schedules again the given specification is investigated in [9].

Definition 5 (Clock set). An element in the clock set C can be given by the specifier
explicitly (explicit clock), or by one of the following clock expressions (implicit
clock) (We don’t give the clock expression (such as upto, await, etc.) that generates
finite clock because of this paper’s working scope.):

Clock :¼aþ b j a � b j anb j supða; bÞ j inf ða; bÞ j SampledOnða; bÞ jDelayForða; b; dÞ
jFiltered Byða; u; vÞ ð2Þ

where a; b 2 C are clocks, u, v 2 (0 + 1)* are finite binary words, and d 2 ℕ>0 is a
positive natural number. ■

Once we write one a clock expression in the form of (2), a new clock is added into
the clock set C. For example, if we give the explicit clock set C ¼ a; bf g, and a clock
expression set {c0 := aþ b; c00 :¼ DelayFor a; c0; 1ð Þ}, then we get two additional
implicit clocks c0 and c00 as new elements in C. The considered clock set is
C [ fc0; c00g ¼ a; b; c0; c00f g in the corresponding specification. Note that there may not
be any given name for the implicit of the clock expression (e.g. if it occurs in one clock
relation) (see Definition 6 below). It should be noted that the new clock will be
scheduled depending on the input clock(s) that occur in that expression.

The CCSL constraint is defined over the clock set includes both the explicit clocks
and implicit ones.

Definition 6 (CCSL Constraints). For a clock set C, the corresponding clock con-
straint set UðCÞ over C is defined recursively as:

w :¼ a � b j a # b j a 
 b j a 
 b jw1 ^ w2

where a; b 2 C. When w is in the form of w1 ^ w2, we say w1 and w2 are sub-clauses of
w. Otherwise we say w involves two clocks right(w) = a and left(w) = b. ■

Every clock constraint in the set UðCÞ, which is also be called a clock relation, is a
primitive formulae relates a clock pair or their conjunction. We call the four primitive
relations are Precedence(≺), Causality(≼), Subclock(�) and Exclusion(#).
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4.2 Clock Constraint Interpretation

In order to get to know how the clock constraints in Definition 6 effect the clock’s
behaviors in a certain schedule, we should extend the constraints over the clocks into
those over their instants.

Definition 7 (CCSL specification satisfaction). For a given CCSL specification
SPEC ¼ \C;R[ , A schedule r over C satisfies SPEC, denotes r � SPEC, if and
only if r � R defined below:

r � R if and only if cases R’s form of

a � b : 8n 2 N[ 0; a 2 r nð Þ ) b 2 rðnÞ ðSubclockÞ
a# b : 8n 2 N[ 0; a 62 r nð Þ _ b 62 rðnÞ ðExclusionÞ
a 
 b : 8n 2 N; vr a; nð Þ ¼ vr b; nð Þ ) b 62 rðnþ 1Þ ðPrecedenceÞ
a4 b : 8n 2 N; vr a; nð Þ	 vr b; nð Þ ðCausalityÞ
w1 ^ w2 : r � w1 ^ r � w2 ðConjuctionÞ

where a; b 2 C. We also say such a r is a model of SPEC. ■
It’s straightforward to prove that both Causality and Subclock are pre-orders on C,

i.e., they are reflexive and transitive. For simplicity, we can write a ≼ b ≼ c for a ≼ b ^
b ≼ c, and so do other transitive clock relation. It is also easy to prove that Exclusion is
neither reflexive nor transitive relation.

From the view of system evolving, among the four primitive relations in Definition
7, the first two (Subclock and Exclusion) are “present-based” relations, while the last
two (Precedence and Causality) are “past-based” ones. For a primitive “present-based”
clock relation w involves clocks a and b, one can deduce whether a may(must) tick or
not from the information only about b’s tick at current step over a schedule. While
“past-based” relation are so called means deciding whether the involved clocks tick or
not depends on not only the clock tick’s information at current step, but also these two
clock tick times accumulated from the beginning. For example, along a schedule r over
a given clock set C including two clocks a and b under the constrain a ≼ b, one can
deduce b must not tick at step n + 1 provided that vr a; nð Þ ¼ vr b; nð Þ and a 62 r(n + 1)
because otherwise it will result in

vr a; nþ 1ð Þ ¼ vr a; nð Þþ 1; vr b; nþ 1ð Þ ¼ vr b; nð Þ

which does not hold at step n + 1 for the constrain a ≼ b. Here the fact b must not tick
at step n + 1 require both the current behavior (a 62 r(n + 1)) and the “past” infor-
mation vr a; nð Þ ¼ vr b; nð Þð Þ.

Some logic conclusions can be directly from Definition 7.

Lemma 4 (Precedence implies causality). The Precedence is a stronger form of
Causality:

r � a 
 b ) r � a4 b ■
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Lemma 5 (Subclock implies causality). When a is a Subclock of b, then b is faster
than a:

r � a � b ) r � b4 a ■

Proofs about Lemmas 4 and 5 can be found in Frédéric’s report [5].
Definition 7 gives us the semantic for clock relation based on state transition

system. There is another interpretation framework for clock constraints in Charles and
Frédéric’s work [10] when we have no information about the “past” because of without
introducing configuration vr. For example, Definition 8 give us the Precedence
relation based on finding function over time structure defined in Definition 3.

Definition 8 (Instant-based Precedence). Giving two clocks a; b 2 C and a schedule
r, a ≺ b means that each instant in Ib;r (immediately) follows at least one instant in
Ia;r. More formally:

ðr � a 
 bÞ if and only if 9h : Ib;r ! Ia;r such that

(1) h is injective
(2) h is order preserving:

ð8i; j 2 Ib;rÞði\jÞ ) ðhðiÞ\hðjÞÞ

(3) an instant of Ib;r and its image are ordered:

ð8i 2 Ib;rÞhðiÞ\i ■

In fact, instant-based Precedence is equivalent with that based on state.

Lemma 6 (Precedence Equivalence). Giving two clocks a; b 2 C and a schedule r,
9h, h satisfies all the conditions (1), (2) and (3) in Definition 8, if and only if

8n 2 N; vr a; nð Þ ¼ vr b; nð Þ ) b 62 rðnþ 1Þ ■

Proof of Lemma 6:

(i) If direction (state-based ⟹ instant-based):

Let us construct an h : Ib;r ! Ia;r; 8ib 2 Ib;r; hðibÞ ¼ ia such that vrða; iaÞ ¼
vrðb; ibÞ; the left is to prove such a function h satisfies all the conditions (1), (2) and (3)
in Definition 8.

(i-1) condition (1) requires us to prove 8ib1; ib2 2 Ib;r; hðib1Þ ¼ hðib2Þ ) ib1 ¼ ib2

suppose ib1 6¼ ib2; then
vrðb; ib1Þ 6¼ vrðb; ib2Þ; by ib1; ib2 2 Ib;r (This means that b 2 rðib1Þ ^ b 2 rðib2Þ.)

and Definition 2
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) vrða; hðib1ÞÞ 6¼ vrða; hðib2ÞÞ; by h’s construction
) hðib1Þ 6¼ hðib2Þ; by hðib1Þ; hðib2Þ 2 Ia;r (This means that a 2 rðhðib1ÞÞ ^ a 2 r

ðhðib2ÞÞ.) and Definition 2
This contradicts the assumption. So condition (1) holds

(i-2) condition (2) require us to prove 8ib1; ib2 2 Ib;r; ib1\ib2 ) hðib1Þ\hðib2Þ:
ib1\ib2 ) vrðb; ib1Þ\vrðb; ib2Þ by ib1; ib2 2 Ib;r, Lemma 1 and Definition 2

) vrðb; ib1Þ ¼ vrða; hðib1ÞÞ\ vrða; hðib2ÞÞ ¼ vrðb; ib2Þ

) hðib1Þ\hðib2Þ; by hðib1Þ; hðib2Þ 2 Ia;r, Lemma 1 a and Definition 2.

(i-3) condition (3) require us to prove ð8ib 2 Ib;rÞia ¼ hðibÞ\ib.

We have r � a4 b, by Lemma 4
) vrða; ibÞ	 vrðb; ibÞ; by Definition 4
Suppose ia ¼ hðibÞ	 ib; i:e:; ia [ ib _ ia ¼ ib;
ia [ ib ) vrða; iaÞ[ vrða; ibÞ	 vrðb; ibÞ; by ia 2 Ia;r and Lemma 1
This contradicts vrða; iaÞ ¼ vrðb; ibÞ postulated by h’s construction.
ia ¼ ib ) vrða; iaÞ ¼ vrðb; ibÞ, by h’s construction
) vrða; ia � 1Þ ¼ vrðb; ib � 1Þ; by a; b 2 rðibÞ and Definition 2
) b 62 rðibÞ; by Precedence in Definition 7
This contradicts b 2 rðibÞ:

(ii) Only if direction (instant-based ) state-based):

Now we prove this by induction on sorted Ib;r.
vr a; nð Þ ¼ vr b; nð Þ ¼ 0 62 b 62 r nþ 1ð Þ is obvious. Otherwise one cannot find

(n + 1)’s image h nþ 1ð Þ\n þ 1 because there isn’t an element, which is less than
n + 1, in h’s range Ia;r.

Assume 8ib 2 Ib;r; ib\vr b; nð Þ; the conclusion is true.
Let ib ¼ vr b; nð Þ ¼ vr a; nð Þ;
) jfi : Ia;rji\nþ 1g ¼j jfi : Ib;rji\nþ 1gj ¼ ib, by Lemma 3
Suppose b 2 r nþ 1ð Þ.
) h nþ 1ð Þ\ nþ 1ð Þ; by condition (3) in Definition 8
This is impossible because

8ia 2 fi : Ia;r j i\nþ 1g; 9ib 2 fi : Ib;r j i\nþ 1g; ia ¼ hðibÞ

So there is no additional instant in fi : Ia;rji\nþ 1g as (n + 1)’s image for the sake
of injection of h. ■

Based on Lemma 3 inspired by Charles’ report [11], Definition 9 intuitively
exhibits another way of Precedence definition:

Definition 9 (Index-based Precedence). Giving two clocks a; b 2 C and a schedule r,
a ≺ b means that b’s each instant in Ib;r, with index k, strictly slower than the clock a’s
instant in Ia;r with the same index k:
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ðr � a 
 bÞ if and only if 8k : ar k½ �\br k½ �: ■

Definition 9 is not convenient in checking specification behavior because deciding
the instant’s index requires countering tick time from beginning, although it is easily
understood by reader.

In fact, Stated-based Precedence in Definition 7, Instant-based one in Definition 8
and Index-based one in Definition 9, are pairwise equivalent. This provides a possi-
bility to present the one clock constraint from different view. For example, it is very
tedious to prove the transitivity of Stated-based Precedence. But it is obvious in the
way of both Instant-based and Index-based.

Table 1 show us the definitions of four primitive types of clock relations from three
different views (state, instant and index-based). Reader can establish the equivalence
between them and Definition 7 following Lemma 6. Here we don’t give the detail
because of text length.

The implicit clocks defined using clock expressions (2), are constrained according
to the parameters of the clock expression. In other words, a clock expression is a clock
generator where the output clock ticks or not according to the input clock(s) state and
other arguments, if any.

Definition 10 (Clock Expression Interpretation). Whether a new clock can tick or
not is determined by the behaviors of the input clock(s). we say r, over clock set C
containing a, b, and c, is a model of that clock expression, if the following corre-
sponding condition hold:

Table 1. Interpretations of primitive clock constraints in different views

Primitive
relation

Stated-based Instant-based Index-based Instant set
constraint

r
⊨a � b

8i 2 ℕ>0, a 2 r(i) ⟹
b 2 r(i)

9h; hðiÞ ¼ i 8k, 9l,
ar[k] = br[l]

Ib;r � Ia;r

r ⊨a # b 8i 2 ℕ>0,
a 62 r(i) _ b 62 r(i)

8k,l,
ar[k] 6¼ br[l]

Ib;r \ Ia;r ¼ ;

r ⊨a ≼ b 8i 2 ℕ, vr(a, n) 	 vr(b,
n)

9h; hðiÞ � i 8k,
ar[k] � br[k]

jIb;rj � jIa;rj

r ⊨a ≺ b 8i 2 ℕ, vr(a, n) = vr(b,
n) ⟹ b 62 r(i + 1)

9h; hðiÞ\ i 8k,
ar[k] < br[k]

jIb;rj � jIa;rj

Note: (1) h: Ib;r ! Ia;r is a monotonically strictly increasing injective function, i 2 Ib;r.
(2) k and l are index of clock a or b. Assumes that ar k½ � 2 Ia;r and br l½ �; br k½ � 2 Ib;r.
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c :¼ aþ b iff 8n 2 N[ 0; c 2 r nð Þ iff a 2 r nð Þ _ b 2 rðnÞ ðUnionÞ
c :¼ a � b iff 8n 2 N[ 0; c 2 r nð Þ iff a 2 r nð Þ ^ b 2 rðnÞ ðIntersectionÞ
c :¼ anb iff 8n 2 N[ 0; c 2 r nð Þ iff a 2 r nð Þ ^ b 62 rðnÞ ðMinusÞ
c :¼ supða; bÞ iff 8n 2 N; vr c; nð Þ ¼ minðvr a; nð Þ; vr b; nð ÞÞ ðSupremumÞ
c :¼ inf ða; bÞ iff 8n 2 N; vr c; nð Þ ¼ maxðvr a; nð Þ; vr b; nð ÞÞ ðInfimumÞ
c :¼ DelayForða; b; dÞ iff ð8n 2 N[ 0; c 2 r nð Þ iff
ðb 2 r nð Þ ^ ð9j 2 ½1::n� 1�; a 2 r jð Þ ^ vr b; nð Þ � vr b; jð Þ ¼ dÞÞÞ ðDelayforÞ

c :¼ SampledOnða; bÞ iff ð8n 2 N[ 0; c 2 r nð Þ iff
ðb 2 r nð Þ ^ ð9j 2 ½1::n�; a 2 r jð Þ ^ 8m : ½j::n� 1�; b 62 r mð ÞÞÞÞ ðSampledOnÞ

c :¼ FilteredBy a; u; vð Þ : 8n 2 N[ 0; c 2 r nð Þ iff
ða 2 r nð Þ ^ if k\ uj j then u k½ � ¼ 1 else v k � uj jð Þmod vj j½ � ¼ 1ð Þ;where k ¼ vrða; nÞÞ ðFilteredByÞ

where a; b 2 C; u; v 2 0þ 1ð Þ�; d 2 N[ 0: uj j represents the length of binary word
u to count the number of binary bits in u. ■

The first three clock expressions are based on Subclock. Union builds the slowest
super clock of two given clocks. Intersection builds the fastest clock that is a Subclock
of two given clocks.Minus a\b builds the clock that ticks whenever a ticks but b does not.

The next two clock expressions are based on Causality. Infimum builds the
slowest clock that is faster than two given clocks. Supremum builds the fastest clock
that is slower than two given clocks.

The next expression Delayfor(a, b, d) produces a clock which ticks in coincidence
with the next dth tick of b after once tick of a. The sampling expression SampledOn(a,
b) produces a clock that ticks in coincidence with the tick of the base clock a imme-
diately following a tick of the trigger clock b. These two clock expressions, which are
based on both Subclock and Causality, can be called mixed-based form.

Filtering expression FilteredBy(a, u, v) is also written in the form of a ▼ (u.(v)x),
where u is a prefix, and v a periodical pattern. It defines the clock as a Subclock of
a according to two binary words u and v.

Table 2 show us the direct and indirect clock constraints between new clock and
the original one(s) implied by different clock expressions. Column 2 in Table 2 exhibits
the interpretation based on instant set for each clock expression.

We can introduce alias for some special clock expression:

a $ d :¼ DelayFor a; a; dð Þ Delayð Þ
StrictSampledOn a; bð Þ :¼ DelayFor a; b; 1ð Þ ðStrictSampledOnÞ

Although DelayFor is an expression of mixed form, Delay expression a $ d, as one
of its special case, has been become a Subclock-based one because the two input clocks
are the same one, produces a sub-clock that is always a given number of ticks d late
compared to its original clock a. A new clock generated by Delay expression a $
d impose the constraints 8n 2 N; vr a $ d; nð Þ ¼ maxðvr a; nð Þ � d; 0Þ on all the corre-
sponding schedule r.

By composing the relation and the expressions provided in Definitions 5 and 6, it is
necessary to define new clock relations, for example:
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a b :¼ a 
 b 
 a $1 ðAlternationÞ ð3Þ

a 
n b :¼ a 
 b 
 a $ n Bounded precedenceð Þ ð4Þ

a � b :¼ a4 b
^

b4 a Coincidenceð Þ ð5Þ

a ffl b :¼ ða 
 b $ 1Þ
^

ðb 
 a $ 1Þ ðSynchronizationÞ ð6Þ

Alternation, used frequently in CCSL specification, is a special case of Bounded
precedence.

Table 2. Attributes of Clock Expressions (new clock is c)

Clock
expression

Instant/Index constraint Relations
implied

Further
causality

Remark

a + b Ic;r ¼ Ia;r [ Ib;r a � c, b � c c ≼ a, c
≼ b

Subclock-based

a * b Ic;r ¼ Ia;r \ Ib;r c � a, c � b a ≼ c, b
≼ c

Subclock-based

a \ b Ic;r ¼ Ia;rnIb;r c � a, c # b a ≼ c Subclock-based
sup(a, b) 8k, cr[k] = ar[k], if

ar[k] 	 br[k],
cr[k] = br[k], else

a ≼ c, b ≼ c Causality-based

inf(a, b) 8k, cr[k] = ar[k], if
ar[k] � br[k]

†,
cr[k] = br[k], else

c ≼ a, c ≼ b Causality-based

DelayFor
(a, b, d)

8k, 9j < k, 9l > k + d,
cr[k] = br[l] ^br[l
−d] � ar[j] < br[l−d + 1]

c � b, a ≺ c a ≼ c, b
≼ c

Mixed

SampledOn
(a, b)

8k, 9j � k, 9l 	 k,
cr[k] = br[l] ^ br[l
−1]‡ < ar[j] � br[l]

c � b, a ≼ c b ≼ c Mixed

a ▼(u.
(v)x)

8k, cr[k] = ar[u.(v)
x"k] c � a a ≼ c Subclock-based

Note: (1) r occurs in column 2 is a model of corresponding clock expression.
(2) †br[k] does not exist is allowed here.
(3) ‡Here we assume br[l−1] = 0 if l = 1.
(4) u.(v)x"k denotes the index of the kth ‘1’ in the binary word u.(v)x.
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5 Analysis of CCSL Specification

5.1 Transition System Based on State

A transition system is a tuple <Q, q0, R,!>, where Q is a set of states, q0 2 Q is an
initial state, R is a state of labels, and ! � Q � R � Q is a set of transition. We write

a transition \q; a; q0 [ in ! as q!a q0. The system starts from the initial state q0, and

then can change its state form q to q0 if q!a q0. We write q ! q0 if q!a q0 for some label
a 2 R. q ! *q0 denotes that state q0 is reachable from the state q.

The state space S, for a given CCSL specification SPEC ¼ \C;R[ , is the set of
function v : C ! N that assigns a natural number for every clock in C. v0 is a special
function denotes v0(c) = 0 for all clock c 2 C. Thus we can define the semantics of
SPEC by associating a transition system TSSPEC with it.

Definition 11 (CCSL Transition System). For a given CCSL specification SPEC ¼
\C;R[ ; TSSPEC is the transition system \S; v0; 2Cn;;![ with definition of !:

v!k v0 if v0(c) = v(c) + 1 for a clock c 2 k otherwise v0(c) = v(c), for simplicity we
write v0 = v + k. ■

According to Definition 2, if we let ki = r(i), vi(c) = vr(c, i) for every clock c 2 C
and i 2 ℕ, then v0 !k1 . . .!ki vi !kiþ 1 � � � is one trace of TSSPEC. It is noted that every label
k 6¼ ; implies that there is no self-loop transition from one state to itself in transition
set. This corresponds that stuttering transitions are not allowed along a schedule.
Therefore, we can say that TSSPEC characterizes all the schedules r such that
r�SPEC.

The reachable state set of TSSPEC is {v|v0 ! *v}. We say one clock c is an enabled

clock at state v, if v!k v0 for some state v0 and c 2 k.[ ifkij9v0; v!ki v0g is called enabled
clock set at state v, and denoted as enabled(v). A clock c is disabled at state v if we

cannot find a state v0 such that v!k v0 and c 2 k, all the disabled clocks at state v forms
the disabled clock set, and denoted as disabled(v). Obviously, a clock c 2 C in disabled
(v) or disabled(v), but not both. This is implied by disabled(v) = C\enabled(v).

It is hard to analysis the transition system with infinite state space. To address this
problem, one can abstract the transition system for some specification, such as periodic
one defined in Definition 14 below, as its stable quotient with respect to an equivalence

relation � over state space. � is stable if and only if whenever q � u and q!k q0, there

exists a state u0 such that u!k u0 and q0 � u0.

5.2 Different Kinds of Specification

Definition 12 (Potential Deadlock Specification). A CCSL specification SPEC ¼
\C;R[ is potential deadlock, if there is a reachable set v of TSSPEC, such that
enabled(v) = ;. ■
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According to the previously mentioned relation between a schedule r such that
r � SPEC and TSSPEC, potential deadlock is caused by the possible inconsistence in
specification when we computing satisfaction of SPEC the based on Definition 7 or
interpreting the clock expression based on Definition 10.

Definition 13 (Inconsistent Specification). A CCSL specification SPEC ¼
\C;R[ is inconsistent, if we cannot find a schedule r over C such that r � SPEC.
This can be checked by 8r, r ⊭ w for some sub-clause w of R. ■

We also call inconsistent specification unsatisfied one. There are several possible
types unsatisfactions based on the different form of w occurs in Definition 13 according
to Definitions 7 and 10:

• TYPE 1 w is a conflict primitive formula such as c # c or c ≺ c1 for some clock
c. Obviously we cannot find a schedule satisfies w.

• TYPE 2 w is in the form of w1 ^ w2 for some mutually contradictory sub-clauses w1

and w2 of R, i.e., 8r, r ⊨ w1 ⟹ r ⊭ w2. For example, w1 = a ≺ b, w2 = b ≼ a.
Note that w1 or w2 may also be the conjunction of other clauses.

• TYPE 3 We can find at least two mutually contradictory instant/index constraints
by Tables 1 and 2 for sub-clause w of R or some implicated clock in C.
A specification, which is not inconsistent, is said to be a consistent one. Here we

define a special kind of consistent specification, which will be illustrated on an example
in case study section.

Definition 14 (Periodic Specification). A CCSL specification SPEC ¼ \C;R[ is
periodic for a user-defined nonempty clock subset U �C, if for each r over U,
r � SPEC ) there exists an sequence {ni} such that 8c 2 U; vr c; nið Þf g is an
arithmetic sequence with the positive common difference dci ¼ vr c; niþ 1ð Þ � vrðc; niÞ.
[ni+1.. ni+1] is a cycle of r, and MT ¼ maxc2Ufdci g is the maximum tick times within a
cycle. SPEC is simply said to be periodic if U ¼ C. ■

Definition 14 states that the schedule, which satisfies the periodic specification
SPEC for the user-defined clock set U � SPECð Þ, has the periodical behavior in each
cycle with respect to the clock set U. If we assign every time slot for each tick of every
clock in U, it is enough to assign at most MT � jUj slots for characterizing the com-
plete behavior. Therefore, we say periodic specification is allocate-able since the
associated execution platform only has the finite memory. Of course, we suppose that
there is no prominent significance about the ticks of the clock in CnU. Hence U must be
chosen carefully to abstract the system specified by SPEC.

1 We don’t allow such a schedule r that 8i > 0, c 62 r(i) to avoid to check the inconsistence caused by
c ≺ c or c # c because here r is over C including c.
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6 Case Study

To illustrate the approach, we take an example inspired by [12], that was used for flow
latency analysis on Architecture Analysis and Design Language(AADL) specifications.
However, with CCSL we are conducting different kinds of analyses.

Figure 1 considers a simple application described as a UML as structured class.
This application captures two inputs in1 and in2, performs some calculations (step1,
step2 and step3) and then produces a result out. This application has the possibility to
compute step1 and step2 concurrently depending on the chosen execution platform.
This application runs in a streaming-like fashion by continuously capturing new inputs
and producing outputs. To abstract this application as a CCSL specification, we assign
one clock to each action. The clock has the exact same name as the associated action
(e.g., step1). We also associate one clock with each input, this represents the capturing
time of the inputs, and one clock with the production of the output (out). The suc-
cessive instants of the clocks represent successive executions of the actions or input
sensing time or output release time. The basic CCSL specification is
SPECsimp ¼ \C;R[ , where C ¼ in1; in2; step1; step2; step3; outf g, R is conjunc-
tion of the following clock constraints, i.e., R = (7)^(8)^(9):

in14 step1
^

step1 
 step3 ð7Þ

in24 step2
^

step2 
 step3 ð8Þ

step34 out ð9Þ

Fig. 1. Simple application
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(7) specifies that step1 may begin as soon as an input in1 is available. Executing
step3 also requires step1 to have produced its output. (8) is similar for in2 and step2. (9)
states that an output can be produced as soon as step3 has executed. SPECsimp is not
potential deadlock specification because clock in1 or in2 is always enabled in every
reachable state of. Therefore, such a specification is free of deadlock. Furtherly,
SPECsimp is a consistent specification since there aren’t mutually contradictories in R.
Nevertheless, SPECsimp is adapted to capture infinite FIFOs denoted on the figure as
object nodes.

One way to transform SPECsimp into finite state one, denotes SPECsimp0 ¼ \C0;
R0 [ , is to add a CCSL constraint like (10) as a new sub-clause of R.

in1þ in2 out ð10Þ

Now R0 ¼ R^(10). By expanding the definition of Alternation in (3) and using
Definition 5, we get C0 ¼ CS in12; in12$1f g where in12 = in1 + in2.

Theorem 1. SPECsimp0 is a potential deadlock specification. ■

Proof of Theorem 1: According to potential deadlock in Definition 12, Under the
condition that the first instant of in1and in2 is not coincident, for example, in1 [1]
> in2 [1], we can find a reachable state v in TSSPECsimp0 such that v(in1) = v(step1) = v
(in12) = 1, 8c 2 C0n in1; in12; step1f g, v(c) = 0 and enabled vð Þ ¼ ;. We say v is

reachable since v0 !fin1;step1;in12g
v
0
. We say all the clock is disabled at v because (10)

prevents in12 from ticking again before out ticks. But since in2 was not produced and
therefore step2 was not executed, then step3 cannot execute either since it requires both
step1 and step2. If step3 cannot execute, then out cannot be produced, which then
results in a deadlock. In fact, deadlock exists in this specification unless in1 � in2. ■

SPECsimp0 is consistent under the condition in1 � in2. Otherwise we can find the
deadlock caused by the inconsistence stated that mutually contradictory sub-clauses
in12 ≺ out and out ≺ in12 $ 1 when trying to fire out after step k such that in1[k] 6¼ in2
[k] first time. SPECsimp0 become inconsistent because of introducing (10). We can
eliminate the inconsistence caused by (10) via substituting (10) by (11).

inf ðin1; in2Þ out ð11Þ

Let infin12 = inf(in1, in2), now we get another specification SPECsimp00 ¼
\C00;R00 [ where R00 ¼ R^(11), C00 ¼ CS infin12; infin12$1f g correspondingly.

Theorem 2. SPECsimp00 is a consistent periodic specification. ■

Proof of Theorem 2: Suppose a schedule r over C00 such that r � SPECsimp00 , we can
find a sequence {ni} such that vr(c, ni) = i + 1 for every clock c 2 C00 no matter what
feasible choice is made throughout r. Obviously, 8c 2 C00, {vr(c, ni)} = {i + 1} is an
arithmetic sequence with positive common difference 1. This is periodicity’s require-
ment of Definition 14 indeed. The consistence of SPECsimp00 is guaranteed by the
existence of some r according to Definition 13. ■
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Because of the periodicity of SPECsimp00 , Fig. 2 shows the abstracted transition
system ½TSSPECsimp00 � � with the definition of � over S:

8v; v0 2 S; v � v0if and only if 8c; c0 2 C00; v cð Þ ¼ v c0ð Þ , v0 cð Þ ¼ v0 c0ð Þ:

For simplicity, singleton set is depicted by its element on some edges of Fig. 2. The
reachable set of TSSPECsimp00 can be expressed as

fvjv infin12$1ð Þþ 1	 v infin12ð Þ	 v in1ð Þ	 v step1ð Þ[ v step3ð Þ^
v infin12ð Þ	 v in2ð Þ	 v step2ð Þ[ v step3ð Þ	 v outð Þ	 v infin12$1ð Þg:

In fact, every inequality follows Definitions 7 and 10.
CCSL can also be used to capture the execution platform. Figure 1 (right part)

shows the selected execution platform: two tasks with different activation periods. First,
the execution platform requires introducing two implicit clocks t1 and t2 to describe
two threads run in sharedMemory:

t1 ¼ msH 1:09
� �x ð12Þ

t2 ¼ t1H 1:0ð Þx ð13Þ

where ms is a particular clock that denotes milliseconds, and ticks once every mil-
lisecond. Being periodic on ms with a period of 10 makes t1 a 100 Hz clock and
therefore t2 a 50 Hz clock.

When the execution platform is specified, the remaining task is to map the appli-
cation onto the execution platform. In MARTE, this is done through an allocation.
In CCSL, this is done by refining the two specifications with new constraints that
specify this allocation. Since both step2 and step3 are allocated on the same thread,
then their execution is exclusive described by (14). Then, two implicit clocks are used
to describe that the inputs are sampled according to the period of activation of the
threads (15) and (16). Then step3 needs inputs from both step1 and step2 before

Fig. 2. Abstract transition system for SPECsimp00
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executing but it can execute only according to the sampling period of t1 since step3 is
allocated to t1((17) and (18).

Finally, all steps can only execute when their input data have been sampled (19).
Similar to (11), the two sampled inputs execute alternating with the final output (20).
(It is ≺ rather than ≼ as that of [5], in order to be consistent with the constraints in
(7) and (8).)

step2# step3 ð14Þ

in1 s ¼ SampledOn in1; t1ð Þ ð15Þ

in2 s ¼ SampledOn in2; t2ð Þ ð16Þ

supst12 ¼ sup step1; step2ð Þ ð17Þ

d3 s ¼ SampledOn supst12; t1ð Þ ð18Þ

in1 s4 step1 ^ in2 s4 step2 ^ d3 s 
 step3 ð19Þ

inf in1 s; in2 sð Þ out ð20Þ

Now we have a CCSL specification SPECsimp alloc ¼ \C000;R000 [ , where R000

= (12)^(13)^(14)^(19)^(9)^(20), and C000 = {ms, t1, t2, in1, in2, in1_s, in2_s, step1,
step2, supst12, d3_s, step3, infin12_s, out, infin12_s $1} with infin12_s = inf(in1_s, in2_s).

SPECsimp alloc is obviously not periodic like SPECsimp00 because the calculation
may be preformed as soon as there are the sampled inputs, which is not periodic with
respect to the physical time denoted by the particular clock ms. Fortunately, every
calculation process has the periodicity with respect to the sampled inputs.

Theorem 3. SPECsimp alloc is a periodic specification for U ¼ in1 s; in2 s; step1;f
step2; supst12; d3 s; step3; infin12 s; out; infin12 s$1g. ■

Proof of Theorem 3: Similar to that of Theorem 2. For every schedule r over U such
that r � SPECsimp alloc, an sequence {ni}, such that vr(c, ni) = i + 1 for every clock
c 2 U, can be found and then checked it is indeed an expect one. ■

U is chosen to reduce the complexity and without losing the necessary behaviors.
First, only associated logical clocks are considered since SPECsimp alloc is not a physical
time-related specification. Therefore, clocksms, t1 and t2,which are used to measure the
physical time despite that they are in the logical form, are not candidate in U. Second,
according to Definition 10, once one tick of input clock (in1 or in2) is triggered, the
corresponding sampled signal (in1_s or in2_s) must then be captured. Therefore, the
resulting calculation depend on in1_s and in2_s rather than in1 and in2. Thus,
U ¼ C000n ms; t1; t2; in1; in2f g. We can get the finite-state abstracted transition system
½TSSPECsimp alloc��, with definition an equivalence relation � over S:
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8v; v0 2 S; v � v0if and only if 8c; c0 2 U; v cð Þ ¼ v c0ð Þ , v0 cð Þ ¼ v0 c0ð Þ:

½TSSPECsimp alloc�� is similar to Fig. 2 and omitted here. The following is the
reachable set of the transition system TSSPECsimp alloc:

fv : C000 ! Njv infin12 s$1ð Þþ 1	 v infin12 sð Þ	 v in1 sð Þ	 v step1ð Þ	 v supst12ð Þ^
v infin12 sð Þ	 v in2 sð Þ	 v step2ð Þ	 v supst12ð Þ	 v d3 sð Þ[ v step3ð Þ	 v outð Þ	 vðinfin12 s$1Þg:

In fact, SPECsimp alloc can be viewed as calculation unit to response the two inputs
in1 and in2. Once the two inputs are given by external environment, SPECsimp alloc

will sample the inputs and finally give the output. It keeps idle otherwise.

7 Related Work

Some techniques were provided as an effort to analyze CCSL specifications. F. Mallet
etc. [13] implemented the automatic analysis by translating CCSL into signal, for the
purpose of generating executable specifications through discrete controller synthesis.
However, this work did not consider the Infimum and Supremum operators that intro-
duce unbounded counters. Exhaustive analysis of CCSL through a transformation into
labeled transition systems has already been attempted in [14]. However, in those
attempts, the CCSL operators were bounded because the underlying model-checkers
cannot deal with infinite labeled transition systems. In [15], the authors showed that even
though the primitive constraints were unbounded, the composition of these primitive
constraints could lead to a system where only a finite number of states were accessible.
[16] defines a notion of safety for CCSL and establish a condition to decide whether a
specification is safe on the transformed marked graph from CCSL. We have tried to
define a applicable data structure to detect divergence in CCSL specification [17].

All the above works share one common point: the specification analysis were done
by some transformation and performed on the transformed target. The results were
dependent on the correctness and efficiency of the mechanized transformation.

I. Zaretska etc. introduces a notion of time structure with clocks to refine describing
denotational semantics for a pure relational subset of CCSL [18]. Our work in Sect. 3 is
inspired by work in [18]. Yin etc. analyzes the schedule ability with the help of
distinguishing clock halt from proper termination for some clock [10]. Clock halt,
means abnormal termination of a clock, is similar to deadlock in Definition 12. The
clocks’ proper termination isn’t in this paper’s scope because we don’t care about the
finite clock.

Our contribution here is to represent all the feasible schedules by a state-transition
system with the configurations as state spaces.
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8 Conclusion and Future Works

Based on the state-based semantics of a kernel subset of CCSL, this paper gives one
time structure in which we can relate the clock instant set with the state space. We also
discuss some interesting properties about this time structure. A state-transition system
and its abstract form is proposed in order to analyze CCSL specification’s possible
features, such as potential deadlock, inconsistences caused by introducing new con-
straints, and periodicity of postulated behavior. Finally, we investigate some interesting
features on a simple application by a improved specification step by step.

As a future work, we plan to design the algorithm to compute the reachable state set
of the state-transition system. How to abstract the state-transition system without losing
the necessary traces may also be an interesting research area.
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Abstract. Train control system is a kernel component of railway trans-
portation which acts as the controller of the involved equipment. With
the popularization of train-based transportation, how to guarantee the
safety of train control system becomes an important problem to be
solved. This paper proposes a safety analysis method for train control
system. It provides a scenario language for practitioners to describe their
requirements on the train control system in terms of physical scenarios of
the train operations. With the specification written in the scenario lan-
guage, its implied hazards will be automatically identified by verifying
its satisfaction of the given safety properties. In contrast to the tradi-
tional textual representation of the analysis result, animation technique
is adopted to demonstrate the unsafe requirement in an intuitive way. A
software tool has been developed to support the approach. It identifies
the hazards of a given scenario specification and animates the physical
scenarios that lead to the hazards. We also carried out a case study on
the tool and the result shows the efficacy of the proposed approach.

1 Introduction

Serving as one of the kernel components of train-based transportation, train
control system determines the running operations of the involved trains [1]. As a
typical safety-critical system, its quality needs to be guaranteed to prevent fatal
train accident that might lead to a huge loss of both life and wealth.

Safety analysis is one of the major activities for improving the quality of
safety-critical systems [2]. It usually starts from hazard analysis that identifies
the potential hazards of the system and results in safety requirements or prop-
erties that the system must hold to avoid hazard from happening. By checking
the system specification against the safety properties, the developer is able to
discover and reconstruct the unsafe requirements. Traditional methods adopt
natural language to describe the safety properties and mainly depend on manual
effort to verify the satisfaction of these properties. They facilitate the involve-
ment of the domain experts in safety analysis since natural language is easy to
use, but lack tool support due to the difficulty in natural language processing.
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 55–73, 2017.
DOI: 10.1007/978-3-319-57708-1 4
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To improve the automation level of safety analysis, formal methods has been
introduced and regarded as a promising technique for software quality assur-
ance [3]. Instead of traditional natural language, formal notation is used for
describing both system specification and safety properties in formal methods.
Its mathematical representation and formal semantics can effectively support
precise description and rigorous verification. Many companies have tried formal
methods to analyze the safety of the train control system under development,
but failed to integrate it into the original development process [4]. One of the
major reasons is that the appropriate application of formal methods requires
for strong mathematical background and sufficient experience in using formal
notations; most of the developers are not familiar with formal methods and feel
difficult to apply it in practice [5]. Besides, the analysis result is usually repre-
sented in textual data without intuitive explanation. Due to the lack of semantic
link between the textual data and physical scenarios of train operations, it is not
easy for developers or domain experts to understand the analysis result, locate
the unsafe requirements and reconstruct the specification accordingly.

In this paper, we propose a safety analysis method for train control sys-
tem where a scenario language is provided for domain experts to describe their
expected requirements in terms of physical scenarios of the train operations and
a classification of train operation hazards is given to guide the verification of
consistency between the physical scenarios and safety properties. The simplicity
and understandability of the scenario language allow domain experts to focus
on the design of train operations without the need of considering formal nota-
tion details. Hazard classification helps clarify the safety properties that must be
satisfied by the train operations and facilitates automatic safety analysis on the
scenario-based requirements. For each kind of hazards, a set of safety properties
are given where the satisfaction of the properties can be automatically checked by
a proposed algorithm. With a specification written by domain experts or devel-
opers in the scenario language, the implied hazards can be found by verifying
whether the specification satisfies the given safety properties.

In contrast to the traditional textual representation of the analysis result, ani-
mation technique is adopted in our approach to demonstrate the unsafe require-
ment in a straightforward way. For each requirement that violates the safety
properties, its corresponding physical scenario, which is consist of a sequence of
train operations, will be automatically animated. Specifically, we studied the key
elements of physical scenario and built mappings from each kind of element to
an animation. By applying the animation mappings and combining related ani-
mations, an algorithm is given for transforming textual physical scenarios into
animated ones. Such kind of analysis result clearly shows the cause and effect of
the involved hazards, which provides effective guidance for the location of unsafe
requirements and reconstruction of the original specification.

A supporting tool has been developed to demonstrate the feasibility of the
proposed approach. It is composed of 4 components: text processor for analyzing
the input textual scenario specification and transforming the scenario informa-
tion into pre-defined data structure, property library for the management of our
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derived safety properties of train control systems, hazard analyzer for identifying
hazards in the specification by checking the satisfaction of the properties in the
property library and generating physical scenarios that lead to the occurrence of
the identified hazards, animation engine for animating the generated physical
scenarios. We have carried out a case study on the tool for validating the efficacy
of the approach. The result shows that the approach can improve the efficacy of
safety analysis for train control systems.

The rest of the paper is organized as follows. Section 2 overviews the latest
techniques for safety analysis and the related work on safety analysis for train
control system. Section 3 presents the proposed safety analysis approach for train
control system and explains its technique details. A supporting tool is described
in Sect. 4 and a case study on the tool is given that shows the efficacy of our
approach. Finally, Sect. 5 concludes the paper and points out the futures works.

2 Related Work

With the increase of demand for software products in safety-critical systems,
safety analysis on system specifications has raised much attention in software
engineering. It mainly includes modeling method for describing safety-critical
systems and safety properties in specifications and analysis method for checking
the satisfaction of safety properties by system specifications.

Several modeling languages have been applied in the specification of the
requirements of train control system. In [6], the authors propose a three-phases
approach to formalizing the requirements of The European Train Control Sys-
tem. using UML language. They have also developed a set of tools to support
each phase of the approach. In [7], train control system is firstly described in
a UML model which will then be transformed into PSL model to facilitate the
test of related properties. In [8], a modeling language ScOLA (Scenario Ori-
ented Molding Language) is defined to formalize the specifications of railway
systems. In [9], B method is applied to model data requirements for railway
safety-related systems and the requirements will be used to carry out data vali-
dation. In [10], CSP is applied to model the control flow of system process with
complex data types and timing parameters. However, the above languages are
either lack of formal semantics or difficult to use in real practice. Besides, most of
these languages are designed from functional perspective, making it difficult to
understand the corresponding physical scenarios of a system specification. Our
approach provides an easy-to-use language for describing physical scenarios of
train operations, which improves the quality of safety analysis by carrying out
the involved activities based on the real world.

There are mainly 4 kinds of methods for safety analysis of train control
system: review method, testing method, animation method and formal method.
Review method requires developers to review the system specification against
given safety properties and provides specific guidance or criteria for facilitating
the review process. In [11], the authors use mental model technique to analyze the
behaviors and mental states of customers and provide clear criteria to guide the
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review process of system specifications. In [12], the authors propose an approach
to analyzing requirements specification based on the notion of querying a model
and describe a case study on a real-world application. In [13], the authors propose
a review method that transforms system specifications into virtual prototype to
be interacted with stakeholders to validate the satisfaction of given requirements.
Although review method is widely used in industry since review activity can be
easily carried out by practitioners, it is lack of rigorous verification technique
and effective tool support. Besides, the execution of the review activities largely
depends on the individual practitioners; its quality is hard to be guaranteed.

Testing method generates safety-related test cases and “executes” the test
cases on the specification. Then the actual output of the execution will be com-
pared with the expected output and the existence of unsafe requirements can be
determined when difference is found. In [14], a specification testing method is
proposed for reviewing task trees where a test case generation strategy is given
for each kind of task trees. In [15], VDMTools is used to execute VDM spec-
ifications for IC Chip Firmware when analyzing the expected behaviors of the
software. In [16], dynamic slicing technology has been adopted to build tool sup-
port for testing design specifications. Testing method emphasizes on the dynamic
aspect of safety analysis and detects unsafe requirements by walking through the
system specification. The disadvantage lies in the fact that it is difficult to cover
all the unsafe requirements using testing and the safety of the system cannot be
ensured.

Animation method usually applies model checking and specification execu-
tion to animate specifications. In [17], an animation-based inspection approach
is proposed where the inspection process of the specification is guided by animat-
ing the relations between input and output of the selected functional scenarios.
In [18], an animation approach is proposed for analyzing SCR tabular speci-
fication. In [19], a tool called UPPAAL is described which can automatically
animate the target system using model checking. Animation method provides
a more intuitive way to demonstrate various aspects of the target system and
enables practitioners to carry out safety analysis based on a better understand-
ing of the concerned functions. However, most of the existing methods can only
animate on the model level without showing the relation between the model and
the corresponding physical scenario, which makes it difficult for practitioners to
analyze real system behaviors based on the specification.

Formal method differs from the former 3 methods in the way of mathemat-
ical verification which guarantees the correctness and completeness of safety
analysis. Through model checking and formal proof, the satisfaction of the given
properties by the target formal specification can be automatically verified. In
[20], the authors propose a System-theory Process Analysis method for safety
analysis of CTCS-3 Systems. It describes the system in PHAVer models and
applies PHAVer tool to perform model checking on the PHAVer models. In [21],
the authors applies RAISE approach to the development of distributed railway
control system where RSL language is adopted to describe the system, as well as
the safety constraints, and formal proof is used to prove the safety of the system.
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In [22], theorem proving is adopted in verifying whether the given HCSP model
of the target train control system satisfies the given properties. Despite the effec-
tiveness in safety analysis, formal method requires for manual construction and
good understanding of complex mathematical formulas. Its integration into the
real software development process is still a challenging problem.

To take the advantage of both formal method and animation method, we use
formal language to describe the physical scenario for train control system and
automatically identify different kinds of hazards by verifying the system against
different sets of safety properties. Based on the analysis result, the animation
of the unsafe scenarios that lead to the identified hazards will be provided to
facilitate unsafe requirements location and specification reconstruction.

3 Safety Analysis and Animation on Train Control
System

Requirements specification is the key to the success of a software project. It serves
as the foundation for the design and coding phases, as well as the benchmarks for
testing and other software verification activities. Therefore, we carry out safety
analysis on the requirements specification of train control system to guarantee
the safety of the system to be developed based on the specification. The outline
of the safety analysis approach is shown in Fig. 1.
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Fig. 1. The outline of the safety analysis approach for train control system

The approach includes two major steps: safety analysis for identifying the
hazards implied by the scenario specification by checking the satisfaction of
the given safety properties and unsafe requirements animation for animating
the physical scenarios that lead to the occurrence of the identified hazards.
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Safety analysis requires for 3 inputs before it can be carried out. The first
input is a scenario specification of the target train control system which describes
the physical scenarios of the train operations. A scenario language is designed
for constructing the specification consisting of a railway route map and the
behaviors of the trains running on the routes. Developers and domain experts
should cooperate to evolve their original requirements in mind and produce a
scenario specification by documenting the evolved requirements using the pre-
defined scenario language. The specification will guide the following development
phrases and its safety is therefore necessary to be verified.

The second input is a set of safety properties where each property needs
to be satisfied to prevent hazards from happening when the target system is
running. These properties are obtained by classifying hazards and analyzing each
kind of hazards. Hazard classification provides a systematic way to summarize
and organize implied hazards of train control system that might cause harm
or damage. We divide hazards into single-train ones and multi-train ones. The
former includes all the hazards caused by the operations of a single train while
the latter includes all the hazards caused by the combination of operations of
more than one train. These two categories are divided into concrete hazards that
cannot be further decomposed into lower level hazards. For each concrete hazard,
a set of safety properties can be obtained by analyzing the various causes of the
hazard. The violation of any property in the set will lead to the occurrence of
the hazard.

The third input is the syntax of the scenario language. Since automation is
one of the main goals of our approach, the syntax of the specification to be ana-
lyzed is needed for abstracting various kinds of elements from the specification
and supporting the understanding of their semantics by machines.

With the above 3 inputs, safety analysis step will produce a textual analysis
result which describes the detailed information of the detected hazards. It is
carried out through 2 steps. The first step is to analyze the input specification
based on the provided syntax of the scenario language and transform it into
pre-defined data structures. The second step is to verify the processed specifica-
tion with respect to each input safety property by the proposed algorithm and
output the textual analysis result which includes the detailed information of the
scenarios that violate certain properties.

Unsafe requirements animation takes the produced textual analysis result
as input and animates the physical scenarios violating certain safety properties
with the provided detailed information in the analysis result. Static elements
of a scenario are mapped to animation objects while dynamic behaviors are
linked with animated movements of the involved trains. An algorithm is given
to integrate the mapped objects and movements into a complete animation.

To present the detail of the approach, we will explain the critical techniques
respectively.
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3.1 The Scenario Language

Scenario-based requirements need to be constructed by domain experts or devel-
opers who are not familiar with software requirements modeling languages, a
simple notation that is easy to use and understand will greatly facilitate the
construction process. On the other hand, ambiguity will strongly influence the
effectiveness of automatic analysis, which indicates the importance of language
precision. After an in-depth study and thorough analysis on the railway trans-
portation system, we developed a language that describes physical scenario of
the system in two parts: static map and train movement.

Static map part depicts the railway route map of the target train control
system in a hierarchical structure which is shown in Fig. 2. A map is composed
of a set of intersecting railway lines where each line is composed of a set of
blocks. The lengths of all the blocks in the map are the same and each block can
be attached with an offset indicating an exact position on the block. Stations in
the map are supposed to be located on one block and those ones that lie across
more than one block are not considered in this paper.

Static
Map

Line

Block

Block

Line

Line Offset

station

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 2. The hierarchy structure of static map

An example static map is shown in Fig. 3 where Fig. 3(a) is the scenario
specification of the map and Fig. 3(b) is the graphical representation of the map.
There are two railway lines in the map where line A is composed of 6 blocks from
b1 to b6 and line B is composed of 4 blocks from b7 to b10. Each block is attached
with coordinate information for determining its position in the map. In addition
to the first block that needs to be attached with the coordinates of both start
point and end point, for any other block bi in a line, only the coordinate of its
end point is needed since its start point is the same as the end point of block
b(i − 1). For example, the first block b1 in line A is attached with (0, 0, 100, 0)
indicating that the coordinate of its start point is (0, 0) and that of its end point
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Map
Line A

Block b1(0, 0, 20, 0) Block b2(40, 0) Block b3(60, 0) Block b4(80, 0) Block b5(100, 0)

Block b6(120, 0) Block b7(140, 20) Block b8(160, 20) ......
Line B

Block b14(140, 20, 160, 40) Block b15(180, 60) Block b16(200, 60) Block b17(220, 40)
Block b18(240, 20) Block b19(220, 60) Block b20(240, 60) Block b21(260, 60)

......
Train t1(160, +)

start(#(b1,0),360) acc(1,20) run(#(b44,0)) stop(#(b45,0)) ......
Train t2(160, +)

start(#(b31,0),0) acc(1,10) acc(2,10) run(#(36,0)) ......
Train t3(160, +)

start(#(b23,0),300) accTo(#(b24,0),20) run(#(b26,0)) stop(#(b45,0)) ......

Fig. 3. The scenario specification and graphical representation of the example
static map

is (100, 0). The second block b2 is attached with (99.62,−8.72) which represents
only the coordinate of its end point since the coordinate of its start point is
the same as that of the end point of b1. Station information of each line is also
given in the specification in terms of a tuple (BlockID, offset, length) where
BlockID represents the block that the station built on, offset denotes the exact
position on the block that the station built on and length denotes the length
of the station. For example, station S1 on line A is attached with (b4, 20, 180)
meaning that the distance between the midpoint of S1 and the start point of
block b4 is 90 m and the length of s1 is 180 m.

Train movement depicts how the trains move on the provided map and the
notations for describing such requirements are shown in Table 1. There are 3
kinds of moving states for a train when it starts to move: stop state, uniform
motion state and constant acceleration motion state. Scenarios in the specifica-
tions are combinations of transitions among these three kinds of states based on
the initial state of the involved trains where several system variables are initial-
ized including the initial location of the trains and the length of each train. Since
a train needs to be accelerated from stationary state to run on the railway, the
first two statements of train movement must be start(Coordinate,Dwelltime)
expression and accelerating motion statement.

An example train movement description is given as follows:

Train t1(160,+)
start(#(b1, 0), 60)
acc(1, 10)
run(#(b3, 60))
stop(#(b4, 20))
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Table 1. Notations for describing train movement

Notation Explanation

#(BlockID, offset) For denoting the location of a
concerned train. The distance
between the head of the concerned
train and the start point of block
BlockID is offset

start(Coordinate,Dwelltime = 0) The concerned train starts to move
from the location Coordinate after
waiting for Dwelltime where the
default value of Dwelltime is 0

stop(Coordinate) The concerned train stops at the
location Coordinate

run(ExpectedCoordinate) The concerned train runs at the
speed same as the final speed on the
previous state and stops at the
location ExpectedCoordinate

acc(Acceleration,ExpectedSpeed) The concerned train runs with the
constant acceleration of Acceleration
and reaches the speed of
ExpectedSpeed at the end of the
movement

accTo(ExpectedCoordinate, ExpectedSpeed) The concerned train runs with a
constant acceleration. At the end of
the movement, its speed reaches
ExpectedSpeed and its location
becomes ExpectedCoordinate at the
end of the movement

It depicts the operations of a train t1 of 160 m long running from start point
to end point of each block of the route. After 60 s of waiting, t1 will start from
the start point of block b1 and run with the constant acceleration of 1 m/s2 until
reaching the speed of 10 m/s. Then t1 will run at the constant speed of 10 m/s
until reaching the location that is 60 m away from the start point of the block
b3. Finally, t3 will decelerate until stopping at the location that is 20 m away
from the start point of the block b4.

3.2 Hazard Classification and Analysis

After collecting and analyzing the accident materials in train-based transporta-
tion, we categorize the hazards led by train control system into two kinds: single-
train hazards that are caused by a single train and multi-train hazards that are
caused by the operations of more than one train.

Single-train hazards are further divided into 2 concrete hazards: derailment
accident and passenger detention. Multi-train hazards contain only one concrete
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hazard: collision accident. These 3 concrete hazards correspond to 5 safety prop-
erties. We will present the analysis of each concrete hazard respectively.

Derailment Accident. Derailment accidents are usually seriously hazardous
to human health and safety, their detection is one of the main tasks in safety
analysis of train control system. There are several causes accounting for derail-
ment accident, such as a collision with another object and so on. Since this paper
focuses on safety analysis on train control system, we only consider the causes
made by such kind of system.

Two causes were found for derailment accident. The first one is exceeding
the speed limit and the corresponding safety property can be written as follows.

Property 1. Given a railway map m where the length of each block is lb, for
each train of length lt running on the route b1 → b2 → ...→ bn with the speed
limit of linear movement set as Vmax and the speed limit of turning movement
on each pair of adjacent blocks (bi, bi+1) set as Vi, its velocity v and location
#(bt, offsett) must satisfy:

{(bj , bj+1) | i < t ∧ i ∗ lb > (t − 1) ∗ lb + offsett − lt} = ∅ ∧ v ≤ Vmax

∨ ∀(bp,bp+1)∈ {(bj ,bj+1)|i<t∧i∗lb>(t−1)∗lb+offsett−lt} · v ≤ vp

Since speed limits of linear movement and turning movement are different,
the velocity of each train should be restricted based on its location. When a
train is running within one block, its velocity must be no more than the speed
limit of linear movement. But when a train is running across blocks, its velocity
must be no more than the speed limit of the involved adjacent blocks.

The second cause is running out of map border and the satisfaction of the
following property will prevent it from happening.

Property 2. For each train running on the route b1 → b2 → ...→ bn, its location
#(bt, offsett) must always satisfy 1 ≤ t ≤ n∧0 ≤ offsett ≤ lb where lb denotes
the length of the blocks in the route.

If the train always runs within the blocks of its route, it will not derail because
of running out of the map border.

Passenger Detention. Passengers will get on and off the train when it enters
and stops at the railway stations. If they have been detained in the station,
more and more people will be gathered in small spaces which will likely result
in stampede accidents. We found two main causes for passenger detention. The
first one is running out of station border and the corresponding safety property
can be written as follows.

Property 3. For each train t running on the route b1 → b2 → ...→ bn with a
set of stations {s1, ..., sn} where each station si is of length lsi and located at
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#(bsi , offsetsi), the train’s location #(bt, offsett) must satisfy:

v = 0 ⇒ ∃s∈{s1,...,sn} · t ∗ lb + offsett ≤ s ∗ lb + offsets + ls

∧t ∗ lb + offsett − lt ≥ s ∗ lb + offsets

where lb denotes the length of each block in the route and lt denotes the length
of t.

For each train running on the map, it must stay within one of the stations
when it stops so that the passengers can get on board.

The second cause is exceeding the specified time range and the corresponding
safety property can be written as follows.

Property 4. For each train t running on the route with a set of stations
{s1, ..., sn} where each station si is attached with a specified time range [tri, tri′]
for t, the time tsi of t stopping at si must satisfy tri ≤ tsi ≤ tri′.

Each station in the railway map will be given a time range for each train
which specifies the time that the train should arrive at the station. Each train
must enter and stop at each station within the corresponding time range.

Collision Accident. If more than one train is running on a railway map, colli-
sion accident may occur when the trains meet at their routes. Such an accident
will probably lead to serious consequences and is caused by the fact that two or
more trains reach the same location at the same time. The corresponding safety
property is as follows.

Property 5. Given a railway map m and a set of trains {t1, ..., tn} running on
m at continuous time T = {time1, ..., timek}, the location of the trains must
satisfy:

∀ti,tj∈{t1,...,tn} · ∀time∈T · distance(ti, tj , time) ≥ (lti + ltj )/2

where distance(ti, tj , time) denotes the distance between the midpoints of the
trains ti and tj at time time and ltrain denotes the length of the train train.

Trains will meet when they overlap on the map. Therefore, in order to prevent
collision accident, we need to ensure that the distance between any two trains is
greater than 0 at any time.

3.3 Safety Analysis

With a scenario specification of the target train control system, safety analy-
sis is carried out by verifying the satisfaction of the provided 5 properties by
the specification and generating the scenarios that lead to the violation of the
properties. We give an algorithm for safety analysis as shown in Fig. 4 where
v(t, (bj , offset)) denotes the maximum velocity of the train t when running on



66 X. Wang et al.

#(bj , offset), v(t, (bj , bj+1)) denotes the maximum velocity of t when running
on the angle between blocks bj and bj+1, moveti(bj+1, offset) denotes the scenar-
ios of movei before the train t reaches the location #(bj , offset), coordinate(s)
denotes the location #(bj , offset′), direction(t) denotes the running direction
of t and routet denotes the sequence of blocks that train t goes through. The
input of the algorithm is the scenario specification stored in pre-defined data
structures, including the static map m with a set of stations S and the move-
ments of each train. The output of the train is a report for hazard identification
and the scenarios that cause the hazards.

The algorithm verifies the safety properties for single-train hazards by ana-
lyzing the blocks that each movement of a single train performs on. When the
violation of certain property is detected on a block, the corresponding cause and
scenario information will be added to the final report. Multi-train hazards are
identified by calculating the overlapping blocks of the routes of each two trains
and the time points that the two trains run on the blocks. If the same time
point on the same location is found, a collision hazard, as well as the cause and
scenario information, will be added to the final report.

3.4 Unsafe Requirements Animation

Although textual analysis result is produced by the safety analysis algorithm,
it still requires for much experience and considerable effort to understand the
corresponding physical scenario and locate the cause of the detected hazards.
Therefore, we adopt animation technique to provide a more intuitive way to
demonstrate the safety analysis result.

The animation process takes the unsafe scenario requirements provided by
safety analysis as input and produces the animation of the corresponding phys-
ical scenarios. Specifically, it transforms textual requirements into animation
based on two kinds of mappings. The first kind is the static mappings from the
elements in static map into static objects in the animation, including the map-
pings from blocks with coordinate information into railway lines and stations
with coordinate information into station images in the animation. The second
kind is the mappings from train movement to dynamic behaviors shown in the
animation, i.e., the mappings from each kind of movement into the animated
running operations of the trains.

With a textual scenario specification of the unsafe requirements con-
sisting of a static map m and a set of movements Move of the involved
p trains where Move = {movet11 ,movet12 , ...,movet1n ,movet21 , ...,movetpq } and
each movetij denotes the jth movements performed by the train ti, an
algorithm is given to produce the animation as shown in Fig. 5 where
Mapping1(x1, y1, x2, y2) denotes the mapped line connecting two points
(x1, y1) and (x1, y1) for representing the block attached with the coor-
dinate information (x1, y1, x2, y2), Mapping1(b, o, l) denotes the mapped
image of the station attached with the coordinate information (b, o, l) and
Mapping2(t, originX, originY, destX, destY, para) denotes the mapped anima-
tion of the para-type movement of train t from point (originX, originY ) to
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Fig. 4. The algorithm for verifying the satisfaction of the 5 safety properties by a given
scenario specification
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Fig. 5. The algorithm for scenario specification animation

point (destX, destY ) where para = v indicating movement with constant
speed v, para = a indicating movement with constant acceleration a and
para = Dwelltime indicating stop for the time duration of Dwelltime.

The algorithm animates the static map first by drawing each block and sta-
tion in the map based on their coordinate information and the static mapping
knowledge. Then dynamic behaviors will be animated by analyzing each move-
ment performed by each train and producing the animation of the movement
based on the dynamic mapping knowledge and the detailed information of the
movement including the coordinates of its start point and end point and the
type of the movement. By combining the static objects and dynamic behav-
iors, a complete animation of the target scenario specification can be generated
automatically.

4 Tool Design and Implementation

The main goal of our proposed approach is to automate the safety analysis
on scenario specification for train control system. To validate the approach and
demonstrate its efficiency, we implement it into a prototype tool. It takes textual
scenario requirements of the target train control system as input and performs
safety analysis on the specification to produce a hazard identification report, as
well as the animation of the unsafe requirements.

Figure 6 shows the outline of the tool composed of 4 components: text proces-
sor, property library, hazard analyzer and property library. When the user
imports a scenario specification, the tool will send the input text file into the
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Scenario
specification

Property Library

Text
Processer

Textual
analysis

result

User

Scenario Syntax

Hazard
AnalyzerProcessed

scenarios

Animation
Engine

Scenario
animation

Fig. 6. The outline of the supporting tool

text processor. Based on the scenario syntax stored in a XML file, the text proces-
sor analyzes the textual scenarios and represents them in a pre-defined format
that can be recognized by the tool. Then the processed scenario information will
be sent to hazard analyzer for safety analysis. By verifying the scenario require-
ments against the safety properties in the property library stored as a XML file,
the hazard analyzer can produce a textual analysis result which contains the
identification of the implied hazards and the physical scenarios that cause the
occurrence of the identified hazards. Such a textual analysis result will be sent
to the user and the animation engine. For each identified hazard, the user can
choose to look at the animation of the corresponding scenarios and the anima-
tion engine will transform the selected textual information in the analysis result
into an animation and display it to the user.

According to the above design, we implement the tool using C# and the main
interface of the tool is shown in Fig. 7 where the left part displays the textual
analysis result and the right part shows the animation of the selected scenarios.

Fig. 7. The main interface of the safety anlaysis tool
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A case study is conducted to show how the tool works. The imported scenario
specification is shown in Fig. 8 (Only parts of the specification is given due to the
sake of space). By pressing the “analyze” button, the safety analysis result will
be displayed in the left part of the tool as shown in Fig. 9. Collision hazards are
identified and the locations are highlighted in the map. To animate the physical
scenarios that cause the collision hazards, button “animate” is pressed and the
animation result is shown in Fig. 10. During the animation, button “pause” is
provided for pausing and resuming the animation.

The result of the case study shows the effectiveness of our approach and tool
in supporting safety analysis for train control system.

Map
Line A

Block b1(0, 0, 20, 0) Block b2(40, 0) Block b3(60, 0) Block b4(80, 0) Block b5(100, 0)

Block b6(120, 0) Block b7(140, 20) Block b8(160, 20) ......
Line B

Block b14(140, 20, 160, 40) Block b15(180, 60) Block b16(200, 60) Block b17(220, 40)
Block b18(240, 20) Block b19(220, 60) Block b20(240, 60) Block b21(260, 60)

......
Train t1(160, +)

start(#(b1,0),360) acc(1,20) run(#(b44,0)) stop(#(b45,0)) ......
Train t2(160, +)

start(#(b31,0),0) acc(1,10) acc(2,10) run(#(36,0)) ......
Train t3(160, +)

start(#(b23,0),300) accTo(#(b24,0),20) run(#(b26,0)) stop(#(b45,0)) ......

Fig. 8. The scenario specification for the case study

Fig. 9. The analysis result of the case study
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Fig. 10. The animation result of the case study

5 Conclusion

Safety analysis for train control system plays an important role in quality assur-
ance of train-based transportation. In this paper, we present a scenario-based
approach to safety analysis for train control system which carries out hazard
identification on the scenario specification of the target system. A scenario lan-
guage is provided in the approach for developers and domain experts to describe
their expectations on the system. With the specified scenario requirements, the
approach verifies the satisfaction of the given safety properties by the require-
ments. Then animation technique is adopted to animate the physical scenarios
that lead to the violation of certain property. We also developed a tool for sup-
porting the approach. By presenting a case study on the tool, we explain the
main functions of the tool and demonstrate the effectiveness of the approach.

Writing textual specification using the given scenario language is still not
intuitive enough for the practitioners. We plan to provide a visualized approach
to support the drawing of the static map and the arrangement of the train
movements. The tool support will also be enhanced in our future research.
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Abstract. How to reduce the costs caused by changes made during
and after writing a formal specification is a challenge in applying for-
mal methods in practice. A GUI-Aided approach to constructing formal
specifications has been proposed, but it has not been applied to a real-
istic development project. In this paper, we present an application of
the approach to the construction of a formal specification for a medical
dictionary system to demonstrate its usability and to explore potential
issues in relation to the approach.

Keywords: Active GUI model · Rapid prototyping · Formal
specification

1 Introduction

Recent years, formal methods receive remarkable attentions from many
researchers in the field of robotics [1] and autonomous systems [2] as a correct-
by-construction methodology required for safety-critical systems. They have a
strong influence as rigorous techniques [3] to ensure the reliability or prevent
safety-related errors in the rigorous mathematical specification, design, and ver-
ification of systems. Meanwhile, such formal techniques in practice still face some
challenges in a cost-effectiveness perspective for eliminating ambiguity of func-
tional requirements, and translating informal specifications into precise mathe-
matical notations. To handle this problem, Liu proposed a GUI-aided approach
for constructing formal specifications [4] for clearing up comprehension gaps
between software developers and the clients. The GUI-aided approach is origi-
nated in rapid prototyping techniques, as an active GUI model derived from an
informal specification clarifies required functions, input and output data items,
and their constraints in the corresponding formal specification from the client’s
point of view. In order to facilitate the construction of a formal specification
in a comprehensible manner, we use the Structured Object-Oriented Formal
Language (SOFL) [5] as the specification language. SOFL is also an engineer-
ing method for software development in industry [6,7], and it contains effec-
tive guidelines for describing structured informal requirements and transforming
them to formal specifications [8,9].
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In this paper, we use the proposed GUI-aided approach to develop a med-
ical dictionary system that supplies medical information to patients or non-
professional people, by inputting a search-word, selecting a keyword from a
category tree, using checklists. Although, numerous companies already supply
medical information web pages [10] or symptom checking applications [11,12]
for patients, still newcomers, such as Google [13] and IBM [14], are starting or
planning to enter this market. We believe that safety-critical systems should be
rigorously verified to ensure high reliability of software. Also, the systems related
healthcare or medical information require to provide user friendly interfaces and
smooth interactive operations for persons of middle or advanced age. However,
it is extremely difficult for software developers to fulfill both high reliability and
good usability under pressures of costs and schedules. We will explain how to
combine the SOFL formal engineering method and a rapid prototyping using a
case study for the development of a medical dictionary system, and discuss the
effects on our proposed GUI-aided approach.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces a structure of the GUI-aided approach. Section 3 explains our rapid pro-
totyping based on an informal specification for our medical dictionary system.
Then, Sect. 4 describes how to construct a formal specification in accordance
with our GUI-aided approach. Section 5 discusses the lessons learned. Lastly, in
Sect. 6, we give conclusions and point out future research.

2 A GUI-Aided Approach

Our GUI-aided approach aims to construct formal specifications systemati-
cally using its power of rapid prototyping techniques. A rapid prototyping
enhances effective communications between software analysts and their clients,
and reduces development costs and time [15].

As shown in Fig. 1, firstly, the developer or analyst needs to define the infor-
mal specification which is written in a natural language about required functions

Fig. 1. A GUI-aided approach
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based on communications with their clients. Then, the analyst derives a GUI
model from the informal specification, and shows it to the clients. The clients
examine the GUI model and provide their feedback. According to the feedback,
the analyst revises and enhances the GUI model. The analyst and the clients
continue to prototype until the analyst identifies all necessary required functions,
input and output data items, and their constraints.

Secondly, the analyst improves the initial informal specification by using
an active GUI model. The active GUI model does not need to implement all
required functions, however, it plays an important role in building a consensus
between the analyst and the clients to identify the corresponding input and
output data items with a button-related function. As the result of observations
and discussions with the analyst and the client through the active GUI model,
the improved informal specification becomes sophisticated from the initial one.

Finally, a formal specification is constructed based on the improved informal
specification, as following aspects: keeping hierarchical structure, drawing condi-
tional data flow diagram (CDFD), and contracting module for each CDFD. The
hierarchical structure means a SOFL formal specification obeys in a hierarchi-
cal fashion for describing precisely the functionality of systems. SOFL formal
specifications use formal notations based on set theory, logics, and algebra for
improving the correctness of software by formal specification and formal verifi-
cation based on mathematics.

3 Rapid Prototyping

A rapid prototyping includes user participation. Because users review whether
a prototype matches their requirements and should be improved based on their
feedback. Our GUI-aided approach uses a rapid prototyping to improve the
initial informal specification from the user’s point of view.

In this section, as illustrated in Fig. 2, we start an informal specification
for a medical dictionary system as our target system, and then explain how a
prototype can be derived from the informal specification. The prototype is refined
by the user’s feedback, and it revised and enhanced by the software analyst for
changing to an active GUI model. The analyst uses the active GUI model to
identify all necessary items to improve the initial informal specification.

Fig. 2. The rapid prototyping in our GUI-aided approach
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3.1 Informal Specification

Following the general style of the SOFL informal specification, the informal spec-
ification for the medical dictionary system also consists of three parts: functions,
data resources, and constraints. The functions include:

– Required Functions:
• Login
• Search
• Check
• History
• Edit
• Logout
• Exit

– Data Resources:
• account: id, password, age, and gender
• disease: name, common features, types or causes, and treatments
• question: questions about symptom
• history: historical log file for Check function

– Constraints:
• A user ID should be unique.
• A user ID and password within 13 characters maximum.
• A question should be unique.
• All items of one disease data should not be empty.

3.2 GUI Model

GUI models in our approach incorporate buttons, menu bar, or menu items to
represent the corresponding required functions which are defined in the informal
specification. According to the required functions described in the informal spec-
ification, the analyst developed a GUI model for our medical dictionary system
as shown in Fig. 3.

We implemented look-and-feels on the GUI model under the Eclipse environ-
ment using Swing in Java. The analyst demonstrated it in front of the clients,
discussed with the clients about desirable functions, and got their feedback for
refining the model. The analyst revised and enhanced the model based on the
clients’ feedback. Then he extended the model to add event handlers in the
current GUI model. Each event handler is not necessarily associated with any
database; it is not a real program. However, it takes an important role as a
springboard for discussions with analysts and clients, therefore it is enough to
clarify of button-related functions on the current model.

Figure 4 represents a GUI model linked from the “Search” button in Fig. 3.
In the same way, the Fig. 5 is a successor GUI model linked from Fig. 4. Playing
a sequence of GUI models (Figs. 3, 4, and 5) in motion means an animation,
which we call “active GUI model” in Sect. 2, for the clients to check functions



78 F. Nagoya and S. Liu

Fig. 3. A preliminary GUI model

Fig. 4. The second level of button-related functions

and services of the product. At the same moment, it also provides a hierarchical
structure (Fig. 3, for first level; Fig. 4, for second level; and Fig. 5, for third level)
for the analyst to improve the required functions in the informal specification.
Furthermore, the analyst and clients gradually recognized the corresponding
input and output data items with a button-related function.

For instance, the GUI model depicted in Fig. 5 appears after inputting any
search-word in the text box and pushing the “Search” button in Fig. 4. If the
search-word has more than one disorder, the GUI model shows multiple possible
disease names by list and encourages to select one item. In other word, in the
GUI model depicted in Fig. 5, the corresponding input data item is one of disease
names in the list, and the output data items are a set of disease name, diagnosis
and department, common features, types or causes, and treatments.
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Fig. 5. The third level of button-related function

4 Construction of Formal Specifications

As mentioned above, the active GUI model indicates a hierarchical structure of
the required functions and the corresponding input and output data items with
a button-related function. Identifying both hierarchical structure and input and
output data items becomes a basis for improving the informal specification and
constructing formal specifications. In this section, we will explain the improved
informal specification and formal specification in our development as illustrated
in Fig. 6.

Fig. 6. The Construction of formal specifications
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4.1 Improved Informal Specification

SOFL uses the structured informal requirement specification which includes
required functions, data resources, and constraints as we described in Sect. 3.1.
We already understood the required functions, the input and output data items,
and their constraints through our active GUI model. The initial informal speci-
fication is revised as follows by the analyst:

1 Required Functions
1.1 Login: · · ·
1.2 Search: the tool supplies medical information by two search functions.

One is inputting a word, the other is selecting a keyword from a category
tree.

1.2.1 Input a word: the tool provides a search function by inputting a search
word. (input data: search word: value 1, output data: search result:
Compound value 2 )

1.2.2 Select from keyword: the tool provides a category tree, and the user
selects one keyword from the tree. (input data: search word: value
3, output data: search result: Compound value 4 )

1.3 Check: · · ·
2 Data Resources · · ·
3 Constraints · · ·

The improved specification denotes declarations of input data and output
data, each parameter, and each value. The Compound value means a composite
data type value, which is composed of disease name, diagnosis and department,
common features, types or causes, and treatments. In the next part, we will show
a formal specification based on the improved formal specification.

4.2 Formal Specification

In the formal specifications, all of the functions are defined in modules using
predicate logic and their connections are defined in an associated CDFD. Some
composite data are also defined in classes. Classes are used to model compli-
cated data flows and data stores. Modules formally define abstractions of sys-
tem functions: a module name, constant declarations, type declarations, variable
declarations, an invariant section, and a list of process names. A process defines
a process name, input and output ports, pre-condition, and post-condition. The
pre-condition describes a constraint on the input data flows before the execution
of the process, while the post-condition provides a constraint on the output data
flows after the execution. For example, we introduce a module in our develop-
ment as follows;
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module Search Decom/ Family medical dictionary
type

Disease = composed of
disease name: string
hospital department: string
symptoms: set of Symptom
type cause: string
treatment: string
end;

. . . . . .
var

disease data: seq of Disease;
. . . . . .
process Input a word (search word: string)

search result: Disease | err message: string
ext rd disease: seq of Disease
pre search word < > null
post if exists[x: disease] | x.disease name = search word

then search result = disease(x)
else err message = “The word you’ve entered isn’t in the dictionary.”

end process;
. . . . . .
end module;

The module Search Decom relates to the required functions: 1.2 Search in
the improved informal specification. The process Input a word declares input
parameter: search word, output parameters: search result or err message, exter-
nal variable: disease, and their types respectively. The pre-condition describes
search word is not empty. The post-condition denotes that if the search word
exists in the database of disease, then the output data equals the value, else err
message is displayed.

Our GUI-aided approach sets three rules for translation into formal specifi-
cations from improved informal specifications: (1) keeping hierarchical structure,
(2) drawing conditional data flow diagram (CDFD), and (3) contracting mod-
ule for each CDFD. The rule of keeping hierarchical structure applies to names
of modules and processes as illustrated in Fig. 6. For example, process name:
“Input a word ” in the module Search Decom is derived from its corresponding
function name: “Input a word” in the improved informal specification. The Fig. 7
shows the top level CDFD of the system.
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Fig. 7. The top level of CDFD

5 Lessons Learned

We have learned several lessons from our case study about the GUI-aided app-
roach. Specifically, they include the following points:

– By adding event handlers, the prototype becomes a superior model for analyz-
ing functional behaviors and the corresponding input and output data items.
The understanding of them through our active GUI model not only supported
to improve the informal specification, but also it had beneficial effects on type
declarations in the formal specification.

– SOFL facilitates to transform from the improved informal specification into
the formal specification. Especially, the rule of keeping hierarchical structure
guides the analyst for constructing formal specifications.

– Formal specifications become available for verification techniques, such as
specification based testing, rigorous inspection, formal proof. Our case study
applied a specification based testing [16] to verify the correctness of program
by generating test cases from the formal specification.

We have also discovered a difficult to control development costs.

– The active GUI model is rather different from a product. In our case study,
the active GUI model only shows button-related functions to create a visual-
ization of potential behavior of the GUI, and do not connect any database.
A development of a prototype should be simple to use any plain animation
tool, or the analyst should decide a scope of the prototype before at the
beginning of the development.
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6 Conclusions

This paper presents a case study of applying the GUI-aided approach to the
construction of a formal specification for a medical dictionary system. The app-
roach can facilitate the construction of formal specifications accurately reflecting
the client’s requirements. The analyst required to understand about functional
behaviors, the input and output data items, and their constraints corresponding
with button-related functions based on discussions with their clients through an
active GUI model. The challenge for the GUI-aided approach is how to effectively
carry out a GUI-based animation to facilitate the communication between the
analyst and the client. Our future research will focus on dealing the challenge
and evaluate the GUI-aided approach with more empirical studies.
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Abstract. Formal method is key approach in developing safety critical systems.
Set, Bag, List, Tree, Graph are important reusable components in PAR platform.
The paper tries to formally develop Set, Bag, List components which have linear
structure. The formal development of those components involves formalization
of specification, the recurrence relation of problem solving sequence and loop
invariant. Specification language Radl of PAR platform was used to describe the
specification, recurrence relation and loop invariants; Software modelling lan-
guage Apla was used to describe the abstract model of those components. The
abstract model denoted by Apla was transformed to concrete model written by
executable language; such as C++, Java, VB and C#, etc., based on the program
generating systems in PAR platform.

Keywords: Reusable component � Formal development � Loop invariant �
PAR platform

1 Introduction

Component-based software engineering (CBSE) emerged as an approach to software
systems development based on reusing software components. A software component
can be deployed independently and is subject to composition by third parties [2].
Reusing software component has now become the dominant development paradigm for
web-based information systems and enterprise systems. Formal methods are
mathematically-based approaches to software development where you define a formal
model of the software. You may then formally analyze the model and use it as a basis
for a formal system specification [11]. CBSE and formal methods are two important
but largely independent approaches which have been visibly influential in recent years
[6, 7].

PAR means PAR (Partition-and-Recur) method [14, 17–19] and its supporting
platform, called PAR platform. PAR method and PAR platform consists of specifi-
cation and algorithm describing language Radl, software modeling language Apla, a set
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of rules for specification transformation, a set of reusable components and a set of
automatic generating tools such as Radl to Apla generating system, Apla to Java, C++,
C# executable program generating systems.

Set, Bag, List, Tree, Graph are reusable components defined in PAR platform. Set
and Bag(an element may occur many times) have unordered linear structure. List has
ordered linear structure. Tree and Graph have non-linear structure. With the support of
those reusable components, the programs written by Apla are very short and easy to
prove their correctness.

The reusable components are important for PAR platform. It is a challenge and
urgent work to develop them formally and guarantee the correctness of those
components.

In this paper, Set, Bag and List components were formally developed. Using formal
specification language Radl to describe the specification of reusable components. Using
the quantifier transformation rules to transform specification and construct the recur-
rence relation of problem. Using new strategies of developing loop invariants to
develop loop invariants and construct the abstract programs written by Apla language.
Using executable program generating system to generate the codes of reusable
components.

The paper was organized as follows. The second section gave the related prelim-
inary knowledge of PAR platform; the third section gave the formal development of Set
component, the fourth section gave the formal development of Bag component, the
fifth section gave formal development of List component; the sixth section gave an
example of constructing program by composing the reusable components; Finally a
short conclusion was presented.

2 Preliminary

PAR is a long-term research projects supported by a series of nature science research
foundations of China. According to the methodology of MDD, PAR has been used in
developing software with high reliability and safety, such as non-trivial algorithm
programs [15, 20–22], traffic scheduling system [13], bank account management sys-
tem and electric control system.

2.1 Specification Language Radl

Radl (Recur-based Algorithm Design Language) used the idiomatic mathematical
symbols and style to describe the algorithm specification, specification transformation
rules and the recurrence relation. Radl is the front language of the Apla language, with
mathematical referential transparency. Using the unified format (Q i: r(i): f(i)) given by
Dijkstra to denote quantifiers [3], where Q can be 8 (all quantifier), 9 (exists quantifier),
MIN (minimum quantifier), MAX (maximum quantifier), R (summation quantifier),
etc, and i is a bounded variable, r(i) is the variant range of i and f(i) is a function.
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2.2 Software Modelling Language Apla

Apla (Abstract Programming Language) is the software modelling language and the
target language of Radl to Apla program generating system, and the source language of
Apla to Java, C++, C#, Dephi executable program generating system.

2.3 The Formal Development Steps with PAR

The formal development steps with PAR can be 6 steps:

Step 1. Construct the formal specification of problem using Radl;
Step 2. Partition the problem into a couple of subproblems each of that has the same

structure with the original problem;
Step 3. Formally derive the algorithm from the formal specification. The algorithm is

described using Radl and represented by recurrence relation.
Step 4. Develop loop invariant directly based on new strategy;
Step 5. Transformed the Radl program to the Apla program;
Step 6. Transforms the Apla program to an executable language program.

3 Formal Development of Set Component

3.1 Introduction of Set Reusable Component

A set is simply a collection of distinct(different) elements [5]. In PAR platform, the
description of reusable component set’s data and operations is given below:
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3.2 Formal Development of Set Component

In order to guarantee the correctness of set component, we formally developed the body
of operations of set component. Following is the formal development of the operation
which can be used to judge whether set A is a proper subset of set B.

(1) Problem and Its Specification
Given a set A[1..m] containing m elements, a set B[1..n] containing n elements.
Include(A[1..m], B[1..n]) means set A is a subset of set B.
The specification is following:

Q: Given set A[1..m] and set B[1..n], m < n
R: Include(A[1..m], B[1..n]) � (8i:1 6 i 6 m:(9j:1 6 j 6 n:A[i] = B[j])

(2) Partition
We partition computing Include(A[1..m], B[1..n]) into computing Include
(A[1..m − 1], B[1..n]) with A[m], then partition computing Include(A[1..m − 1],
B[1..n]) into computing Include(A[1..m − 2], B[1..n]) with A[m − 1],…, until
computing Include(A [1], B[1..n]). Let F be the partition function to be deter-
mined, we have

Include A 1::m½ �;B 1::n½ �ð Þ ¼ F Include A 1::m� 1½ �;B 1::n½ �ð Þ; A m½ �ð Þ m\n

So, the key of constructing recurrence relation is to determine function F.
(3) Constructing Recurrence Relation

Suppose Include(A[1..m − 1], B[1..n]) has been solved. We can derive the
function F by using the properties of quantifiers. We have

Include(A[1..m], B[1..n])
� (8i:1 6 i 6 m:(9j:1 6 j 6n:A[i] = B[j]))
{Range Splitting}
� (8i:1 6 i 6 m − 1:(9j:1 6 j 6 n:A[i] = B[j])) ^ (8i:1 6 i = m:(9j:1 6 j
n:A[i] = B[j]))
{Singleton Range with i = m}
� (8i:1 6 i 6 m − 1:(9j:1 6 j 6 n:A[i] = B[j]) ^ (9j:1 6 j 6n:A[m] = B
[j])
{The definition of Include}
� Include(A[1..m − 1], B[1..n]) ^ (9j:1 6 j 6 n:A[m] = B[j])

Let is_a_member(A[m], B[1..n]) = (9j:1 6 j 6 n:A[m] = B[j]), which denotes
whether A[m] is a member of set B[1..n], We have the following recurrence:

Recurrence 1

Include A 1::m½ �;B 1::n½ �ð Þ ¼ Include A 1::m� 1½ �;B 1::n½ �ð Þ is a member A m½ �;B 1::n½ �ð Þ is true
False is a member A m½ �;B 1::n½ �ð Þ is false

�
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To compute is_a_member(A[m], B[1..n]), we try to find the recurrence relation.
Suppose is_a_member(A[m], B[1..n − 1]) has been computed, based on the properties
of quantifiers, we have

is_a_member(A[m], B[1..n])
� (9j:1 6 j 6 n:A[m] = B[j])
{Range Splitting}
� (9j:1 6 j < n:A[m] = B[j]) _ (9j:1 6 j = n:A[m] = B[j])
{Singleton Range with j = n}
� (9j:1 6 j < n:A[m] = B[j]) _ (A[m] = B[n])
{The definition of is_a_member}
� is_a_member(A[m], B[1..n − 1]) _ (A[m] = B[n])

Based on the above derivation, we have the following recurrence.

Recurrence 2

is a member A m½ �;B 1::n½ �ð Þ ¼ is a member A m½ �;B 1::n� 1½ �ð Þ A m½ � ! ¼ B n½ �
True A m½ � ¼¼ B n½ �

�

(4) Developing Loop Invariant and Program
Based on the above recurrence relations, let variable In whose data type is boolean
denotes the value of Include(A[1..i], B[1..n]), the loop invariant can be con-
structed mechanically as following:

q : In ¼ Include A 1::i½ �;B 1::n½ �ð Þ ^ 1� i�m\n

Based on the recurrence relations and loop invariant, the abstract algorithmic
program written by Apla language is following:

The above abstract program written by Apla can be translated into reusable
component written by executable languages with our program generating systems
automatically.
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4 Formal Development of Bag Component

4.1 Introduction of Bag Reusable Component

A collection of elements in which an element may occur any(finite) number of times is
called a bag [5]. In PAR platform, the description of reusable component bag’s data
and operations is similar to set component.

4.2 Formal Development of Bag Component

Following is the formal development of the operation which can be used to judge
whether bag A is a proper subbag of bag B. Because an element may occur any number
of times in bag, the formal development is different greatly from set.

(1) Problem and Its Specification
Given a bag A[1..m] containing m elements, a bag B[1..n] containing n elements.
Include(A[1..m], B[1..n]) means bag A is a proper subbag of bag B. Let All(A
[i], A[1..m]) denotes the number of elements in bag A whose value is equal to
A[i].
The specification is following:

Q: Given bag A[1..m] and bag B[1..n], m < n
R: Include(A[1..m], B[1..n]) � (8i:1 6 i 6 m:(All(A[i], A[1..m]) 6 All(A
[i], B[1..n]))

(2) Partition
We partition computing Include(A[1..m], B[1..n]) into computing Include
(A[1..m − 1], B[1..n]) with A[m], then partition computing Include
(A[1..m − 1], B[1..n]) into computing Include(A[1..m − 2], B[1..n]) with A
[m − 1],…, until computing Include(A[1], B[1..n]). Let F be the partition func-
tion to be determined, we have

Include A 1::m½ �;B 1::n½ �ð Þ ¼ F Include A 1::m� 1½ �;B 1::n½ �ð Þ; A m½ �ð Þ m\n

So, the key of constructing recurrence relation is to determine function F.
(3) Constructing Recurrence Relation

Suppose Include(A[1..m − 1], B[1..n]) has been solved. We can derive the
function F by using the properties of quantifiers. We have

Include(A[1..m], B[1..n])
� (8i:1 6 i 6 m:(All(A[i], A[1..m]) ⩽ All(A[i], B[1..n]))
{Range Splitting}
� (8i:1 6 i 6 m − 1:(All(A[i], A) 6 All(A[i], B)) ^ (8i:1 6 i = m:(All(A
[i], A) 6All(A[i], B))
{Singleton Range with i = m}
� (8i:1 6 i 6 m − 1: (All(A[i], A) 6 All(A[i], B)) ^ (All(A[m], A) 6 All
(A[m], B))
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{The definition of Include}
� Include(A[1..m − 1], B[1..n]) ^ (All(A[m], A) 6 All(A[m], B))

Then, we have the following recurrence:

Recurrence 1

Include A 1::m½ �;B 1::n½ �ð Þ ¼ Include A 1::m� 1½ �;B 1::n½ �ð Þ A m½ �;Að Þ�All A m½ �;Bð Þ is true
False A m½ �;Að Þ�All A m½ �;Bð Þ is false

�

To compute All(A[m], B[1..n]), we try to find the recurrence relation. Suppose All
(A[m], B[1..n − 1]) has been computed, based on the properties of quantifiers, we have

All(A[m], B[1..n])
� (R j:1 6 j 6 n ^ A[m] = B[j]:1)
{Range Splitting}
� (R j:1 6 j <n ^ A[m] = B[j]) + (R j:1 6 j = n ^ A[m] = B[j]:1)
{Singleton Range with j = n}
� (R j:1 6 j < n ^ A[m] = B[j]) + (R j:j = n ^ A[m] = B[j]:1)
{The definition of All(A[m], B[1..n])}
� All(A[m], B[1..n − 1]) + (R j:j = n ^ A[m] = B[j]:1)

Based on the above derivation, we have the following recurrence.

Recurrence 2

All A m½ �;B 1::n½ �ð Þ ¼ All A m½ �;B 1::n� 1½ �ð Þþ 1 A m½ � ¼¼ B n½ �
All A m½ �;B 1::n� 1½ �ð Þ A m½ � ! ¼ B n½ �

�

(4) Developing Loop Invariant and Program
Based on the above recurrence relations, let variable In whose data type is boolean
denotes the value of Include(A[1..i], B[1..n]), the loop invariant can be con-
structed mechanically as following:

q : In ¼ Include A 1::i½ �;B 1::n½ �ð Þ ^ 1� i�m\n

Based on the recurrence relations and loop invariant, the abstract algorithmic
program written by Apla language is following:
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5 Formal Development of List Component

5.1 Introduction of List Reusable Component

List has ordered linear structure. In PAR platform, the description of reusable com-
ponent list’s data and operations is given below:

5.2 Formal Development of List Component

Following is the formal development of the operation S[i..j] := T[k..k + j − i].

(1) Problem and Its Specification
Given a list s[1..m] containing m elements, a list T[1..n] containing n elements. S
[i..j] := T[k..k + j − i] means sublist S[i..j] of list S be replaced by sublist T[k..
k + j − i].
The specification is following:

Q: Givenlist S[1..m] and list T[1..n], 1 6 i < j 6 m, 1 6 k 6 n − (j − i)
R: S[i..j] := T[k..k + j − i] � (8x:i 6 x 6 j:S[x] = T[k + x − i])

(2) Partition
Suppose S[i..j − 1] := T[k..k + j − i − 1] has been solved. Let F be the partition
function to be determined, we have
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S i::j½ � :¼ T k::kþ j� i½ � � F S i::j� 1½ � :¼ T k::kþ j� i� 1½ �ð Þ

So, the key of constructing recurrence relation is to determine function F.
(3) Constructing Recurrence Relation

We can derive the function F by using the properties of quantifiers.

S[i..j] := T[k..k + j − i]
� (8x:i 6 x 6 j:S[x] = T[k + x − i])
{Range Splitting}
� (8x:i 6 x 6 j − 1:S[x] = T[k + x − i]) ^ (8x:i 6 x = j:S[x] = T[k + x − i])
{Singleton Range with x = j}
� (8x:i 6 x 6 j − 1:S[x] = T[k + x − i]) ^ (S[j] = T[k + j − i])
� (S[i..j − 1] := T[k..k + j – i − 1]) ^ (S[j] = T[k + j − i])

Then, we have the following recurrence:

S[i..j] := T[k..k + j − i] � (S[i..j − 1] := T[k..k + j – i − 1]) ^ (S[j] = T[k + j −
i])

(4) Developing Loop Invariant and Program
Based on the above recurrence relations, the loop invariant can be constructed
mechanically as following:

q : S x½ � ¼ T kþ x� i½ � ^ i� x� j

Based on the recurrence relations and loop invariant, the abstract algorithmic
program written by Apla language is following:

x := j;
do x >= i ! S[x] := T[k + x − i]; x := x − 1;
od.

6 Construct Program by Composing Reusable Components

6.1 Simple and Accurate Apla Program Based on Reusable Components

With the support of reusable components, the apla program is simple and accurate. It
gave a simplified way to prove correctness.

We formally derivated the Dijkstra single-source shortest path Problem in [16].
With the support of set and graph (graph component included edge and vertex com-
ponent in it. We will give the formal development of graph component which has
non-linear structure in future work) reusable components, we can write the apla pro-
gram as following:
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The core of the apla program is just 7 lines codes.

6.2 Generate Executable Program by Program Generating System

The executable program can be generated automatically from the Apla to C++, JAVA,
C#, Vb.net generating system in PAR platform.

As shown in Fig. 1, we choose the “C# program generating system” to generate
executable C# program.

• Firstly, we click “New Apla” button and input the Apla program in Sect. 6.1. The
algorithm is very short, only 7 lines core codes, in the left side of Fig. 1.

• Secondly, we click “Generate” button, the corresponding C# program which has
dozens of codes in the right side of Fig. 1 will be generated.

• Thirdly, we click “Run” button, the C# program can run immediately and the result
is correct.

94 Q. Hu et al.



7 Related Works

Abrial introduced the mechanism of abstract machine modeling and refinement in
B-Method into structured program generation [9, 10]. Considering the generation of
correct-by-construction programs, they suggested to integrate models, refinements and
proofs into reusable proof-based patterns for alleviating the task of proof obligation and
refinement checking. It was difficult for B-Method to derive formally logically intricate
problems.

Smith implemented a number of algorithm design tactics in program generation
systems such as KIDS and Designware developed by the Kestrel Institute [12]. The
framework raises the level of automation, but the selection of appropriate algorithm
design tactics is still difficult.

VDM [8], Z [1] could construct formal specification and proof. But they can’t
support the complete development steps from specification to executable programs.

Propositional Projection Temporal Logic (PPTL) is a useful logic in the specifi-
cation and verification of concurrent systems [3, 23–25]. PPTL will be used to ver-
ificate the concurrent component in our future work.

8 Conclusion

We formally develop set, bag, list reusable components in PAR platform. Formal
development gives us the formal specification, the recurrence relation of problem
solving sequence, accurate loop invariant. Based on the recurrence relation, loop
invariant, It is a simple task to verify the correctness of reusable components by
standard proof techniques [4] or by proof assistant tools, such as Isabelle. The merits of
this research can be summarized as following:

Fig. 1. The C# program generating system
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• The formal development can greatly improve reliability of reusable components.
The recurrence relation of problem solving sequence and loop invariants were
formally derived, the concrete executable codes of reusable components are gen-
erated with a series of program generating systems.

• The simple and accurate loop invariants would be very helpful for understanding
the roles of every loop variables in the codes of reusable components.

• With the support of formally developed reusable components, the abstract programs
described by software modelling language Apla are simple and accurate. It gave a
simplified way to prove correctness.

We will do the research continuously and apply PAR method and PAR platform to
develop more safety critical systems in industrial application.
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Abstract. In mobile internet, the Secure Sockets Layer (SSL) valida-
tion vulnerabilities of applications can be easily exploited through SSL
Man-in-the-Middle (MITM) attacks, which are difficult to defeat. In this
paper, an SSL Security-Enhanced method (E-SSL) is proposed to detect
and defeat SSL MITM attacks, which improves the security of inter-
net communication under malicious attacks. SSL proxy is used to find
SSL certificate validation vulnerabilities and detect SSL MITM attacks.
Based on randomness and hash theory, an SSL shared service with ran-
dom port mapping is implemented to bypass SSL MITM attacks, the
spatio-temporal randomization will increase the difficulty of attacker’s
correct guessing. We implement a prototype on Android platform, and
verify its effectiveness and reliability with 650 apps under realistic SSL
MITM attacks. Using the E-SSL approach, 185 apps out of 650 are
detected with SSL certificate validation vulnerabilities. Furthermore,
evaluation results show that the E-SSL approach enables these SSL cer-
tificate validation vulnerabilities apps to successfully bypass SSL MITM
attacks, thus significantly increases the security of user data privacy in
public mobile internet.

Keywords: Mobile internet · MIMT attack · SSL/TLS · Random port
mapping

1 Introduction

In recent years, public Wi-Fi has become the most popular social requirement
and common way of people connecting to the internet. The openness of Wi-
Fi network makes it vulnerable to a number of attacks such as eavesdropping
and jamming. One common attack is known as man in the middle (MITM)
attack, where an attacker usually can easily have access to the data flow within
a Wi-Fi network through setting up a Rogue Access Point (RAP), which can
be implemented by a simple equipment anytime and anywhere [1]. As a result,
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 101–120, 2017.
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the attacker can capture all the communication data between the two parties,
then tamper with or remove the intercepted sensitive information, such as user
information, passwords and bank accounts, etc. Usually, users are unconscious
that they are deceived until an incident occurs.

Secure Sockets Layer (SSL) [2] and its successor Transport Layer Security
(TLS) [3] are significant milestones in the path of improving the security of
data communication. Unfortunately, if clients fail to properly validate SSL/TLS
certificates, it may lead to SSL certificate validation vulnerabilities [4]. At all
layers of the SSL protocol, certificate validation is confirmed to be inaccurate,
from improper certificate handling in libraries, abuse of SSL APIs, to applica-
tions that are broken by design so that they are easier to use [5]. The crucial
problem of causing SSL MITM attacks is incapability of clients to authenti-
cate the server accurately in the face of public-key certificate [6,7]. In addition,
the Android coarse-grained access control [8] and application permission escape
behavior [9,10] severely damage the security of the Android system. There is no
doubt that anyone of these lapses increases the threat of SSL MITM attacks,
so when applications with SSL certificate validation vulnerabilities are executed
in public Wi-Fi, it is more vulnerable to the SSL MITM attacks [11,12]. In this
case, an attacker intercept and decrypt the supposedly-secure SSL traffic that
be transited to or from a target server, and then read or modify it freely.

Until now, a number of works [4,12,13] have been proposed to address the
problem of detection about SSL certificate validation vulnerabilities and SSL
MITM attacks. However, detecting and notifying these vulnerabilities is not a
good solution. Even if the developers are informed of confirmed SSL certificate
validation vulnerabilities, Android SSL inappropriate use of vulnerabilities are
still as high as 76% over a year [13]. Based on the above consideration, instead
of detecting and making alarms, an alternatively important question is that how
can we take effective measures to protect the users from SSL MITM attacks in
the first place?

In this paper, we propose an SSL Security-Enhanced (E-SSL) method in
mobile internet. This method consists of three steps: SSL proxy based SSL cer-
tificate validation vulnerabilities detection, SSL MITM attacks detection and
random port mapping based SSL MITM attacks defense. It can detect whether
there are SSL certificate validation vulnerabilities, including arbitrary self-signed
certificates, inappropriate domain name certificates and expired certificates.
Meanwhile, honeypot and dynamic analysis are applied to detect SSL MITM
attacks. After identifying SSL MITM attacks, we employ the random port map-
ping method to allocate the applications’ communication ports for bypassing
the SSL MITM attacks. Random hash theory is applied to generate the ports
allocation scheme, which increases the difficulty of speculation for the attackers.
Therefore, the success rate of SSL MITM attacks can be significantly reduced,
and thus the users’ information privacy can be better protected.

Overall, this paper makes the following contributions:

– Our approach E-SSL can not only detect whether there are SSL certificate val-
idation vulnerabilities in the applications, but also detect SSL MITM attacks
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at different stages in public Wi-Fi environments. After identifying SSL MITM
attacks, the security defense service based on random port mapping is used
to ensure security of the users’ privacy under SSL MITM attacks.

– In order to strengthen the secure granularity, hierarchical protection mech-
anism is used to security defense service. Randomness and hash theory is
applied to generate mapping ports. And load balance is implemented in these
ports by multithreaded collaboration.

– An enhanced SSL security detection and defense prototype is implemented
on Android platform. By simulating the real SSL MITM attacks in Wi-Fi,
E-SSL can detect SSL MITM attacks at run time and ensure security of the
users’ privacy under SSL MITM attacks.

The rest of this paper is organized as follows. Section 2 discusses the related
work, and the SSL MITM attack scenario is presented in Sect. 3. Section 4 elab-
orates the method and the model. Section 5 simulates SSL MITM attack scenar-
ios to verify the effectiveness and reliability of E-SSL. We evaluate the E-SSL
in Sect. 6 and discuss the limitations of E-SSL in Sect. 7. Finally, conclusion and
future work are presented in Sect. 8.

2 Related Work

At present, the research team [14] studied the HTTPS deployment and the CA
certificate ecosystem through large-scale data investigation, [15] researched trust
relationship among root certificate, middle certificate and leaf certificate, and
[16,17] summarized related causes of forged certificates. They proved the exis-
tence of vulnerabilities and bogus certificates in current SSL system. Georgiev
et al. [18] analyzed the usages of SSL in various platforms, and found the SSL
original security validation logics are completely broken in a lot of emphasis on
security applications and libraries. Fahl et al. [4] analyzed the related implement
of SSL validation functions in 13500 Android applications through the static
analysis method, and found SSL certificate validation vulnerabilities in most of
these applications. Sounthiraraj et al. [13] used static and dynamic analysis to
automatically and large-scalely detect SSL certificate validation vulnerabilities
of applications by simulating the UI triggering mechanism [19]. Guo et al. [20]
mainly focused on the detection of SSL error handling in the hybrid web mobile
applications. For the SSL certificate validation vulnerabilities [21,22], security
researchers have proposed different technical solutions, but these techniques can-
not be used to detect the SSL MITM attacks and protect existed applications.

The SSL MITM attack detection technologies have been considered in related
literatures, but there are some limitations in these methods. Benton et al. [23]
proposed an SSL MITM attacks detection method of desktop web browser, but
it is not suitable for mobile applications studied in this paper. Conti et al. [24]
extended sandroproxyLib open source library, which real-timely connected third-
party server to provide additional information, so as to determine whether SSL
MITM attacks exist in the current Wi-Fi. Liu et al. [12] proposed a detection
method about SSL MITM attacks with the help of social network, online social
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network assists certificate validation to determine whether the accepted certifi-
cate is returned from real server. These methods used the third part server or
social network do exist the uncertainties and deployment difficulties. However,
E-SSL can detect SSL MITM attacks without the help of uncertain third part
and ensure the security communication by security defense service under SSL
MITM attacks.

In view of SSL certificate validation vulnerabilities, security researchers put
forward different solutions to strengthen validation. Bates et al. [25] adjusted
and changed call logics of the related SSL API from the angle of system, which
can avoid SSL certificate validation vulnerabilities due to the developers’ neg-
ligence. Fahl et al. [26] extended encapsulated SSL/TLS library interfaces, and
provided the more abstract APIs into the system framework layer. Based on the
same ideas, Tendulkar et al. [27] designed application configuration file during
the process of developing application, and standardized the use of SSL in the
development of debug and release. These methods cannot protect current exist-
ing applications, only alleviate the SSL inappropriate usage in the process of
development. Random port mapping based E-SSL can guarantee the security
of the existed applications under SSL MITM attacks, and also do not need to
increase extra operations for the future development of applications.

3 Attack Scenario

Man-in-the-Middle attack is a kind of indirect invasion attacks. The attack
occurs when a computer, completely controlled by an intruder, has been

Fig. 1. Process of SSL MITM attacks
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virtually deployed in the network connection between two communication com-
puters through a variety of technical methods. In public Wi-Fi, there are different
MITM scenarios, such as Address Resolution Protocol (ARP) deception, Rogue
Access Point (AP), and Evil Twin AP. The process of MITM attacks based on
SSL certificate validation vulnerabilities is illustrated in Fig. 1.

Usually, if the client correctly validates certificates, the network traffic can not
be decrypted by the attacker. However, if the client accepts certificates without
checking their signatures, domain names or deadline, the attacker can disguise as
the server with a forged certificate. In this case, the attacker can decrypt the net-
work flow with his own forged certificate, then they can read or modify it at will.
There are many factors leading to SSL MITM attacks, such as the weak secure
consciousness of developers and users, the polluted trust store, applications with
SSL certificate validation vulnerabilities and negligence of secure warning.

4 Method and Design

This paper proposes an SSL Security-Enhanced method (E-SSL). The main fea-
tures include: (1) potential SSL certificate validation vulnerabilities detection,
(2) SSL MITM attacks detection and (3) random port mapping based security
defense service. There are two goals of our work. One is to remedy and strengthen
the security of applications with SSL certificate validation vulnerabilities, the
other is to protect the security of users’ privacy information under SSL MITM
attacks. The main structure of E-SSL is as depicted in Fig. 2. We mainly intro-
duce the E-SSL prototype, and describe its structure and key technologies from
system level. The user interfaces of E-SSL and relevant configuration are ignored
because of the space limitation.

Fig. 2. Main structure of E-SSL
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4.1 E-SSL Client

This prototype runs on mobile devices, which is responsible for the most works of
the whole method. In order to complete the task more convenient and efficient,
the prototype is divided into three main modules, including security predic-
tion, security detection and security defense. Security prediction is used to find
whether the application exists SSL certificate validation vulnerabilities. Security
detection is adopted to detect the SSL MITM attacks in current Wi-Fi. And
random port mapping based security defense service is launched to defeat the
SSL MITM attacks after finding the attacks. We respectively describe the three
modules as follows.

Security Prediction. Applications will be verified by security prediction at
first. In order to find out SSL certificate validation vulnerabilities in applica-
tions, we defines a test certificate set Test Certs. According to the different
SSL certificate validation vulnerabilities caused by amending TrustManager and
HostnameVerifier, we design the Test Certs includes four types of tested cer-
tificates, Test Certs = {C1, C2, C3, C4}. C1 represent any certificate, which
is different form real certificate in domain and signature. C2 represent a certifi-
cate, which is same as real certificate besides signature. C3 represent a certificate,
which is same as real certificate besides domain. C4 represent a certificate, which
is same as real certificate besides expiry time.

In this module, the E-SSL acts as a middle application to communicate with
remote server and intercept this communication between application and remote
server. It will send test certificates, included in Test Certs, back to the appli-
cation. If security prediction module successfully establishes a connection with
the application, it means that the application receives test certificates and exists
SSL certificate validation vulnerabilities; if security prediction module fails or
aborts the connection with application, the application does not exist SSL cer-
tificate validation vulnerabilities. But we do not guarantee the application is
safe in other attack circumstances (it is beyond the scope of this paper). So
the applications with SSL certificate validation vulnerabilities are added to dan-
gerous application list, others are added to safe application list. After security
prediction, the dangerous application list, safe application list and certificate
knowledge base will be generated. The certificate knowledge base is composed of
certificates returned from remote servers. The prediction process is conducted in
a relatively safe environment, so the certificate knowledge base is safe and reli-
able. Even if the prediction happens to an unsafe environment, the lure detection
will also find the problem to update the certificate knowledge base by security
defense.

Security Detection. This module mainly detects whether there is SSL MITM
attacks exist in the current Wi-Fi. In mobile internet, public Wi-Fi usually does
not move or disappear in short time. And we also don’t know when mali-
cious attackers access to the current network and launch malicious attacks,
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Algorithm 1. MITM Detect
Input: ssl url, Test Certs, Dangerous List
Output: Detect Result
1: function MITM Detection(ssl url)
2: result ← FALSE
3: app ← FindAppByUid(ssl url)
4: if app �= NULL then
5: if app∃Dangerous List then
6: cert ← GetCert(ssl url)
7: if cert∃Certs Library then
8: result ← FALSE
9: LRU Sort(Certs Library)

10: return result
11: else
12: result ← TRUE
13: return result
14: end if
15: else
16: result ← FALSE
17: return result
18: end if
19: end if
20: return result
21: end function

so we primarily focus on two key points to study and analyze as follows. One
is the time of accessing to Wi-Fi to detect whether SSL MITM attacks already
exist, the other one is the process of using Wi-Fi to real-timely detect SSL MITM
attacks.

For the first point, we use the lure principle of honeypot to check the returned
certificate by the remote server. Usually, malicious attackers want to achieve
privacy information or other benefits. So we designedly request relevant privacy
information, such as property, authentication. For the second point, E-SSL Client
acts as benign MITM between applications and remote server, which is used
to forward data and check whether the certificate is returned from the valid
server. We think that the collected certificates are returned by the real server
during the period of security prediction, and the server’s certificates do not
change in a short time. We match the returned certificate from the knowledge
base in the detection process. If the match result is successful, there is no SSL
MITM attacks; otherwise, there are SSL MITM attacks in the current Wi-Fi. The
main idea of detection is presented in Algorithm 1. In order to reduce the search
time and improve the detection efficiency, we sort the certificate knowledge base
according to access frequency, which is based on the core idea of Least Recently
Used (LRU).
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Security Defense. After finding SSL MITM attacks, security defense service
will achieve a safe and reliable communication port to forward data. This method
implements the ports mapping service with fixed and dynamic ports. We also
enhance the security granularity using hierarchical protection. So it is more dif-
ficult for the attacker’s speculation owing to spatial randomization as well as
temporal randomization. All of the first random port αi are generated by (1),
which are random ports between 50000 and 60000. Primary protection set Φ1

consists of 20 first random ports by (2). 5 ports are randomly assigned to clients
from primary protection set Φ1, so number of combinations is

(
20
5

)
.

(
20
x

)
is a

symmetric convex function at the point of x = 10. But with the increase of x, the
overlap becomes increasingly obvious among combination. So In order to make
the ports dispersed as much as possible, we decide to choose the point of x = 5.
And each client achieves the load balancing by status of distributed ports, which
is used to accelerate the access speed.

αi = Random(50000, 60000); {i ∈ [1, 20]} (1)

Φ1 = ∪20
i=1αi; {αi! = αj , i! = j;n = 20} (2)

For insurance purposes, once first random port is attacked, it will enable
secondary random port to guarantee the security margin. The arbitrary length
of input can be transformed into fixed length of the output through the hash
algorithm. The output is a hash value, which also has the characteristics of
randomness. Each first random port αi acts as the seed to generate the corre-
sponding hash value H(xi) by (3). In order to avoid conflict, we choose a linear
function F(x) to make decisions, so secondary random port βi is generated by
(4), and the secondary protection set Φ2 also includes 20 ports by (5).

H(xi) = Hash(xi); {i ∈ [1, 20]} (3)

βi =
{

H(xi);H(xi) /∈ Φ1

F (H(xi)); others
(4)

Φ2 = ∪20
i=1βi; {βi! = βj , i! = j;n = 20} (5)

The defense process is described in Algorithm 2. Data forwarding is imple-
mented on mobile devices, no matter for the application or server, the visited
result is seamless without any effect, and just transfer time is a bit long. But
data forwarding is operated inside the equipment, the time can be neglected for
the whole process. What’s more, random ports from the same user are different
in different attack scenarios, and random ports from different users may be dif-
ferent in the same attack scenarios. It is hard for malicious attackers to guess the
HTTPS protocol shared random ports, thus E-SSL greatly improves the security
of applications with SSL certificate validation vulnerabilities under SSL MITM
attacks.



An SSL Security-Enhanced Method (E-SSL) 109

Algorithm 2. SSL Defense
Input: ssl url, Test Certs
Output: Defense Result
1: function MITM Detection(ssl url)
2: result ← Success
3: app ← FindAppByUid(ssl url)
4: port first ← RandomFirst(app)
5: while LureCheck(port first) �= TRUE do
6: DataF orward(port first)
7: result ← Success
8: end while
9: port second ← HashSecond(app, port first)

10: while LureCheck(port second) �= TRUE do
11: DataF orward(port second)
12: result ← Success
13: end while
14: result ← Failure
15: Stop Protect()
16: Stop WiFi()
17: end function

4.2 E-SSL Server

This prototype, installed on https server, is mainly cooperated with E-SSL client
to prevent from SSL MITM attacks, meanwhile it also guarantees the normal
service. This paper proposes the idea of dynamic ports and fixed port mapping
sharing service, the flow of dynamic port is forwarded to fixed port to make
dynamic port enjoy corresponding service. It can not only ensure users commu-
nication under normal circumstances, but also guarantee some users enjoy the
safe service by using dynamic ports under SSL MITM attacks.

As shown in Fig. 3, the working process of E-SSL Server is illustrated briefly.
In normal internet environment, the user1 can transmit encrypt privacy com-
munication data through the recognized port 443. But, in SSL MITM attacks,
the user2 transmits encrypt privacy communication data by port 443, the com-
munication can be intercepted easily by attackers. Whereas user3 and user4 will
find SSL MITM attacks with help of the E-SSL in different times and different
places. And due to the security guaranty in E-SSL, the port 443 is mapped to
dynamic ports 50000 and 53202 respectively by security defense service. As a
result, malicious attackers do not monitor corresponding ports traffic and they
do not know dynamic ports’ running services, so they cannot decrypt and temper
with the corresponding communication.



110 R. Zhao et al.

Fig. 3. The working process of E-SSL Server

5 Experiment and Result

Based on the proposed SSL security detection and defense method in mobile
internet, we implement the E-SSL Client prototype on Android platform, and
implement the E-SSL Server script file of security defense on the CentOS plat-
form. The experiments are conducted on two DELL PC (2.7 GHz CPU, 4G mem-
ory) running Ubuntu 15.04 and CentOS 7, TP-Link and Huawei G660 mobile
phone. We use 650 apps to test the security prediction module, which are col-
lected from Android Market, and also include our developed application with
SSL certificate validation vulnerabilities. Meanwhile, our developed application
is mainly used to security defense module. Because we cannot add or modify
the server’s SSL service configurations of those apps from Android market. We
deploy the security defense service on our own server, which is used to validate
whether security defense service is reliable or not.

5.1 Security Prediction

Our experiment tests 650 apps and finds that there are as many as 185 apps with
SSL certificate validation vulnerabilities, which continue to work without any
exception or warning. In these 185 apps, 84 apps accept all certificates without
validation, the 97 apps neglect the validation of domain name, and the others
can communicate normally with expired certificates. These applications with SSL
certificate validation vulnerabilities are still widely popular in Android market,
since they have no malicious characteristics. The others 465 apps simply refuse
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Table 1. SSL Pinning use situation

Application SSL Pinning

Amazon MP3 ×
Chrome ×
Expedia Bookings ×
Facebook ×
Gmail ×
OfficeSuite Pro 6 ×
PayPal ×
Twitter �
Voxer Walkie Talkie �
Yahoo! Messenger ×
Yahoo! Mail ×

to work, which mostly state that there are technical or connectivity problems
and advise the user to try to reconnect later. SSL Pinning is a technique that
allows developers to protect the application from MITM attacks resulting from
fraudulently issued certificates or compromised CA credentials.

In order to investigate the usage of SSL Pinning, we analyze the most pop-
ular 11 apps form the 465 apps that are not prone to the previous attacks. SSL
Pinning is a special SSL authentication method by implementing a TrustMan-
ager that only trusts specific certificate. So we install our own root certificate to
test this case on the phone. Results are shown in Table 1, only two apps use SSL
Pinning to assure the security of users’ privacy in these apps. Others apps trust
the root certificate, thus they are vulnerable to the attacks due to untrusted
certificates installed in system truststore. What’s more, the experiment result
proves E-SSL can effectively detect SSL certificate validation vulnerabilities as
well.

5.2 Security Detection

The test application with SSL certificate validation vulnerabilities is installed on
the Android device, at the same time we also install E-SSL Client application.
The test application hints none of exception, and normally shows visited results
in the access process under normal environment and SSL MITM attacks. How-
ever, when we start the E-SSL Client security detection service, we find that
the E-SSL Client receives two different certificates between normal environment
and SSL MITM attacks, as shown in Fig. 4(a) and (b) respectively. This two
certificates have different signatures. In the normal environment, E-SSL Client
provides normal visits after certificate validation. Under the SSL MITM attacks,
the E-SSL Client finds MITM attacks after strict certificate verification. Then
the unsafe communication will be terminated, and the E-SSL Client security
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Fig. 4. Result of detecting certificates

defense service will be launched to make sure user’s normal access and ensure
security of their privacy information.

5.3 Security Defense

This section introduces how applications with SSL certificate validation vulner-
abilities bypass SSL MITM under SSL MITM attacks. Random port mapping
based security defense service can ensure the safe communication between the
application and the remote server. In order to depict the final comparison result,
we install tcpdump [28], a packet capture tool, on the Android phone. Further-
more, we compare the communication data among different scenarios during the
connected process. The experiment uses hostapd [29] and sslsplit [30] attack
tools to simulate Wi-Fi, which hijacks users’ data flow to implement SSL MITM
attacks on Ubuntu15.04. We design four different Wi-Fi scenarios for validating
our approach in Fig. 5. Figure 5(a) is the normal scenario, Fig. 5(b) is the SSL
MITM attacks scenario where the attacker monitor the communication of port
443, Fig. 5(c) is security defense scenario using first random where port 443 is
attacked, and Fig. 5(d) is security defense scenario using second hash where port
443 and 50000 are attacked.

We start tcpdump to capture packets between the test application and the
corresponding server in the four different scenarios. As a result of the existence of
SSL certificate validation vulnerabilities, the visited effect is the same for users.
Therefore, in order to distinguish differences, we choose the middle packets as
comparative objects with the Wireshark [31]. The Fig. 6(a) indicates the normal
communication packets, The Fig. 6(b) indicates communication packets under
the SSL MITM attacks, the Fig. 6(c) demonstrates the communication pack-
ets using first random after starting security defense service and the Fig. 6(d)
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Fig. 5. Four different Wi-Fi scenarios
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Fig. 6. Communication packets in the four different scenarios

demonstrates the communication packets using second hash after starting secu-
rity defense service. Through data contrastive analysis, we find the certificates
are different between the Fig. 6(a) and (b), because the size of certificates are
1368 and 1328, respectively. We also pay attention to the certificates are the
same in Fig. 6(a), (c) and (d), besides the transmitted ports are changed.

6 Evaluation

In order to further prove the effectiveness of E-SSL, we make a correlation analy-
sis from the perspective of theory. The smaller the attack’s hitting rate is given
to illustrate the effectiveness of the E-SSL is higher. The attack hitting rate
depends on a variety of factors, such as the port pool size, number of probes,
number of users, and the varying frequency. The influences of these factors will be
analyzed under certain conditions. Now, in order to give a quantitative analy-
sis, some basic parameters should be predefined. At the same time, we make
some assumptions in ideal conditions, which does not consider the situations,
including the attacker’s hacking capabilities and the E-SSL’s defense abilities.
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– A: the set of varying ports;
– m: the number of A, m = |A| < 10000;
– ni: the i port of A, ni ∈ A;
– P(x): the probability of hitting the port x to attacker;
– Pi: the probability of hitting at the i times;
– Ti: the probability of hitting at the varying frequency i;
– The attacker has certain statistical learning ability;
– The attacker is aware of the range of port pool (m ports).

Considering the scenario where attacker knew the range of port pool, and
every user uses the different varying port. In this case, the probability of hitting
port ni is 1

m , in others words, the attack hitting rate P(X) is 1
m . The relation of

attack hitting rate and port pool size is shown in Fig. 7. From the visual display,
the greater the range of port pool is, the more difficult attack is. But due to
number restrictions of port on the device, it is impossible to unlimitedly expand
the range of port pool. The ports are be classified to three categories, including
Well Known Ports (0-1024), Registered Ports (1025-49151), and Dynamic and/or
Private Ports (49152-65535). In order to avoid ports’ collision, we set the range
of port form 50000 to 60000.

The number of probes is another factor, which has an effect on the attack
hitting rate. We assume the scenario that the attacker has certain statistical
learning ability. Study results will be added to monitoring set at a time, and
the port of monitoring set will be ruled out in the learning process, which will
narrow the scope of the guess. So the probability Pi of guessing at i times is 1

m−i .
Obviously, in Fig. 8, the attack hitting rate increases as the number of probes
increases, and the attack hitting rate is close to 1 when the number of probes
c � m. At i times, the probability Pi decreases as the number of varying port
pool. So we need to simultaneously control the port pool size and number of
probes.

The previous assumption where the varying frequency is not considered. In this
case, we will analyze the relation of the varying frequency and attack hitting rate.

Fig. 7. The relation of attack hitting
rate and port pool size

Fig. 8. The relation of attack hitting
rate and number of probes
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Fig. 9. The relation of attack hitting rate and varying frequency

In this scenario, the varying frequency is equivalent to the times of varying in total
learning process. Under the precondition that the port is different by varying
mechanism at every time, and the number of probes is equal to the port pool size,
so the attack hitting rate defines by (6).

Ti =
{

1/(i − 1); i � m
1/m; others

(6)

The relation of the varying frequency and attack hitting rate is clearly pre-
sented in Fig. 9. Looking from the Fig. 9, we can know that the attack hitting
rate decreases as the varying frequency increases when the number of probes is
fixed. But the varying time is very long due to the authentication feature of SSL,
so the varying frequency can not be too large.

Another key factor which affects the attack hitting rate is the number of users,
which use the E-SSL. Through simulated experiments, we get a relationship
between the number of users and attack hitting rate. When users are very small
in the current network, individual ports will be highlighted in attacker’s learning
data. Along with the user to join, this phenomenon will fade due to random
distribution of ports. But when the number of users reaches a extreme point,
this phenomenon will appear again. Fortunately, the processing capacity of Wi-
Fi is limited, so the number of accessing users is restricted. We can control the
port pool size to reduce the attack hitting rate.

We make a series of detailed analysis based on the influence from the four
different factors. The number of users is limited in the same Wi-Fi, and the
number of ports is also limited. Combined with actual situation, we get the final
result that the range of port form 50000 to 60000 and hierarchical protection
mechanism. Through theoretical analysis and the experimental results, E-SSL
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Table 2. Method comparison

Method Characters

SSL certificate validation
vulnerabilities detect

SSL MITM
attack detect

SSL MITM
attack defense

Fahl [4] � × ×
Liu [12] � � ×
Sounthiraraj [13] � × ×
Georgiev [18] � × ×
Guo S [20] � × ×
Conti [24] � � ×
E-SSL � � �

can not only find the SSL certificate validation vulnerabilities of applications
and the existence of SSL MITM attacks, but also be able to defeat SSL MITM
attacks.

To prove the effectiveness and find drawbacks of this method, we compare
the experiment result with the previous approaches and analyze advantages and
drawbacks of each one in related work. Method comparison result is shown in
Table 2. E-SSL acts as vital roles in public Wi-Fi environment. E-SSL guarantees
the security of the mobile terminal user’s privacy information, and also meets
the requirement of using Wi-Fi under SSL MITM attacks.

7 Discussion

7.1 Communication Overhead

Without considering the overhead of port varying, the E-SSL can be a very
good defense mechanism. In order to implement port varying, E-SSL exists some
interception behaviors, which need to monitor the user’s SSL request operations
for real-timely detecting and analyzing. The overhead of port varying grows
exponentially as the hopping frequency increases. Therefore, the system overhead
caused by varying events must be considered. Meanwhile they may introduce
risks into the environments they’re meant to protect. But the monitor activity
focuses on the terminal equipment, no one can access the monitoring information,
so this behavior is relative safety and controllable.

7.2 Latency

Due to the port varying event, the connection between two communication par-
ties will be interrupted, which will cause communication latency. So we evaluate
the average time of accessing to HTTPS URLs in security detection, security
defense and normal access. Then we compare the latency relative to normal



118 R. Zhao et al.

Fig. 10. Statistical result of average time about security detection, security defense
and normal access

access. Because the HTTPS has SSL session reuse function, the completed SSL
handshake process will not be built in the continuity of access.

Consequently, we use intermittent access to calculate the average time with
the help of E-SSL and no help of E-SSL. We set 1, 5, 10, 20, 50 times to calculate
the average time respectively. The statistical result of average time is shown in
Fig. 10. There are two opinions in the result. On the one hand, security detection
time is longer than the normal access, which reason is security detection conducts
an additional SSL handshake in the middle process. On the other hand, security
defense service expends almost the same time with normal access cost because
of its forwarding process. In order to improve the security, delays are inevitable,
but it is in the range of tolerance.

8 Conclusion

In this paper, we design and implement the prototype of an SSL Security-
Enhanced method (E-SSL) on Android platform, which mainly aims to the secure
communication. In Wi-Fi environment, E-SSL can not only detect SSL MITM
attacks, but also defeat SSL MITM attacks with security defense service based
on random port mapping. This method will ensure the users’ online requirement
of surfing internet, and guarantee the security of sensitive information under SSL
MITM attacks. We analyze 650 apps under the realistic SSL MITM attacks, and
find 185 apps that have SSL certificate validation vulnerabilities. Meanwhile, by
comparing the communicated packets among different Wi-Fi scenarios in the
WireShark, we come to the conclusion that the visited effects are same besides
the transmitted ports are changed. A series of experimental results prove the
effectiveness and reliability of E-SSL.

In future work, we will further improve this method to compatible with the
different system platforms. Although our method solves the security problems
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of SSL MITM attacks, there are still several limitations of our prototype. We
need to seek for a better approach to improve the real-timely detection effi-
ciency of SSL MITM attacks. And more detailed coordination works need to be
strengthened between the application and the server.
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Abstract. In this paper, we propose a semi-automatic proof approach
for programs written in Modeling, Simulation and Verification Language
(MSVL) based on the interactive theorem prover Coq. To this end, first,
the syntax and semantics of MSVL are briefly introduced, and the spec-
ification and proof tactics of Coq are described. Further, an axiomatic
system of MSVL programs is specified in Coq. Based on these, MSVL
programs and related properties can be recognized in Coq so that the-
orems to be proved can be formalised and the verification can be con-
ducted when proof tactics are provided in the Coq prover. Finally, an
example is given to illustrate how our proposed approach works.

Keywords: MSVL · Semi-automatic proof · Interactive theorem
prover · Coq

1 Introduction

Theorem proving [1] and model checking [2] are two kinds of modern mainstream
formal verification technologies. Compared with model checking, theorem prov-
ing can deal with a program or system with infinite state space and does not
suffer from the “state explosion problem” [4]. However, users need to guide the
proving process and intervene directly in the intermediate steps. Thus the sub-
jectivity of users is introduced in the proof. At present, there are many theorem
provers such as Coq [6], PVS [9], ACL2 [10], HOL [11], Isabelle [12], Nuprl [13]
and so on.

As a proof development system, Coq provides a formal language Gallina to
write mathematical definitions, algorithms and theorems together with an envi-
ronment for semi-interactive development of machine-checked proofs. In fact,
it provides interactive proof methods, decision and semi-decision algorithms,
and a tactic language to allow users to define their own proof methods. It also
allows users to use external algebra systems or theorem provers. As a plat-
form for the formalization of mathematics or the development of programs, Coq
also provides support for high-level notations, implicit contents and other useful
kinds of macros. At present, Coq is widely used in the verification area [15,16].
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In this paper, we investigate a verification technique based on theorem prov-
ing using Coq for verifying programs of Modelling, Simulation and Verification
language (MSVL) [3].

MSVL is a temporal logic programming language with types. It is a useful
formalism for specification and verification of concurrent [18,19,22] and real time
systems [14]. MSVL contains common statements used in most of imperative pro-
gramming languages (e.g. C, Java) such as assignment, sequential (p; q), branch
(if b then p else q) and iteration (while b do p) statements as well as parallel
and concurrent statements such as conjunct (p and q), parallel (p‖q) and pro-
jection ((p1, . . . , pm) prj q) statements. Further, a Cylinder Computation Model
(CCM) is proposed and included in MSVL [20,21], which can be used to describe
and reason about multi-core parallel programs. To make MSVL more practical
and useful, multi-types such as (unsigned) int, float, (unsigned) char, string,
list, array, pointer, struct and union have been formalized and implemented [5].
Therefore, multi-typed values, functions and predicates concerning the extended
data domain can be defined. To support modeling, simulation and verification
of a system using MSVL, a tool kit called MSV [23] has been developed.

Currently, the available verification tools for MSVL are mostly based on
model checking, however, theorem proving of MSVL programs are not yet well
supported by tools. Therefore, in this paper, we are motivated to formalise a
proof system [17] for MSVL programs so that property verification can be car-
ried out semi-automatically. Further, Coq strongly supports a rich type system
and logical inference as well as interactive proof methods, we choose it as the
implementation environment of the proof system.

To realize the theorem prover, we describe the variables, expressions and
functions of MSVL in terms of the specification language Gallina; then we define
MSVL statements and derived statements as well as abbreviations using Gallina;
finally we formalize the axioms and inference rules of MSVL proof system in Coq.

The contribution of this paper is two-fold: (1) we propose a theorem proving
method for MSVL programs based on axiomatic semantics; (2) we develop a
theorem prover for MSVL programs based on Coq.

The rest of the paper is organized as follows: MSVL and its axiom semantics
are briefly introduced in Sect. 2. An MSVL proof system in Coq is developed in
Sect. 3, including the coding of expressions, statements of MSVL, axioms and
inference rules of operational semantics of programs. In Sect. 4, a verification
example is given. Finally, conclusions are drawn in Sect. 5.

2 Preliminaries

2.1 MSVL

In MSVL, arithmetic expression e and boolean expression b are defined by the
following grammar:

e:: = c | x | ©x | �x | f(e1, ..., em)
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Table 1. MSVL statements

Statement Syntax Definition in PTL

(model semantics)

Termination: empty
def
= ε

Positive immediate assignment: x ⇐ e
def
= x = e ∧ px

Assignment: x := e
def
= © x ⇐ e

State frame: lbf(x)
def
= (¬px → ∃b(�x = b ∧ x = b))

Interval frame: frame(x)
def
= �(more → ©lbf(x))

Conjunction: p and q
def
= p ∧ q

Selection: p or q
def
= p or q

Next: next p
def
= © p

Always: alw p
def
= �p

Conditional: if b then p else q
def
= (b → p) ∧ (¬b → q)

Existential quantification: local x p(x)
def
= ∃x p(x)

Sequential: p; q
def
= p; q

While: while b do p
def
= (b ∧ p)∗ ∧ �(ε → ¬b)

Parallel: p ‖ q
def
= p ∧ (q; true) or q ∧ (p; true)

Projection: (p1, ..., pm) prj q
def
= (p1, ..., pm) prj q

Synchronised communication: await(c)
def
= frame(Vc) ∧ halt(c)

b:: = true | false | p | ¬b | b1 ∧ b2 | e1 = e2 | e1 < e2

where c is a typed constant, x a variable; ©x and �x denote variable x at the
next and previous states respectively; f is an m arity function; in particular,
e1 op e2 (op:: = + | − | ∗ | mod) is treated as f(e1, e2). In boolean expressions,
p is an atomic proposition, and ei (i = 1, 2) arithmetic expression.

MSVL [7,8] statements can be defined inductively as shown in Table 1, where
x denotes a variable, e an arithmetic expression, and b a boolean expression, and
p, p1, ..., pm and q MSVL programs.

The assignment x := e, positive immediate assignment x ⇐ e, state frame
lbf(x) and empty can be thought of as basic statements and others can be
treated as composite statements. The explanation of these statements can be
found in [3].

2.2 MSVL Axiomatic System

The axiomatic semantics of MSVL [17] is studied in terms of axioms and infer-
ence rules: state axioms and state inference rules deduce an MSVL program to
its normal form while a set of interval axioms and inference rules deduce a pro-
gram over an interval. These rules enable us to transform a program from the
current state to the next one, and simultaneously verify properties over intervals.
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As a result, we establish an axiomatic system for MSVL based on its axiomatic
semantics, denoted by ΠMSVL.

Note that, in our axiomatic system, we are only concerned with the veri-
fication of a satisfiable program, and do not consider the case of p ≡ false.
Hence, we claim that all of the programs appearing in the following context are
satisfiable.

Axioms and Inference Rules within a State
For convenience, we use p ∼= q to denote 	 �(p ↔ q). AppendixA lists the set of
state axioms and state inference rules, respectively, for the purpose of deducing
a program to its normal form. In axiom A8, q is a lec-formula; in axioms A7, A9
and A19, p is required to be a terminable program; in axiom A9, A14, A15 and
A16, w is a present component. Axioms A1 and A2 deal with the assignment
statement x = e and x ⇐ e. When they are conjuncted with the state frame
lbf(x), they are deduced to x ⇐ e. In A1, e is a new value different from the
previous value x. Axioms A3 and A4 deal with �p, and axioms A5 and A6 deal
with the interval frame frame(x). These are described in terms of the interval
length: ε(that is,len(0)) or more (that is, len(n), n > 0). Axioms A7-A9 deal
with the sequential statement p; q. Axioms A10 deals with the parallel statement
p ‖ q in terms of its definition. Axiom A11 deals with ©p. Axioms A12-A17 deal
with the projection statement (p1, ..., pm) prj q. Axioms A18 and A19 deal with
the conditional and while statements, respectively. Axiom A20 is a basic axiom
that describes the substitution instances of all valid classical first-order formulas
into temporal contexts.

Rule R1 is a substitution rule, where prog[p] is a program in MSVL involving
a subprogram p, and prog[q/p] denotes the program given by replacing some
occurrences of p in prog by q. Rule R2 deals with the existential quantifier.
Provided p(x) has a normal form, ∃x : p(x) can be reduced to normal form. Rule
R3 says that if 	 P , then P always holds over intervals, that is, 	 �P .

Axioms and Inference Rules over Intervals
This subsection is devoted to interval deduction. To this end, we define a modi-
fication of the Hoare triple [24] as a correctness assertion, and formalise a set of
axioms and inference rules over intervals to transform a program in normal form
from the current state to the next one, and simultaneously verify the properties
over intervals. The correctness assertion can be defined as

{σk, A} p {σh, B}

where p is an MSVL program, σk and σh are intervals, with σk a prefix of
σh(k, h ∈ Nω, 0 ≤ k ≤ h), and A and B are PPTL formulas [25,26].

In AppendixB, axioms AEM and APC are concerned with the terminal and
assignment statements, respectively (that is, present components). Rule ISR
tells us that in the triple {σk, A}prog[p]{σh, B}, if p ∼= q can be deduced by
state axioms and state inference rules, then we can replace sub-program p by q
in program prog.
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For convenience, we will now define state components, ps(x), by

ps(x):: = x = e | x ⇐ e | b

So ps(x) consists of the assignment statement x = e, the positive immediate
assignment x ⇐ e and boolean expressions b. A state program is a conjunction
of state components such as ps(x1) ∧ ps(x2) ∧ ... ∧ ps(xn).

We write e[x �→ e0] for the arithmetic (or boolean) expression obtained by
replacing each occurrence of a variable x in an arithmetic expression e (or boolean
expression b) with another expression e0 (or b0). This is called substitution.

Rules AAS and LBF are concerned with evaluating the state component
ps(x) and the state frame lbf(x). In rule AAS, we apply substitution to state
components to evaluate arithmetic and boolean expressions. Note that we do
not allow lbf(x) (or lbf(y)) to occur in p because lbf(x) ∧ x = m ∼= x ⇐ m
by axiom A1. In rule LBF, the condition x = e and x ⇐ e does not occur in
p, ensures that the value of variable x at state sk is equivalent to the previous
value of x.

Further, the normal form of A is denoted by A ≡ (Ae ∧ ε) ∧ (Ac ∧ ©Af ),
where pc, pe, Ac and Ae are present components. For rule ANext, If pc → Ac,
by axiom APC, we have 	 {σk, Ac} pc {σk, Ac}. This means that the state pro-
gram pc satisfies the property Ac, which is a present component decomposed
by A at state sk. We then further transform the “next” program pf to state
sk+1, and replace the assertion A by its next formula Af . Thus, we can obtain
the triple {σk+1, Af} pf {σh, B} to continue to deduce program pf over the
remaining interval σ(k+1...h) = <sk+1, ..., sh>. If a state program at each state
sk(0 ≤ k ≤ h) satisfies a present component property, we say that the program
satisfies property A over the whole interval over which the program is deduced. If
pc → Ac is not true, we say that the program does not satisfy the given property,
which is denoted by false, and the program stops with an error.

Rule AEmpty is concerned with the terminal statement ε, which means that
program p terminates at state sk. Note that we have assumed that p ≡ pc∧©pf is
satisfiable. Therefore, when pc → Ac is false, we can affirm that p cannot satisfy
A. However, this is not the case for an unsatisfiable program since program p
always satisfies A for p ≡ false.

Rule SSR is for selection statement q1 or q2 and rules EQR1 and EQR2
for local statement local x : p(x). In SSR, if the correctness assertion
{σk, A} qi {σh, B} holds for qi(i = 1 or 2), then it is obvious that {σk, A} q1 ∨
q2 {σh, B} holds. Rules EQR1 and EQR2 enable us to eliminate quantifiers in
programs, where p(y) is a renamed formula, and pe(y) and pc(y) are present
components (that is, state programs).

We have now formalised the whole axiom system of MSVL programs, includ-
ing the state axioms, the state inference rules, the interval axioms and the inter-
val inference rules.
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3 An MSVL Proof System in Coq

In this section, we present the key part of the coding in Coq used in setting up
of our MSVL proof system. The code presented here is fragmentary and merely
for illustrative purposes.

3.1 Principle

The theorem proving method we proposed involves three main parts:

(1) we describe the variables, expressions and functions of MSVL in terms of
the specification language Gallina;

(2) we define MSVL statements and derived statements using specification lan-
guage Gallina;

(3) we formalize the axioms and inference rules of the MSVL axiomatic system
in Coq.

This enables MSVL programs to be correctly recognized by Coq and we can
compile them to check the correctness of syntax.

Fig. 1. Proof principle

As shown in Fig. 1, the details of the proof principle are described as follows.
In the first part, we mainly define variables, expressions and functions using
Gallina. For doing so, we adopt the inductive type of Gallina in the definitions.
An inductive definition is specified by giving the names and types of the inductive
sets (or families) and the constructors of the inductive predicates to be defined.
The Coq type checker verifies that all parameters are applied in the correct
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manner for the type of each constructor. For the definition of functions, we can
directly use the recursive types if needed. A definition can be seen as a way to
give meaning to a name or term. After the definition, the name can be replaced at
any time by its definition. In addition, a definition is accepted by the Coq system
if and only if the defined name or term is well-typed in the current context of the
definition. A recursive type is commonly used for defining recursive functions, in
particular, for defining primitive recursive functions. In that case the recursion
enjoys a special syntactic restriction, namely each parameter involving recursion
belongs to an inductive type. The implementation details are given later on in
this section.

In the second part, we define statements, derived statements as well as abbre-
viations using Gallina. We still use the inductive type to define statements and
derived statements. In fact, all constructors make up the body of the induc-
tive definitions and must in complete manner to ensure the soundness of the
inductive definitions. As for abbreviations, we use the notation structure of the
Coq system. A notation is a symbolic abbreviation denoting some expressions
or formulas and always surrounded by double quotes. A notation is composed
of identifiers and symbols separated by spaces starting without digits and single
quote(’). The parameters of notations are identifiers consisting of letters, digits,
under score( ), and single quote. Each parameter must occur at least once in
the denoted expression or formula, and the other symbols are user-defined. An
identifier can be used as a symbol but it must be surrounded by single quotes
to avoid confusions.

Fig. 2. The relationship of three parts

Based on the first two parts, we formalize the axioms and inference rules of
MSVL axiomatic system with the assumption structure of Coq. An assumption
links a type to a name as its specification and is accepted by Coq if and only if
this type is a correct type in the environment. These axioms and inference rules
will be guided to act on proof by tactics which is a manual input in the proving
process.

In fact, three parts are closely related. The relationship of three parts is
shown in Fig. 2. Before defining the second part, we need to import the first part
to the current environment. Similarly, before defining the third part, we need to
import the first two parts.
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Fig. 3. Proving process

As shown in Fig. 3, for a specific proof instance, we first model the problem
with an MSVL program and extract related properties to be proved. Then we
need Coq to verify whether the MSVL program satisfies the properties or not.
Obviously, we can express the program and properties in the proof development
system of Coq through importing the definitions we have written in the former
three parts to the current environment so as to obtain theorems to be proved.
Sometimes, extra definitions or rules may be needed for different examples. The
proof editing mode is entered by asserting a statement, which typically is the
assertion of a theorem. In the proving process, we choose reasonable tactics to
act on the current proof in each step. The tactics implement backward reason-
ing. When applied to a goal, a tactic replaces the current goal with subgoals
it generates. Namely, a tactic deduces a goal to its subgoals. However, neither
each rule we defined applies to a given statement, nor each tactic can be used to
deduce a goal. In other words, before applying a tactic to a given goal, the system
checks whether preconditions are satisfied. If it is not the case, the tactic raises
an error message. Hence, which tactics and laws to be adopted is important in
the proving process. The Coq system provides us rich tactics, and each choice
depends largely on the current subgoals. When all the subgoals are solved, the
proof is completed. Finally, the Qed command is used to finish the proof process
formally and thus, in the meantime, extracts a proof from the proof script and
attaches the extracted proof to the declared name of the original goal. At this
point, we draw a conclusion that the program satisfies related properties.

3.2 Implemention

In this subsection, we focus on the implementation of the proof system.

(1) Describing variables, expressions and functions in Coq
First we define MSVL variables and atomic propositions which are denoted by
Var and Ap respectively.

Inductive Var : Set := var : Z -> Var.
Inductive Ap : Set := prop : nat -> Ap.
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Since Var and Ap are now defined as an ordinary Coq type, we can declare
variables with type Var or Ap. For example, variable A and atomic proposition
P can be defined as follows:

Variable A : Var (*A is a MSVL variable*)
Variable P : Ap (*P is a MSVL atomic proposition*)

The Arithmetic expressions are inductively defined as shown below:

Inductive Aexp : Set :=
AInt : Z -> Aexp

| AId : Var -> Aexp
| ANext : Aexp -> Aexp
| APre : Aexp -> Aexp
| APlus : Aexp -> Aexp -> Aexp
| AMinus : Aexp -> Aexp -> Aexp
| AMult : Aexp -> Aexp -> Aexp
| AMod : Aexp -> Aexp -> Aexp.

The type of arithmetic expression is called Aexp. Other constructors such
as AInt are actually functions over a certain set. For example, AInt indicates
a function over integer numbers. If x is an integer, then (AInt x) is an arith-
metic expression with Aexp type. APlus indicates a function over two arithmetic
expressions. Hence, (APlus e1 e2) is also an arithmetic expression with type Aexp
if e1 and e2 are both arithmetic expressions.

The Boolean expressions are inductively defined as follows:

Inductive Bexp : Set :=
| BTrue : Bexp
| BFalse : Bexp
| BNot : Bexp -> Bexp
| BAnd : Bexp -> Bexp -> Bexp
| BEq : Aexp -> Aexp -> Bexp
| BLe : Aexp -> Aexp -> Bexp.

The type of boolean expression is represented by Bexp. We use record con-
struction to denote a state over Var and Ap, so there are two fields in the record.
Constructor Ivar defines a mapping from Var to Z, and Iprop defines a mapping
from Ap to {true,false}.

Record state : Set := {Ivar : Var -> Z; Iprop : Ap -> bool}.
CoInductive Stream : Type := Cons : state -> Stream -> Stream.
Inductive Interval : Set :=

| IL : list state -> Interval
| IS : Stream -> Interval.

An interval is a non-empty sequence of states. Co-inductive type is used to
denote infinite interval called Stream. Interval with constructors IL and IS is the
complete definition of interval. Finite interval adopts the list construction which
is an embedded type of Coq. We have also defined a set of operations about
intervals. Here as examples we just show two functions: the connection function
Concatenation and the sub-interval function sub-Interval of intervals.

Fixpoint list_stream(l : list state)(s : Stream) : Stream :=
match l with

| nil => s
| x :: l’ => Cons x (list_stream l’ s)
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end.
Definition Concatenation(seq1 seq2 : Interval) : Interval :=

match seq1 with
| IL l1 => match l1 with

| nil => seq2
| _ => match seq2 with

| IS s => IS (list_stream l1 s)
| IL l2 => match l2 with

| nil => seq1
| _ => IL (l1 ++ l2)

end
end

end
| IS s => seq1

end.
Fixpoint SfirstN (n:nat)(s:Stream) : list state :=

match n with
| O => nil
| S n => match s with

| Cons a s’ => a :: (SfirstN n s’)
end

end.
Fixpoint skipN (n:nat)(s:Stream) : Stream:=

match n with
| O => s
| S n => match s with

| Cons a s’ => skipN n s’
end

end.
Definition sub(start termi :nat)(sigma:Interval) : Interval :=

match sigma with
| IL l => IL (firstn (termi-start+1) (skipn start l))
| IS s => IL (SfirstN (termi-start+1) (skipN start s))

end.

The list stream, SfirstN and skipN are some auxiliary functions. The firstn
and skipn are two functions of package List of the library.

(2) Defining MSVL statements and derived statements
The basic MSVL statements are defined inductively as follows:

Inductive st : Set :=
| Emp : st
| Ass : Var -> Aexp -> st
| Pass : Var -> Aexp -> st
| SF : Var -> st
| IFr : Var -> st
| Coj : st -> st -> st
| Sec : st -> st -> st
| Nex: st -> st
| Alw : st -> st
| Cond : Bexp -> st -> st -> st
| Exqu : Var -> Ap ->st
| Sequ : st -> st -> st
| Whi : Bexp -> st -> st
| Para : st -> st -> st
| Pro : list st -> st -> st
| Syn : Bexp -> st.

The type of basic statements is denoted by st. The definition above describes
the following grammar: st:: = empty | x = e | x ⇐ e | lbf(x) | frame(x) |
p and q | p or q | next p | alw p | if b then p else q | local x, p(x) | p; q |
while b do p | p ‖ q | (p1, ..., pm) prj q | await(c).
Some composite MSVL statements are defined as follows:
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Notation "’empty’" := Emp.
Notation "x =. e" := (Ass x e).
Notation "x <<= e" := (Pass x e).
Notation "’lbf’ x" := (SF x).
Notation "’frame’ x" := (IFr x).
Notation "p /\. q" := (Coj p q).
Notation "p \/. q" := (Sec p q).
Notation "’O’ s" := (Nex s).
Notation "’[]’ s" := (Alw s).
Notation "’If’ b’Then’ f1’Else’ f2" := (Cond b f1 f2).
Notation "s1 ; s2" := (Sequ s1 s2).
Notation "’While’ b’Do’ f" := (Whi b f).
Notation "f1 ** f2" := (Para f1 f2).
Parameter not : st -> st.
Definition Imp(p q : st) : st := Sec (not p) q.
Definition fin(p : st) : st := Alw (Imp Emp p).
Definition keep(p : st) : st := Alw (Imp (not Emp) p).
Definition halt(p : st) : st := Alw (Coj (Imp Emp p) (Imp p Emp)).
Definition nexEq(x : Var)(e : Aexp) : st := Nex (Ass x e).
Notation "x’O=’ e" := (nexEq x e).
Definition Som(p : st) := not (Alw p).
Notation "’<>’ f" := (Som f).
Definition M_add(e1 e2 : Aexp) : Aexp := APlus e1 e2.
Infix "+." := M_add.
Definition M_minus(e1 e2 : Aexp) : Aexp := AMinus e1 e2.
Infix "-." := M_minus.
Definition M_mult(e1 e2 : Aexp) : Aexp := AMult e1 e2.
Infix "*." := M_mult.
Definition M_mod(e1 e2 : Aexp) : Aexp := AMod e1 e2.
Infix "/." := M_mod.

A derived intermediate statement called Fin is defined as alw(if empty then p
else false)(�(ε → p)) and the notation fin tells us how it is symbolically written.
Other notations can be explained in the same way. The frequently used derived
statements are shown as follows:

if b then p
def= if b then p else false

fin(p) def= alw(if empty then p)
keep(p) def= alw(if more then p)
halt(p) def= alw(if empty then p and if p then empty)

(3) Formalizing axioms and inference rules of MSVL axiomatic system
As we mentioned in the second part, the axiomatic system of MSVL has state
axioms and inference rules as well as interval axioms and inference rules. In this
subsection, the implementation of the axiomatic system is described in Coq. To
this end, the deductive relation and correctness assertion are first defined in Coq.
Notation 	 p gives an abbreviation of the predicate DeduceRelation over a state-
ment p. Htriple shows the definition of correctness assertion {σk, A} p {σh, B}.

Parameter DeduceRelation : st -> Prop.
Notation "|- p" := (DeduceRelation p).
Parameter Htriple : Interval -> nat -> st -> st

-> nat -> st -> Prop.

In the following, we only describe four axioms and two inference rules. The
others can be done in the similar way.
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Descriptions of axioms:

(1) �p ∧ ε ∼= p ∧ ε can be expressed as Axiom A4

Axiom A4 : forall p : st,
|-(Alw((Coj (Alw p) Emp)<=>(Coj p Emp))).

(2) ©p; q ∼= ©(p; q) can be expressed as Axiom A7

Axiom A7 : forall p q : st,
|-(Alw ((Sequ (Nex p) q)<=>Nex(Sequ p q))).

(3) if p1 ∼= p2 then ©p1 ∼= ©p2 can be expressed as Axiom R1

Axiom R1 :forall p1 p2 : st,
(|-(Alw(p1<=>p2))) -> |-(Alw((Nex p1)<=>(Nex p2))).

(4) tautology p → p can be expressed as Axiom implies reflexive

Axiom implies_reflexive : forall p : st,|-(Alw(Imp p p)).

Descriptions of inference rules:

(5) {σk, ε} ε {σk, ε} can be expressed as Axiom AEM

Axiom AEM : forall (sigma : Interval)(k : nat),
(Htriple sigma k Emp Emp k Emp).

(6) Axiom ISR

Axiom ISR :
forall (p q A B : st)(sigma : Interval)(k h : nat),

(|-(Alw(p<=>q))) ->
(Htriple sigma k A p h B <-> Htriple sigma k A q h B).

4 Example

In order to show how the proposed approach works for verifying properties of
MSVL programs, in this section, an example for verifying the feasibility of frog
routing problem is given.

4.1 Problem Description

There are six frogs, each of which is on a lotus leaf on a lake, and three yellow
ones are on the left hand side whereas three green ones are on the right hand
side. The two groups of frogs are separated by one empty lotus leaf. The moving
rules are as follows: each frog can move one step to an empty lotus leaf or jump
over another frog as long as an empty lotus leaf as its neighbor is available. Now
a question arises: whether or not there is a sequence of legal moves such that
the two groups of frogs can be swapped according to the moving rules.



A Proof System for MSVL Programs in Coq 133

4.2 Proving Process

We model the above problem with MSVL, and extract the relevant property to
be proved. Then we verify whether or not the property is valid with the program
in Coq.

(1) Modeling
Since frogs jump in a fixed direction, there is always a moment where all the
frogs are unable to move. As the moving steps are carried out, this moment is
bound to come. According to the nature of the problem, the solution space can
be viewed as a subset tree. Each parent node contains up to four nodes as its
children which are likely to jump in the current step.

We use an array named stone with seven elements initialized to 0 denoting
empty, 1 denoting yellow or 2 denoting green, to describe the initial case. Then
we can swap two elements of the array in the following way: (1) swapping the
element zero with its neighbors, or (2) swapping the element zero with its next
neighbors if any. (3) The swapping process stops when two groups elements with
1 and 2 has all been swapped. We model the above process in MSVL as follows:
frame ( stone , path , des , s tep ) and
(
int s tone [7 ] <==[1 ,1 ,1 ,0 ,2 ,2 ,2 ] and sk ip ;
int path [ 2 0 ] and sk ip ; // loca t ion be fore jump
int des [ 2 0 ] and sk ip ; // loca t ion a f t e r jump
int step<==1 and sk ip ; // s teps
f unc t i on change ( int i )
{

i f ( i−1>=0 and stone [ i −1]=1 and stone [ i −1]!=0) then
{

path [ step −1]:= i ;
des [ step −1]:= i +1;
s tep := step+1;
stone [ i ] := stone [ i −1] and stone [ i −1]:=0;
change ( i −1);
s tone [ i −1]:= stone [ i ] and stone [ i ] :=0 ;
s tep := step−1

}
else
{

sk ip
} ;
i f ( i−2>=0 and stone [ i −2]=1 and stone [ i −2]!=0) then
{

path [ step −1]:= i −1;
des [ step −1]:= i +1;
s tep := step+1;
stone [ i ] := stone [ i −2] and stone [ i −2]:=0;
change ( i −2);
s tone [ i −2]:= stone [ i ] and stone [ i ] :=0 ;
s tep := step−1

}
else
{

sk ip
} ;
i f ( i+1<7 and stone [ i +1]=2 and stone [ i +1]!=0) then
{

path [ step −1]:= i +2;
des [ step −1]:= i +1;
s tep := step+1;
stone [ i ] := stone [ i +1] and stone [ i +1]:=0;
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change ( i +1);
s tone [ i +1]:= stone [ i ] and stone [ i ] :=0 ;
s tep := step−1

}
else
{

sk ip
} ;
i f ( i+2<7 and stone [ i +2]=2 and stone [ i +2]!=0) then
{

path [ step −1]:= i +3;
des [ step −1]:= i +1;
s tep := step+1;
stone [ i ] := stone [ i +2] and stone [ i +2]:=0;

change ( i +2);
s tone [ i +2]:= stone [ i ] and stone [ i ] :=0 ;
s tep := step−1

}
else
{

sk ip
}

} ;
f unc t i on main ( int RValue )
{

frame ( return ) and
(

int return<==0 and sk ip ;
change ( 3 ) ;
return<==1 and RValue :=0;
sk ip

)
} ;
main (RValue )

)

(2) Property
As you can see, the initial state can be denoted by the array stone as s0 =
[1, 1, 1, 0, 2, 2, 2], and the final state can be denoted as s1 = [2, 2, 2, 0, 1, 1, 1].
Then the property we want to prove is �(s0 → ♦s1). That is,

�((stone[0] = 1 ∧ stone[1] = 1 ∧ stone[2] = 1 ∧ stone[3] = 0 ∧
stone[4] = 2 ∧ stone[5] = 2 ∧ stone[6] = 2) →
♦(stone[0] = 2 ∧ stone[1] = 2 ∧ stone[2] = 2 ∧ stone[3] = 0 ∧
stone[4] = 1 ∧ stone[5] = 1 ∧ stone[6] = 1))

The property means that we can always find a state path which begins with
state s0 and ends with state s1.

(3) Verification
We define four auxiliary functions: remove, insert, nth, where empty. The cor-
rectness of these functions has been checked by Coq. Actually, these functions
are used for the definition of jumping rules.

(1) Function remove: deleting an element

Require Import ZArith.
Open Scope Z_scope.
Require Import List.
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Fixpoint remove(l : list Z)(i : Z) : list Z :=
let pos:=Z.to_nat i in
match pos with

| O => match l with
| nil => nil
| x :: l’ => l’

end
| S n => match l with

| nil => nil
| x :: l’ => x :: remove l’ (Z.of_nat n)

end
end.

(2) Function insert: inserting an element

Fixpoint insert(l : list Z)(i : Z)(value : Z) : list Z :=
let pos:=Z.to_nat i in
match l with

| nil => value :: nil
| x :: l’ => match pos with

| O => cons value l
| S n => x :: insert l’ (Z.of_nat n) value

end
end.

(3) Function nth: getting the value with index n

Fixpoint nth (n:Z) (l:list Z) : Z := let pos:=Z.to_nat n in
match pos, l with

| O, nil => -1
| O, x :: l’ => x
| S m, nil => -1
| S m, x :: l’ => nth (Z.of_nat m) l’

end.

(4) Function where empty: getting the index with value 0

Fixpoint where_empty(arr : list Z)(script : Z) : Z :=
match arr with

| nil => -1
| x :: l’ => if Zeq_bool x 0 then script

else where_empty l’ (script+1)
end.

Now we import the definitions which we have defined in the previous part
and declare variables we need to use. Then we formalize the moving rules in
Coq. As an example, in the following, a jumping rule is given.

Require Import msvl.
Require Import laws.
Require Import notation.
Parameter stone0 stone1 stone2 stone3 : Var.
Parameter stone4 stone5 stone6 empty_pos : Var.

Jumping Rules: If we want to make a state transition, some subgoals need to be
proved so as to ensure the correct conversion among states. The following rule
named JumpRule0 2 is one of the jumping rules.

Axiom JumpRule0_2 : forall n0 n1 n2 n3 n4 n5 n6 : Z,
let l1 := cons n0 (cons n1 (cons n2 (cons n3

(cons n4 (cons n5 (cons n6 nil)))))) in
let l2 := insert (remove l1 2) 0 n2 in
let l3 := insert (remove l2 1) 2 n0 in
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0 = where_empty l1 0 /\ 2 = where_empty l3 0 /\
nth 0 l3 = n2 /\ nth 1 l3 = n1 /\ nth 2 l3 = n0
/\ nth 3 l3 = n3 /\ nth 4 l3 = n4 /\ nth 5 l3 = n5
/\ nth 6 l3 = n6 ->
|-(Alw(Imp

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 0))
(Ass stone0 (AInt n0))) (Ass stone1 (AInt n1)))
(Ass stone2 (AInt n2))) (Ass stone3 (AInt n3)))
(Ass stone4 (AInt n4))) (Ass stone5 (AInt n5)))
(Ass stone6 (AInt n6)))
(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 2))
(Ass stone0 (AInt n2))) (Ass stone1 (AInt n1)))
(Ass stone2 (AInt n0))) (Ass stone3 (AInt n3)))
(Ass stone4 (AInt n4))) (Ass stone5 (AInt n5)))
(Ass stone6 (AInt n6))))).

The Lemma Jump is what we need to prove. Knowing the initial state, we can
adopt different jumping rules to change states. In this process as shown in Fig. 4
and Fig. 5, a state satisfies the given property at a certain time, which indicates
the program satisfies the property. Most parts of the proof are omitted here,
but a rough description of the verification using the proof assistant is shown in
AppendixC.

Axiom implies_transitive : forall p1 p2 p3 : st,
(|-(Alw(Imp p1 p2))) /\ (|-(Alw(Imp p2 p3))) -> |-(Alw(Imp p1 p3)).

Axiom implies_reflexive : forall p : st,|-(Alw(Imp p p)).

Lemma Jump :
|-(Alw(Imp

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 3))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 1))) (Ass stone3 (AInt 0)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 2)))
(Ass stone6 (AInt 2)))
(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 3))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 2)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 0)))
(Ass stone4 (AInt 1))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1))))).

Proof.
(*The tactic apply ... with is adopted in order to use the axiom

implies_transitive*)
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 2))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 0))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 2)))
(Ass stone6 (AInt 2)))).

(*The tactic split is used to separate subgoals that are generated*)
split.
apply JumpRule3_2.
(*The tactic repeat takes another tactic and keeps applying this
tactic until the tactic fails *)

repeat split.

...

apply JumpRule4_3.
repeat split.
apply implies_reflexive.
Qed.

As all subgoals are resolved, we can conclude that the property holds.
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Fig. 4. Proving process

Fig. 5. Proving process

5 Conclusion

In this paper, we present an approach for encoding of MSVL axiomatic sys-
tem with the Coq proof assistant and give a verification example using Coq.
We demonstrate the feasibility of using Coq as a proof assistant for building
an MSVL proof system. However, the encoding itself still needs to be further
improved. In addition, we will focus on improving the degree of automation in
theorem proving using our proof system in the future.
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A Appendix: State Axioms and inference rules

Axioms

A1 lbf(x) ∧ x = e ∼= x = e ∧ px(where � x �= e)
A2 lbf(x) ∧ x ⇐ e ∼= x = e ∧ px

A3 �p ∧ more ∼= p ∧ ©�p
A4 �p ∧ ε ∼= p ∧ ε
A5 frame(x) ∧ more ∼= ©(lbf(x) ∧ frame(x))
A6 frame(x) ∧ ε ∼= ε
A7 ©p; q ∼= ©(p; q)
A8 ε; q ∼= q
A9 (w ∧ p); q ∼= w ∧ (p; q)
A10 p ‖ q ∼= (((p; true) ∧ q) ∨ ((q; true) ∧ p))
A11 ©p ∧ q ∼= ©p ∧ q ∧ more
A12 ε prj q ∼= q
A13 (p1, ..., pm) prj ε ∼= p1; ...; pm

A14 (p1, ..., pi−1, w ∧ ε, pi+1, ..., pm) prj q ∼= (p1, ..., pi−1, w ∧ pi+1, ..., pm) prj q
A15 (w ∧ p1, p2, ..., pm) prj q ∼= w ∧ (p1, ..., pm) prj q
A16 (p1, ..., pm) prj (w ∧ q) ∼= w ∧ (p1, ..., pm) prj q
A17 (©p1, ..., pm) prj © q ∼= ©(p1; (p2, ..., pm) prj q)
A18 if b then p else q ∼= (b ∧ p) ∨ (¬b ∧ q)
A19 while b do p ∼= if b then (p ∧ more;while b do p) else ε
A20 	 P , where P is a substitution instance of all valid formulas.

Inference Rules

R1 p ∼= q =⇒ prog[p] ∼= prog[q/p]
R2 p(x) ∼= ((pe(x) ∧ ε) ∨ (pc(x) ∧ ©pf (x)))

=⇒ ∃x : p(x) ∼= ((∃x : pe(x) ∧ ε) ∨ (∃x : pc(x) ∧ ©∃x : pf (x)))
where pe(x) and pc(x) are present components.

R3 	 P =⇒	 �P , where P is a substitution instance of all valid formulas.

B Appendix: Axioms and inference rules Over Intervals

Axioms

AEM {σk, ε} ε {σk, ε}
APC {σk, A}p{σk, A} if p → A

where A and p are present components
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Inference Rules

ISR {σk, A} prog[p] {σh, B} and p ∼= q
⇐⇒ {σk, A} prog[q/p] {σh, B} and p ∼= q

AAS {σk, A}x = m ∧ ps(y) ∧ p {σh, B}
{σk, A}x = m ∧ ps(y)[x �→ m] ∧ p {σh, B}
where lbf(y) and lbf(x) does not occur in p.

LBF {σk, A} lbf(x) ∧ p {σh, B}
{σk, A}x = σk−1(x) ∧ p {σh, B}(k ≥ 1)
where x = e and x ⇐ e does not occur in p.

ANext {σk, A} pc ∧ ©pf {σh, B}

⇐⇒
⎧
⎨

⎩

{σk[pc]· < sk+1 >,Af} pf {σh, B}
and {σk, Ac} pc {σk, Ac} if pc → Ac

{σk, false} pc ∧ ©pf {σh, B} otherwise
where A ≡ (Ac ∧ ©Af ) ∨ (Ae ∧ ε).

AEmpty {σk, A} pe ∧ ε {σh, B}

⇐⇒
⎧
⎨

⎩

{σk[pe], ε} ε {σk[pe], ε}
and {σk, Ae ∧ B} pe {σk, Ae ∧ B} if pe → Ae ∧ B
{σk, false} pe ∧ ε {σk, false} otherwise

where A ≡ (Ac ∧ ©Af ) ∨ (Ae ∧ ε).
SSR {σk, A} qi {σh, B}

=⇒ {σk, A} q1 ∨ q2 {σh, B}(i = 1, 2)
EQR1 {σk, A} pc(y) ∧ ©p {σh, B}

=⇒ {σk, A} ∃x : pc(x) ∧ ©p {σh, B}
EQR2 {σk, A} pe(y) ∧ ε {σh, B}

=⇒ {σk, A} ∃x : pe(x) ∧ ε {σh, B}

C Appendix: Deducting Frog Routing Problem in Coq

Lemma Jump1 : |-([]((empty_pos=.AInt 3/\.stone0=.AInt 1/\.
stone1=.AInt 1/\.stone2=.AInt 1/\.stone3=.AInt 0/\
.stone4=.AInt 2/\.stone5=.AInt 2/\.stone6=.AInt 2)-->
(empty_pos=.AInt 3/\.stone0=.AInt 2/\.
stone1=.AInt 2/\.stone2=.AInt 2/\.stone3=.AInt 0
/\.stone4=.AInt 1/\.stone5=.AInt 1/\.stone6=.AInt 1))).

Proof.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 2))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 0))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 2)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule3_2.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 4))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 0))) (Ass stone5 (AInt 2)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule2_4.
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repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 5))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 0)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule4_5.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 3))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 0)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule5_3.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 1))
(Ass stone0 (AInt 1))) (Ass stone1 (AInt 0)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule3_1.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 0))
(Ass stone0 (AInt 0))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule1_0.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 2))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 0))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule0_2.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 4))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 0))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 2)))).

split.
apply JumpRule2_4.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 6))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 0)))).

split.
apply JumpRule4_6.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 5))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 1)))
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(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 0)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule6_5.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 3))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 1)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 0)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule5_3.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 1))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 0)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule3_1.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 2))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 2)))
(Ass stone2 (AInt 0))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 2))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule1_2.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 4))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 2)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 1)))
(Ass stone4 (AInt 0))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule2_4.
repeat split.
apply implies_transitive with (p2:=

(Coj (Coj (Coj (Coj (Coj (Coj (Coj (Ass empty_pos (AInt 3))
(Ass stone0 (AInt 2))) (Ass stone1 (AInt 2)))
(Ass stone2 (AInt 2))) (Ass stone3 (AInt 0)))
(Ass stone4 (AInt 1))) (Ass stone5 (AInt 1)))
(Ass stone6 (AInt 1)))).

split.
apply JumpRule4_3.
repeat split.
apply implies_reflexive.
Qed.
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Abstract. Runtime Verification is a lightweight verification technique,
which estimates whether a system satisfies a desired property by moni-
toring the system. An algorithm is proposed for constructing a runtime
verification monitor for three-valued Propositional Projection Tempo-
ral Logic. A given property P and its negation ¬P are first translated
into normal forms, and further Normal Form Graphs. Then, the Büchi
automata and finite automata are obtained by changing the accepting
sets. Finally, the monitor is built up by making the product of the two
automata. An example is illustrated to show how this algorithm works.

Keywords: Runtime verification · Monitor · Projection temporal logic ·
Three-valued logic · Automata

1 Introduction

Runtime Verification (RV) [1] is a lightweight verification technology, which mon-
itors a system at the runtime instead of constructing the model of the system.
Usually, an RV monitor is generated from the requirements of a system, and it
can judge whether the system satisfies a given property by checking the trace gen-
erated at runtime. RV is a formal verification technology complementing model
checking [2], for it does not need to construct the whole model of the system.
Specifically, it only considers runtime behaviors of the system, thus reducing
the state explosion for large systems. Another feature it owns is that it deals
with finite traces instead of infinite traces, which can reduce the complexity
and get the verification result as early as possible. RV has already been used in
various areas, such as formal verification [3], Web Services [4], malicious attack
detection [5] and train control system [6].

Projection Temporal Logic (PTL) is a state-based temporal logic with a
projection construct (P1, . . . , Pm) prj Q [7,8]. Propositional PTL (PPTL) is
a propositional subset of PTL which has full regular expressive power and is
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decidable [9], and it has a support platform Modeling, Simulation and Verifi-
cation platform, which has already been used in the verification of scheduling
systems [10], C programs [11], parallel computing [12], etc. PPTL is more suitable
for RV for it owns more powerful expressiveness. For example, it can describe
the periodic property such as

a proposition holds at all even states

which cannot be described by Linear Temporal Logic (LTL). But until now there
is no RV technology for PPTL yet.

This paper extends PPTL for runtime verification, and the main contribu-
tions are as follows. (1) A three-valued PPTL3 is defined based on PPTL. (2) An
algorithm for constructing a RV monitor for PPTL3. (3) A social network appli-
cation is illustrated to show how this method works. With these contributions,
PPTL can be used to check traces of a system at runtime and get verification
results.

The rest of the paper is organized as follows. The syntax and semantics of
PPTL are briefly introduced in the following section. Section 3 describes how to
construct the RV monitor based on PPTL3. Section 4 is devoted to a case study to
illustrate the monitor construction. Section 5 reviews related work. Conclusions
are drawn in Sect. 6.

2 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions and B = {true, false} the
Boolean domain. Usually, we use small letters, possibly with subscripts, like p,
q, r to denote atomic propositions and capital letters, possibly with subscripts,
like P , Q, R to denote general PPTL formulas. Then, the formulas of PPTL are
defined by the following grammar:

P ::= p | ¬P | P1 ∧ P2 | ©P | (P1, . . . , Pm) prj P

where p ∈ Prop, P, P1, . . . , Pm are well-formed PPTL formulas, and © (next),
prj (projection) are temporal operators.

The state s that we defined over Prop is a mapping s : Prop → B. We
write s[p] to denote the valuation of p at state s. An interval σ = <s0, s1, . . . >
is a non-empty state sequence which can be finite or infinite. We use |σ| to
denote the length of σ. It is the number of states in σ minus one if σ is finite,
otherwise it is ω. Let N0 denote the set of non-negative integers. To have a
uniform notation for both finite and infinite intervals, we will express that by
a new symbol, that is Nω = N0 ∪ {ω}, and extend the comparison operators
=, <,≤ to Nω by considering ω = ω and for all i ∈ N0, i < ω. Moreover,
we write � as ≤ −{(ω, ω)}. To simplify definitions, we use <s0, . . . , s|σ|> to
denote the interval σ, where s|σ| is undefined if σ is infinite. Under this notation,
σ(i,..,j)(0 ≤ i � j ≤ |σ|) denote the sub-interval <si, . . . , sj>.

To formalize the semantics of the projection construct, we need an auxiliary
operator ↓. Let σ = <s0, s1, . . . > be an interval and r1, . . . rh(h ≥ 1) an integer
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sequence such that 0 ≤ r1 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh

is the projected interval

σ ↓ (r1, . . . , rh) = <st1 , st2 , . . . , stl>

Where t1, t2, . . . , tl are obtained form r1, . . . rh by deleting all duplicates.
In other words, t1, t2, . . . , tl is the longest strictly increasing subsequence of
r1, . . . rh. For instance, <s0, s1, s2, s3, s4> ↓ (0, 0, 2, 2, 2, 3) = <s0, s2, s3>. The
concatenation (·) of a finite interval σ = <s0, s1, . . . , s|σ|> with another interval
σ′ = <s′

0, s
′
1, . . . , s

′
|σ|> is represented by σ ·σ′ = <s0, s1, . . . , s|σ|, s′

0, s
′
1, . . . , s

′
|σ|>

(no state is shared).
An interpretation is a tuple I = (σ, k, j), where σ = <s0, s1, . . . > is an

interval, k is a non-negative integer and j is an integer or ω, such that 0 ≤
k � j ≤ |σ|. We write (σ, k, j) to denote that a formula is interpreted over
a subinterval σ(k,..,j) with the current state being sk. We use Ik

prop to state
the state interpretation at state sk. The satisfaction relation |= for formulas is
inductively defined as follows:

1. I |= p iff sk[p] = Ik
prop[p] = true.

2. I |= ¬p iff I �|= p.
3. I |= P1 ∧ P2 iff I |= P1 and I |= P2.
4. I |= ©P iff k < j and (σ, k + 1, j) |= P .
5. I |= (P1, . . . , Pm) prj P iff there exist integers r0, . . . rm and k = r0 ≤ . . . ≤

rm−1 � rm ≤ j such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m and (σ′, 0, |σ′|) |=
P for σ′ given by:
(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1..j)

(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

For convenience, some derived formulas from elementary PPTL formulas are
shown as follow. The abbreviations true, false, ∨,→ and ↔ are defined as usual.

ε
def
= true more

def
= ¬ε

P ; Q
def
= (P, Q) prj ε ♦P

def
= true; P

len(0)
def
= ε len(n)

def
= len(n − 1)(n > 0)

skip
def
= len(1) P

def
= ¬♦¬P

fin(P )
def
= (ε → P ) halt(P )

def
= (ε ↔ P )

If there is no temporal operator in a PPTL formula, we call the formula a state
formula. Usually, |= �(P ↔ Q) is represented by P ≡ Q (strong equivalence),
meaning that P and Q have the same truth value at all states of any models
while |= �(P → Q) is denote by P ⊃ Q (strong implication), showing that
P → Q is true at all states of any models. The following is some useful logic
laws, where w is a state formula.
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(L1)♦P ≡ P ♦P
(L2) P ≡ P ∧ ε ∨ P P
(L3) (P ∧ Q) ≡ P ∧ Q
(L4)♦(P ∨ Q) ≡ ♦P ∨ ♦Q
(L5) (P ∧ Q) P Q
(L6) (P ∨ Q) P Q
(L7)Q; (P1 ∨ P2) ≡ (Q; P1) ∨ (Q;P2)
(L8)P1; (P2; P3) ≡ (P1; P2); P3

(L9)w ∧ (P ; Q) ≡ (w ∧ P );Q
(L10)true ≡ ε true
(L11)(P1, . . . Pm) prj ε ≡ P1; P2; . . . ; Pm

(L12)(w ∧ P1, . . . , Pm) prj Q ≡ w ∧ ((P1, . . . , Pm) prj Q)
(L13)(P1, . . . , Pm) prj (w ∧ Q) ≡ w ∧ ((P1, . . . , Pm) prj Q)

3 The Monitor Based on PPTL3

3.1 Three-valued Semantics

The syntax and semantics of the traditional PPTL have been introduced in the
previous section. However, the traditional two-valued logic is incompetent to give
correct results at some cases in RV [13,14]. We give a simple example to explain
this. A C program cannot write data to a file until it opens the file. It means
the C program should satisfy the property that a file cannot be written before
it is opened, which can be described by a PPTL formula �¬write; open. Then,
we monitor the execution trace to verify whether the property is satisfied. If the
monitor detects an open operation in the current trace and ¬write holds in the
whole detected trace, the property is valid. If a write operation is detected and
no open operation occurs before in the trace, the property is invalid. In addition
to these, while the monitor only detects ¬write in the trace, the verification
result is inconclusive and the monitor needs to continue monitoring the current
execution trace to get more information to ensure the verification result.

By studying this example, we know the necessity to extend PPTL with a
three-valued semantics for RV. The reason is that we can only obtain a finite
prefix when we monitor a system in a runtime application, and we need to
evaluate whether the system satisfies the given property by monitoring the finite
prefix. Hence a three-valued logic is more useful than the classical binary logic.
For a property ϕ and a finite prefix u, if all extensions of u satisfy the property,
we are sure that u satisfies ϕ; if all extensions of u violate the property, we
are sure that u violates ϕ; otherwise it cannot illustrate whether u satisfies or
violates the property ϕ.

[u |= ϕ] =

⎧
⎪⎨

⎪⎩

true, ∀ω ∈ Σω : uω |= ϕ;
false, ∀ω ∈ Σω : uω � ϕ;
inconclusive, otherwise
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3.2 Constructing the Monitor

The process of constructing the monitor is shown in Fig. 1:

Step 1: Describe the property ϕ and its negation ¬ϕ
In Runtime Verification, a monitor can only obtain a finite prefix of the current
execution trace at runtime, which means we need to use the prefix to express
the same meaning as the whole trace. This is the reason why both the property
ϕ and its negation ¬ϕ should be described: if the current prefix has already
violated the property, it means that there is no succeed leading it to satisfy the
property ϕ, so the output is false, and vice versa. If the current prefix satisfies
both ϕ and ¬ϕ, different succeeds will cause different results, and we cannot give
a correct verdict, so the output is inconclusive. For a language, a prefix is called
good (bad) if connected with all of its succeeds it still belongs (not belong) to
the language. And, a good (bad) prefix is called minimal, if each of its strict
prefix is not good (bad) anymore. In RV, the prefix is called minimal bad (good)
while it first violates the property ϕ (¬ϕ).

Step 2: Translate every PPTL3 formula into a Büchi Automaton (BA)
The reason of doing this is that an automaton is more suitable for constructing
the monitor than a logic formula. The procedure is shown in Fig. 2.

First, we need to use the concept of Normal Form (NF) and NF Graph
(NFG), the details can be found in [15], so we only give a brief introduction.

Definition 3.1 (Normal Form). Let Qp be the set of atomic propositions
appearing in a PPTL formula Q. The normal form of Q can be defined as follows:

Q ≡
n0∨

j=0

(Qej ∧ ε) ∨
n1∨

i=0

(Qci ∧ ©Q′
i)

where Qej ≡ ∧m0
k=1q̇jk, Qci ≡ ∧m

h=1q̇ih, qjk, qih ∈ Qp, for any r ∈ Qp, ṙ denotes r
or ¬r, Q′

i is a PPTL formula that the main operator is not “∨”. If ∨iQci ≡ true
and ∨i�=j(Qci ∧ Qcj) ≡ false, and Q′

i is an arbitrary PPTL formula, we call the
NF complete normal form (CNF).

For a PPTL formula P , the NFG of P is a directed graph, G = (CL(P ),
EL(P ), V0), where CL(P ) denotes the set of nodes, which is specified by a

Fig. 1. Process of constructing the monitor
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Fig. 2. Procedure about translating PPTL3 formula into BA

formula, EL(P ) the set of edges, that is a directed arc from a node to another
node and labeled with a state formula, and V0 the set of root nodes that belong
CL(P ). The NFG of a PPTL formula is inductively defined.

Definition 3.2 (Normal Form Graph). For a PPTL formula P , the set
CL(P ) of nodes and the set EL(P ) of edges connecting nodes in CL(P ) are
inductively constructed as follows.

1. Initially, let V0 = CL(P ) = EL(P ) = ∅.
2. Let P ≡ ∨iPi. For each i, Pi ∈ V0, Pi ∈ CL(P ).
3. For all Q ∈ CL(P )\{ε, false}, if Q is rewritten into its normal form

∨h
j=0(Qej ∧ ε) ∨ ∨k

i=0(Qci ∧ ©Q′
i), then ε ∈ CL(P ), (Q,Qej , ε) ∈ EL(P )

for each j, 1 ≤ j ≤ h; Q′
i ∈ CL(P ), (Q,Qci, Q

′
i) ∈ EL(P ) for all i, 1 ≤ i ≤ k.

The NFG of a PPTL formula describes its models according to the nor-
mal form, but it may contain some errors if there are chop operators in the
PPTL formula. The reason is that PPTL may have infinite models, and for
a PPTL formula like P ;Q, if P has only infinite models, the formula has
no model because the above method can only construct the model of P . If
P has both finite and infinite models, we should eliminate all infinite mod-
els of P . Labeled NFG (LNFG) [15] is defined based on the above analysis
to solve the problem. The main idea is adding a label li to indicate that a
node in a cycle can only repeat for finite many times. An LNFG is a tetrad
G = {CL(P ), EL(P ), V0, L = {L1, . . . , Lm}}, where CL(P ), EL(P ) and V0 are
identical to the ones in the NFG, while each Li ⊆ CL(P ), 1 ≤ i ≤ m, is the
set of nodes with fin(li) labels. For a property ϕ, if we get its LNFG, we can
construct the corresponding BA, Aϕ = {Qϕ, Σ,Qϕ

0 , δϕ, Fϕ}. Notice that if there
is no finite labels in LNFG which means L = ∅, the LNFG can be transformed to
a BA directly. Otherwise, it should be transformed to a generalized BA (GBA)
first, and then to a BA. A trace ending with ε cannot be recognized by BA, so
we extend it with an infinite suffix consisting of null-labels [16] which are always
executable but with no effect.

Step 3: Define an emptiness function Eϕ(q)
We define a function Eϕ : Qϕ → B(B = {true, false}) to detect whether there
exists an accepted path starting from a state in Qϕ. If the automaton starts at
state q and can arrive at the accepting states, we say the language recognized
is nonempty and the value of Eϕ(q) is true. Otherwise, Eϕ(q) is false. To get
the values of Eϕ(q), we identify the strongly connected components (SCC) in
Aϕ which can be solved by Tarjan’s algorithm in linear time. Hence, the value
of Eϕ(q) is true if the automaton starts at state q and it can arrive at the SCC
which include the accepting states.
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Step 4: Define the Nondeterministic Finite Automaton(NFA)
We define a Nondeterministic Finite Automaton (NFA) Âϕ using the function
Eϕ(q). The elements of an NFA are the same as the elements of a BA except the
accepting states, which is defined as F̂ϕ = {q ∈ Qϕ|Eϕ(q) = true}. For instance,
a system is expected to satisfy a given property P which can be translated into a
BA. During the process of verification, if the current execution trace passes the
accepting states infinite times, the property P is satisfied. Nevertheless, a trace
is always finite in RV, so we cannot prove the satisfiability directly, but we can
prove the system violates the property once the current trace cannot arrive at
the accepting states. So, we define the NFA with accepting-state set F including
all states q that the value of Eϕ(q) is true. Hence, if the system possibly satisfies
the property starting from state q, the state q must be in the set of accepting
states in NFA. On the contrary, if the current trace leads the NFA to move into
a state not in the accepting set, it confirms that the property is violated.

Step 5: Transform to Deterministic Finite Automaton(DFA)
Every NFA has an equivalent DFA which can be obtained by the standard subset
method. It starts at an initial state. Then, it can go to a state set when fed with
a character, and the set is seen as a state in the DFA. This process is repeated
until the whole DFA is constructed. The accepting states of the DFA are the
state sets which include accepting states in NFA.

Step 6: Make the product of the automata
Two DFA Ãϕ and Ã¬ϕ can be obtained by the method mentioned above. Then,
we make the product of them obtaining Āϕ = {Σ, Q̄, Q̄0, δ̄, λ̄}, where:

– Q̄ = Qϕ × Q¬ϕ,
– Q̄0 = (Qϕ

0 , Q¬ϕ
0 ),

– δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)), and
– λ̄ : Q̄ → B3 (B3 = {true, false, inconclusive}) is a mapping from states to

truth values, defined as

λ̄(q, q′) =

⎧
⎪⎨

⎪⎩

true iff q′ /∈ F̃¬ϕ

false iff q /∈ F̃ϕ

inconclusive iff q ∈ F̃ϕ ∧ q′ ∈ F̃¬ϕ.

We use the Hopcroft’s algorithm to get the final monitor Mϕ = {Σ,Q, q, δ, λ}
which is minimal in the number of states by reducing the states of the above
automaton Āϕ. With the monitor Mϕ, we can verify whether the system satisfies
the property by using the prefix in the current trace: [u |= ϕ] = λ(δ(q0, u)).

4 Example

In this section, we present an example to illustrate the RV monitor construction
of PPTL3.

This example describes a property in social network. Thinking about the
situation that once a person opens his social network software, for example
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WeChat, and finds there are many junk messages from strangers, which is an
annoying experience. So, it is very important to ensure a property that a message
can only be delivered from a person to his friends in most social network systems,
in another word, if a person wants to send a message to another one at some
point in the future, he must make friends with the person in the future and
before the time. We describe the strategy by using formal notations:

– s means sending a message, and
– f means two users are friends.

According to the symbols above we can describe the property P in PPTL3

that the system should satisfy: ♦(♦s → f) ≡ true; (�¬s ∨ f). This is a chop
formula and we should add a label fin(li) (i ∈ N0) to states that the node can
only repeat finite times to solve the problem of chop operator as mentioned in
Sect. 3. The property is finally described by the formula fin(l1); (�¬s ∨ f).

Having the property, the first thing we should do in the procedure of building
the monitor is getting the normal form of the formula.

NF (fin(l1); (�¬s ∨ f))
≡ CHOP (fin(l1); (�¬s ∨ f))
≡ CHOP (NF (fin(l1)); (�¬s ∨ f))
≡ CHOP ((l1 ∧ ε ∨ ©fin(l1)); (�¬s ∨ f))
≡ CHOP (l1 ∧ ε; (�¬s ∨ f)) ∨ CHOP (©fin(l1); (�¬s ∨ f))
≡ NF (l1 ∧ NF (�¬s ∨ f)) ∨ ©fin(l1); (�¬s ∨ f)
≡ (f ∨ ¬s) ∧ l1 ∧ ε ∨ f ∧ l1 ∧ ©true ∨ ¬s ∧ l1 ∧ ©�¬s ∨ ©fin(l1); f∨

© fin(l1);�¬s

Then we can get the LNFG according to the normal form above.
Initial: V0 = CL(P ) = EL(P ) = L = ∅.
Then we add nodes and edges through the normal form.
First, add the root node into CL(P ) and V0, V0 = CL(P ) = L1 = {fin(l1);

(�¬s ∨ f)};
For (f ∨¬s)∧l1∧ε, add node {ε} and edge(fin(l1); (�¬s∨f), (f ∨¬s)∧l1, ε);
For f ∧l1∧©true, add node {true} and edge (fin(l1); (�¬s∨f), f ∧l1, true),

and the normal form of {true} is ε∨©true, so we can add the edges (true, true,
true) and (true, true, ε);

For ¬s ∧ l1 ∧ ©�¬s, add node {�¬s} and edge (fin(l1); (�¬s ∨ f),¬s ∧
l1,�¬s), and the normal form of {�¬s} is ¬s ∧ ε ∨ ¬s ∧ ©�¬s, so we can add
edges (�¬s,¬s,�¬s) and (�¬s,¬s, ε).

For©fin(l1); f , add node {fin(l1); f} and edge (fin(l1); (�¬s ∨ f), true,
fin(l1); f), and the normal form of {fin(l1); f} is l1 ∧ f ∧ ε ∨ l1 ∧ f ∧ ©true ∨
©fin(l1); f , so we can add edges (fin(l1); f, l1 ∧ f, ε), (fin(f1); f, l1 ∧ f, true)
and (fin(l1); f, true, fin(l1); f).

For©fin(l1);�¬s, add node {fin(l1);�¬s} and edge (fin(l1); (�¬s ∨ f),
true, fin(l1);�¬s), and the normal form of {fin(l1);�¬s} is l1 ∧ ¬s ∧ ε ∨ l1 ∧
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Fig. 3. LNFG of the property P

¬s ∧ ©�¬s ∨ ©fin(l1);�¬s, so we can add edges (fin(l1);�¬s, l1 ∧ ¬s, ε),
(fin(f1);�¬s, l1 ∧ ¬s,�¬s) and (fin(l1);�¬s, true, fin(l1);�¬s).

Now, we can get the LNFG(we number the node for drawing the automaton
easily).

V0 = {fin(l1); (�¬s ∨ f)};
CL(P ) = {fin(l1); (�¬s∨f) 1, true 2, �¬s 3, fin(l1); f 4, fin(l1);�¬s5, ε};
EL(P ) = {(1, (f ∨ ¬s) ∧ l1, ε), (1, f ∧ l1, 2), (2, true, 2), (2, true, ε), (1,

¬s∧ l1, 3), (3, ¬s, 3), (3, ¬s, ε), (1, true, 4), (4, l1 ∧ f , ε), (4, l1 ∧ f , 2), (4, true,
4), (1, true, 5), (5, l1 ∧ ¬s, ε), (5, l1 ∧ ¬s, 3), (5, true, 5)};

L = {L1} and L1 = {1, 4, 5}. See as Fig. 3.
The responding BA can be constructed according to the information above,

and it is important to note that we need to transform the LNFG to a GBA first
for it contains a fin label. The accepting states set F of BA include ε nodes and
nodes which repeat infinite times and have no fin labels: I = {fin(l1); (�¬s∨f)
1}, Q = {1, true 2, �¬s 3, fin(l1); f 4, fin(l1);�¬s 5, true 6,�¬s 7, ε}, F =
{6, 7, ε}. See as Fig. 4.

The definitions of NFA and BA are very similar. All states can reach accepting
states in BA which be deemed to accepting states in NFA (the problem about
reachability can be solved by using Tarjan algorithm). The self-loop is reduced
from the BA, with the NFA shown in Fig. 5.

The equivalent DFA can be constructed by using the subset method, and the
states can be minimised as shown in the Fig. 6.

After solving the property P , we deal with the negative P by the same
method.

¬P : ¬(♦(♦s → f)) ≡ �(♦s ∧ ¬f) ≡ �((true; s) ∧ ¬f)
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Fig. 4. BA of the property P

Fig. 5. NFA

Fig. 6. Equivalent DFA
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The normal form should be obtained at first.

NF (�((true; s) ∧ ¬f))
≡ NF ((true; s) ∧ ¬f ∧ ε) ∨ NF ((true; s) ∧ ¬f ∧ ©�((true; s) ∧ ¬f))
≡ AND(NF (true; s), NF (¬f ∧ ε)) ∨ AND(NF (true; s), NF (¬f∧

© �((true; s) ∧ ¬f)))
≡ AND((s ∧ ε ∨ s ∧ ©true ∨ ©true; s),¬f ∧ ε) ∨ AND((s ∧ ε ∨ s ∧ ©true

∨ (©fin(l1); s)),¬f ∧ ©�((true; s) ∧ ¬f))
≡ s ∧ ¬f ∧ ε ∨ s ∧ ¬f ∧ ©�((true; s) ∧ ¬f) ∨ ¬f ∧ ©((fin(l1); s) ∧ �((true; s)

∧ ¬f))

The responding LNFG can be constructed according to the normal form
above.

Initial: V0 = CL(P ) = EL(P ) = L = ∅.
Then we add nodes and edges through the normal form.
First, add the root node into CL(P ) and V0, V0 = CL(P ) = {�((true; s) ∧

¬f)};
For s ∧ ¬f ∧ ε, add node {ε} and edge (�((true; s) ∧ ¬f), s ∧ ¬f, ε);
For s ∧ ¬f ∧ ©�((true; s) ∧ ¬f), add edge (�((true; s) ∧ ¬f), s ∧

¬f,�((true; s) ∧ ¬f)).
For ¬f ∧ ©((fin(l1); s) ∧ �((true; s) ∧ ¬f)), add node {(fin(l1); s) ∧

�((true; s)∧¬f)} and edge (�((true; s)∧¬f),¬f, (fin(l1); s)∧�((true; s)∧¬f)),
and the normal form of {(fin(l1); s)∧�((true; s)∧¬f)} is s∧¬f ∧l1∧ε∨s∧¬f ∧
l1 ∧ ©�((true; s) ∧ ¬f) ∨ ¬f ∧ ©((fin(l1); s) ∧ (fin(l2); s) ∧ �((true; s) ∧ ¬f)),
so we can add node {(fin(l1); s) ∧ (fin(l2); s) ∧ �((true; s) ∧ ¬f)} and edges
((fin(l1); s) ∧ �((true; s) ∧ ¬f), s ∧ ¬f ∧ l1, ε), ((fin(l1); s) ∧ �((true; s) ∧
¬f), s ∧ ¬f ∧ l1, �((true; s) ∧ ¬f)) and ((fin(l1); s) ∧ �((true; s) ∧ ¬f),
¬f , (fin(l1); s) ∧ (fin(l2); s) ∧ �((true; s) ∧ ¬f)), and the normal form of
(fin(l1); s)∧ (fin(l2); s)∧�((true; s)∧¬f) is ¬f ∧©((fin(l1); s)∧�((true; s)∧
¬f))∨s∧¬f ∧l1∧l2∧ε∨s∧¬f ∧l1∧l2∧©�((true; s)∧¬f), so we can add edges
((fin(l1); s)∧(fin(l2); s)∧�((true; s)∧¬f), ¬f , (fin(l1); s)∧�((true; s)∧¬f)),
((fin(l1); s)∧(fin(l2); s)∧�((true; s)∧¬f), s∧¬f ∧ l1∧ l2, ε) and ((fin(l1); s)∧
(fin(l2); s) ∧ �((true; s) ∧ ¬f), s ∧ ¬f ∧ l1 ∧ l2, �((true; s) ∧ ¬f)).

Now, we can get the LNFG (we number all nodes for drawing the automaton
easily).

V0 = {�((true; s) ∧ ¬f)};
CL(P ) = {�((true; s)∧¬f) 1, (fin(l1); s)∧�((true; s)∧¬f) 2, (fin(l1); s)∧

(fin(l2); s) ∧ �((true; s) ∧ ¬f) 3, ε};
EL(P ) = {(1, s ∧ ¬f, 1), (1, ¬f , 2), (1, s ∧ ¬f , ε), (2, ¬f , 3), (2, s ∧ ¬f ∧ l1,

ε), (2, s ∧ ¬f ∧ l1, 1), (3, ¬f , 2), (3, s ∧ ¬f ∧ l1 ∧ l2, 1), (3, s ∧ ¬f ∧ l1 ∧ l2, ε)};
L = {L1, L2}, L1 = {2, 3}, L2 = {3}. See as Fig. 7.
According to the information mentioned above, we can get the corresponding

BA that I = {�((true; s) ∧ ¬f) 1}, Q = {�((true; s) ∧ ¬f) 1, (fin(l1); s) ∧
�((true; s)∧¬f) 2, (fin(l1); s)∧(fin(l2); s)∧�((true; s)∧¬f) 3, �((true; s)∧¬f)
4, ε}, F = {4, ε}. See as Fig. 8.
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Fig. 7. LNFG of ¬P

Fig. 8. BA of ¬P

We can define the NFA just like what we do before, which is shown in the
Fig. 9.

Then we use the subset method to get the equivalent DFA shown in the
Fig. 10 as we do before.

We construct the monitor by getting the production of two DFA shown in
Fig. 11, and each state has a corresponding truth value according to the function
λ̄. With the monitor, we can give a correct verdict according to the current
execution trace, for example, if we can get information that two person become
friends from the trace, the DFA of ¬P is violated, which states that the current
execution satisfies the property P .

Finally, we will give a simple system model described by Büchi Automaton
shown in Fig. 12 to contrast runtime verification with model checking.

(1) In runtime verification, only the current execution trace, for example,
{f,¬s,¬s, s, s...} is monitored, and the monitor will ensure whether the current
execution satisfies the property or not as early as possible, and in this case, the
verification result is valid while the monitor detects f in the trace. In contrast,
model checking will make the product of the BA of the system and the BA
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Fig. 9. NFA

Fig. 10. Equivalent DFA

Fig. 11. Monitor
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Fig. 12. BA of the system

of the negative property shown in Fig. 8, and then give the verification results
according to the emptiness of the product of two BAs.

(2) Almost all software will be updated over a period of time to provide a
better user experience, in model checking, this will cause the BA of the sys-
tem will be constructed anew which is a real complex work. While in runtime
verification, the monitor can be reused if the property does not changed, that
means all things we should do is just running the system again and get the new
execution trace.

5 Related Work

RV is a formal verification technique, which monitors a system at the runtime
and judges whether the system satisfies a given property by checking the trace
generated at runtime. The Model-Based Trace-Checking [17] is a similar tech-
nique that checks trace by using formal models, which can be state machines
described as formal notations. Another technique is Parameterised Three-Valued
Model Checking [18], which extends the traditional model to three-valued Kripke
structure. In this approach, the uncertain part of model is represented by the
constant value unknown, and the parameterization can be used to improve the
precision of three-valued model. Comparing with two methods, the whole model
of the system is not needed in RV for it only considers runtime behaviors of the
system. RV’s another feature is that it deals with finite traces instead of infinite
traces, that means a prefix of an infinite trace should express the same meaning
of the full infinite trace. For the goal, three-valued temporal logic is used in RV
usually.
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To the best of our knowledge, there is no report of runtime verification for
PPTL in the literature. We give a brief review of the studies on RV that have
somehow impacted our work. LTL3 [13] extends LTL and evolves three truth
values true, false and inconclusive. The given property can be described by
LTL3, and then translated into an automaton. Eventually, a runtime verification
monitor is generated. It verifies whether the system satisfies the property by
checking the trace generated at runtime. The monitor can ensure the impartiality
and anticipation [19] because the underlying logic has three-valued semantics.
ITLTracer [20] is another RV monitor that is based on Interval Temporal Logic
(ITL) [21]. The basic partitions are based on the chop operator instead of states,
which ensures the continuation of variables’ values. After getting the monitored
trace, ITL formulas can be used to describe the property and verify whether the
property is satisfied.

6 Conclusions

Runtime verification is a lightweight verification technology, which has some
advantages in verifying reactive systems compared with traditional verification
techniques such as model checking and theorem proving. This paper introduces a
method to construct a monitor for runtime verification based on PPTL3, which
translates PPTL3 formulas into automata using the notions of normal form and
normal form graph.

For future work, we are going to implement the monitor and verify whether
the current execution satisfies a property by checking the runtime information.
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Abstract. This paper describes another application of the SOFL three-step
specification approach in specifying a railway interlocking system in industrial
setting. We also explore the way of deriving hazard conditions from formal
specifications, and propose a way to analyze the conditions for the assurance of
the safety of the interlocking system in the early stage of the development. Our
experience shows that SOFL is much more accessible by ordinary practitioners
than other existing well-known formal methods and effective in helping prac-
titioners deepen their understanding of the system details.

Keywords: Formal specification � Hazard condition � Analysis � Interlocking
system

1 Introduction

Railway signaling system is a kind of safety critical system whose failure is likely to
cause catastrophic disaster. The reliability and safety of such a system can be achieved
not only through the redundant architecture of hardware, but also the high quality of the
software deployed for the control purpose in the system. High quality software must
function as expected and must not trigger safety problems for the system.

To ensure the high quality for a software system, capturing correct and complete
requirements is essential, simply because it is almost impossible to achieve a high
quality implementation from incorrect or incomplete requirements. Traditional
requirements analysis, design, and testing methods based on natural language
descriptions can hardly guarantee that all functional and safety requirements are
implemented correctly. In the industrial practice, system functional requirements are
mainly documented in natural language and their implementation is verified by testing.
Safety requirements are usually ensured by first using hazard log to record potential
hazard and then carrying out hazard analysis in different development phases. How-
ever, this kind of practice suffers from the following two disadvantages:

(1) Requirements specifications in natural language are likely to cause ambiguity in
design and implementation, which may lead to significant errors.
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(2) Since test cases of traditional testing methods are mainly generated manually, the
functional scenarios of an operation may not be considered completely, which is
likely to result in the incompleteness of test case design.

It is well recognized that the later the faults are found, the higher the cost for
removing the faults will become [1]. This is especially true of railway signaling sys-
tems that involve complex operations in both hardware and software.

To detect faults in requirements, especially those related to human decisions on
both functional and safety requirements, formal methods are considered to be an
effective technique [2]. Formal methods are built on strict mathematical definitions and
have precise mathematical semantics. This advantage can help resolve requirements
and property ambiguity in natural language descriptions. There are many well-known
formal methods, such as VDM [3], Z [4], Event-B [5], SCADE [6], and SOFL [7], and
each has its own characteristics. Although they share some common features, such as
using the concepts of pre- and post-conditions in specifications, their differences in
syntax, style, and requiring different level of mathematical skills provide different
accessibility to practitioners, which help them make appropriate choices in practice.

We have been making all kinds of attempts to use several formal methods on our
products in CASCO Shanghai. For example, we applied SCADE to the design of a
zone controller subsystem, Event-B for modeling and verification of the zone control
subsystem, and formal proof for verifying the interlocking system. After these attempts,
we derive the following conclusions based on our experience:

(1) SCADE performs well for system design, but when it comes to requirements
analysis phase, it becomes unsuitable due to the lack of effective mechanism for
functional abstraction.

(2) Event-B can be used throughout the entire development process. The formal
refinement adopted in Event-B is an ideal technique that integrates formal veri-
fication and design into refinement laws for developing correct programs, but
since it requires too much mathematical knowledge and manipulation skills for the
developers, our experience suggests that it is beyond our capability and not
cost-effective as well.

(3) There are also some formal verification tools (e.g. Gatel and Prover iLock) that
can be used to verify the safety and functional requirements, but they do not
provide specific guidelines for carrying out formal modeling and formal verifi-
cation of related properties. They do not seem to be able to guarantee the cor-
rectness of the system either, even if the verification is successfully done.

Due to the disadvantages above, we turn to SOFL. SOFL, standing for Structured
Object-Oriented Formal Language, provides a formal engineering method for practical
formal modeling and verification. In particular, the practicality of the formal modeling
mainly comes from the SOFL three-step approach that emphasizes the importance of
writing a formal specification based on the construction of an informal specification
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and a semi-formal specification. After about fourteen hours training, we realized that
SOFL is easy to understand and to use; it also requires much less mathematical skills
than Event-B. We therefore decided to apply it to the interlocking system specification
and verification as a trial testing project.

Our major contributions in this paper are three fold. Firstly, we explain how
practitioners with little experience of SOFL can use the SOFL three-step approach
properly to writing formal specifications on the basis of first writing informal and then
semi-formal specifications. We chose the interlocking system as the target for speci-
fication and discuss how the domain knowledge can be effectively utilized to formalize
properly the requirements with different features. Secondly, we describe how hazard
conditions can be systematically extracted from a formal requirements specification.
A hazard condition is a logical formula whose implementation may cause hazards to
the system. Finally, we present a testing-based verification method for analyzing the
hazard conditions.

The rest of the paper is organized as follows. Section 2 briefly introduces the
interlocking system model to pave the way for readers to understand the subsequent
sections. Section 2 focuses on the construction of the informal, semi-formal, and for-
mal specifications of the interlocking system. Section 3 describes how hazard condi-
tions can be extracted from formal specifications. Section 4 discusses our experience of
using SOFL and the interesting problems encountered during the application. Section 5
briefly introduces some related applications of formal methods to interlocking systems.
Finally, in Sect. 6, we conclude the paper and point out future research directions.

2 Specification for Interlocking System

In this section, we first give a brief introduction to the interlocking system used in our
project, and then describe how the formal specification for its functional requirements
can be constructed based on an informal specification and a semi-formal specification.

2.1 Introduction of the Interlocking System

In railway signaling system, interlocking subsystem (calls CBI, Computer based
interlocking) is a signal control system that completes interactive interlocking check
between signal, switch and route to set routes for trains and to prevent conflicting
movements of trains. Once the route is set and the other routes conflict with the set
route, they are not allowed to set and the associated interlocking operations, such as
point move, are not allowed to perform. CBI should be designed to make it impossible
to display a dangerous status for signal in any case and to prevent from the mistakenly
release of route to ensure the safety of train operations. Only when they satisfy required
interlocking relations, are trains to be allowed to proceed to the planned route in order
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to prevent accidents or hazards, such as head-on collision, side collision, rear-end
collision, inappropriate route entering, switch splitting, or trains derailing during
operation. Since interlocking systems are safety-critical and must have safety integrity
(meaning the likelihood of a system satisfactorily performing the required safety
functions under all the stated conditions within a stated period of time), according to
the European standard EN50129, the safety integrity level of interlocking system is
defined as SIL4. Safety Integrity Level SIL of a function is determined by the Tolerable
Hazard Rate THR per hour. If 10-9 � THR < 10-8, then the SIL of the function is
defined as SIL4, which is a number indicating the required degree of confidence that a
system meets its specified safety functions with respect to systematic failures.

As Fig. 1 shows, the interlocking system used in our project is divided into three
layers: man-machine session layer, interlocking computation layer, and execution
layer. Each layer is divided into several functional modules according to the partition
of the functions. The man-machine session layer is responsible for processing the
man-machine interface information by means of three modules, man-machine interface
module, communication module, and information indication module. The interlocking
computation layer carries out the interlocking computing through a dispatching module
or real time operating system and a group of other modules, such as basic interlocking
module, self-diagnosing module, special interlocking module, and adjacent interlock-
ing system interface module. The execution layer controls the output of commands to
the field devices through the field device state input module and the field device control
command output module.

Dispatching module or real time OS

field device

Man-machine 
interface module

Communication 
module

Information 
indication module

Basic 
interlocing 

module

Self-
diagnosing 

module

Special interlocking 
module

Adjacent interlocking 
system interface module

field device state input 
module 

field device control command 
output module

Man-machine session 
layer

Interlocking 
computation layer

Execution 
layer

Fig. 1. The structure of an interlocking system
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2.2 Basic Interlocking Function

We use SOFL mainly for the basic interlocking model that is used to realize the
interlocking relations in the system. The devices controlled are mainly signals,
switches, and track circuits, and these devices are controlled in a route or individually.
Figure 2 is an example of part of some railway station layout that illustrates how field
devices are arranged and related with each other in the interlocking system.

The basic interlocking function is route controlling, including route setting, route
locking, signal opening, keeping signal opening, normal route release, abnormal route
release, manual switch operation and general route call-on locking. Since there are
different kinds of routes, such as train route, shunting route, calling-on route, succes-
sive route, and special shunting route, and each function has different requirements for
each kind of route, we need to first specify the functionality of operations for each kind
of route and then investigate how the related specifications are connected to form the
whole specification for the entire system.

2.3 Specific Ways to Write SOFL Specifications

As mentioned previously, the final formal specifications of various operations are
achieved by means of writing an informal specification first and then refining it into a
semi-formal specification, and finally formalizing the semi-formal specification into a
formal specification.

2.3.1 Informal Specification
We build the informal interlocking requirements specification as advocated by the
SOFL three-step approach. In this section, we focus our discussion on how the informal
specification is written. According to the SOFL approach, an informal specification is
composed of three sections: functions, data resources, and constraints.
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Fig. 2. Station layout example
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The basic interlocking functional requirements are mainly learnt from the informal
interlocking technical descriptions of the controlled devices, system states that need
checking, and properties or constraints the system must satisfy. According to the form
of SOFL informal specification, we treat the operations for checking the system states
as bottom level functions, the devices (e.g., routes, signals, switches) to be controlled
by the system as data resources, and the properties that the system must satisfy as
constraints. For the sake of both confidentiality of the original specification and space
limit, we only give the informal specification of a switch normal operation below as an
example to show the general structure of an informal specification.

Informal specification for the switch normal operation:

1. Functions:
1:1 switch operation

1:1:1 switch normal operation
1:1:1:1 check that the switch is not locked
1:1:1:2 check that the switch has position indication
1:1:1:3 check that there is no reverse operation command output
1:1:1:4 check that time is not out for the switch to operate

1:1:2 switch reverse operation
2. Data resources:
2:1 switch
2:2 route

3. Constraints:
3:1 If the switch is already in normal position when receiving a normal operation

request, then the system will not output the normal operation command.
3:2 If the max time for switch operation is expired, the operation for switch move

must be stopped.

In this informal specification, the description of each item is deliberately kept short
and its style is not restrictive. However, to make the specification comprehensible, each
functional description uses the verb-object structure; each data item is described using a
noun; and each constraint is presented as a condition. The application of this principle
can be flexible for other domains in practice.

2.3.2 Semi-formal Specification
After finishing the informal specification, we refine and transform it into a semi-formal
specification. At this step, three things are done to fulfill the task. Firstly, we group the
related functions, data resource items, and constraints in the informal specification into
SOFL modules. Secondly, we declare all of the necessary constant identifiers, type
identifiers, and state variables formally in SOFL. Finally, we define the functionality of
each process in the module using pre- and post-conditions properly.

As far as constructing each module is concerned, we take the following guideline to
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define the corresponding items in the module. Each function in the informal specifi-
cation is refined into a process in the SOFL module because each process fulfills a
function by defining how its input can be used to produce its output. Each data resource
item in the informal specification is transformed into a state variable declaration
because it is likely to be shared by several processes. Each constraint in the informal
specification is refined into either an invariant or part of some process functionality in
the module, considering its role in the system.

For transforming the data resource items in the informal specification to the dec-
larations in the semi-formal specification module, we apply the following principle. For
each data resource item, we declare a state variable using a well-defined type in the
module. If the type is not defined yet using the SOFL notation, we need to declare it
properly in the section named “type” of the same module. For each declared type, its
constraints, if any, can be defined as invariants in the section named “inv” of the same
module. Each invariant is a condition described in natural language in the semi-formal
specification. For each state variable, its properties that must be sustained throughout
the entire system can also be defined as invariants in the “inv” section in the similar
way to type invariants.

As far as refining each function in the informal specification into a process in the
module is concerned, we use pre- and post-conditions to specify its functionality.
To this end, we first need to determine all of the necessary input variables, output
variables, and the state variables the process uses, and then formally declare them using
well-defined types. The pre-condition presents a constraint on the input and state
variables before the execution of the process, and the post-condition gives another
constraint for the output and the updated state variables to satisfy. In the semi-formal
specification, both the pre- and post-conditions are described in a structured natural
language in order to strike a good balance between the usability and the rigor for a high
cost-effectiveness. The structured natural language expression is actually a disjunctive
normal form in which each term is described in natural language but the logical
connectors are formally defined operators (e.g. and, or, not).

As an example, below we show part of the semi-formal specification of the process
for the normal switch operation. The partial specification is expressed as a disjunction
of several functional scenarios (FS). Each FS is a conjunction of terms described in
English. Specifically, the semi-formal specification describes how the switch functions
when the system receives a route setting request. First it needs to check the position of
the switch. If the position is not the same as the route requests, the system should
execute the switch normal or reverse operation. After the operation is done, the system
should show the result. In this example, we only describe the semi-formal specification
of normal switch operation.

Part of the semi-formal specification of the process for switch operation:
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2.3.3 Formal Specification
To ultimately resolve the ambiguity in the semi-formal specification, we need to
completely formalize all of the informal expressions, such as “switch is not locked” in
the above process for normal switch operation. However, since some processes in the
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specification may depend on other processes in terms of data flows, our experience
suggests that it can reduce the chances of modifications of the formal specifications of
the processes if their dependency relation can first be defined using a the graphical
notation called Condition Data Flow Diagram (CDFD). Taking this into account, we
need to fulfill two tasks in constructing the formal specification:

(1) Draw a CDFD to describe the dependency relation between processes.
(2) Formalize the pre- and post-conditions of each process occurring in the CDFD.

The CDFD not only reflects the dependency relation between processes, but also
reflects the architecture of the system. In the architecture, the signature of each process
in terms of its name, input, output, and the related data store variables is precisely
defined, and all of the relevant processes are connected in terms of data flows and data
stores.

When formalizing the pre- and post-conditions of each process in the corresponding
module of the CDFD, we need to choose appropriate operators defined in the relevant
data types to formally express the informal statements in the semi-formal specification.
In some circumstances, we may find that some variables cannot be declared using
existing types or some type definitions are not complete. In that case, we need to
modify or add some type definitions.

As an example, we show the formal specification for the switch operation, which
includes the CDFD in Fig. 3 and the corresponding module given below. For the sake
of space, we only give the details of the formal specification of the process for switch
normal operation.

Fig. 3. CDFD of the switch operation module
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Since the formal specification preserves the structure of the corresponding
semi-formal specification of the same process, we do not repeat the explanation of its
meaning here for brevity.
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3 Derivation and Analysis of Hazard Conditions

A complete formal specification of a safety critical system should be defined in the way
that the functionality of the system must imply the required safety properties. To ensure
this point, it is necessary to derive the hazard conditions from the relevant formal
expressions that present a potential violation of the safety requirements and to check
whether they are valid with respect to the safety requirements. A general distinction
between a functional requirement and a safety requirement is that the functional
requirement indicates that something must be done, while the safety requirement shows
that the result of functional requirement do not lead to hazards [8]. In this section, we
present a systematic way to derive hazard conditions from a formal process specifi-
cation and then discuss how they can be analyzed to determine their validity.

3.1 Derivation of Hazard Conditions

Our previous research [9] shows that any formal process specification can be converted
into an equivalent functional scenario form (FSF).

Definition 3.1. Let Spre denote the pre-condition and Spost the post-condition of process
S, respectively. Let Spost = G1 and D1 or G2 and D2 or…or Gn and Dn, where Giði ¼
; . . .; nÞ is known as a guard condition containing only input variables and Di is known
as a defining condition containing at least one output variable. Then, the following form
is called an FSF of S:

Spre and G1 and D1 or Spre and G2 and D2 or…or Spre and Gn and Dn and each
Spre and Gi and Di is called a functional scenario (FS), defining an independent
function.

Our way to derive hazard conditions focuses on each functional scenario. Let Ti
and Di represents a general functional scenario, where Ti = Spre and Gi is called test
condition of the scenario. Our discussions below always refer to this FS. The specific
rules for hazard condition derivation are given as follows:

(1) If Di defines a safety-related operation on some field device, then Ti and not Di
may describe a hazard condition. For example, suppose

some switch on a route has no position indication and the start signal of the route is restrictive

is a functional scenario in relation to the safety requirements, then we can derive the
hazard condition:

some switch on a route has no position indication and not (the start signal of the route is
restrictive).

This can further be simplified into the following more intuitive one:

some switch on a route has no position indication and the start signal of the route is permissive.
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Obviously, this hazard condition is likely to produce a hazard if it is implemented in
the system, because if some switch has no position indication and the start signal of the
route is permissive, when the train runs into the route, it will likely derail or roll over.

(2) If Ti describes a critical guard condition (i.e., the violation of it may jeopardize the
safety), then not Ti and Di will become a hazard condition. For instance, suppose

(all switches in the route are in right position and the route is out of obstacles and no
conflicting route is set) and the start signal of the route is permissive

is a functional scenario, then the following hazard condition can be derived:

not (all switches on the route are in right position and the route is out of obstacle and no
conflicting route is set) and the start signal of the route is permissive.

It can further be simplified into:

not all switches in the route are in right position and the start signal of the route is permissive or
not the route is out of obstacles and the start signal of the route is permissive or
not no conflicting route is set and the start signal of the route is permissive,

which implies three different kinds of hazards.
To apply these rules effectively, the relevant functional scenarios have to be selected

manually based on the safety-related knowledge in the domain in general. The reason is
that formal expressions may not make sense if they are not interpreted in the context of
the related domain. What our method can help is to systematically and automatically
derive a hazard condition after the related specific functional scenario is selected.

3.2 Hazard Condition-Based Testing

After deriving all possible hazard conditions, we need to analyze whether each hazard
condition is really implemented into code. To this end, a hazard condition-based
testing can be carried out.

Specifically, for each derived hazard condition, we generate some test data for the
input variables that satisfy the test condition of the hazard condition. Then, we use the
test data to run the corresponding program that is supposed to implement the specified
functionality of the related process. After obtaining the result of the test, which is the
output of the program, we can evaluate the corresponding “defining” condition of the
hazard condition. If the defining condition is true, that implies the hazard is already
implemented in the code.

Given the hazard condition Ti and not Di where Ti is the test condition and not Di is
the defining condition, applying the above technique, we can generate a test data, say t,
to satisfy Ti, and then use t as the input to execute the corresponding program. Suppose
we get the result r, then we need to check whether the following condition is true:

TiðtÞ ) notDiðrÞ
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If the implication evaluates to true, that indicates the fact that the hazard is
implemented in the code. For example, considering the hazard condition:

some switch on a route has no position indication and not the start signal of the route is
restrictive.

Suppose it is formalized as

switch trail and not signal restrictive;

we generate a test data “true” for the boolean variable switch_trail, and use it to run the
corresponding program, say P. Assume we get the value “false” as the result for the
boolean variable signal_restrictive, we then substitute this value for the variable in the
hazard condition to check whether the following implication is true:

switch trail ) not signal restrictive:

Obviously, this is true because switch_trail is true and not signal_restrictive is true,
which means the hazard may happen. This indicates the existence of bugs in the
implementation of the related process specification. The same practice can be applied to
the other hazard conditions.

As far as test data generation from a hazard condition is concerned, we can treat the
hazard condition as a “normal” functional scenario derived from a process specifica-
tion, and then apply the test data generation criteria proposed in our previous publi-
cations [10–12]. Since there is no new discovery about this point in our research, we
omit the detailed discussions for brevity.

4 Experience and Difficulties

In this section, we first describe our experience of using SOFL in our project, and then
point out some difficulties we have faced. Some of the difficulties have already been
resolved through expert consultation, while a few still need to be addressed in the
future practice.

4.1 Experience

Our project is planned as a one-year project and our experience of using SOFL so far
can be summarized as the following points:

(1) When writing the semi-formal and formal specifications for a process, organizing
the post-condition as a disjunctive normal form can significantly help the analyst
(i.e., the person who writes the specification) write the specification, achieve its
good readability, and check its completeness. The reason is that each conjunctive
clause in the disjunctive normal form clearly defines a relatively independent
functional scenario, showing under what condition what output is expected.
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We found that the way also offers us a clear guideline by which we can rather
systematically think about what to write in the specification.

(2) The mechanism for decomposing a high level process into a low level CDFD for
defining its functionality in detail is effective to help us formalize some func-
tionally complex processes. In particular, when the formal description of the
process functionality inevitably involves the sequential operations, the decom-
position of the process into a CDFD is rather straightforward and helpful, because
the CDFD notation offers comprehensible graphical representation of sequential
operations, parallel operations, and some simple data flow loop structures. One
important thing in conducting the decomposition, however, is to keep the con-
sistency between the interface of the high level process and that of the CDFD
resulted from the decomposition.

(3) We found that the combination of semi-formal specifications and formal speci-
fications for our system is cost-effective. For some complex processes whose
functionality description requires necessary repetition of applying other processes,
writing a complete formal specification can be difficult and time-consuming. In
this case, we keep the description semi-formal in which only the process signature
is precisely defined while the pre- and post-conditions are described in natural
language.

4.2 Difficulties

We have also encountered some difficulties in applying SOFL, which include the
following aspects:

(1) SOFL does not allow the invocation of another process in the formal specification
of a process in order to avoid semantic ambiguity. But this may cause a difficulty
for the practitioners who have got used to programming style. How to properly do
abstraction in the formal specification to avoid the necessity of calling another
process is a challenge to industrial practitioners. To handle this challenge, we turn
to SOFL explicit specification. An explicit specification of a process is an abstract
program in which the normal program constructs, such as sequence, selection,
iterations, and process invocations, can be used to form the program structure and
the data types and logical available in the SOFL notation can be used to form
conditions and/or statements. However, since the explicit specification involves
considerable considerations on the design of algorithm, it may not be suitable for
abstract description of process functionality. Another perhaps more balanced way
is to use semi-formal statements to express the idea of using another process’s
functionality in the pre- or post-conditions of the process under specification.

(2) Another problem we have faced is that the formal specification may not be clear
enough for the programmer to understand the whole story of the entire system.
This will require the programmer to make creative efforts in designing the pro-
gram structure and the necessary algorithms. To help attack this difficulty, during
the process of writing the semi-formal specification, we try to describe the state
transitions of each device, which is declared as a data store variable in our

174 J. Luo et al.



specification, and to get the feedback from the domain expert to clarify the
ambiguities and to improve the specification. That is, we take an evolutionary
approach to finally complete the formal specification.

5 Related Work

There are some studies about formal methods in railway systems. Haxthausen and
Peleska present an abstract algebraic specification and verification for railway signaling
system with simple railway network module [13]. The SACEM system [14] used in the
RER line in Paris is a successful case of B method. Matra (now is part of Siemens) uses
B method in the designing of many similar railway control systems. One of the famous
applications is line 14 of RATP (Paris Metro), it used B method to refine the
requirement specifications and correct some requirement errors [15]. Zou et al. studies
how to formalize and verify the SRS (System Requirement Specification) of CTCS-3
(Chinese Train Control System 3) [16]. HCSP (Hybrid Communicating Sequential
Processes) is used to model each basic functional scenario and HHL(Hybrid Hoare
Logic) is used to describe the system attributes, and whether the specific HCSP model
satisfies the given HLL attributes is formally verified. They also studied how to
transform Simulink figures into HCSP and use the HHL to verify HCSP model. The
related research results have been applied successfully in the verification of CTCS-3
[17]. Horste et al. formalizes the functional requirements about the ETCS (European
Train Control System) [18]. The Ansaldo STS project uses model checking technique
to verify the RBC subsystem of ECTS [19]. Many Interlocking systems in lines
belonging to RATP (Paris Metro) and NYTC (New York City Transit Authority) were
also verified using a model checking tool from Prover technology [20].There have been
several years when CASCO started to study and try on formal methods, for the last
several years the research is mainly about formal design and verification of ZC sub-
system [21, 22]. And from this year, formal modeling and verification techniques have
been applied on the interlocking system.

After several years’ research before our current project using SOFL, we realized
that the formal methods used in the cases mentioned above are quite difficult for
practitioners in our company to use, and may not be able to deliver expected results in a
short period of time. We also found that the main difficulty for developing a highly
reliable and safe system lies in the requirements analysis and specification phases. Our
experience so far suggests that SOFL has a much better capability to help us effectively
carry out requirements analysis and specification construction, and benefit the subse-
quent activities in design, coding, testing, and verification of the system.

6 Conclusion and Future Work

We discussed how the SOFL specification language and its three-step approach to
writing formal specifications can be applied to an interlocking system in our company.
The project is planned for one year and still ongoing. Currently, we have finished the
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semi-formal specification and part of the formal specification during which many
ill-defined or incomplete requirements in natural language were identified. We are
continuing the construction of the formal specification and the derivation of hazard
conditions until the end of the project.

After the current project, we will try to carry out specification-based and hazard
condition-based testing and verification for the implementation. We will further
investigate how adequate test data can be generated from the specification and hazard
conditions, and how bugs can be effectively uncovered. If our current project succeeds
in terms of providing sufficient benefits or profits to our company, we will extend our
experience and practice to more railway signaling systems in the future.

Acknowledgment. This work was supported by CASCO. Shaoying Liu was also partly sup-
ported by JSPS KAKENHI grant Number 26240008.
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Abstract. The cooperative software, such as OSEK/VDX multi-tasks
software and SystemC multi-threaded software, has been widely applied
in the embedded system field. However, due to the flexible scheduling
and complex cooperations between tasks or threads, the reliability of
developed software is really difficult to be ensured by testing technique.
To overcome this problem, model checking technique as a potential solu-
tion has attracted great attention in software industry. Recently, many
model checking based methods have already been proposed and success-
fully applied in the verification of cooperative software, but most of them
focus on the non-deterministic scheduler based cooperative software such
as SystemC. The verification of deterministic scheduler based coopera-
tive software is still at preliminary stage. In this paper, we propose an
approach to verify this type of cooperative software. In our work, in order
to make the proposed approach more general, the famous OSEK/VDX
multi-tasks application is chosen as our target system. Furthermore, as
to make the proposed approach more scalable, the advanced SMT-based
bounded model checking is applied to carry out verification. We have
investigated the effectiveness of our approach based on a series of experi-
ments. The experiment results indicate that our approach can efficiently
verify the cooperative software with a deterministic scheduler.

1 Introduction

The cooperative software, such as OSEK/VDX [29] and SystemC [1], has been
widely applied in the embedded system field. In such software, the executions
of tasks/threads are usually conducted by a scheduler, and tasks/threads can
invoke application interfaces (APIs) or primitive functions to interact with each
other via scheduler. Moreover, the invoked APIs and primitive functions will
dynamically change the scheduling of tasks/threads. Compared with general
concurrent software, it is more difficult to ensure the reliability of cooperative
software using testing technique [8], because of flexible scheduling and complex
cooperations between tasks/threads. In order to overcome this problem, model
checking technique [2,17–19,22,33] as a potential solution has attracted great
attention in software industry.
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 181–200, 2017.
DOI: 10.1007/978-3-319-57708-1 11
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Fig. 1. Non-deterministic scheduler and deterministic scheduler.

Recently, for the non-deterministic scheduler based cooperative software,
many model checking based methods have already been proposed [4,11,14,32]
and successfully applied to verify practical programs such as SystemC multi-
threaded programs. In these existing methods, since running thread cannot be
explicitly fixed that is arbitrarily selected by scheduler, all of the possible coop-
erative states and interleavings of threads are checked the verification stage. For
example, as shown in Fig. 1, if SystemC scheduler is used to dispatch threads t1
and t2, there exist two possible scheduling orders, one is (t1, t2), and the other
is (t2, t1). In the verification stage, these two possible scheduling order will
be verified by existing methods. Moreover, in order to make verification more
explicit or accurate, in some works such as papers [4,11], scheduler are used to
determine runnable threads and cooperative states for omitting the unnecessary
verification states. Unfortunately, these existing methods are not suitable to ver-
ify the cooperative software with a deterministic scheduler such as OSEK/VDX
multi-tasks application. This is because, in such cooperative software, the run-
ning task can be explicitly fixed by deterministic scheduler. For example, as
depicted in Fig. 1, we assume that tasks t1 and t2 are currently in the ready
queue and the priority of task t1 is higher than task t2. If OSEK/VDX sched-
uler is used to dispatch these two tasks, there just exist one scheduling orders
that is (t1, t2). If we directly use existing methods to verify this type of coopera-
tive software, a lot of unnecessary interleavings of takes/threads will be checked
in the verification stage (the interleavings checked in the verification stage are
larger than the realistic interleavings in deterministic scheduler based coopera-
tive software). Furthermore, due to the unnecessary interleavings, the existing
methods will often find a spurious bug which makes verification inaccurate. In
order to accurately verify the deterministic scheduler based cooperative software
using model checking technique, in this paper we describe and develop a new
approach based on our previous work [25].

In our work, in order to make the proposed approach more general, the
famous OSEK/VDX multi-tasks application is chosen as our target system. Fur-
thermore, as to make the proposed approach more scalable, the advanced SMT-
based bounded model checking is applied to carry out verification.

In OSEK/VDX application, tasks are concurrently executed under the
scheduling of OSEK/VDX OS (a deterministic scheduler called static priority



SMT-based Bounded Model Checking for Cooperative Software 183

scheduler is adopted by OSEK/VDX OS to dispatch tasksm, in which a ready
queue is used to manage the scheduling order of tasks). Moreover, tasks within
application can invoke APIs to change the scheduling order and interact with
each other, e.g., activate a task. In order to apply BMC to efficiently check an
OSEK/VDX application, there are some challenges that should be addressed,
e.g., how to deal with the APIs invoked from tasks, and how to construct an
explicit transition system to reflect the executions of the application. In our app-
roach, we develop an execution path generator (EPG) as intermediate translator
to construct corresponding transition system for the target application. In EPG,
an embedded OS model that conforms to OSEK/VDX standard is used to dis-
patch tasks and respond to the invoked APIs. In addition, several optimization
strategies and an available tool named osek-bmc1 are also implemented in our
work.

There are two advantages in our approach. (i) EPG: we can construct an
accurate transition system based on the generated execution paths since OS
model is employed to explicitly determine the running task during generating
execution paths, and moreover, the behaviors of OS model will not be taken into
the verification because the OS model is embedded in the checking algorithm
level (the idea on embedding scheduler model in checking algorithm benefits
from papers [4,31]). (ii) SMT-based BMC: our approach can verify the complex
programs, since SMT-based BMC can handle a large number of states. The
contribution of the paper is that it can be considered as a guideline to verify
other types of deterministic scheduler based cooperative software using SMT-
based BMC technique.

To evaluate the efficiency of our approach, we have conducted a series of
experiments based on the implemented tool. In the experiments, the related
methods including Spin-based checking method [26] and Kratos [6] are consid-
ered as composition objects. Based on the experiment results, we find that our
approach can efficiently verify the deterministic scheduler based OSEK/VDX
applications.

Outline. The rest of the paper is structured as follows. The background of
OSEK/VDX is presented in Sect. 2. Based on the execution characteristics of
OSEK/VDX applications, the checking approach is shown in Sect. 3. As to eval-
uate our approach, some experiments are carried out in Sect. 5. The related work
are discussed in Sect. 6. Conclusion and future work are placed in Sect. 7.

2 Background of OSEK/VDX

2.1 OSEK/VDX OS

OSEK/VDX, a standard of automobile OS, has been widely adopted by many
automobile manufacturers to develop a vehicle-mounted OS, such as BMW,
Opel, and Volkswagen. In general, as shown in Fig. 2, an OSEK/VDX OS con-
sists of three primary process modules, scheduler module, synchronization event
1 osek-bmc homepage: http://www.jaist.ac.jp/∼s1220209/osek-bmc.htm.
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Fig. 2. The structure of OSEK/VDX OS.

module and shared resource module. In addition, these process modules also
provide many useful APIs for applications to change the scheduling order of
tasks, realize synchronous executions, and access shared resources. The process
modules of OSEK/VDX OS and corresponding APIs are as follow.

Scheduler Module. OSEK/VDX OS can process two types of tasks, basic
task and extended task. The states of a basic task consist of running state,
suspended state, and ready state. Compared with basic task, the extended task
can hold synchronization events and has an unique state called waiting state
(the state transitions of basic task and extended task are shown in Fig. 2). In
the scheduling process, the static priority scheduling policy with non-preemptive
and full-preemptive strategies is adopted by scheduler to conduct the executions
of tasks. Moreover, as shown in Fig. 2, scheduler manages a ready queue to indi-
cate the scheduling order of tasks (the head task in the ready queue will be
dispatched to executed by scheduler when running task is idle). Besides, sched-
uler can respond to four APIs (TerminateTask, ActivateTask, ChainTask, and
Schedule) that can be invoked by tasks to switch task states. For instance, if
the API ActivateTask(tk1) is invoked by running task, then scheduler will move
the activated task tk1 from suspended state to ready state.

Event Process Module. In the event process module, OSEK/VDX OS pro-
vides a synchronization mechanism for implementing synchronous executions
between tasks. Especially, only extended tasks can hold a definite number of
events, and events are the criteria for the switching of task states from running
state to waiting state or from waiting state to ready state. There are four APIs
(SetEvent, WaitEvent, ClearEvent, and GetEvent) that can be responded by
event process module, and tasks can invoke these APIs to implement the syn-
chronous executions. E.g., when the running task tk1 waits for the event evt1
using API WaitEvent(evt1), task tk1 cannot continue until the event evt1 is set
by other tasks using API SetEvent(tk1,evt1).

Resources Process Module. The priority inversion and deadlock are two
typical problems of common synchronization mechanism when several tasks
access the same shared resource with different priorities. In order to avoid
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these two problems, OSEK/VDX OS adopts the Priority Ceiling Protocol [3]
to coordinate the behaviors of accessing shared resources in the resource process
module. The resource process module supports two APIs (GetResource and
ReleaseResource) for tasks, and tasks can invoke these two APIs to construct
a critical section for accessing a shared resource.

2.2 Motivating Application and Discussion

As shown in Fig. 3, an application developed based on OSEK/VDX OS consists
of two files, one is source file, and the other is configuration file. The source
file, which can be developed by C programming language, is used to present the
concrete behaviors of the application. The configuration file is used to define
tasks, events, and resources.

Fig. 3. The motivating application.

2.2.1 Motivating Application
As to clearly comprehend the execution characteristics of OSEK/VDX appli-
cations, an example is discussed in this part. In the simple example shown in
Fig. 3, since only the attribute AUTOSTART2 of conTask is set to be TRUE, conTask
will be firstly moved to running state by scheduler and then conTask is exe-
cuted. There are two branches in conTask, one is to activate accTask, and the
other is to activate decTask (if a task is activated, scheduler will move the task
from suspended state to ready state, and the task is placed in the corresponding
queue). If the API ActivateTask(accTask) is invoked by conTask, scheduler will
be loaded to responds to the API. For this moment, the context switch of tasks
happens, since the priority of accTask is higher than conTask and the attribute
2 AUTOSTART: if the attribute AUTOSTART of a task is set to be TRUE, the task starts from
ready state in the initial state. Otherwise, the task starts from suspended state.
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SCHEDULE3 of conTask is set to be FULL. Therefore, scheduler will move conTask
to ready state and dispatch accTask to running state. In this branch, the task
execution sequence is conTask, accTask, conTask (the API TerminateTask()
is used to terminate the executions of a task, and the terminated task will be
moved from running state to suspended state by scheduler. If the running task
is terminated, scheduler will dispatch the head task in the ready queue to run).
Correspondingly, if the API ActivateTask(decTask) is invoked by conTask, the
task execution sequence is conTask, decTask, conTask in the other branch.

Based on the executions of the simple application, we can find the following
execution characteristics.

– Tasks within an application are concurrently executed based on the scheduling
of OSEK/VDX OS, and the running task can be explicitly determined by
OSEK/VDX scheduler.

– Tasks can invoke APIs to dynamically change the states of tasks, and the
changed task states will affect the scheduling order of tasks.

2.2.2 Discussion
There are several methods that can be considered to check the OSEK/VDX
applications using existing model checkers, e.g., we can use the model checker for
concurrent software to check OSEK/VDX applications. As to accurately check
an OSEK/VDX application using the model checker for concurrent software, all
of the tasks within the application can be regarded as concurrent processes,
and we can use some assistant statements to simulate the real executions of the
application. However, there are some disadvantages in this method. E.g., (i) a
lot of assistant statements such as branches will be verified. (ii) As to simulate
the executions of the application, we should clearly know the states of tasks.
Actually, for a complex application, it is difficult to clearly detect the states
of tasks due to the intricate scheduling behaviours of OSEK/VDX scheduler
and dynamic switches of task state caused by invoked APIs. Furthermore, for
a general application, tasks also can invoke APIs to synchronously execute and
access shared resources. It will significantly increase the checking complexity.

As to easily check an OSEK/VDX application using the model checker for
concurrent software, the efficient way is to insert an OS model such as scheduler
model in the constructed application model for responding to the invoked APIs
and conducting the executions of application (where, the constructed checking
model is a combination of application model and OS model). Nonetheless, in
this method the states corresponding to the OS model will be checked, since
the OS model is a part of constructed model. Moreover, it will increase the
number of states in the checking process, especially the state space explosion will
happen if the checked application invokes a lot of APIs (our experiments shown

3 SCHEDULE: if the attribute SCHEDULE of a task is set to be FULL, the task can be
preempted by higher priority tasks. Otherwise, the task will not leave running state
until the API TerminateTask , ChainTask or Schedule is invoked, or waits for a
synchronization event.
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in Sect. 4.1 have proved it). In this paper, we present an alternative approach
that can accurately and efficiently check OSEK/VDX applications using SMT-
based BMC, which will be demonstrated in the next section.

3 The Checking Approach for OSEK/VDX Applications

3.1 The Overview of Checking Approach

The key processes of our approach are shown in Fig. 4. If our approach receives
an OSEK/VDX application, it firstly calls C Intermediate Language (CIL) [24]
to interpret the behaviours of tasks written in complex C programming language
into the simple goto program. In the second step, to accurately construct a tran-
sition system, we develop an execution path generator (EPG) to generate all of
the possible execution paths for the given application. In EPG, the path gener-
ator is used to produce execution paths in symbolic way according to the given
loop bound and depth bound. The OS model corresponding to the OSEK/VDX
OS standard is employed to determine running task and respond to the invoked
APIs when meeting an API in the process of constructing an execution path
(Note that, the states of OS model will not be poured into execution paths,
since OS model is embedded in EPG to perform scheduling behaviours). Then,
the transition system corresponding to the target application will be constructed
based on the generated execution paths. Finally, the SMT solver Z3 [30] is used
to check whether the constructed transition system satisfies a given property.

Fig. 4. The key processes of checking approach.

3.2 Task CFG

In the development of OSEK/VDX applications, developers can implement an
application using C programming language. However, C code is often too com-
plex to analyze in the static analysis. To automatically sequentialize an applica-
tion developed in C programming language, like model checker CBMC [20], the
application is firstly interpreted into the simple goto program based on the CIL,
where complex structures such as loops and structs in C code are interpreted as
branch statements with goto labels and general variables. Then, the behaviours
of all tasks within the application are extracted and constructed as correspond-
ing CFGs. The description of task CFG has been represented in Definition 1. For
example, as shown in Fig. 5, we will construct three CFGs to represent each task
included in motivating application.



188 H. Zhang and Y. Lu

Fig. 5. CFGs of tasks shown in motivating application.

Definition 1: The CFG of a task is a tuple Ωtid = (N tid, ntid
0 , ntid

ς , Σtid, Rtid,
V tid, Ltid). Where, tid is the identifier of tasks. N tid is the set of nodes, ntid

0 is
the start node, ntid

ς is the end node. Σtid is the set of statements of task tid, the
expression of a statement α∈Σ is as follows:

α ::= condition | assignment | goto | assertion |API

R⊆N tid×N tid is the set of edges expressing a directed graph. V tid = Vglobal ∪
V tid

local is the set of variables. Ltid :Rtid →Σtid is the labelling function from edge
(n,n′)∈ Rtid to a statement α ∈ Σtid, and Ltid(n,n′) denotes the statement α
mapped in the edge (n,n′), where n, n′ ∈N tid and n′ is the successor node of n.

3.3 OSEK/VDX OS Model

According to OSEK/VDX OS specification, we construct an OS model which
is a combination of schedule model, event process model, and resource process
model, as shown in Fig. 6. The definition of OSEK/VDX OS model is stated
below.

Definition 2: The OS model is a tuple O = (N , n0, nς , R, F , L, D). Where N
is the set of nodes, n0 is the start node, nς is the end node. R⊆N×N is the set of
edges expressing a directed acyclic graph (DAG). F is the set of functions defined
in the OSEK/VDX OS specification. L : R → F is the labelling function from
edge (n,n′)∈ R to a function τ ∈ F . D = {runTask, readyQueue, suspendList,
waitList, evtBitArray, resAccessList} is the set of data structures defined in
the OSEK/VDX OS specification.

In D of OS model, runTask which is a variable is used to store the tid
of running task (tid is task identifier). Since several tasks can share a same
priority in the OSEK/VDX OS, the readyQueue which is composed of queues
with different priorities is used to store the tids of tasks in the ready state.
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Fig. 6. OSEK/VDX OS model.

The data structures suspendList and waitList are used to store the tids of tasks
in the suspended state and waiting state respectively. evtBitArray which is a
matrix is used to store the event states of extended tasks (eid is event identifier).
resAccessList which is composed of lists is used to indicate the state of resources
accessed by tasks (rid is resource identifier). Note that, in the OS model the
execution path � for responding to an API is a function sequence which starts
from node n0 and ends at node nς , and the functions within � will perform the
concrete operations on the data structure D if OS model is employed to respond
to an API.

3.4 EPG and Transition System

To verify a system using BMC, the challenge is how to use a transition system
to reflect the executions of the target system. Based on the example shown in
Fig. 3, we have found that the different APIs in different branches will lead to
different task execution sequences, and the context switch of tasks will happen
when an API is invoked. We have tried several ways to construct a transition
system for OSEK/VDX application. Finally, we find that the best way is to
explore the execution paths for constructing the transition system, because the
execution trace of tasks in an execution path can be explicitly decided based
on the scheduling of OS model. Based on this idea, we have developed an EPG
as intermediate translator to generate the execution paths, the key processes of
EPG are as follow,

p1. construct an execution path along the trace of running task CFG, and map
the explored statement in the execution path.

p2. if meet a branches, select one branch to continue, and push the other branch
and current OS data into stack.
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Algorithm 1. Execution Paths Generator
Input: Tasks CFGs, configuration file of application
Output: Execution paths π1, π2, · · ·
1: initialize data structure set D within OS model according to application config. file
2: pcs := [n1

0, . . . , nm
0 ], where m is the number of tasks

3: i :=0, where i is the index of state of execution path
4: j :=1, where j is the index of execution paths
5: execute OS model function Start() to compute runTask
6: if runTask = null then
7: goto 30
8: end if
9: tid := tid of running task
10: Δ := {(n, n′) ∈ CFGtid|n = pcs[tid]}
11: (n, n′):= one of the element of Δ
12: Δ:=Δ \ {(n, n′)}
13: if |Δ| > 0 then
14: D →osd, the operator “→” represents mapping the data within D into osd
15: for all (n, n′) ∈ Δ do
16: elem:=(pcs, osd, i, (n, n′)), stack.push(elem)
17: end for
18: end if
19: if Ltid(n, n′) is an API then

20: if Ltid(n, n′) is TerminateTask() then
21: pcs[tid]:=the start node of task tid
22: end if
23: compute the responding trace � in OS model
24: call corresponding functions within � to compute D within OS model
25: end if
26: Ltid(n, n′) �→ 〈si, si+1〉, the operator “ �→” represents mapping a task statement in the edge

〈si, si+1〉 of execution path πj

27: i++
28: update pcs[tid] with target node n′ of edge (n, n′)
29: goto 6
30: if stack.empty() = true then
31: output(πj)
32: goto end
33: end if
34: output(πj)
35: (pcs, osd, i, (n, n′)):=stack.pop()
36: πsub:=GetSubpath(πj ,i)
37: j++
38: πj :=πsub

39: osd →D, the operator “→” represents mapping the values within osd into D of OS model
40: tid := runTask of D within OS model
41: goto 19
42: return

p3. if meet an API, call OS model to respond to the API and compute the
running task. If running task is idle, pop an element from stack to con-
struct the next execution path; otherwise, repeat p1, p2 and p3 until stack
is empty.

The details of EPG are shown in Algorithm 1. In Algorithm 1, the element of
stack is a tuple elem = (pcs, osd, i, (n, n′)), where pcs which is an array is used
to record the current position of task CFGs, osd which is the set of values is used
to record the data within D, i which is variable is used to record the position
of branches, (n, n′) is one of the branches. Since stack is used to construct the
execution paths, the execution path πj and the next execution path πj+1 will
hold the same sub-path which starts from initial state and ends at the position of
branch popped from stack. The function GetSubpath(πj , i) is used to extract the
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same sub-path from the execution path πj for constructing the next execution
path πj+1. Δ which is a set is used to store the edges whose previous node n is
equal to the current position of running task.

Based on the EPG, all of the execution paths with respect to the target
application can be generated. Where, a generated execution path π is the task
statement sequence π = s0

a−→ s1
a−→ s2

a−→ s3
a−→ · · · , s is the state of execu-

tion path, which consists of the values of the global variables and local variables
declared in the application. E.g., for the simple cruise control application, EPG
will generate two execution paths. There are some advantages in EPG, (i) all of
the execution paths can be generated, (ii) we can construct an accurate tran-
sition system based on the generated execution paths since the embedded OS
is used to compute the running task in the process of generating an execution
path, (iii) the behaviors of OS model will not be involved in the execution path
since it is a component of EPG.

Based on the generated execution paths, we can construct an accurate tran-
sition system for the target application. Here, we use function [[πj ]] to convert
an outputted execution path πj into CNF expression in SMT-LIB format. The
CNF expression for an execution path πj is defined in the formula (1), where
L〈si,si+1〉 represents a task statement α mapped in the edge 〈si,si+1〉 of execution
path πj . According to the formula (1), we can obtain the transition system [[M ]]
when translating all of the execution paths into CNF expression. The expression
of transition system [[M ]] is defined in the formula (2), where I(s0) which is the
initial function is used to initialize each variable v ∈ ⋃

V tid in the initial state,
w is the number of execution paths.

[[πj ]] :=
|πj |−1∧

i=0

[[L〈si,si+1〉]] (1)

[[M ]] := I(s0) ∧
w∨

j=1

(
|πj |−1∧

i=0

[[L〈si,si+1〉]]) (2)

3.5 Bounds

Based on the EPG, we can construct a transition system for a given applica-
tion. However, there is a limitation in EPG, that is, EPG cannot terminate its
executions if the given application contains infinite execution paths or loops. As
to terminate the executions of EPG, two types of bounds are considered in our
approach.

Depth Bound. In OSEK/VDX applications, tasks can invoke the API Activate-
Task(tid) or ChainTask(tid) to activate a terminated task. It will possibly result
in an infinite execution path in an application if two tasks within application
mutually activate each other. For this type of applications, our approach provides
a depth bound to limit the depth of infinite execution paths.

Loop Bound. In our approach, the computation of variables is performed by
the back-end solver Z3 rather than EPG. Thus, in the process of constructing
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Fig. 7. The unfolding processes for loops, where loop bound is set to 2.

execution paths, the loop-condition cannot be decided by EPG. In order to
terminate the execution of EPG and avoid the redundant translations of loops
to be translated into the transition system, as shown in Fig. 7, like other bounded
model checkers such as CBMC [16], a loop bound is provided. Especially, our
approach also can judge whether a loop has been unfolded enough or not in the
verification, if not, the loop will be reported.

3.6 Given Property

Based on the EPG and bounds, we can construct a transition system for the
given application which contains infinite execution paths and loops. In this part,
we will discuss what kinds of given properties can be checked by our approach.

Variable Property. In the practical checking process, we usually use assertion
statements to check an interesting variable declared in the application. Based
on the expression of transition system, we can find that all of the executions
of target application have been translated into the transition system. Thus, our
approach can be used to check variable property using assertion statement.

LTL Property. In addition to assertions, the given property which holds tem-
poral operators is frequently used to check an application. For instance, we want
to check whether the value of a variable will be changed to be zero in the future.
To check such type of property, the property specified in Linear Temporal Logic
(LTL) can be accepted by our tool. The conjunctive expression ψ of translation
system and given property f specified in LTL is defined in the formula (3), where
k is the state number of the longest execution path. The details about how to
use BMC to check LTL property have been stated in the paper [7].

[[ψk]] := I(s0) ∧
w∨

j=1

(
|πj |−1∧

i=0

[[L〈si, si+1〉]]) ∧ ¬fk (3)
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Fig. 8. Mapping OS data into path states.

OS Data Property. When an application runs on the OSEK/VDX OS, it is dif-
ficult to judge the execution situations of the application, since the executions of
OSEK/VDX applications are conducted by the scheduler, and tasks within appli-
cation can invoke APIs to synchronously execute and access shared resources. As
to clearly detect the execution situations of an application, the states of tasks,
events, and resources are often considered as a checking point. To check this type
of property (which is named as OS data property in our paper), the transition
system should hold the data within D of OS model. In our approach, as shown
in Fig. 8, the OS data is mapped into each state of execution paths by EPG
when constructing execution paths. Based on the mapping process, the OS data
property can be checked by our tool, e.g., we can check whether the running
task will be moved into ready queue after ActivateTask(tid) is invoked.

4 Optimization of Checking Approach

4.1 Reduction of Execution Paths

Based on the given example shown in Fig. 3, we have found that the different
APIs in different branches will lead to different task execution sequences. There-
fore, as to accurately construct the transition system, we have to explore all of
the execution paths. However, if the target application holds a lot of branches,
it will slow down the performance of our approach. Actually, for the general
branches which do not hold the APIs, we do not need to explore these branches
in the process of constructing execution paths. In our approach, as shown in
Fig. 9, in order to reduce the number of execution paths, we use static single
assignment (SSA) form [12] to combine the branches which do not hold APIs.

4.2 Acceleration of Bug Detection

To quickly detect bugs from target applications according to the given properties,
two acceleration strategies are proposed in our approach.

The first strategy named assert-guided is applied in the process of construct-
ing execution paths. As shown in the left side of Fig. 10, the right-hand branch
within a task CFG holds an assertion statement. In our approach, the right-hand
branch will be firstly selected by EPG to generate execution paths. Based on
this process, in the verification stage, the assertion will be checked in advance.
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Fig. 9. The SSA form of branches

Fig. 10. Assert-guided and scheduling-accelerated strategies for bug detection.

The second strategy named scheduling-accelerated is applied in the schedul-
ing queue. If two tasks in the ready queue are independent, we will swap the
execution order of these two tasks in order to make the task which holds the
assertion statement to be firstly executed, as shown in the right side of Fig. 10.
This strategy benefits from the partial order reduction (POR) [10]. However,
compared with the general POR technique, the APIs and priorities of tasks
should be considered in the swap process, because APIs and priority will affect
the scheduling order of tasks. We have summarized the swap condition based
on some examples, the swap condition is: if two adjacent tasks locating at the
same priority-queue are independent and just hold the APIs which will not lead
to the rescheduling point (the APIs have been labelled with ‘∗’ in OS model),
the execution order of these two tasks can be swapped in the scheduling queue.

4.3 Non-deterministic Input

In the OSEK/VDX application, tasks often get a value from a sensor. However,
it is difficult to determine the values inputted from sensors in the verification,
since the values are usually in some ranges. In our approach, we can easily imple-
ment the non-deterministic inputs, because the advanced SMT solver is used to

Fig. 11. The non-deterministic inputs and verification.
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perform the verification. For example, as shown in Fig. 11, we can translate the
program into CNF formulae, and then employ Z3 to solve the program.

5 Experiment and Evaluation

To evaluate our approach, we have conducted many experiments using the imple-
mented tool osek-bmc. In the experiments, related methods including Spin-based
checking method and Kratos [6] are considered as comparison objects. All of the
experiments are conducted on the Intel Core(TM)i7-3770 CPU with 32 G RAM,
and we set the time limit and memory limit to 600 s and 1 GB respectively. In
the result Tables 1 and 2, #t is the number of tasks, #l is the number of loops
with APIs, #s is the number of explored transitions. “ Mb” and “time” are the
memory and time consumptions measured in Mbyte seconds, respectively.

5.1 Comparison to Spin-Based Checking Method

As to accurately check OSEK/VDX applications using Spin [23], we developed
an OSEK/VDX OS model with promela, and the developed OS model as a spe-
cial process is inserted into checking model to respond to the invoked APIs and
conduct the executions of tasks (where, all of the tasks within the application and
OS model are regarded as the process type). Moreover, channel is employed to
simulate the interactive behaviors between OS model and application model. In
this part, we will evaluate the checking performance between Spin-based check-
ing method and our approach. All of the experiment results have been listed
in Table 1. In the shown experiments, we investigated three aspects including
task number, API number, and loop number. Note that, in the experiments the
jSpin is selected as comparison object, and the “C complier” is configured to
“-DVECTORSZ = 16384 -DBITSTATE”, the max depth is set to “20,000,000”.

There are some noticeable results in the Table 1. In all of the conducted
experiments, Spin-based checking method will check more states than osek-bmc.
Moreover, if we increase the task number (lines 1–4) and APIs number (lines
5–8), Spin will run out of memory and time (line 4 and 8). Compared with Spin-
based checking method, our approach can successfully check these examples with
lesser states, and spends lower cost (time and memory) than Spin. It is easy to
explain why our approach is excellent in the verification. In Spin-based checking
method, since the OS model is a part of constructed checking model, all of the
states with respect to both tasks and OS model will be stored in the memory in
the checking process. In addition, Spin will not only check the behaviors of tasks
but also verify the OS model behaviors. In contrast with Spin-based checking
method, (i) in our approach the OS model is embedded in the EPG to conduct
the executions of application, that is, the executions of OS model will not be
taken into the verification, (ii) our approach just puts one execution path in
the memory when checking an application, and (iii) the advanced SMT solver is
employed to check obtained transition system. These efforts make our approach
much faster than Spin on handling the same application.
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Table 1. Spin-based checking method VS our approach (osek-bmc)

Benchmark Size Spin osek-bmc

#t #l Loop #API #s Mb Time(s) Result #s Mb Time(s) Result

bound

1 passCnt1 4 0 - 4 480 755 0.19 sat 18 2.13 0.093 sat

2 passCnt2 10 0 - 10 137225 768 3.76 sat 46 2.13 0.097 sat

3 passCnt3 bug 15 0 - 15 670176 798 17.6 unsat 29 2.14 0.231 unsat

4 passCnt4 bug 20 0 - 20 - M.O. T.O. - 41 2.15 0.301 unsat

5 increAPI1 bug 10 1 10 200 2955686 832 59.9 unsat 333 2.23 2.923 unsat

6 increAPI2 bug 10 1 20 400 5905975 891 116 unsat 663 2.24 6.130 unsat

7 increAPI3 bug 10 1 30 600 8897424 937 174 unsat 993 2.27 10.24 unsat

8 increAPI4 bug 10 1 40 800 - M.O. - - 1323 2.31 15.23 unsat

9 cyclic1 6 16 5 86 4025 757 0.26 sat 605 2.41 10.76 sat

10 cyclic2 9 28 10 289 21803 761 1.31 sat 1135 2.61 53.51 sat

11 cyclic3 12 40 10 412 116432 768 3.97 sat 939 2.80 94.94 sat

12 cyclic4 15 56 10 575 1110057 799 29.4 sat 1239 3.06 198.4 sat

However, if the target application contains a few tasks but many loops with
APIs (lines 9–12), Spin will defeat our approach in time consumption. This is
because, in our approach all of the loops with APIs will translated into branches
with APIs under the loop bound. Therefore, when the target application holds
a lot of loops with APIs, our approach will check a large number of execution
paths and a large number of the same sub-paths will be repeatedly verified in the
verification, which will slow down the performance of our approach. In contrast
with our approach, in Spin-based checking method, loops will not be unfolded
in the checking process.

Based on the shown experiments, there are two important evaluation results.
(i) For the simple application which contains a few tasks (less than 15) but many
loops, Spin-based checking method will spend more memory than our approach
but faster than our approach. (ii) For the complex application which contains
many tasks and APIs, our approach is more efficient than Spin-based checking
method. According to the above evaluation results, we would say that, for the
applications which hold a few tasks but many loops, the Spin-based checking
method is enough to handle them. However, for the complex applications, we
should use our approach to verify these applications.

5.2 Comparison to Kratos

Kratos is a model checker for checking the safety property of System C program
with assertions, which is an implementation of the ESST technique [4] with POR.
In Kratos, the SystemC scheduler [15] is embedded in the checking algorithm
to conduct the executions of threads, and the predicate abstraction technique
is used to find bugs. Although the scheduling policy between OSEK/VDX and
SystemC is different, there is one kind of OSEK/VDX or SystemC programs



SMT-based Bounded Model Checking for Cooperative Software 197

that can be checked by both our approach and Kratos without any modifica-
tions, e.g., the program in which the threads are synchronously executed and
only one thread is in the runnable or ready state during running. As to evalu-
ate the effectiveness of our approach, we have conducted several experiments.
The benchmarks used in the experiments are selected and adapted from Kratos
homepage (note that, the selected benchmarks are fair to Kratos and our app-
roach, because all of them represents the same scheduling execution behaviors).
The experiment results have been shown in Table 2.

Table 2. Kratos VS our approach (osek-bmc)

Benchmark Size Kratos osek-bmc

#t #l Loop bound #API #s Time(s) Result #s Time(s) Result

1 token ring3 3 3 2 9 23 0.27 sat 151 1.43 sat

2 token ring7 8 8 3 21 43 525 sat 389 2.93 sat

3 token ring9 10 10 4 24 - T.O. - 573 4.78 sat

4 token ring9x 10 10 unbound 24 53 13.38 sat - - -

5 token ring11 12 12 5 36 - T.O. - 889 7.96 sat

6 token ring11x 12 12 unbound 36 63 561 sat - - -

7 transmitter4 bug 5 5 5 9 24 25.1 unknown 108 2.51 unsat

8 transmitter4x bug 5 5 unbound 9 20 0.48 unsat - - -

9 token Ring 12 12 100 36 - T.O. - 15881 596 sat

10 transmitter8 bug 9 0 - 16 28 1.42 unsat 15 0.19 unsat

11 transmitter9 10 0 - 18 31 11.62 sat 38 0.08 sat

12 transmitter10 bug 11 0 - 20 34 16.61 unsat 19 0.20 unsat

There are some interesting results in the result table. To the small bench-
mark (line 1), Kratos can report the checking result with a shorter time and
smaller states compared with our approach. However, when we increase the size
of the programs (line 2), Kratos takes longer to verify the target programs and
even runs out of time (line 3). This is an amazing result, since in our approach
all of the execution paths corresponding to the loops with APIs are constructed
according to the set bound, and these constructed execution paths are verified in
the checking process, our approach should spend more time to check more states
compared with Kratos, because the large block encoding technique [13] is used
by Kratos to reduce the number of paths. As to confirm the results, we then
conducted seven experiments (lines 3–9). In these experiments, the benchmarks
which contain unbounded and bounded loops are checked by Kratos and our app-
roach (where, the unbounded loop is like while(true) {· · · }). The results show
that, to the same programs (e.g., lines 3 and 4), if we set the loop-condition
to be true (unbound), Kratos is efficient, however, if we set a bound to the
loops, Kratos is not efficient compared with our approach. Based on the experi-
ment results, we would like to report that, (i) Kratos is an exhaustive technique
in checking the unbounded loop programs, since we do not need to consider
the loop bound when using predicate abstraction technique to verify a program
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(in bounded model checking, we usually need to set a bound for loops). However,
(ii) for the bounded loop programs, our approach is better than Kratos, because
we do not need to speed extra time to refine the abstract when using BMC to ver-
ify a program. Besides, we also conducted some other experiments (line 10–12).
The experiment results show, our approach is more efficient than Kratos in
checking the programs which do not hold branches.

In addition, compared with Kratos, our approach holds the following advan-
tages in checking the safety property of OSEK/VDX applications. (i) our app-
roach supports both non-preemptive and full-preemptive scheduling strategies.
(ii) The property specified in LTL formula and OS data property can be checked
by our approach. To the best of our knowledge, Kratos for now does not sup-
port the full-preemptive scheduling strategy and LTL property. In summary, our
approach is a more complete technique to check OSEK/VDX applications com-
pared with Kratos, and our approach is more efficient than Kratos in checking
the OSEK/VDX applications which do not hold the unbound loops.

6 Related Work

As to verify complex SystemC programs, Cimatti et al. describe a new method
named ESST [4] based on the predicate abstraction [21]. Our approach is similar
to this method in embedding scheduler model in the checking algorithm, but we
handle the OSEK/VDX applications instead of SystemC, use BMC instead of
predicate abstraction. The challenge in our research is how to construct an accu-
rate transition system for the cooperative software with a deterministic sched-
uler, which is different from the ESST technique. In this paper, we have compared
our approach with ESST based on the several experiments. The comparison
results shown in Sect. 4.2 indicate that, to the same benchmarks which repre-
sent the same scheduling execution behaviors, the ESST method is an exhaustive
technique in checking the unbounded loop programs, but is not efficient to verify
the programs which hold many bounded loops. Compared with ESST method,
our approach is more efficient to detect bugs from the programs which holds
many bounded loops, but the completeness of our approach for the unbounded
loop programs is under the set bound.

In the field of BMC [7], a lot of researches are proposed and have been
successfully applied to detect subtle errors from the complex system. However,
most works focus on the sequential programs [5] and general multi-threaded
programs [27]. In these existing works, the interactive behaviors between threads
and scheduler are not taken into account. If we use these existing works to
check the cooperative software with a deterministic scheduler, it will significantly
increase the checking complexity.

To verify the design model of OSEK/VDX applications, the paper [28]
proposed a method to check the timing property based on the UPPAAL [9].
However, to the best of our knowledge, there is no work that considers a SMT-
based BMC method to check the safety property of the OSEK/VDX applica-
tions except our previous work [25]. The main contribution of our paper is that,
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we firstly apply SMT-based BMC in the verification of the cooperative software
with a deterministic scheduler.

7 Conclusion and Future Work

In this paper, based on the OSEK/VDX applications, we presented an approach
that can formally verify the cooperative software with a deterministic scheduler
using SMT-based BMC. We have investigated the effectiveness of the approach
using implemented tool based on a series of experiments. The experiment results
shown that our approach is capable of checking the safety property of determin-
istic scheduler based OSEK/VDX applications. We also compared our approach
with other methods. The comparison results indicate, in contrast with Spin-
based checking method, our approach can handle more complex program which
hold a lot of tasks and APIs. In addition, compared with ESST technique, our
approach is a more complete technique to check the cooperative software with
a deterministic scheduler. In the future, we will extend our work to verify other
types of deterministic scheduler based cooperative software, such as round robin
scheduler based multi-tasks/threaded software.
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Abstract. Distributed mobile computing has been recently an active
field of research, resulting in a large number of algorithms. However,
to the best of our knowledge, few of the designed algorithms have been
formally model checked. This paper presents a case study of how to spec-
ify and model check a given robot algorithm. We specify the system in
Maude, a rewriting logic-based programming and specification language.
To check the correctness of the algorithm, we express in LTL the proper-
ties it should enjoy. Our analysis leads to a counterexample which implies
that the proposed algorithm is not correct.

Keywords: Automatic verification · Maude · Mobile robots · Model
checking · Perpetual exploration

1 Introduction

For the last two decades, the Distributed Computing community has been inves-
tigating what can be solved by a team of autonomous mobile robots. Following
a different approach compared to the AI and Robotic communities, researchers
started to propose formal models for these systems and design algorithms solving
some predefined tasks. Most papers focus on the computability of mobile robots
and consider teams of identical robots with limited capabilities; one of the main
goals is usually to find the weakest assumptions (on the robots and/or on the
model) that make a problem solvable or unsolvable.

There exist many different models, but they can be classified in two main
classes: (i) continuous models in which entities move on a continuous space (1D [9],
2D [7,10], or even 3-dimensional space [11]), and (ii) discrete models in which
movement are restricted on a graph [3,4,6]. For both cases, a large variety of tasks
have been considered such as gathering, pattern formation, scattering, flocking for
continuous environments, and gathering, exploration, patrolling for discrete envi-
ronments. For more details, we invite the interested reader to check the book [7]
of Flocchini et al. that surveys many results (mostly on continuous models).

Any publication of mobile robot algorithms usually includes proofs of cor-
rectness. Most of these proofs are handmade and may consist of a large number
of cases, especially when the algorithm is given explicitly as a set of transition
rules (e.g. [3]) in opposition to a more abstract algorithm where movements are
c© Springer International Publishing AG 2017
S. Liu et al. (Eds.): SOFL+MSVL 2016, LNCS 10189, pp. 201–219, 2017.
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implicitly given by some mathematical rules (e.g. [6]). This is not easy and not
trustful to check the correctness of these algorithms only by hand. We believe
that the research field of distributed mobile robots is now mature; some main
models have emerged and have been adopted by the community. It is time to
study how to automatically verify such algorithms and this paper presents an
example of automatic verification.

The main contribution of our research consists in using the model checking
approach to automatic verification of a perpetual ring exploration algorithm. We
formally specify the algorithm in Maude, a language and a system supporting
executable specification and declarative programming in rewriting logic. The
two significant properties which the algorithm should satisfy have been specified
as Linear Temporal Logic (LTL) formulas [8]. We then model check the two
properties for the algorithm with LTL model checker in Maude. As the result
of our model checking for the algorithm, a counterexample has been found.
This states that the algorithm is not correct since it does not satisfy the two
properties.

It is worth mentioning that this algorithm has already been model checked in
a recent paper using DiVinE and ITS tools [2]. While the results are fortunately
similar1, we propose here a different modeling approach. Bérard et al. [2] con-
sider robots independently; each of them being modeled by its own automaton.
Differently, we consider only global configurations of the system. Our method
leads to slightly faster model checking. Both contributions use LTL to state the
properties that must be satisfied by the algorithm, but the model checking tool
is different.

Outline. Section 2 proposes a brief introduction to Maude. Section 3 describes
the model, the problem, and the algorithm that is analyzed. Section 4 provides
the formal specification of the protocol in Maude. Section 5 explains how to
check its correctness and shows the counter-example. Section 6 finally concludes
the paper and brief gives some future research directions.

2 Maude

Maude is a rewriting logic-based programming and specification language and
equipped with a powerful system (or environment) [5]. Rewriting logic makes
it possible to naturally specify dynamic systems, and the Maude system has a
linear temporal logic model checker. Therefore, Maude allows to model check if
dynamic systems specified in Maude enjoy properties expressed in LTL. A simple
example is used to briefly describe Maude and its LTL model checker.

The simple system is a ring-shaped network consisting of four nodes whose
identifications are 0, 1, 2, and 3 clockwise (see Fig. 1). There is one mobile robot
in the system, located at one node. Initially, the robot is located at node 0. We
take two versions of the system into account: System 1 and System 2. System 1
1 We confirm the incorrectness of the algorithm by obtaining the same counter-

example. Any other result would be worrisome.
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Fig. 1. Initial configuration of the system.

has four transitions: if the robot is located at node N , then one of the four transi-
tion moves the robot at node (N +1) mod 4. System 2 has four more transitions
as well: if the robot is located at node N , then one of the four transition moves
the robot at node (N − 1) mod 4. We take two properties into account. One
property is that the robot never visits node 4, and the other property is that the
robot visits node 3 infinitely many times. The two properties are denoted nv4
and v3im, respectively. nv4 is a safety property, while v3im is a liveness property.

The state in which the robot is located at N is expressed as term {N}. First
we declared the following functional module:

fmod NAT+MOD4 is

sort NatMod4 .

ops 0 1 2 3 4 : -> NatMod4 [ctor] .

op inc : NatMod4 -> NatMod4 .

op dec : NatMod4 -> NatMod4 .

eq inc(0) = 1 . eq inc(1) = 2 . eq inc(2) = 3 . eq inc(3) = 0 .

eq dec(0) = 3 . eq dec(1) = 0 . eq dec(2) = 1 . eq dec(3) = 2 .

endfm

where NatMod4 is a sort, 0, 1, 2, 3 and 4 are constants of NatMod4, and inc and dec

are operators that are defined in the following equations. The constants 0, 1, 2 and 3

of NatMod4 are used to denote the node identifications. The constant 4 of NatMod4 is
used for expressing the property nv4. ctor stands for constructor, meaning that the
operators concerned are used to construct data. The operators inc and dec are the
ordinary ones for natural numbers modulo 4.

The following module CONFIG is declared:

fmod CONFIG is

pr NAT+MOD4 .

sort Config .

op {_} : NatMod4 -> Config [ctor] .

endfm

The module is imported in the protecting mode. As written, {N} denotes the state
in which the robot is located at node N.

The four transitions in System 1 can be described as the following rewriting rule:

rl [rr] : {X} => {inc(X)} .
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where rr is the label of the rule. Note that the rule has four instances for N = 0,
1, 2 and 3. The other four transitions in System 2 can be described as the following
rewriting rule:

rl [lr] : {X} => {dec(X)} .

The two rewriting rules are declared in the following module SYSTEM:

mod SYSTEM is

inc CONFIG .

var X : NatMod4 .

rl [rr] : {X} => {inc(X)} .

rl [lr] : {X} => {dec(X)} .

endm

For System 1, the second rule is commented out or deleted.
To express the two properties in LTL, we need to prepare one proposition (at N)

checking if the robot is located at node N in a given state. The proposition is declared
in the following module SYS-PROP:

mod SYS-PROP is

pr SYSTEM .

inc SATISFACTION .

subsort Config < State .

op at_ : NatMod4 -> Prop .

var X : NatMod4 .

var C : Config .

var P : Prop .

eq {X} |= (at X) = true .

eq C |= P = false [owise] .

endm

SATISFACTION is one module provided in the file model-checker.maude available in
the Maude distribution. In the module, model satisfaction relation |= and some more
are declared. SATISFACTION is imported in the including mode. The first equation in
the module says that (at X) holds in the state {X}. owise stands for otherwise. The
second equation in the module says that (at X) does not hold in any other states.

The two properties are defined in the following module SYS-FORMULA:

mod SYS-FORMULA is

inc SYS-PROP .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

ops nv4 v3im : -> Formula .

eq nv4 = [] ~(at 4) .

eq v3im = [] <> (at 3) .

endm

The operator [] is the always temporal operator, and <> is the eventually tem-
poral operator. [] ~(at 4) says that the robot never visits node 4, and [] <> (at 3)

says that the robot visits node 3 infinitely many times. The two properties are model
checked as follows:
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red in SYS-FORMULA : modelCheck({0},nv4) .

red in SYS-FORMULA : modelCheck({0},v3im) .

The Maude LTL model checker concludes that System 1 enjoys both properties,
while System 2 enjoys nv4 but does not v3im. The counterexample shown is as follows:

result ModelCheckResult: counterexample({{0},’rr}, {{1},’rr} {{2},’lr})

saying that once the robot moves to node 1 from node 0, the robot always moves
clockwise when it is located at node 1 and always moves counterclockwise when it is
located at node 2, never visiting node 3. If we assume Strong Fairness of transitions to
model check v3im, then even System 2 enjoys v3im, an extended version of the Maude
LTL model checker that facilitates model checking liveness properties under fairness
has been developed [1].

3 Exclusive Perpetual Exploration of the Ring

In this paper, we consider the exclusive perpetual exploration of the ring and we analyze
one of the first algorithm proposed to solve this problem. More specifically we focus on
the algorithm designed for three robots2 by Blin et al. [3].

In the remaining of this section, we present successively the model, the problem,
and the algorithm under study. For each part, a more complete description can be
found in the original paper [3].

3.1 Model

This model description is adapted from [4] for our specific context. The ring is anony-
mous, that is, there is neither node nor edge labeling. The robots are identical, i.e.,
they are indistinguishable and all execute the same algorithm. Moreover, the robots
are oblivious and disoriented, meaning that they have no memory of past actions, and
they share no common orientation (no chirality).

The robots cannot explicitly communicate, but have the ability to sense their envi-
ronment and see the relative positions of the other robots, in their local coordinate
system. Robots follow a three-phase behavior: Look, Compute, and Move. During its
Look phase a robot takes a snapshot of all robots’ positions. The collected information
(position of the other robots in the egocentric view) is used in the Compute phase
during which the robot may decide to move or stay idle. In the Move phase, the robot
may move to one of the two adjacent nodes, as computed in the previous phase. The
moves are assumed to be instantaneous which means that, during a Look phase, robots
can be located on nodes only.

The computational model we consider is the classical asynchronous ASYNC
model [7]. It means that, the start and duration of each Look-Compute phases and the
start of each Move phase of each robot are arbitrary and determined by an adversary.
Note that it is possible for a robot to make a move based on a previously observed
configuration which is not the current one anymore (e.g. if its Look phase occurred
before the Move phase of another robot).

We call a pending move a move that has been computed (during a Compute phase)
but not yet executed (in the subsequent Move phase).

2 It is natural to consider 3-robot algorithms, since, for non-trivial rings, any explo-
ration algorithm requires at least three robots.
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3.2 Problem

The perpetual exploration problem requires each agent to visit each location (here,
nodes of the ring) infinitely often. Moreover the exclusive nature of the exploration
implies that two agents are not allowed to be on the same location at the same time;
two robots cannot be on the same node and two robots cannot cross each-other on the
same edge.

In order to verify the correctness of an algorithm, two properties have to be model-
checked (see Sect. 5):

– The perpetual exploration property,
– The mutual exclusion property,

where the former is a liveness property, while the latter is a safety property.

3.3 Algorithm

We recall here first some notations used to describe configurations and algorithms, and
then present succinctly the 3-robot exploration algorithm.

Configuration encoding. In order to represent in a concise way any configuration of
the system, we use the classical encoding as the sequence of occupied/free nodes of the
ring. For example the configuration of Fig. 2 depicting 3 robots on a 10-node ring is
encoded as (R2, F2, R1, F5) since there are 2 adjacent Robots followed by 2 F ree nodes,
followed by 1 Robot, followed finally by 5 F ree nodes. Note that, due to the lack of
orientation and origin, the very same configuration could also be encoded differently,
for example with the sequence (R1, F2, R2, F5).

Fig. 2. Configuration (R2, F2, R1, F5) with 3 robots on a 10-node ring.

The configurations can be parametrized with integer variables when the size of the
ring is unknown. For example, one can consider the configurations (R2, F2, R1, Fz) in
which there are two adjacent robots separated from the third robots by a gap of two
empty nodes on one side, and z empty nodes on the side. Such notations allow to define
generic algorithms for arbitrary size of ring.

Similar encoding will be used in the formal specification of the algorithm (see
Sect. 4) in Maude. The only difference is that we use the number of edges between two
robots, instead of counting the number of free nodes.
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Move encoding. According to Sect. 3.1, each robot computes its next move based
on the position of other robots. Therefore, designing an algorithm means giving the
function that associates a move to any possible snapshot. A concise way of representing
such algorithm is to write transition rules such as:

(R2, F2, R1, Fz) → (R1, F1, R1, F2, R1, Fz)

Such a rule encodes the computed movement of each of the three robots when they
take a snapshot corresponding to the configuration on the left. For example, in this
case (see Fig. 3), the isolated robot (corresponding to R1) should not move, and among
the two other robots (corresponding to R2), only the furthest one (wrt. the isolated
robot) should compute a move to go away.3

Fig. 3. Rule RL1: (R2, F2, R1, Fz) → (R1, F1, R1, F2, R1, Fz).

Again, a similar encoding will be used in the formal specification of the algorithm
(see Sect. 4). Each rule of the algorithm has a corresponding conditional rewriting rule
in Maude.

Algorithm rules. The algorithm for three robots designed by Blin et al. [3] works in
two phase. First there is a Convergence Phase which guarantees that starting from any
initial configuration, the system reaches one of the three legitimate4 configurations.
Then during the Legitimate Phase, the system cycles between three configurations to
explore perpetually the ring. The Legitimate Phase consist of the three rules RL1,

Fig. 4. Rule RL2: (R1, F1, R1, F2, R1, Fz) → (R2, F3, R1, Fz).

3 On Fig. 3, the computed move is anti-clockwise.
4 The terminology comes from the Self-Stabilization concept. One can understand

such configurations as “good” configurations.
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Fig. 5. Rule RL3: (R2, F3, R1, Fz) → (R2, F2, R1, Fz+1).

RL2, and RL3 represented5 on Figs. 3, 4, and 5. One can “easily check” that applying
successively these rules to the three robots indeed solves the perpetual exploration.

The set of rules for the Convergence Phase is omitted here, but appears in Sect. 4
as a list of conditional rewriting rules.

4 System Specification of the Algorithm

The system in which robots operate under the control of the algorithm will be modeled
and then specified in order to model check the algorithm. This section describes our way
to formalize the system and specify it in Maude. The system is specified in our system
module EXPLORATION, which defines the behavior of the system. We consider first
how to express the states of the system and then the state transitions for the system.

4.1 State Expressions for the System

Robots are denoted as r1, r2, ..., and the sort is Robot. In the Compute phase, a robot,
based on the perceived configuration, makes a decision to stay idle or move to one of
its adjacent nodes: either the node on the right or the node on the left. Pending moves
are denoted as L, R, and nil corresponding respectively to moving to the right, moving
to the left, and staying idle, and the sort is Pending.

Since the algorithm works on a ring shape network, our modeling of the system
respects the ring. Although the ring is an anonymous ring without orientation and the
robots on the ring are anonymous, for model checking purpose, we name the robots
and number the nodes of the ring. For a ring of size n, nodes are labeled from 0 to
n − 1 following an arbitrary clockwise ordering. Each robot is given a different name.
We want to note that this does not affect the fact that the ring and the robots are
anonymous since our implementation of the rules for the algorithm, which is presented
in Sect. 4.2, recognizes the robots are identical, and likewise with the nodes.

Each robot is located at one node of the ring. When a node is occupied by robots, the
node is called a non-empty node. Otherwise, it is called an empty node. We actually
represent the ring by the set of all non-empty nodes. Each such node is denoted as
<r,d,p>, where r is the name of the robot, d is the label of the node, and p is the
pending move of the robot. The corresponding sort is Node.

5 Pictures represent a ring of size 14, but the rules are defined for arbitrary size, as
written in the corresponding captions.



Model Checking of a Mobile Robots Perpetual Exploration Algorithm 209

The ring is denoted as a commutative and associative set of these non-empty nodes
and the sort is Ring. Rings without any robots are called empty rings and we use empR,
a constant of the sort Ring, for them.

subsort Node < Ring .

op <_,_,_> : Robot Nat Pending -> Node [ctor] .

op empR : -> Ring [ctor] .

op __ : Ring Ring -> Ring [ctor assoc comm id: empR] .

where Nat is the sort for natural numbers.
We define the sort Size for the size of a ring. This sort is a super-sort of the sort

Nat. The constant size, an element of the sort Size, is used for the size of a ring. The
configuration of a system is denoted as {R}, where R is an element of the sort Ring,
and the sort is Config. The system is described by the configuration and the size of
the ring.

op {_} : Ring -> Config .

op size : -> Size .

Some examples of how to describe a system are showed in Fig. 6. In any initial configu-
ration of the system, there is no two robots located on the same node and the pending
move of any robot is nil.

Fig. 6. Describing a system by the configuration and the size of the ring
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We define two important concepts: interval and order. Given two robots r1 and
r2 located respectively on the nodes n1 and n2, we define the intervals between the
two robots as the number of edges between n1 and n2. Since the environment is a
ring, for each pair of robots there are two different intervals, (1) the clockwise interval
which counts edges from n1 to n2 following the clockwise orientation, and (2) the
counter-clockwise interval, which counts edges in the other direction.

The latter concept takes into account the order of robots on the ring. Since the
algorithm under study works for three robots, we define the notion only for this case.
It is possible to extend the notion for arbitrary number of robots. Given three robots
r1, r2, and r3 located respectively in the node n1, n2, and n3, the three robots are said
to be in the right (or clockwise) order if and only if n2 is between n1 and n3 on the
ring according to the clockwise orientation (e.g. the three first configurations of Fig. 6).
Conversely, the three robots are said to be in the left (or counter-clockwise) order
if and only if n2 is after n1 and before n3 on the ring according to counter-clockwise
orientation (e.g. the last configuration of Fig. 6). We calculate the interval of two robots
and the order of three robots by using the following functions:

op order : Nat Nat Nat -> Pending .

op interval : Nat Nat Pending -> Nat .

The function order(N1, N2, N3) returns the order of three robots located in the
nodes N1, N2, and N3. The order can be L (left order), R (right order), or nil in case the
three robots are not in any order.6 Function interval(N2, N1, M) returns the interval
of the two robots located on N1 and N2. The third parameter M, which can be L, R, or
nil, is used to determine which way we calculate the interval.

4.2 State Transitions for the System

All robots execute the same algorithm and they do not have the ability to distinguish
themselves from others. The algorithm is given as the set of rules as presenting in
Sect. 3.3. A robot first looks at the system in the Look phase to capture the snapshot
of the system, which contains the positions of all robots on the ring. Then based on
the snapshot and according to the set of the rules of the algorithm, it decides the
next movement in the Compute phase. The pending move will be executed in the
Move phase. The state transition for the system is conducted from the rules of the
algorithm. The rules of the algorithm will be implemented as rewriting rules in Maude.
The following rewriting rules do not identify robots and also nodes. They totally depend
on the positions of all robots on the ring. This ensures that the ring and robots are
considered anonymous. Since the Compute phase uses the snapshot of the system taken
in the Look phase as input and a robot does not perform any movements during two
phases, we combine the two phases in a single one called the Look-Compute phase in
which a robot takes the snapshot of the system and computes the movement. A robot
decides to take a snapshot of the system and calculate a movement only when it does
not hold a pending move. The pending move is stored in the third parameter of the
notation of a non-empty node as <r,d,p>. We separate the set of rewriting rules for
the system into two sets: the set of rules for the Look-Compute phases corresponding
to the set of the rules of the algorithm and the set of rules for the Move phase.

6 When two robots are located on the same nodes, there is no order.
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The Rules for the Look-Compute Phase. Each of the following rewriting rule
corresponds to one rule in the set of rules of the algorithm. For each rule, we keep the
same name as in the original paper [3] to easily match them. In the following part, R1,
R2, and R3 are variables of the sort Robot; N1, N2, and N3 are variables of the sort Nat;
and M, M1, M2, and M3 are variables of the sort Pending.

1. The rewriting rule corresponding to the rule RL1 given on Fig. 3:

crl [RL1] : { <R1,N1,nil> <R2,N2,M2> <R3,N3,M3> }

=> { <R1,N1,change(M)> <R2,N2,M2> <R3,N3,M3> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M) == 3 .

where the function change(M) returns the opposite value of M. If M is L then it returns
R, if M is R then it returns L, and nil otherwise.

The lefthand side and the conditional part of the rule encodes the initial configu-
ration of the rule RL1 (i.e. the left picture of Fig. 3). The initial configuration contains
three robots such that, given an orientation (clockwise or counterclockwise), the two
first robots are at distance 1 (i.e. neighbors) and the third robot is at distance 3 from
the second one; both distances/intervals being computed in the same orientation.

The topmost robot of Fig. 3 corresponds to robot R1 of the Maude rule. According
to the rule RL1, this robot has to move if it takes a snapshot of this configuration. In
Maude, it is specified by having no pending move initially (the parameter nil on the
lefthand side), while having a pending move (change(M) on the righthand side). The
direction of the pending move is chosen to match the direction of the move in rule RL1.

Since the two other robots are not supposed to move in RL1; the parameters M2

and M3 respectively are not updated in the conditional rule.
Note that the rule RL1 could have equivalently be written by exchanging the roles

of the first and third robot, as proposed below. We choose the previous specification
to match as closely as possible the rules given in the original paper.

crl [RL1] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 3

/\ interval(N3,N2,M) == 1 .

2. The rewriting rule corresponding to the rule RL2 given on Fig. 4.

crl [RL2] : { <R1,N1,M1> <R2,N2,nil> <R3,N3,M3> }

=> { <R1,N1,M1> <R2,N2,change(M)> <R3,N3,M3> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 2

/\ interval(N3,N2,M) == 3 .

3. The rewriting rule corresponding to the rule RL3 given on Fig. 5.

crl [RL3] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,change(M)> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M) == 4 .
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4. The rewriting rule corresponding to the rule RC1.

crl [RC1] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,change(M)> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M)> 4

/\ (interval(N3,N2,M) < interval(N1,N3,M)) .

5. The rewriting rule corresponding to the rule RC2.

crl [RC2] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> C }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> C }

if M := order(N1,N2,N3) /\ (interval(N2,N1,M)> 0)

/\ (interval(N3,N2,M)> 1)

/\ (interval(N3,N2,M) == interval(N1,N3,M)) .

6. The rewriting rule corresponding to the rule RC3.

crl [RC3] : { <R1,N1,M1> <R2,N2,nil> <R3,N3,M3> C }

=> { <R1,N1,M1> <R2,N2,change(M)> <R3,N3,M3> C }

if M := order(N1,N2,N3)

/\ (interval(N3,N2,M) > interval(N2,N1,M))

/\ (interval(N1,N3,M) > interval(N3,N2,M))

/\ (interval(N2,N1,M) > 1) .

7. The rewriting rule corresponding to the rule RC4.

crl [RC4] : { <R1,N1,nil> <R2,N2,M2> <R3,N3,M3> C }

=> { <R1,N1,change(M)> <R2,N2,M2> <R3,N3,M3> C }

if M := order(N1,N2,N3)

/\ (interval(N2,N1,M) == 1)

/\ (interval(N3,N2,M) == 1) .

This rule is more subtle than other rules and the formalization from the original rule
is less straightforward. The initial configuration (lefthand side of the rewriting rule) is
symmetrical; three robots are adjacent to each other. The commutativity of the sort
Ring and our notions of order and interval guarantee that this specification is conform
to the original rule; it is possible than either one or two robots compute a move.

8. The rewriting rule corresponding to the rule RC5.

crl [RC5] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> C }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> C }

if M := order(N1,N2,N3)

/\ (interval(N2,N1,M) == 1)

/\ (interval(N3,N2,M) == 2) .

The Rules for the Move Phase. Each robot may move to its adjacent node on
the left, its adjacent node on the right, or stay idle. This movement is based on its
pending move. In the following, the function moveL(N) is to move the robot located on
the node N to the adjacent node on the left and the function moveR(N) is to move the
robot located on the node N to the adjacent node on the right.
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1. If the stored pending move is L, the robot will move to the adjacent node on the
left.

rl [RL-Lpending] : { <R1,N1,L> C } => { <R1,moveL(N1),nil> C } .

2. If the stored pending move is R, the robot will move to the adjacent node on the
right.

rl [RL-Rpending] : { <R1,N1,R> C } => { <R1,moveR(N1),nil> C } .

5 Model Checking

The perpetual exploration property guarantees that each robot visits infinitely often
each node. It is a liveness property which ensures that something good eventually
happens. The mutual exclusion property ensures that no two robots are located on
any node at any given time. This property is a safety property, which guarantees that
something bad never happens. Maude is equipped with an LTL model checker [5,8].
These two properties can be expressed in the LTL used by Maude.

5.1 State Predicates

We define the state predicates perexp and mutual which are used to specify the
two properties as LTL formulas. The two predicates are specified in the module
EXPLORATION-PREDS, which protects the module EXPLORATION and includes the module
SATISFACTION. The sort Config is chosen as our kind for states and declared as sub-sort
of the sort State.

mod EXPLORATION-PREDS is

pr EXPLORATION .

inc SATISFACTION .

subsort Config < State .

...

endm

where ‘...’ indicates the part in which the syntax and semantics of the state predicates
are specified. The specification of predicate perexp(R, N) is as follows:

op perexp : Robot Nat -> Prop .

eq { < R, N, M > C } |= perexp(R, N) = true .

eq { C } |= perexp(R, N) = false [owise] .

where R is a variable of the sort Robot, N a variable of the sort Nat, and M a variable
of the sort Pending. The predicate perexp(R, N) is true in the configuration S if and
only if the robot R is located at the node N in S, as <R,N,M>, and false otherwise.
The mutual predicate is specified as follows:

op mutual : -> Prop .

op checkMutual : Config -> Bool .

op checkMutual1 : Robot Nat Config -> Bool .

eq { C } |= mutual = checkMutual({ C }) .
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eq checkMutual({ empR }) = false .

eq checkMutual({ < R1, N1, M1 > C }) =

checkMutual1(R1, N1, { C }) or checkMutual({ C }) .

eq checkMutual1(R1, N1, { empR }) = false .

eq checkMutual1(R1, N1, { < R2 , N2, M2 > C }) =

(N1 == N2) or checkMutual1(R1, N1, { C }) .

where R1 and R2 are variables of the sort Robot, N1 and N2 are variables of the sort
Nat, M1 and M2 are variables of the sort Pending, and C is a variable of the sort Ring.

The value of the predicate mutual depends on the result of the function
checkMutual which is false if and only if there are no two robots located at the same
node and true otherwise.

5.2 Property Specifications as LTL Formulas

The perpetual exploration property and the mutual exclusion property will be specified
as LTL formulas. The LTL formula saying that the robot r eventually visits the node
0, eventually visits the node 1, ..., and eventually visits the node n-1 is as follows:

([]<> (perexp(r, 0))) /\ ([]<> (perexp(r, 1)))

/\ ([]<> (perexp(r, 2))) /\ ...

/\ ([]<> (perexp(r, n-2))) /\ ([]<> (perexp(r, n-1))) .

where n is the size of the ring.
We define a function named perexpGen as the following function to automatically

generate this formula:

op perexpGen : Robot Nat -> Formula .

eq perexpGen(R, 0) = ([]<> (perexp(R, 0))) .

ceq perexpGen(R, N) = ([]<> (perexp(R, N)))

/\ perexpGen(R, sd(N, 1)) if N > 0 .

where R and N are variables of the sort Robot and Nat respectively.
The perpetual exploration property is satisfied if and only if the LTL formula

perexpGen(r,n) is satisfied for all robots r in the system of a n-node ring:

perexpGen(r1,n) and perexpGen(r2,n) and ... and perexpGen(rk,n) .

where k is the number of robots in the system.
The mutual exclusion property is expressed as the following LTL formula:

[]~ (mutual)

This formula says that mutual predicate is always false, meaning that the mutual
exclusion will never happen.

5.3 Experiments and Counterexample

The system module EXPLORATION specifying the system in which robots execute the
algorithm has been given. In the module EXPLORATION-PREDS, which protects the mod-
ule EXPLORATION, the two predicates and their semantics have been defined. The two
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properties have been specified as LTL formulas. All requirements to perform the model
checking are satisfied. We define a new module, called EXPLORATION-CHECK. The mod-
ule EXPLORATION-CHECK imports the module MODEL-CHECKER, which supports for LTL
model checking. We then model check the two given LTL formulas specifying the two
properties for a given initial configuration. An initial configuration is defined as the con-
stant initial of the sort Config in the module EXPLORATION-CHECK. First, we perform
the model checking for the ring of size 10.

op initial : -> Config .

ops r1 r2 r3 : -> Robot .

eq initial = { < r1, 1, nil > < r2, 2, nil > < r3, 3, nil > } .

eq size = 10 .

We are now ready to model check the two properties. We use the key operator
modelCheck, which takes a state and the LTL formula and returns either the Boolean
true if the formula is satisfied, or a counterexample when it is not satisfied. The first
property to check is perpetual exploration:

red modelCheck(initial, perexpGen(r1, 9)) .

red modelCheck(initial, perexpGen(r2, 9)) .

red modelCheck(initial, perexpGen(r3, 9)) .

The second property to check is mutual exclusion:

red modelCheck(initial, []~ (mutual)) .

For the ring of size 10, we can define all possible initial configurations of the system.
It takes less than 30 s to model check both properties for all initial configurations. For
the ring of size 10, there is one initial configuration for which the model checker finds
a counterexample for each formula; this is the initial configuration with three adjacent
robots. The counterexample is showed as follows:

reduce in M-CHECK : modelCheck(initial6, []~ mutual) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial6, perexpGen(r1, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial6, perexpGen(r2, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial6, perexpGen(r3, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

where ‘...’ is the following counterexample:

{{< r1,1,nil > < r2,2,nil > < r3,3,nil>},’RC4}

{{< r1,1,L > < r2,2,nil > < r3,3,nil >},’RC4}
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(a)

Fig. 7. (a) and (b) Scenario of the counterexample
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(b)

Fig. 7. (continued)
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{{< r1,1,L > < r2,2,nil > < r3,3,R >},’RL-Lpending}

{{< r1,0,nil > < r2,2,nil > < r3,3,R >},’RC5}

{{< r1,0,L > < r2,2,nil > < r3,3,R >},’RL-Rpending}

{{< r1,0,L > <r2,2,nil > < r3,4,nil >},’RC2}

{{< r1,0,L > < r2,2,R > < r3,4,nil >},’RL-Rpending}

{{< r1,0,L > < r2,3,nil > < r3,4,nil >},’RL1}

{{< r1,0,L > <r2,3,nil > < r3,4,R >},’RL-Rpending}

{{< r1,0,L > < r2,3,nil > < r3,5,nil>},’RL2}

{{< r1,0,L > < r2,3,R > < r3,5,nil >},’RL-Lpending}

{{< r1,9,nil > < r2,3,R > < r3,5,nil >},’RC2}

{{< r1,9,L > < r2,3,R > < r3,5,nil >},’RL-Lpending}

{{< r1,8,nil > < r2,3,R > < r3,5,nil >},’RL2}

{{< r1,8,nil > < r2,3,R > < r3,5,L >},’RL-Lpending}

{{< r1,8,nil > < r2,3,R > < r3,4,nil >},’RL3}

{{< r1,8,L > < r2,3,R > < r3,4,nil >},’RL-Lpending}

{{< r1,7,nil > < r2,3,R > < r3,4,nil >},’RL-Rpending}

{{< r1,7,nil > < r2,4,nil > < r3,4, nil >},deadlock}

The scenario of the counterexample is depicted in Fig. 7 (slightly simplified to fit in
two pages). We can recognize that a deadlook situation occurs, in which there are two
robots located on the same node at the same time. This shows that the mutual exclusion
property is not satisfied. The perpetual exploration property is also not satisfied since
no robot can move anymore (deadlook).

The counterexample states that the two properties are not satisfied, and conclu-
sively, the algorithm does not work correctly. While being outside the scope of this
paper, it is worth mentioning that the algorithm can be fixed by changing the rule
RC5. Unfortunately, it is not possible to deduce the required modification directly
from the counterexample.

Although the counterexample has been found, we still conduct some more exper-
iments for other sizes of rings. In our experiments, it takes less than 5min to model
check the first property and less than 30 s to model check the second property for rings
of size up to 20. Computations were executed on a 4 GHz Intel Core i7 processor with
32 GB of RAM.

6 Conclusion

We have described how to specify and model check a mobile robot algorithm in Maude.
The model checker found a counterexample showing that the analyzed algorithm is
not correct. As future work, we consider to apply similar techniques to verify other
algorithms that have been proposed in the literature. It would be interesting to specify
and model check algorithms designed for other topologies (e.g. grid, torus, or arbitrary
graphs) or working under other assumptions (such as (semi-)synchronous scheduler, or
different notion of fairness). Finally, one of the biggest challenge would be to investigate
continuous topologies.

Acknowledgments. The authors would like to thank Adrián Riesco for his useful
comments on the specification in Maude. This work has been partially supported by
Kakenhi 26540024 and 26240008.
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Abstract. Modeling, Simulation and Verification Language (MSVL) is
a useful formalism for specification and verification of concurrent sys-
tems. To make it easy to use, we define a visual formalism, called vMSVL,
which is the extension of the classic flowchart used in software design
and helps the engineer to model the structure and behaviour of a sys-
tem in a visual, hierarchical way. Besides, the technique for automatical
translation of vMSVL model into MSVL model is also presented. The
formalism combines the benefits of the classical visualized specification
method with the power of model checking, which helps to popularize the
application of model checking in industry.

Keywords: Temporal logic programming · Formal verification · Visual
languages · System modeling

1 Introduction

Modeling, Simulation and Verification Language (MSVL) [1,2], an executable
subset of Projection Temporal Logic (PTL) [3–7] with framing technique, is a
useful formalism for specification and verification of concurrent and distributed
systems [8–15]. It provides a rich set of data types (e.g., char, integer, pointer,
string), data structures (e.g., array, list), as well as boolean and arithmetic expres-
sions [16]. Besides, MSVL supports not only the commonly used statements in
most of imperative programming languages (e.g. C and Java) such as assignment,
sequential (S1;S2), branch (if b then S1 else S2), loop (while b do S) statements,
but also parallel and concurrent statements such as conjunct (S1 and S2), parallel
(S1||S2) and projection ((S1, . . . , Sm) prj S). Further, Propositional Projection
Temporal Logic (PPTL), the propositional subset of PTL, has the expressiveness
power of the full regular expressions [17], which enable us to model, simulate and
verify the concurrent and reactive systems within a same logical system [18].

System modeling is the kernel process of model checking, and the correctness
and rationality of the model greatly affects the validity of the model checking
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result. As a logic programming language, MSVL differs greatly from other tra-
ditional programming language (such as C language) in modelling, and it’s not
easy to be mastered by ordinary engineers. Besides, MSVL being a scripting
language, the system model described by MSVL cannot be analyzed in an intu-
itively visible way, it is very difficult to model a complex system and guarantee
the correctness of the model.

Therefore, we are motivated to define a visual modelling language, named
vMSVL, for MSVL by extending the software-programming flowchart [19]. Thus,
the system design model and the model checking model can be unified as one
model, and it can be created in one time by engineers when designing the system.
Besides, the algorithm to translate from vMSVL model to MSVL model is for-
malized, which provides a strong support for the popularizing the MSVL-based
model checking technology in industry as well as promoting the quality and the
development efficiency of software.

The rest of paper is organized as follows. In the next section, PTL and
MSVL are briefly introduced. In Sect. 3, the visual modeling language vMSVL
is defined. In Sect. 4, the algorithm to translate from vMSVL model to MSVL
model is given. Finally, conclusions are drawn in Sect. 5.

2 Preliminaries

2.1 Projection Temporal Logic

In this subsection, the syntax and semantics of Projection Temporal Logic (PTL)
are briefly introduced. More details can be found in paper [3,4].

Syntax. Let Prop be a countable set of atomic propositions and V a countable
set of typed variables. B = {true, false} represents the boolean domain. D
denotes the data domain of the underlying logic. The terms e and formulas P of
PTL are inductively defined as follows:

e ::= d | a | x | ©e | f(e1, . . . , em)
P ::= p | e1 = e2 | ρ(e1, ..., em) | ¬P | P1 ∧ P2 | ∃ vP | ©P | (P1, . . . , Pm) prj P

where d ∈ D is a constant, a ∈ V a static variable, x ∈ V a dynamic variable, v ∈
V either a static variable or a dynamic one; p ∈ Prop is an atomic proposition;
f is a function and ρ a predicate both defined over D.

Abbreviation. The conventional constructs true, false, ∧ , → as well as ↔
are defined as usual. Furthermore, we use the following abbreviations:

ε
def= ¬©true ε

def= ¬ ε
⊙

P
def= ¬©¬P P ; Q def= (P,Q) prj ε

©0P
def= P ©nP

def= © ©n−1 P, (n > 0)
�P

def= true ; P len(n) def= ©n ε

�P
def= ¬�¬P keep(P ) def= �( ε→P )

skip def= © ε halt(P ) def= �( ε ↔ P )
∀vP

def= ¬∃ v¬P fin(P ) def= �( ε→P )
P ||Q def= ((P ; true) ∧ Q)∨(P ∧ (Q ; true))∨(P ∧ Q)
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Semantics. A state s is a pair of assignments (Ip, Iv), which Ip assigns each
atomic proposition p ∈ Prop a truth value in B, whereas Iv assigns each variable
v ∈ V a value in D. An interval (i.e., model) σ is a non-empty sequence of states,
which can be finite or infinite. The length of σ, denoted by |σ|, is ω if σ is infinite,
or the number of states minus one if σ is finite. We use notation σ(i..j) to mean
that a subinterval <si, . . . , sj> of σ with 0 ≤ i � j ≤ |σ|. The concatenation of
a finite interval σ =<s0, . . . , s|σ|> with another interval σ′ =<s′

0, . . . , s
′
|σ′|>

(may be infinite) is denoted by σ • σ′ and σ • σ′ =<s0, . . . , s|σ|, s′
0, . . . , s

′
|σ′|>.

Let σ =<s0, s1, . . . , s|σ|> be an interval and r1, . . . , rh be integers (h ≥ 1) such
that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is the
interval (called projected interval) σ ↓ (r1, . . . , rh) =<st1 , . . . , stl>, (t1 < t2 <
. . . < tl), where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates.
For example, <s0, s1, s2, s3, s4, s5>↓ (0, 2, 2, 2, 4, 4, 5) =<s0, s2, s4, s5>.

An interpretation, as for PTL, is a triple I = (σ, i, j), where σ is an interval,
i ∈ N0 and j ∈ Nω, and 0 ≤ i � j ≤ |σ|. We use notation (σ, i, j) to mean that
a term or a formula is interpreted over a subinterval <si, . . . , sj> of σ with the
current state being si. Then, for every term e, the evaluation of e relative to I,
denoted by I[e], is defined by induction on the structure of the term as follows:

I[d] = d, if d ∈ D is a constant value
I[a] = Ii

v[a] = I0v [a], if a is typed static variable
I[x] = Ii

v[x], if x is typed dynamic variable

I[©e] =
{

(σ, i + 1, j)[e], if i < j
nil, otherwise

I[f(e1, . . . , em)] =
{

nil, if I[eh] = nil for some h(1 ≤ h ≤ m)
I[f ](I[e1], . . . , I[em]), otherwise

For a variable v (static or dynamic), two intervals σ and σ′ are v-equivalent,
denoted by σ

v=σ′, whenever σ′ is the same as σ except that different values can
be assigned to v. The satisfaction relation (|=) for PTL formulas is inductively
defined as follows:

I |= p iff Ii
p[p] = true, for any given atomic proposition p.

I |= ρ(e1, ..., em) iff ρ is a primitive predicate other than = and, for
all h(1 ≤ h ≤ m), I[eh] �= nil and I[ρ](I[e1], . . . , I[em]) = true.

I |= e1 = e2 iff I[e1] = I[e2].
I |= ¬P iff I � P .
I |= P ∧ Q iff I |= P and I |= Q.
I |= ∃ vP iff (σ′, i, j) |= P for some interval σ′, σ(i..j)

v=σ′
(i..j).

I |= ©P iff i < j and (σ, i + 1, j) |= P .
I |= (P1, ..., Pm) prj Q iff there exist integers i = r0 ≤ . . . ≤ rm−1 ≤ rm � j

such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m, and (σ′, 0, |σ′|) |= Q for
one of the following σ′:
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) • σ(rm+1..j).
(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.
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2.2 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of PTL. With MSVL, expressions can be regarded as the PTL terms and state-
ments as treated as the PTL formulas. In the following, we briefly introduce the
kernel of MSVL. For more deals, please refer to literatures [1,2].

Data Type. MSVL provides a rich set of data types. The fundamental types
include unsigned character (char), unsigned integer (int) and floating point num-
ber (float). Besides, there is a hierarchy of derived data types built with the
fundamental types, including string (string), list (list), pointer (pointer), array
(array), structure (struct) and union (union).

Expression. The arithmetic expressions e and boolean expressions b of MSVL
are inductively defined as follows:

e ::= d | x | ©e | -©e | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 | e1%e2
b ::= true | false | ¬b | b1 ∧ b2 | e1 = e2 | e1 ≤ e2

where d is an integer or a floating point number; x ∈ V is a static or dynamic
variable; ©e ( -©e) refers to the value of expression e at the next (previous) state.

Statement. The elementary statements in MSVL are defined as follows:

(1) Immediate Assign x ⇐ e
def= x = e ∧ px

(2) Unit Assignment x:=e
def= © x = e ∧ © px ∧ skip

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∧ S2

(5) Next next S
def= © S

(6) Always always S
def= �S

(7) Termination empty
def= ¬©true

(8) Skip skip
def= © ε

(9) Sequential S1 ; S2
def= (S1, S2) prj ε

(10) Local exist x : S
def= ∃ x : S

(11) State Frame lbf(x) def= ¬ af(x)→∃ b:( -©x = b ∧ x = b)
(12) Interval Frame frame(x) def= �( ε→ © (lbf(x)))
(13) Projection (S1, . . . , Sm) prj S

(14) Condition if b then S1 else S2
def= (b→S1) ∧ (¬b→S2)

(15) While while b do S
def= (b ∧ S)� ∧ �( ε→¬b)

(16) Await await(b) def=
∧

x∈Vb
frame(x) ∧ �( ε ↔ b)

(17) Parallel S1||S2
def= ((S1 ; true) ∧ S2)∨(S1 ∧ (S2 ; true))

∨(S1 ∧ S2)

where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x ⇐ e, unit
assignment x := e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.
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3 Structures of vMSVL

To make vMSVL be easily mastered by engineers in industry, the struc-
tural description components of vMSVL follow largely the flowchart notations
described in [19]. We also introduce some notations to meet the modeling needs
for concurrent systems.

The language vMSVL consists of fundamental notations and visual notations.
The former are used to describe the attributes and the details of activities of the
system to be modeled, and the latter are used to model the processing logic of
the system in a graphical and hierarchical way.

3.1 Fundamental Notations

The fundamental notations of vMSVL include data types, expressions as well as
elementary statements. The notations are nearly identical to that in C program-
ming language.

Definition 1 (Data Type). The fundamental data types of vMSVL include
character (char), integer (int) and floating point number (float), boolean (bool)
and string (string). Besides, there is a hierarchy of derived data types includ-
ing array (array(type)), pointer(type *) structure (struct), union (union) and
enumeration (enum).

Definition 2 (Expression). Let d be a constant and x be a variable respec-
tively. The arithmetic expressions e and boolean expressions b of vMSVL are
inductively defined as follows:

e ::= d | x | e1 op1 e2 (op1 ::= + | − | ∗ | / | %)
b ::= true | false | !b | e1 op2 e2 (op2 :==< | ≤ | > | ≥ | ==)

b1 op3 b2(op3 :==,&& | , ||)
where op1 denotes the traditional arithmetic operators, op2 are the relational
operators and op3 the logical operators

Definition 3 (Elementary Statement). Let type be a data type and x be
a variable. The Elementary Statement s of vMSVL are inductively defined as
follows:

s ::= type x | type x = d | x = e | x = b | x = fun(e1, . . . , en) | s1; s2

where fun is a function with n(n ≥ 0) parameters.

3.2 Visual Notations

The visual notations of vMSVL are defined in Table 1. The major shapes used
in vMSVL, i.e. flow line, process and decision, keep identical to that in classic
flowchart [19]. Besides, we also make some necessary extensions for convenience
of modeling complex concurrent system in a hierarchical way:
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Table 1. Visual notations for vMSVL

– Replace the original terminal symbol with entrance symbol and exit symbol to
explicitly represent the entrance as well as the exit of the function respectively.

– Add a new reference symbol to represent a complicated processing step which
is detailed in another separate flowchart.

– Add a new function call symbol to represent calling a function which is mod-
eled in another separated flowchart.

– Introduce a new fork/join symbol to represent the starting/ending of the
parallel execution of several sub-flows. Note that although we employ a unified
symbol to represent both the fork and the join of a parallel execution, it can
be easily distinguished by checking the number of the ingoing and outgoing
flow lines of the symbol. A fork symbol has only one ingoing flow line and
several (≥2) outgoing flow lines, whereas a join one has several (≥2) ingoing
flow lines and only one outgoing flow line.
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3.3 System Modeling with vMSVL

The general system modeling strategy with vMSVL is similar to that with classic
flowchart in software system design, i.e., describing each component of the system
with a flowchart and assembling them into a complete system through function
calls or references. Thus, a vMSVL system model may consist of many flowcharts,
within which one must be explicitly declared as the entry of the model.

In the following, we give an example to show how to model with vMSVL. As
shown in Fig. 1, we employ a parallel algorithm to compute

∑5
n=1(

∑n
i=1 i + n!).

The whole model consists of three flowcharts describing three functions, among
which function main is the entry of the program, functions sum and fact execute
in parallel to compute

∑n
i=1 i and n! respectively.

Fig. 1. System model for computing
∑5

n=1(
∑n

i=1 i + n!)

3.4 Formal Definition of vMSVL Model

In vMSVL, a flowchart can be regard as a directed graph which node notations
(notations except for flow line) are vertexes and flow lines are arcs between
vertexes. Thus, a vMSVL system model is in fact the set of directed graphs.

Definition 4 (vMSVL Model). The node notation V ertex, flow line Arc,
flowchart FlowChart and the model FCModel are defined inductively as follows:

V ertex ::= (ntype, ncontent)
Arc ::= (verFrom, label, verTo)
FlowChart ::= (verSet, arcSet, entryV er)
FCModel ::= (FCSet, entryFC)
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where ntype denotes the type of the notation and its values is given in Table 2;
ncontent is an expression or an elementary statement contained in the notation;
verFrom and verTo represents the coming from and ending at node notations
of flow line respectively; label is the label on the flow line and it can only take the
value of “YES”/“NO” in case of the flow line departing from a decision shape;
verSet and arcSet are the sets of vertexes and arcs respectively; entryV er is
the entrance of the flowchart; FCSet denotes the set of flowcharts and entryFC
the entry flowchart of the model.

Table 2. The value of node notation type

Notation name Value Notation name Value

entrance NT ET exit NT EX

process NT PR reference NT RF

function call NT FC decision NT DC

fork/join NT FJ

4 Translation of vMSVL Model into MSVL Model

In case of the vMSVL system model being created, the left work is to auto-
matically translate it into the MSVL model. To this end, a formal definition of
sMSVL Model is given, and a hierarchical syntax chart (HSC) is introduced to
describe the syntax of the vMSVL model. Besides, the algorithms for translat-
ing vMSVL model into HSC and HSC into MSVL model are also formalized
respectively.

4.1 Transition of vMSVL Model into Hierarchical Syntax Chart

On the whole, the execution of a flowchart is in fact sequentially traversing
each node from the entrance to the exit, but the structures such as branch,
loop and parallel violate the sequential traverse. So, we cannot transform these
structures into MSVL code according to the traverse sequence directly. To solve
the problem, we introduce a data structure, named Hierarchical Syntax Chart
(HSC), to analyze the syntax of a vMSVL model.

Hierarchical Syntax Chart. The strategy of HSC representing the syntax
of vMSVL model is to recognize each execution branch and organize them as
a sequence of compound statements, and each compound statement contains a
sequence of statements in the executing branch. The structure of HSC can be
depicted as the figure in Fig. 2. In first level, the HSC is the sequence of compound
statements of functions, and the function body, a compound statement, is the
sequence of statements in the function body. If the compound statement includes
if, while or parallel statements, their corresponding execution breaches are also
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Fig. 2. Structure of hierarchical syntax chart

organized the sequence of compound statements, e.g. the if statement in the
body of function Fun1.

According to the above analysis, the data structure of HSC is defined in C
Language as follows:

/∗ t ype o f the s ta tements ∗/
typedef enum{

TYPE COM, /∗Common statement ∗/
TYPE IF , /∗Branch Statement ∗/
TYPE LOOP, /∗Loop Statement ∗/
TYPE FORK, /∗Fork Statement ∗/
TYPE JOIN, /∗ Join Statement ∗/
TYPE EXT /∗Exi t Statement ∗/

}STMT TYPE;

/∗ t ype f o r the l i s t o f compound s ta tements ∗/
typedef struct com stmt{

s t r i n g stmt name ;
stmt node ∗ f i r s t s t m t ;
com stmt ∗next com stmt ;

}com stmt node , ∗HSC;

/∗ t ype f o r l i s t o f s ta tements ∗/
typedef struct stmt{

STMT TYPE type ;
Vertex ver ;
com stmt ∗ f i r s t c om s tmt ;
stmt ∗next stmt ;

} stmt node , ∗ s t m t l i s t ;
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In definition of struct com stmt, member stmt name is the name of the
compound statement, which may be the name of a function or take the value of
“YES”/“NO” representing a specific branch of a if or while statement; members
first stmt and next com stmt are two pointers pointing to first statement as
well as the next compound statement respectively. In definition struct stmt,
member ver saves the entity of a statement; member next stmt points to the next
statement; member first com stmt points to the first sub-compound statement
and it takes effect only if the type of the current statement takes the value of
TYPE IF, TYPE LOOP or TYPE PAR.

Algorithm for Constructing HSC. For a given vMSVL model, the algorithm
for constructing the HSC consists of the functions vMSVL2HSC, FC2ComStmt,
DFS Trans, Handle Decision, Handle Parallel and Handle Branch. The func-
tions are defined in pseudo C Language as follows.

Function vMSVL2HSC is the entry of the algorithm. It enumerates each
flowchart in the given vMSVL model and calls function FC2ComStmt to trans-
late it into a compound statement. All the compound statements obtained are
concatenated into a complete HSC.

vMSVL2HSC(FCModel model ) {
HSC hsc = NULL;
Foreach f c in model{

com stmt node cs node = FC2ComStmt( f c ) ;
AddTail ( hsc , cs node ) ;

}
return hsc ;

}

Function FC2ComStmt translates a flowchart into a compound statement
based on the strategy of deep first search (DFS) of a direct graph. To this
end, two boolean arrays visited and isParent are employed to mark whether
or not a vertex is visited as well as is the parent of the vertex currently visiting
respectively. Besides, stack S is used to keep the flow control statement, i.e.
Decision and Parallel, appearing in the traverse path.

FC2ComStmt( FlowChart f c ) {
bool v i s i t e d [ ]={ f a l s e } ;
bool i sParent [ ]={ f a l s e } ;
I n i t S t a ck (S) ;
comp stmt node ;
node . stmt name= f c . entryVer . ncontent ;
node . f i r s t s t m t=DFS Trans ( f c . entryVer . nextVer ,

v i s i t e d , i sParent , S ) ;
return node ;

}

Function DFS Trans constructs the body of a compound statement while
deep first traversing a flowchart from the given vertex. If the vertex is visited
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(i.e., visited[ver] == true), which means a new branch is found, it calls func-
tion Handle Branch to deal with an returns the result. Otherwise, the function
marks the visited as well as isParent tags both be true. Subsequently, it creates
a new statement node newNode with the current vertex ver. Further, the func-
tion recursively constructs the body of the compound statement according to the
type of the vertex ver. If the type is a process (NT PR), reference (NT RF) or
function call (NT FC), it calls DFS Trans to deal with the left part of the flow-
chart. If the type is a decision (NT DC) (w.r.t. fork/join (NT FJ)), the function
calls Handle Decision (w.r.t. Handle Parallel) to process. Finally, the function
removes the vertex ver from the traverse path (isParent[ver] = false).

DFS Trans ( Vertex ver , bool v i s i t e d [ ] , bool i sParent [ ] ,
Stack S) {

i f ( v i s i t e d [ ver]==true ) {
return Handle Branch ( ver , i sParent , S )

}
v i s i t e d [ ver ] = i sParent [ ver ] = true ;
newNode . f i r s t c om s tmt = NULL;
newNode . ver = ver ;
switch ( ver . ntype ) {

case NT PR or NT RF or NT FC:
newNode . type = TYPE COM;
newNode . next stmt = DFS Trans ( ver . nextVer ,

v i s i t e d , i sParent , S) ;
break ;

case NT EX:
newNode . type = TYPE COM;
break ;

case NT DC:
Handle Dec i s ion (newNode , ver , S ) ;
break ;

case NT FJ :
Hand l e Para l l e l (newNode , ver , S ) ;

}
i sParent [ ver ]= f a l s e ;
return newNode ;

}

Function Handle Branch is designed for processing a new-found execution
branch in a compound statement. The following tow cases must be considered:
(1) The branch is the body of a loop statement. It can be handled by checking
whether the DFS of the flowchart goes into a parent node in the traverse path
(i.e., isParent[ver] == true). (2) The branch is the body of a if construct. In
the latter case, the vertex ver is the meeting point of the two branches of if
construct. However, we cannot recognize which vertex is the last one in traversing
the first branch of if construct. So, the vertexes in the first branch and the
vertexes after the branch are all treated as body of the first compound statement
of if construct. With meeting point ver, we separate the statements after the
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first branch with function Split and concatenate them as the statements next to
the if construct in the top of the stack S.

Handle Branch ( Vertex ver , bool i sParent [ ] , Stack S) {
nodeTop=GetTop(S) ;
i f ( i sParent [ ver]==true ) { //Find a loop

i f ( ver . ntype !=NT DC) {
ThrowError ( ” Inva l i d loop cons t ruc t ! ” ) ;

}
nodeTop . type = TYPE LOOP;
return NULL;

} else { //Two branches o f an i f cons t ruc t meet
l e f t = Sp l i t ( nodeTop . f i r s t com stmt , ver ) ;
nodeTop . next stmt=l e f t ;
return l e f t ;

}
}

Function Handle Decision is designed for handling if/while constructs. Ini-
tially, it set the type of new node to TYPE IF and push it into the stack S.
Subsequently, it deals with the “YES” branch of the construct by calling
function DFS Trans and check the result. If the construct is a loop (i.e.,
newNode.type == TYPE LOOP), in such case the body of the loop has been
recognized and we pop it from the stack S and treat the “NO” branch of the
construct as the successor the loop construct. Otherwise, we treat the “NO”
branch as the another compound statement of the construct.

Handle Dec i s ion ( stmt newNode , Vertex ver , Statck S) {
newNode . type=TYPE IF ;
push (S , newNode) ;
// proces s YES branch
newComStmtYes . stmt name = ”YES” ;
newComStmtYes . next com stmt = NULL;
newComStmtYes . next stmt = DFS Trans (

GetBranch ( ver , ‘ ‘YES ’ ’ ) , v i s i t e d , i sParent , S ) ;
newNode . f i r s t c om s tmt = newComStmtYes ;
i f (newNode . type==TYPE LOOP) {

Pop(S) ;
newNode . next stmt = DFS Trans (

GetBranch ( ver , ”NO” ) , v i s i t e d , i sParent , S ) ;
} else { //Process NO brance

newComStmtNo . stmt name = ”NO” ;
newComStmtNo . next com stmt = NULL;
newComStmtNo . next stmt = DFS Trans (

GetBranch ( ver , ”NO” ) , v i s i t e d , i sParent , S ) ;
newComStmtYes . next com stmt = newComStmtNo ;
Pop(S) ;

}
}
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Function Handle Parallel is designed for handling Parallel constructs. Firstly,
we employ the function GetAdjArcsCount to count of the adjacent arcs departing
from vertex ver. If the result equals 1, which indicates the construct is a join one,
then we cache the successor vertex of the join construct as the next statement of
the fork statement in the top of stack S. Otherwise, we create a new statement
with the type TYPE JOIN, push it into the stack S, and then recursively create
the compound statement for each branch of the fork construct. In case of all the
branches having been handled, we popup the parallel statement nodeTop from
the stack S and further deal with the left part of the flowchart beginning at the
cached vertex in nodeTop.

Hand l e Para l l e l ( stmt newNode , Vertex ver , Statck S) {
i f ( GetAdjArcsCount ( ver )==1) {// Join

nodeTop=GetTop(S) ;
i f ( nodeTop . type !=TYPE FORK) {

ThrowError ( ” Inva l i d p a r a l l e l c ons t ruc t ! ” ) ;
}
i f ( nodeTop . next stmt !=NULL) {

tmpNode . type = TYPE JOIN ;
tmpNode . ver = ver . nextVer ;
nodeTop . next stmt = tmpNode ;

}
} else { //Fork

newNode . type=TYPE FORK;
push (S , newNode) ;
f o r each adjVer in GetAdjVexSet{

newComStmt . stmt name = ”PAR” ;
newComStmt . next com stmt = NULL;
newComStmt . next stmt = DFS Trans ( adjVer ,

v i s i t e d , i sParent , S ) ;
AddTail (newNode , newComStmt) ;

}
nodeTop = Pop(S) ;
nodeTop . next stmt = DFS Trans (

nodeTop . next stmt . ver , v i s i t e d , i sParent , S) ;
}

}

In the following, we illustrate how the algorithm vMSVL2HSC works by
translating the vMSVL model shown in Fig. 1 into its HSC. For simplicity, we
only give the details of transforming the flowchart of function main into HSC.
Further, for convenience of explanation, we add a number in parentheses as the
extra mark to each vertex in the flowchart of function main as shown in Fig. 3(a).
According to the algorithm vMSVL2HSC, the constructing process of HSC for
function main is as follows:

(1) Initially, a compound node <1>, as shown in is created according to the
entrance vertex (1) of the flowchart of main.
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Fig. 3. Constructing process of HSC for function main

(2) Then, following the DFS used in function DFS Trans, vertexes (2) and
(3) are met in sequence and two statements <2> and <3> are added
correspondingly to the body of compound node <1>.

(3) Since vertex (3) is a decision vertex, according to function Handle Decision,
the corresponding statement <3> is pushed into the Stack S, and a new
compound node <4> is created to deal with the “YES” branch of the
decision vertex.

(4) In constructing the body of compound node <4>, vertex (4) is met and a
new statement <5> is added.
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(5) Because vertex (4) is a fork vertex, according to function Handle Parallel,
the corresponding statement <5> is pushed into the Stack S, and a new
compound node <6> is added to handle the first branch of the fork vertex.

(6) In constructing the body of compound node <6>, vertex (5) is met and a
new statement <7> is added. When the join vertex (6) is met, a temporal
statement <8> is added as the successor of the fork statement <5>. At
this time point, the HSC is shown in Fig. 3(b).

(7) Similarly, the compound statement for the left branch of the fork statement
is added to statement <5>.

(8) After all the branches of the fork statement have been processed, statement
<5> is popped up from the stack S and the cached vertex (8) is obtained.
Beginning with vertex (8), the left part of the “YES” branch of vertex (3)
is continuously constructed and a new statement <11> is added as the
successor of statement <5>.

(9) Following the DFS path, the departing arc of vertex (8) points to a parent
node (3), according to function Handle Branch, a loop statement appears
and the type of statement <2> is set to TYPE LOOP. Further, the full
body of the loop statement has been constructed and the “NO” branch
of node (3) represents the statements after the loop. So, a new statement
<11> corresponding to vertex (9) is added as the successor of statement
<2>.

(10) So far, the full HSC is constructed as shown in Fig. 3(c).

4.2 Transforming from HSC to MSVL Model

For a given HSC, the algorithm for transforming it into a MSVL model is defined
in pseudo C Language as follows. Within the algorithm, the called function Get-
Variables is used to compute the list of variables appearing in the variable state-
ments of a statement node; the function Trans Exp is used to convert a vMSLV
expression into its corresponding MSVL expression; and function Trans Stmt is
used to convert a vMSLV statement into its corresponding MSVL statement.
With aid of the translation rules of expressions and statement given in Table 3,
it is readily to formalize the three functions. So their code is omitted here.

Table 3. Transformation Rules for expressions and statements

Type vMSVL MSVL

Arithmetic expression e e

Boolean expression b1&&b2 b1 and b2

b1||b2 b1 or b2

Elementary Statement x = e x := e

type x = d type x and x ⇐ d and empty

s1; s2 s1 and S2
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//Entry o f the a lgor i thm
HSC2MSVL(HSC hsc ) {

p = hsc ;
s t r i n g code ;
while (p) { //Deal wi th each func t i on

code = code + p . name + CompStmt2MSVL(p) ;
p = p . next com stmt ;

}
return code ;

}

//Trans la t ing the body o f a compound statement
CompStmt2MSVL( com stmt comStmt ) {

p=comStmt . f i r s t s tm t ;
va rL i s t=GetVar iables (p) ;
s t r i n g body ;
while (p) {

body = body + Stmt2MSVL(p) ;
p = p . next stmt ;

}
return” frame ( ”+ varL i s t+” ) and ( ”+ body +” ) ” ;

}

//Transform a statement
Stmt2MSVL( stmt node ) {

switch ( node . type ) {
case TYPECOM:

return Trans Stmt ( node . ver . ncontent ) ;
case TYPE LOOP:

return”whi le ( ”+Trans Exp ( node . ver . ncontent )
+” ) {”+CompStmt2MSVL( node . f i r s t c om s tmt )+”}” ;

case TYPE IF :
return” i f ( ”+Trans Exp ( node . ver . ncontent )+” ) {”
+ CompStmt2MSVL( node . f i r s t c om s tmt )
+”} e l s e {” ;
+ CompStmt2MSVL( node . f i r s t c om s tmt . next com stmt )
+”}”

case TYPE FORK:
s t r i n g f o rk = CompStmt2MSVL( node . f i r s t c om s tmt ) ;
p = node . f i r s t c om s tmt . next com stmt ;
while (p) {

f o rk = fo rk + ” | | ” + CompStmt2MSVL(p) ;
p = p . next com stmt ;

}
return f o rk ;

}
}

}

For instance, if we transform the HSC of function main given in Fig. 3(c)
with algorithm HSC2MSVL, the result MSVL code is as follows.
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f unc t i on main ( ) {
frame (n , s ) and (

int n and n <==1 and empty ;
int s and s <==0 and empty ;
while (n<=s ) {

s1 := sum(n) | | s2 := f a c t (n) ;
s := s + s1 + s2 ;

}
)

}

5 Conclusion

In this paper, we present a visual language vMSVL for modeling the system
to be verified in a visual and hierarchical way, and formalize the algorithms
for automatically translating vMSVL model to MSVL model. The introduction
of vMSVL will facilitate the popularizing of the MSVL-based model checking
technology in industry as well as promoting the quality of software. In the near
future, we will enrich the vMSVL with semaphore and projection notations to
have a more powerful support for modeling concurrent systems. Besides, we will
develop the vMSVL based visual modeling tool and apply the method to verify
more complex concurrent and distributed system, such as operating system,
cloud computing, etc.
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ICFEM 2015. LNCS, vol. 9407, pp. 187–200. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 12

11. Yu, Y., Duan, Z., Tian, C., Yang, M.: Model checking C programs with MSVL.
In: Liu, S. (ed.) SOFL 2012. LNCS, vol. 7787, pp. 87–103. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39277-1 7

12. Bin, Y., Duan, Z., Tian, C.: Bounded model checking of traffic light control system.
Electr. Notes Theor. Comput. Sci. 309, 63–74 (2014)

13. Shu, X., Duan, Z.: model checking process scheduling over multi-core computer
system with MSVL. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL 2015. LNCS, vol.
9559, pp. 103–117. Springer, Cham (2016). doi:10.1007/978-3-319-31220-0 8

14. Ma, Q., Duan, Z., Zhang, N., Wang, X.: Verification of distributed systems with
the axiomatic system of MSVL. Formal Aspects Comput. 27(1), 103–131 (2015)

15. Zhang, N., Duan, Z., Tian, C.: A cylinder computation model for many-core parallel
computing. Theoret. Comput. Sci. 497, 68–83 (2013)

16. Shu, X., Duan, Z.: Extending MSVL with semaphore. In: Dinh, T.N., Thai, M.T.
(eds.) COCOON 2016. LNCS, vol. 9797, pp. 599–610. Springer, Cham (2016).
doi:10.1007/978-3-319-42634-1 48

17. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theoret. Comput. Sci. 412(18), 1729–1744 (2011)

18. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256,
pp. 167–186. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88194-0 12

19. Strong, H.R.: Translating recursion equations into flowcharts. J. Comput. Syst.
Sci. 5(3), 254–285 (1971)

http://dx.doi.org/10.1007/978-3-319-25423-4_12
http://dx.doi.org/10.1007/978-3-319-25423-4_12
http://dx.doi.org/10.1007/978-3-642-39277-1_7
http://dx.doi.org/10.1007/978-3-319-31220-0_8
http://dx.doi.org/10.1007/978-3-319-42634-1_48
http://dx.doi.org/10.1007/978-3-540-88194-0_12


Author Index

Bonnet, François 201

de Simone, Robert 32
DeAntoni, Julien 32
Doan, Ha Thi Thu 201
Duan, Zhenhua 121

Feng, Zhiyong 101

Hao, Jianye 101
Hu, Qimin 85

Li, Chao 220
Li, Guoqiang 15
Li, Xiaohong 101
Liu, Chang 220
Liu, Dongmiao 144
Liu, Shaoying 74, 160
Lu, Yonggang 181
Luo, Juan 160

Miao, Huaikou 32, 55
Miao, Weikai 55

Nagoya, Fumiko 74

Ogata, Kazuhiro 201

Qian, Lin 121

Shu, Xinfeng 220

Tao, Xiuting 15
Tian, Cong 121

Wang, Xi 55
Wang, Xiaobing 144
Wang, Yanqin 160
Wang, Yuwei 15

Xu, Guangquan 101
Xu, Qingguo 32
Xue, Jinyun 3, 85
Xue, Yina 144

You, Zhen 3, 85

Zhang, Haitao 181
Zhang, Nan 121
Zhao, Liang 144
Zhao, Ren 101
Zhou, Tingliang 160


	Preface
	Organization
	A CEGAR Based Approach to Verifying Web Application (Abstract of Invited Talk)
	Contents
	Modeling and Specification
	Orchestration Combinators in Apla+ Language
	Abstract
	1 Introduction
	2 Background on Apla and Overview of Orc
	2.1 PAR Method and PAR Platform
	2.2 Overview of Orc
	2.2.1 Sites
	2.2.2 Orc Combinators


	3 Orchestration Combinators in Apla+ Language
	3.1 Bundle
	3.2 Design of Orchestration Combinators
	3.2.1 Sequential Combinator
	3.2.2 Parallel Combinator
	3.2.3 Otherwise Combinator
	3.2.4 Transfer Combinator
	3.2.5 Pruning Combinator

	3.3 Case Study

	4 Comparing with Related Work
	5 Conclusion and Future Work
	Acknowledgement
	References

	On Termination and Boundedness of Nested Updatable Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Updatable Timed Automata
	2.2 Dense Timed Pushdown Automata

	3 Updatable Dense Timed Pushdown Automata
	4 Termination and Boundedness of UDTPDA1s
	4.1 Vector Pushdown Systems
	4.2 Digitized Configuration and Its Operations
	4.3 Snapshot Vector Pushdown System

	5 Nested Updatable Timed Automata
	5.1 Nested Updatable Timed Automata
	5.2 Termination and Boundedness of NeUTAs

	6 Conclusion
	References

	Instant-Based and State-Based Analysis of Infinite Logical Clock
	Abstract
	1 Introduction
	2 Preliminaries
	3 Stated-Based Time Structure
	4 Clock Constraint
	4.1 Specification and Its Component
	4.2 Clock Constraint Interpretation

	5 Analysis of CCSL Specification
	5.1 Transition System Based on State
	5.2 Different Kinds of Specification

	6 Case Study
	7 Related Work
	8 Conclusion and Future Works
	References

	Animation and Prototyping
	Automated Safety Analysis on Scenario-Based Requirements for Train Control System
	1 Introduction
	2 Related Work
	3 Safety Analysis and Animation on Train Control System
	3.1 The Scenario Language
	3.2 Hazard Classification and Analysis
	3.3 Safety Analysis
	3.4 Unsafe Requirements Animation

	4 Tool Design and Implementation
	5 Conclusion
	References

	A Case Study of a GUI-Aided Approach to Constructing Formal Specifications
	1 Introduction
	2 A GUI-Aided Approach
	3 Rapid Prototyping
	3.1 Informal Specification
	3.2 GUI Model

	4 Construction of Formal Specifications
	4.1 Improved Informal Specification
	4.2 Formal Specification

	5 Lessons Learned
	6 Conclusions
	References

	Formal Development of Linear Structure Reusable Components in PAR Platform
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Specification Language Radl
	2.2 Software Modelling Language Apla
	2.3 The Formal Development Steps with PAR

	3 Formal Development of Set Component
	3.1 Introduction of Set Reusable Component
	3.2 Formal Development of Set Component

	4 Formal Development of Bag Component
	4.1 Introduction of Bag Reusable Component
	4.2 Formal Development of Bag Component

	5 Formal Development of List Component
	5.1 Introduction of List Reusable Component
	5.2 Formal Development of List Component

	6 Construct Program by Composing Reusable Components
	6.1 Simple and Accurate Apla Program Based on Reusable Components
	6.2 Generate Executable Program by Program Generating System

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

	Verification and Validation
	E-SSL: An SSL Security-Enhanced Method for Bypassing MITM Attacks in Mobile Internet
	1 Introduction
	2 Related Work
	3 Attack Scenario
	4 Method and Design
	4.1 E-SSL Client
	4.2 E-SSL Server

	5 Experiment and Result
	5.1 Security Prediction
	5.2 Security Detection
	5.3 Security Defense

	6 Evaluation
	7 Discussion
	7.1 Communication Overhead
	7.2 Latency

	8 Conclusion
	References

	A Proof System for MSVL Programs in Coq
	1 Introduction
	2 Preliminaries
	2.1 MSVL
	2.2 MSVL Axiomatic System

	3 An MSVL Proof System in Coq
	3.1 Principle
	3.2 Implemention

	4 Example
	4.1 Problem Description
	4.2 Proving Process

	5 Conclusion
	A Appendix: State Axioms and inference rules
	B Appendix: Axioms and inference rules Over Intervals
	C Appendix: Deducting Frog Routing Problem in Coq
	References

	Runtime Verification Monitor Construction for Three-valued PPTL
	1 Introduction
	2 Propositional Projection Temporal Logic
	3 The Monitor Based on PPTL3
	3.1 Three-valued Semantics
	3.2 Constructing the Monitor

	4 Example
	5 Related Work
	6 Conclusions
	References

	Applying SOFL to a Railway Interlocking System in Industry
	Abstract
	1 Introduction
	2 Specification for Interlocking System
	2.1 Introduction of the Interlocking System
	2.2 Basic Interlocking Function
	2.3 Specific Ways to Write SOFL Specifications
	2.3.1 Informal Specification
	2.3.2 Semi-formal Specification
	2.3.3 Formal Specification


	3 Derivation and Analysis of Hazard Conditions
	3.1 Derivation of Hazard Conditions
	3.2 Hazard Condition-Based Testing

	4 Experience and Difficulties
	4.1 Experience
	4.2 Difficulties

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgment
	References

	Model Checking
	SMT-based Bounded Model Checking for Cooperative Software with a Deterministic Scheduler
	1 Introduction
	2 Background of OSEK/VDX
	2.1 OSEK/VDX OS
	2.2 Motivating Application and Discussion

	3 The Checking Approach for OSEK/VDX Applications
	3.1 The Overview of Checking Approach
	3.2 Task CFG
	3.3 OSEK/VDX OS Model
	3.4 EPG and Transition System
	3.5 Bounds
	3.6 Given Property

	4 Optimization of Checking Approach
	4.1 Reduction of Execution Paths
	4.2 Acceleration of Bug Detection
	4.3 Non-deterministic Input

	5 Experiment and Evaluation
	5.1 Comparison to Spin-Based Checking Method
	5.2 Comparison to Kratos

	6 Related Work
	7 Conclusion and Future Work
	References

	Model Checking of a Mobile Robots Perpetual Exploration Algorithm
	1 Introduction
	2 Maude
	3 Exclusive Perpetual Exploration of the Ring
	3.1 Model
	3.2 Problem
	3.3 Algorithm

	4 System Specification of the Algorithm
	4.1 State Expressions for the System
	4.2 State Transitions for the System

	5 Model Checking
	5.1 State Predicates
	5.2 Property Specifications as LTL Formulas
	5.3 Experiments and Counterexample

	6 Conclusion
	References

	A Visual Modeling Language for MSVL
	1 Introduction
	2 Preliminaries
	2.1 Projection Temporal Logic
	2.2 Modeling, Simulation and Verification Language

	3 Structures of vMSVL
	3.1 Fundamental Notations
	3.2 Visual Notations
	3.3 System Modeling with vMSVL
	3.4 Formal Definition of vMSVL Model

	4 Translation of vMSVL Model into MSVL Model
	4.1 Transition of vMSVL Model into Hierarchical Syntax Chart
	4.2 Transforming from HSC to MSVL Model

	5 Conclusion
	References

	Author Index



