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Preface

Since the early ages of Pattern Recognition, researchers try to make computers
imitate the perception and understanding of visual content by humans. In the era of
structural pattern recognition, the algorithms of contour and skeleton extrapolation
in binary images tried to link missing parts using the principle of optic illusions
described by Marr and Hildreth.

Modeling of Human Visual System (HVS) in perception of visual digital content
has attracted a strong attention of research community in relation to the development
of image and video coding standards, such as JPEG, JPEG2000, and MPEG1,2. The
main question was how strongly and where in the image the information could be
compressed without a noticeable degradation in the decoded content, thus ensuring
quality of experience to the users. Nevertheless, the fundamental research on the
borders of signal processing, computer vision, and psycho-physics continued and in
1998 has appeared the model of Itti, Koch and Niebur which has become the most
popular model for prediction of visual attention. They were interested in both pixels-
wise saliency and the scan-path, “static” and dynamic components. A tremendous
amount of saliency models for still images and video has appeared during 2000
ties addressing both “low-level”, bottom-up or stimuli-driven attention and high-
level,“top-down”, task-driven attention.

In parallel, content-based image an video indexing and retrieval community
(CBIR and CVIR) has become strongly attached to the so-called “salient features”,
expressing signal singularities: corners, blobs, spatio-temporal jams in video. Using
the description of the neighbourhood of these singularities, we tried to describe,
retrieve and classify visual content addressing classical tasks of visual information
understanding: similarity search in images, recognition of concepts, objects and
actions. Since a few years these two streams have met. We are speaking today
about “perceptual multimedia”, “salient objects”, and “interestingness” and try to
incorporate this knowledge into our visual indexing and retrieval algorithms, we
develop models of prediction of visual attention adapted to our particular indexing
tasks. ..and we all use models of visual attention to drive recognition methods.
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viii Preface

In this book we tried to give a complete state of the art in this highly populated
and exploding research trend: visual information indexing and retrieval with psycho-
visual models. We hope that the book will be interesting for researchers as well as
PhD and master’s students and will serve as a good guide in this field.

Bordeaux, France Jenny Benois-Pineau
Nantes, France Patrick Le Callet
March 2017
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Visual Content Indexing and Retrieval
with Psycho-Visual Models

Patrick Le Callet and Jenny Benois-Pineau

Abstract The present chapter is an introduction to the book. The subject we
propose has seen an exploded interest since last decade from research community
in computer vision and multimedia indexing. From the field of video quality
assessment where models of Human Visual System (HVS) were generally used
to predict where humans will foveate and how will they perceive the degradation,
these methods moved to classical Image and Video Indexing and retrieval tasks,
recognition of objects, events, actions in images and video. In this book we try to
give the most complete overview of the methods for visual information indexing
and retrieval using prediction of visual attention or saliency. But also consider new
approaches specifically designed for these tasks.

1 From Low to High Level Psycho Visual Models: Perceptual
Computing and Applications

Along the last two decades, perceptual computing has emerged as a major topic for
both signal processing and computer science communities. Taking care that many
technologies produce signals for humans or process signals produced by humans, it
is all the more important to consider perceptual aspects in the design loop. Whatever
the uses cases, perceptual approaches rely on perceptual models that are supposed
to predict and/or mimic some aspects of the perceptual system.

Such models are not trivial to obtain. Their development implies a multidis-
ciplinary approach, in addition to signal processing of computer science encom-
passing neurosciences, psychology, physiology to name few. Perceptual modeling
depends on the ability to identify the part of the system under study. In the case
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2 P. Le Callet and J. Benois-Pineau

of visual perception, sub-part of human visual system are easier to identify than
some others, especially through psychophysics. With such approaches, relatively
sufficient models have been successfully developed, mainly regarding “low level”
of human vision. First order approximation for contrast perception such as Weber’s
law is a good and classic example, but we have been able to go much further,
developing models for masking effects, color perception, receptive fields theory. In
the late 1990s, there were already pretty advanced and practical perceptual models
suitable for many image processing engineers. Most of them, such as Just Noticeable
Difference (JND) models, are touching the visibility of signals and more specifically
the visual differences between two signals. This knowledge is naturally very useful
for applications such as Image quality prediction or image compression.

For years, these two applications have constituted a great playground for per-
ceptual computing. They have probably pushed the evolution of perceptual models
along the development of new immersive technologies (increasing resolution,
dynamic range .. .), leading not only to more advances JND models [19] but also to
explore higher levels of visual perception.

Visual attention modeling is probably the best illustration of this trend, having
concentrating massive efforts by both signal processing and computer science the
last decade. From few papers in the mid 2000s, it is now a major topic covering
several sessions in major conferences. High efforts on visual attention modeling
can be legitimated also by applications angle. Knowing where humans are paying
attention is very useful for perceptual tweaking of many algorithms: interactive
streaming, ROI compression, gentle advertising [17]. Visual content indexing and
retrieval field is not an exception and a lot of researchers have started to adopt visual
attention modeling for their applications.

2 Defining and Clarifying Visual Attention

As the term Visual Attention has been used in a very wide sense, even more in
the community that concerns this book, it requires few clarification. It is common
to associate visual attention to eye gaze location. Nevertheless, eye gaze location
do not necessarily fully reflect what human observers are paying attention to. One
should first distinguish between overt and covert attention:

* Overt attention is usually associated with eye movements, mostly related to gaze
fixation and saccades. It is easily observable nowadays with eye tracker devices,
which record gaze tracking.

¢ Covert attention: William James [13] explained that we are able to focus
attention to peripheral locations of interest without moving eyes. Covert attention
is therefore independent of oculomotor commands. A good illustration is how a
driver can remain fixating road while simultaneously covertly monitoring road
signs and lights.

Even if overt attention and covert attention are not independent, over attention has
been from far much more studied mostly because it can be measured in a straight-
forward way by using eye-tracking techniques. This is also one of the reasons why
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the studies of computational modeling of visual attention are tremendously focused
on overt attention. In that sense, visual attention is often seen in a simplified manner
as a mechanism having at least the following basic components: (1) the selection
of a region of interest in the visual field (2) the selection of feature dimensions and
values of interest (3) the control of information flow through the network of neurons
that constitutes the visual system; the shifting from one selected region to the next
in time.

An important classification for Visual content indexing and retrieval field implies
to distinguish between endogenous and exogenous mechanisms that drive visual
attention. The bottom-up process is passive, reflexive, involuntary also known as
exogenous as being driven by the signals, while the top-down process is active
and voluntary and referred as endogenous attention. Attention can consequently
either be task driven (Top-Down attention modeling) or feature driven (Bottom-
Up attention modeling). The former is reflexive, signal driven, and independent of a
particular task. It is driven involuntarily as a response to certain low-level features:
motion, and in particular sudden temporal changes, is known to be dominant
features in dynamic visual scenes whereas color and texture pop-outs represent the
dominant features in the static scenes. Top-down attention, on the other hand, is
driven by higher level cognitive factors and external influences, such as, semantic
information, contextual effects, viewing task, and personal preference, expectations,
experience and emotions. It is now widely known in the community that top-down
effects are an inherent component of gaze behavior and these effects cannot be
reduced or overcome even when no explicit task is assigned to the observers.

2.1 Interaction Between the Top-Down and Bottom-Up
Attention Mechanisms

Itti et al. [12] describe the neurological backbone behind the top-down and bottom-
up attention modeling as natural outcomes of the Inferotemporal cortex and
Posterior parietal cortex based processing mechanisms respectively.

Whatever of the considered neurological model, it is more important in most
usage of them, to appreciate the relative weights to be used or the mechanisms
of interaction between these top-down and bottom-up approaches. Schill et al.
[27] highlighted that humans gaze at regions where further disambiguation of
information when required. After the gaze is deployed towards such a region, it
is the bottom-up features which stand up by feature selection that helps achieve this
goal. The work in [23] also highlights some important aspects of free-viewing in
this regard, where the variation of the relative top-down versus bottom-up weight
A(t) was examined as a function of time. While attention was initially found to
be strongly bottom-up driven, there was a strong top-down affect in the range of
100-2000 ms. Later however the interaction between the two processes reach an
equilibrium state.
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2.2 The Concept of Perceived Importance/Interest: A Visual
Attention Concept for Visual Content Indexing and
Retrieval

From the application angle addressed in this book, it is desirable to get some models
of visual attention. Despite their common goal of identifying the most relevant
information in a visual scene, the type of relevance information that is predicted
by visual attention models can be very different. While some of the models focus
on the prediction of saliency driven attention locations, others aim at predicting
regions-of-interest (ROI) at an object level.

Several processes are thought to be involved in making the decision for an
ROI, including, attending and selecting a number of candidate visual locations,
recognizing the identity and a number of properties of each candidate, and finally
evaluating these against intentions and preferences, in order to judge whether or not
an object or a region is interesting. Probably the most important difference between
eye movement recordings and ROI selections is related to the cognitive functions
they account for. It is very important to distinguish between three “attention”
processes as defined by Engelke and Le Callet [6]:

¢ Bottom-up Attention: exogenous process, mainly based on signal driven visual
attention, very fast, involuntary, task-independent.

¢ Top-down Attention: endogenous process, driven by higher cognitive factors (e.g.
interest), slower, voluntary, task-dependent, mainly subconscious.

¢ Perceived Interest: strongly related to endogenous top-down attention but involv-
ing conscious decision making about interest in a scene.

Eye tracking data is strongly driven by both bottom-up and top-down attention,
whereas ROI selections can be assumed to be mainly driven by top-down attention
and especially perceived interest. It is the result of a conscious selection of the ROI
given a particular task, providing the level of perceived interest or perceptual
importance. Consequently, from a conceptual point of view, it might interesting to
distinguish between two different types of perceptual relevance maps of a visual
content: Importance versus Salience maps. While Salience refers to the pop-out
effect of a certain feature: either temporally or spatially, importance maps indicates
the perceived importance as it could be rated by human subjects. A saliency map is
a probabilistic spatial signal, that indicates the relative probability with which the
users regard a certain region. Importance maps on the other hand could be obtained
by asking users to rate the importance of different objects in a scene.

2.3 Best Practices for Adopting Visual Attention Model

As stated before, the terms visual attention and saliency can be found in literature
with various meaning. Whatever models adopted, researchers should be cautious
and check if the selected model is designed to meet the requirements of the targeted
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application. Moreover, one should also carefully verify the data on which models
have been validated. In the context of Visual content indexing and retrieval appli-
cations, models touching concepts related to top down saliency, ROI and perceived
interest/importance seem the more appealing. Nevertheless, while practically useful,
it is very rare that these concepts are explicitly refereed as such, including some of
the chapters in this book. The careful reader should be able to make this distinction
when visual attention is concerned.

3 Use of Visual Attention Prediction in Indexing
and Retrieval of Visual Content

Modeling the selective process of human perception of visual scenes represents
an efficient way to drive the scene analysis towards particular areas considered
‘of interest’ or ‘salient’. This is why it has become a very active trend in visual
information indexing and retrieval [9]. Due to the use of saliency maps, the search
for objects in images is more focused, thus improving the recognition performance
and additionally reducing the computational burden. Even more, saliency methods
can be naturally applied to all models which have been used up to now in these tasks,
such as Bag-of-Visual-Words (BoVW) [25], sliding window approaches for visual
object recognition [2, 31], image retrieval [4] or action recognition [32]. Saliency
maps are used for generation of “object proposals” for recognition of objects in
images and video with Deep Convolutional Neural Networks [5]. Hence in this
book we give a large overview of the use of different visual attention models in
fundamental tasks of visual information indexing: image and video querying and
retrieval, action recognition, emotional analysis, visualization of image content.
Models of visual attention, such as the one proposed by Itti et al. [12], Harel’s
graph implementation [10] are frequently used in literature for computing saliency
maps. Nevertheless, as a function of target application and visual task, new forms
of saliency can be predicted. Recently, the notion of saliency has been extended to
the “interestingness” of visual content [24]. The latter can be understood globally
for images and video fragments or locally, in which case it roughly delimits the area
in image plane, where the objects of interest can be situated. This notion is also
addressed in the present book.

We start with introduction of perceptual models in the problem of visual
information retrieval at quite a general level. Visual textures represent areas in
images which appears to be uniform from the perspective of human perception.
It is difficult to speak here about salient areas, as this is the case in structural
visual scenes with objects of interest. In chapter “Perceptual Texture Similarity for
Machine Intelligence Applications” the authors are interested in how perceptual
models can help in similarity matching of textures. The chapter reviews the theories
of texture perception, and provides a survey about the up-to-date approaches for
both static and dynamic textures similarity. The authors target video compression
application.
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In chapter “Deep Saliency: Prediction of Interestingness in Video with CNN”
the authors propose a first approach to the prediction of areas-of-interest in video
content. Deep Neural Networks have become winners in indexing of visual infor-
mation. They have allowed achievement of better performances in the fundamental
tasks of visual information indexing and retrieval such as image classification and
object recognition. In fine-grain indexing tasks, namely object recognition in visual
scenes, the CNNs have to evaluate multiple “object proposals”, that is windows in
the image plane of different size and location. Hence the problem of recognition is
coupled with the problem of localization. In [8] a good analysis of recent approaches
for object localization has been proposed, such as “regression approaches” as in
[1, 28], and “sliding window approaches” as in [29] when the CNN processes
multiple overlapping windows. The necessity to classify multiple windows makes
the process of recognition heavy. The authors of Girshick et al. [8] proposed a
so called Region-based convolutional network (R-CNN). They restrict number of
windows using “selective search” approach [31] thus the classifier has to evaluate
a limited number of (2K) “object proposals”. Prediction of the interestingness of
windows is another way to bound the search space. This prediction can be fulfilled
with the same approach: a deep CNN trained on the ground truth of visual saliency
maps build upon recorded gaze fixations of observers in a large-scale psycho-visual
experiment.

In chapter “Introducing Image Saliency Information into Content Based Indexing
and Emotional Impact Analysis” the authors are interested in the influence of pixel
saliency in classical image indexing paradigms. They use the BoVW paradigm
[22] which means building of image signature when selecting features in image
plane, quantizing them with regard to a built dictionary and then computing the
histogram of quantized features. The authors predict visual saliency of image pixels
with Harel’s model [10]. They compute a dense set of local image features by four
methods: (1) Harris detector [11], (2) Harris-Laplace detector [18], (3) Difference-
of-Gaussians (DOG) used in [16] to approximate Harris-Laplace detector and
(4) Features from Accelerated Segment Test (FAST) detector [26]. They define
“saliency” features on the basis of underlining saliency map. They experimentally
show that when filtering out salient features, the drop of image retrieval accuracy
is almost four times stronger compared to the removal of “non-salient” features.
Such a study on a publicly available databases is a good experimental witness of
the importance of saliency in selection of content descriptors and thus justifies the
general trend.

Chapter “Saliency Prediction for Action Recognition” develops on the same idea.
Here the problem of action recognition in video content is addressed. In order
to reduce computational burden, the authors propose a non-uniform sampling of
features accordingly to the saliency maps build on the gaze fixations available for a
public Hollywood dataset. They follow the standard (improved) Dense Trajectories
pipeline from [33-35]. Based on optical flow fields, trajectories are computed first,
and then descriptors are extracted along these trajectories from densely sampled
interest points. These descriptors comprise the shape of the trajectory, Histogram
of Gradients (HOG), Histogram of Optical Flow (HOF), and Motion Boundary
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Histograms (MBH). In order to exclude irrelevant trajectories corresponding to the
background they compensate motion along the video sequence. Based on the a priori
knowledge of video scenes they exclude detected humans from this compensation.
Following the objective of selection of action-salient features, they compute several
saliency maps. First of all, the central bias saliency map is computed. It expresses
Buswell’s central bias hypothesis that humans fixate the center of an image [3]
or a video frame, and thus in video production the most important objects are
situated in the center of video frames in footage. Then they compute an empirical
saliency maps identifying smooth pursuit gaze fixation. These saliency maps are
specifically relevant to the action recognition as humans perform smooth pursuit
movement accommodating to the moving objects. Finally, an analytical saliency
map using 2D +t Hessian is computed. Pruning of features is proposed considering
Weibull distribution on saliency measures of computed maps. Their detailed studies
on the Hollywood2 dataset convincingly show that using saliency—based pruning
of features in a classical BoVW with Fisher encoding indexing scheme improves
with regard to the base line when a smaller amount of descriptors is used.

In chapter “Querying Multiple Simultaneous Video Streams with 3D Interest
Maps” the interestingness of an object in a visual scene is defined by the user. The
method is designed for the selection of the best view of an object-of-interest in
the visual scene in real-time when a 3D reconstruction of the scene is available.
The user selects the region-of-interest on his/her mobile phone, then the 2D ROI is
back-projected on a 3D view of the video scene which is obtained from independent
cameras. The objects of interest are found inside a projection cone in a 3D scene
and the view with the highest entropy is selected expressing the best contrasts in
video. The framework is different from a classical Content-Based Image Retrieval
schemes. It is designed for real-time and real-life scenarios where the quality of the
video being captured in a querying process with the mobile phone can be very poor.
Hence the intervention of the user is necessary do delimit the “saliency”, which is
region/object-of-interest in this case.

While in chapter “Querying Multiple Simultaneous Video Streams with 3D Inter-
est Maps” the entropy is used for selection of the best view of the object-of-interest,
in chapter “Information: Theoretical Model for Saliency Prediction—Application to
Attentive CBIR” the authors propose an information—theoretical model of saliency
itself. The novelty of the proposed work is to present an application of Frieden’s
well established information framework [7] that answers to the question: how to
optimally extract salient information based on the low level characteristics that the
human visual system provides? The authors integrate their biologically inspired
approach into a real-time visual attention model and propose an evaluation which
demonstrates the quality of the developed model.

Chapter “Image Retrieval Based on Query by Saliency Content” is devoted to
the study on how the introduction of saliency in image querying could improve the
results in terms of information retrieval metrics. They propose a Query by Salience
Content Retrieval (QCSR) framework. The main parts of the QSCR system consist
of image segmentation, feature extraction, saliency modelling and evaluating the
distance in the feature space between a query image and a sample image from the
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given pool of images [21]. The authors proposed to consider saliency of images
at two levels: the local level is the saliency of segmented regions, the global level
is the saliency defined by image edges. For querying image database they select
salient regions using underlying Harel’s (GBVS) saliency map [10]. To select salient
regions to be used in a query the authors use the statistics which is a mean saliency
value across a region. Salient regions are selected accordingly to the criterion of
retrieval performance by thresholding of its histogram for the whole image partition.
The authors use various thresholding methods including the well-known Otsu’s
method [20]. The querying is fulfilled by computation of Earth Mover Distance
from regions of Query Image and the Database Image with saliency weighting.
The global saliency expressed by the energy of contours is also incorporated into
the querying process. They conduct multiple tests on CORELL 1000 and SIVAL
databases and show that taking into account saliency allows for better top ranked
results: more similar images are returned at the top of the rank list.

In chapter “Visual Saliency for the Visualization of Digital Paintings” the authors
show how saliency maps can be used in a rather unusual application of visual content
analysis, which is creation of video clips from art paintings for popularization
of cultural heritage. They first built a saliency map completing Itti’s model [12]
with a saturation feature. Then the artist is selecting and weighting salient regions
interactively. The regions of interest (ROIs) are then ordered accordingly to the
central bias hypothesis. Finally, an oriented graph of salient regions is built. The
graph edges express the order in which the regions will be visualized and the edges
of the graph are weighted with transition times in the visualization process set by the
artist manually. Several generated video clips were presented to eight naive users in
a psycho-visual experiment with the task to score how the proposed video animation
clip reflects the content of the original painting. The results, measured by the mean
opinion score (MOS) metric, show that, in case of four-regions visualization, the
MOS values for randomly generated animation clips and those generated with
proposed method differ significantly up to 12%.

Finally, chapter “Predicting Interestingness of Visual Content” is devoted to
the prediction of interestingness of multimedia content, such as image, video and
audio. The authors consider visual interestingness from a psychological perspective.
It is expressed by two structures “novelty-complexity” and a “coping potential”.
The former indicates the interest shown by subjects for new and complex events
and the latter measures a subject’s ability to discern the meaning of a certain
event. From the content-driven, automatic perspective, the interestingness of content
has been studied in a classical visual content indexing framework, selecting the
most relevant image-based features within supervised learning (SVM) approach
[30]. Interestingness of media content is a perceptual and highly semantic notion
that remains very subjective and dependent on the user and the context. The
authors address this notion for a target application of a VOD system, propose a
benchmark dataset and explore the relevance of different features, coming from
the most popular local features such as densely sampled SFIT to the latest CNN
features extracted from fully connected layer fc7 and prob features from AlexNet
Deep CNN [14]. The authors have conducted the evaluation of various methods
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for media content interestingness assessment in the framework of the MediaEval
Benchmarking Initiative for Media Evaluation [15]. In this evaluation campaign 12
groups were participating using prediction methods from SVM to Deep NNs with
pre-trained data. The conclusion of the authors are that the task still remains difficult
and open as the highest Mean Average Precision (MAP) metric values for image
interestingness was 0.22 and for video interestingness it was only 0.18.
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Perceptual Texture Similarity for Machine
Intelligence Applications

Karam Naser, Vincent Ricordel, and Patrick Le Callet

Abstract Textures are homogeneous visual phenomena commonly appearing in the
visual scene. They are usually characterized by randomness with some stationarity.
They have been well studied in different domains, such as neuroscience, vision
science and computer vision, and showed an excellent performance in many applica-
tions for machine intelligence. This book chapter focuses on a special analysis task
of textures for expressing texture similarity. This is quite a challenging task, because
the similarity highly deviates from point-wise comparison. Texture similarity is key
tool for many machine intelligence applications, such as recognition, classification,
synthesis and etc. The chapter reviews the theories of texture perception, and
provides a survey about the up-to-date approaches for both static and dynamic
textures similarity. The chapter focuses also on the special application of texture
similarity in image and video compression, providing the state of the art and
prospects.

1 Introduction

Textures are fundamental part of the visual scene. They are random structures often
characterized by homogeneous properties, such as color, orientation, regularity and
etc. They can appear both as static or dynamic, where static textures are limited to
spatial domain (like texture images shown in Fig. 1), while dynamic textures involve
both the spatial and temporal domain Fig. 2.

Research on texture perception and analysis is known since quite a long time.
There exist many approaches to model the human perception of textures, and also
many tools to characterize texture. They have been used in several applications such
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Fig. 2 Example of dynamic textures from DynTex Dataset [93]. First row represents the first
frame, and next rows are frames after respectively 2 s

as scene analysis and understanding, multimedia content recognition and retrieval,
saliency estimation and image/video compression systems.

There exists a large body of reviews on texture analysis and perception. For
example, the review of Landy [57, 58] as well as the one from Rosenholtz [98] give
a detailed overview of texture perception. Besides, the review of Tuceryan et al. in
[117] covers most aspects of texture analysis for computer vision applications, such
as material inspection, medical image analysis, texture synthesis and segmentation.
On the other hand, the book Haindl et al. [45] gives an excellent review about
modeling both static and dynamic textures. A long with this, there are also other
reviews that cover certain scopes of texture analysis and perception, such as
[29, 62, 88, 124, 135].

This chapter reviews an important aspect of texture analysis, which is texture
similarity. This is because it is the fundamental tool for different machine intelli-
gence applications. Unlike most of the other reviews, this covers both static and
dynamic textures. A special focus is put on the use of texture similarity concept in
data compression.
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The rest of the chapter is organized as follows: Sect.2 discusses about the
meaning of texture in both technical and non-technical contexts. The details of
texture perception, covering both static texture and motion perception, are given in
Sect. 3. The models of texture similarity are reviewed in Sect. 4, with benchmarking
tools in Sect.5. The application of texture similarity models in image and video
compression is discussed in Sect. 6, and the conclusion is given in Sect. 7.

2 What is Texture

Linguistically, the word texture significantly deviates from the technical meaning
in computer vision and image processing. According to Oxford dictionary [86], the
word refers to one of the followings:

1. The way a surface, substance or piece of cloth feels when you touch it

2. The way food or drink tastes or feels in your mouth

3. The way that different parts of a piece of music or literature are combined to
create a final impression

However, technically, the visual texture has many other definitions, for exam-
ple:

o We may regard texture as what constitutes a macroscopic region. Its structure
is simply attributed to pre-attentive patterns in which elements or primitives are
arranged according to placement order [110].

o Texture refers to the arrangement of the basic constituents of a material. In a
digital image, texture is depicted by spatial interrelationships between, and/or
spatial arrangement of the image pixels [2].

o Texture is a property that is statistically defined. A uniformly textured region
might be described as “predominantly vertically oriented”, “predominantly
small in scale”, “wavy”, “stubbly”, “like wood grain” or “like water” [58].

o We regard image texture as a two-dimensional phenomenon characterized by
two orthogonal properties: spatial structure (pattern) and contrast (the amount
of local image structure) [84].

e Images of real objects often do not exhibit regions of uniform and smooth
intensities, but variations of intensities with certain repeated structures or
patterns, referred to as visual texture [32].

o Textures, in turn, are characterized by the fact that the local dependencies
between pixels are location invariant. Hence the neighborhood system and the
accompanying conditional probabilities do not differ (much) between various
image loci, resulting in a stochastic pattern or texture [11].

o Texture images can be seen as a set of basic repetitive primitives characterized
by their spatial homogeneity [69].

o Texture images are specially homogeneous and consist of repeated elements,
often subject to some randomization in their location, size, color, orienta-
tion [95].
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o Texture refers to class of imagery that can be characterized as a portion of infinite
patterns consisting of statistically repeating elements [56].

o Textures are usually referred to as visual or tactile surfaces composed of
repeating patterns, such as a fabric [124].

The above definitions cover mostly the static textures, or spatial textures.
However, the dynamic textures, unlike static ones, have no strict definition. The
naming terminology changes a lot in the literature. The following names and
definitions are summary of what’s defined in research:

* Temporal Textures:

L.

2.

They are class of image motions, common in scene of natural environment,
that are characterized by structural or statistical self similarity [82].

They are objects possessing characteristic motion with indeterminate spatial
and temporal extent [97].

They are textures evolving over time and their motion are characterized by
temporal periodicity or regularity [13].

* Dynamic Textures:

1.

2.

They are sequence of images of moving scene that exhibit certain stationarity
properties in time [29, 104].

Dynamic textures (DT) are video sequences of non-rigid dynamical objects
that constantly change their shape and appearance over time[123].

. Dynamic texture is used with reference to image sequences of various natural

processes that exhibit stochastic dynamics [21].

. Dynamic, or temporal, texture is a spatially repetitive, time-varying visual

pattern that forms an image sequence with certain temporal stationarity [16].

. Dynamic textures are spatially and temporally repetitive patterns like

trees waving in the wind, water flows, fire, smoke phenomena, rotational
motions [30].

* Spacetime Textures:

1.

The term “spacetime texture” is taken to refer to patterns in visual spacetime
that primarily are characterized by the aggregate dynamic properties of
elements or local measurements accumulated over a region of spatiotemporal
support, rather than in terms of the dynamics of individual constituents [22].

¢ Motion Texture:

1.

Motion textures designate video contents similar to those named temporal or
dynamic textures. Mostly, they refer to dynamic video contents displayed by
natural scene elements such as flowing rivers, wavy water, falling snow, rising
bubbles, spurting fountains, expanding smoke, blowing foliage or grass, and
swaying flame [19].



Perceptual Texture Similarity for Machine Intelligence Applications 15

e Texture Movie:

1. Texture movies are obtained by filming a static texture with a moving camera
[119].

¢ Textured Motion:

1. Rich stochastic motion patterns which are characterized by the movement of a
large number of distinguishable or indistinguishable elements, such as falling
snow, flock of birds, river waves, etc. [122].

¢ Video Texture:

1. Video textures are defined as sequences of images that exhibit certain
stationarity properties with regularity exhibiting in both time and space [42].

It is worth also mentioning that in the context of component based video coding,
the textures are usually considered as details irrelevant regions, or more specifically,
the region which is not noticed by the observers when it is synthesized [9, 108, 134].

As seen, there is no universal definition of the visual phenomena of textures, and
there is a large dispute between static and dynamic textures. Thus, for this work, we
consider the visual texture as:

A visual phenomenon, that covers both spatial and temporal texture, where
spatial textures refer to homogeneous regions of the scene composed of small
elements (texels) arranged in a certain order, they might exhibit simple motion
such as translation, rotation and zooming. In the other hand, temporal textures are
textures that evolve over time, allowing both motion and deformation, with certain
Stationarity in space and time.

3 Studies on Texture perception

3.1 Static Texture Perception

Static texture perception has attracted the attention of researchers since decades.
There exists a bunch of research papers dealing with this issue. Most of the
studies attempt to understand how two textures can be visually discriminated, in
an effortless cognitive action known as pre-attentive texture segregation.

Julesz extensively studied this issue. In his initial work in [51, 53], he posed the
question if the human visual system is able to discriminate textures, generated by a
statistical model, based on the kth order statistics, and what is the minimum value
of k that beyond which the pre-attentive discrimination is not possible any more.
The order of statistics refers to the probability distribution of the of pixels values,
in which the first order measures how often a pixel has certain color (or luminance
value), while the second order measures the probability of obtaining a combination
of two pixels (with a given distance) colors, and the same can be generalized for
higher order statistics.
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(a) different 1* order statistics
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Fig. 3 Examples of pre-attentive textures discrimination. Each image is composed of two textures
side-by-side. (a) and (b) are easily distinguishable textures because of the difference in the first and
the second order statistics (resp.), while (c¢), which has identical first and the second but different
third order statistics, is not

First, Julesz conjectured that the pre-attentive textures generated side-by-side,
having identical second order statistics but different third order and higher, cannot be
discriminated without scrutiny. In other words, textures having difference in the first
and/or second order statistics can be easily discriminated. This can be easily verified
with the textures given in Fig.3. The textures are generated by a small texture
element (letter L) in three manners. First, to have different the first order statistics,
where the probability of black and while pixels is altered in Fig. 3a (different sizes
of L). Second, to have difference in second order statistics (with identical first order
statistics) by relatively rotating one texture to the other. Third, to have difference
in third order statistics (with identical first and second order statistics) by using a
mirror copy of the texture element (L). One can easily observe that conjecture holds
here, as we just observe the differences pre-attentively when the difference is below
the second order statistics. Several other examples can be found in [53] to support
this conjecture.

However, it was realized then it is possible to generate other textures having
identical third order statistics, and yet pre-attentively discriminable [54]. This is
shown in Fig. 4, in which the left texture has an even number of black blocks in
each of its 2 x 2 squares, whereas the left one has an odd number. This led to
the modified Julesz conjecture and the introduction of the texton theory [52]. The
theory proposes that the pre-attentive texture discrimination system cannot globally
process third or higher order statistics, and that discrimination is the results of few
local conspicuous features, called textons. This has been previously highlighted by
Beck [8], where he proposed that the discrimination is a result of differences in first
order statistics of local features (color, brightness, size and etc.).

On the other side, with the evolution of the neurophysiological studies in
the vision science, the research on texture perception has evolved, and several
neural models of human visual system (HVS) were proposed. The functionality
of the visual receptive field in [48], has shown that HVS, or more specifically
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Fig. 4 Example of two textures (side-by-side) having identical third order statistics, yet pre-
attentively distinguishable

the visual cortex, analyzes the input signal by a set of narrow frequency channels,
resembling to some extent the Gaborian filtering [94]. According, different models
of texture discrimination have been developed, based on Gabor filtering [85, 118],
or difference of offset Gaussians [65], etc. These models are generally performing
the following steps:

1. Multi-channel filtering
2. Non linearity stage
3. Statistics in the resulting space

The texture perception models based on the multi-channel filtering approach is
known as back-pocket model (according to Landy [57, 58]). This model, shown in
Fig.5, consists of three fundamental stages: linear, non-linear, linear (LNL). The
first linear stage accounts for the linear filtering of the multi-channel approach. This
is followed then by a non-linear stage, which is often rectification. This stage is
required to avoid the problem of equal luminance value which will on average cancel
out the response of the filters (as the filters are usually with zero mean). The last
stage refers to us as pooling, where a simple sum can give an attribute for a region
such that it can be easily segmented or attached to neighboring region. The LNL
model is also occasionally called filter-rectify-filter (FRF) as how it performs the
segregation [98].
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Fig. 5 The Back-pocket perceptual texture segregation model [57]

1.

3.2 Motion Perception

Texture videos, as compared to texture images, add the temporal dimension to the
perceptual space. Thus, it is important to include the temporal properties of the
visual system in order to understand its perception. For this reason, the subsection
provides an overview of studies on motion perception.

The main unit responsible for motion perception is the visual cortex [40].

Generally, the functional units of the visual cortex, which is responsible for motion
processing, can be grouped into two stages:

Motion Detectors

The motion detectors are the visual neurons whose firing rate increases when
an object moves in front of the eye, especially within the foveal region. Several
studies have shown that the primary visual cortex area (V1) is place where the
motion detection happens [20, 83, 102, 116]. In V1, simple cells neurons are often
modeled as a spatio-temporal filters that are tuned to a specific spatial frequency
and orientation and speed. On the other hand, complex cells perform some non-
linearity on top of the simple cells (half/full wave rectification and etc.).

The neurons of V1 are only responsive to signal having the preferred
frequency-orientation-speed combination. Thus, there is still a lack of the motion
integration from all neurons. Besides, the filter response cannot cope with the
aperture problem. As shown in Fig. 6, the example of the signal in the middle of
the figure shows a moving signal with a certain frequency detected to be moving
up, while it could actually be moving up-right or up-left. This is also true for the
other signals in the figure.

. Motion Extractors

The motion integration and aperture problem are solved at a higher level of
the visual cortex, namely inside the extra-striate middle temporal (MT) area. It
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Fig. 6 Examples of the
aperture problem: Solid arrow
is the detected direction, and
the dotted arrow is the other
possible directions

is generally assumed that the output of V1 is directly processed in MT in a feed-
forward network of neurons [83, 90, 99, 102]. The velocity vectors computation
in the MT cells can be implemented in different strategies. First, the intersection
of constraints, where the velocity vectors will be the ones that are agreed by
the majority of individual motion detectors [10, 102, 105]. Other than that, one
can consider a maximum likelihood estimation, or a learning based model if the
ground truth is available. An example of this could be MT response measured by
physiological studies [83], or ground truth motion fields such as [15, 68].

It is worth also mentioning that there are other cells responsible for motion
perception. For example, the medial superior temporal (MST) area of the visual
cortex is motion perception during eye pursuit or headings [41, 87]. Another thing,
the above review is concerning the motion caused by a luminance traveling over
time, which is known as the first order motion. However, there exist the second and
third order motion which are due to contrast moving and feature motion (resp.).
These are outside the scope of this chapter, as they are not directly related to the
texture perception.

3.3 Generalized Texture Perception

Up to our knowledge, a perceptual model that governs both static and dynamic
textures doesn’t not exist. The main issue is that although extensive perceptual
studies on texture images exist, the texture videos have not been yet explored.

Looking at the hierarchy of the visual system in Fig. 7, we can differentiate two
pathways after V1. The above is called the dorsal stream, while the lower is called
the ventral stream. The dorsal stream is responsible for the motion analysis, while
the ventral stream is mainly concerned about the shape analysis. For this reason, the
dorsal stream is known as the “where” stream, while the ventral is known as the
“what” stream [40].

One plausible assumption about texture perception is that texture has no shape.
This means that visual texture processing is not in the ventral stream. Beside this,
one can also assume that the type of motion is not a structured motion. Thus, it is not
processed by the dorsal stream. Accordingly, the resulting texture perception model
is only due to V1 processing. That is, the perceptual space is composed of proper
modeling of V1 filters along with their non-linearity process. We consider this type
of modeling as Bottom-Up Modeling.
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Fig. 7 Hierarchy of the human visual system [91]

On the other hand, another assumption about the texture perception can be
made. Similar to Julesz conjectures (Sect.3.1), one can study different statistical
models for understanding texture discrimination. This includes either higher order
models, or same order at different spaces. One can also redefine what is texton.
These models impose different properties about the human visual system that
don’t consider the actual neural processing. We consider this type of modeling as
Top-Down Modeling.

4 Models for Texture Similarity

Texture similarity is a very special problem that requires a specific analysis of the
texture signal. This is because two textures can look very similar even if there is
a large pixel-wise difference. As shown in Fig. 8, each group of three textures has
overall similar textures, but there is still a large difference if one makes a point by
point comparison. Thus, the human visual system does not compute similarity using
pixel comparison, but rather considers the overall difference in the semantics. For
this reason, simple difference metrics, such mean squared error, can not accurately
express texture (dis-)similarity, and proper models for measuring texture similarity
have always been studied.

This is even more difficult in the case of dynamic textures, because there exists a
lot of change in details over time, the point-wise comparison would fail to express
the visual difference. In the following subsections, a review of the existing texture
similarity models is provided, covering both static and dynamic textures.
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Fig. 8 Three examples of
similar textures, having large
pixel-wise differences. These
images were cropped from
dynamic texture videos in
DynTex dataset [93]

4.1 Transform Based Modeling

Transform based modeling has gained lots of attention in several classical as well
as recent approaches of texture similarity. This is because of the direct link with
the neural processing in the visual perception. As explained in Sect. 3, both neural
mechanisms of static texture and motion perception involve kind of subband filtering
process.

One of the early approaches for texture similarity was proposed by Manjunath
et al. [67], in which the mean and standard deviation of the texture subbands
(using Gabor filtering) are compared and the similarity is assessed accordingly.
Following this approach, many other similarity metrics are defined in a similar way,
using different filtering methods or different statistical measures. For example, the
Kullback Leiber divergence is used in [25] and [26]. Other approach is by using
the steerable pyramid filter [101] and considering the dominant orientation and
scale [69].

Knowing the importance of subband statistics, Heeger et al. proposed to syn-
thesize textures by matching the histogram of each subband of the original and
synthesized textures. To overcome the problem of irreversibility of Gabor filtering,
they used the steerable pyramid filter [101]. The resulting synthesized textures were
considerably similar to the original, especially for the case of highly stochastic
textures. The concept has also been extended by Portilla et al. [95], where larger
number of features defined in the subband domain are matched, resulting in a better
quality of synthesis.
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The significance of the subband statistics has led more investigation of texture
similarity in that domain. Recently, a new class of similarity metrics, known as
structural similarity, has been introduced. The structural texture similarity metric
(STSIM) was first introduced in [137], then it was enhanced and further developed
in [138, 140] and [64]. The basic idea behind them is to decompose the texture,
using the steerable pyramid filter, and to measure statistical features in that domain.
The set of statistics of each subband contains the mean and variance. Besides, the
cross correlation between subbands is also considered. Finally, these features were
fused to form a metric, that showed a high performance in texture retrieval.

The filter-bank approach, which was applied for static textures, has been also
used in dynamic texture modeling by several studies. However, the concept was used
in a much smaller scope compared to static textures. In [103], three dimensional
wavelet energies were used as features for textures. A comparison of different
wavelet filtering based approaches, that includes purely spatial, purely temporal and
spatio-temporal wavelet filtering, is given in [30].

A relatively new study on using energies of Gabor filtering is found in [39]. The
work is claimed to be inspired by the human visual system, where it resembles to
some extent the V1 cortical processing (Sect. 3).

Beside this, there exist also other series of papers, by Konstantinos et al. [21, 22],
employed another type of subband filtering, which is the third Gaussian derivatives
tuned to certain scale and orientation (in 3D space). The approach was used for
textures representation recognition and also for dynamic scene understanding and
action recognition [23].

4.2 Auto-Regressive Modeling

The auto-regressive (AR) model has been widely used to model both static and
dynamic textures, especially for texture synthesis purposes. In its simplistic form,
AR can be expressed in this form:

N
s(oy, 1) = Y is(e+ Ay y + Ayi t + At) + n(x,y, 1) (1

i=1

Where s(x, y, t) represents the pixel value at the spatio-temporal position (x, y, ),
¢; is the model weights, Ax;,Ay;,At; are the shift to cover the neighboring pixels.
n(x,y,t) is the system noise which is assumed to be white Gaussian noise.

The assumption behind AR is that each pixel is predictable from a set of its
neighboring spatio-temporal pixels, by the means of weighted summation, and the
error is due to the model noise n(x, y, f). An example of using model for synthesis
can be found in [4, 12, 55].

The auto-regressive moving average (ARMA) model is an extension of the
simple AR model that is elegantly suited for dynamic textures. It was first introduced
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by Soatto and Dorreto [29, 104] for the purpose of dynamic texture recognition. The
ARMA model is mathematically expressed in this equation:

x(t+ 1) = Ax(t) + v(2)
y(t) = ¢x(1) + w(t)

2

Where x(¢) is a hidden state and y(¢) is the output state, v(¢) and w(¢) are system
noise (normally distributed) and A, ¢ are the model weights as in AR. The output
state is the original frame of the image sequence. Comparing Eq. (2) with Eq. (1),
it is clear that the model assumes that the hidden state x(¢) is modeled as an AR
process, and the observed state is weighted version of the hidden state with some
added noise.

Both AR and ARMA can be directly used to measure texture similarity by
comparing the model parameters. In other words, the parameters can be considered
as visual features to compare textures and express the similarity. This has been
used in texture recognition, classification, segmentation and editing [27, 28]. Other
than that, it has been extended by several studies to synthesize similar textures.
For example, by using Fourier domain [1], by including several ARMA models
with transition probability [59], using higher order decomposition [18] and others
[35, 131].

Although there is no direct link between the texture perception and the auto-
regressive models, we can still interpret its performance in terms of Julesz con-
jectures (Sect.3.1). The assumption behind these models is that textures would
look similar if they are generated by the same statistical model with a fixed set
of parameters. While Julesz has conjectured that the textures look similar if they
have the same first and second order statistics. Thus, it can be understood that these
models are an extension of the conjecture, in which the condition for similarity is
better stated.

4.3 Texton Based Modeling

Recalling that textons are local conspicuous features (Sect.3.1), a large body of
research has been put to define some local features that can be used to measure the
texture similarity. One of the first approaches, and still very widely used, is the local
binary pattern approach (LBP) [84]. This approach is simply comparing each pixel
with each of its circular neighborhood, and gives a binary number (0-1) if the value
is bigger/smaller than the center value. The resulting binary numbers are gathered
in a histogram, and any histogram based distance metric can be used.

The approach has gained a lot of attention due to its simplicity and high
performance. It was directly adopted for dynamic textures in two manners [136].
First, by considering the neighborhood to be a cylindrical instead of circular in
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the case of Volume Local Binary Pattern (V-LBP). Second, by performing three
orthogonal LBP on the xy, xt and y¢ planes, which is therefore called Three
Orthogonal Planes LBP (LBP-TOP).

Several extensions of the basic LBP model have been proposed. For example,
a similarity metric for static textures known as local radius index (LRI)[132, 133],
which incorporates LBP along with other pixel to neighbors relationship. Besides,
there is another method that utilizes the Weber law of sensation, that is known as
Weber Local Descriptor (WLD) [14].

Rather than restricting the neighborhood relationship to binary descriptors, other
studies have introduced also trinary number [6, 46, 47] in what is known as texture
spectrum.

It is worth also mentioning that some studies consider the textons as the results
of frequency analysis of texture patches. The study of Liu et al. [61] considered the
marginal distribution of the filter bank response as the “quantitative definition” of
texton. In contrast, textons are defined [120] as the representation that results from
codebook generation of a frequency histogram.

4.4 Motion Based Modeling

The motion based analysis and modeling of dynamic textures has been in large body
of studies. This is because motion can be considered as a very important visual cue,
and also because the dynamic texture signal is mostly governed by motion statistics.
To elaborate on motion analysis, let’s start with basic assumption that we have an
image patch /(x, y, t) in a spatial position (x, y) and at time (¢), and this patch would
appear in the next frame, shifted by (Ax, Ay). Mathematically:

I(x,y,t) = I(x + Ax,y + Ay, t + 1) 3)

This equation is known as Brightness Constancy Equation, as it states that the
brightness doesn’t change from one frame to another. The equation can be simplified
by employing the Taylor expansion as follows (removing the spatial and temporal
indexes for simplicity):

I I 1
— n o o

I_Zo(n!xAx—i— n!xAy—i—n!xAt) 4)

where I, I, and I,,, are the nth order partial derivatives with respect to x, y and t.

The equation can be further simplified by neglecting the terms of order higher than

one, then it becomes:

LxVe+ 1, xV, =~ ®))
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where V., V, are the velocities in x and y directions (V, = Ax/At and so on).
The solution of Eq.(5) is known as optical flow. However, further constraints
are needed to solve the equation because of the high number of unknowns. One
of the constraints is the smoothness, in which a patch is assumed to move with
the same direction and speed between two frames. This is not usually the case
for dynamic texture, in which the content could possibly change a lot in a short
time instant. Accordingly, there exists also another formulation of the brightness
constancy assumption, that doesn’t require the analytical solution. This is known as
the normal flow. It is a vector of flow, that is normal to the spatial contours (parallel
to the spatial gradient), and its amplitude is proportional to the temporal derivative.
Mathematically, it is expressed as:

_Il
NF=———N (6)

IIXZ _|_ Iy2

where N is a unit vector in the direction of the gradient.

The normal flow, as compared to the optical flow, is easy to compute. It needs
only the image derivatives in the three dimensions (x, y, f), and no computation of
the flow speed is needed. One drawback of normal flow is that it can be very noisy
(especially for low detailed region) when the spatial derivatives are low. For this
reason, a threshold is usually set before evaluating any statistical property of the
normal flow.

The motion based modeling of dynamic textures was pioneered by Nelson
and Palonan in [82], where they used normal flow statistics for dynamic textures
classification. This model has been extended in [89] to include both the normal flow
and some static texture features (coarseness, directionality and contrast). Other than
that, Peteri et al. [92] have augmented the normal flow with a regularity measure,
computed from correlation function.

The optical flow has been also used in dynamic texture analysis. In [33], the
authors compared different optical flow approaches to normal flow, and showed that
the recognition rate can be significantly enhanced by optical flow.

Similar to the concept of co-occurrence matrix, Rahman et al. have developed
the concept of motion co-occurrence [96], in which they compute the statistics of
occurrence of a motion field with another one for a given length.

It is worth also mentioning here there are other approaches beyond the concept
of brightness constancy. Since dynamic textures can change their appearance over
time, it is more logical to move towards brightness conservation assumption. It can
be mathematically expressed as [3, 34]:

I(x,y, ) (1 — Ax, — Ayy) = 1(x + Ax,y + Ay, t + 1) @)
Where Ax, and Ay, are the partial derivatives of the shifts in x and y. Comparing

this equation to Eq.(3), the model allows the brightness / to change over time
to better cover the dynamic change inherited in the dynamic textures. The model
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has been used for detecting dynamic textures [3], in which regions satisfying this
assumption are considered as dynamic textures. However, further extensions of this
ideas were not found.

4.5 Others

Along with other aforementioned models, there exist other approaches that cannot
be straightforwardly put in one category. This is because the research on texture
similarity is quite matured, but still very active.

One major approach for modeling texture and expressing similarity is by using
the fractal analysis. It can be simply understood as an analysis of measurements at
different scales, which in turn reveals the relationship between them. For images,
this can be implemented by measuring the energies of a gaussian filter at different
scales. The relationship is expressed in terms of the fractional dimension. Recent
approaches of fractal analysis can be found in [126-128].

Another notable way is to use the self avoiding walks. In this, a traveler walks
through the video pixels using a specified rule and memory to store the last steps. A
histogram of walks is then computed and considered as features for characterizing
the texture (cf. [37, 38]).

Beside these, there exist also other models that are based on the physical behavior
of textures (especially dynamic textures). This includes models for fire [24], smoke
[7] and water [70].

Although these models suit very well specific textural phenomenon, they cannot
be considered as perceptual ones. This is because they are not meant to mimic the
visual processing, but rather the physical source. For this reason, these are out of
scope of this book chapter.

5 Benchmarking and Comparison

After viewing several approaches for assessing the texture similarity (Sect.4), the
fundamental question here is how to compare these approaches, and to establish a
benchmark platform in order to differentiate the behavior of each approach. This
is of course not a straightforward method, and a reasonable construction of ground
truth data is required.

Broadly speaking, comparison can either be performed subjectively or objec-
tively. In other words, either by involving observers in a kind of psycho-physical
test, or by testing the similarity approaches performance on a pre-labeled dataset.
Both have advantages and disadvantages, which are explained here.

The subjective comparison is generally considered as the most reliable one. This
is because it directly deals with human judgment on similarity. However, there are
several problems that can be encountered in such a methodology. First, the selection
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and accuracy of the psycho-physical test. For example, a binary test can be the
simplest for the subjects, and would result in very accurate results. In contrast, this
test can be very slow to cover all the test conditions, and possibly such a test would
not be suitable. Second, the budget-time limitation behind the subjective tests would
result in a limited testing material. Thus, it is practically unfeasible to perform a
large scale comparison with subjective testing.

Accordingly, there exist few studies on the subjective evaluation of texture
similarity models. For example, the subjective quality of the synthesized textures
were assessed and predicted in [42, 109], and adaptive selection among the synthesis
algorithms was provided in [121]. The similarity metrics correlation with subjective
evaluation was also assessed in [5, 139].

As explained earlier, subjective evaluation suffers from test accuracy and budget
time-limitation. One can also add the problem of irreproducibility, in which the
subjective test results cannot be retained after repeating the subjective test. There is
also a certain amount of uncertainty with the results, which is usually reported in
terms of confidence levels. To encounter this, research in computer vision is usually
leaded by objective evaluations.

One commonly used benchmarking procedure is to test the performance on
recognition task. For static textures, two large datasets of 425 and 61 homogeneous
texture images are cropped into 128x128 images with substantial point-wise
differences [140]. The common test is to perform a retrieval test, in which for a test
image if the retrieved image is from the correct image source then it is considered
as correct retrieval. This is performed for all of the images in the dataset, and the
retrieval rate is considered as the criteria to compare different similarity measure
approaches. For example, Table 1 provides the information about the performance
of different metrics. In this table, one can easily observe that simple point-wise
comparison metric like the Peak Signal to Noise Ratio (PSNR) provides the worst
performance.

For dynamic textures, similar task is defined. Commonly, the task consists
of classification of three datasets. These are the UCLA [100], DynTex [93] and
DynTex++ [36] datasets. For each dataset, the same test conditions are commonly
used. For example, DynTex++ contains 36 classes, each of 100 exemplar sequences.
The test condition is to randomly assign 50% of the data for training and the rest for

Table 1 Retrieval rate as a

. Metric Retrieval rate (%)
benchmark tool for different PSNR 2
texture similarity metrics N
LBP 90

Wavelet features [25] | 84
Gabor features [67] 92
STSIM 96
LRI 99

Results obtained from [133, 140]
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Table 2 Recognition rate on Metric Recognition rate (%)
the DynTex++ as a

benchmark tool for different VLBP 94.98
texture similarity metrics LBP-TOP 94.05
WLBPC [115] 95.01

CVLBP [113] 96.28
MEWLSP [114] | 98.48

Results obtained from [113, 114]

testing. The train data are used for training the models, and the recognition rate is
reported for the test data. The procedure is repeated 20 times and the average value
is retained. This is shown in Table 2.

6 Texture Similarity for Perceptual Image and Video
Compression

Image/Video compression is the key technology that enables several applications
related to storage and transmission. For video, the amount of data is increasingly
huge, and research on better compression is always growing.

In the context of compression, texture is usually referred to homogeneous regions
of high spatial and/or temporal activities with mostly irrelevant details. According to
this, textures would usually consume high amount of bitrate for unnecessary details.
Thus, a proper compression of texture signal is needed. In the following subsections,
an overview of different approaches for texture similarity in video compression is
provided.

6.1 Bottom-Up Approaches

As mention in Sect.3.3, bottom up approaches try to perform the same neural
processing of the human visual system. We have seen many transform based models
(Sect.4.1) that showed good performance for measuring the texture similarity.
These models can be also used in image/video compression scenario, such that the
compression algorithm is tuned to provide the best rate-similarity trade-off instead
of rate-distortion. By doing so, the compression is relying more on a perceptual
similarity measure, rather than a computational distortion metric. Consequently, this
could perceptually enhance the compression performance.

In our previous studies [71, 73, 74], we have used the perceptual distortion
metrics inside the state of the art video compression standard, known as High
Efficiency Video Coding (HEVC [106]), and evaluated their performance. We used
the two metrics of STSIM and LRI (Sects. 4.1 and 4.3) inside as distortion measure
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Fig. 9 Examples of decoded textures using the same QP. From left to right: Original texture,
compressed using HEVC with default metrics, with STSIM and with LRI

(dissimilarity) inside the rate-distortion function of HEVC reference software (HM
software [50]). The measured distortion is used to select the prediction mode and
the block splitting. Examples of the results are shown in Fig. 9.

The visual comparison between the compression artifacts of the default HEVC
versus texture similarity metrics based optimization shows that structural informa-
tion are better preserved. We can also clearly see the point-wise differences, when
using texture metrics, but the overall visual similarity is much higher. We have also
performed objective evaluation for comparing the rate-similarity performance at
different compression levels. For this, we used another metric [67] that is based
on comparing the standard deviations of the Gabor subbands. The results shown
in Fig. 10 indicate that both LRI and STSIM outperform HEVC default metrics,
especially for the case of high compression (low bitrate).

Beside this, Jin et al. presented another method for using STSIM in image
compression. They developed an algorithm for structurally lossless compression
known as Matched-Texture Coding [49]. In this algorithm, a texture patch is copied
from another patch of the image, if the similarity score, measured by STSIM, is
above a certain threshold. By doing this, higher compression is achieved as it is
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Fig. 10 Rate Distortion (using Gabor distance metric [67]) of the textures shown in Fig. 9. x-axes:
Bytes used to encode the texture, y-axes: distance to the original texture

not necessary to encode the patch but rather its copy index. The visual comparison
showed some point-wise difference, but high overall similarity.

6.2 Top-Down Approaches

In contrast to Bottom-Up approaches, Top-Down approaches do not try to model the
neural processing of the human visual system, but rather to formulate a hypothesis
about human vision properties, and validate it with some examples (Sect.3.3). In
the context of image/video compression, the common hypothesis is that original
and synthesized textures would look similar, if a good synthesis algorithm is used.
By synthesizing the textures, there is no need to encode them, but rather to encode
the synthesis parameters, which needs to be significantly easier to encode in order
to provide an improved compression ratio.

One of the first approaches for synthesis based coding was introduced by Ndjiki-
Nyaetal. in [78, 79]. The proposed algorithm consists of two main functions: texture
analyzer (TA) and texture synthesizer (TS). The TA is responsible of detecting
regions of details irrelevant textures, via spatial segmentation and temporal grouping
of segmented textures. The TS, on the other hand, is responsible of reproducing
the removed parts in the decoder side. TS contains two types of synthesizers,
one employs image warping, which is used to warp texture with simple motion
(camera motion mostly), the other one is based on Markov Random Fields and is
responsible for synthesizing textures containing internal motion. This algorithm was
implemented in the video coding standard, in which irrelevant texture signals are
skipped by the encoder, and only the synthesis parameters is sent to the decoder as
side information.

Ndjiki-Nya et al. produced several extensions of the above mentioned approach.
In [80], a rate distortion optimization was also used for the synthesis part. The rate
is the number of bits required to encode the synthesis parameters and the distortion
accounts for the similarity between the original and synthesized texture, in which
they used an edge histogram as well as color descriptor for computing the quality.
A review of their work, as well as others, is given in [81].
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Similar to these approaches, many other researchers have developed texture
removal algorithms varying in their compression capability, complexity, synthesis
algorithm and distortion measure. Interested reader may refer to [9] and [134]. For
HEVC, there exist also initial investigations about the pyramid based synthesis [111]
and motion based synthesis for dynamic textures [17].

Recently, as a part of study on texture synthesis for video compression, a new
approach for texture synthesis has been proposed by Thakur et al. in [112]. In this
approach, half of the frames is encoded, and the rest is synthesized based on subband
linear phase interpolation. This is shown in Fig. 11, where each intermediate frame is
skipped at the encoder side, and synthesized at the decoder side after reconstructing
the previous and next frames. With this approach, the half of the frames are encoded,
and the rest is synthesized.

Visually, the synthesized frames as compared to the compressed frames, at a
similar bitrate, are in much better quality (Fig. 12). There is significant reduction of
the blocking artifacts. The results have been verified with a subjective testing, and
it was shown that observers tend to prefer the synthesis based model against the
default compression, for the same bitrate.

One issue of the synthesis based approaches is the necessity of altering the
existing standard by modifying the decoder side. This is certainly undesired as it
required changing the users’ software and/or hardware, and thus could negatively
impact the user experience. To encounter this issue, Dumitras et al. in [31] proposed
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Fig. 11 Dynamic texture synthesis approach for alternative frames [112]. E is a decoded picture
and S is synthesized one

Fig. 12 An example of visual comparison between default compression and proposed method in
[112]. Left: original frame, middle: is compressed frame with HEVC and right: synthesized frame
at the decoder side
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Fig. 13 Algorithmic overview of the local texture synthesis approach in [72]

a “texture replacement” method at the encoder, in which the encoder synthesizes
some texture areas in a way that it is simpler to encode. By doing this, the encoded
image/video would be the simplified synthetic signal, which would have a similar
look to the original one. Accordingly, it is only a pre-processing step, that doesn’t
require any further modification of the encoder and decoder. However, the approach
was only limited to background texture with simple camera motion.

In one of our studies, we presented a new online synthesis algorithm that is fully
compatible with HEVC. It is named as Local Texture Synthesis (LTS [72]). The
algorithm, as described in Fig. 13, generates for each block to be encoded B a set
of synthetic blocks B containing n blocks (B1, B2, ..., Bn) that are visually similar
to B. A subset B’ out of B that has a good match with the given context is only
maintained. Then, the encoder tries encoding block by replacing its content by the
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contents in B’, and will then select the block Bj such that Bj has the minimum rate
and distortion. Thus, the algorithm tries to replace the contents while encoding, by
visually similar ones, such that the contents will be easier to encode.

An example for comparing the behavior of LTS against HEVC is shown in
Fig. 14. Due to the simplification procedure of the contents in LTS, one can achieve
about 10% bitrate saving. On the other hand, there is also some visual artifacts due
to this simplification. By carefully examining the differences in Fig. 14, we can see
that some of the wall boundaries are eliminated by LTS. This is because encoding
an edge costs more than a flat area, and thus LTS would choose to replace this edge
by another possible synthesis that is easier to encode.

6.3 Indirect Approaches

Instead of relying on the existing metrics of texture similarity for improving
the compression quality (Sect.6.1), we have also conducted a psycho-physical
experiment to evaluate the perceived differences (or dis-similarity) due to HEVC
compression on dynamic textures [77]. The maximum likelihood difference scaling
(MLDS [66]) was used for this task. The results of this test are shown in Fig. 15,
in which perceived differences for two sequences are plotted against the HEVC
compression distortions measured in terms of mean squared error (MSE-YUYV). The
figure presents two interesting scenarios. First, on the left, the computed distortion
(MSE-YUYV) highly deviates from the perceived difference, whereas in the second
(right), the computed distortion is mostly linearly proportional to the perceived
difference.

In the same manner as for STSIM and LRI, a dissimilarity metric is defined as
a mapping function from the computed distortion (MSE) to perceived difference.
It was used inside the HEVC reference software. A subjective test was used
to verify the performance of the proposed metric, and it was shown to achieve
significant bitrate saving. An extension of this work is given in [75], in which a
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Fig. 15 Subjective test results of MLDS for two sequences

machine learning based estimation of the curve is performed, and used to provide
an improved compression result.

The other indirect use of texture similarity measure is to exploit the analysis
tools and features from that domain in image and video compression. For example,
in [76], the visual redundancies of dynamic textures can be easily predicted by a set
of features, such as normal flow and gray level co-occurrence matrix. Similarity,
the optimal rate-distortion parameter (Lagrangian multiplier) can be predicted
similarly [63].

Beside texture synthesis based coding, there also exist several studies on
perceptually optimizing the encoder based on texture properties. These studies fall
generally into the category of noise shaping, where the coding noise (compression
artifact) is distributed to minimize the perceived distortions. Examples can be found
in [60, 107, 125, 129, 130]. Besides, textures are considered as non-salient areas,
and less bitrate is consumed there [43, 44].

7 Conclusion

Understanding texture perception is of particular interest in many fields of computer
vision applications. The key concept in texture perception is texture similarity. A
large body of research has been put to understand how textures look similar despite
the individual point-by-point differences.

The objective of this chapter is to give an overview of the perceptual mechanisms
on textures, and summarize different approaches for texture similarity. Common
benchmarking tests are also provided, with a highlight on the difference between
objective and subjective evaluation. The chapter also includes a review about the
use of texture similarity in the special context of image and video compression,
showing its promising results and outcome.
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As it is shown, static textures, or texture images, have been extensively studied in
different disciplines. There exists large scale knowledge about their perception and
analysis. In contrast, studies on dynamic textures (or video textures) are relatively
newer. The literature covered in this chapter showed that there is no clear definition
for them. More importantly, there are many computational models for measuring
similarity, but they don’t follow a perceptual/neural model. They mostly formulate
a high level hypothesis about the visual similarity and design the model accordingly
(Top-down approach).

The existing models can be classified into different categories (Sect.4). They
have proved excellent performance in different applications, such as multimedia
retrieval, classification and recognition. They have also shown a successful synthesis
results. However, large scale visual comparison, in terms of subjective testing, for
differentiating the performance of different models is unfeasible to be performed.
Thus, it is still unclear which one provides the best outcome.

Due to the success of the texture similarity models, different studies have
employed these models in the context of image and video compression. The
chapter provided an overview of two main approaches: Bottom-up (similarity-
based) and Top-down (synthesis-based). Both have shown an improved rate-quality
performance over the existing coding standards. However, the compatibility issue
could be the main factor preventing the deployment of such approaches.

Acknowledgements This work was supported by the Marie Sklodowska-Curie under the
PROVISION (PeRceptually Optimized VIdeo CompresSION) project bearing Grant Number
608231 and Call Identifier: FP7-PEOPLE-2013-ITN.

References

1. Abraham, B., Camps, O.I., Sznaier, M.: Dynamic texture with fourier descriptors. In:
Proceedings of the 4th International Workshop on Texture Analysis and Synthesis, pp. 53—58
(2005)

2. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans.
Syst. Man Cybern. 19(5), 1264-1274 (1989)

3. Amiaz, T., Fazekas, S., Chetverikov, D., Kiryati, N.: Detecting regions of dynamic texture.
In: Scale Space and Variational Methods in Computer Vision, pp. 848-859. Springer, Berlin
(2007)

4. Bao, Z., Xu, C., Wang, C.: Perceptual auto-regressive texture synthesis for video coding.
Multimedia Tools Appl. 64(3), 535-547 (2013)

5. Ball¢, J.: Subjective evaluation of texture similarity metrics for compression applications. In:
Picture Coding Symposium (PCS), 2012, pp. 241-244. IEEE, New York (2012)

6. Barcelo, A., Montseny, E., Sobrevilla, P.: Fuzzy texture unit and fuzzy texture spectrum for
texture characterization. Fuzzy Sets Syst. 158(3), 239-252 (2007)

7. Barmpoutis, P., Dimitropoulos, K., Grammalidis, N.: Smoke detection using spatio-temporal
analysis, motion modeling and dynamic texture recognition. In: 2013 Proceedings of the
22nd European Signal Processing Conference (EUSIPCO), pp. 1078-1082. IEEE, New York
(2014)

8. Beck, J.: Textural segmentation, second-order statistics, and textural elements. Biol. Cybern.
48(2), 125-130 (1983)



36

10.

11.

12.

13.

14.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

K. Naser et al.

. Bosch, M., Zhu, E, Delp, EJ.: An overview of texture and motion based video coding at

Purdue University. In: Picture Coding Symposium, 2009. PCS 2009, pp. 1-4. IEEE, New
York (2009)

Bradley, D.C., Goyal, M.S.: Velocity computation in the primate visual system. Nature Rev.
Neurosci. 9(9), 686—695 (2008)

Caenen, G., Van Gool, L.: Maximum response filters for texture analysis. In: Conference on
Computer Vision and Pattern Recognition Workshop, 2004. CVPRW’04, pp. 58-58. IEEE,
New York (2004)

Campbell, N., Dalton, C., Gibson, D., Oziem, D., Thomas, B.: Practical generation of
video textures using the auto-regressive process. Image Vis. Comput. 22(10), 819-827
(2004)

Chang, W.-H., Yang, N.-C., Kuo, C.-M., Chen, Y.-J,, et al.: An efficient temporal texture
descriptor for video retrieval. In: Proceedings of the 6th WSEAS International Conference
on Signal Processing, Computational Geometry & Artificial Vision, pp. 107-112. World
Scientific and Engineering Academy and Society (WSEAS), Athens (2006)

Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W., W1d: a robust local
image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705-1720 (2010)

. Chessa, M., Sabatini, S.P., Solari, F.: A systematic analysis of a vl-mt neural model for

motion estimation. Neurocomputing 173, 1811-1823 (2016)

. Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In:

Computer Recognition Systems, pp. 17-26. Springer, Berlin (2005)

. Chubach, O., Garus, P., Wien, M.: Motion-based analysis and synthesis of dynamic textures.

In: Proceedings of International Picture Coding Symposium PCS ’16, Nuremberg. IEEE,
Piscataway (2016)

Costantini, R., Sbaiz, L., Siisstrunk, S.: Higher order SVD analysis for dynamic texture
synthesis. IEEE Trans. Image Process. 17(1), 42-52 (2008)

Crivelli, T., Cernuschi-Frias, B., Bouthemy, P., Yao, J.-F.: Motion textures: modeling,
classification, and segmentation using mixed-state Markov random fields. SIAM J. Image.
Sci. 6(4), 2484-2520 (2013)

David, S.V., Vinje, W.E., Gallant, J.L.: Natural stimulus statistics alter the receptive field
structure of v1 neurons. J. Neurosci. 24(31), 6991-7006 (2004)

Derpanis, K.G., Wildes, R.P.: Dynamic texture recognition based on distributions of
spacetime oriented structure. In: 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 191-198. IEEE, New York (2010)

Derpanis, K.G., Wildes, R.P.: Spacetime texture representation and recognition based on a
spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(6), 1193—
1205 (2012)

Derpanis, K.G., Sizintsev, M., Cannons, K.J., Wildes, R.P.: Action spotting and recognition
based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 35(3),
527-540 (2013)

Dimitropoulos, K., Barmpoutis, P., Grammalidis, N.: Spatio-temporal flame modeling and
dynamic texture analysis for automatic video-based fire detection. IEEE Trans. Circ. Syst.
Video Technol. 25(2), 339-351 (2015). doi:10.1109/TCSVT.2014.2339592

Do, M.N., Vetterli, M.: Texture similarity measurement using Kullback-Leibler distance on
wavelet subbands. In: 2000 International Conference on Image Processing, 2000. Proceed-
ings, vol. 3, pp. 730-733. IEEE, New York (2000)

Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and
Kullback-Leibler distance. IEEE Trans. Image Process. 11(2), 146-158 (2002)

Doretto, G., Soatto, S.: Editable dynamic textures. In: 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, pp. 11-137,
vol. 2. IEEE, New York (2003)

Doretto, G., Soatto, S.: Modeling dynamic scenes: an overview of dynamic textures. In:
Handbook of Mathematical Models in Computer Vision, pp. 341-355. Springer, Berlin (2006)


http://dx.doi.org/10.1109/TCSVT.2014.2339592

Perceptual Texture Similarity for Machine Intelligence Applications 37

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2),
91-109 (2003)

Dubois, S., Péteri, R., Ménard, M.: A comparison of wavelet based spatio-temporal decompo-
sition methods for dynamic texture recognition. In: Pattern Recognition and Image Analysis,
pp- 314-321. Springer, Berlin (2009)

Dumitras, A., Haskell, B.G.: A texture replacement method at the encoder for bit-rate
reduction of compressed video. IEEE Trans. Circuits Syst. Video Technol. 13(2), 163-175
(2003)

Fan, G., Xia, X.-G.: Wavelet-based texture analysis and synthesis using hidden Markov
models. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(1), 106-120 (2003)
Fazekas, S., Chetverikov, D.: Dynamic texture recognition using optical flow features and
temporal periodicity. In: International Workshop on Content-Based Multimedia Indexing,
2007. CBMI’07, pp. 25-32. IEEE, New York (2007)

Fazekas, S., Amiaz, T., Chetverikov, D., Kiryati, N.: Dynamic texture detection based on
motion analysis. Int. J. Comput. Vis. 82(1), 48-63 (2009)

Ghadekar, P., Chopade, N.: Nonlinear dynamic texture analysis and synthesis model. Int.
J. Recent Trends Eng. Technol. 11(2), 475-484 (2014)

Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition.
In: European Conference on Computer Vision, pp. 223-236. Springer, Berlin (2010)
Goncalves, W.N., Bruno, O.M.: Dynamic texture analysis and segmentation using determin-
istic partially self-avoiding walks. Expert Syst. Appl. 40(11), 4283—4300 (2013)

Goncalves, W.N., Bruno, O.M.: Dynamic texture segmentation based on deterministic
partially self-avoiding walks. Comput. Vis. Image Underst. 117(9), 1163-1174 (2013)
Gongalves, W.N., Machado, B.B., Bruno, O.M.: Spatiotemporal Gabor filters: a new method
for dynamic texture recognition (2012). arXiv preprint arXiv:1201.3612

Grill-Spector, K., Malach, R.: The human visual cortex. Annu. Rev. Neurosci. 27, 649-677
(2004)

Grossberg, S., Mingolla, E., Pack, C.: A neural model of motion processing and visual
navigation by cortical area MST. Cereb. Cortex 9(8), 878-895 (1999)

Guo, Y., Zhao, G., Zhou, Z., Pietikainen, M.: Video texture synthesis with multi-frame
LBP-TOP and diffeomorphic growth model. IEEE Trans. Image Process. 22(10), 3879-3891
(2013)

Hadizadeh, H.: Visual saliency in video compression and transmission. Ph.D. Dissertation,
Applied Sciences: School of Engineering Science (2013)

Hadizadeh, H., Bajic, I.V.: Saliency-aware video compression. IEEE Trans. Image Process.
23(1), 19-33 (2014)

Haindl, M., Filip, J.: Visual Texture: Accurate Material Appearance Measurement, Represen-
tation and Modeling. Springer Science & Business Media, London (2013)

He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci.
Remote Sens. 28(4), 509-512 (1990)

He, D.-C., Wang, L.: Simplified texture spectrum for texture analysis. J. Commun. Comput.
7(8), 44-53 (2010)

Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate
cortex. J. Physiol. 195(1), 215-243 (1968)

Jin, G., Zhai, Y., Pappas, T.N., Neuhoff, D.L.: Matched-texture coding for structurally lossless
compression. In: 2012 19th IEEE International Conference on Image Processing (ICIP),
pp- 1065-1068. IEEE, New York (2012)

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG: High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Encoder
Description. Technical Report (2014)

Julesz, B.: Visual pattern discrimination. IRE Trans. Inf. Theory 8(2), 84-92 (1962)

Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature
290(5802), 91-97 (1981)

Julész, B., Gilbert, E., Shepp, L., Frisch, H.: Inability of humans to discriminate between
visual textures that agree in second-order statistics-revisited. Perception 2(4), 391-405 (1973)



38

54

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

72.

73.

K. Naser et al.

. Julesz, B., Gilbert, E., Victor, J.D.: Visual discrimination of textures with identical third-order
statistics. Biol. Cybern. 31(3), 137-140 (1978)

Khandelia, A., Gorecha, S., Lall, B., Chaudhury, S., Mathur, M.: Parametric video com-
pression scheme using ar based texture synthesis. In: Sixth Indian Conference on Com-
puter Vision, Graphics & Image Processing, 2008. ICVGIP’08. IEEE, New York (2008),
pp. 219-225

Kwatra, V., Essa, 1., Bobick, A., Kwatra, N.: Texture optimization for example-based
synthesis. In: ACM Transactions on Graphics (TOG), vol. 24(3), pp. 795-802. ACM, New
York (2005)

Landy, M.S.: Texture Analysis and Perception. The New Visual Neurosciences, pp. 639-652.
MIT, Cambridge (2013)

Landy, M.S., Graham, N.: Visual perception of texture. Vis. Neurosci. 2, 1106-1118 (2004)
Li, Y., Wang, T., Shum, H.-Y.: Motion texture: a two-level statistical model for character
motion synthesis. In: ACM Transactions on Graphics (ToG), vol. 21(3), pp. 465-472. ACM,
New York (2002)

Liu, M., Lu, L.: An improved rate control algorithm of h. 264/avc based on human visual
system. In: Computer, Informatics, Cybernetics and Applications, pp. 1145-1151. Springer,
Berlin (2012)

Liu, X., Wang, D.: A spectral histogram model for texton modeling and texture discrimina-
tion. Vis. Res. 42(23), 2617-2634 (2002)

Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikdinen, M.: Local binary features for texture
classification: taxonomy and experimental study. Pattern Recogn. 62, 135-160 (2017)

Ma, C., Naser, K., Ricordel, V., Le Callet, P, Qing, C.: An adaptive lagrange multiplier
determination method for dynamic texture in HEVC. In: IEEE International Conference on
Consumer Electronics China. IEEE, New York (2016)

Maggioni, M., Jin, G., Foi, A., Pappas, T.N.: Structural texture similarity metric based on
intra-class variances. In: 2014 IEEE International Conference on Image Processing (ICIP),
pp- 1992-1996. IEEE, New York (2014)

Malik, J., Perona, P.: Preattentive texture discrimination with early vision mechanisms. JOSA
A 7(5), 923-932 (1990)

Maloney, L.T., Yang, J.N.: Maximum likelihood difference scaling. J. Vis. 3(8), 5 (2003)
Manjunath, B.S., Ma, W.-Y.: Texture features for browsing and retrieval of image data. IEEE
Trans. Pattern Anal. Mach. Intell. 18(8), 837-842 (1996)

Medathati, N.K., Chessa, M., Masson, G., Kornprobst, P., Solari, F.: Decoding mt motion
response for optical flow estimation: an experimental evaluation. Ph.D. Dissertation, INRIA
Sophia-Antipolis, France; University of Genoa, Genoa, Italy; INT la Timone, Marseille,
France; INRIA (2015)

Montoya-Zegarra, J.A., Leite, N.J., da S Torres, R.: Rotation-invariant and scale-invariant
steerable pyramid decomposition for texture image retrieval. In: SIBGRAPI 2007. XX
Brazilian Symposium on Computer Graphics and Image Processing, 2007, pp. 121-128.
IEEE, New York (2007)

Narain, R., Kwatra, V., Lee, H.-P., Kim, T., Carlson, M., Lin, M.C.: Feature-guided dynamic
texture synthesis on continuous flows,. In: Proceedings of the 18th Eurographics conference
on Rendering Techniques, pp. 361-370. Eurographics Association, Geneva (2007)

Naser, K., Ricordel, V., Le Callet, P.: Experimenting texture similarity metric STSIM for
intra prediction mode selection and block partitioning in HEVC. In: 2014 19th International
Conference on Digital Signal Processing (DSP), pp. 882-887. IEEE, New York (2014)
Naser, K., Ricordel, V., Le Callet, P.: Local texture synthesis: a static texture coding algorithm
fully compatible with HEVC. In: 2015 International Conference on Systems, Signals and
Image Processing IWSSIP), pp. 37-40. IEEE, New York (2015)

Naser, K., Ricordel, V., Le Callet, P.: Performance analysis of texture similarity metrics in
HEVC intra prediction. In: Video Processing and Quality Metrics for Consumer Electronics
(VPQM) (2015)



Perceptual Texture Similarity for Machine Intelligence Applications 39

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Naser, K., Ricordel, V., Le Callet, P.: Texture similarity metrics applied to HEVC intra predic-
tion. In: The Third Sino-French Workshop on Information and Communication Technologies,
SIFWICT 2015 (2015)

Naser, K., Ricordel, V., Le Callet, P.: A foveated short term distortion model for perceptually
optimized dynamic textures compression in HEVC. In: 32nd Picture Coding Symposium
(PCS). IEEE, New York (2016)

Naser, K., Ricordel, V., Le Callet, P.: Estimation of perceptual redundancies of HEVC
encoded dynamic textures. In: 2016 Eighth International Conference on Quality of Multi-
media Experience (QoMEX), pp. 1-5. IEEE, New York (2016)

Naser, K., Ricordel, V., Le Callet, P.: Modeling the perceptual distortion of dynamic textures
and its application in HEVC. In: 2016 IEEE International Conference on Image Processing
(ICIP), pp. 3787-3791. IEEE, New York (2016)

Ndjiki-Nya, P., Wiegand, T.: Video coding using texture analysis and synthesis. In: Proceed-
ings of Picture Coding Symposium, Saint-Malo (2003)

Ndjiki-Nya, P, Makai, B., Blattermann, G., Smolic, A., Schwarz, H., Wiegand, T.: Improved
h. 264/avc coding using texture analysis and synthesis. In: 2003 International Conference on
Image Processing, 2003. ICIP 2003. Proceedings, vol. 3, pp. I1I-849. IEEE, New York (2003)
Ndjiki-Nya, P., Hinz, T., Smolic, A., Wiegand, T.: A generic and automatic content-based
approach for improved h. 264/mpeg4-avc video coding. In: IEEE International Conference
on Image Processing, 2005. ICIP 2005, vol. 2, pp. [I-874. IEEE, New York (2005)
Ndjiki-Nya, P., Bull, D., Wiegand, T.: Perception-oriented video coding based on texture
analysis and synthesis. In: 2009 16th IEEE International Conference on Image Processing
(ICIP), pp. 2273-2276. IEEE, New York (2009)

Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP:
Image Underst. 56(1), 78-89 (1992)

Nishimoto, S., Gallant, J.L.: A three-dimensional spatiotemporal receptive field model
explains responses of area mt neurons to naturalistic movies. J. Neurosci. 31(41), 14551—
14564 (2011)

Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7),
971-987 (2002)

Ontrup, J., Wersing, H., Ritter, H.: A computational feature binding model of human texture
perception. Cogn. Process. 5(1), 31-44 (2004)

Oxford Dictionaries. [Online]. Available: http://www.oxforddictionaries.com

Pack, C., Grossberg, S., Mingolla, E.: A neural model of smooth pursuit control and motion
perception by cortical area MST. J. Cogn. Neurosci. 13(1), 102-120 (2001)

Pappas, T.N., Neuhoff, D.L., de Ridder, H., Zujovic, J.: Image analysis: focus on texture
similarity. Proc. IEEE 101(9), 2044-2057 (2013)

Peh, C.-H., Cheong, L.-F.: Synergizing spatial and temporal texture. IEEE Trans. Image
Process. 11(10), 1179-1191 (2002)

Perrone, J.A.: A visual motion sensor based on the properties of vl and mt neurons. Vision
Res. 44(15), 1733-1755 (2004)

Perry, C.J., Fallah, M.: Feature integration and object representations along the dorsal stream
visual hierarchy. Front. Comput. Neurosci. 8, 84 (2014)

Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture
regularity. In: Pattern Recognition and Image Analysis, pp. 223-230. Springer, Berlin (2005)
Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: a comprehensive database of dynamic textures.
Pattern Recogn. Lett. 31(12), 1627-1632 (2010)

Pollen, D.A., Ronner, S.F.: Visual cortical neurons as localized spatial frequency filters. IEEE
Trans. Syst. Man Cybern. SMC-13(5), 907-916 (1983)

Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex
wavelet coefficients. Int. J. Comput. Vis. 40(1), 49-70 (2000)

Rahman, A., Murshed, M.: Real-time temporal texture characterisation using block-based
motion co-occurrence statistics. In: International Conference on Image Processing (2004)


http://www.oxforddictionaries.com

40

97.

98

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

K. Naser et al.

Rahman, A., Murshed, M.: A motion-based approach for temporal texture synthesis. In:
TENCON 2005 IEEE Region 10, pp. 1-4. IEEE, New York (2005)

. Rosenholtz, R.: Texture perception. Oxford Handbooks Online (2014)
. Rust, N.C., Mante, V., Simoncelli, E.P., Movshon, J.A.: How mt cells analyze the motion of

visual patterns. Nature Neurosci. 9(11), 1421-1431 (2006)

Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic texture recognition. In: CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2001, vol. 2, pp. II-58. IEEE, New York (2001)

Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms.
IEEE Trans. Inf. Theory 38(2), 587-607 (1992)

Simoncelli, E.P.,, Heeger, D.J.: A model of neuronal responses in visual area mt. Vis. Res.
38(5), 743-761 (1998)

Smith, J.R., Lin, C.-Y., Naphade, M., Video texture indexing using spatio-temporal wavelets.
In: 2002 International Conference on Image Processing. 2002. Proceedings, vol. 2, pp. [I-437.
IEEE, New York (2002)

Soatto, S., Doretto, G., and Wu, Y.N., Dynamic textures. In: Eighth IEEE International
Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2, pp. 439-446. IEEE,
New York (2001)

Solari, F., Chessa, M., Medathati, N.K., Kornprobst, P.: What can we expect from a v1-mt
feedforward architecture for optical flow estimation? Signal Process. Image Commun. 39,
342-354 (2015)

Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding
(HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649-1668 (2012)
Sun, C., Wang, H.-J., Li, H., Kim, T.-H.: Perceptually adaptive Lagrange multiplier for rate-
distortion optimization in h. 264. In: Future Generation Communication and Networking
(FGCN 2007), vol. 1, pp. 459-463. IEEE, New York (2007)

Sun, X., Yin, B., Shi, Y.: A low cost video coding scheme using texture synthesis. In: 2nd
International Congress on Image and Signal Processing, 2009. CISP’09, pp. 1-5. IEEE, New
York (2009)

Swamy, D.S., Butler, K.J., Chandler, D.M., Hemami, S.S.: Parametric quality assessment of
synthesized textures. In: Proceedings of Human Vision and Electronic Imaging (2011)
Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception.
IEEE Trans. Syst. Man Cybern. 8(6), 460—473 (1978)

Thakur, U.S., Ray, B.: Image coding using parametric texture synthesis. In: 2016 IEEE 18th
International Workshop on Multimedia Signal Processing (MMSP), pp. 1-6 (2016)

Thakur, U., Naser, K., Wien, M.: Dynamic texture synthesis using linear phase shift inter-
polation. In: Proceedings of International Picture Coding Symposium PCS *16, Nuremberg.
IEEE, Piscataway (2016)

Tiwari, D., Tyagi, V.: Dynamic texture recognition based on completed volume local binary
pattern. Multidim. Syst. Sign. Process. 27(2), 563-575 (2016)

Tiwari, D., Tyagi, V.: Dynamic texture recognition using multiresolution edge-weighted local
structure pattern. Comput. Electr. Eng. 11, 475-484 (2016)

Tiwari, D., Tyagi, V.: Improved weber’s law based local binary pattern for dynamic texture
recognition. Multimedia Tools Appl. 76, 1-18 (2016)

Tlapale, E., Kornprobst, P., Masson, G.S., Faugeras, O.: A neural field model for motion
estimation. In: Mathematical image processing, pp. 159-179. Springer, Berlin (2011)
Tuceryan, M., Jain, A.K.: Texture Analysis. The Handbook of Pattern Recognition and
Computer Vision, vol. 2, pp. 207-248 (1998)

Turner, M.R.: Texture discrimination by Gabor functions. Biol. Cybern. 55(2-3), 71-82
(1986)

Valaeys, S., Menegaz, G., Ziliani, F., Reichel, J.: Modeling of 2d+ 1 texture movies for video
coding. Image Vis. Comput. 21(1), 49-59 (2003)

van der Maaten, L., Postma, E.: Texton-based texture classification. In: Proceedings of
Belgium-Netherlands Artificial Intelligence Conference (2007)



Perceptual Texture Similarity for Machine Intelligence Applications 41

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Varadarajan, S., Karam, L.J.: Adaptive texture synthesis based on perceived texture regularity.
In: 2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX),
pp- 76-80. IEEE, New York (2014)

Wang, Y., Zhu, S.-C.: Modeling textured motion: particle, wave and sketch. In: Ninth IEEE
International Conference on Computer Vision, 2003. Proceedings, pp. 213-220. IEEE, New
York (2003)

Wang, L., Liu, H., Sun, F.: Dynamic texture classification using local fuzzy coding. In: 2014
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1559-1565. IEEE, New
York (2014)

Wei, L.-Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based texture syn-
thesis. In: Eurographics 2009, State of the Art Report, EG-STAR, pp. 93—117. Eurographics
Association, Geneva (2009)

Wong, C.-W., Au, O.C., Meng, B., Lam, K.: Perceptual rate control for low-delay video com-
munications. In: 2003 International Conference on Multimedia and Expo, 2003. ICME’03.
Proceedings, vol. 3, pp. III-361. IEEE, New York (2003)

Xu, Y., Quan, Y., Ling, H., Ji, H.: Dynamic texture classification using dynamic fractal
analysis. In: 2011 International Conference on Computer Vision, pp. 1219-1226. IEEE, New
York (2011)

Xu, Y., Huang, S., Ji, H., Fermiiller, C.: Scale-space texture description on sift-like textons.
Comput. Vis. Image Underst. 116(9), 999-1013 (2012)

Xu, Y., Quan, Y., Zhang, Z., Ling, H., Ji, H.: Classifying dynamic textures via spatiotemporal
fractal analysis. Pattern Recogn. 48(10), 3239-3248 (2015)

Xu, L., et al.: Free-energy principle inspired video quality metric and its use in video coding.
IEEE Trans. Multimedia 18(4), 590-602 (2016)

Yu, H., Pan, F, Lin, Z., Sun, Y.: A perceptual bit allocation scheme for h. 264. In: IEEE
International Conference on Multimedia and Expo, 2005. ICME 2005, p. 4. IEEE, New York
(2005)

Yuan, L., Wen, F,, Liu, C., Shum, H.-Y.: Synthesizing dynamic texture with closed-loop linear
dynamic system. In: Computer Vision-ECCV 2004, pp. 603-616. Springer, Berlin (2004)
Zhai, Y., Neuhoff, D.L.: Rotation-invariant local radius index: a compact texture similarity
feature for classification. In: 2014 IEEE International Conference on Image Processing
(ICIP), pp. 5711-5715. IEEE, New York (2014)

Zhai, Y., Neuhoff, D.L., Pappas, T.N.: Local radius index-a new texture similarity feature. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1434-1438. IEEE, New York (2013)

Zhang, F., Bull, D.R.: A parametric framework for video compression using region-based
texture models. IEEE J. Sel. Top. Sign. Proces. 5(7), 1378-1392 (2011)

Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recogn. 35(3),
735-747 (2002)

Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an
application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915-928
(2007)

Zhao, X., Reyes, M.G., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for
retrieval applications. In: 15th IEEE International Conference on Image Processing, 2008.
ICIP 2008, pp. 1196-1199. IEEE, New York (2008)

Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural similarity metrics for texture analysis and
retrieval. In: 2009 16th IEEE International Conference on Image Processing (ICIP). IEEE,
New York (2009)

Zujovic, J., Pappas, T.N., Neuhoff, D.L., van Egmond, R., de Ridder, H.: Subjective and
objective texture similarity for image compression. In: 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1369-1372. IEEE, New York
(2012)

Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for image
analysis and retrieval. IEEE Trans. Image Process. 22(7), 2545-2558 (2013)



Deep Saliency: Prediction of Interestingness
in Video with CNN

Souad Chaabouni, Jenny Benois-Pineau, Akka Zemmari,
and Chokri Ben Amar

Abstract Deep Neural Networks have become winners in indexing of visual
information. They have allowed achievement of better performances in the funda-
mental tasks of visual information indexing and retrieval such as image classifica-
tion and object recognition. In fine-grain indexing tasks, namely object recognition
in visual scenes, the CNNs classifiers have to evaluate multiple “object proposals”,
that is windows in the image plane of different size and location. Hence the problem
of recognition is coupled with the problem of localization. In this chapter a model
of prediction of Areas-if-Interest in video on the basis of Deep CNNs is proposed.
A Deep CNN architecture is designed to classify windows in salient and non-
salient. Then dense saliency maps are built upon classification score results. Using
the known sensitivity of human visual system (HVS) to residual motion, the usual
primary features such as pixel colour values are completed with residual motion
features. The experiments show that the choice of the input features for the Deep
CNN depends on visual task: for the interest in dynamic content, the proposed model
with residual motion is more efficient.

1 Introduction and Related Work

Computational analysis and prediction of digital interestingness is a challenging
task, according to the nature of interestingness. Several researches were conducted
to construct a reliable measure and obtain a better understanding of interestingness
based on various psychological study results that define interestingness as it
occupies the mind with no connotation of pleasure or displeasure. Several studies
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were conducted to quantify the interestingness of video content. Hence, an in-depth
study on the interestingness of animated GIFs [11] was conducted to investigate
the sources of interest. GIFs were labeled on five point scale in order to describe
the degree of interestingness, aesthetics, arousal, valence and curiosity. Using this
range of visual features, a support vector regression (SVR) with an RBF kernel
predicted the interestingness of GIFs. To understand the video interestingness by
human perception, Jiang [17] proposes a simple computational method. Color
histograms, Scale invariant feature transform (SIFT) descriptors, histograms of
gradient (HOG), self-similarities, global visual features, mel-frequency cepstral
coefficients, spectrogram SIFT, audio features, object bank and style attributes
present the features used to train an SVM classifier. In the authors [51] proposed a
mid-level representation of sentiment sequence to predict interestingness of videos.
Using equal weights for all kernels, the ranking SVM was employed to predict
the interestingness score. Using mouse activity while watching video, presents
the key idea of Zen [54]. And [50] focuses on the problem of egocentric video
summarization on the basis of measured gaze fixations. All these works are devoted
to the detection of interestingness of video segments or frames, while since the
early 90s, the notions of Region-of-Interest (ROI) or Area-of-Interest (AOI) have
penetrated the domain of visual information coding and understanding. In this case,
interestingness relates to the attraction of HVS by specific areas in images or video
frames. Such a “local” interestingness is otherwise called “saliency” of regions and
pixels in image plane. Prediction of it on the basis of visual attention modeling
has received an ever growing interest in fine-grain visual indexing tasks, such as
recognition of objects[10] or actions [47] in image and video content. In various
applications, it is not necessary to predict saliency for each pixel in an image, but
only to predict the “window” where the content could attract human attention. This
is for instance the case for new approaches of object recognition in images and
videos, where classifiers evaluate multiple “object proposals”, that is windows of
different sizes and scales to maximize the response to a trained object model. The
necessity to classify multiple windows makes the process of recognition heavy. The
authors of [9] proposed a so called Region-based convolutional network (R-CNN).
They restrict number of windows using “selective search” approach [45] thus the
classifier has to evaluate a limited number of (2K) “object proposals”. Prediction
of the interestingness or saliency of windows is another way to bound the search
space [35].

Prediction of visual saliency in image plane is a rather old and well explored
research topic. Following the psychophysics of human cognitive process when
observing visual content two kinds of models are known from literature. Bottom-
up models based on low-level features such as luminance, color, orientation and
motion, are inspired by the popular “feature integration theory” [44]. Top-down
models express a task-driven visual observation when humans search for specific
objects, concepts and activities in visual scenes. Intuitively, when humans are
observing a continuous video scene [41], the “top-down” attention [36] becomes
prevalent with the time, as the observer understands the unknown content and
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performs smooth pursuit of objects which are of interest for him. To learn more
about the history of the taxonomy of visual attention studies, we refer the reader
to the paper by Borgi [1]. What is clear today, that any model trying to predict
human visual attention attractors in visual scenes, needs to combine both: bottom-up
and top-down components. Therefore, it is believable that supervised machine
learning methods, which combine stimuli driven features measures and capability
of prediction on the basis of seen data, will bring a satisfactory solution to this
complex problem. With the explosion of research with deep networks and their
proven efficiency, different models of visual attention have been proposed using this
supervised learning approach. Shen [42] proposed a deep learning model to extract
salient areas in images, which allows firstly to learn the relevant characteristics of
the saliency of natural images, and secondly to predict the eye fixations on objects
with semantic content. Simonyan [43] defined a multi-class classification problem
using “task-dependent” visual experiment to predict the saliency of image pixels.
Vig [47] tackles prediction of saliency of pixels using feature maps extracted from
different architectures of a deep network. In [25], a multi-resolution convolutional
neural network model has been proposed using three different scales of the raw
images and the eye fixations as targets. In [22], three CNN models are designed to
predict saliency using a segmented input image. The authors of [23, 34] propose
to adopt the end-to-end solution as a regression problem to predict the saliency. In
[24] global saliency map is computed by summing all intermediate saliency maps
that are obtained by convolving the images with learned filters and pooling their
Gaussian-weighted responses at multiple scales. In [55], a class activation maps
using average pooling in order to produce the desired class was proposed. Deep
Neural Networks classifiers have become winners in indexing of visual information,
they show ever increasing performances in prediction. This is why they have also
become a methodological framework for prediction of saliency or interestingness of
visual content. In summary, this chapter makes the following contributions:

* construct from four benchmark datasets with ground-truth labels the support to
study of interestingness of areas in video frames.

* To incorporate the top-down “semantic” cues in the prediction of interestingness
in video, a Deep CNNs architecture is proposed with a novel residual motion
feature.

2 Deep CNN as a Tool for Prediction of Interestingness in
Video

Machine Learning is a set of techniques used to achieve, automatically, a task by
learning from a training data set. There is a plethora of methods based on different
mathematical fundamentals. Neural networks were intended to model learning and
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pattern recognition done by physiological neurons. This was first introduced by
Hebb [57] who modeled synapses by weighted links from the outputs of nodes to the
inputs of other nodes. Rosenblatt [58] continued the Hebb model and investigated
how the links between neurons could be developed, in particular, he defined the
basic mathematical model for neural networks (NN for short). His basic unit was
called the perceptron, which when it receives a signal, would either respond or not,
depending on whether a function exceeded a threshold. Figure 1 presents a formal
neurone. It receives input signals (x1, x2, - -+ , x,), and applies an activation function
f to alinear combination of the signals. This combination is determined by a vector
of weights wi, w»,--- ,w, and a bias wy. More formally, the output neurone value y
defined as follows:

P
y=rf (WO + Zwixi) .

i=1

A neural network is then a network whose nodes are formal neurones, and to define
a neural network, one needs to design its architecture (the number of hidden layers
and the number of nodes per layer, etc.) as well as estimation of parameters once
the network is fixed. Figure 2 gives an example of such a network.

Fig. 1 A formal neurone a
Q y

Fig. 2 An example of a NN.
Data X is fed into the first
(and here only) hidden layer.
Each node in the hidden layer
is the composition of a
sigmoid function with an
affine function of X. The
outputs from hidden layer are
combined linearly to give the
output y
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2.1 Deep Neural Networks

Deep learning is a branch of machine learning introduced in 1980s. Nevertheless, its
emergence started really by the computational power of the 2000s. It is a machine
learning process structured on a so-called convolutional neural network (CNN). A
CNN is composed of several stacked layers of different types: convolutional layers
(CONYV), non-linearity layers , such as ReLu layers, pool layers and (generally the
last layer) fully connected layers (FC). Figure 3 gives an example of an architecture
of a CNN.

2.1.1 Convolutional Layers (CONYV)

In order to extract the most important information for further analysis or exploitation
of image patches, the convolution with a fixed number of filters is needed. It is
necessary to determine the size of the convolution kernel to be applied to the input
image in order to highlight its areas. Two stages are conceptually necessary to create
a convolutional layer. The first refers to the convolution of the input image with
linear filters. The second consists in adding a bias term. Generally, the equation of
convolution can be written as (1):

X =fQ_ X" * o)+ B) ()

iEMj

with X; : the activity of the unit j according to the layer /,
X; represents a selection of the input feature maps,
B]I. is the additive bias of the unit j in the features maps of the layer /,

l . . . . .
wy;: presents the synaptic weights between unit j of the layer /and [ — 1.

2.1.2 Pooling Layers (POOL)

Pooling reduces the computational complexity for the upper layers and summarizes
the outputs of neighboring groups of neurons from the same kernel map. It reduces

0 - _/|— 1o

Image CONV

FC

RELU CONV

Fig. 3 An example of a CNN
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the size of each input feature map by the acquisition of a value for each receptive
field of neurons of the next layer. We use max-pooling, see Eq. (2):

n _ n—1,/= -

Here N denotes the neighborhood of (x,y).

2.1.3 ReLu Layers

The Rectified Linear Unit (ReLu for short) has become very popular in the last few
years. It computes the function f(x) = max(0, x). Thus, the activation is thresholded
at zero. It was found to accelerate the convergence of a very popular parameter
optimization method, stochastic gradient descent, compared to the sigmoid function.

2.1.4 Local Response Normalization Layers (LRN and ReLu)

A local Response Normalization (LRN) layer normalizes values of feature maps
which are calculated through the neurons having unbounded (due to ReLu) activa-
tions to detect the high-frequency characteristics with a high response of the neuron,
and to scale down answers that are uniformly greater in a local area. The output
computation is presented in Eq. (3):

UX 2y

X,y S/

f(Uf}) = i i /N (3)

o min(S,x—[N/2]+N) min(S,y—[N/2]4+N) X/,
(l + N? Zx’=max(0.x—[N/2]) Zy’:mzfx(o,y—[]\l/z])(Uf ' )Z)ﬂ

Here Ujf'y represents the value of the feature map at (x, y) coordinates and the sums
are taken in the neighborhood of (x, y) of size N X N, & and 8 regulate normalization
strength.

Once the architecture of the network is fixed, the next step is to estimate its
parameters. In next section, we explain how this can be done.

2.2 Loss Functions and Optimization Methods

A neural network be it a fully connected NN or a CNN is a supervised machine
learning model. It learns a prediction function from a training set [46]. Each sample
from this set can be modeled by a vector which describes the observation and its
corresponding response. The learning model aims to construct a function which can
be used to predict the responses for new observations while committing a prediction
error as lowest as possible.
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More formally, a sample i from the training set is denoted (x!,x}, -+, x, ') and
the response of the model is denoted 3"

There are many functions used to measure prediction errors. They are called
loss functions. A loss function somehow quantifies the deviation of the output of
the model from the correct response. We are speaking here about “empirical loss”
functions [46], that is the error computed on all available ground truth training data.
Here we will shortly present one of them.

2.2.1 One-Hot Encoding

Back to the training set, the known response of each observation is encoded in a
one-hot labels vector. More formally, given an observation (x’i,xé, e xj, y), we
introduce a binary vector L= (Li , Lg, e ,L};) such that if y = ¢j then L; =1 and
Vm # j, Li, = 0. This is the function which ensures a “hard” coding of class labels.

2.2.2 Softmax

Given a vector Y = (y1,¥2,---,y) with positive real-valued coordinates, the
softmax function aims to transform the values of Y to a vector S = (py,p2,-+* ,Px)
of real values in the range (0, 1) that sums to 1. More precisely, it is defined for each
ie{l,2,---,k}by:

evi
k ot
Y,
E =1 eYi

The softmax function is used in the last layer of multi-layer neural networks
which are trained under a cross-entropy (we will define this function in next
paragraphs) regime. When used for image recognition, the softmax computes the
estimated probabilities, for each input data, of being in a class from a given
taxonomy.

pi = 4

2.2.3 Cross-Entropy

The cross-entropy loss function is expressed in terms of the result of the softmax
and the one-hot encoding. It is defined as follows:

k
D(S.L) =~ Lilog(p). (5)

i=1

The definition of one-hot encoding and Eq. (5) means that only the output of the
classifier corresponding to the correct class label is included in the cost.
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2.2.4 Average Cross Entropy

To deal with the cross-entropy of all the training set, we introduce the average
cross-entropy. This is simply the average value, over all the set, of the cross-entropy
introduced in Eq. (5):

1 Y i i
.i”:NZD(S,L). (6)

i=1

The loss function corresponds then to the average cross-entropy.

As claimed before, the machine learning models aim to construct a prediction
function which minimizes the loss function. There are many algorithms which aim
to minimize the loss function. Most of them are iterative and operate by decreasing
the loss function following a descent direction. These methods solve the problem
when the loss function is supposed to be convex. The main idea can be expressed
simply as follows: starting from initial arbitrary (or randomly) chosen point in the
parameter space, they allow the “descent” to the minimum of the loss function
accordingly to the chosen set of directions [38]. Here we discuss some of the most
known and used optimization algorithms in this field.

2.2.5 The Gradient Descent Algorithm

The gradient descent algorithm is the most simple and most used algorithm to find
parameters for the learning model under the assumption of convexity of function
to minimize. There are mainly two versions of this algorithm, the first one acts
in a batch mode and the other in on-line mode. The batch mode: when we aim
to minimize globally the loss function (this is why it is named batch), we first
initialize randomly the parameters and we iteratively minimize the loss function
by updating the parameters. This updating is done following the opposite direction
of the gradient of the loss function which, locally, shows the highest slope of this
function. Hence, at iteration ¢, the new values of the weights w*D are estimated
using the values of the weights at step ¢ and the gradient of the loss function
estimated at weight w:

Vie N, w'h =30 _ vy (w(’)) , @)

where 7 € R is a positive real called learning rate. One fundamental issue is how
to choose the learning rate. If this rate is too large, than we may obtain oscillations
around the minimum. If it is two small, then the convergence toward the minimum
will be too slow and in same cases it may never happen.

The on-line mode: when we are dealing with large set of data, batch algorithms
are not useful anymore since they are not scalable. Many works have been done to
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overcome this issue and to design on-line algorithms. These algorithms consider a
single example at each iteration and are shown to be more efficient both in time and
space complexities.

Among all the on-line algorithms, the stochastic gradient Descent (SGD for
short) is considered as the most popular and the most used one. Many works have
proved its efficiency and its scalability.

The SGD algorithm is an iterative process which acts as follows: at each iteration
t, a training example (x’l , x’2, -+, x', ") is chosen uniformly at random and is used to
update the weights of the loss function following the opposite of the gradient of this
function. The SGD algorithm belongs to first-order methods, i.e., those that form
the parameter update on the basis of only first order gradient information. First-
order methods, when used to solve convex optimization problems, have been shown
to have a convergence speed, when used with large dimension problems, which
can not be better than sub-linear in means of 7~/2, [37], where ¢ is the number of
iterations. This theoretical result implies that first-order methods can not be used to
solve, scalable problems in an acceptable time and with high accuracy.

Momentum is a method that helps accelerate SGD in the relevant direction. It
achieves this by adding a fraction of the update vector of the past time step to the
current update vector. The most popular is the method of Nesterov Momentum [32]:

t i 1 (w® — D)

wltth — y(l) — V& (y(f)) . (8)

vieN, yO =w0 4

2.3 Problem of Noise in Training Data

In data mining, noise has two different main sources [56]. Different types of
measurement tools induce implicit errors that yield noisy labels in training data.
Besides, random errors introduced by experts or batch processes when the data
are gathered can produce the noise as well. Noise of data could adversely disturb
the classification accuracy of classifiers trained on this data. In the study [33], four
supervised learners (naive Bayesian probabilistic classifier, the C4.5 decision tree,
the IBk instance-based learner and the SMO support vector machine) were selected
to compare the sensitivity with regard to different degrees of noise. A systematic
evaluation and analysis of the impact of class noise and attribute noise on the system
performance in machine learning was presented in [56].

The Deep CNNs use the stacking of different kinds of layers (convolution,
pooling, normalization, ...) that ensures the extraction of features which lead to
the learning of the model. The training of deep CNN parameters is frequently done
with the stochastic gradient descent ‘SGD’ technique [16], see Sect. 2.2.5. For a
simple supervised learning the SGD method still remains the best learning algorithm
when the training set is large. With the wide propagation of convolutional neural
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networks, and the massive labeled data needed to train the CNNs networks, studies
of the impact of noisy data was needed. A general framework to train CNNs with
only a limited number of clean labels and millions of noisy labels was introduced
in [49] in order to model the relationships between images, class labels and label
noises with a probabilistic graphical model and further integrate it into an end-to-end
deep learning system. In [39], substantial robustness to label noise of deep CNNs
was proposed using a generic way to handle noisy and incomplete labeling. This is
realized by augmenting the prediction objective with a notion of consistency.

The research focused on noise produced by random errors was published in [5].
Here it typically addresses a two-class classification problem: for each region in
an image/video plane it is necessary to give the confidence to be salient or not
for a human observer. One main contribution of this chapter is to identify how
noise of data impacts performance of deep networks in the problem of visual
saliency prediction. Here, to study the impact of the noise in ground truth labels,
two experiments on the large data set were conducted. In the first experiment non-
salient windows were randomly selected in an image plane in a standard way,
just excluding already selected salient windows. Nevertheless, in video, dynamic
switching of attention to distractors or to smooth pursuit of moving objects, makes
such a method fail. This policy of selection of non-salient areas yields random
errors. In the second experiment, cinematographic production rule of 3/3 for non-
salient patches selection was used, excluding the patches already defined as salient
area in all the videos frames and excluding the area where the content producers—
photographers or cameramen place important scene details. The results in [5] show
the increase in accuracy in the most efficient model up to 8%, all other settings being
equal: the network architecture, optimization method, input data configuration.

2.4 Transfer Learning

Transfer learning presents a technique used in the field of machine learning that
increases the accuracy of learning either by using it in different tasks, or in the
same task [52]. Training CNNs from scratch is relatively hard due to the insufficient
size of available training dataset in real-world classification problems. Pre-training
a deep CNNs by using an initialization or a fixed feature extractor presents the heart
of the transfer method. Two famous scenarios of transfer learning with CNNs were
followed: (1) using a fixed feature extractor with removing the last fully-connected
layer. Here the training is fulfilled just for the linear classifier on the new dataset.
(2) Fine-tuning the weights of the pre-trained deep CNN by continuing the back-
propagation [52].

In the research of Bengio et al. [52] addressing object recognition problem, the
authors show that the first layers of a Deep CNN learn characteristics similar to the
responses of Gabor’s filters regardless of the data set or task. Hence in their transfer
learning scheme just the three first convolutional layers already trained on one
training set are used for the initialization for parameter training on another training
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set. The coefficients on deeper layers are left free for optimization, that is initialized
randomly. Several studies have proven the power of this technique [31, 53]. Transfer
learning with deep CNN shows its efficiency in different application domain such
as saliency prediction [4], person re-identification [8].

3 ChaboNet: A Deep CNN for Prediction of Interestingness
in Natural Video

Now our question is how to predict the areas in natural video content which are of
interest to a human observer, when he/she executes a free viewing task of unknown
video content. Our task is to predict the interestingnees “at a glance”, a precise
shape of the salient area in the image is not important. We still believe that the
“Rough Indexing Paradigm” [27], which means fast mining of visual information
with nearly pre-attentive vision is of much interest in our era of “big” visual data.
Furthermore, such a AOI can be further used by object recognition methods. Hence
we consider a squared windows in the image plane as the area-of-interest for human
observer.

3.1 ROI Definition and Selection: Salient and Non-salient
Windows

In order to train the model able to predict saliency of a given region in the image
plane, the training set has to be built to comprise salient and non-salient regions.
Salient regions-patches are selected on the basis of gaze fixation density maps which
are obtained during a psycho-visual experiment with cohorts of subjects. In this
work, the creation of data set from available video database in order to train the
model with Deep CNN, is realized under a specific policy that minimizes the noise
in the training data. The approach previously presented in [5] was followed.

Figure 4 below presents the group of salient and non-salient patches selected
under the proposed approach. The rows contain some examples taken from frames
of a set of video sequences “actioncliptrain” from the HOLLYWOQOD! data set. The
first line presents the map built on gaze fixations by the method of Wooding [48].
The second line describes the position of the selected patches: the yellow square is
the salient patch and the black one is labeled as non-salient patch. The third line
presents the group of salient patches on the left and non-salient patches on the right
for each frame.

! Available at http://www.di.ens.fr/~laptev/actions/hollywood?2/.
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Salient E{ch -salient patch Salient patches Mon-salient patch

Fig. 4 Training data from HOLLYWOOD data set: (left) #framel76 of the ‘actioncliptrain299’,
(right) #frame210 of the ‘actioncliptrain254’

3.2 Salient Patches Extraction

We define a squared patch P of size s X s (in this work s = 100 adapted to the spatial
resolution of standard definition (SD) video data) in a video frame as a vector in
R>**" Here n stands for the quantity of primary feature maps serving as an input to
the deep CNN. If n = 3 just color RGB planes are used as primary features in each
pixel. In case when n = 4 the L, squared norm of a motion vector for each pixel,
normalised on the dataset is added to RGB planes as a new feature map. We define
patch “saliency” on the basis of its interest for subjects. The interest is measured by
the magnitude of a visual attention map built upon gaze fixations which are recorded
during a psycho-visual experiment using an eye-tracker. The fixation density maps
(FDM) are built by the method of Wooding [48]. Such a map S(x, y) represents a
multi-Gaussian surface normalized by its global maximum.
A binary label is associated with pixels X of each patch P; using Eq. (9).

L if Sxoiy0i) =1
0 otherwise

100 = { ©)

with (xo;,y0;) the coordinates of the patch center. A set of thresholds is selected

starting by the global maximum value of the normalized FDM and then relaxing

threshold values as in Eq. (10):

% 7o = max(S(x,y),0) (10)
TG+1) =T — €5
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1) Wooding map  |2) Erosion Step 3) Patch selection

. *

#frame552

Fig. 5 Policy of patch selection: an example and processing steps from GTEA data set

Here 0 < € < 1 is a relaxation parameter, j = 0,--- ,J, and J limits the relaxation
of saliency. It was chosen experimentally as J = 5, while € = 0.04.

In complex scenes several details or objects can attract human attention. Thus the
map S(x,y) can contain several local maxima. In order to highlight them, we apply
morphological erosion to S(x, y). Figure 5 above summarizes different steps needed
to select salient patches. Firstly, we compute the fixation density maps, then we
apply operation of erosion. Patches centered on local maxima with saliency values
satisfying Egs. (9), (10) are selected as “salient”. Retained “salient” patches should
be distanced at least by (% % 5). “Non-salient” patches extraction is described in the
next section.

3.3 Non-salient Patches Extraction

By definition, a non-salient patch should not be situated in the area-of-interest in
a video frame, and must not be already selected as salient. According to the rule
of thirds in produced and post-produced content, the most interesting details of the
image or of a video frame have to cover the frame center and the intersections of the
three horizontal and vertical lines that divide the image into nine equal parts [26].

Let (x0, y0.;) be the coordinates of the center of the patch P;, width is the width
size of the video frame and height is its height size. The set {Salient} presents the
set of salient positions which have been already chosen. To exclude them and the
area-of-interest we chose the one-fifth band of the frame starting from its border
and randomly generate patch centers in this area. Hence the generated coordinates
satisfy the following conditions:

Xo; € BorderX|xo; & {Salient}; and yo; € BorderY|yo; & {Salient}

BorderX =0, %‘i’h[u]widﬂz - %‘i’h, width] A BorderY = [0, height]
with { or
BorderX = [%‘M’, width—%d’h] A BorderY =]0, @[U]height—h‘%ght, height]

an
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3.4 Chabonet Design

In this section the architecture of a deep CNN, ‘ChaboNet’, is presented. It was
designed for the two class classification problem: prediction of a saliency of a patch
in a given video frame. The ‘ChaboNet’ architecture is summarized in Fig. 6. As in
the majority of Deep CNN architectures designed for image classification tasks [16],
the ‘ChaboNet’ architecture is composed of a hierarchy of patterns. Each pattern
consists of a cascade of operations, followed by a normalization operation if it is
required. The cascading of linear and nonlinear operations successively produces
high-level features that contribute to the construction of the saliency map. The
softmax classifier, see Eq. (4), is the deepest layer giving the confidence for each
patch to be salient or not. Taking into account the size of input patches we propose
three patterns in our architecture. The diagram detailing the flow of operations is
presented on the left of the Fig. 6. The cascade of operations are depicted in the
upper right corner of the figure. The whole network can be detailed as follows,
while the normalization operation is added after the patterns P' and P:

Pattern P! :
convolution 1 pooling 1 ReLu 1
Input n Pool' — R
Pattern PP . with p € {2,3}
__ 1 convolution ReLu convolution ReLu pooling
NP1 Conv? RP ConvP? —— RPP ———>
PoolP

The rectified linear unit operation (ReLu) is expressed as (12)

f(x) = max(0, x) (12)

Corvalution equation.

Xi= f3 X eul 4+ 8
el

= Mormakzation
POOLING Max 3x3 POOLING Max 1x1
RELU RELU

POOLING Max 3x3
CONVOLUTION 6x6, 128fm  CONVOLUTION 3x3, 288Im

RELU RELU
CONVOLUTION 12x12, 32im  CONVOLUTION 6x6, 128im  CONVOLUTION 3x3, 288fm

RELU

Pl P2 F3

s =

comv 3 output 3R
-1 =
convl output =, =

ConvaZ cutput

v
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Fig. 6 Architecture of video saliency convolution network ‘ChaboNet’
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The ReLu operation is used due to its better performances in image classification
tasks compared to sigmoid function, as it does not suppress high frequency features.
The first pattern P is designed in the manner that the ‘ReLu’ operation is introduced
after the ‘pooling’ one. In this research, the max-pooling operator was used. As the
operation of ‘pooling’ and ‘ReLu’ compute the maximum, they are commutative.
Cascading ‘pooling’ before ‘ReLu’ can reduce the execution time as ‘pooling’ step
reduces the number of neurons or nodes (‘pooling’ operation is more detailed in the
following section). In the two last patterns, stacking two convolutional layers before
the destructive pooling layer ensures the computation of more complex features that
will be more “expressive”.

In ‘ChaboNet’ network, we used 32 kernels with the size of 12 x 12 for the
convolution layer of the first pattern P1. In the second pattern P2, 128 kernels
for each convolutional layer were used. In P2 the size of the kernels for the first
convolutional layer was chosen as 6 x 6 and for the second convolution layer, a
kernel of 3 x 3 was used. Finally, 288 kernels with the size of 3 x 3 were used for
each convolution layer of the last pattern P3. Here we were inspired by the literature
[19, 42] where the size of convolution kernels is either maintained constant or is
decreasing with the depth of layers. This allows a progressive reduction of highly
dimensional data before conveying them to the fully connected layers. The number
of convolution filters is growing, on the contrary, to explore the richness of the
original data and highlight structural patterns. For the filter size, we made several
tests with the same values as in AlexNet [19], Shen’s network [42], LeNet [21],
Cifar [18] and finally, we retained a stronger value of 12 x 12 in the first layer of the
pattern P1 as it yielded the best accuracy of prediction in our saliency classification
problem.

The kernel size of the pooling operation for the both patterns P1 and P2 is set to
3 x 3. However, the pooling of the third pattern P3 is done with a size of 1 x 1.

3.5 Real-World “Small” Data: Transfer Learning

The generalization power of Deep CNN classifiers strongly depends on the quantity
of the data and on the coverage of data space in the training data set. In real-life
applications, e.g. prediction of benchmark models for studies of visual attention
of specific populations [6] or saliency prediction for visual quality assessment [2],
the database volumes are small. Hence, in order to predict saliency in these small
collections of videos, we use the transfer learning approach.

Our preliminary study on transfer learning performed in the task of learning areas
that attract visual attention in natural video [4] showed the efficiency of weights
already learned on a large database, for the training on small databases. In the
present work, we benchmark our transfer learning scheme designed for saliency
prediction with regard to the popular approach proposed in [52]. Saliency prediction
task is different from object recognition task. Thus our proposal is to initialize all
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parameters in all layers of the network to train on a small data set by the best
trained model on a large data set. The following Eq. (13) expresses the transfer
of the classification knowledge obtained from the larger database to the new smaller
database. Here the Stochastic Gradient descent with momentum is used as in [16].

Vie1 = m-V; — weightDecay - € - W; — € - (§—§V|W,)

Wi =Wi+Vipr | Wo=W,

bi 13)

With m = 0.9; weightDecay = 0.00004 and W/ presents the best learned model
parameters pre-trained on the large data set. We set the initial value of the velocity
Vo to zero. These parameter values are inspired by the values used in [16] and show
the best performances on a large training data set.

3.6 POI or Pixel-Wise Saliency Map

If we have predicted for each selected window in a given video frame its “saliency”
or interest for a human observer, the natural question rises how can we assess the
quality of this prediction. The quality of trained model is evaluated on the validation
dataset when training the network. The accuracy gives the classification power of
the network for a given training iteration. But we cannot compare the classified
windows with a “manually” selected ground truth on a test set. First of all, it would
require a tedious annotation process, and secondly human annotation is not free of
errors: how to trace an “interesting window” of a given size? We are not focused
on any specific objects, hence this question will be difficult to answer for a human
annotator. His visual system instead gives the ground truth: humans are fixating
areas which are of interest for them. Hence we come now back to image pixels in
order to be able to asses the quality of our prediction comparing the saliency maps
we can predict by the trained network with Wooding maps built on gaze fixations.
Hence we will speak about Pixels of Interest (POI) or pixel-wise saliency maps.
The pixel-wise saliency map of each frame F of the video is constructed using the
output value of the trained deep CNN model. The soft-max classifier, Eq. (4) which
takes the output of the third pattern P3 as input, see Fig. 6, gives the probability for
a patch of belonging to the salient class.

Hence, from each frame F we select local region having the same size as training
patches (here s = 100). The output value of the soft-max classifier on each local
region defines the degree of saliency of this area. In the center of each local region, a
Gaussian is applied with a pick value of 12%’2) with the spread parameter o chosen as
a half-size of the patch. In this way, a sparse saliency map is predicted. If we slide
the patch on the input frame, with a step of one pixel, then a dense saliency map
will be produced for the whole frame by the trained CNN. To avoid computational
overload, sampling of windows to classify can be more sparse, e.g. with a stride of
5 pixels. Then score values assigned to the centers are interpolated with Gaussian
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filters. Hence from Regions-of-interest (ROI) we come to Pixels-of-Interest (POI)
and can compare the quality of our prediction using classical saliency-comparison
approaches with regard to gaze fixation maps of Wooding.

3.7 Results and Conclusion
3.7.1 Data Sets

To learn the model for prediction of visually interesting areas in image plane, four
data sets were used, HOLLYWOOD [29, 30], GTEA corpus [7], CRCNS [14] and
IRCCYN [3].

The HOLLYWOOD database contains 823 training videos and 884 videos for
the validation step. The number of subjects with recorded gaze fixations varies
according to each video with up to 19 subjects. The spatial resolution of videos
varies as well. In others terms the HOLLYWOOD data set contains 229,825 frames
for training and 257,733 frames for validation. From the frames of the training set
we have extracted 222,863 salient patches and 221,868 non-salient patches. During
the validation phase, we have used 251,294 salient patches and 250,169 non-salient
patches respectively (Tables 1, 2, 3, and 4).

Table 1 Preview of action in Hollywood dataset
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Table 2 Preview of GTEA dataset

Publicly available GTEA corpus [7] contains 17 egocentric videos with a
total duration of 19 min. GTEA dataset consists of videos with 15 fps rate and a
640 x 480 pixel resolution. The subjects who recorded the video were preparing
meal and manipulating different every day life objects. On this dataset, we have
conducted a psycho-visual experiment with the task of observation of manipulated
objects. The gaze fixations have been recorded with a HS-VET 250 Hz eye-tracker
from Cambridge Research Systems Ltd at a rate of 250 Hz/s. The experiment
conditions and the experiment room were compliant with the recommendation
ITU-R BT.500-11 [28]. Videos were displayed on a 23in. LCD monitor with a
native resolution of 1920 x 1080 pixels. To avoid image distortions, videos were not
re-sized to screen resolution. A mid-gray frame was inserted around the displayed
video. 31 participants have been gathered for this experiment, 9 women and 22
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Table 4 Preview of IRCCyN dataset

men. For three participants some problems occurred in the eye-tracking recording
process. These three records were thus excluded. From the 17 available videos of
GTEA dataset, ten were selected for the training step with a total number of frames
of 10,149. And seven videos with 7840 frames were selected for the validation step.
The split of salient and non-salient patches for the total of 19,910 at the training step
and 15,204 at the validation step is presented in Table 5.

In the CRCNS? data set [14], 50 videos of 640 x 480 resolution are available with
gaze recordings of up to eight different subjects. The database was split equally:
training and validation sets contain 25 videos each. From the training set, we have
extracted 30,374 salient- and 28,185 non-salient patches. From the validation set,
19,945 salient and 17,802 non-salient patches were extracted.

IRCCYN [3] database is composed of 31 SD videos and gaze fixations of 37
subjects. These videos contain certain categories of attention attractors such as
high contrast, faces. However, videos with objects in motion are not frequent. Our
purpose of saliency prediction modeling the “smooth pursuit” cannot be evaluated
by using all available videos of IRCCyN data set. Videos that do not contain a real
object motion were eliminated. Therefore, only SRC02, SRC03, SRC04, SRCO05,
SRC06, SRCO7, SRC10, SRC13, SRC17, SRC19, SRC23, SRC24 and SRC27

2 Available at https://crcns.org/data-sets/eye/eye- 1.
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Table 5 Distribution of learning data: total number of salient and NonSalient patches selected
from each database

Datasets Training step Validation step
HOLLYWOOD SalientPatch 222,863 251,294
NonSalientPatch 221,868 250,169
Total 444,731 501,463
GTEA SalientPatch 9961 7604
NonSalientPatch 9949 7600
Total 19,910 15,204
CRCNS SalientPatch 30,374 19,945
Non-SalientPatch 28,185 17,802
Total 58,559 37,747
IRCCyN-MVT SalientPatch 2013 511
Non-SalientPatch 1985 506
Total 3998 1017

were used in experiments, this data set is referenced as IRCCyN-MVT in the
following. For each chosen video of this database, one frame is taken for the testing
step, one frame for the validation step and four frames for the training step. The
distribution of the data between “salient” and “non-salient” classes is presented in
Table 5.

3.7.2 Evaluation of Patches’ Saliency Prediction with the Deep CNN

The network was implemented using a powerful graphic card Tesla K40m and
processor (2 x 14 cores). Therefore a sufficiently large amount of patches, 256, was
used per iteration. After a fixed number of training iterations, a model validation
step was implemented: here the accuracy of the model at the current iteration was
computed on the validation data set.

To evaluate our deep network and to prove the importance of the addition of the
residual motion map, two models were created with the same parameter settings and
architecture of the network: the first one contains R, G and B primary pixel values
in patches, denoted as ChaboNet3k. The ChaboNet4dk is the model using RGB
values and the normalized energy of residual motion as input data, see Sect. 3.2.
The following Fig. 7 illustrates the variations of the accuracy along iterations of
all the models tested for the database “HOLLYWOOD”. The results of learning
experiments on HOLLYWOOQD data set yield the following conclusions: (1) when
adding residual motion as an input feature to RGB plane values, the accuracy is
improved by almost 2%. (2) The accuracy curve (Fig. 7a) show that the best trained
model reached 80% of accuracy at the iteration #8690. The model obtained after
8690 iterations is used to predict saliency on the validation set of this database, and
to initialize the parameters when learning with transfer on other used data sets.
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GTEA dataset

3.7.3 Validation of Our Proposed Method of Transfer Learning

Two experiments were conducted with the same small data set IRCCyN-MVT and
CRCNS, and the same definition of network “ChaboNet”:

(1) Our method: start training of all ChaboNet layers from the best model already
trained on the large HOLLY WOOD data set (see Sect. 3.5).

(2) Bengio’s method [52]: the three first convolutional layers are trained on the
HOLLYWOOD data set and then fine-tuned on the target data set, other layers
are trained on target data set with random initialization.

The following Fig. 8 illustrates the variations of the accuracy along iterations of
the two experiments performed with the data sets “CRCNS” , “IRCCyN-MVT” and

GTEA.
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Our method of transfer learning outperformed the Bengio’s method by almost
2.85% in IRCCyN-MVT data set and by around 0.5% in CRCNS data set. For the
GTEA dataset the maximum accuracy is the same for the two methods. The gain
on stability of training in our method for the three small datasets is about 50%, see
Tables 6 and 7.

3.7.4 Evaluation Metrics for Predicted Visual Saliency Maps

After training and validation of the model on HOLLYWOOD data set, we choose
the model obtained at the iteration #8690 having the maximum value of accuracy
80.05%. This model will be used to predict the probability of a local region
to be salient. Hence, the final saliency map will be built. For the CRCNS data
set, the model obtained at the iteration #21984 with the accuracy of 69.73% is
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Table 7 Accuracy results on IRCCyN-MVT, CRCNS and GTEA dataset

Our transfer method Bengio’s Transfer method [52]

IRCCyN-MVT, CRCNS GTEA IRCCyN-MVT CRCNS GTEA
maxirer)| 92.77%wo664) | 72.034% #8702)| 0.91% #9438) | 92.08% #9680) | 72.83% (#9389) | 0.91%#9750)
avgpmsid | 91.08% 43 197 | 68.52% 41049 | 0-89% 40,008 | 87-48% 4743 | 69.017% 1 417 0-90% L0019
Comparison with [52]

used to predict saliency. In the same manner, the model with the accuracy of
92.77% obtained at the iteration #9664 is used for the IRCCyN-MVT data set.
To evaluate our method of saliency prediction, performances were compared with
the most popular saliency models from the literature. Two spatial saliency models
were chosen: Itti and Koch spatial model [15], Signature Sal [13] (the algorithm
introduces a simple image descriptor referred to as the image signature, performing
better than Itti model), GBVS (regularized spatial saliency model of Harel [12]) and
the spatio-temporal model of Seo [40] built upon optical flow.

In Tables 8 and 9 below, we show the comparison of Deep CNN prediction of
pixel-wise saliency maps with the gaze fixations and compare performances with
the most popular saliency prediction models (Signature Sal, GBVS, Seo). Hence,
in Table 10, we compare our ChaboNet4k model with the model of Itti, GBVS and
Seo. In Tables 8, 9, 10 and 11 the best performance figures are underlined.

The comparison is given in terms of the widely used AUC metric [20]. Mean
value of the metric is given together with standard deviation for some videos. In
general it can be stated that spatial models (Signature Sal, GBVS or Itti) performed
better in half of the tested videos. This is due to the fact that these videos contain
very contrasted areas in the video frames, which attract human gaze. They do not
contain areas having an interesting residual motion. Nevertheless, the ChaboNet4K
model outperforms the Seo model which uses motion features such as optical flow.
This shows definitively that the use of a Deep CNN is a way for prediction of visual
saliency in video scenes. However, for IRCCyN-MVT data set, see Table 9, despite
videos without any motion were set aside, the gain in the proposed model is not
very clear due to the complexity of these visual scenes, such as presence of strong
contrasts and faces.

In Table 11 below we show the comparison of Deep CNN prediction of pixel-
wise saliency maps with the saliency maps built by Wooding’s method on gaze
fixations and also compare performances with the most popular saliency prediction
models form the literature. In general we can state that spatial models perform better
(Signature Sal, GBVS). Nevertheless, our 4K model outperforms that one of Seo in
four cases on this seven examples. This shows that definitely the use of a Deep CNN
is a way for prediction of top-down visual saliency in video scenes.
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3.7.5 Conclusion

This study addressed the problem of prediction of visual attention in video
content with Deep CNNs. We hypothesized, that adding residual motion maps
to primary colour pixel values could model smooth pursuit oculomotor behavior.
The performances of prediction with Deep CNNs when different kinds of features
are ingested by the network—color pixel values only, color values with residual
motion—were compared. As a dynamic content is concerned, the saliency is better
predicted with spatio-temporal features (RGB and residual motion) when scenes do
not contain distracting contrasts. A new selection process of non-salient patches,
based on composition rules of produced content, was proposed. The transfer
learning scheme introduced in our previous work and applied to the prediction of
saliency on small data sets by fine-tuning parameters pre-trained on a large data
set (Hollywood) successfully outperforms the state-of-the-art, i.e. Bengio’s method.
Finally, a method for building pixel-wise saliency maps, using the probability of
patches to be salient, was proposed. The method has to be further improved, as
despite the high accuracy obtained by the network-based classification, the pixel-
wise model does not always outperform spatial reference models from the literature
due to low-level distractors. Further study is needed in order to tackle the distractors
problem and address the use of temporal continuity of visual scenes.
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Introducing Image Saliency Information
into Content Based Indexing and Emotional
Impact Analysis

Syntyche Gbehounou, Thierry Urruty, Francois Lecellier,
and Christine Fernandez-Maloigne

Abstract We propose in this chapter to highlight the impact of visual saliency
information in Content Based Image Retrieval (CBIR) systems. We firstly present
results of subjective evaluations for emotion analysis with and without use of
saliency to reduce the image size and conclude that image reduction to more salient
regions implies a better evaluation of emotional impact. We also test eye-tracking
methods to validate our results and conclusions. Those experiments lead us to study
saliency to improve the image description for indexing purpose. We first show the
influence of selecting salient features for relevant image indexing and retrieval.
Then, we propose a novel approach that makes use of saliency in an information
gain criterion to improve the selection of a visual dictionary in the well-known
Bags of Visual Words approach. Our experiments will underline the effectiveness
of the proposal. Finally, we present some results on emotional impact recognition
using CBIR descriptors and Bags of Visual Words approach with image saliency
information.

1 Introduction

Local feature detectors are widely used in the literature as the first step of many
systems in image processing domain and its various applications: retrieval, recogni-
tion, ... Due to this large usage, lots of state-of-the-art papers are dedicated to local
feature evaluation [35, 49]. Their principal aim is to define some criteria to compare
existing local features. They often considered using among others the repeatability
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achieved by the invariance or the robustness, the distinctiveness/informativeness,
the locality, the localization accuracy and the efficiency. The importance of these
properties mostly depends on the desired application.

One can select a large number of frameworks to extract local features [49, 54].
Tuytelaars et al. [54] have divided the different local feature detectors into three
groups:

— Corner detectors which define a corner as a point in a 2D image with high
curvature.

— Blob detectors producing coherent sets of pixels having constant properties. All
pixels of a blob can be considered similar to each other in a sense.

— Region detectors which are directly or indirectly concerned with image region
extraction.

Traditionally after the local feature detection step, feature descriptions are
extracted. There is a lot of local descriptors; from different SIFT algorithms [56]
to generalized color moments and color moment invariants [36]. Some of these
descriptors are high dimensional: 128 dimensions for greyscale SIFT, 384 for color
based SIFT. This aspect can be time consuming for applications with a matching
step. Thus, different and computationally less expensive solutions were introduced
[2, 22]. They often focus on reducing the dimensionality of the feature descriptors.

One of the most well known is SURF (Speeded Up Robust Features) introduced
by Bay et al. [2]. It is a detector-descriptor scheme based on Hessian matrix and
applied to integral images to make it more efficient than SIFT. According to Ke
et al. [22], the average precision of object recognition for art in a museum was better
using SURF (64 dimensions) than SIFT or PCA-SIFT. Conclusions were different
for others applications, however SURF is still a good trade-off between accuracy
and efficiency compared to most descriptors.

Besides descriptor dimensionality reduction approaches, another solution to
improve the effectiveness is to filter the most relevant local features. In order to
perform such a task, some authors propose to take advantage of saliency maps
to select the more relevant features and so to decrease the amount of information
to be processed [10, 27, 60]. These methods usually take the information given
by the visual attention model at an early stage. Image information will be either
discarded or picked as input for next stages based on the saliency values. For
example Gao et al. [10] have proposed to rank all the local features according to
their saliency values and only the distinctive points are reserved for the matching
stage. Zdziarski et al. [60] have also selected their local features according to their
saliency value. They have used SURF descriptors which are only computed for
pixels with a saliency value above a fixed threshold. Their experiments have shown
that the number of features can be reduced without affecting the performance of
the classifier. Recently Gonzdlez-Diaz et al. [14] propose to use saliency for object
recognition in visual scenes, they obtain state of the art results but manage to reduce
computation time.

Research on filtering keypoints based on visual saliency was the starting point
of our thinking. We would like to extend the use of visual saliency for local feature
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selection to more detectors and datasets. Then, at first, we propose in this chapter
to evaluate keypoint detectors with respect to the visual saliency of their outputs.
Our goal is to quantify the saliency of different local features detected using four of
usual local feature detectors: Harris, Harris-Laplace, DOG and FAST. To do this we
used four visual attention models [16, 18, 26, 38]. Secondly, we study the impact of
selecting local feature values according to their saliency on image retrieval.

The considered features are principally used for image indexing or classification
based on their semantic content. However, there is also the possibility to measure
other parameters such as the emotional impact. This latter has several applications:
film classification, road safety education, advertising or e-commerce by selecting
the appropriate image information of the situation. The extraction of emotional
impact is an ambitious task since the emotions are not only content related (textures,
colours, shapes, objects, ...) but also depend on cultural and personal experiences.

Before giving more details about the emotion classification in the literature, one
may need to define what an emotion is and how to classify them. There are two
different approaches[28] to perform such a classification:

1. Discrete approach: emotional process can be explained with a set of basic
or fundamental emotions, innate and common to all human (sadness, anger,
happiness, disgust, fear, ...). There is no consensus about the nature and the
number of these fundamental emotions.

2. Dimensional approach: on the contrary to the previous one, the emotions are
considered as the result of fixed number of concepts represented in a dimensional
space. The dimensions can be pleasure, arousal or power and vary depending
to the needs of the model. The advantage of these models is to define a large
number of emotions. But there are some drawbacks because some emotions may
be confused or unrepresented in this kind of models.

In the literature, lots of research works are based on the discrete modeling of
the emotions; for example those of Paleari and Huet [43], Kaya and Epps [21], Wei
et al. [58] or Ou et al. [40-42]. In this chapter, we choose an approach close to
the dimensional one in order to obtain a classification into three different classes
“Unpleasant”, “Neutral” and “Pleasant”. Our goal is to summarize the emotions of
low semantic images and since the number and nature of emotions in the discrete
approach remain uncertain, the selection of specific ones may lead to an incorrect
classification.

The emotion analysis is based on many factors. One of the first factors to
consider consists in the link between colors and emotions [3, 5, 6, 31, 40-42, 58].
Several of those works have considered emotions associated with particular colors
through culture, age, gender or social status influences. Most of the authors agreed
to conclude that there is a strong link between emotions and colors. As stated by
Ou et al. [40], colors play an important role in decision-making, evoking different
emotional feelings. The research on color emotion or color pair emotion is now
a well-established area of research. Indeed, in a series of publications, Ou et al.
[40-42] studied the relationship between emotions, preferences and colors. They
have established a model of emotions associated with colors from psycho-physical
experiments.
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Another part of the emotional impact analysis of images depends on the facial
expression interpretation [43]. Emotions are then associated with facial features
(such as eyebrows, lips). This seems to be the easiest way to predict emotions, since
facial expressions are common to human and that the basic emotions are relatively
easy to evaluate for the human (happy, fear, sad, surprise, ... ). However in this case,
the system detects emotions carried by the images and not really the emotions felt
by someone looking at these pictures which can depend on its empathy or on the
global content of the image (for example, a baby crying in the background of an
image does not necessarily implies that the image is sad).

More recently some authors considered the emotion recognition as a CBIR task
[32, 53, 59]. They want to use the traditional techniques of image retrieval to
extract their emotional impact. To perform such a task, they need to choose some
images features such as color, texture or shape descriptors and combine them with
a classification system. Those two steps, after a learning step, allow the authors to
predict the emotional impact of the images. For example, Wang and Yu [57] used the
semantic description of colours to associate an emotional semantic to an image. Liu
et al. [28] concludes on texture for emotion classification. They stated that oblique
lines could be associated with dynamism and action; horizontal and vertical ones
with calm and relaxation.

In the last part of this chapter, we evaluate some low level features well adapted
for object recognition and image retrieval [1, 20, 22, 29, 30, 39, 56] and experiment
our study on two databases:

* A set of natural images that was assessed during subjective evaluations: Study of
Emotion on Natural image databaSE (SENSE) [8];

e A database considered as a reference on psychological studies of emotions:
International Affective Picture System (IAPS) [24].

The remainder of this chapter is structured as follows: we provide a brief
description of the chosen detectors in Sect. 2. The visual attention model is described
in Sect. 3. Then, we present the database and the local features detectors setting in
Sect. 4 and the findings on our study of local feature saliency in Sect. 5. The study
conducted on the importance of salient pixels for image retrieval is explained in
Sect. 6, followed by a discussion on results in Sect. 7. Then in Sect. 8 we extend our
results to emotion classification. Finally we conclude and present some future works
in Sect. 9.

2 Local Features Detectors

This section presents the four corner and blob detectors we chose for our study.
These detectors are widely used in many image processing frameworks [29, 30, 33,
47, 48, 56]. Note that evaluation of region detectors such as MSER is not in the
scope of this chapter, mostly due to the detected area complexity. As these areas are
not regularly shaped it is difficult to define the saliency value linked to the detected
regions.
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In the following, we explain briefly the four corner and blob detectors selected
for our study.

1. Harris detector is a corner detector proposed by Harris and Stephen in 1988
[17]. Tt is based on the auto-correlation matrix used by Moravec in 1977 [37]
and measures the intensity differences between a main window and windows
shifted in different directions for each pixel. Harris and Stephen in their improved
version proposed to use the matrix M defined by Eq. (1).
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where I, and I, are the partial derivatives.
Corners are the points with a high value C defined by Eq. (2).
C= det(MHarris) —kx trace(MHarris)z' (2)

Harris detector is robust to the rotation but suffers from scale changes [49].

2. Harris-Laplace detector was proposed by Mikolajczyk and Schmid [33] and
resolves the scale invariance problem of the Harris detector. Indeed, the points
are firstly detected with a Harris function on multiple scales and then filtered
according to a local measure. They use the Laplacian and only points with a
maximal response are considered in the scale-space.

3. Difference of Gaussians (DOG) was used by Lowe in the SIFT (Scale-Invariant
Feature Transform) algorithm [29] to approximate the Laplacian of Gaussian
whose kernel is particularly stable in scale-space [34]. The local maxima allow
to detect blob structures. This detector is robust to rotation and scale changes.

4. Features from Accelerated Segment Test (FAST) was introduced by Rosten
and Drummond [47, 48] for the real-time frame-rate applications. It is a high
speed feature detector based on the SUSAN (Smallest Univalue Segment Assim-
ilating Nucleus) detector introduced by Smith and Brady [51]. For each pixel,
a circular neighborhood with a fixed radius is defined. Only the 16 neighbors as
shown on Fig. 1 defined on the circle are handled. p is a local feature if at least 12
contiguous neighbors have an intensity inferior to its value and some threshold.

3 Visual Attention Models

In the last decades, many visual saliency frameworks have been published [10, 18,
25, 62]. Although Borji et al. [4] have proposed an interesting comparative study
of 35 different models of the literature. They also mentioned the ambiguity around
saliency and attention. Visual attention is a broad concept covering many topics
(e.g., bottom-up/top-down, overt/covert, spatial/spatio-temporal). On the other hand
it has been mainly referring to bottom-up processes that render certain image regions



80 S. Gbehounou et al.

Fig. 1 Neighbour definition S 16 1 2

for FAST detector 15 ||’ 3
14 |7 ) 4
13 | P s
EY EIG
10 9 8 '

more conspicuous; for instance, image regions with different features from their
surroundings (e.g., a single red dot among several blue dots).

Many visual saliency frameworks are inspired from psycho-visual features [18,
25] while others make use of several low-level features in different ways [10, 62].

The works of Itti et al. [18] can be considered as a noticeable example of the bio-
inspired models. An input image is processed by the extraction of three conspicuous
maps based on low level characteristic computation. These maps are representative
of the three main human perceptual channels: color, intensity and orientation before
combining them to generate the final saliency map as described on Fig. 2.

Moreover we used the bio-inspired model proposed by Itti et al. to assess the
saliency of our local features in our first study.!

Figure 3b is the saliency map for Fig. 3a. The lighter pixels are the most salient
ones.

4 Experimental Setup

4.1 Databases

For the evaluation of the visual saliency of local features obtained with the four
detectors mentioned in the Sect. 2, we use the following image sets:

1. University of Kentucky Benchmark proposed by Nistér and Stewénius [39]. In
the remainder, we will refer to this dataset as “UKB” to simplify the reading of
this chapter. UKB is really interesting because it is a large benchmark composed
of 10,200 images grouped in sets of 4 images showing the same object. They
present interesting properties for image retrieval: changes of point of view,
illumination, rotation, etc.

'Our saliency values are computed using the Graph-Based Visual Saliency (GBVS) software http:/
www.klab.caltech.edu/~harel/share/gbvs.php which implements also Itti et al.’s algorithm.
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Fig. 2 Architecture of the computational model of attention proposed by Itti et al.

2. PASCAL Visual Object Classes challenge 2012 [9] called PASCAL VOC2012.
This benchmark is composed of 17,125 images. They represent realistic scenes
and they are categorized in 20 object classes, e.g. person, bird, airplane, bottle,
chair and dining table.

3. The dataset proposed by Le Meur and Baccino [25] for saliency study which
contains 27 images. We will refer to this dataset as “LeMeur”.

4. The database introduced by Kootstra et al. [23] composed of 101 images
refereed as “Kootstra” in this chapter. It is also used for saliency model
evaluation.

We decided to consider two image databases traditionally used for the study of
visual saliency in order to quantify a potential link between the ratio of local features
detected and the nature of the dataset.
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Fig. 3 Example of saliency
map. (a) Original image. (b) \‘
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For our second study concerning the filtering of local features detected based on
their visual saliency we use two databases:

1. UKB already described in this section;

2. Holidays provided by Jegou et al. [19]. This dataset is composed of 1491 images
with a large variety of scene types. There are 500 groups each representing a
distinct object or scene.

4.2 Local Feature Detector Settings

The different parameters chosen for the local feature detectors are the default ones.
The idea of this chapter is not to have the best parameters but to use those proposed
by the authors that can be considered as a average optimum. We use Opencv
implementation of Harris, FAST and DOG detectors. For the last one we considered
the keypoints described by SIFT algorithm. For Harris-Laplace detector, we use
color descriptor software developed by van de Sande et al. [56].

In our experiments, we use k = 0.4 for Harris detector. The Harris threshold
was defined equal to 0.05 multiplied by the best corner quality C computed using
Eq. (2). The neighborhood size is 3x3 and we use k = 0.64. The Harris threshold
is set to 1077 and the Laplacian threshold to 0.03. DOG detector settings are the
original values proposed by Lowe[29]. The threshold needful in the FAST algorithm
to compare the intensity value of the nucleus and its neighbors is set to 30 in our
experiments.



Image Saliency Information for Indexing and Emotional Impact Analysis 83
5 Local Feature Saliency Study

This section introduces our first evaluation study for the local feature saliency. Our
aim is to compare the local feature detectors with respect to the ratio of visual salient
features they produce. To do so, we need to find a threshold t in order to classify a
local feature as salient.

The different visual saliency values that we obtained are normalized between 0
and 1. Then, an instinctive threshold might be 0.5. However we preferred to define
a threshold that conserves an easy recognition for human of the scenes/different
objects with the minimal number of pixels. We made a small user study to evaluate
different values of thresholds. The different images of Fig. 4 show the results with
three values of threshold: 0.3, 0.4 and 0.5. We chose the threshold equal to 0.4 as it
is the minimal value where most users in our study recognized the objects in most
of the images. Thus we consider that a local feature is salient if the saliency on its
position is greater than or equal to 0.4.

Before studying the local feature saliency, we have tested if there is a significant
difference between the studied databases related to the ratio of salient pixels they
contain. Detailed results of our experiments are not presented here, however we
summarize them in the Table 1. For this study we consider the median (the second

(a)

Fig. 4 Figure 3a quantised with different saliency thresholds. (a) r = 0.3, (b)t = 0.4, (¢) t = 0.5

Table 1 Distribution of the salient features for each detector and dataset. Bold values correspond
to best scores

LeMeur Kootstra UKB PascalVOC12 Average

Harris Median 48.72 4291 56.71 50 49.59
Inter-quartile 37.41 28.34 40.18 30.87 342
FAST Median 34.76 33.29 43.38 37.70 37.28
Inter-quartile 21.66 21.89 37.98 25.75 26.82
DOG Median 30.71 31.84 41.13 36.42 35.03
Inter-quartile 12.53 21.01 33.50 22.45 22.37
H-L* Median 26.80 29.38 34.95 32.46 30.90
Inter-quartile 14.25 21.04 30.55 20.05 21.47

H-L* detector corresponds to Harris-Laplace detector. The median and inter-quartile values are
percentages
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quartile) and the inter-quartile intervals (the difference between the third and the
first quartiles). We notice that LeMeur and Kootstra databases [23, 25] specially
proposed for saliency studies have in average more salient pixels. However the four
databases contain a lot of non-salient information. The highest median values are
observed for the interval [0, 0.1]: >30% for LeMeur, >20% for Kootstra, >40% for
UKB and ~30% for Pascal VOC2012.

If we consider the average of different medians, Harris detector with 49.59%
appears as the one that extracts the most salient features despite the nature of the
images of these bases. It could be explained by the fact that it measures intensity
differences in the image space that can be interpreted as a measure of contrast useful
for visual saliency. The difference between the three other detectors is minimal. The
results of Harris-Laplace and DoG could be explained by the scale changes they
incorporate. Despite its good results for image retrieval and object categorization
[61], Harris-Laplace detector selects less salient local features.

Our study of local feature detector saliency confirms that they do not detect the
most salient information.” These observations are comprehensible since the local
detectors used and the visual saliency models are not based on the same concept.
The fact that the Harris detector produces more salient corners is interesting. It may
advise to use Harris detector if any scale change invariant is needed for local feature
filtering.

In the following, we focus on Harris-Laplace, and assess the importance of the
local features according to their visual attention for image retrieval on UKB. We
no longer consider the previous threshold + = 0.4. The local features are ranked
according to their saliency value.

6 Impact of Local Feature Filtering Based on Visual Saliency

In this section, we study the impact of filtering the local features according to their
saliency value before the image signature computation. To do so, we consider two
local descriptors:

1. Colour Moment Invariants (CMI) descriptor [36] that describes local features
obtained with one of the following detectors:

* Harris-Laplace detector;
¢ adense detection scheme.

We choose to use the Bag of Visual Words representation [7, 50] which is
widely used to create image signatures and to index images from UKB dataset.
The visual codebook we have computed has been introduced in our previous
work [55]. In this work, we proposed a random iterative visual word selection

2Those from the chosen detectors.
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algorithm and their results are interesting for this descriptor using only 300 visual
words. The visual codebook is computed with Pascal VOC2012 [9].
2. SIFT [29] and the local features are detected with:

* a grid-dense detection scheme for UKB dataset images;
 Hessian-Affine detector for INRIA Holidays images.>

For this descriptor, we also use the Bag of words model as visual signature
with:

e 10,000 visual words computed with K-means algorithm for UKB. The visual
codebook is computed with Pascal VOC2012 [9].
e 10,000 and 200,000 visual words used by Jegou et al. [19].

For the UKB retrieval results, a score of 4 means that the system returns all correct
neighbors for the 10,200 images. In fact, the database contains a set of four identical
images with different transformations. In this case the query is included in the score
calculation. Concerning Holidays, we compute the mean Average Precision (mAP)
as detailed in [46].

As we previously mentioned we rank the local features according to their saliency
values. For our study, we filtered local features with two different configurations:

e “More salient”: the more salient features are removed;
e “Less salient”: the less salient features are removed.

The image signature is then built with the residual local features after filtering. The
full algorithm is presented on Fig. 5.

The results for UKB are presented in Fig. 6a for CMI and Fig. 6b for SIFT.

The results clearly highlight the importance of salient local features for the
retrieval. For example, removing 50% of the most salient features with SIFT induces
a loss of retrieval accuracy of 8.25% against 2.75% for the 50% of the least salient
ones. The results are similar for CMI: —20% when filtering 50% of the most salient
features and —3.55% otherwise.

Whatever the descriptor, our findings go in the same direction as the previ-
ous for UKB: local features can be filtered according to their saliency without
affecting significantly the retrieval results. The most salient local features are very
discriminative to have an accurate retrieval. These conclusions are valid for Harris-
Laplace detector. We have tested these assumptions with another keypoint detection
scheme: grid-dense quantization. Indeed increasing research works consider this
feature selection approach [15, 45] which poses a problem: the large number
of keypoints affecting the efficiency of the retrieval. If the previous results are
confirmed then the visual attention can be used to filter local keypoints regardless
the descriptor and the feature detector.

3We used the descriptors provided by Jegou et al. available at http://lear.inrialpes.fr/people/jegou/
data.php.
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Fig. 5 The used algorithm to perform local feature filtering based on visual saliency. On the last
step of the algorithm the four images correspond to different percentages of removed features with
the lowest saliency values

For our grid-dense scheme we selected a pixel on a grid of 15*15 every 5 pixels
producing ~11,000 local features per image of size 800%600.

The results for example, for UKB are presented in Fig. 7a for CMI and Fig. 7b
for SIFT.

Filtering dense local features with respect to their visual saliency values has
the same impact as previous filtering (Fig.6). We can conclude that using CMI
on UKB, saliency filtering does not impact in a negative way the retrieval results
respecting an adequate threshold. Moreover, our results show that the precision
score increases while deleting up to 50% of least salient local features: +1.25 to
+2.5%. This highlights that using too many non salient keypoints has the same
effect as introducing noise leading to a small decrease in the retrieval precision.
With a grid-dense selection and filtering by visual saliency value, CMI shows that
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Fig. 6 Local features detected by Harris-Laplace filtered according to their saliency value. K is
the size of the visual codebook. (a) CMI: K= 300. (b) SIFT: K= 10,000

salient local features are particularly important as so far as the difference between
the two curves on Fig. 7a is 19.25% for 30% and 31% for 50%.

Our different results highlight the importance of salient local features for a
correct retrieval on UKB both with Harris-Laplace detection and dense selection.

To validate the independence to the database we conducted the same evaluations
on Holidays. The impact on the retrieval is measured with the mean Average
Precision (mAP) scores represented in Fig.8. The observations are similar: the
salient local features lead to better retrieval. The difference between deleting less
salient and more salient on Holidays (~5%) is less important than those observed
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Fig. 7 Filtering dense selected local features according to their saliency value. (a) CMI: K= 300,
(b) SIFT: K= 10,000

on UKB. It supposes that the local salient feature importance for retrieval depends
on the database and the descriptor.

These first results obtained with Itti et al.’s model [18] are also confirmed with
the three following models:

1. Graph Based Visual Saliency (GBVS) which is a bottom-up visual saliency
model proposed by Harel et al. [16];

2. Prediction of INterest point Saliency (PINS) proposed by Nauge et al. [38] and
based on the correlation between interest points and gaze points;



Image Saliency Information for Indexing and Emotional Impact Analysis

0,7

0,6

0,5 -

04

0,3

mAP scoreon Holidays

0,2

0,1

0 10 20 30

Percentage of removed local features (%)

Fig. 8 mAP scores after filtering local features according to their saliency values on Holidays

—o— More Salient —+— Less Salient

40

50 60

70

80 92

100

89

Table 2 Computation of the area between the curves of deleting most salient and less salient
local features. Bold values correspond to best scores

Databases Descriptors Saliency model Area value
UKB CMI Itti et al. 10.06
K=300 GBVS 9.11
PINS 8.95
Yin Li 8.85
SIFT Itti et al. 3.61
K=10,000 GBVS 4.34
PINS 3.54
Yin Li 332
Holidays SIFT Itti et al. 0.63
K=10,000 GBVS 1.65
PINS 0.40
Yin Li 0.51
SIFT Itti et al. 0.51
K=200,000 GBVS 228
PINS 1.20
Yin Li 0.62

3. The visual saliency model based on conditional entropy introduced by Li

et al. [26].

We give in Table 2 the value of the area (illustrated in Fig.7b) between the two
curves of deleting local features according to their visual saliency; most salient ones
on the one hand, and in the other the less salient.
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Let %] and %3, two curves, the area value, .27 is obtained with Eq. (3).

7 =Y |60 -60) | 3
1

| x | is the absolute value of x, i is the different value of the percentage of local
features deleted according to their visual saliency.

The evaluations are conducted on UKB and Holidays.

We can see that the area between the two curves has not the same size according
to the used saliency model and the local feature descriptor considered. We do not
compare the area value according to the descriptors and the databases but its size
behavior. If the area value is high, it indicates a significant difference between the
two curves. It means that deleting the more salient features induces an important
decrease of the results.

Except for CMI descriptors on UKB, the area values of GBVS model are the
highest for the two datasets. It means that the visually salient local features defined
with this model have an important weight in the retrieval process using BoVW
signature.

Figure 9 presents the results of comparison of the results obtained according to
the features and the saliency models when deleting the less salient local features.
There is no significant difference before 50%. The four models that we chose offer
equivalent accuracy. Then, the choice of the suitable saliency model can be based
on the filtering threshold. Anyway GBVS seems to be more adapted to our study.

0 10 20 30 10 0 30 a0

50 o0
Percentage of removed features (%)

— =i ——GBYS ——PINS o Vini

50 0
Percentage of removed features (%)

Fig. 9 The results obtained deleting less salient local features. (a) UKB-CMI, (b) UKB-SIFT, (c)
Holidays-SIFT 10,000, (d) Holidays-SIFT 200,000
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Even if this study shows that the results are much better with GBVS, the main
conclusion of our experiments is the importance of filtering local keypoints with the
saliency value.

7 Discussion

The different evaluations we have conducted about the impact of selecting local
features according to their visual saliency show that:

« this filtering does not significantly affect the results;
* the salient local features are important for image retrieval.

The results presented in this chapter confirm that the visual saliency can be useful
and helpful for a more accurate image retrieval. Especially, they highlight that it can
easily enhance dense selection results:

* by deleting a certain proportion of less salient keypoints;
* Dby reducing the quantity of local features without negative impact for the retrieval
score.

The different detectors studied do not extract important quantity of salient
information. This observation has among others two important outcomes:

1. Visual saliency usage should be an additional process in the whole framework of
image retrieval, while indexing and retrieving images; the most of available tools
today do not include the saliency information.

2. Adding more salient local features could create more accurate signatures for most
of usual images, improving at the same time the retrieval process.

We have just started our investigations on the second outcome by replacing the less
salient local features detected by more salient ones. First results obtained with this
new research investigation were conducted on UKB dataset using CMI descriptor.
We add salient local features from the dense CMI to the Harris Laplace CMI. The
results presented in Fig. 10 confirm our hypothesis.

Replacing less salient local features by the most salient ones from dense detection
seems to be a good compromise to use visual saliency in order to improve the
retrieval. Indeed the score increases by 3.75% with 20% of replaced keypoints. Of
course, this improvement is small but it shows the importance to research deeper
this way as all results were improved.

8 Emotion Classification

In this section we applied the previous image feature detectors to emotion clas-
sification. In order to perform such a classification, one needs to use a specific
database constructed for this application. There are many datasets proposed in
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Fig. 10 Replacing the less salient points detected buy Harris-Laplace by the most salient selected
with dense quantization

the literature, however one of them appears to be a reference in psychological
studies, the International Affective Picture System (IAPS). It is a database composed
of photographs used in emotion research. This dataset has been developed and
improved since the late 1980s at NIMH Center for Emotion and Attention (CSEA)
at the University of Florida [24]. Since it is a well known database, many papers
consider this base to compare their results to the literature [28, 32, 59].

IAPS is a very large database with more than 1100 images and still evolving but
it presents also very strong emotional content and very semantic one. So it appears
that the emotional impact of those images is very straightforward and does not
reflect the most frequent images in real life. We then propose another base, named
SENSE (Study of Emotion on Natural image databaSE) [8, 12]. It is a low semantic,
natural and diversified database containing 350 images free to use for research
and publication. It is composed of animals, food and drink, landscapes, historic
and tourist monuments. It contains low semantic images because they minimize
the potential interactions between emotions on following images during subjective
evaluations. This database has been rated by two different ways:

1. SENSEI1 composed of the whole images assessed by 1741 participants;

2. SENSE2 composed of Regions of Interest (ROI) of the images obtained for each
image with an hybrid saliency model proposed by Perreira Da Silva et al. [44]. It
is based on the classical algorithm proposed by Itti [18] and adds a competitive
approach to enhance the saliency map obtained: a preys/predators system. The
authors show that despite the non deterministic behavior of preys/predators
equations, the system exhibits interesting properties of stability, reproducibility
and reactiveness while allowing a fast and efficient exploration of the scene.
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We applied the same optimal parameters used by the authors to create the
thumbnails of the images of our database. This second database has been rated
by 1166 participants.

8.1 Classification Results

In this section we present our results for local and global feature evaluation for
emotional impact recognition. At first we discuss about those obtained on SENSE
and IAPS. To finish we compare those from IAPS to some baselines from the
literature.

8.1.1 Results on SENSEI1 and IAPS

In a previous work [13], we have shown that CBIR local and global descriptors can
be used to define the emotional impact of an image. In Table 3, we summarize the
results obtained after classification in Positive and Negative emotion class for each
descriptor. In this table:

* WA4 and WAS respectively mean Wave Atoms Scale 4 and Wave Atoms Scale 5.
¢ CM denotes Color Moments and CMI, Color Moment Invariants.
e  OpSIFT means OpponentSIFT.

For the results, we use the notation Dataset_Visual codebook to resume the
different configurations we have tested. Then in SENSE1_I configuration, the
visual signatures (Bags of Visual Words) of the images of SENSE1 are computed
using the visual vocabulary from IAPS. The different configurations allow us to
determine whether or not the results are dependant from the image database used to
create the visual dictionary.

The different features do not have the same behaviors on predicting emotions
in the different configurations tested. For example, SIFT have approximately the
same results for negative and positive emotions on IAPS and SENSE regardless
the vocabulary changes. On the contrary, CMI and WA4, for example, seem more
adequate for negative images with at least 50%.

Overall, the visual dictionary has little impact on the behavior of descriptors
for classification for SENSE and IAPS. However, CM descriptors for example,
are affected. The rate of recognized negative images is significantly higher with
codebook from IAPS (4-70% for SENSE images and +20% for IAPS images).
The opposite effect is observed for positive images: —34% for SENSE images and
—17% for IAPS images. This illustrates very well the impact of the variability
of the database. Indeed, IAPS contains a lot of negative images: the dictionary
built with this dataset allows to better recognize negative emotions. Building the
visual dictionary with SENSE improves recognition of positive images since this
base contains a lot. We also conclude that the negative images are much easier to
recognize in the two databases that we have chosen.
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Table 4 Comparison of correct average classification rates on SENSE and IAPS before and after
fusion with Majority Voting

Before fusion (%) After fusion (%)

SENSE1_S Negative 55.56 60
Positive 54.17 57.29
Average 54.86 57.55
SENSEI1_I Negative 64.44 90
Positive 54.86 64.58
Average 59.65 66.98
IAPS_S Negative 61.75 75.41
Positive 47.13 41.38
Average 54.44 58.82
IAPS_I Negative 65.58 77.05
Positive 45.02 46.55
Average 55.30 62.18

To study the complementarity of the chosen features, we have evaluated their
result combination with Majority Voting. In Table 4 we compare the classification
rates before and after fusion.

There is a significant improvement after the fusion. For example, the recognition
of negative images is impacted positively by 15% on average. Besides the best
classification rates are obtained after merging using the dictionary built from
IAPS. This conclusion is also valid for positive images. For both configurations
(SENSE1_I and TAPS_I) before the fusion, 54.86 and 45.02% positive images were
recognized against 64.58 and 46.55% after. If we generally consider these results
after fusion, we see that they have been improved especially on our image database,
independently of visual dictionaries and emotions:

* ~ +15% for negative images and ~ +6% for positive ones;
* ~ 417% with the codebook from IAPS and ~ +3.7% with the codebook from
SENSEIL.

Note that for IAPS, positive image average results are lower than a simple random
selection. This can be due to the database or simply because negative images are
easy to recognize.

8.1.2 Comparison with Literature on IAPS

In order to validate our approach, we chose to compare our results on IAPS to three
different papers on the literature:

e Wei et al. [58] are using a semantic description of the images for emotional
classification of images. The authors chose a discrete modeling of emotions in
eight classes: “Anger”, “Despair”, “Interest”, “Irritation”, “Joy”, “Fun”, “Pride”
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and “Sadness”. The classification rates they obtained vary from 33.25% for the
class “Pleasure” to 50.25% for “Joy.”

e Liu et al. [28] have proposed a system based on color, texture, shape features and
a set of semantic descriptors based on colors. Their results on IAPS are 54.70% in
average after a fusion with the Theory of evidence and 52.05% with MV fusion.

e Machajdik et al. [32] are using color, texture, composition and content des-
criptors. They chose a discrete categorization in eight classes: “Amusement”,
“Anger”, “Awe”, “Contentment”, “Disgust”, “Excitement”, “Fear” and “Sad”.
The average rates of classification vary from 55 to 65%. The lowest rate is
obtained for the class “Contentement” and the highest for the class “Awe”.

If we compare our results with those three, we clearly see that our method compete
with them since we obtain classification rates from 54.44 to 62.18%. The goal of
this study is then correctly achieved by proving that the use of classical features of
CBIR can improve the performance of emotional impact classification.

8.1.3 Consideration of the Visual Saliency: SENSE2 Image Classification

The results from the subjective evaluations SENSE2 show that the regions of interest
evaluation is equivalent to the full image evaluation [11]. So we decided to substitute
the SENSE1 images by those used during SENSE2. The results presented here are
with respect to the local descriptors. Because of the variable sizes of the ROI images
(from 3 to 100% of the size of the original images) we chose a grid-dense selection.
For effective comparison, we also consider a grid-dense selection for SENSE1. The
average classification rates are shown in Fig. 11. We notice that for a majority of
descriptors, limiting the informative area to the salient region improves the results.
The results by local keypoints descriptor are summarized in Fig. 12.

An improvement is made for negative and positive classes when using SENSE2.
The usage of the regions of interest obtained with visual saliency model improves
the results for positive and negative images especially for SIFT and OpponentSIFT:
+10%. The previous conclusions about SIFT based descriptors remain valid.

9 Conclusion and Future Works

In this chapter we have evaluated the saliency for four local features detectors:
Harris, Harris-Laplace, DOG and FAST. The threshold to decide that a point is
salient has been fixed after conducting a user study. In fact, this threshold allows to
easily recognize the different objects in the image. We choose to study the behavior
of local feature saliency on two databases used for image retrieval and categorization
and two others for saliency studies. The observations are globally similar:
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Fig. 11 Average classification rates obtained for SENSE2 and SENSE1 with a dense selection of
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Fig. 12 Classification rates obtained for SENSE2 and SENSE] for 2 class classification by feature

* the larger part of the pixel saliency values are < 0.1;
» Harris detector produces the most salient local features according to the median
values and in contrast Harris-Laplace features are globally the less salient.

The results of local feature filtering according to the saliency value highlight the
importance of salient keypoints for retrieval on UKB and Holidays datasets regard-
less the detection method (Harris-Laplace, Hessian-Affine and dense selection) and
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the saliency model used among the four we tested. These conclusions are consistent
with previous studies from the literature and allow to consider different perspectives
which include finding the good proportion for the filtering of the less salient local
features without affecting the retrieval results. Another perspective of our study is
to consider top-down visual saliency model as the four tested are bottom-up and to
compare the results.

Concerning emotional impact recognition, for SENSE2, we used a bounding
box of the different salient areas, we think that a more precise region definition
must be studied: defining different regions of interest by image and determining the
emotion of each region. The final emotion of the image could be a combination of
the negative and positive areas thereby resuming the idea of the harmony of a multi-
colored image from Solli et al. [52]. The fusion method could be found based on
subjective evaluations to find the correct weighting between negative and positive
“patches” to form the final emotional impact.
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Saliency Prediction for Action Recognition

Michael Dorr and Eleonora Vig

Abstract Despite all recent progress in computer vision, humans are still far
superior to machines when it comes to the high-level understanding of complex
dynamic scenes. The apparent ease of human perception and action cannot be
explained by sheer neural computation power alone: Estimates put the transmission
rate of the optic nerve at only about 10 MBit/s. One particular effective strategy to
reduce the computational burden of vision in biological systems is the combination
of attention with space-variant processing, where only subsets of the visual scene are
processed in full detail at any one time. Here, we report on experiments that mimic
eye movements and attention as a preprocessing step for state-of-the-art computer
vision algorithms.

1 Introduction

The human brain is remarkably energy efficient and runs on about 10-15W of
power, less than most laptop computers. By the standards of the animal kingdom,
however, the human brain is already quite big, and many species with much less
neural hardware nevertheless perceive and act in complex environments seemingly
without effort. In contrast to this, even supercomputers still struggle with the under-
standing of dynamic scenes, despite a highly active computer vision community,
its rapid progress, and the recent surge of bio-inspired, “deep” neural-network
architectures that have shattered many benchmarks. Computer vision performance
may have reached or even surpassed human performance in more abstract, static
object recognition scenarios such as handwritten character or traffic sign recognition
[9]; in fully dynamic, unconstrained environments, this has not been the case
yet. One particular processing strategy that biological agents employ to improve
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efficiency is selective attention: at any given time, only a fraction of the entire
(visual) input is processed in full detail. In combination with efficient coding, this
allows humans to process complex visual inputs despite the limited transmission
bandwidth of the optic nerve that is estimated to be comparable to an Ethernet
link (10 Mbit/s) [21]. In humans, attention is also closely linked to eye movements,
which are executed several times per second and direct the high-resolution centre of
the retina to points of interest in the visual scene.

Because of the potential to reduce bandwidth requirements, models of attention
and eye movements, or saliency models, have long been and still are an active
research field [4]. For static images, state-of-the-art models have come close to
human performance (meaning the implicit, typically subconscious choice where to
direct gaze), although there are at least two caveats: first, it is still a matter of debate
how to best quantify the similarity between machine predictions and actual human
eye movements [5]; second, the laboratory-based presentation of static images for
prolonged inspection is not a very accurate representation of real-world viewing
behaviour and thus might give rise to idiosyncratic viewing strategies [11].

The more challenging case of saliency for videos, however, has received less
attention (but see Chap. 3 in this book [8]). A likely contributor to this deficit has
been the lack of standardized benchmarks that make it easier to directly compare dif-
ferent models, and consequently improve upon them. Yet, video processing has high
computational cost and therefore could particularly benefit from attention-inspired
efficiency gains. One computer vision application of note is action recognition: out
of a set of (human) actions, which action is depicted by a short video clip? Current
approaches to this problem extract densely sampled descriptors from the whole
scene. While this provides full coverage, it also comes at high computational cost,
and descriptors from uninformative, non-salient image regions may even impair
classification performance.

In this chapter, we shall therefore extend previous work on saliency-based
descriptor pruning for action recognition [41, 42]; very similar, independently
developed work was published in [25, 26]. Since these original publications,
the state-of-the-art action recognition processing pipeline has been improved to
incorporate an implicit foreground saliency estimation step [48], and we shall
investigate whether an additional explicit pruning can further improve performance.

2 Related Work

For recent overviews of the highly active and very wide field of action recognition,
we point the reader to the surveys [12, 44].

Despite the recent success of deep learning methods for video-related tasks,
hand-crafted features are still indispensable when designing state-of-the-art action
recognition solutions. These methods typically rely on the—by now—standard
improved Dense Trajectories (iDT) [45, 46, 48] representation that aggregates local
spatio-temporal descriptors into a global video-level representation through the Bag
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of Words (BoW) or the Fisher Vector encoding. Along trajectories located at high
motion contrast, rich appearance and motion descriptors, such as HOG, HOF, and
MBH are extracted. Several improvements have been proposed to this standard
pipeline, from stacking features extracted at temporally subsampled versions of
the video [22] to employing various descriptor- and representation-level fusion
methods [28]. Interestingly, by paying careful attention to details (of normalization,
and data- and spatio-temporal augmentations), [12] could show that the iDT pipeline
is on par with the state of the art, including recent deep methods, on five standard
benchmarks.

A number of more recent works explored deep architectures for action recogni-
tion. These methods aim at automatically learning discriminative representations
end-to-end and must therefore rely on vast training data sets, such as Sports-
IM [20] comprising of more than a million YouTube videos. Notable deep
approaches include the extension of 2D convolutional neural networks (CNNs) to
the time domain [20], the Two-Stream architecture [35] with two separate CNNs
for appearance and motion modeling, as well as the combination of recurrent
and convolutional networks to encode the temporal evolution of actions [10].
Overall, however, end-to-end deep models only achieved marginal improvements
over the established hand-tuned baselines. For better performance, these methods
often complement their learned representations with dense trajectory features.
Alternatively, hybrid architectures leverage the representational power of deep per-
frame feature maps in a Bag of Words pipeline (e.g. TDD method [47]).

2.1 Selective Feature Sampling and Reweighting Strategies
Jor Action Recognition

Aware of the limitations of densely sampling an often prohibitive number of video
descriptors, several works focused on reducing the number of local descriptors
through various sampling strategies. Here we summarize the main directions.

Shi et al. [34] proposed a real-time action recognition system that combines
fast random sampling with the Local Part Model to extract features, which has
the benefit of including more structure and an ordering of events. Several feature
sampling strategies are investigated in [S0] with the best performing ones being
based on object proposal techniques (such as Edge Boxes [51]). Their selective
sampling based on motion object proposals reports better accuracy by using 25%
less features than without sampling.

Predicting foreground motion saliency was also found to be an effective method
for descriptor reweighting. For the challenging task of cross-data set action
recognition, [38] relied on video foreground confidences for a soft-assignment
(and reweighting) of features in a Bag of Words paradigm. Graph-based visual
saliency [16] was used as one of their cues to predict foreground confidences. A
foreground motion saliency is defined in [14] as well. Their spatio-temporal saliency
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is based on directional motion energy contrast (corresponding to spatio-temporal
oriented filtering) and spatial variance. As is common practice, the predicted
saliency measure reweights the features during pooling in a Bag of Words pipeline
to enhance the contribution of local features by their saliency.

Another line of research looked at how fop-down, task-specific saliency can
simultaneously inform the tasks of action classification and localization. Sapienza
et al. [31, 32], for example, learn action-specific saliency maps, by distilling the
discriminative parts of the video for a specific action. To this end, weakly-labelled
video histograms are extracted for overlapping subvolumes of the video, and a
Multiple Instance Learning (MIL) framework is adopted to associate action instance
models to latent class labels. The learned action models are thus not only able
to classify actions, but also to localize them via the action-specific saliency map.
A similar structured prediction model, aimed at both action classification and
localization, is presented in [33]. To learn the top-down, action-specific saliency
though, this work relies on eye movements as weak supervisory signals. In a
max-margin framework, a latent smooth path through the video is identified that
maximizes action classification accuracy and coincides with high gaze concentra-
tion. In addition to action classification and localization, their model is thus capable
of predicting top-down video saliency conditioned on the performed action.

Saliency-based non-uniform descriptor sampling has also been adopted for other
related tasks, such as object recognition in egocentric videos [3].

3 Methods

In this section, we shall describe materials and methods of the work underlying this
chapter. Because several of the analyses presented here are extensions of previous
work and thus have been described before, we will put particular emphasis on the
novel saliency measure based on smooth pursuit eye movements.

3.1 Data Set

Even for a single human action alone, the space of possible scenes depicting that
particular action is incredibly large. Thus, any finite data set for action recognition
can only be a coarse approximation to real-world action recognition. Over the past
few years, several benchmark data sets have been made available with varying
difficulty and complexity.

For this chapter, we focus on the Hollywood2 data set of short excerpts from
professionally produced Hollywood movies [24]. This data set comprises 823
training and 884 test clips with overall about half a million frames and 100
billion pixels, and using the Dense Trajectories pipeline (see below), intermediate
processing steps require about half a terabyte of storage space. This makes it still
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possible to handle this data set without very large-scale computing facilities, and
yet bandwidth gains by saliency-based descriptor pruning would be desirable. At
the same time, performance has not reached ceiling on this challenging data set yet,
after almost a decade of intense research.

Because of its popularity, there are two independent eye movement data sets that
were recorded for the Hollywood?2 data set [25, 26, 41, 42], namely by Mathe et al.
and Vig et al. Both groups used different eye trackers to record gaze: the Mathe data
set was collected monocularly with an SMI iView X HiSpeed 1250 at 500 Hz, while
data collection for the Vig data set used an SR Research EyeLink 1000 at 1000 Hz
that tracked both eyes simultaneously. Whereas at least theoretically, this should
have negligible consequences for recorded gaze locations, the viewing distances
(60 and 75 cm, respectively) and screen sizes (38.4 and 41.3 deg, respectively)
also differed; previous work has shown an effect of stimulus size on saccade
behaviour [49].

Most importantly, however, tasks also subtly differed between the data sets: in
the Mathe data set, subjects either performed a free-viewing task or the same action
recognition task as in the original computer vision benchmark, where they had to
explicitly name the presented actions after each video clip. By comparison, the task
in the Vig data set was constrained to an intermediate degree, and subjects were
asked to silently identify the presented actions.

We therefore computed the Normalized Scanpath Saliency (NSS) [29] to check
for systematic differences in the spatio-temporal distribution of gaze in the two data
sets. For NSS, a fixation map is first created by superimposing spatio-temporal
Gaussians (128 x 128 pixels and 5 frames support, ¢ = 0.21) at each gaze
sample of one “reference” group (e.g. the Mathe data set). This fixation map is then
normalized to zero mean and unit standard deviation, and NSS is the average of this
fixation map’s values for all gaze samples of the other “test” group (e.g. the Vig
data set). Similar gaze patterns in both groups correspond to high NSS values, and
unrelated gaze patterns (chance) correspond to zero. For a comparative evaluation,
we computed NSS both within- and between data sets: if NSS between subsets of
e.g. Mathe is similar to NSS between Mathe and Vig, we can assume that both data
sets have little systematic difference. Because of the differing number of subjects,
we used gaze data from only one subject at a time to form the initial fixation map;
this was repeated for each subject and for up to 5 other subjects as “tests”.

3.2 Baseline Action Recognition

We follow the standard (improved) Dense Trajectories pipeline from [45, 46, 48].
Based on optical flow fields, trajectories are computed first, and then descriptors
are extracted along these trajectories from densely sampled interest points. These
descriptors comprise the shape of the trajectory, HOG, HOG, and Motion Boundary
Histograms (MBH). Mostly due to camera motion, many descriptors were extracted
by the original pipeline that corresponded to trajectories of irrelevant background
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objects. By estimating a frame-to-frame homography and compensating for camera
motion, these irrelevant descriptors could be suppressed and thus action recognition
performance was substantially improved. A further improvement then was achieved
by incorporating a human detection step using the algorithm from [30]. Regions
with detected humans are excluded from the homography estimation, making the
suppression more specific to the background. However, it should be noted that the
automatic detection works best for frontal views, and thus many episodes where
on-screen characters are shown from the side or other angles are missed by the
algorithm.

For the work presented in this chapter, we used the publicly available implemen-
tation! with default parameters and the provided human detection bounding boxes.
As already shown in [48], larger codebooks give better performance, and we thus
randomly sampled 256,000 features to train a codebook of size 4096.

3.3 Central Bias of Descriptors and Human Detection

We evaluated the spatial distribution of extracted improved Dense Trajectory
descriptors and human bounding boxes as a ba