Rolf Drechsler Editor

Formal System
Verification

State-of-the-Art and Future Trends

Formal System Verification

Rolf Drechsler
Editor

Formal System Verification

State-of-the-Art and Future Trends

@ Springer

Editor

Rolf Drechsler

DFKI

University of Bremen
Bremen

Germany

ISBN 978-3-319-57683-1 ISBN 978-3-319-57685-5 (eBook)
DOI 10.1007/978-3-319-57685-5

Library of Congress Control Number: 2017938317

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Fatma Akin

Preface

For more than four decades the complexity of circuits and systems has grown
according to Moore’s Law resulting in chips of several billion components. While
already the synthesis on the different levels from the initial specification down to the
layout is a challenging task, for all the individual steps the correctness has to be
considered.

In the past, classical approaches based on simulation or emulation have been
used. But these techniques do not scale well and reach their limits. Correctness can
only be ensured by the use of formal methods. These techniques were proposed
more than 30 years ago in the context of circuit and system design, and in the
meantime exist very powerful tools that are used in industry for specific tasks, like
the equivalence check of netlists on the Register Transfer Level (RTL).

But with increasing complexity of the systems there is a high demand for tools
that are better scalable and also consider modeling beyond plain digital circuits. In
this context analog and mixed signal circuits have to be included on the lower level,
but also hardware-dependent software towards the higher levels of abstraction.

In this book, these advanced topics of using formal verification along the design
flow with a special focus on the system level are addressed. World’s leading
researchers have contributed chapters, where they describe the underlying prob-
lems, possible solutions, and directions for future work.

The chapters in the order as they appear in this book are:

e Formal Techniques for Verification and Coverage Analysis of Analog Systems
by Andreas Fiirtig and Lars Hedrich

o Verification of Incomplete Designs by Bernd Becker, Christoph Scholl and
Ralf Wimmer

e Probabilistic Model Checking: Advances and Applications by Marta
Kwiatkowska, Gethin Norman and David Parker

o Software in a Hardware View: New Models for HW-dependent Software in SoC
Verification by Carlos Villarraga, Dominik Stoffel and Wolfgang Kunz

e Formal Verification—The Industrial Perspective by Raik Brinkmann and David
Kelf

vii

viii Preface

On the different abstraction layers it is shown in which way formal methods can
assist today to ensure functional correctness. The contributed chapters cover not
only the latest results in academia but also descriptions of industrial tools and
perspectives.

Bremen, Germany Rolf Drechsler
June 2017

Acknowledgements

All contributions in this edited volume have been anonymously reviewed. I would
like to express my thanks for the valuable comments of the reviewers and their fast
feedback. Here, I also like to thank all the authors who did a great job in submitting
contributions of a very high quality. My special thanks go to Daniel Grofle and
Jannis Stoppe from my group in Bremen in helping with the preparation of the
book. Finally, I would like to thank Nicole Lowary and Charles Glaser from
Springer. All this would not have been possible without their steady support.

Bremen, Germany Rolf Drechsler
June 2017

ix

Contents

1 Formal Techniques for Verification and Coverage Analysis

of Analog Systems. 1
Andreas Fiirtig and Lars Hedrich
1.1 Introduction 1
1.2 State of the Art 2
1.3 State-Space Description 4
1.3.1 Solving a DAE System 5
1.3.2 Analog Transition System 6
1.4 Verification Methodology 9
1.4.1 Model Checking 10
1.4.2 Analog Specification Language (ASL) 10
1.43 ASL-Example: Verification of Oscillation
and Oscillator Voltage Sensitivity 11
1.4.4 Model Checking of an SRAM Cell 13
1.5 State Space Coverageiiiiiiiiiiiia.. 15
1.5.1 State-Space Coverage Calculation 15
1.5.2 Coverage Maximization Algorithm 17
1.5.3 Path Planning 18
1.6 A State-Space COVEerageoueuiinmrenneannon.. 19
1.7 Coverage Analysis and Optimization Results 22
1.7.1 Detailed Case Study of a Level-Shifter Circuit 25
1.8 System-Level Verification 27
1.8.1 System Refinement and Verification 30
1.9 Conclusion 32
References L 33
2 Verification of Incomplete Designs. 37
Bernd Becker, Christoph Scholl and Ralf Wimmer
2.1 Introduction 37
2.2 Preliminaries 40

xi

xii

Contents

2.3 Incomplete Combinational Circuits
2.3.1 The Partial Equivalence Checking Problem (PEC)
2.3.2 SAT-based ApproXimations
2.3.3 QBF-based Methods
2.34 DQBF-based Methods

2.4 Incomplete Sequential Circuits
24.1 BMC for Incomplete Designs
2.4.2 Model Checking for Incomplete Designs

2.5 Conclusioni.i

References

Probabilistic Model Checking: Advances and Applications
Marta Kwiatkowska, Gethin Norman and David Parker
3.1 Introduction
3.2 Probabilistic Model Checking
3.2.1 Discrete-Time Markov Chains
3.2.2 Markov Decision Processes
3.2.3 Stochastic Multi-player Games
324 Tool SUpporti i
3.3 Controller Synthesis
3.3.1 Controller Synthesis for MDPs
3.3.2 Multi-objective Controller Synthesis
3.4 Modelling and Verification of Large Probabilistic Systems
34.1 Compositional Modelling of Probabilistic Systems
3.4.2 Compositional Probabilistic Model Checking
3.4.3 Quantitative Abstraction Refinement
3.4.4 Case Study: The Zeroconf Protocol
3.5 Real-Time Probabilistic Model Checking
3.5.1 Probabilistic Timed Automata
3.5.2 Continuous-Time Markov Chains
3.6 Parametric Probabilistic Model Checking
3.6.1 Parametric Model Checking for DTMCs
3.6.2 Parametric Model Checking for Other Probabilistic
Models
3.7 Future Challenges and Directions
References

Software in a Hardware View

Carlos Villarraga, Dominik Stoffel and Wolfgang Kunz

4.1 Introduction

4.2 Program Netlists
421 BasicIdea
422 Model Generation,
423 Modeling Memory and /O

Contents xiii

4.3 Verification Scenarios for HW-dependent Software 131
4.4 Equivalence Checking of HW-dependent Software 133
44.1 Sequence-Based Model of the HW/SW Interface 134
442 Software Miter 138
4.4.3 Equivalence Checking Using SAT 139
444 Experimental Results 140
4.5 Cycle-Accurate HW/SW Co-verification of Firmware-Based
Designs ... 144
4.5.1 Joint Hardware/Firmware Model 144
4.5.2 Timed Interface Model 145
453 Experimental Results 150
4.6 Conclusion 152
References 153
5 Formal Verification—The Industrial Perspective 155
Raik Brinkmann and Dave Kelf
5.1 Introduction 155
5.2 Automating Design Verification with Formal 156
5.2.1 Design Inspection 156
5.2.2 1P Integration Verification 161
5.2.3 Verification of Design Transformations 168
5.3 Assertion-Based Verification of IP Blocks 171
5.3.1 Assertions in the Verification Flow 171
5.3.2 Verification Planning 174
5.3.3 Quantitative Analysis and Coverage 175
5.4 Challenges Ahead 177
5.4.1 High-Level Design 178
5.4.2 High Reliability and Safety Critical Systems 178
5.4.3 Hardware Security 180
544 Low-Power Devices 181

References e 182

Editors and Contributors

About the Editor

Rolf Drechsler received the Diploma and Dr. Phil. Nat. degrees in Computer Science from
J. W. Goethe University Frankfurt am Main, Germany, in 1992 and 1995, respectively. He was
with the Institute of Computer Science, Albert-Ludwigs University, Freiburg im Breisgau,
Germany, from 1995 to 2000, and with the Corporate Technology Department, Siemens AG,
Munich, Germany, from 2000 to 2001. Since October 2001, he has been with the University of
Bremen, Bremen, Germany, where he is currently Full Professor and the Head of the Group for
Computer Architecture, Institute of Computer Science. Since 2011 he is also the director of the
Cyber-Physical Systems group at the German Research Center for Artificial Intelligence (DFKI) in
Bremen. His research interests include the development and design of data structures and algo-
rithms with a focus on circuit and system design.

Contributors

Bernd Becker Institute of Computer Science, Albert-Ludwigs-Universitit
Freiburg, Freiburg im Breisgau, Germany

Raik Brinkmann OneSpin Solutions, Munich, Germany

Andreas Fiirtig University of Frankfurt, Frankfurt/Main, Germany
Lars Hedrich University of Frankfurt, Frankfurt/Main, Germany
Dave Kelf OneSpin Solutions, Munich, Germany

Wolfgang Kunz Department of Electrical and Computer Engineering, University
of Kaiserslautern, Kaiserslautern, Germany

Marta Kwiatkowska Department of Computer Science, University of Oxford,
Oxford, UK

Gethin Norman School of Computing Science, University of Glasgow, Glasgow,
UK

XV

Xvi Editors and Contributors
David Parker School of Computer Science, University of Birmingham,
Birmingham, UK

Christoph Scholl Institute of Computer Science, Albert-Ludwigs-Universitét
Freiburg, Freiburg im Breisgau, Germany

Dominik Stoffel Department of Electrical and Computer Engineering, University
of Kaiserslautern, Kaiserslautern, Germany

Carlos Villarraga Department of Electrical and Computer Engineering,
University of Kaiserslautern, Kaiserslautern, Germany

Ralf Wimmer Institute of Computer Science, Albert-Ludwigs-Universitit
Freiburg, Freiburg im Breisgau, Germany

Chapter 1
Formal Techniques for Verification
and Coverage Analysis of Analog Systems

Andreas Fiirtig and Lars Hedrich

1.1 Introduction

Besides the pure digital and software-related verification methodologies, analog and
mixed signal circuits and systems are also in strong focus of adding formal verification
into the verification flow. In fact, the validation demand can be higher than in pure
digital design because the system’s behavior due to the continuous nature of the
signals gives more freedom to signal processing. The main driving forces in IC
and embedded systems market are communication and automotive circuits. Both
demand for substantial analog parts coupled with digital parts. On top of that, these
mixed-signal systems are connected with sensors and actors to the physical world
in a control loop such that the overall system validation has to take the digital part,
the analog part, the sensors, and the physical world into account. The analog parts
(around 10-30% of the chip area) have fewer transistors (100—1000 for a block) and
may add up in tens to hundreds of blocks. Clearly, these analog blocks are nonlinear
dynamic circuits with the nonlinearity being a major property of the circuit.

The variety of analog circuits directly leads to a large variety of verification
methods—even in simulation-based approaches. There are a lot of simulators on
many levels of abstraction, starting from device simulators up to system-level design-
languages and simulators like SystemC-AMS [1] and some specialized simulation
algorithms e.g. for RF simulation [2], automatic behavioral model generation [3], or
reliability modeling and simulation [4].

Unfortunately the analog/continuous circuits do not have a nice Boolean abstrac-
tion layer, which paves the way for digital formal verification tools. Hence, the
available analog verification tools are more or less focused on the abstraction layer
they reside on. Most tools have big complexity issues keeping the size of verifiable

A. Fiirtig (X)) - L. Hedrich

University of Frankfurt, Frankfurt/Main, Germany
e-mail: fuertig@em.cs.uni-frankfurt.de

L. Hedrich

e-mail: hedrich@em.cs.uni-frankfurt.de

© Springer International Publishing AG 2018 1
R. Drechsler (ed.), Formal System Verification, DOI 10.1007/978-3-319-57685-5_1

2 A. Fiirtig and L. Hedrich

circuits small and hence adding more pressure to have dedicated tools for many
abstraction layers. Furthermore, this demands for cross abstraction-layer tools like
equivalence checking. We will present some ideas to formal verification on transistor
level and extend them to close the gap to higher level abstractions.

Another way of increasing the confidence into the designed analog circuitry is
the introduction of coverage measures. Depending on the type of coverage, one can
get a closed form, well defined, formal coverage definition accompanied by proper
algorithms. On the other end, there may be ad hoc methods with created tests from
experienced designers having all to be fullfilled to get 100% coverage. In this chapter,
we will describe and discuss some methods for analog coverage.

Coming to system level the picture turns into something slightly different. Here,
a long tradition of hybrid system formal verification methods exists, which now has
to be connected with the lower level circuitry. We will present some methods and
their applications and show a way to close the gap down to transistor level using a
chain of formal verification steps and a stack of abstracted behavioral models. We
will show, how a system-level formal verification could be applied on an example
consisting of a cyber-physical system.

This chapter begins with a state-of-the-art section, a description of the analog/-
continuous state space and its algorithmic handling. We will then discuss several
verification methods in Sect. 1.4 based on the analog state space, as well as an intro-
duction to an analog coverage methodology (see Sect. 1.5 ff.). Section 1.8 combines
all presented methods to apply formal verification to the system level.

1.2 State of the Art

As described in the other chapters of this book, formal verification of digital circuits
has a long tradition and is deeply integrated in design companies’ verification flow.
However, for analog circuits or continuous systems on system level a need for accu-
rate and fast verification methods becomes more important as cyber-physical systems
and Internet of things produces a lot of sensors, actors, and hence continuous-centric
designs.

In any case, the objective of formal verification is to mathematically prove proper-
ties of a system, usually at design time. It can be distinguished between reachability
analysis, model checking, and more specific equivalence checking. Model checking
is mainly used for formally verifying specified properties that in particular relate
to safety and liveness of a system. Equivalence checking, being able to prove the
equivalence of two implementations could be used to build a chain of proof from
lower level implementations up to abstract behavioral models. Reachability analysis
is the little friend of model checking, as it allows an easy straightforward way of a
safety proof. For hybrid systems on system level, this technique is used the most.

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 3

System Level

A first approach to move from discrete systems to continuous systems was based on
hybrid automata and eventually evolved in the tool HyTech [5]. The approach mainly
uses a set-based approach on linear or piecewise nonlinear models [6—8] in order to
compute reachable sets which can be checked for hitting a forbidden region.

Later, the tools for hybrid systems evolve introducing polyhedra as data structures
[9] and trying the first time to compute reachable sets of nonlinear electrical circuits.
These are circuits with low complexity enabling the manual piecewise modeling
of nonlinearities like a tunnel diode in an oscillation circuit. However, the piece-
wise technique can help to model switching analog circuits on an abstract level for
verification. Widely used examples are Sigma-Delta AD converter [10, 11].

The used underlying data structures and computation models began to broaden
from Petri nets [12] to interval [13], affine methods [14], zonotopes [15] to support
functions [16].

Transistor Level

However, to be more accurate on lower levels of abstraction one has to incorporate
the transistor which is really hard to model by piecewise-linear hybrid systems—a
today’s transistor model consists of hundreds of nonlinear equations. Additionally,
the Kirchhoff’s laws do not allow solving the nonlinear differential algebraic system
(DAE) for getting an explicit ordinary differential equation (ODE) description needed
by most hybrid-systems approaches. Consequently, some different methods evolve.
One approach extends affine arithmetics with a Newton iteration to solve nonlinear
equation systems [14]. However, this approach still needs some simplified transistor
models [17].

Other approaches try to abstract the exact nonlinear behavior by determining an
analog state transition graph using the original netlist and detailed BSIM transistor
models with simulator engines and full SPICE-accuracy [18-21].

Formal Languages

In [11], the authors propose an assertion-based verification flow based on PSL. Other
approaches extend CTL to be able to describe analog behavior and to check time
constraints [22, 23]. The latter can be driven down to transistor level in order to
ease usage by allowing the direct formulation of often used specifications, e.g., gain,
PSRR, slew rate, and input/output voltage ranges [24]. All these methods can be used
to model check the design under verification or at least enable an assertion-based
verification (ABV) by running in parallel with a simulation. This is a big advantage,
as it scales better with netlist size by not exploring the exponential growing state
space. The disadvantage is that the proving character will be lost. All these formal
language based approaches suffer hard to interpret results and the perennial “translate
specification into a formal language” problem.

Coverage metrics

One traditional—comparable to assertion-based verification—direction to system-
atically check analog circuits may be the full automatic characterization [25] based

4 A. Fiirtig and L. Hedrich

on formalized specifications using machine readable specifications [26] or formal
languages such as PSL [11]. However, the effort to setup these specifications is some-
times large and, even worse, they do not guarantee to find unknown bugs because
they rely on predefined input stimuli for each performance test case. With simulation
only, there still exist uncovered scenarios which may later pop up as a bug in the
field.

Direct formal verification tools like mentioned above will certainly help as it
can guarantee to find the problematic design flaws violating the specification. How-
ever, they often suffer from long runtimes, hard formulate specifications and hard to
interpret results.

A compromise could be the use of coverage metrics and coverage increasing
measures. The digital world has developed a lot of coverage metrics [27, 28] and
uses them successfully. Depending on the complexity of the device under verification
(DUV), the methods are more or less complete. The complete methods investigate,
for example, the finite-state machine (FSM) [29] and have some means to try to
restrict the simulation input stimuli to the relevant part of the state space (see SFSM
in [29]). The less complete methods (code coverage, specification coverage) use
measures to guide the verification to the most probable bug location for example by
systematically visiting each conditional branch in an HDL-description.

For analog circuits, a very low number of coverage investigating approaches
besides the above explained formal verification techniques exist. There are some
approaches stemming from the test community measuring and increasing the analog
fault coverage [30, 31]. However, they are not intended to find functional faults.
[32] tries also to increase the confidence in the functional verification using a high-
level functional model but without a systematic method to increase some underlying
measure. Two other approaches are built for hybrid systems [33, 34], suffering from
being able to handle strongly nonlinear analog circuits on transistor level.

In this chapter, we will give an overview to actual formal verification techniques
for analog circuits and systems which come up with some of the mentioned problems.
We will present a methodology to enable a cross-layer verification to close the formal
verification gap from transistor level up to system level.

1.3 State-Space Description

All techniques to verify analog circuits and systems formally have to deal with
the continuous state space spanned by energy-storing elements like capacitors and
inductors, or other physical states like position, velocity etc. Especially when reach-
ing system level these physical variables and states may be important. In general,
we can incorporate them and start with an implicit nonlinear first-order differential
algebraic equation (DAE) system

f(x(1), x(2),u(®)) =0 (1.1

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 5

with an input vector u(z) and the vector of the system variables x(¢) and its time
derivative x(¢). We always denote vectors in upright bold-face. For verification tasks,
an output variable y(¢) has to be identified. In general, this is done by defining an
output equation.

g(x(), y()) =0 (1.2)

In most cases, the output variable is a system variable x; (¢). In this case, g is a simple
selection function in terms of x(¢) and y(¢).

This equation system can be set up automatically by a modified nodal analysis
(MNA) on transistor level or manually for higher abstraction levels. As explained in
Sect. 1.2 many of the high-level tools use a system of ordinary differential equations
(ODEs).

% = f(x, u) (1.3)

Equation (1.1) could in general not be converted into this explicit ODE form (1.3).
In both cases, a state space with n; dimensions is spanned by the system variables
of the energy-storing elements x, extended by the n; input variables. For the ODE
case ny is equal to the number of variables n,, leading to an extended state space
dimension of ny; = ny + n;. In the DAE case, ny is less or equal than the number
of variables n, due to algebraic equations and/or linear-dependent state variables.
In most cases the number of algebraic equations is much larger than the number of
independent state variables ny, e.g., transistor-level circuits have around 40 times
more algebraic equations than differential equations, often hidden in the transistor
models.

For analog circuits with many parasitic energy-storing elements, the number of
dimensions n, can be further reduced. Many order reduction methods exist for lin-
ear or linearized systems, e.g., dominant pole [35] or Pade approximation [36]. In
the nonlinear case, advanced methods have to be used to extend a linearized order
reduction to the nonlinear state space [37]. However, both methods end up with a
reduced, much smaller state-space dimension n4+ which could be well estimated by
the number of wanted poles, often known by the analog designer. For the ease of
reading we will always use n,, even if we use an order reduction method resulting
in ng« states.

1.3.1 Solving a DAE System

Without loss of generality, we can assume that we can handle the following also for
ODE systems. The general working horse of an analog circuit designer is a transient
simulation. It has the highest accuracy. Mathematically, this transient simulation is
the solution of an initial value problem (IVP) defined by a given starting state xg, a
given input stimuli @(7) and the DAE systems:

6 A. Fiirtig and L. Hedrich

f(x(t),x(1),q(r)) =0

g(x(),y() =0 (1.4)
x(0) = xg

The solution X(), y(¢) defines a trajectory Ty, a¢) = {X(¢), y(¢)} through the state
space starting at Xg (see Fig. 1.2). DC and AC analysis are special simulation cases,
which can be covered by the transient analysis. Also harmonic balance, shooting
methods, or periodic steady-state methods are special simulation cases, mainly to save
simulation time. In principle, all validation results could be obtained by a transient
simulation. A validation scheme today requires a set of simulations (hence a set of
input stimuli @; (¢)) and calculates a set of trajectories Ty,). If a specification fails,
one of these trajectories will fail and will result in a counterexample.

1.3.2 Analog Transition System

Subsequently, the DAE system shall be transformed into a discrete state space model
M 75 as defined in Definition 1.1 by application of a trajectory-directed discretiza-
tion algorithm [38]:

discrete modeling

fFxx,u) =0 e A (1.5)

Definition 1.1 Analog Transition System (ATS)
For the ATS we define a five-tuple M rs = (X, R, Ly, T, L)) where

e X is a finite set of states of the system.

e R C ¥ x X is atotal transition relation, hence for every state 0 € X' there exists
a state o’ such that r = (o, 0’) € R.

e Ly : ¥ — R™ is a labeling function that labels each state with the vector of ny
variables containing the values of the state space variables and the inputs of the
DAE system.

e Ly : X — R™ is a labeling function that labels each state with the vector of n,
variables containing the values in this state of the inner variables x of the DAE
system.

e T : R — R is alabeling function that labels each transition r from o to ¢’ with
a real-valued positive or zero transition time that represents the time required for
the trajectory in the state space between these states.

e L), : X — R™ is alabeling function that labels each state with a vector of the n)
eigenvalues associated with the state.

Within the structure M rs, a path 7 beginning at state o is a sequence of states
T = 09,01,02,...,0, Withog =0 and r; ;| = (0;,0,4+1) € R for 0 <i < n. An
example of an ATS is shown in Fig. 1.1.

The discretization into an ATS is performed by using an extended simulator to
first compute a consistent starting state vector Xy, and second solve the DAE system

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 7

Fig. 1.1 Principle of an
ATS: The system consists of
states (denoted by numbers)
and the transitions between
those states. A transition
indicates changes in the input
to the system (dotted arrows)
and timed transitions. The
gray area marks one possible
path 7 from state 9 to state 1
through the ATS

>

for a given time step At and a constant input vector u = const (see Fig. 1.2left). The
resulting trajectory Ty a(r=cons: Will lead to a new state o; and define the relation
ri,j = (07, 0;) € R and a discrete flow vector:

AX,'J' =X; —X; (16)

Additionally, depending on the dimension of the reduced state space—remember,
an order reduction technique is used—an orthogonal base set is generated using the
Gram-Schmidt orthogonalization method. By addition/subtraction of the orthogonal
set and the initial starting point, new starting points for transient steps are calculated
for which in turn the orthogonal sets are constructed if not already existing.

For input dimension, this orthogonal base is also used. In that case, an input step
can be performed in reality leading to a legal change in the reduced extended state
space which is considered by introducing a relation with 7 = 0 time and oriented in
both directions (see Fig. 1.1).

The time step At and length of the orthogonal steps is calculated comparing the
length and angle of the system variables’ derivatives X in that region. The result should
be a discretization such that the system’s state space is divided parallel and orthogonal
to the trajectories of the system dynamics into geometric objects representing areas
of nearly homogeneous behavior.

The flow vectors Ax; ; also define the transition relation of the geometric objects
and the transition time. The DC operating points of the circuit are modeled with self-
transitions to indicate that the system can stay here for any time period when the inputs
are held constant. Accordingly, these self- transitions have no timing information (see
Fig. 1.1, vertices 1, 5, and 9). For a detailed discussion on the soundness and accuracy
of the discretization method, please refer to [38]. In order to calculate the eigenvalues
of each state during the discretization process, the system’s dynamics are linearized
in the specific state and then transformed into the frequency domain using Laplace
transformation. The number of nonzero entries in Kronecker’s canonical form of the

8 A. Fiirtig and L. Hedrich

To Axi.j-,

Fig. 1.2 Discretization of a phase portrait (flow): Left The flow and a discretization step starting
from a point in the state space X; and following a trajectory Ty i(r)=cons:- Right The resulting
discretization based on orthogonal sampling and following the trajectories. Each connection element
(arrow) represents both, the discrete flow vector Ax; ; and the relation r; ;

transformed capacitance matrix of the frequency domain representation corresponds
to the number n), of eigenvalues in the generalized eigenvalue problem. For a detailed
description of the eigenvalue decomposition, please refer to [37].

Finally, the transition system is mapped to the ATS, considering each hyper cell
as a vertex of the graph with directed edges defined by the transition relation r; with
the corresponding transition times 7;. Each vertex of the graph is labeled with the
state space variable values at the center of the corresponding geometric object Ly,
the full solution vector of x at the point Lx and the eigenvalues L.

While the complexity of the state-space modeling process is exponential in the
number of energy-storing elements and inputs of a circuit, relevant analog circuit
blocks usually do not exceed a system order of 8, which can be handled well by this
approach. Moreover, by application of an eigenvalue-based model order reduction

+ 2.0
1.5 H‘\
. t 8 T~
nin nou 1.0
C
>
0.5]
0.0
0.0 05 1.0 15 20

V (nin)

Fig. 1.3 Full discretization of an inverter circuit (left) and the resulting two-dimensional full M7
system. The DC operating points are shown in blue

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 9

of the DAE system [39], circuits with more than 200 parasitic capacitances can be
handled. This is achieved by reducing the state space to the dominant state variables
of a system and discarding the parasitic ones which will not affect the system behavior
above a defined threshold in a given frequency range (Fig. 1.3).

The described modeling process is implemented as an extension to the indus-
trial in-house simulator as well as using the public domain analog simulator
GNUCAP [40].

1.4 Verification Methodology

A vast number of verification methods exist for analog circuits and systems depending
on the type of circuits and their specifications. However, most of them do not include
formal methods. In contrast, Fig. 1.4 introduces a flow of a verification methodology
using different formal tools for the verification task in analog design. Starting from a
circuit and system description on different abstraction levels, a discretization method
calculates an ATS, or a direct equivalence-checking method calculates the difference
between two implementations [37]. On the ATS, a model-checking algorithm can
prove the properties of the given ASL, which is discussed later in this section. A
coverage analysis and optimization method can calculate a coverage for given vali-
dation stimuli or optimize them to increase the coverage. With stimuli that assure a
high coverage another equivalence checking by bi-simulation could also be possible.
In the following, we will discuss some methods in more detail.

Properties ﬁ

f) Discrete State Spz ()
iscrete State Space | Property Checking
Modeling
A-nal(-)g 5 Hyperbox State :ASL i
stem R =
Y etl;‘:;ﬁ“ |5 |, Counter Example o
- Stimulus = &
Behavioral (ATS) @ 5
Description]
Simulator C <5
ulato | ,| Coverage | Coverage o 3
Backend Analysis) S
: R and =3
Transistor Optimi- g El
Netlist Direct Equivalence zation q 3 2
. Stimulus 32
Checking

\ J

Fig. 1.4 Overview of a possible formal verification methodology

10 A. Fiirtig and L. Hedrich

1.4.1 Model Checking

Once the ATS graph has been calculated, model-checking techniques could be applied
to the resulting discrete model of our analog system. In fact, the discrete graph has
some other semantics compared to the sequential digital circuit’s case. As seen in
Definition 1.1 (and also in Fig. 1.1), timing information 7 are available on each edge
and information about the states’ and other variables’ values are available in each
node. Both are important to verify analog properties as we will see later.

The first step to reason about continuous behavior is to introduce a comparison
with a real number. In the ATS case, all variables stored as real numbers in the
labels Ly, Lx, L) are possible candidates for that comparison x; < const. Using that
comparison, several sets of states could be defined as proposed in various papers [11,
22, 23, 41], enabling specifications over continuous values. To enable specifications
over a continuous time, e.g., slew rate, settling time etc., a timed version of CTL
or PSL should be used. A big step forward was TCTL [42], which was extended or
combined with continuous values properties in the papers mentioned above. With
all these languages available, model checking for more or less simple CTL/PSL like
performance descriptions could be carried out. For example, a simple safety property
avoiding bad behavior could be expressed as follows:

M= AG (= (Vour >5)) (1.7)

This formula demands that an output voltage V,,,, does never exceed 5 V. In this
simple case, a reachability analysis could also proof that formula.

1.4.2 Analog Specification Language (ASL)

For the general analog circuit designer on block and transistor level, the handling of
PSL/CTL expressions is demanding. Fortunately, the number of different specifica-
tions for analog circuits on lower levels is limited. However, it is very hard to express
these specifications (like gain, bandwidth, output swing, etc.) directly using PSL,
CTL, or even CTL-AT. A more or less intermediate layer to hide the CTL details and
to provide some macro calculations could help here. We proposed a property spec-
ification language on low abstraction level called Analog Specification Language
(ASL) [43] based on the discrete state space (ATS) described in Sect. 1.3. On one
hand, it enables the easy description of specifications like offset, gain, CMRR, PSRR,
slew rate, overshoot, startup time (for oscillators, charge pumps), general oscillation
properties like frequency, attractors, steady states, VCO input sensitivities, and some
more. On the other hand, this language comes with extensions to CTL/PSL which
allows a direct evaluation of analog properties like gain, time derivatives or time
constants and stability properties for oscillations.

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 11

1.4.3 ASL-Example: Verification of Oscillation and
Oscillator Voltage Sensitivity

In the following, we will exemplarily show how to specify complex analog properties
with the Analog Specification Language (ASL), using an example taken from [43].
For voltage-controlled oscillator (VCO) circuits, we want to verify properties of the
oscillation and the voltage sensitivity. In the time domain, the oscillation is repre-
sented by a periodic behavior of a circuit variable as shown in Fig. 1.5a. Transferred
to the continuous state space, a cyclic path between at least two state-space variables
can be identified as illustrated in Fig. 1.5b. This results in a set of states connected
to a cycle in the discretized graph structure as shown in Fig. 1.5¢. The simple check
whether there is an oscillation within a defined oscillation period range between

%spec_min and $spec_max in the considered circuit model can be formulated in
ASL as follows:

assign(%oscillation_period_min,
assign (%oscillation_period_max,

for
for

%oscillation_period_min assert

min)
max)

[

oscillation;
oscillation;

>= %spec_min];
<=

$oscillation_period_max assert

[

$spec_max];

For verifying the sensitivity relation between the control voltage and the oscilla-
tion frequency, we constrain the input voltage to different values. At each of these
input voltages the oscillation frequency is determined. Comparing each two oscil-
lation frequencies of consecutive input values to their input voltage difference, the
sensitivity

0(Oscillation Frequency)
v

Kvco = (1.8)

(b)

- ~

@
|

| Vout

©

Vout

Vout

L

Fig. 1.5 Oscillation in the time domain (a), in the continuous state space (b), and in the discrete

graph structure (c¢)

L Oscillation period

k

J

FAN

»X

¥,

12 A. Fiirtig and L. Hedrich

can be determined. In the following methodology, only two different input values
are considered for the purpose of clarity. Considering more than two input values,
the deviation between the calculated local factors Ky ¢ gives information about the
linearity of the VCO. At first, the constrained input voltage areas in state space have
to be assigned to set variables as follows:

inp_set_1 =
value (V_in) [$inp_voltage_1-0.01, %$inp_voltage_1
+0.0117;

inp_voltage_2 = %$inp_voltage_1 + %$inp_step;
inp_set_2 =

value (V_in) [$inp_voltage_2-0.01, %$inp_voltage_2
+0.0117];

On the selected state-space slices, oscillation periods are determined. Although the
average oscillation period for a given input voltage is considered, this approach is
also valid for the minimum or maximum oscillation period:

osci_set_1 = on inp_set_1
assign (%$osci_period_1, average) oscillation;

osci_set_2 = on inp_set_2
assign (%osci_period_2, average) oscillation;

Subsequently, the amount of the oscillation frequency change and the input voltage
change are determined:

frequency_delta =
(1/%o0osci_period_2) - (1l/%osci_period_1);

input_delta =
%$inp_voltage_2 - %$inp_voltage_1;

In the final step, we assert for the sensitivity property calculated according to Eq. 1.8,
that the relative error is within a percental range specified by the number variable
$tolerance around the specified value $x_vco:

for %$frequency_delta / %$input_delta
assert [%K_VCO-%tolerance/2, %K_VCO+%$tolerance/2];

As shown with this example, one is able to formulate complex ASL statements
in time domain to check some frequency domain or mixed domain properties. For
more details of ASL we refer to [37].

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 13

1.4.4 Model Checking of an SRAM Cell

As an example for model checking, we want to prove properties of a static RAM cell
(SRAM). It has a nonlinear transfer and storage characteristic, where it is important
to be non sensitive with respect to external disturbances, like adjacent capacitively
coupled wires or particle strikes bringing a charge into the storing SRAM cell. A
schematic of an SRAM cell is shown in Fig. 1.6. The schematic contains also an
aggressor current source modeling the influence of an aggressor line or a particle
strike.

With the discretization approach of Sect. 1.3, two state variables (node voltages
of nodes “OUTP” and “OUTN”) and one input variable (the aggressor current) span
a 3-dimensional extended state space. In Fig. 1.7, two sub planes for /44, = 0 and
Iager = 0.0025 are shown. The stable fix points for storing a “1” or a “0” can be
clearly identified in the upper left and lower right corner of the left figure. Inspecting
the right figure, for a large aggressor current /44,,, only one fix point is left over.
Hence, a disturbance following a change of the stored value in the SRAM cell could
be assumed.

To formalize the process of checking the correct behavior, the following expres-
sions could be used, which could also be implemented in ASL:

high = V(OUTP) > 1.7TAV(OUTN) < 1.3 A Inge =0
low = V(OUTP) <13 AV(OUTN) > 1.7 A lgger =0
Bytice = laggr > —0.0013 A Lger < 0.0013 (1.9)
Duppr = Dstice N EF (high)
D rhit = Pappr N low;
M = AG (=P an))

Fig. 1.6 Schematic of an WL
SRAM cell with an
aggressor current source

BL
=
L+
BL

OuUTP

OUTN lagg

14 A. Fiirtig and L. Hedrich

25 25
2.0 2.0
15 1.5
g g
2 10 > 1.0
<) o
> >
0.5 0.5
0.0 0.0
-0.5 -0.5
05 00 05 10 15 20 25 05 00 05 10 15 20 25
V (OUTP) V (OUTP)

Fig. 1.7 SRAM: Discretized state space. The shown dimensions are the node voltages of nodes
“OUTP” and “OUTN?”. Left cut out plane at /pgo, = 0. Right cut out plane at /5gg, = 0.0025

Fig. 1.8 Counterexample in
the 3-dimensional state space
for a bit flip with an

appropriate aggressor 037

current. The trajectory in the t

state space runs from E o2t

V(OUTN) = q

0V, V(OUTP) =2V to s

V(OUTN) = g

2V, V(OUTP) =0V, lor
indicating the bit flip 0.0 1 start

The model-checking process of these equations succeeds, indicating that aggres-
sor currents between —0.0013 < I,g, < 0.0013 are not able to flip the bit in the
given SRAM cell. However, if we investigate in larger aggressor currents by increas-
ing the D¢, 10 —0.005 < I,gr < 0.005 then the above formula (Eq. 1.9) fails. A
counterexample could be generated leading to the trajectory shown in Fig. 1.8.

Simulating the counterexample with a standard analog simulator confirms the
failure resulting from the increased aggressor current /44, (see Fig.1.9).

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 15

2.5 ‘ ‘ 0.004
V(OUTP) ——
oL V(QUTN) oo
"aggr
15 |- .
S 1r o 5
0.5 | .
P R —
-0.5 1 1 1 1 1 1 1 1 -0.004
0 2x10° 4x10° 6x10° 8x10° 1x10% 1.2x10% 1.4x10® 1.6x10® 1.8x10®

t/s

Fig.1.9 Simulationresult of the generated counterexample (the /445, stimulus), clearly uncovering
the bit flip

1.5 State Space Coverage

In this section, we introduce a state-space coverage metric and an algorithmic con-
cept to maximize the metric by generating input stimuli based on path planning
information obtained from an ATS.

We define a state space coverage (as the ratio between visited states during a
simulation run and the sum of all reachable states X'y of a given circuit. In our case,
the reachable states X' are computed from all states X visited by the state-space
discretization described in the previous chapter using a simple set based reachability
algorithm. Our goal is to find a coverage measure, being able to compute for any given
transient simulation response of a simulator a measure with the following properties:

e A high coverage value implies a high probability that all possible faults of the
circuits could be detected.

e A high coverage value shows the designer that the created circuit was tested with
a sufficient amount of test data.

e The measure has to be monotonic in the number of visited states: If more states
are visited, the measure should increase.

1.5.1 State-Space Coverage Calculation

To calculate a coverage for a transient simulation result, we store the previously
defined Analog Transition System Mg in a suitable space-partitioning data struc-
ture in form of a k-d tree [44]. The number of nodes in this tree equals the number
of states in the system.

In a first straightforward approach, one can compute for each point s; of a sim-
ulation response S the nearest neighbor using the k-d tree data structure. Then, C

16 A. Fiirtig and L. Hedrich

L 1 o020 _]
¥ ppomoomoOoOoog o DDDDDBB: - o
Oooo
neoooooo R 40| [CC258Coom 11
ESDDDDDD DDDDDB gopooooom :EEDDD
oneOooOoO0O0 ooooooon
ospfmoooBn ooooon | 015 goom@EO0000
ooooooog pooo ooooo
oooooo oooooOEmEN
oopoooofan (m| goomn
gooonn gooooomEE N
mooooood oo ooooo
gpoooono oooooOmE@N
opopooooon oo ooooo
o goooomnf oom]
$0,0,M 0000000 R - - D oop] B BB e mgmOOOODO
cjooooooe o g oEonn DDDSI Eoooon
oo
noee okt edooono0 oooom HEEEERE
gooooon om EEREERO
oooooeooo oo omno ooooO
ooooooo sEmEgEOOO
O.OS»DDDDD DDDDDDDDBA 0.05/ M IDDDSSSES~
onoooood moo0
gooooooogn .DDDDDDSSS
DDDDDDDDSS DDDDSSSDDD
gooooooo oooo
0.00 oooooooo0b | ool DDDDHDDDDSA
[oo monOo0po0o0o00n ‘-_-_LLLIDD‘DDE‘]DD‘DDD:
—0.05 0.00 0.05 0.10 0.15 0.20 -0.05 0.00 0.05 0.10 0.15 0.20

2.
5
3.
=

Fig. 1.10 Different methods for selecting the covered states of a simulation result. Green points
indicating wanted points with a path finding algorithm (described more in detail in Sect. 1.5.3),
red crosses the corresponding correct transient simulation result points, black boxes are marked as
covered using nearest neighbor (left) or Euclidean distance (right)

is the set of states in X' which were covered by the simulation response S. Since
every point s; has a nearest neighbor, the distance is not considered (cf. Fig. 1.10).
Hence, if a discretization only consists of very few states, each point of a simulation
response will lead to a covered state, although the state is very far off. Obviously,
this simple approach does not calculate a smooth and adequate measure.

A better approach would be to use an Euclidean distance to cover all states in
a given region around the transient simulation result (cf. Fig. 1.10), eliminating the
nearest neighbor problems above mentioned. Additionally, it will allow having a mea-
sure independent of the sampling distance in the state space as well as the sampling
distance of the transient simulation result.

However, a maximum distance must be chosen adequately, since using a too large
distance could mark states with different behavior compared to the transient trajectory
under investigation, while a too small distance will underestimate the set of covered
states. A good starting point for the distance is to select the median distance between
two neighbor states in the discrete state space or to use a percentage of the diameter
of the reachable state space. Here, we conservatively take the median length of all
transitions R inside the AT S.

Consequently, we are now able to compute the coverage using the cardinality of
the elements in the set C and the number of states in the reachable discrete state
space X'g:

(1l
| 2R

(1.10)

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 17

Equation (1.10) indicates two ways of enhancing the coverage (: increasing the
number of covered states |C| by running simulations until a desired coverage measure
is reached or decreasing the number of states | X'g| by analyzing the whole analog
state space more in detail (as described in Sect. 1.6).

1.5.2 Coverage Maximization Algorithm

Since one single transient simulation response covers only a small amount of states,
we introduce an algorithm to cover all reachable states of the AT S. For this, we
enhance the AT S with a labeling function w : ¥ — N{ that labels each state with
a weight, indicating how often this state was already visited by the algorithm. Com-
bined with the total transition relation R, this information eases the path finding
algorithms which will be introduced subsequently.

In each step, the algorithm selects a state with minimum weight and calculates a
path using an A* search. Selecting longest paths with minimum cost maximizes the
possibility to cover the most unvisited points at once. While traversing the graph, we
are able to create an input stimulus for a simulation. The resulting transient response
is now used to calculate a coverage value (for this single stimulus. In the last step,
the weights of the covered states are updated for the next iteration step. By increasing
the node weight every time a state is covered by a simulation response, this node

Discrete Analog i
Transition System _ I
HERT Path searchi
;?!!-
il
|i§§!i

V1 nin 0 I(

I Coverage and i 0.16

H + 2.534221e-07 0.14
weight update oo oo . .

+ 253237505 0.12 Input stimulus creation
+ 2.6e-05 0.1 . .
+ 2.625555e-05 0.08 and S|mU|at|0n
+ 2.659432e-05 0.06
+ 3.722322e-05 0.06

Fig. 1.11 Coverage maximization algorithm based on discrete state space modeling

18 A. Fiirtig and L. Hedrich

is avoided in the future path finding attempt. The coverage maximization algorithm
using information from the discrete state space model is illustrated in Fig. 1.11.

1.5.3 Path Planning

The creation of appropriate input stimuli is crucial for the method described in the
previous section. By visiting each state in the AT S in a single stimulus, a vast number
of very small simulations is needed. As a result, the startup time of the simulation
software will dominate the simulation time. Consequently, a path planning algorithm
is needed to create simulation input stimuli which meet the following characteristics:

e The resulting path should avoid already visited states.

e It should consist of as many unvisited states in the AT S as possible.

e The length of the path regarding covered states should be maximized with respect
to the criteria described before.

An approach to satisfy these criteria exists in [21], where a stimulus is created by
traversing the whole graph with one single path. With larger circuit size (resulting
in more state-space dimensions and more state-space points), however, a full input
stimulus created using this method consists of significantly more points than the
AT S itself, thus resulting in a very long runtime of the simulation. The constructed
single stimulus by that method additionally performs badly in terms of the achieved
state space coverage as we can see in the small low-pass example at the end of this
section.

0.2
) R
nin nout 0-1
[
in out
c g 0.0
7 ¢l] s
N - 0.1
-0.2
-0.2 -0.1 0.0 0.1 0.2
V (nin)

Fig.1.12 State space coverage example: Simple low-pass circuit (/eft) and the resulting ATS system
after a reachability analysis

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems

19

Table 1.1 Results of the presented path planning algorithm. The sum of data points is the length
of all created input stimuli for the simulation

Path planning Number of Sum of data Resulting Runtime
method simulations points coverage (%)

Presented 4 895 100.00 5.8s
Single 1 3213 97.33 12.1s

We now introduce a weight-based path planning algorithm. Let 7 be a set of states
describing the path from a starting to a target state. The length |7| is the number of
states inside the path. Since every state has a weight w,, the weight of a path is
wr = Xl'w,,. Additionally, the set X pc is a set of DC operation points of the AT'S.

We now randomly choose an unvisited state o, indicated by its weight w, = 0
and compute iteratively all paths, beginning in the set of DC operating points. To
increase the number of visited states, additionally all paths from the target state back
to a DC operating point are searched. If a path exists, we can start again to another
randomly chosen point, allowing the possibility of concatenating the resulting paths.
To avoid very long paths, the length of the resulting path is limited by the number of
unvisited states in the whole system.

The results of the path planning algorithm described in this section can be found
in Table 1.1. The algorithm was used with an ATS created from a simple low-pass
circuit (see Fig. 1.12), which consists of 650 states. Even with this very basic and
simple analog circuit, the number of data points of the generated simulator stimuli
and the simulation time are much lower as for the former single method. As we will
see later on, the speedup is much bigger in analog circuits with higher complexity.

Since this algorithm tries to reach every single state in the state space and due to
the limited path length, the total number of simulations, and the resulting runtime
are determined by the size of the inspected reachable state set. With increasing
complexity of the investigated circuits, it is furthermore not possible to reach high
coverage measures (in a reasonable computation time and with short overall input
stimuli length. Hence, the number of states to inspect must be reduced, which will
be described in the next section.

1.6) State-Space Coverage

As mentioned in the previous section, trying to visit every single reachable state in an
analog circuit might not make sense. To reduce the number of states to cover, while
maintaining a high probability to find all bugs—which translates in visiting only
important states—we have to utilize further system characteristics represented in the
AT S. Therefore, we are segmenting the discrete state space to regions with uniform
(linear) behavior which only needs one simulation trajectory through this region to

20 A. Fiirtig and L. Hedrich

Dynamic Region (D) Linear Region (L)

Analysis Result (1)

1.0 r
0.5 0.5 F
0.0 + 0.0 }
-0.5 | —-05

-1.0 |

=15 7\

-15 -1.0 —-0.5 0.0 0.5 1.0 15 -15 -1.0 -0.5 0.0 0.5 1.0 15

Fig. 1.13 State-space analysis steps, from top left to bottom right: Dynamic region (D) detection,
linear region (L) detection, border region (B) detection, interesting region (/) detection results. The
last diagram (/) visualizes the resulting interesting states (red color w, = 0)

ensure the correctness of the implementation. By contrast, as analog systems also
exhibit nonlinear parts with high dynamic (such as limited output voltage swings),
these regions need to be thoroughly visited under all circumstances as the probability
for faulty behavior in these nonlinear regions is much higher than in uniform linear
regions.

Hence, in these regions, every state should be covered to detect possible problems
in the implementation. For distinguishing uniform linear from nonlinear nonuniform
regions, the eigenvalues captured in the states of the AT S are used. Regions with
numerically similar eigenvalues are detected and marked as uniform. Additionally,
border regions and the direct neighborhood of a DC operation point have to be
covered, because the probability of errors at borders is high and DC points are
mandatory to visit.

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 21

(a) (b)

5. outiny

60 @5 18 15 20 25 30 o8 Bs L0 15 8 2% 30 oo 6% 186 15 20 35 30

Fig. 1.14 Results of the \ state-space analysis of the level-shifter circuit: a shows the reachable
set in the state space. The yellow points in (b) show interesting states to be covered (i.e. the X set),
indicated by w, = 0 based on the interest value /, shown in (c). Red in (d) marks areas with high
dynamic, based on the eigenvalue in (e). f shows border regions. For visualization purposes, (b—f)
are plotted for the plane V1 = 0.0V

To compute the) state-space coverage, four different coverage value vectors have
to be computed:

e Linear regions of the system are detected using the eigenvalues. Each state o in
the system has a list of ancestors and successor states. L, is set to 1 if one of
the neighboring states has a significantly (] - | > 50%) different eigenvalue than
o, otherwise it is set to 0.

e The median of all eigenvalues of the whole AT S is computed, indicating the basic
dynamic level of the analog circuit. D, is then the absolute difference to the median
value for each state o € X'i. All values are normalized to [0..1].

e To compute the states in the border region of the reachable set, the convex hull
conv(Xg) of all reachable states of the circuit is computed using the approach
from [45]. B, is set to 1 if the state o is located on the edges of the resulting
polytope, otherwise it is set to 0.

e For each DC operating point, the direct neighborhood is computed, using the k-d
tree described before. O, is set to 1 if the state o lies in the neighborhood of the
DC operating point or is the state itself.

22 A. Fiirtig and L. Hedrich

For illustration, Fig. 1.13 visualizes the result of the state-space analysis for a
Schmitt trigger circuit. As every step of the analysis indicates possible interesting
states of the full AT S system, the region of interest is formed by the nonzero entries
in I defined as (Fig. 1.14):

I=L+D+B+0 (1.11)

This information can now be integrated in the coverage calculation algorithm pre-
sented in Sect. 1.5. For this purpose, each state is initialized with a node weight which
is determined by the corresponding region of interest factor. The initial weight for

each state is defined as
if 1, >1¢
W, = [0’ Hlo =t (1.12)

1, otherwise.

where ¢ is a given threshold. All states with a low weight! are now preferred by the
path finding algorithm. States with a higher weight are not removed from the path
planning algorithm, so that there is still a small possibility that a simulation covers
this state. With these weights, we can define a reduced set Xy of interesting state
space points based on the reachable set Xg:

S\ = {0 € Zglw, =0} (1.13)

The A state space coverage can now be defined as the number of visited states
divided by the number of states in the reduced set X'y, where in the numerator only
states are counted which belong to that reduced set Xy:

l{o € Clo € X)}

= 1.14
O BN (1.14)

1.7 Coverage Analysis and Optimization Results

For the experiments, we have used 6 analog transistor-level circuits:

A simple RC low-pass filter,

a Schmitt trigger circuit,

an active band-pass circuit (see Fig. 1.16 for a schematic),

a level-shifter circuit,

a log domain filter,

and an industrial gm-C low-pass filter (see Fig. 1.15 for a schematic).

TA low weight (w, = 0) indicates an interesting state inside the ATS. The weight is set to zero,
because this can be directly be used as the initial value for the labeling function w, which indicates
how often this state was covered before or not, which is used by the path planning algorithm
presented in Sect. 1.5.3.

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 23

|
OTA4 |
| l uimZ . uoulZ
Input-Transconductor ' —?_ Biquad i
Fig. 1.15 Schematic of the gm-C filter circuit
vdd
RR5
O
1 T -
- c2
[j Vss
da
MP3 MP4
in
RR1 DL
B MP5
—cC1 RR3 RR4 = output
« K ——
" GND
jp MNL MmNzl in+
w 5 7!
MN7 MN6
MN
Vss

Fig. 1.16 Schematic of the active RC band-pass circuit using a miller-compensated operational
amplifier

Some circuit statistics and discretization results of the circuits are shown in
Table 1.2. All used transistors are MOS-transistors from a 180 nm PTM technology
and are simulated/verified with a full BSIM3v3-model and full accuracy. The exper-
iments are carried out on a 3.4 GHz Dual-Core machine. The simulations of the input
stimuli for all circuits except the gm-C filter are performed with the SPICE-simulator
GNUCAP. The gm-C filter is discretized and simulated with an industrial in-house
simulator which is somewhat faster. However, due to the full SPICE-accuracy the
results are very accurate. The third and the fourth column of Table 1.2 gives the num-
ber of states in the discretized reachable set and reduced reachable set, respectively.

24 A. Fiirtig and L. Hedrich

Table 1.2 Statistics of applied analog circuits on transistor level

Analog circuit Transistors State space States in States in \
dimensions reachable set reduced set | Xy |
| Xrl
RC low-pass filter| 0 2 861 227
Schmitt trigger 10 2 1903 356
Band-pass filter 8 3 5660 1948
Level shifter 6 3 1081 641
log domain filter |13 2 2526 394
gm-C filter 69 3 344 239

One can notice, that for the linear circuits (RC low-pass, band-pass), the reduction
factor is—as expected—much larger than for the nonlinear circuits.

In Table 1.3, we compare the path-planning algorithm from Sect. 1.5.3 based on
the A\ coverage metric (see Eq.1.14, named A-Cov.) with two other approaches.
The simple path planning algorithm is based on the standard coverage metric (see
Eq.1.10) and, in general, has a larger number of states to visit. Hence, we expect
longer simulation times and lower coverage compared to the A-Coverage method,
which is in general true for all examples. The third method is called single and
represents the input stimuli generation algorithm from [21] which tries also to visit
all reachable states but does not use any underlying coverage guided path-planning
algorithm.

The three main columns in Table 1.3 contain the results for three test cases: the
first column (Coverage > 50%) is a run where the generation of further input stimuli
is stopped when 50% coverage is reached. The second column (Coverage > 75%)
contains the results if the algorithms are stopped at 75%. For both columns, the
single algorithm has no results, as we cannot interrupt the algorithm at the given
percentages. The third main column contains the results for a full run, including the
reached coverage after termination of the algorithms and the number of input stimuli
(where each stimulus is run in a single simulation) to get there and finally the runtime
of the algorithm in seconds.

In all three columns and for all circuits, the A\-Coverage methodology has the
shortest runtimes and highest coverage. On average, the A-Coverage method is 5.8
times faster than the simple methodology and 5.4 times faster than the single method.
The increase in coverage is on average 7.9% compared to the simple and 18.8%
compared to the single method.

For bigger circuits, no algorithm reaches 100% coverage due to the over-approxi-
mating reachable set and due to discretization errors. In other words, there exist some
points in the set X'x and also in X'y which are assumed to be reachable. However, if
one tries to reach that state with a calculated input stimulus, the circuit will eventually
not be able to get into that state. We use a randomized correction algorithm to finally

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 25

Table 1.3 Results of the proposed coverage calculation algorithm. simple is the described path-
planning algorithm on the full state space, A-Cov. is the proposed path-planning algorithm with
underlying \ state-space coverage metric, and single is the path planning algorithm from [21]

Analog |Method | Coverage > 50% | Coverage > 75% | Overall Coverage in %
Circuit
#Sim. |Runtime |# Sim. |Runtime | Coverage |# Sim. |Runtime

Schmitt | simple |3 98.96 5 13406 | ¢ 87.06 | 17 215.83
trigger

A-Cov. |1 5.62 2 8.16 ¢ 91.40 3 10.79

single 1 19.29 1 19.29 ¢ 3032 1 19.29
Band- simple |6 74.87 15 12495 | ¢ 83.06 |173 556.86
pass
filter

A-Cov. |1 31.08 6 97.37 ¢\ 8899 | 18 164.75

single 1 388.96 |- - ¢ 6259 1 388.96
Level simple | — - - - ¢ 4391 9 81.46
shifter

A-Cov. |1 12.81 - - G 72.21 6 27.97

single 1 266.24 |- - ¢ 66.39 1 266.24
log simple |1 1.91 2 2.15 ¢ 100.00 7 3.23
domain
filter

A-Cov. |1 0.40 1 0.40 ¢x 100.00 4 1.66

single 1 16.65 1 16.65 ¢ 100.00 1 16.65
gm-C simple |2 0.58 7 2.98 ¢ 7657 8 3.98
filter

A-Cov. |1 0.47 3 1.18 ¢\ 85.17 4 1.92

single 1 8.59 - - ¢ 65.71 1 8.59

hit that point. After some tries this algorithm will stop, leaving behind some states
as unvisited. Hence, the given coverages in Table 1.3 would probably be closer to
100%, if we knew the exact reachable set and if we were able to find all exact stimuli
to all states in that set.

1.7.1 Detailed Case Study of a Level-Shifter Circuit

For further insights, we now elaborate on the results from the level-shifter. In
Fig. 1.14a, we see the discretized reachable state space spanned by the input V'1
and the state variables nout and Xls.outinv. The red plane is selected and shown in
the other five 2-D plots. Figure 1.14e shows the absolute value of the first eigenvalue.
Calculated from these eigenvalues, Fig. 1.14d displays the areas with dynamic behav-
ior resulting in D (see Sec. 1.5). Combining Fig. 1.14d and the states to visit from

26 A. Fiirtig and L. Hedrich

3.5 T T T T T T
v(nin)
3 v(nout) 1
v(fail) ——
2.5 - -
2+ -
>
S 15f .
1 -
0.5 | -
0
0.5 ! ! ! ! ! !
0 1le-08 2e-08 3e-08 4e-08 5e-08 6e-08 7e-08
t/s

Fig. 1.17 Simulation of the level-shifter circuit using a manually generated straightforward input
stimulus v(nin). v(fail) is high, if the logic output level (>80% =1, <20% =0) does not coincide
with the logic input level for more than 50 ns. Here, no fail signal appears

the border calculation in Fig. 1.14f results in the overall selection function according
to Eq. (1.12) in Fig. 1.14c. Mapping that back to a discrete decision, we end in the
“to be covered” set X'\ marked yellow in Fig. 1.14b. For all other V1 planes in the
3-D state space similar pictures exist, resulting in an overall “to be covered” set X'y,
concentrating on the nonlinear and border regions of the level-shifter circuit. With
this information, input stimuli with a total A\-Coverage of () = 72.21% could be
generated by the proposed algorithm.

Assume now that we test only with some straightforward input stimuli such as the
one shown in Fig. 1.17 as v(nin). For a simple and reliable investigation we attached
a monitor circuit to the level shifter, which sends a fail signal if the input and the
output of the level shifter stay at opposite logic values for more than 50 ns.

The zero fail signal suggests the correct function of the circuit. Manual inspection
will also suggest that the delay is in expected bounds and that the logic levels are
reached in a proper manner. A designer could conclude that the circuit has a delay of
about 25ns and will function correctly. However, if the described A-Coverage metric
is used, we will first see, that the used input stimulus of Fig. 1.17 only has {, = 13.9%
coverage, and secondly that the generated stimuli with ¢, = 72.21% coverage will
uncover a bug shown in Fig. 1.18. The latter figure shows the results from a generated
stimulus where the fail signal does not disappear for more than 50ns and furthermore
will keep the level-shifter in a faulty state. Consequently, this example shows that
usage of the \ state space coverage method can help to systematically find unknown
bugs in analog circuits.

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 27

1.8 T T T T T
16k v(nin) N
: v(nout)

1.4 - v(fail) ——— -

1.2 —

1 -

0.8 [~ -1

u/v

0.6 [~ —

0.4 jJ .

0.2 = -1

o ,
! [
02 I I I I I
0 5e-07 1e-06 1.5e-06 2e-06 2.5e-06 3e-06

t/s

Fig. 1.18 Generated input stimulus using the A state coverage path finding algorithm showing a
lasting fail state, which is a bug in the implementation of the level-shifter, identified by the proposed
approach

1.8 System-Level Verification

In order to bring formal verification of analog circuits and systems up to system level,
we have some options:

e Use hybrid system level verification tools to analyze and verify the system-level
models.

e Use analog verification tools with abstracted behavioral models. Then partly
replace the behavioral models or equations with circuit implementations and repeat
trying to check the correctness.

However, the latter approach will stop at a certain abstraction level due to complexity
issues. The first approach is even not able to go down the hierarchy. To further close
the gap between system level and transistor level we can use the following strategies.

e Compare the models on system level using equivalence checking with the lower
level circuits and systems.

e Use coverage analysis to generate stimuli on lower level to also compare behavioral
models to the circuit level. Use these stimuli on any level to check correctness.

Here, we want to give an instructive example for the system level and explain
some of the options mentioned above. We use a model of a robot which follows
a line on the ground (see Fig. 1.19). The most compact abstraction results in three
explicit ordinary differential equations (ODEs) which can be expressed in MATLAB,
Space-Ex, or VerilogA:

28 A. Fiirtig and L. Hedrich

Fig. 1.19 Line following
robot. Depending on the X, y,
start position and the
orientation g (¢), the
controller is able to follow
the left edge of the black half

plane on the floor using the . . .

light sensor in front of the Driving directions

robot —a
Sensor

Z(grientati N g

Start angle range (&

Start area (x,y)

X = vy -cos(p)
y = v - sin(¢p) (1.15)

gé:o.s.(mnh(lo-(L-cos(¢)+x—k))+1)-W'g)+
ﬂ'.
()J.M
7B

with L = 0.1 m, the distance of the sensor to the center of the robot, B = 0.05m,
the width of the robot, vo = 0.5 %, the speed of the robot, k = 0.2 m, the position
of the black half plane on the groﬁnd, w = 0.5, the ratio between speed and angular
speed, x and y, the position of the robot and ¢, the driving direction of the robot. In
the following, the driving direction ¢ will be named g for ease of writing in plots
and specifications. The last equation of Eq. (1.15) models a two point switching
controller with a smooth transition between the states.

As theses ODEs are nonlinear we cannot use tools like Space-Ex [16] or the
reachability based on Minkowski sums [46] directly. However, building a piecewise-
linear hybrid model would enable the use of both approaches and would lead to a
nice reachability analysis result. In our case, we can formulate the problem of robots’
locking to the line and sticking on that line as a reachability problem using a start point
and direction as an initial condition and checking if that trajectory reaches a target
area (see green box in Fig. 1.19). If we use a set of starting points and directions
(illustrated with the yellow box in Fig. 1.19), we calculate the ATS in 867s on a
2.27 GHz Intel Xeon Machine and prove that the specification will hold on all start
conditions in the given start area using the ASL description shown in Fig. 1.20.

In essence, the description demands, that all trajectories coming from the start
area finally end in the goal area. In Fig. 1.21(left), the positive result of the proof is
illustrated with all trajectories starting in the start area and ending inside the target
area. Both areas are separately shown in Fig. 1.21(right). Additionally, the stability

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 29
target = 'V(NY)’ [>3.8] and 'V (NX)’ [>-0.15] and 'V (NX)’ [<0.16] and
"V(NG)’ [>1.3] and 'V (NG)' [<1.9] ;
start_area = 'V(NY)’ [>-0.1] and "V (NY)’ [<0.1] and
"V(NX) ' [>-0.25] and "V (NX)’ [<0.17] and
’V(NG)’ [>1.3] and "V (NG)’ [<1.95] ;
reachable = EF"-1 start_area ;
fail = reachable and "V (NY)’ [>1.95] and (not target) ;
for all assert (!fail); # fail should be empty

Fig. 1.20 ASL property for a stable run of the robot

Fig. 1.21 Left Trajectories starting in the start area for the line follower on top level. Right Start
area (front) and target area (back) in the same state space

20

18
16

-0.3

0.5

0

-0.5

> -1

-1.5

-2

-2.5

-5

Fig. 1.22 Trajectories from simulations of the line follower: Left Correct motion along the y-axes
around x = k. Right Wrong motion due to wrong start point and direction

of the behavior in that region is indirectly also proved, as the start area is slightly
larger and includes the target area in terms of the position x and the driving angle ¢.
Hence, we can conclude that the system will probably evolve by contracting and not
expanding.

30 A. Fiirtig and L. Hedrich

In Fig. 1.22, two simulations are shown in the x-y plane to illustrate the correct
and faulty motion of the robot. If it is started to far away from the line, it cannot lock
to that line.

1.8.1 System Refinement and Verification

Finally, we want to show how a closed chain of proof from system level down to
transistor level could look like. In order to refine the system and take real imple-
mentations of parts of the system into account, we concentrate on the controller (see
Fig.1.23 for a complete overview of the hierarchical decomposition of the system
and the formal verifications performed).

First, the controller is replaced by a behavioral description of a decision unit
and a netlist of an analog buffer amplifier (see Fig. 1.23). Inside the analog buffer an
operational amplifier is described by a behavioral model implementing the following
behavior:

Line following robot
Physics and Controller
Controller
Physics
Controller| OF @—‘>
VerilogA| f 7
VerilogA| Netlist

Qop level verifcation f

Analog buffer

Decision
Unit
VerilogA m‘\
i T

Operational amplifier

Behavioral or

modell %g
I L Netlist

VerilogA|

KBIock level verification

4 Transistor level verification 4

Equivalence
checking

Fig. 1.23 Hierarchical decomposition of the line following robot down to transistor level and
verification steps performed

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 31

Fig. 1.24 Left Trajectories of the reachable area for the line follower with a controller using
a behavioral description with too small output swing resulting in failing trajectories clearly not
hitting the target area. Right Motion of the robot following one of these failing trajectories

One pole for the dynamics,

limiting of output voltage to supply rails,

limiting of input voltage to an input voltage range and
maximal slew rate of output.

Using these models increases the runtime to 3079 seconds of the block-level verifi-
cation. However, the proof of the property also succeeds.

If we insert a behavioral model of the amplifier with tight output limitation
(£0.4V), a fail will be the result of the model check. A trajectory which is not
damped down to follow the line is given as a counterexample. See Fig. 1.24(left) for
all failing trajectories in the state space and Fig. 1.24(right) for one simulation of a
failing one in the x-y plane.

Next step is a proof that the operational amplifier (OP) is equivalent to a transistor
implementation of the OP. We use an OP with the structure of Fig. 1.16. The equiv-
alence checking with a given maximal slew rate on the input of the amplifier of 5%
succeeded with an error €4y, of below 10% (see Fig. 1.25 for a plot of the errors over
the reachable area).

In practice, the formal proof chain is now closed from transistor to system level.
However, as we are—in this small example—able to replace the behavioral model
of the amplifier by its transistor implementation, a direct proof of the transistor-level
implementation has been carried out. It takes 5752 seconds and succeeds also to
prove the wanted properties of the system level. Furthermore, the last equivalence-
checking result could also be achieved if we use the proposed coverage metric to
generate stimuli for checking the netlist of the amplifier versus its behavioral model.
Taking all together, we can conclude that the line following robot will expose the
wanted functionality also with the full detailed implementation.

32 A. Fiirtig and L. Hedrich

€d
Lot 2YT

r0.05

V(X1.VINT)
0.2

Fig. 1.25 Dynamic error €4y, of the equivalence check of the behavioral model of the amplifier
and the transistor netlist

A missing extension in this context is the inclusion of digital circuitry on system
level. In that case, for small digital parts the mentioned hybrid system verification
tools can be used or digital controllers may be continuously abstracted. However, for
big mixed-signal system-level or block-level descriptions powerful tools for formal
verification are still missing.

1.9 Conclusion

In this chapter an overview of formal verification techniques ranging from transis-
tor level to system level for analog circuits and systems has been presented. Main
methods are reachability analysis in different flavors, model-checking methods and
equivalence-checking methods. The focus in this chapter lays on sampling methods
allowing an accurate solution of the underlying DAE system. Actual improvements
allow the calculation of accurate and efficient coverage measures to improve the
individual validation of blocks. Furthermore, the methods are extended to system
level allowing a hierarchical formal verification flow closing a chain of proof from
transistor level up to system level.

1

Formal Techniques for Verification and Coverage Analysis of Analog Systems 33

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Vachoux, C. Grimm, K. Einwich, A. Vachoux, C. Grimm, K. Einwich, Analog and mixed-
signal modeling with SystemC-AMS, in Proceedings of the 2003 International Symposium on
Circuits and Systems, 2003, ISCAS’03, vol. 3 (2003), pp. [1I-914

. R. Telichevesky, K. Kundert, J. White, SpectreRF; New Frontiers in Circuit Simulation (1995),

pp.- 3-24

. D.Zaum, S. Hoelldampf, M. Olbrich, E. Barke, I. Neumann, S. Schmidt, The PRAISE approach

for accelerated transient analysis applied to wire models, in Behavioral Modeling and Simula-
tion Workshop, BMAS 2009 (IEEE, 2009), pp. 120-125

. G. Gielen, E. Maricau, in Analog IC Reliability in Nanometer CMOS (Springer, Heidelberg,

2013)

. T. Henzinger, P.-H. Ho, H. Wong-Toi, HyTech: a model checker for hybrid systems. Lecture

Notes in Computer Science (Springer, 1997), pp. 460—463

. E. Asarin, T. Dang, O. Maler, d/dt: a tool for reachability analysis of continuous and hybrid

systems (2001)

. A.Eggers, N. Ramdani, N.S. Nedialkov, M. Frinzle, Improving the SAT modulo ODE approach

to hybrid systems analysis by combining different enclosure methods. Softw. Syst. Model.
14(1), 121-148 (2012)

. T.A. Henzinger, P.-H. Ho, H. Wong-Toi, Algorithmic analysis of nonlinear hybrid systems.

IEEE Trans. Autom. Control 43(4), 540-554 (1998)

. G. Frehse, PHAVer: algorithmic verification of hybrid systems past HyTech, in Proceedings of

Hybrid Systems: Computation and Control (HSCC 2005). Lecture Notes in Computer Science,
vol. 3414 (2005), pp. 258-273

. T. Dang, A. Donzé, O. Maler, Verification of analog and mixed-signal circuits using hybrid

system techniques, in Formal Methods in Computer-Aided Design (Springer, 2004), pp. 21-36
Z.J.D. Ghiath Al Sammane, Mohamed H. Zaki, S. Tahar, Towards assertion based verification
of analog and mixed signal designs using PSL, in Forum on Design Languages (FDL) (2007)
S. Little, D. Walter, N. Seegmiller, C. Myers, T. Yoneda, Verication of analog and mixed-signal
circuits using timed hybrid petri nets, in ATVA (2004), pp. 426440

L. Hedrich, E. Barke, A formal approach to verification of linear analog circuits with parameter
tolerances, in Proceedings of the Design, Automation and Test in Europe (1998), pp. 649-654
D. Grabowski, M. Olbrich, C. Grimm, E. Barke, Analog circuit simulation using range arith-
metics, in ASPDAC (2008), pp. 762-767

M. Althoff, A. Rajhans, B.H. Krogh, S. Yaldiz, X. Li, L. Pileggi, Formal verification of phase-
locked loops using reachability analysis and continuization. Commun. ACM 56(10), 97-104
(2013)

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, O. Maler, SpaceEx: scalable verification of hybrid systems. in Computer Aided Veri-
fication (Springer, 2011), pp. 379-395

M. Freisfeld, M. Olbrich, E. Barke, Circuit simulations with uncertainties using affine arith-
metic and piecewise affine statemodels, in 9th International Conference on Solid-State and
Integrated-Circuit Technology, 2008 ICSICT (2008), pp. 496—499

T.R. Dastidar, P.P. Chakrabarti, A verification system for transient response of analog circuits.
ACM Trans. Des. Autom. Electron. Syst. 12(3), 31:1-31:39 (2008)

L. Hedrich, E. Barke, A formal approach to nonlinear analog circuit verification, in Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design ICCAD-95. Digest of
Technical Papers (1995), pp. 123-127

A.V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. K. Brayton, J. Roychowdhury, ABCD-
NL: approximating continuous non-linear dynamical systems using purely Boolean models
for analog/mixed-signal verification. in ASP-DAC (2004), pp. 250-255

S. Steinhorst, L. Hedrich, Improving verification coverage of analog circuit blocks by state
space-guided transient simulation, in IEEE International Symposium on Circuits and Systems
(2010)

34

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

A. Fiirtig and L. Hedrich

D. Grabowski, D. Platte, L. Hedrich, E.A. Barke, Time constrained verification of analog
circuits using model-checking algorithms, in ENCTS: Workshop on Formal Verification of
Analog Circuits (2005)

O. Maler, A. Pnueli, Extending PSL for Analog Circuits, in Research Report:PROSYD:
Property-Based System Design FP6-IST-507219 (2005)

S. Steinhorst, L. Hedrich, Analog assertion-based verification on partial state space represen-
tations using ASL. In 2012 Forum on Specification and Design Languages (FDL) (2012), pp.
98-104

J. Eckmiiller, M. Gropl, H. Grib, Hierarchical characterization of analog integrated circuits, in
DATE ’98: Design, Automation and Test in Europe (1998)

M. Ma, L. Hedrich, C. Sporrer, ASDeX: a formal specification for analog circuit enabling a full
automated design validation. in Design Automation for Embedded Systems (2012), pp. 1-20
S. Fine, A. Ziv, Coverage directed test generation for functional verification using Bayesian
networks, in Proceedings of the Design Automation Conference (2003), pp. 286-291

F. Haedicke, D. Grofe, R. Drechsler, A guiding coverage metric for formal verification, in
Design, Automation and Test in Europe Conference and Exhibition (DATE) (IEEE, 2012), pp.
617-622

J.-Y. Jou, C. Liu, Coverage analysis techniques for hdl design validation. in Proceedings of the
Asia Pacific CHip Design Languages (1999), pp. 48-55

K. Arabi, B. Kaminska, Parametric and catastrophic fault coverage of analog circuits in
oscillation-test methodology, in /5th IEEE VLSI Test Symposium (1997), pp. 166-171

J. Parky, S. Madhavapeddiz, A. Paglieri, C. Barrz, J. Abraham, Defect-based analog fault cov-
erage analysis using mixed-mode fault simulation. in IEEE 15th International Mixed-Signals,
Sensors, and Systems Test Workshop, 2009, IMS3TW *09 (2009), pp. 1-6

M. Horowitz, M. Jeeradit, F. Lau, S. Liao, B. Lim, J. Mao, Fortifying analog models with
equivalence checking and coverage analysis, in Proceedings of the 47th Design Automation
Conference, DAC ’10, NY, USA, New York (2010), pp. 425-430

A. Julius, G. Fainekos, M. Anand, 1. Lee, G. Pappas, Robust test generation and coverage
for hybrid systems, in Proceedings of the 10th International Conference on Hybrid Systems:
Computation and Control (HSCC) (2007), pp. 329-342

T. Nahhal, T. Dang, Test coverage for continuous and hybrid systems. in Computer Aided
Verification (Springer, 2007), pp. 449462

L. Pillage, C. Wolff, R. Rohrer, Dominant Pole(s)/Zero(s) analysis for analog circuit, in CICC
(1989), pp. 21.3.1-21.3.4

R. Freund, P. Feldmann, Reduction-order modeling of large linear passive multi-terminal cir-
cuits using matrix-pade approximation, in Review (1988), pp. 1-19

S. Steinhorst, L. Hedrich, Advanced methods for equivalence checking of analog circuits with
strong nonlinearities. Form. Methods Syst. Des. 36(2), 131-147 (2010)

S. Steinhorst, L. Hedrich, Trajectory-directed discrete state space modeling for formal verifica-
tion of nonlinear analog circuits, in Proceedings of the International Conference on Computer-
Aided Design (ACM, 2012), pp. 202-209

W. Hartong, R. Klausen, L. Hedrich, Formal verification for nonlinear analog systems:
approaches to model and equivalence checking, in Advanced Formal Verification, ed. by R.
Drechsler (Kluwer Academic Publishers, Boston, 2004), pp. 205-245

A.T. Davis, An overview of algorithms in Gnucap, in University/Government/Industry Micro-
electronics Symposium (2003), pp. 360-361

D. Nickovic, O. Maler, AMT: a property-based monitoring tool for analog systems, in Formal
Modeling and Analysis of Timed Systems, vol. 4763, Lecture Notes in Computer Science, ed.
by J.-F. Raskin, P. Thiagarajan (Springer, Heidelberg, 2007), pp. 304-319

R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time. Inf. Comput. 104, 2-34
(1993)

S. Steinhorst, L. Hedrich, Model checking of analog systems using an analog specification
language, in Proceedings of the Design, Automation and Test in Europe DATE ’08 (2008), pp.
324-329

1 Formal Techniques for Verification and Coverage Analysis of Analog Systems 35

44. J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509-517 (1975)

45. B. Chazelle, An optimal convex hull algorithm in any fixed dimension. Discret. Comput. Geom.
10, 377-409 (1993)

46. M. Althoff, S. Yaldiz, A. Rajhans, X. Li, B. Krogh, L. Pileggi, Formal verification of phase-
locked loops using reachability analysis and continuization, in 2011 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (IEEE, 2011), pp. 659-666

Author Biographies

Andreas Fiirtig received the Diploma degree in computer science from the Goethe-University of
Frankfurt in 2013. He is currently pursuing as a Ph.D. student at the institute of computer science
within the design methodology group supervised by Prof. Dr. L. Hedrich. His current research
interests include formal verification methods, simulation and coverage metrics of analog circuits,
as well as behavioral modeling. He is also the teamleader of the RoboCup SPL Team Bembelbots.

Lars Hedrich received the Diploma degree in electrical engineering in 1992 and the Ph.D. from
the University of Hannover in 1997 and became a Juniorprofessor at the same University in 2002.
Since 2004 he is full professor at the Institute of Computer-Science, University of Frankfurt, and
head of the design methodology group at the same institute. His research interests include several
areas of analog design automation: symbolic analysis of linear and nonlinear circuits, behavioral
modeling, reliability analysis and design, circuit synthesis, and formal verification.

Chapter 2
Verification of Incomplete Designs

Bernd Becker, Christoph Scholl and Ralf Wimmer

2.1 Introduction

With a hierarchical, component based design style unknown values increasingly
emerge in different phases of the design and production process, and have to be
handled by corresponding electronic design automation (EDA) tools. In the following
we restrict our attention to the verification process and describe current state-of-
the-art approaches that enable the handling of such unknown values using formal
techniques: We provide a sequence of filters, trading off quality, and computation
times of the analysis.

Unknown values in circuit verification occur, for instance, when a circuit is only
partially available. Partially available means that for some of the circuit’s components
only their interface is known, i.e., the signals connected to the inputs and outputs of
the components, but neither their internal structure nor the computed function. These
missing parts are called black boxes. The actual values at their outputs are unknown.
Verification has to take this into account.

There are different reasons for considering such incomplete circuits: Errors in a
circuit design should be detected as early as possible; the later errors are corrected the
higher are the incurred costs. Therefore it is desirable to apply verification techniques
already in an early stage of the design process when not all parts of a circuit have
been implemented yet.

B. Becker (X) - C. Scholl - R. Wimmer

Institute of Computer Science, Albert-Ludwigs-Universitit Freiburg,
Freiburg im Breisgau, Germany

e-mail: becker @informatik.uni-freiburg.de

C. Scholl
e-mail: scholl @informatik.uni-freiburg.de

R. Wimmer
e-mail: wimmer @informatik.uni-freiburg.de

© Springer International Publishing AG 2018 37
R. Drechsler (ed.), Formal System Verification, DOI 10.1007/978-3-319-57685-5_2

38 B. Becker et al.

A further reason for considering incomplete circuits is that some modules like
multipliers are notoriously hard to verify: If the property to be checked is expected
to be independent of such a module, the module can be removed from the circuit, and
instead it is checked whether the property under consideration holds for all possible
replacements of the missing part. If this is the case, then the property also holds for
the complete circuit. Otherwise either the remaining circuit is faulty or the removed
module and the property interact in some unexpected way.

Considering incomplete circuits can also be beneficial for error diagnosis during
debugging. Assume that an error is contained in one of the circuit’s modules, but it is
not known in which one. If, after removing one module, verification yields that there
is an implementation of the removed part such that the considered property holds,
then it is likely that the error is contained in the removed module.

If error diagnosis and error rectification are performed late in the design cycle
when already a lot of efforts have been made to perform logic synthesis or even
place and route steps for the complete design, then the question will be whether
the design can be rectified by changing locally confined black boxes only, without
introducing new connections to global signals leading to enormous costs for re-
synthesis. A similar situation occurs in case of Engineering Change Order (ECO,
small changes of specification late in the design cycle) where only locally confined
parts (black boxes) should be replaced in order to satisfy the changed specification
without sacrificing too much of the design efforts. In this case, it is particularly
important to preserve the interface of the black boxes.

The synthesis of digital controllers [3, 4] that ensure certain properties of the sys-
tem at hand can also be considered as a black-box verification problem: The controller
to be synthesized is the black box, and one asks whether there is an implementation
such that the given property holds.

Depending on the application there are two different problem classes that are
of interest: On the one hand, realizability asks whether there is an implementation
of the black boxes such that the complete design fulfills a certain property. On the
other hand, validity asks whether the property holds no matter how the missing parts
are implemented. Since validity and realizability are dual properties—a property ¢
is valid iff —¢ is not realizable—in the following we concentrate on realizability
problems.

Our methods are based on checking the satisfiability of (quantified) Boolean for-
mulas. In the meantime software tools checking the satisfiability of propositional
Boolean formulas are well developed and have been proven to be very successful in
many industrial applications [2]. In contrast to propositional formulae used for SAT,
quantified Boolean formulae, where variables are existentially or universally quan-
tified, allow a (more) succinct representation in many cases. The recent advances in
the performance of QBF solvers, for example, conflict driven learning, resolution
and expansion based algorithms [1], or preprocessing [16] enable more exact rea-
soning about realizability in presence of black boxes even for larger circuits. To be
even more exact (or complete) in the general case dependencies between the quan-
tified variables have to be taken into account. This leads to an extension of QBF,
called Dependency quantified Boolean formulas (DQBF). DQBF allows existential

2 Verification of Incomplete Designs 39

variables to depend on arbitrary sets of universal variables. DQBF solving currently
is under development, according to the literature there exist currently two DQBF
solvers: IDQ [12] and our tool HQS [15].

We now turn to the verification problems considered in this contribution and at
first provide an overview of the problems and algorithms to be presented in more
detail in the following sections.

The problem whether an incomplete combinational circuit can be completed such
that it becomes equivalent to a given specification (partial equivalence checking,
PEC) was first considered in [27] where several approximate and exact methods to
solve the PEC problem have been presented. If an approximate algorithm reports
that there is no implementation for the black boxes such that the specification holds,
the desired specification is indeed not realizable. However, if such an algorithm is
not able to prove non-realizability, this can be due to the approximate nature of
the method, and the desired functionality may nevertheless be not realizable. The
algorithms in [27] are based on solving SAT or QBF formulations of PEC. The
SAT formulations are efficient to solve also due to a “near at hand” encoding, but
also rather inaccurate due to a coarse approximation. Their accuracy is improved in
several steps, leading to a QBF formulation that can solve PEC for a single black
box exactly. In [27] additionally an exact characterization of realizability of PEC for
multiple black boxes has been proposed (based on the decomposability of a certain
Boolean relation). However, no feasible algorithmic method for solving the problem
has been given.

Nevertheless, [27] was the first paper to consider an exact solution of the PEC
problem taking into account that the interfaces of the black boxes in the incomplete
circuit have to be preserved. Apart from the approach in [18, 19], the diagnosis
and rectification problem respecting local interfaces has not been addressed in the
literature so far. In [28, 29], e.g., rectifications are computed, but they are allowed to
depend on arbitrary signals in the circuit. (Moreover, in contrast to [28, 29] uses a SAT
formulation to compute rectifications for a given set of counterexamples only, without
considering correctness for all possible inputs.) The approach of [18, 19] solves the
PEC problem exactly, but it is restricted to problem instances of moderate sizes,
since the black boxes are replaced by function tables using an exponential number
of Boolean variables. A more efficient complete approach, is based on solving an
extension of quantified Boolean formulas, so-called dependency quantified Boolean
formulas (DQBFs) and was first presented in [14].

We have extended the application of realizability checking to sequential circuits
which are specified by a set of properties (safety properties or more general properties
formulated in Computation Tree Logic (CTL [9]). Here the question is whether an
incomplete sequential design may be extended by black box implementations such
that a set of given properties is satisfied. Also the problem of deciding validity is
considered. We developed various approaches for solving the realizability problem
either in an approximate or an exact manner. In the following, we discuss some
representative approaches:

These approaches rely on a series of approximate methods with varying precision
and costs for deciding the realizability of properties using symbolic methods. As in

40 B. Becker et al.

the combinational case, the approximations are based on different methods to model
the effect of the unknowns at the black box outputs to the overall circuit.

In [22] approximation methods are applied in the context of realizability checking
of safety properties based on bounded model checking techniques (BMC—here a
sequential circuit is “unrolled” for a number of time frames). This approximate
approach leads to SAT or QBF problems. Here, the precision of modeling is not given
by the user, but it is adapted automatically based on the difficulty of the problem. The
approach is guided by proofs that non-realizability cannot be shown using the weaker
methods, independently from the number of BMC unrollings, i.e., independently
from the length of a counterexample which does not depend on the implementation of
the black boxes. [23] extends [22] and provides proofs based on inductive arguments,
showing that non-realizability can not be proven even by our most exact QBF based
methods (also independently from the number of BMC unrollings). The approach of
[23] provides an exact decision procedure for realizability in the case that the design
contains exactly one black box which is allowed to read all input signals (which
means that it has “complete information™).

The usage of DQBF formulations for verifying incomplete designs was first pro-
posed in [13, 14]. There we have shown that DQBF allows to check realizability
precisely for combinational circuits with an arbitrary number of black boxes. This
was generalized in to sequential circuits with combinational or bounded-memory
black boxes.

In [24], we provided a series of approximate methods for deciding the realizability
of CTL properties using symbolic methods. Moreover, [24] presents an exact method
for deciding realizability for incomplete circuits with several black boxes under the
assumption that the black boxes may contain only a bounded amount of memory.
This exact method is based on introducing an exponential number of new variables
and is therefore only suitable for small problem instances.

The remaining part of our contribution is structured as follows: In the follow-
ing section, we introduce the necessary foundations that are required for verifiying
incomplete circuits. In Sect.2.3, we consider the case of incomplete combinational
circuits, which do not contain any memory elements. The following Sect. 2.4 consid-
ers incomplete sequential circuits. It encompasses two parts: in Sect.2.4.1 we con-
sider techniques that use bounded model checking to refute realizability. Section 2.4.2
describes OBDD-based model checking algorithms for CTL properties. Finally, in
Sect.2.5 we conclude this paper.

2.2 Preliminaries

In this section, we provide a short overview of the underlying calculus used to solve
the verification problems considered in the following. The interested reader is referred
to [2] for more details.

Our algorithms are based on checking the satisfiability of (quantified) Boolean
formulas. Even though deciding the satisfiability of a quantifier-free Boolean formula

2 Verification of Incomplete Designs 41

(SAT) is an NP-complete problem [10], SAT solvers, i.e., software tools checking
the satisfiability of quantifier-free Boolean formulas have been proven to be very
successful in many industrial applications. The formula is typically provided in con-
junctive normal form (CNF). A formula in CNF is a conjunction of clauses, and a
clause is a disjunction of literals, where a literal is either a Boolean variable or its
negation. For instance a clause is given by (x VvV —y) with the Boolean variables x
and y.

It will turn out that, depending on the problem considered, SAT may not allow an
adequate concise description, and extensions like quantified Boolean formulas are
more suitable:

Definition 2.1 (Quantified Boolean formulas: Syntax) Let V be a set of Boolean
variables. A quantified Boolean formula (QBF) ¥ (in prenex form) has the form

VX]HY]VXzayk P,

where X1, Y1, Xo, ..., Y} are pairwise disjoint subsets of V such that Ule X;UY;, =
V,X; #0@fori =2,...,k,and Y; # @ for j =1,...,k — 1. ¢ is a Boolean
formula over V, called the matrix of ¥.VX,3Y VX, ...3Y; is called ¥'’s quantifier
prefix.

Typically the matrix ¢ of a QBF is required to be in conjunctive normal form. A
QBEF has a linearly ordered quantifier prefix: each existential variable depends on all
universal variables in whose scope it is. If we consider a QBF as a two-player game,
then one player assigns the existential variables and the other player the universal
ones. The game proceeds according to the quantifier prefix from left to right. The
goal of the existential player is to satisfy the matrix, the universal player’s goal to
falsify it. Thereby, each player may base the assignment of the current variable on
all assignments the opponent has made so far. The QBF is satisfied iff the existential
player has a winning strategy which satisfies the matrix for all possible assignments
of the universal variables.

Example 2.1 As an example consider the QBF Vx 3y, Vx,;3y, : . It is satisfied if
and only if: for every assignment of x|, there exists an assignment for y; such that
for every assignment of x, there exists an assignment for y,, such that the matrix is
satisfied. Obviously, here y, depends on x, and on x;.

The complexity of QBF satisfiability is determined by the number of quantifier
alternations between existential and universal quantifiers and vice versa in the prenex
form. The general problem of QBF satisfiability is a PSPACE-complete problem [21].

In a next step, the dependencies between the quantified variables can be gen-
eralized: As already mentioned, in QBF each existential variable depends on all
universal variables to the left. Dependency quantified Boolean formulas (DQBF)
relax this restriction and allow existential variables to depend on arbitrary sets of
universal variables.

42 B. Becker et al.

Definition 2.2 (Dependency quantified Boolean formulas: Syntax) Let V =
{x1,...,Xn, Y1, ..., Y} be asetof Boolean variables and ¢ a quantifier-free Boolean
formula over V. A dependency quantified Boolean formula (DQBF) v over V has
the form

Y =Vx1Vxz ... Vx,3y,(Dy)3y2(Dy,) ... ym(Dy,,) : o,
where Dy, C {xi, ..., x,} is the dependency set of y;.

The semantics of such a formula is typically defined in terms of Skolem functions.
For a set V of Boolean variables, let @7 (V) = {1/ | v:V — {0, 1}} denote the set
of all variable assignments for V.

Definition 2.3 (Dependency quantified Boolean formulas: Semantics) Let v be a
DQBF as defined above. It is satisfied if there are functions sy, : &/ (D,,) — B such
that replacing all occurrences of y; in ¢ by (a Boolean expression for) sy, for all
i =1,..., mturns ¢ into a tautology.

Example 2.2 Consider the following DQBF (with an appropriate matrix ¢):
Vi Vo 3y (x)3ya(x2) @ .

Here y; depends only on x; and y, only on x,. There is no QBF prefix which expresses
the same dependencies.

We will come back to this example in the following section where we will see
that DQBF is an adequate formalism to model verification problems for incomplete
combinational circuits.

In general, DQBF has a strictly higher expressiveness than QBF. This is also
reflected in the complexity of the decision problem: deciding whether a DQBF is
satisfiable is NEXPTIME-complete [25].

First DQBF solvers are currently under development: IDQ was the first available
DQBEF solver. It applies instantiation-based solving [12]. Our tool HQS [15] is cur-
rently the only other available DQBF solver. It uses quantifier elimination to turn
the DQBF at hand into an equisatisfiable QBF, which can be solved by an arbitrary
QBF solver. To reduce the computation times, HQS applies sophisticated preprocess-
ing techniques. It is not only able to decide the satisfiability of DQBFs, but also to
compute—in case the formula is satisfiable—Skolem functions for the existential
variables [31].

2.3 Incomplete Combinational Circuits

In this chapter, we are going to investigate the verification of incomplete combi-
national circuits, i.e., circuits without memory elements containing unknown parts.
After defining the partial equivalence checking problem, we investigate symbolic

2 Verification of Incomplete Designs 43

Fig. 2.1 Notation for
incomplete combinational
circuits

simulation with 01X-logic. We provide a sound formulation that enables an effi-
cient, but incomplete solution method: If an answer is obtained, it is correct, but
there are cases where the procedure cannot give a conclusive answer. We improve on
this by using quantified Boolean formulas (QBF). For combinational circuits with
only a single black box, the QBF formulation entails a complete decision procedure;
for more than one black box, it is still an approximation. In this case, the extension
of QBF to dependency quantified Boolean formulas (DQBF) has to be used.

2.3.1 The Partial Equivalence Checking Problem (PEC)

We first define incomplete circuits and the partial equivalence checking problem.
Figure 2.1 shows a part of an incomplete circuit. We assume that x = (xy, ..., x,,)
are the primary inputs of the circuit,' BBy, ..., BB, are its unknown parts (so-
called “black boxes”). In order to guarantee that the circuit is combinational for all
possible combinational black box implementations, we assume that the black boxes
are given in topological order, i.e., BB; does not depend on BB for 1 <i < j < m.
Furthermore, we assume that the interfaces of the black boxes are known: I; is the
vector of input signals of BB; and Z; the vector of its output signals fori = 1, ..., m.

n the following, we denote individual signals or variables in italic font (like x, y, z) and vectors
in upright bold font (like x, y, z).

44 B. Becker et al.

The known parts of the circuit are given by the vectors F;(x, Z, ..., Z;_;), which
define I;, and the output functions z = R(x, Z, .. ., Z,,) of the circuit.

Definition 2.4 (Partial Equivalence Checking Problem) The Partial Equivalence
Checking (PEC) problem is defined as follows: Given an incomplete combinational
circuit and a specification in form of a complete circuit, are there implementations
of the black boxes such that both circuits become equivalent? In this case, the spec-
ification is said to be realizable.

Equivalent means that both circuits produce, for the same input pattern, the same
output values. By a (negated) miter construction, we can combine the two circuits into
a single one: corresponding inputs are driven by the same input signal, corresponding
outputs are connected via equivalence gates (xnor-gates), and their outputs in turn
via an and-gate. The single output of this miter circuit is 1 for an input pattern if
both circuits compute the same value. The specification is unrealizable iff for all
possible black box implementations there is an input pattern such that the output of
the negated miter becomes O.

In the following, we assume that the PEC is given as the negated miter circuit
with the goal to make the output constantly 1 by implementing the black boxes
appropriately.

2.3.2 SAT-based Approximations

One possibility to model the unknown behavior of the black boxes is to use a three-
valued logic (also called 01X-logic), which adds a third value X to the classical
Boolean logic. X stands for an unknown value. The Boolean operations can be
generalized easily to the three-valued logic, e.g., by 0 AX =0, 1 A X = X, etc.
The complete truth tables for A, Vv, and — for the three-valued logic are shown in
Table?2.1. Given a Boolean assignment for the primary inputs, we can assign X to
the outputs of the black boxes and do a simulation of the circuit using the truth tables
in Table2.1. If the value of a circuit output is O or 1, this value is independent of
the implementation of the black boxes. Obtaining output X means that, for the given
input pattern, the output might depend on the black box implementation.

01X-logic is known to over-estimate the number of X-values in a circuit. Consider,
for example, a circuit with one and- and one not-gate that computes a A (—a). The
output of this circuit is O for all possible values of a, but in 01X-logic, if a = X, the
output is determined to be X.

Still, we can use 01X-logic to determine unrealizability of a PEC problem. To
do so, we use symbolic simulation using the three-valued logic: Take the formula
z=RX,Z,,...,7Z,),which defines the output of the circuit, and check if, given an
assignment of X to all black box outputs, there exists an assignment of x (in {0, 1})
such that z has the value O (or equivalently —z value 1):

2 Verification of Incomplete Designs 45

Table 2.1 Boolean

: . (a) Conjunction
operations on 01X-logic

A 0 1 X

0 0 0 0

1 0 1 X

X 0 X X
(b) Disjunction

\Y 0 1 X

0 0 1 X

1 1 1 1

X X 1 X
(c) Negation

- 0 1 X

0 X

(z=R&Zy,.... L)) A (x1 #X) A A (3, #X)
ANZ =X)ANA(Zn=X)A(z2=0).

This is a satisfiability (SAT) problem over 01X-logic. To make standard SAT
solvers applicable, we have to re-encode the formula over standard Boolean logic.
Jain et al. [17] propose to use [log, 3] = 2 Boolean variables to encode the three
different values 0, 1, and X: 0 is encoded as (1, 0), 1 as (0, 1), and X as (0, 0). For
three-valued variables a, b with encodings (@®, a") and (b°, b1, resp., we obtain:
avb=@@" Ab%a vbY,anb = @ vb a Ab, and —a = (@', a). Of
course, this encoding has to be applied only to those signals which are in the cone of
influence of the black box outputs. As a Boolean signal a is equivalent to the encoding
(—a, a), we can convert standard Boolean signals into encoded three-valued ones
where necessary.

The result of encoding the three-valued miter circuit is a Boolean circuit with
two outputs (%, z!) with 2 = ROx%, x!, 29, Z}, ..., 20, Z!) and 7! = R'(x°, x!,
Z‘l), Z}, el Z?n, Z,ln). By adding appropriate clauses to the SAT formula, we have to
enforce that the following restrictions are fulfilled: (1) z° A—z',i.e., (z°, z!) = (1, 0),
2) _‘Z,Q,j A —|Zi1’j fori =1,...,mand Z; ; € Z;, i.e., all black box outputs are
assigned to X, and 3) x? @ x! = 1 fori = 1,...,n,ie., (x°,x') € {(0, 1), (1,0)}.

If the resulting Boolean formula is satisfiable, there is an input pattern for the
circuit (which corresponds to the assignment of (x 11, e, x,%)) that leads to an output
of 0 = (1, 0), independent of the actual implementation of the black boxes. Hence,
the PEC is unrealizable. Contrary, if the formula is unsatisfiable, we cannot conclude
realizability: We cannot distinguish whether the design is realizable or the applied
method too weak, caused by one of the following limitations:

46 B. Becker et al.

e The 01X-logic is not precise in case of reconvergences of the circuit.

e Using 01X-logic, we search for counterexample patterns (refuting realizability)
that are independent of the black boxes. However, in general, we might need a
different pattern for each implementation of the black boxes.

e We ignore the input cones of the black boxes.

This is improved step by step in the following section by using quantified Boolean
formulas.

2.3.3 QBF-based Methods

The problem that 01X-logic is inaccurate in case of reconvergences can be solved
by using quantified Boolean formulas. The idea is to check if for all assignments of
the primary inputs there are values of the black box outputs such that the formula
R(x,Z,,...,7Z,) evaluates to 1. This yields the following QBF:

VX3Z;...3Z, : (2= R, Z1, ..., Z)) A (z = 1). 2.1)

Unsatisfiability of this formula implies unrealizability of the PEC problem. This
formulation is more precise than the 01X-based formulation, but typically more
expensive to solve—while SAT is NP-complete [10], QBF is PSPACE-complete [21].
This also affects the solver performance from a practical point of view: SAT problems
that can be solved nowadays may be roughly two orders of magnitude larger than
solvable QBFs.

In spite of the higher precision, (2.1) still does not constitute a complete decision
method for PEC: so far, we have neglected the input cones of the black boxes.

If the black boxes are not directly connected to the primary inputs but to internal
signals we have to take into account that not all possible combinations of values may
arrive at the inputs of the black boxes, i.e., that the black boxes have only partial
information about the primary inputs.

Since we use universal quantification for the black box inputs, we only have to
ensure that our formula is satisfied, if the value of the black box inputs I; does
not deviate from the values obtained as a function I; = F;(x,Z;,...,Z;_1). The
following matrix fulfills this requirement:

e=0ZF@)V- V(L £ZFuXZ1,....2Z,1))VRX, Zy, ..., Zy). (22)

We use universal quantification for the primary inputs x and all black box inputs
I;,...,L,. TheoutputsZ,, ..., Z,, of the black boxes are existentially quantified. Ifa
black box output is the input of another black box, we introduce a buffer, “computing”
the identity function, to avoid conflicts. We have to take care that in the quantifier

2 Verification of Incomplete Designs 47

prefix, all inputs of a black box precede its outputs. Then there are still several prefixes
possible, e.g.,

VXYL ... VL,3Z; ... 3Z, : o, 2.3)
VL, 3Z\VIL\L3Z, ... 3Z, ¥x\(I; UL U---UL,) : ¢ (2.4)

The QBF with prefix (2.3) contains only two quantifier blocks. It is therefore typically
easier to solve than (2.4). The drawback is that is less precise: In a QBF, an existential
variable depends on all universal ones left of it in the prefix. In (2.4), each existential
variable in general depends on fewer variables than in (2.3). Additionally, (2.4) is
precise in case of a single black box. For more than one black box, (2.4) is not able
to express the dependencies of the black box outputs on their corresponding inputs
exactly.

2.3.4 DQBF-based Methods

In the previous two sections, we made the decision procedure for PEC more and more
precise. One last step is missing in order to obtain a complete and sound decision
procedure for PEC.

If a combinational design contains more than one black box and if the black boxes
do not have the same interfaces, it is typically not possible to express the dependencies
of the black boxes’ outputs on their inputs in QBF exactly. This is illustrated in the
following example.

Example 2.3 Consider an incomplete design with two black boxes BB; and BB;.
The output Z; of black box BB, depends only on xi, the output Z, of BB, only on
x2.2 Then three different QBF formulation are possible (with an appropriate matrix
p): (1) Yx13Z1Vx,3Z; @, (2) VXx,3Z,Yx13Z; @ @, and (3) Vx1Vx23Z,13Z; : o,
In formula (1), Z, depends not only on x,, but also on x;, violating the interface
specification of BB,. The same holds in (2) for BB, which would be allowed to read
x». Finally, in (3) both black boxes read both signals.

To be able to express the dependencies of the black box outputs exactly, we have
to resort to dependency quantified Boolean formulas (DQBFs), as already introduced
in the previous section. While a QBF has a linearly ordered quantifier prefix—each
existential variable depends on all universal variables in whose scope it is—in a
DQBEF the existential variables are explicitly annotated with the universal variables
they depend upon.

2In this example we assume that the inputs of the black boxes are directly connected to the primary
inputs. Thus we do not need to introduce separate vectors I; and I, for the black box inputs.

48 B. Becker et al.

Example 2.4 Consider again the incomplete design from Example 2.3. It leads to
the following DQBF (with an appropriate matrix ¢):

V)C1VX23Z1 (xl)HZQ(Xz) LY.

Here Z; depends on x; and Z; on x,, which coincides with the interface specification
of the incomplete design.

In general, we can use the following DQBF formulation for PEC:
Y =vxvL ... VL,3Z,(1y) ...3Z,,(L,) : ¢, (2.5)

where the matrix ¢ is exactly the same as in Eq.(2.2) defined for QBF. In contrast
to QBF, DQBF allows us to model arbitrary black box interfaces precisely.

It is not hard to show that there is not only a linear transformation from PEC to
DQBEF, but also vice versa [13, 14]. The existence of these transformations implies
on the one hand that PEC and DQBF have the same complexity. They are both
NEXPTIME-complete. On the other hand, we can solve PEC exactly by solving an
appropriate DQBF formulation.

2.4 Incomplete Sequential Circuits

We investigate how and to which extent the techniques presented in the previous
section for incomplete combinational circuits can be generalized to incomplete cir-
cuits, which contain memory elements, i.e., incomplete sequential circuits.

In contrast to combinational circuits, we consider the validity and realizability of
a property regarding an incomplete sequential circuit and then present approaches
for the analysis of those circuits.

Analogously to the combinational case an incomplete sequential circuit is a
sequential circuit containing black boxes. See Fig.2.2 for an illustration. The cir-
cuit contains m black boxes BBy, ..., BB,,, shown as black rectangles. Their input
signals are denoted by I, ..., I, and their output signals by Z, ..., Z,,. The pri-
mary inputs of the circuit are x = (xo, ..., x,), the current state is given by the
signals s = (sp, ..., s,). The input cones of the black boxes compute the functions
I, = Fi(x,s,Z,,...,Z;_1). We thereby assume that there are no cyclic depen-
dencies between the black boxes and that they are topologically ordered, i.e., BB;
only depends on the values computed by BBy, ..., BB,;_;. To simplify notation, we
assume w. 1. 0. g. that no black box output is directly connected to a black box input,
i.e., Z; is disjoint from I; for all i, j. If this is not the case, we insert a buffer between
the corresponding black boxes, which does not modify the functionality of the cir-
cuit. Finally, the output y and the next state s’ of the circuit are given by the Boolean
functions (y,s’) = R(x,s,Zy, ..., Z,).

2 Verification of Incomplete Designs 49

Memory

Fig. 2.2 Notations for an incomplete sequential circuit

The complexity of deciding realizability depends on the allowed behavior of the
black boxes: If we assume that the contents of the black boxes are combinational
circuits, the problem of deciding realizability is NEXPTIME-complete. If we allow
the black boxes to contain an arbitrary amount of memory, the interesting decision
problems (see below) become undecidable [26]. The case of black boxes with a
bounded amount of memory (i.e., we know an upper bound on the number of bits the
black boxes can store internally) can be reduced to the case of combinational black
boxes by adding the memory of the black boxes to the surrounding circuit such that
these memory cells are read and written only by the corresponding black box.

For a given property P two questions regarding a partial circuit are of interest: On
the one hand, realizability asks whether there is an implementation of the black boxes
such that the complete circuit satisfies P. On the other hand, validity asks whether
P is satisfied for all possible implementations. Since validity of P is given iff =P is
not realizable, we restrict ourselves in the following to realizability problems.

In particular, in the following subsection we present approaches based on bound-
ed model checking techniques (BMC) [22, 23]. As properties we consider invariant
properties: Given a Boolean formula P(x, s, y), which describes the states of the
circuit that satisfy the invariant, are there implementations of the black boxes such
that P(x, s, y) is satisfied in each step of the circuit? For more general classes of
properties like arbitrary CTL properties, we refer the reader to Subsect. 2.4.2.

50 B. Becker et al.

T T T
18 oo x(l) 1} 1'5_1 1],171
PRI EEEN I b RN PSS & R
0 1 [] k—1
A Zy — Zy
1 : -P
0 1 k—1
Z; Zy | | Z,
0 1 | 2 k1 | k
Sr \0\”'\0\ Sr \l\"‘\l\ K \k\l‘"\k\lsf
yO A y'VVIr yO A y'NL in A yﬂr

Fig. 2.3 Encoding of the BMC problem for incomplete designs [23]

2.4.1 BMC for Incomplete Designs

BMC for incomplete designs aims to refute the realizability of a property, that is,
it tells the designer, no matter how the unknown parts of the system will be imple-
mented, the property will always fail. To put it in other words, the error is already in
the implemented system. If this is the case, then we call the property P unrealizable.
Here we restrict the properties to invariants. In a first formulation, we make use of
QBF modeling where the variables representing the black box outputs are univer-
sally quantified. We even allow black box replacements to produce different output
values for the same input values at different time steps which simplify the formula
but is a source of inexactness in case that only combinational circuits are allowed as
black box implementations and also in case of black boxes with a bounded amount
of memory>—and thus the method might miss to prove the unrealizability of some
properties. Moreover, we first confine ourselves to single black boxes. If several black
boxes with dedicated interfaces are combined into a single black box, then this is
another source of inexactness. To encode the BMC problem of incomplete designs,
we are naming the variables as shown in Fig.2.3. We use an upper index to specify
the time instance of a variable. s; denotes the i-th state bit in the j-th unfolding
(lets/ = sé, ..., s}). The same holds for the primary inputs x/ = xé, ..., x}, the
primary outputs y/ = yJ, ..., yi,, and the black box outputs Z/ = ZJ, ..., Z]. The
next state variables s/*! depend on the current state, the primary inputs and the black
box outputs. The whole circuit is transformed according to [30] using additional aux-
iliary variables H/ for each unfolding depth j. The predicate describing the initial
states is given by I (s”). Since we assume a single initial state in this paper, the initial
state 1 (s”) is encoded by unit clauses, setting the respective state bits to their initial
value. The transition relation of time frame i is given by 7 (s"~!, x'~!, Z'~! s'). The
invariant P (s") is a Boolean expression over the state variables* of the k-th unfolding.

3Black boxes with a bounded amount of memory are reduced to the case of combinational black
boxes by adding the memory of the black boxes to the surrounding circuit as mentioned above.

“In general the property can also check the primary inputs and outputs, but for sake of convenience,
we omit details here.

2 Verification of Incomplete Designs 51

Using this information, the quantifier prefix (and the matrix) for the unrealizability
problem results in the QBF formula (2.6). For the sake of simplicity we include the
variables representing the primary outputs of unfolding depth j into H/.

BMC(k) = 3s°x’ VZ° 3IHO
Js! x! vzZ' 3JH!

E'Sk_] Xk—l \.vlzk—l 3 Hk—l
3 sk

k
IS A NTE X727) A=P(sh) (2.6)

i=1

The semantics following from the prefix corresponds to the following question:

Does there exist a state s = s8, o sﬁ) and an input vector x0 = xg e, x,? at depth 0
such that for all possible values of the black box outputs 70 = Zg, R Z?n there exists

an assignment to all auxiliary variables H? (resulting in a next state s' = s(l), ...,shand

an input vector x' = xé, ey x,{ at depth 1, etc. such that the property is violated at time
frame k?

The BMC procedure iteratively unfolds the incomplete circuit fork =0, ..., K

until a predefined maximal unfolding depth K is reached. If a QBF solver finds
BMC(k) satisfiable, the unrealizability of the property P has been proven. In that
case, the resulting system can reach a “bad state” after k steps, no matter how the
black box is implemented.

We can prove that, whenever BMC(k) is unsatisfiable, there is an implementation
of the black box (possibly with a limited number of memory elements) which is able
to avoid error paths of length k as long as the black box is allowed to read all primary
inputs. However, if the black box in the design at hand is not directly connected to all
primary inputs, (i.e., if the black box does not have “complete information”), such
an implementation does not need to exist. Thus, for black boxes having “incomplete
information” the property may be unrealizable although BMC with QBF modeling
is not able to prove this. In this case, DQBF is necessary to express the actual
dependencies of the black boxes on their inputs.

In the following, we give an example illustrating the approach:

Example 2.5 Consider the incomplete circuit shown in Fig. 2.4. The state bits sy and
s1 depend on the current state, the primary input x, and the black box outputs Z,
and Z;, respectively, and are computed by the transition functions s, = x V Z, and
§; = (x A Z1) V (so A —Z)). Let the invariant property P = —(so A s1) state that s
and s; must never be 1 at the same time. Let the initial state of the system be defined
as s§ = s¥ = 0. After checking for an initial violation of the property, the BMC

procedure unfolds the system once, and tries to find an assignment to x° such that for

52 B. Becker et al.

Fig. 2.4 Example of an
incomplete design [23]

all possible assignments to Zg and Z? the state (1, 1) can be reached. Indeed, x° = 1
implies 5o = 1 for all assignments to the black box outputs, however, for Z? = 0
s1 = 1 cannot be obtained (neither by setting x” = 0 nor x* = 1). Thus, BMC(1) is
unsatisfiable and BMC continues by adding a second copy of the transition relation
to the problem. If x° = 1, the current state bit s at the second unfolding evaluates
to 1 as well. Furthermore, if x! is set to 1, the next state bits sg and sf evaluate to 1
for all values of Z} and Z|. Hence, when applying the input pattern x° = x! = 1, a
state violating P can be reached after two steps for all actions of the black box and
thus, BMC(2) is satisfiable and P is unrealizable.

24.1.1 SAT-based Approximations and 01X-Hardness

As already shown in previous sections, QBF can be approximated using 01X-logic.
In the previous example, it was not necessary to use QBF encoding for Zy. When
applying Z, = X, unrealizability still can be proven by applying x° = x! = 1.

Since the problem instances using 01X-modeling are typically easier to solve, we
are using the following verification flow:

Given an incomplete design and an invariant, we start the BMC process with a
pure 01X-modeling, that is we extend Boolean logic by a third value ‘X’ which
then is applied to all black box outputs. Using the two-valued encoding proposed
by Jain (cf. Sect.2.3.2), the BMC unfoldings still yield SAT problems which can
be solved by a state-of-the-art SAT solver. However, 01X-modeling may be too
coarse to prove unrealizability leading to unsatisfiable BMC instances for every
unfolding depth (we call such verification problems 0/ X-hard). In [22] we presented
amethod based on Craig interpolation to classify 01X-hard problems on-the-fly along
the BMC process, thus preventing the solver running into unsatisfiable instances
forever. Additionally, the computed Craig interpolants provide information about

2 Verification of Incomplete Designs 53

the origin of the 01X-hardness, and a subset of the black box outputs which have to
be modeled more precisely using QBF is heuristically determined. Now a QBF-based
BMC tool processes the information gathered from the Craig interpolants and uses
one universally quantified variable for each black box output which needs a more
precise modeling. Using a combined 01X/QBF-modeling (or a pure QBF-modeling)
the BMC unfoldings yield QBF formulas. In that way, the precision of modeling is
not given by the user, but it is adapted automatically based on the difficulty of the
problem.

24.1.2 QBF-based Approximations and QBF-hardness

However, even when using the more precise QBF modeling technique to model
the unknown behavior of the black box, no conclusive result is guaranteed. At this
point, an extension given in [23] is introduced into the workflow. Similar to 01X-
hardness for 01X-modeled incomplete designs, a QBF modeled BMC problem can
now be classified as QBF-hard, if QBF-based BMC would continuously run into
unsatisfiable unfoldings.

As already discussed above, under certain conditions (black boxes having “incom-
plete information”) the BMC procedure using a QBF formulation is not able to prove
unrealizability even if the property is indeed unrealizable. In this sense, the QBF for-
mulation is a sound but incomplete approximation (just as 01X-modeling which is
also an approximation, but is strictly coarser). If unrealizability cannot be proven due
to the approximative nature of the method or if the property is really realizable, then
the BMC procedure described above would produce unsatisfiable QBF formulas for
all unfoldings and would never return a result.

The idea of proving QBF-hardness is as follows: The QBF-based BMC procedure
classifies a property as unrealizable iff there exist input sequences of some length
k such that independently from the black box actions the property will be violated
after k steps. Conversely, the QBF-based BMC procedure is not able to prove unreal-
izability with an unfolding of length k or smaller, if for each input valuation in each
time frame there is an action of the black box such that the property is fulfilled after k
steps, and additionally all states on these paths also fulfill the property. Furthermore,
if we can prove for this scenario that after at most k steps every state has already
been visited before, we can be sure that the QBF-based BMC procedure will never
produce a satisfiable instance, since for every input pattern it is possible to determine
at least one realization of the black box leading to a state which does not violate the
property, independently from the length of the unfolding.

This concept is illustrated in Fig.2.5. Let s = @ be the initial state which
fulfills P. Next, the graph branches for all possible assignments ,?, ooy D to the
primary inputs x. For each of these values ! there exists an action of the black box
outputs Z° = 1) leading to next states s' = ¢e; which all fulfill P. Once a state
is equivalent to a state which was visited before (which is indicated by a dashed
backward arrow in Fig. 2.5 stating that e} = @&, ®? = e}, 2, = &Y, respectively),

this branch does not need to be further explored. If at some depth all so far explored

54 B. Becker et al.

Fig. 2.5 QBF-hardness
graph [23]

states point back to already visited states, then the black box outputs are set in a
way that the system remains in “good states” forever, i.e., we are in the situation
sketched above and we can be sure that the QBF-based BMC procedure will never
produce a satisfiable instance, independently from the length of the unfolding. Thus,
determining whether a graph fulfilling the aforementioned properties exists answers
the question of whether a design is QBF-hard.

In [23] it has been shown that the existence of a QBF-hardness graph can be
checked using a series of QBF formulas. Once the QBF-hardness of the design
under verification is proven, two options are considered. In case of a combined
01X/QBF-modeling an abstraction refinement procedure will identify more black
box outputs for QBF-modeling (in an extreme case yielding a pure QBF-modeled
problem) and repeat the QBF-based BMC procedure. If all black box outputs are
already QBF-modeled, one has to resort to DQBF modeling.

2.4.1.3 DQBF-based Modeling

If no upper bound on the amount of memory in the black boxes is known, one has
to use BMC with DQBF modeling. The dependency sets of the black box outputs
are chosen in the following way: If black box BB; with outputs Z; reads the signals
I;, then in the formula BMC (k), the dependency set DZ{- of Z; in the j-th unrolling
contains all instances of I; up to j, i.e., D, = {If |k =0,...,j} This is exactly
the information that has been read by BB; uf) to the j-th unrolling. In the worst case,
all of this information has been stored in the black boxes’ internal memory and the
output in the j-th step may depend on it.

Still, this approach is an incomplete decision procedure as the decision problem
itself is in general undecidable.

However, if we assume that the black box implementations are combinational
circuits, i.e., that the black boxes do not contain any memory elements, realizability

2 Verification of Incomplete Designs 55

can be formulated as a DQBF without the necessity to unroll the circuit. The follow-
ing formula is satisfiable iff the sequential circuit is realizable with combinational
implementations of the black boxes:

VsVs'vx VI, ...VL, 3Z,d,)...3Z,d,) Iw(s) IW'(s) :
(I(s):>w)/\(w:>P(s))/\(szs’:>wzw’)/\

((W/\ ANG=Fxs.Zi,... .2) ATE X Lo, Zn,s) = w’).
i=1

2.7)

This formula is based on the notion of a winning set: A subset W C § of the states
of the considered circuit is a winning set if all states in W satisfy the invariant P
and, for all values of the primary inputs, the black boxes can ensure (by computing
appropriate values) that the successor state is again in W.

A given incomplete sequential circuit is realizable if there is a winning set that
includes the initial state of the circuit. This can be formulated as the DQBF (2.7).
Similar to the combinational case, we have to take into account that the black boxes
are typically not directly connected to the primary inputs, but to internal signals.
This is done by restricting the requirement that the successor state is again a winning
state to the case when the black box inputs are assigned consistently with the values
computed by their input cones.

This formula (together with the corresponding result for incomplete combinational
circuits, see Sect.2.3.4) also shows that deciding the realizability of invariants for

Fig. 2.6 Workflow partial v heuristically identify
design black box outputs for <- -,
01X-modeling QBF-modeling :
set of black I
SAT-based BMC tool box outputs !
using Craig interpolation g:g;i invariant :
|
combined I
01X-hard? 01X/QBF- |
modeling |
|
SAT? QBF-based BMC tool :
|
|
|
unrealizability SAT? QBF-hard? ,

proven N
|
|
|
|

DQBF-based analysis (< - —

56 B. Becker et al.

incomplete sequential circuits with combinational (or bounded-memory) black boxes
is NEXPTIME-complete.

Figure 2.6 illustrates the complete verification flow for incomplete sequential
circuits.

2.4.2 Model Checking for Incomplete Designs

In this section, we consider methods for incomplete designs which do not consider
bounded model checking as in Sect. 2.4.1, but symbolic model checking using sym-
bolic state set representations, i.e., state set representations based on binary decision
diagrams (BDDs) [6] or and-inverter-graphs (AIGs). The approach generalizes sym-
bolic model checking for complete designs [8] to (approximate) symbolic model
checking for incomplete designs. In doing so, we can extend the consideration of
invariant properties to the consideration of general CTL (computation tree logic)
properties [9].

2.4.2.1 Symbolic Model Checking for Complete Designs

Symbolic model checking for complete designs [8] is applied to Kripke structures
on the one hand, which may be derived from sequential circuits, and to a formula
of a temporal logic (in our case: computation tree logic, CTL) on the other hand.
A (complete) sequential circuit (such as considered in the section before) defines a
Mealy automaton M = (B, B, BN, 5, \, s°) with state set B, the set of inputs
B, the set of outputs B!, transition function J : B!S| x BX — BS!, output function
A: B x BX — BIY and initial state s © € B> The states of the corresponding
Kripke structure are defined as a combination of states and inputs of M. The resulting
Kripke structure for M is given by struct(M) = (S, R, L) where S = BISl x B/,
R C SxS,L:S — V.Visthesetof atomic properties,i.e., V = {xg, ..., Xjxj-1}U
Doy yy—1h R = {((s,%), (s'x") |s,s" € B*, x,x" e BX, §(s,x) =s'}, and
L(s,") ={xi|ei = 1% U{yi [XiGs,") =1}

Given a set V of atomic propositions, the syntax of CTL formulas is given by the
following context-free grammar, where v € V is an atomic proposition and @ the
only non-termination symbol:

D :i=v|-D|(®PVD)|EXD|EGD |EDPUPD.
We write struct(M),s = @ if ¢ is a CTL formula that is satisfied in state s =

(s, x) € S of struct(M). If it is clear from the context which Kripke structure is used,
we simply write s |= ¢ instead of struct(M), s = . |= is defined as follows:

SHere, we assume to have exactly one initial state; it is trivial to extend the following to sets of
initial states.

2 Verification of Incomplete Designs 57

(a) Fixed point iteration for EG (b) Fixed point iteration for EU

xsa(xx) { xev(Xx,xv) {
old :=1; old := 0;
new = xx; new := yy;
while (old # new) { while (old # new) {
old := new; old := new;
new := yx - xpx (old); new := xy + (xx - xgx (old));
} }
return new; return new;
} }

Fig. 2.7 Fixed point iteration algorithms

SEe, peV < pelL(s)

s = = s

sE(@ V) &= skEposkEp,

s E EXp < A’ € §: R(s,s)and s’ E ¢

s = EGy <= there is a path(sy, s1, $2, ...) with
s=spand Vi > 0: (s;,5,+1) € Rand s; = ¢
sEEpUp, <= thereis apath (sg, s1, 52, ...) with
s =spand Vi > 0: (s;, 5;11) € R and there is
ajsothats; =@, andV0 <i < j:s =1

Further CTL operations like A, EF, AX, AU, AG, and AF can be expressed by
using —, Vv, EX, EU, and EG [20].

In symbolic model checking, sets of states are represented by characteristic func-
tions, which are in turn represented by BDDs. Let Saf(¢) be the set of states
of struct(M) which satisfy formula ¢ and let xs.(,) be its characteristic func-
tion, then X g () can be computed recursively based on the characteristic function

Xr (S, x,8) = HES:‘BI (6,» (s,x) = sl’) of the transition relation R:

X Sat (x;) (S, X) =X

X sat () (S, X) = Ai(s,x)

X Sat (—p) (S5 X) = Xsar(p) (S, X)

XSat (p1vg2)) (85 X) 1= Xsar (1) (8, X) V Xsar () (S, X)
Xsat(EX) (8, X) 1= XEx (Xsar () (S, X)

Xsat(EG) (8: X) 1= XEG (Xsar () (S, X)

XSat (Eo1Ups) (8 X) 1= XEU (XSar (1) XSat(p2)) (S, X)

with
XX (0 (s,%) 1= 353 (a5, %,8) - (xxl o) 51X)

Xec and xgy can be evaluated by the fixed point iteration algorithms shown in
Fig.2.7.

58 B. Becker et al.

A Mealy automaton satisfies a formula ¢ iff ¢ is satisfied in all the states of the
corresponding Kripke structure which are derived from the initial state s° of M:

ME ¢ VxeBY :struct(M), s9%) E ¢ < (YX(Xsur(g)ls=s0)) = 1.

2.4.2.2 An Approximate Symbolic Model Checking Method for
Incomplete Designs with Flexible Handling of Unknowns

(1) Flexible modeling of black box outputs in symbolic simulation

For symbolic CTL model checking of a given design, a symbolic representation of its
output function A and of its transition function § are needed first. In order to generalize
CTL model checking to incomplete designs, the potential effect of the black box
outputs to the remaining design needs to be modeled in order to compute A and §. As
in the sections before, we consider two different methods modeling black box outputs
with differing accuracy: The first one (symbolic (0, 1, X)-simulation) is based on
ternary (0, 1, X) logic and the second one (symbolic Z;-simulation) introduces for
each output of a black box a separate variable Z;. Similarly to Sect.2.4.1.1, we
consider a method for flexible modeling of different black box outputs by differing
methods. This method will be applied later on for our approximate model checking
algorithm.

For symbolic (0, 1, X)-simulation a new variable Z is introduced, which is used
to model the unknown value X of the black box outputs. Now, for each output g; of
the incomplete design with primary input variables xi, . . ., x,, a BDD representation
of g; is obtained by using a slightly modified version of symbolic simulation [7]. g;
depends on variables x, ..., x, and Z and has the following property:

7D

(a) Incomplete design (b) (0,1, X)-simulation for zp=z;=0

Z]_\)E 7 o
Z -7

T

YA
\ =0
o) >

1‘]-22

(¢) Symbolic (0, 1, X)-simulation (d) Symbolic Z;-simulation

Fig. 2.8 Different methods to analyze an incomplete design

2 Verification of Incomplete Designs 59

Fig. 2.9 An exemplary
incomplete circuit

1, if (0,1,X)-simulation with

input (g1, ..., ,) produces 1
] 0, if (0,1,X)-simulation with
8i |xl£§,ll - input (g1, ..., &,) produces 0 2.8)
Z, if (0,1,X)-simulation with
input (€1, ..., &,) produces X

See Fig.2.8c for an example.

To compute BDDs for the functions g; by symbolic simulation the inputs of the
circuit are associated with unique BDD variables as in a conventional symbolic
simulation [7]. All output signals of black boxes are associated with the new variable
Z. Now BDDs for the functions computed by the gates of the circuit are built in
topological order treating the black box outputs (associated with variable Z) like
inputs of the circuit. The gates of the circuit can then be processed in a manner
similar to a conventional symbolic simulation.® When we process an and, (or;)
gate, we combine the BDDs for the two predecessor functions by a BDD AND (OR)
operation as in the conventional symbolic simulation. For an inv gate we perform a
NOT operation on the BDD of the predecessor function, now followed by a compose
operation (see, i.e., [6]) which composes Z for Z (written as g| 77 for acomposition
of Z for Z in g).

It is easy to see that this (modified) symbolic simulation leads to BDD represen-
tations fulfilling property (2.8).

In symbolic Z;-simulation, a new variable Z; is introduced for each black box out-
putinstead of using the same variable Z for all black box outputs, and a (conventional)
symbolic simulation is performed. Figure2.8d shows an example for symbolic Z;-
simulation. (Note that—in contrast to symbolic (0, 1, X)-simulation in Fig. 2.8c—the
first output can now be proven to be constant 0.)

Flexible Z |/ Z;-representation of incomplete circuits combines the two methods
and allows some black box outputs to be represented as in symbolic (0, 1, X)-
simulation and some black box outputs as in symbolic Z;-simulation. Such a flexible
representation of an incomplete circuit is computed as follows:

For each output of the black boxes, which are to be handled as in symbolic
(0, 1, X)-simulation, we use the variable Z to model the black box output, while for
each output of the black boxes, which are to be handled by symbolic Z;-simulation we

6Since all types of gates can be expressed using two-input and» gates, two-input or, gates and inv
gates, we can assume w. 1. 0. g. that the gates have types and», or; or inv.

60 B. Becker et al.

use a new Z; variable. The simulation now considers the latter black box outputs as
additional inputs and then performs symbolic (0, 1, X)-simulation (always replacing
Z by Z when processing inv gates).

Itis easy to see that the resulting BDD representation for the circuit outputs g; with
primary input variables x1, . .., x,, (Z;-simulated) black box outputs Z, . .., Z,, and
the Z-variable as inputs have the following property:

1, if (0,1,X)-simulation with input
(E1y -+ Ens My - -+ M) produces 1

2] 0, if (0,1,X)-simulation with input
i = =

spZen (E1y s Eny My -+, M) produces O
s Z, if (0,1,X)-simulation with input
(E1y vy Ens My - -+ M) produces X.

Example 2.6 Figure?2.9 shows an example: If this circuit is simulated by using sym-
bolic (0, 1, X)-simulation (meaning that Z is assigned to the outputs of both black
box 1 and black box 2), a total number of 3 variables are needed (x;, xo, Z) and the
resulting function for the output is fz; =Z.

If the circuit is simulated by using symbolic Z;-simulation instead (meaning
that for each output of black box 1 and black box 2 a new Z; variable is used), 9
variables are needed (x;, x2, Z, ..., Z7), and the function for the output is fz, =
71)(1 +Z - (72 + —1(727324 + 227325 + 722326 + ZzZ3Z7)) (when variables
Zy, ...Zq are assigned top down to the black box outputs appearing in Fig.2.9).

When using the flexible Z/Z;-method for modeling black box outputs, assigning
Z to all outputs of black box 2, but different Z;’s to the outputs of black box 1,
e.g., we end up using six variables (x, x2, Z, Z;, Z», Z3) and obtain the function
Siex = Z1x1 + Zy - (X2 + 2).

So, the flexible method generates an output function that is obviously less com-
plicated than the result of symbolic Z;-simulation, yet contains more information
than the result of symbolic (0, 1, X)-simulation. To give an example, for x; =1 and
xp = 0, the output can be proven to be 1 using the flexible method, while it is not
possible to obtain this information from symbolic (0, 1, X)-simulation.

(2) Basic principle of symbolic model checking for incomplete designs
We start by describing the basic principle. Symbolic model checking for complete
designs computes the set Saz () of all states satisfying a CTL formula ¢ and then
checks whether all initial states are included in this set. If so, the circuit satisfies ¢.
The situation becomes more complex if we consider incomplete circuits, since
for each replacement of the black boxes we may have different state sets satisfying
. In contrast to conventional model checking, we will consider two sets instead
of Sat(¢). These two sets result from different replacements of the black boxes in
incomplete circuits:

2 Verification of Incomplete Designs 61

Definition 2.5 Let I be an incomplete circuit and let r be a replacement of the
black boxes in I by (combinational or sequential) circuits which transforms 7 into a
complete circuit I”. Let Z be the set of all possible replacements of this kind. For a
replacement r € Z let Sat'(y) be the set of states of /" satisfying . For the case that
the replacement r contains sequential circuits, we define a set Sat}, () which results
from Sat’(y) by existentially quantifying the state bits corresponding to memory
elements inside the black box replacements, and the set Sar’, () which results by
universally quantifying these state bits.

o SatgX(yp) is defined by SatZ**(¢) := |J, .4 Saty (). We define that a state in
Satg** () possibly satisfies the property ¢.

o Sar(yp) is defined by Sar{**(¢) := (), .4 Sat)y (). We define that a state in
Sat*' () definitely satisfies the property (.

Satg"a“‘(@) contains all states, for which there is at least one black box replacement
(together with some initialization for the memory elements inside these replace-
ments) so that ¢ is satisfied. In order to compute Saz5**“'(¢), we could conceptually
consider all possible replacements » € Z of the black boxes, compute Sat'(y) for
each such replacement by conventional model checking, perform an existential quan-
tification for the state bits of memory elements inside the black boxes, and determine
Satg¥*(¢) as the union of all sets Sat}.(¢). (Of course, this approach is not feasible,
since the set % may be large and is not even finite, if we allow replacements by
sequential circuits).

In a similar manner, Satj"”‘((p) contains all states, for which ¢ is satisfied for
all possible black box replacements (regardless of the initial values for the memory
elements inside black boxes).

Given Satg®'(¢) and Saz{**'(y), it is easy to prove validity and to falsify real-
izability for the incomplete circuit:

Lemma 2.1 If all initial states are included in Sat{“"(p), ¢ is satisfied for all
replacements of the black boxes (“ is valid”).

Ifthere is at least one initial state not belonging to Sa (), there is no replace-
ment of the black boxes so that o is satisfied for the resulting complete circuit (“p is
not realizable”).

exact
I

Proof If all initial states are included in Saz{***'(¢), then for each replacement r € Z
all initial states are included in Sat, (). This in turn means that all extensions of
initial states by arbitrary initial values for memory elements inside the black boxes
are included in Sat’(p), i.e., o is valid.

If there is at least one initial state s° outside of SatgF* (), then s is not included
in Sat} () for all replacements r € & of the black boxes. Thus, all extensions of
s by initial values for memory elements inside the black boxes are not included in
Sat’(p). Since it is not possible to choose a replacement for the black boxes (together
with some initialization to the memory elements of the black boxes) such that the
initial state s satisfies ¢, ¢ is not realizable.

62 B. Becker et al.

Just as black boxes in incomplete circuits lead to states definitely satisfying ¢ on
the one hand and states possibly satisfying ¢ on the other hand, there are also two
types of transitions between states in an incomplete circuit:

e There are transitions which exist independently from the replacement of the black
boxes, i.e., for all possible replacements of the black boxes (we will call them
‘fixed transitions’) and

e there are transitions which may or may not exist in a complete version of the
design—depending on the implementation for the black boxes (we will call them
‘possible transitions’).

Formally, fixed and possible transitions are defined as follows:

Definition 2.6 Let / be an incomplete circuit with state set B! and set of inputs
BIX. Let r € Z be a replacement of the black boxes leading to a complete circuit
I" and let B! be the state space formed by |sr| state bits inside the black box
replacements.

e The incomplete circuit has a fixed transition from state (s, x) € BISI x B! to state
(s, x")BISI x B, if for each replacement » € Z and all sr, sr’ € B!, there is a
transition from (s, sr, x) to (s’, sr’, x’) in the Mealy automaton corresponding to
1",

e The incomplete circuit has a possible transition from state (s, x) € BIS! x BX! to
state (s, x)B!S x BIX!, if there is a replacement r € Z and there are sr, sr’ € BIS!,
such that there is a transition from (s, sr, x) to (s’, sr’, x) in the Mealy automaton
corresponding to I".

Fixed and possible transitions can be used in order to compute states that possibly
or definitely satisfy a property ¢.
(3) Approximations
For reasons of efficiency, we do not compute the exact sets of fixed and possible
transitions and we do not compute the exact sets Saz2**“(¢) and Sat{**'(p).
Instead of SatZ**'(yp) and Sat{™'(¢) we compute approximations Satg () and
Sats () of these sets. To be more precise, we will compute over-approximations
Satg (p) D Satd** (o) of Satg*' () and under-approximations Sats () C Sats** ()
of Sat** ().
Because of Satg (@) 2 Satg*' () D Saty. (@) 2 Sat’(p) for arbitrary replacements
r of the black boxes with arbitrary initialization of memory elements inside black
boxes we can also guarantee for Sazz (¢) that ¢ is not realizable if some initial state
is not included in Safg (). Analogously we can guarantee that ¢ is valid, if all initial
states are included in Saty (@) (since Sats (@) C Sat™ () C Sat’, (p) € Sat'(p)).
This argumentation results in the following lemma:

Lemma 2.2 Let Sat () be an under-approximation of Sat{™“ (), Satg (¢) an over-
approximation of Satg (). If all initial states are included in Saty (), then @ is

valid. If there is an initial state that is not included in Satg (@), then @ is not realizable.

2 Verification of Incomplete Designs 63

Approximations Satg () and Sat, () will be computed based on an approximate
transition relation and on approximate output functions for the corresponding Mealy
automaton M. Approximations of transition function § and output function A are
computed using symbolic Z/Z;-simulations as defined above.

We start with the computation of two approximations of the sets of states
in which J; is true, i.e., we start with the computation of under-approximations
Sats (y;) and overapproximations Sazg (y;). Under-approximations Sat, (¢) and over-
approximations Satg (y) for arbitrary CTL formulas ¢ will be considered later on in
this section.

For an incomplete circuit, let there be a number of black boxes with outputs
modeled by Z and some other black boxes with outputs modeled by Z;’s. We apply
symbolic Z/Z;-simulation for computing the transition functions and the output
functions. Thus, we introduce new variables Z and Z; = (Z; 1, Z; 5, . ..). The sym-
bolic symbolic Z/Z;-simulation now provides symbolic representations of the output
functions \; (s, X, Z, Z;) and transition functions d,(s, X, Z, Z;).

In standard model checking for complete designs, an atomic property y; is satisfied
for a state (s™ x) € BISFXif \; [(_gin x—xin = 1.

Here we include a state (s ™ x) into Sat, (y;),if A; is 1 for (s fix g fixy assigned to
(s, x) and all possible assignments to Z and Z;. We include (s fix xfxy into Satz (y;),
if \; is 1 for (s™ x*) assigned to (s, x) and some assignment to Z and Z;. Thus we
define the characteristic functions of Sats (y;) and Satg (y;) as follows:

Definition 2.7
XSaty (1) (S, X) 1= VZVZ, ()\i (s, x, Z, Z,)) (2.9)

Xsurs () (8, X) := 3ZIZ; (N (s, X, Z, Zy)) (2.10)
Lemma 2.3 For Saty(y;) and for Satg(y;) as defined in Definition 2.7:
Sata(y;) S Sard™(y;), Satg““(y;) S Satg ().

Proof If \;|s—six x—xi = 1 for some state (s x) e BIS**I then we know that),
is 1 in this state independently from the replacement of the black boxes, so (s ¥ x*)
can be included into Sa# (y;) and Satg (y;).

If X\i|s=six x=x= = 0, then the output)\; is Oin this state independently from the
replacement of the black boxes, so we can include (s xf%) neither into Sata (y;)
nor into Satg (y;).

In any other case, the value of y; is unknown in this state and thus we can include
(s™ x %) into Sazz (v;), but not into Sats (v;).

By Eq. (2.9) only states (s, x) with \; |s_gi x—xt = 1 are included in Sat4(y;),
and by Eq. (2.10) all states (s x) with \; [s—six x—xt 7 O are included in Satz (y;).

Now the computation of Sat4(p) and Satg () is performed based on fixed and
possible transitions. Here we work with approximations, too: We compute an over-
approximation of the possible transitions, represented by the characteristic function

64 B. Becker et al.

X&; (S, X, 8"). (An under-approximation xg, (s, X, s ') containing at most the fixed
transitions could be computed as well, however it turns out that it is not really needed
for our algorithm.)

We define our over-approximation of the possible transitions as follows:

Definition 2.8

Is|—1

.80 =321, 32(6i6.x. 2.2 = 5))). @.11)

i=
The following lemma states that g, over-approximates the possible transitions:

Lemma 2.4 If xg, (s/™, x /™ &' ¥y = 0, then there is no possible transition from
(8™, xY to (s, x' %) (for an arbitrary next input x' %),

Proof Tf X, (s o, x fX, ¢’) = 0, then vzl(\/}ig‘ VZ(5i(s B, x B, Z,Z)) #

si’ ﬁ")) = 1. This means that for an arbitrary fixed output Z ?" of the black boxes mod-

eledby Z;’sthereisan0 < i < [s|—1withVZ(&;(s™, x™, Z, Zf*) # 5/ ™) = 1(»).
According to the symbolic Z-simulation, &;(s i*, x %, 7, Z %) = 7z, §;(s ™ x fix,
Z, 7 ?") =5/ or s xx 72, Z f"‘) = —s;/ iX_In the two former cases, ()
would not hold, thus we have §; (s*, xfiX, Z, Z{”‘) = =g,/ je., the output value of
d; differs from s;" X independently from the behavior of the Z-modeled black boxes.

Altogether we can conclude that the output value of ¢ for input (s*, x*) differs
from s’ * independently from the values at the outputs of black boxes, i.e., there
cannot be a possible transition from (s, x*) to (s X, x’fix),

Remark 2.1 Extending Definitions 2.5 and 2.6 with respect to our approximations,
we will denote in the following not only the states in Sazg**'(), but also the states
in Satg () by ‘states possibly satisfying ¢.” Similarly, we characterize all transitions
described by x g, as ‘possible transitions.’

Based on xg,, Sata(y;) and Satz(y;), it is possible to define rules how arbitrary
CTL formulas can be recursively evaluated. We show here how to compute sets
Sats (-) and Satg (-) for CTL formulas =, (¥1 V ¥,), EG1, and EYU1,.

For each state (s, X), X &, (S, X, s} gives us the set of s 'values the possible successors
can have. Each of these different s’ values represents a set Sg := {(s!x)|x’ € BX} of
possible successor states sharing this s’ value (yet with arbitrary value of x’). So, if
for a state (s, X) one of the states in one of these possible successor sets Sg: possibly
satisfies ¥ (i.e., is in Satg (¥)), the current state possibly satisfies EX) and can thus
be included in Safz (EX1)). Figure 2.10 illustrates the sets.

Definition 2.9 Sazz (EX1)) is the set of states for which there is a possible successor
that is in Satg (). This is represented by:

e (5, %) 1= 38 (e (5, %, 3% (s |y 51 %)).

2 Verification of Incomplete Designs 65

Satg (1) (over-appr.) Sat () (under-appr.)

@ ~— into Satp(EX1)) — @ ~— into Sata(EX1))
(

over-appr.) (under-appr.)

Fig. 2.10 Evaluation of Saty (EX1)), Satg (EX))

On the other hand, if in each set Ss/ of possible successors of (s, x) there is at
least one state that definitely satisfies ¢ (i.e., is in Sats (¥)), then for each black
box implementation at least one successor of state (s, x) satisfies ¢ and thus, the
current state (s, x) definitely satisfies EXv and can be included in Saty(EXV).
Again, Fig.2.10 illustrates the sets.

Definition 2.10 Sats (EX1)) is the set of states for which in each set S of possible
successors there is at least one state that is in Saz (¢/). This is represented by:

X Sats (EX+p) (S5 X) 1= Vs/(xRE (s, %, 8) = 3Ix(Xsaty | qeq;)(si X’)).

Lemma 2.5 Let Sats (1)) be an under-approximation of Sat*** (1)) and Satg (1)) be
an over-approximation of Satg™“' (). For Sats(EX1) as defined in Definition 2.10
and for Satg (EX1)) as defined in Definition 2.9, the following holds:

Saty(EX1p) C Sat™ (EXv), Sats™(EXy) C Satg(EX1).

The proof of this lemma follows from the considerations given above the definitions.

Negation can be defined as follows: Since Safg (1)) is an over-approximation of
all states in which v may be satisfied for some black box replacement, we do know
that for an arbitrary state in B! x BXI\ Sazz (1) there is no black box replacement so
that 1) is satisfied in this state or, equivalently, —1) is definitely satisfied in this state
for all black box replacements. This means that we can use B x B\ Satz (1)) as
an under-approximation Sat (—). Since an analogous argument holds for Sats (1))
and Satg (—1)) we define

Definition 2.11 X 54, (=) (S, X) 1= XSarz (v (S, X) and X g (=) (S5 X) 1= Xat, (1) (S, X).

Sats (1 V 1) and Satg (1)) V 1) are computed as usual in model checking for
complete designs.

66 B. Becker et al.

Definition 2.12 X Saty (1h1Vab) (s,x) = (X5al,4 @) VY XSat (wz))(s, x) and
X Sate (1 vipa) (83 X) = (XSatp(w0y) V XSatp (1)) (S, X).

Finally, we define ¢ = EG1 and ¢ = E; U1, to be evaluated by their standard
fixed point iterations (see Fig.2.7) based on the evaluation of EX defined above (two
separate fixed point iterations for Sat4 and Satg). We do not need to define more
CTL operations, since other CTL operations can be expressed using the operations
discussed so far.

Lemma 2.6 For the sets Saty(—), Satg(—)), Saty (Y1 Vv), Satg (W V i),
Sata(EGYY), Satg (EGYY), Sata(EvUv,), and Satg (EvU,) as defined above,
the following holds:

Saty (=) € Saty " (—)),
Satg (=) C Satg (=),
Saty (Y1 V 1)) C Sat (y V 1),
Satg " (Y V ha) S Satg (11 V),
Saty(EGYy) C Satjm“t(EGz/J),
Satg““(EGY) C Satz (EGY),

Saty(EY1Uv) C Satd™ (EvUb),
Satg ' (E1Ut) C Satg(EY1Us).

Theorem 2.1 The result of the recursive computation can be evaluated as follows” :

(VX (X saty () ls=s0)) = 1 = pis valid
(EIX(XSatE(L,o)|S:sU)) = 1 = s not realizable.

Proof The proof follows directly from Lemmas 2.2, 2.3, 2.5, and 2.6.

(4) Including Z;-variables into the state space

A further improvement on the accuracy of the two approximated sets considered
above can be obtained by including Z;-variables assigned to black box outputs into
the state space.

As a motivation for this, consider the simple CTL formula EF (y A —y) for a
design in which a black box output is directly connected to the primary output y. In
every state, (s, X) both y and —y are possibly satisfied (depending on the black box
implementation), but they are not definitely satisfied. Thus, the method described so
far computes the result that y A —y is possibly satisfied in every state (s, x), but not
definitely, and the same result holds for EF (y A —y). For this reason, the method
is neither able to prove validity nor to falsify realizability for the given incomplete
design and the given formula.

However, it is clear that there will be no point in time during the computation
where y is simultaneously true and false. Problems of this kind can be solved if

7Remember that s is the initial state of the circuit.

2 Verification of Incomplete Designs 67

we include Z;-variables assigned to black box outputs into the states of the Kripke
structure. In this way, the according black box output values Z; are constant within
each single state and therefore in our example y has a fixed value for each state.

Note that it is not always necessary to include all Z;’s into the state space; this
provides another possibility of flexibly processing the unknowns at this point, which
can be used as a tradeoff between efficiency and accuracy.

Let Z, be the Z;-simulated black box outputs that are included into the state
space and let Z; be the Z;-simulated black box outputs that are not included. Then
the values of Z, are constant within each single state, while the values of Z; are
arbitrary as they were before.

Both the output function A(s, X, Z, Z;, Z,) and the transition function (s, x, Z, Z,,
Z,) can be computed by using symbolic Z/Z;-simulation, where for symbolic sim-
ulation it is not necessary to distinguish between Z; and Z,.

The computation of sets Sa#, (-) and Safg(-) is performed in a manner similar to
the previous section. We start with the sets of states definitely or possibly satisfying
the atomic CTL formula y;:

We include a state (s x X Z) ¢ BIsIxIXxI1Zl into Sazy (y;) (and Satg (1)), if A;
is 1 for (s ™ xfix ng) assigned to (s, X, Z,) and all possible assignments to Z and
Z,, since in this case); is 1in this state independently from the replacement of the
black boxes.

We include (s x X Z,%) ¢ BlsIxIXxI1Zl into Satg (y;),if \; is 1 for (s x X Z,1x)
assigned to (s, X, Z,) and some assignment to Z and Z;. However, if); is 0 for
(s X x X 7 %) assigned to (s, x, Z,) and all assignments to Z and Z;, we include
(sfix xfix Zg") neither into Sats (y;) nor Satg (y;), since then the output J; is Oin this
state independently from the replacement of the black boxes. Altogether we define
the characteristic functions of Sats(y;) and Satg (y;) as

Definition 2.13

Xsats () (8, X, Zp) :=VZVZ (N (s, X, Z, 2y, Z,))
Xsuts () (8, X, Zp) :=3ZIZ; (N (s, X, Z,Zy, L,)).

Lemma 2.7 For Saty(y;) and for Satg(y;) as defined in Definition 2.13:

VZo X saty (i) < Xsaree' (s XSargt(y) < o X Satp (y:)-

The lemma follows from the considerations given above the definition.
Analogously, we define an over-approximation x g, for the characteristic function
of possible transitions:

Definition 2.14

Is|—1

xr (5%, Z,8) = (32, [[32(5065 %, 2,21, 2) =).
i=0

68 B. Becker et al.

Based on Sats (y;), Satg (y;) and x g, , the sets Sats (EX)) and Satg (EX1) can be
computed by arguments similar to the previous section. The main difference is that
we have to handle the additional variables Z, in the state space correctly:

Xr; (S, X, Z,,s") gives us the s’ values of possible successors of a state (s, X, Z,).
Now each of these different s ' values represents a set Sg = {(s,x’,Z))|x’ €
B, Z! € Bl%!} of possible successor states sharing this s value. For Satz (EX1)),
we include all states (s, x, Z,) with the following property: There exists a possible
successor set Sg in which there is a x’, so that for at least one black box output value
Z): (s;x.Z)) possibly satisfies).

Definition 2.15 We define Safz (EX) by
X Sat (EX) (S, X, Zp) i= HS/(XRE (8. X, Zo, 8" IXAZ, (X s)| 33) (57 X Z/o)).

Zo <17y

Similarly, for Sazy (EX1)), we include all states (s, X, Z,), for which in all possible
successor sets Sy there is a X', so that for all black box output values Z.: (s! X, Z,)

definitely satisfies v, i.e.,

Definition 2.16 We define Sazy (EX 1)) by
X Saty (Exy) (8, X, Zy) 1= VS/(XRE (8. X, Zy, 8") = IXVZ] (X sat,)| iisx,’,) (six! Z;))~

Zo<1Z,
Lemma 2.8 Let VZ, X su,(y) represent an under-approximation of Sat{“' (1) and
let 3Z, X sap () Fepresent an over-approximation of Satg““ (). For Saty(EX) as
defined in Definition 2.16 and for Satgz(EX1)) as defined in Definition 2.15, the
following holds:

VY2, X suty (Exy) < X Saté=c! (EX1)) and X Satgact (EXvp) = 3Z., X sty (EX)-

Again, the proof of the lemma follows from the considerations given above the
definitions.

The computation of all remaining CTL operators —, EG and EU is performed as
already described before.

Theorem 2.2 The result of the recursive computation can be evaluated as follows:

(VXVZO(XS(IZA((,J)|S=SO)) =1 — is valid
(3XVZ, (Xsar) ls=s0)) = 1 = ¢ is not realizable.

Proof The proof follows from Lemmas 2.2, 2.7, and 2.8.

Obviously, including all Z;-variables into the state space is one extreme case of
the method presented in this section which leads to the tightest over- and under-
approximations of Sa#, (-) and Sazg (-). If we include only a part of the Z;-variables
into the state space, then smaller sets of states and transitions have to be considered,
which can lead to a less complex model checking run without necessarily losing the
accuracy needed for solving the problem.

2 Verification of Incomplete Designs 69

(5) Exact symbolic model checking for black boxes with bounded memory

Despite the methods described so far being approximate, they are able to disprove
realizability and prove validity in many practically relevant cases [24]. As already
mentioned in Sect.2.4, the general decision problem with several black boxes is
undecidable [26] however. [24] presents a concept how to provide an exact solution
to a restricted problem by means of a conventional symbolic model checker. Under
assumption of an upper bound to the number of the internal states of the black boxes
(‘bounded memory’), the exact set of black box replacements for which a property is
satisfied can be symbolically computed, i.e., an exact answer to both the realizability
and the validity question can be given under the bounded memory assumption. The
algorithm is based on the extraction of the memory out of the black boxes and
(conceptually) on considering all possible choices for the black box instantiations in
parallel by means of symbolic methods.

2.5 Conclusion

In this chapter, we have provided a comprehensive study of the verification of incom-
plete combinational and sequential circuits. We have presented different methods for
modeling black boxes: (1) 01X-logic, which is efficient, but pessimistic and over-
estimates the set of signals in the circuit which carry an unknown value, (2) quantified
Boolean formulas, which constitute an exact formalism for combinational circuits
with a single black box, but which are incomplete in other cases, and (3) dependency-
quantified Boolean formulas, which are accurate for both combinational and sequen-
tial circuits with an arbitrary number of black boxes as long as an upper bound on the
amount of memory in the black boxes can be given in advance. We have provided
algorithms trading off complexity and precision for (1) the partial equivalence check-
ing (PEC) problem of combinational circuits and (2) the realizability (validity) of
invariant properties and general CTL properties for incomplete sequential circuits.
For invariant properties we presented algorithms based on SAT, QBF and DQBF
solvers, for CTL properties algorithms based on symbolic BDD or AIG represen-
tations. If the problems are proven to be realizable by our DQBF based method,
our solver HQS is also able to extract corresponding implementations for the black
boxes as Skolem functions for the existential variables [31]. An interesting open
problem is the question how to compute certificates for unrealizability as well for
checking with a separate proof checker. Another objective for future work is further
increasing the efficiency of the underlying SAT, QBF, and DQBF solvers to improve
the scalability of the approach for the approximative as well as the exact methods.
Moreover, it will be interesting to look into the generalization of other successful
verification methods such as Property Directed Reachability (PDR or IC?) [5, 11]
from complete to incomplete circuits.

70

B. Becker et al.

References

1.

2.

3.

12.

13.

14.

15.

18.

A. Biere, Resolve and expand, in International Conference on Theory and Applications of
Satisfiability Testing (SAT), Vancouver, BC, Canada (2004)

A. Biere, M. Heule, H. van Maaren, T. Walsh (ed.), in Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, vol. 185 (IOS Press, 2008)

R. Bloem, U. Egly, P. Klampfl, R. Konighofer, F. Lonsing, SAT-based methods for circuit syn-
thesis, in International Conference on Formal Methods in Computer Aided Design (FMCAD),
Lausanne, Switzerland (IEEE, 2014), pp. 31-34

R. Bloem, R. Konighofer, M. Seidl, SAT-based synthesis methods for safety specs, in Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI),
ed. By K.L. McMillan, X. Rival. LNCS, vol. 8318 (Springer, San Diego, CA, USA, 2014), pp.
1-20

A.R. Bradley, SAT-based model checking without unrolling, in International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 6538
(Springer, 2011), pp. 70-87

R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput.
Aided Des. 35(8), 677-691 (1986)

R.E. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Comput. Surv. 24, 293-318 (1992)

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142—170 (1992)

E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244-263
(1986)

S.A. Cook, The complexity of theorem-proving procedures, in Annual ACM Symposium on
Theory of Computing (STOC) (ACM Press, 1971), pp. 151-158

. N. Eén, A. Mishchenko, R.K. Brayton, Efficient implementation of property directed reacha-

bility, in International Conference on Formal Methods in Computer Aided Design (FMCAD)
(FMCAD Inc., 2011), pp. 125-134

A. Frohlich, G. Kovasznai, A. Biere, H. Veith, iDQ: Instantiation-based DQBF solving, in
International Workshop on Pragmatics of SAT (POS), ed. By D.L. Berre. EPiC Series, vol. 27
(EasyChair, Vienna, Austria, 2014), pp. 103-116

K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking for
partial implementations revisited, in Workshop “Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen” (MBMYV), ed. By C. Haubelt,
D. Timmermann (Universitit Rostock, ITMZ, Rostock, Germany, 2013), pp. 61-70

K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking of
partial designs using dependency quantified Boolean formulae, in /[EEE International Confer-
ence on Computer Design (ICCD), Asheville, NC, USA (IEEE Computer Society, 2013), pp.
396403

K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, B. Becker, Solving DQBF through
quantifier elimination, in International Conference on Design, Automation and Test in Europe
(DATE), Grenoble, France (IEEE, 2015)

. E. Giunchiglia, P. Marin, M. Narizzano, sQueezeBF: an effective preprocessor for QBFs based

on equivalence reasoning, in International Conference on Theory and Applications of Satisfi-
ability Testing (SAT), ed. By O. Strichman, S. Szeider. LNCS, vol. 6175 (Springer, Edinburgh,
UK, 2010), pp. 85-98

. A.Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, M.S. Hsiao, Testing, verification, and

diagnosis in the presence of unknowns, in I[EEE VLSI Test Symposium (VTS) (IEEE Computer
Society, Montreal, Canada, 2000), pp. 263-270

S. Jo, A.M. Gharehbaghi, T. Matsumoto, M. Fujita, Debugging processors with advanced fea-
tures by reprogramming LUTs on FPGA, in International Conference on Field-Programmable
Technology (FPT) (IEEE, Kyoto, Japan, 2013), pp. 50-57

2 Verification of Incomplete Designs 71

19.

20.
21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

S. Jo, T. Matsumoto, M. Fujita, Sat-based automatic rectification and debugging of combina-
tional circuits with LUT insertions. IPSJ Trans. Syst. LSI Des. Methodol. 7, 46-55 (2014)
K.L. McMillan, Symbolic Model Checking (Kluwer Academic Publisher, 1993)

A.R. Meyer, L.J. Stockmeyer, Word problems requiring exponential time: preliminary report,
in Annual ACM Symposium on Theory of Computing (STOC) (ACM Press, 1973), pp. 1-9

C. Miller, S. Kupferschmid, M.D.T. Lewis, B. Becker, Encoding techniques, Craig interpolants
and bounded model checking for incomplete designs, in International Conference on Theory
and Applications of Satisfiability Testing (SAT). LNCS, vol. 6175 (Springer, 2010), pp. 194-208
C. Miller, C. Scholl, B. Becker, Proving QBF-hardness in bounded model checking for incom-
plete designs, in International Workshop on Microprocessor Test and Verification (MTV) (IEEE
Computer Society, Austin, TX, USA, 2013)

T. Nopper, C. Scholl, Symbolic model checking for incomplete designs with flexible modeling
of unknowns. IEEE Trans. Comput. 62(6), 1234-1254 (2013)

G. Peterson, J. Reif, S. Azhar, Lower bounds for multiplayer non-cooperative games of incom-
plete information. Comput. Math. Appl. 41(7-8), 957-992 (2001)

A. Pnueli, R. Rosner, Distributed systems are hard to synthesize, in IEEE Symposium on
Foundations of Computer, Science (1990), pp. 746-757

C. Scholl, B. Becker, Checking equivalence for partial implementations, in ACM/IEEE Design
Automation Conference (DAC) (ACM Press, Las Vegas, NV, USA, 2001), pp. 238-243

A. Smith, A.G. Veneris, M.F. Ali, A. Viglas, Fault diagnosis and logic debugging using boolean
satisfiability. IEEE Trans. CAD Integr. Circuits Syst. 24(10), 1606-1621 (2005)

A. Siilflow, G. Fey, R. Drechsler, Using QBF to increase accuracy of SAT-based debugging,
in International Symposium on Circuits and Systems (ISCAS) (IEEE, Paris, France, 2010), pp.
641-644

G.S. Tseitin, On the complexity of derivation in propositional calculus. Stud. Constr. Math.
Math. Logic Part 2, 115-125 (1970)

K. Wimmer, R. Wimmer, C. Scholl, B. Becker, Skolem functions for DQBEF, in International
Symposium on Automated Technology for Verification and Analysis (ATVA), ed. By C. Artho,
A. Legay, D. Peled. LNCS, vol. 9938 (Springer, Chiba, Japan, 2016)

Author Biographies

Bernd Becker received the Diploma in Mathematics in 1979, the Doctoral and the Habilitation
degree in Computer Science in 1982 and 1988, respectively, all from Saarland University. In 1989,
he joined the Institut fiir Informatik at J.W.Goethe- University Frankfurt as an Associate Profess-
sor for “Complexity Theory and Efficient Algorithms”. Since 1995, he is a Full Professor (Chair of
Computer Architecture) at the Faculty of Engineering, University of Freiburg. His research activ-
ities include design, test and verification methods for embedded systems and nanoelectronic cir-
cuitry. Bernd Becker was a Co-Speaker of the DFG Transregional Collaborative Research Center
“Automatic Analysis and Verification of Complex Systems (AVACS)” from 2004 to 2015 and is
a Director of the Centre for Security and Society, University of Freiburg. He is a fellow of IEEE
and Member of Academia Europaea.

72 B. Becker et al.

Christoph Scholl received the Dipl.-Inform. and the Dr.-Ing. degrees in computer science from
University of Saarland, Germany, in 1993 and 1997, respectively. In 2002 he received the venia
legendi from University of Freiburg, Germany. In 2002/2003 he was an associate professor for
computer engineering at the University of Heidelberg and in 2003 he joined the University of
Freiburg as an associate professor in the Department of Computer Science. His research interests
include logic synthesis, real-time operating systems, and the verification both of digital circuits
and systems and of timed and hybrid systems. In this context a main focus of his work lies on the
development of efficient symbolic data structures and algorithms as well as new solver techniques.

Ralf Wimmer received his diploma with distinction in computer science from the Albert-Ludwigs-
Universitit Freiburg, Germany in 2004. Afterwards, he worked as a Ph.D. student at the Chair of
Computer Architecture at the same university, advised by Prof. Dr. Bernd Becker. He obtained
his Ph.D. degree with distinction in 2011 for his thesis on symbolic methods for probabilistic ver-
ification. Since then, he is continuing his work as a research assistant and leader of the verifica-
tion group at the Chair of Computer Architecture. His research focus is on symbolic methods and
solver technologies, and their application for the verification of digital and stochastic systems.

Chapter 3
Probabilistic Model Checking: Advances
and Applications

Marta Kwiatkowska, Gethin Norman and David Parker

3.1 Introduction

Computer systems play an important role in almost all aspects of everyday life,
including many examples where safety and reliability are critical, from control sys-
tems for autonomous vehicles to embedded software in medical devices such as
cardiac pacemakers. There is therefore a demand for rigorous, formal techniques
which can verify that these systems function correctly and safely. Often, this requires
an analysis of quantitative aspects such as reliability, responsiveness and resource
usage. Furthermore, since such devices often operate in unpredictable and unknown
environments, it is essential to consider the inherently probabilistic nature of real
systems, such as the random timing of events, failures of embedded components and
the loss of packets when using wireless communication networks.

Probabilistic model checking is an automated technique for formally verifying
quantitative properties of stochastic systems. This involves the construction of a
mathematical model that represents the behaviour of a system over time, i.e. the
possible states that it can be in, the transitions that can occur between states, and
information about the likelihood or timing of these transitions. Properties specifying
the required behaviour of these systems are then formally specified in temporal logic
and a systematic exploration and analysis of the system model is then performed to
ascertain whether the properties are satisfied.

M. Kwiatkowska (B<)
Department of Computer Science, University of Oxford, Oxford, UK
e-mail: marta.kwiatkowska@cs.ox.ac.uk

G. Norman
School of Computing Science, University of Glasgow, Glasgow, UK
e-mail: gethin.norman@glasgow.ac.uk

D. Parker
School of Computer Science, University of Birmingham, Birmingham, UK
e-mail: d.a.parker@cs.bham.ac.uk

© Springer International Publishing AG 2018 73
R. Drechsler (ed.), Formal System Verification, DOI 10.1007/978-3-319-57685-5_3

74 M. Kwiatkowska et al.

This approach allows a wide variety of quantitative properties to be specified,
regarding, for example, ‘the probability of a system failure occurring’, ‘the proba-
bility of a packet being successfully delivered within 5ms’ or ‘the expected power
consumption of a sensor network during 1h of operation’. The basic theory and
algorithms for probabilistic model checking were first put forward in the 1980s but,
since then, substantial progress has been made in the development of theory, algo-
rithms and tools for many different types of probabilistic models and a wide range
of property specifications. This has resulted in the successful usage of probabilistic
model checking on a huge range of computerised systems, from airbag controllers to
cardiac pacemakers, and in a diverse range of applications domains, from computer
security to robotics to quantum computing.

This chapter aims to provide both an introduction to the basics of probabilistic
model checking and a survey of some of the key advances that have been made in
recent years. In both cases, we illustrate the ideas using a variety of toy examples
and real-life case studies, and provide pointers to further work and resources. We
also make available electronic copies of the files needed to study these examples and
case studies using the PRISM model checker [115].

In the first section of the chapter, we give an introduction to probabilistic model
checking applied to several different types of models: discrete-time Markov chains,
Markov decision processes and stochastic multi-player games. We then move on to
cover a section of more advanced topics. This includes: (i) controller synthesis, which
can be used to generate correct-by-construction controllers, e.g. for robots or vehicles,
along with quantitative guarantees on their behaviour; (ii) modelling and verification
techniques designed for large complex systems, including compositional (divide
and conquer) approaches and the use of abstraction; (iii) verification techniques
for real-time probabilistic models, i.e. those that capture more realistic information
about the timing and duration of system events; and (iv) parametric model checking
methods, which provide more powerful ways to analyse models whose parameters
(e.g. probabilities) may vary or be difficult to quantify accurately. We conclude the
chapter with a discussion of the limitations of probabilistic model checking and some
of the key current challenges and research directions.

3.2 Probabilistic Model Checking

In this section, we give an overview of the basics of probabilistic model checking.
We focus on discrete-time models: discrete-time Markov chains (DTMCs), Markov
decision processes (MDPs) and stochastic multi-player games (SMGs). These all
model the behaviour of a probabilistic system as a sequence of discrete time-steps.
We introduce the key definitions and concepts, and illustrate them with some exam-
ples. For more in-depth tutorial material on probabilistic model checking, see for
example [78] (for DTMCs), [44] (for MDPs) and [104] (for SMGs).

Preliminaries. Before we start, we first introduce some definitions and notation
used in the following sections. A (discrete) probability distribution over a countable

3 Probabilistic Model Checking: Advances and Applications 75

set S is a function p : S— [0, 1] such that er g i(s) = 1. For an arbitrary set S,
we let Dist(S) be the set of functions i : S—[0, 1] such that {s € § | u(s)>0} is a
countable set and u restricted to {s € S | w(s)>0} is a probability distribution. The
point distribution at s € S, denoted 75, is the distribution that assigns probability
1 to s (and O to everything else). Given two sets S| and S, and distributions ¢ €
Dist(S)) and u, € Dist(S,), the product distribution v X iy € Dist(S1 X S,) is given
by w1 X @2 ((s1, $2)) = m1(s1)-m2(s2). We will also often use the more general notion
of a probability measure. We omit a complete definition here and instead refer the
reader to, for example, [21] for introductory material on this topic.

3.2.1 Discrete-Time Markov Chains

We now give an overview of probabilistic model checking for discrete-time Markov
chains, the simplest class of models that we consider in this chapter.

Definition 3.1 (Discrete-time Markov chain) A discrete-time Markov chain
(DTMC) is atuple D = (S, 5, P, L) where:

e S is a set of states;

e 5 € Sis an initial state;

e P: SxS — [0, 1]is a probabilistic transition matrix such that Zyes P(s,s') =1
forall s € S;

e L : S—24% is alabelling function assigning to each state a set of atomic proposi-
tions from a set AP.

The state space S of a DTMC D = (S, 5, P, L) represents the set of all possible
configurations of the system being modelled. The system’s initial configuration is
given by § and its subsequent evolution is represented by the probabilistic transition
matrix P: forstates s, s € S, theentry P(s, s) is the probability of making a transition
from state s to s’. By definition, for any state of D, the probabilities of all outgoing
transitions from that state sum to 1.

A possible execution of D is represented by a path, which is a (finite or infinite)
sequence of states m = §os15> . . . such that P(s;, s;,41)>0 for all i >0. For a path 7,
we let (i) denote the (i+41)th state s; of the path, and «[i ...] be the suffix of =
starting in state s;. We also let || be its length and, if 7 is finite, last(r) be its last
state. We let [Pathsp(s) and FPathsp(s) denote the sets of finite and infinite paths of
D starting in state s, respectively, and we write IPathsp and FPathsp for the sets of
all finite and infinite paths, respectively.

To reason quantitatively about the behaviour of DTMC D we must determine the
probability that certain paths are executed. To do so, we define, for each state s of
D, a probability measure Prp ; over the set of infinite paths of D starting in 5. We
present just the basic idea here; for the complete construction, see [76].

For any finite path w = ss515,...5, € FPathsp(s), the probability of the path
occurring is given by P(mw) = P(s, s1) - P(s1, $2) - - - P(s,—1, s,). The cylinder set

76 M. Kwiatkowska et al.

of r, denoted C (), is the set of all infinite paths which have m as a prefix, and the
probability assigned to this set of paths is Prp ;(C (;r)) = P (o). This can be extended
uniquely to define the probability measure Prp s over [Pathsp(s).

Using this probability measure, we can quantify the probability that, starting from
a state s, the behaviour of D satisfies a particular specification (assuming that the
behaviour of interest is represented by a measurable set of paths). For example, we
can consider the probability of reaching a particular class of states, or of visiting some
set of states infinitely often. Furthermore, given a random variable f over the infinite
paths [Pathsp (i.e. a real-valued function f : IPathsp—R>), we can define, using
the probability measure Prp j, the expected value of the variable f when starting in
s, denoted Ep (). More formally, we have:

/ f(n)dPrD,s .
welPathsp (s)

We use random variables to formalise a variety of other quantitative properties of
DTMCs. We do so by annotating the model with rewards (sometimes, these in fact
represent costs, but we will consistently refer to these as rewards). Rewards can be
used to model, for example, the energy consumption of a device, or the number of
packets lost by a communication protocol. Formally, these are defined as follows.

Definition 3.2 (DTMC reward structure) A reward structure for a DTMC D =
(S,5,P,L) is a tuple r = (rg, rr) where rg : SRy is a state reward function
and r7 : SxS§—Ry is a transition reward function.

def

ED,s(f) =

State rewards are also called cumulative rewards and transition rewards are sometimes
known as instantaneous or impulse rewards. We use random variables to measure,
for example, the expected total amount of reward cumulated (over some number of
steps, until a set of states is reached, or indefinitely) or the expected value of a reward
structure at a particular instant.

Example I We now introduce a running example, which we will develop throughout
the chapter. It concerns a robot moving through terrain that is divided up intoa 3 x 2
grid, with each grid section represented as a state. Figure 3.1 shows a DTMC model
of the robot. In each of the 6 states, the robot selects, at random, a direction to move.
Due to the presence of obstacles, certain directions are unavailable in some states.
For example, in state sy, the robot will either remain in its current location (with
probability 0.2), move east (with probability 0.35), move south (with probability
0.4) or move south-east (with probability 0.05). We also show labels for the states,
taken from the set of atomic propositions AP = {hazard, goal,, goal,}.]

3.2.1.1 Property Specifications

In order to formally specify properties of interest of a DTMC, we use quantitative
extensions of temporal logic. For the purposes of this presentation, we introduce a

3 Probabilistic Model Checking: Advances and Applications 77

0.2
. {hazard} {goal,}
() (0!
N
0.4 w+s
S
1 G50) 005

: 0.5
{goal,} ‘ 0.2 {goal;}

Fig. 3.1 Running example: a DTMC D representing a robot moving about a 3 x 2 grid

rather general logic that essentially coincides with the property specification language
of the PRISM model checker [80]. We refer to it here as the PRISM logic. This extends
the probabilistic temporal logic PCTL* with operators to specify expected reward
properties. PCTL*, in turn, subsumes the logic PCTL (probabilistic computation tree
logic) [60] and probabilistic LTL (linear time logic) [95].

Definition 3.3 (PRISM logic syntax) The syntax of our logic is given by:

p:=truelal—¢[PpAP|Pypl¥]IR_,[p]
Y=g | Y YAy XYy USty yuy
pu=1F%|cSk|c |F¢

where a € AP is an atomic proposition, < € {<, <, >, >}, p € [0, 1], r is a reward
structure, ¢ € Ryp and k € N.

The syntax in Definition 3.3 distinguishes between state formulae (¢), path formulae
(¥) and reward formulae (p). State formulae are evaluated over the states of a DTMC,
while path and reward formulae are both evaluated over paths. A property of a DTMC
is specified as a state formula; path and reward formulae appear only as subformulae,
within the P and R operators, respectively.

For a state s of a DTMC D, we say that s satisfies ¥ (or ¥ holds in s), written
D,s &= v, if ¥ evaluates to true in s. If the model D is clear from the context, we
simply write s = . In addition to the standard operators of propositional logic,
state formulae ¢ can include the probabilistic operator P and reward operator R,
which have the following meanings:

o s satisfies P.o,[v/] if the probability of taking a path from s satisfying ¥ is in the
interval specified by > p;

e s satisfies R, [p] if the expected value of reward operator p from state s, using
reward structure r, is in the interval specified by < ¢g.

The core temporal operators used to construct path formulae i are:

78 M. Kwiatkowska et al.

e X ¥ (‘next’) — ¢ holds in the next state;

° Y Uk Y¥> (‘bounded until’) — 1, becomes true within k steps, and i, holds up
until that point;

e VY| Uy, (‘until’) — ¥, eventually becomes true, and yr; holds until then.

We often use the equivalences F i = true Uy (‘eventually’ i) and Gy =
—F — (‘always’ /), as well as the bounded variants FS v and GS% /. When
restricting ¥ to be an atomic proposition, we get the following common classes of
property:

e F a (‘reachability’) — eventually a holds;

e G a (‘invariance’) — a remains true forever;

e <K a (‘step-bounded reachability’) — a becomes true within k steps;
e GS* a (‘step-bounded invariance’) — a remains true for k steps.

More generally, path formulae allow temporal operators to be combined. In fact the
syntax of path formulae i given in Definition 3.3 is that of linear temporal logic
(LTL) [95]." This logic can express a large class of useful properties, core examples
of which include:

e G F v (‘recurrence’) — ¢ holds infinitely often;

e F G ¢ (‘persistence’) — eventually ¢ always holds;

e G (Y1— X ¥rp) — whenever ¥ holds, v, holds in the next state;

e G (Y —F) — whenever | holds, v, holds at some point in the future.

For reward formulae p, we allow four operators:

1=* (‘instantaneous reward’) — the state reward at time step k;

C=* (‘bounded cumulative reward’) — the reward accumulated over k steps;

C (‘total reward’) — the total reward accumulated (indefinitely);

F ¢ (‘reachability reward’) — the reward accumulated up until the first time a state
satisfying ¢ is reached.

Numerical queries. It is often of more interest to know the actual probability with
which a path formula is satisfied or the expected value of a reward formula, than
whether or not the probability or expected value meets a particular bound. To allow
such queries, we extend the logic of Definition 3.3 to include numerical queries of the
form P_»[v] or R"_,[p], which yield the probability that ¥ holds and the expected
value of reward operator p using reward structure r, respectively.

Example 2 'We now return to our running example of a robot navigating a grid (see
Example 1 and Fig. 3.1) and illustrate some properties specified in the PRISM logic.

e P, [F goal,] — the probability the robot reaches a goal, state is 1.
e P>0[G —hazard] - the probability it never visits a hazard state is at least 0.9.

IThe bounded until operator ¥; US¥ v, is not usually included in the syntax of LTL, but it can be
derived from other operators so its inclusion is not problematic.

3 Probabilistic Model Checking: Advances and Applications 79

e P_,[—hazard US* (goal, v goal,)]—whatis the probability that the robot reaches
a state labelled with either goal, or goal,, while avoiding hazard-labelled states,
during the first k steps of operation?

o R, s[C=*]wherer! = (rl, 7}),rl(s) = lifs islabelled hazard and 0 otherwise
and rr(s,s’) =0 forall s, s’ € S — the expected number of times the robot visits
a hazard labelled state during the first k steps is at most 4.5.

e RZ,[F (goal, v goal,)] where r?> = (12, r3), ri(s) = O for all s € S and r7(s, s”)
=1 for all 5, s’ € § — what is the expected number of steps required for the robot
to reach a state labelled goal, or goal,?]

The formal semantics of the PRISM logic, for DTMC:s, is defined as follows.

Definition 3.4 (PRISM logic semantics for DTMCs) ForaDTMCD = (S, 5,P, L),
reward structure r = (rg, rr) for D and state s € S, the satisfaction relation k= is
defined as follows:

D,s Etrue always

D.sEa & ael(s)
D,sE—¢ & D,sko
D.sEdingy & D,skE¢gr A D,skEd
D,s EP.pl¥] & Prpg{m € IPathsp(s) | D, w =y} eap
D.sERL,[p] & Eps(rew (p)) g

where for any path m = sgs;5, ... € [Pathsp :

Dr=¢ < D,sokE¢

DinE—v < Dy
D.rnevyiAYys & Doy AD kY

DrnEXy < Dyll...1=y

D.rky1 U Yy & FieN (i<kADwli... 1Y AVj<i.(D,xlj...1E¥1))

Dor=y 1 UYs & JieN (D rli...|=yaAVj<i.(D,7lj...1=%1))

rew (1=K (1) = rs(sk)

rew" €y r) = SNl (rs(sp) + rr(sjisjan)

rew” (C)(m) = Ziozo(rs(sj)—}—rr(sj,sjﬂ))

ifVj e N.D,s; o

00
rew (F@)(m) = Z;ni_ol (rS(Sj) + rT(sj,sj_H)) otherwise

and my = min{j | D, s5; = ¢}.

3.2.1.2 Model Checking

Verifying formulae in this logic against a DTMC requires a combination of graph-
based algorithms, automata-based methods using deterministic Rabin automata
(DRAs) and solving systems of linear equations. The main components of the model

80 M. Kwiatkowska et al.

checking procedure are computing the probability that a path formula is satisfied and
the expected value of a reward formula. Computing the probability that a path for-
mula is satisfied requires first translating the formula into a DRA, finding the bottom
strongly connected components on the product of the DTMC (informally, these are
the sets of states of a DTMC which once entered are never left) and the constructed
automaton and finally solving a linear equation system [15]. Computing the expected
value of a reward formula, for unbounded cumulative and reachability reward formu-
lae, also involves graph based analysis (either finding the bottom strongly connected
components for unbounded cumulative reward properties or finding the states that
reach a target with probability 1 for reachability reward properties) and solving a
system of linear equations [78]. For the remaining reward formulae, computation of
expected values involves iteratively solving a set of linear equations.

The overall complexity of model checking is doubly exponential in the formula
and polynomial in the size of the DTMC, but can be reduced to a single exponential.
For scalability reasons, when implementing model checking of DTMCs, iterative
numerical methods such as Jacobi and Gauss—Seidel, as opposed to direct methods
such as Gaussian elimination, are often employed when solving systems of linear
equations.

3.2.1.3 Case Study: NAND Multiplexing

We now describe a case study in which the system is modelled as a DTMC. This
is taken from [91] and concerns the analysis of defect-tolerant systems used in
computer-aided design. The system under study uses multiplexing, a technique intro-
duced by von Neumann [109] which enables reliable computations when using unre-
liable devices. The approach was developed due to the unreliability of the valves
(also known as vacuum tubes) that were used in computers, and these techniques are
becoming relevant again for systems developed using nanotechnology where, due to
their small-scale, components are again unreliable.

Multiplexing involves replacing a single processing unit by a multiplexing unit
which has N copies of the inputs and outputs of the original processing unit. In the
multiplexing unit, the N inputs are processed in parallel, giving N outputs. If the
inputs and devices are reliable, then each of the N outputs would equal the output of
the single processing unit. However, if there are errors in the inputs or the processing
is unreliable, then there will also be errors in the outputs. To give a value to the
output of the multiplexing unit, we define a critical level A € [0, 0.5) and, if at least
(1—A)-N of the outputs take a certain value (i.e. either true or false), this is
taken as the output value. If this criteria is not met by either true or false, the
output value of the multiplexing unit is unknown and an error occurs.

The design of a multiplexing unit comprises an executive stage, which carries out
the basic function of the unit to be replaced, and M restorative stages, which reduce
the degradation of the output from the executive stage caused by errors in the inputs
and unreliable processing. For the case of NAND multiplexing, the focus of this case
study, a design with a single restorative stage is shown in Fig.3.2.

3 Probabilistic Model Checking: Advances and Applications 81

—{L— /— —
=4 - 1D
U DH u D{ U D_ z
y = 3 3 3 :
D r=UD< D
executive stage restorative stage

Fig. 3.2 An example of a NAND multiplexing unit with one restorative stage (M = 1)

1 0.150

0.125

e
N
«a

0.100

0.075

Probability

o
w

0.050

Expected reward

0.025

0.25

0.000
1 2 3 4 5 6 7 1 2 3 4 5 6 7

M M

[err=0.005 -=err=0.01 -+ err=0.015 —~ err=0.02 —+ err=0.025

Fig. 3.3 Probabilistic model checking results for the NAND case study

Figure3.3 presents results obtained with the probabilistic model checker
PRISM [80, 114] when analysing: (i) the probability of errors being less than 10%;
and (ii) the expected percentage of incorrect outputs of the system. The values are
plotted as the number of restorative units (M) and the probability that a NAND gate
is unreliable (err) vary. The first property can be expressed as the numerical query
P_s[F below], where below is an atomic proposition labelling states of the DTMC
where the computation has finished and the number of errors is below 10%. The sec-
ond property can be expressed as the query R”_,[F done], where done labels states
of the DTMC where the computation has completed, and the reward structure r labels
the transitions entering this state with a reward equal to the percentage of incorrect
outputs. When studying this model with PRISM [91], an error was found in the ana-
Iytical analysis of [57]. The dashed lines in Fig. 3.3 show the results obtained in this
case and demonstrate that this error can cause both under- and over-approximations
of the reliability of a NAND multiplexing unit.

82 M. Kwiatkowska et al.

3.2.2 Markov Decision Processes

The second discrete-time model we consider is Markov decision processes (MDPs).
These extend DTMCs by allowing non-deterministic as well as (discrete) probabilis-
tic behaviour. Non-determinism is a valuable tool for a modeller and can be used
to represent a variety of unknown aspects of a system’s environment or execution.
For example, it can model the scheduling between a set of components running con-
currently, the instructions and inputs provided to a robot to control its execution,
or the unknown behaviour of an adversary trying to attack a security system. More
generally, non-determinism can also be used to abstract parts of a system that are
unknown, under-specified or unimportant.

Definition 3.5 (Markov decision process) A Markov decision process (MDP) is a
tuple M = (S, 5, A, §, L) where:

e S is a finite set of states;

e 5 € Sis an initial state;

e A is a finite set of actions;

e §: SxA — Dist(S) is a (partial) probabilistic transition function, mapping state-
action pairs to probability distributions over S;

e L : S—24% is a state labelling function.

In a state s of an MDP M = (S, 5, A, 8, L), there is first a non-deterministic choice
between a set of actions that are available in the state. This set, denoted A(s),
includes the actions for which a probabilistic transition is defined: A(s) = {a |
8(s, a) is defined}. We assume that the set A(s) is non-empty for all states s € S.
Once an available action @ € A(s) has been chosen in s, the action is performed and
the successor state s’ is chosen probabilistically, where the probability of moving to
state s is 8 (s, a)(s').

Like for DTMCs, a path is a sequence of states corrected by transitions, but now
also incorporates the action choice made. A (finite or infinite) path of M is of the
form 7 = sy = 51 —> ---, where a; € A(s;) and 8(s;, a;)(s;+1)>0 for all i >0. The
sets of all finite and infinite paths from state s of M are denoted FPathsy(s) and
IPathsy (s), respectively, and the sets of all such paths are FPathsy and IPathsy.

As for DTMCs we can define a reward structure over an MDP. State rewards
remain unchanged, however for MDPs, instead of rewards beginning associated with
individual transitions, rewards are associated with performing actions in states.

Definition 3.6 (MDP reward structure) A reward structure for an MDP M =
(S,5,A,8,L)is atuple r = (rg, ra) where rg : S—Ry is a state reward function
and r4 : SxA—Ry is an action reward function.

Example 3 'We now return to our running example of a robot moving through terrain
that is divided up into a 3 x 2 grid (see Example 1 and Fig. 3.1). We extend our earlier
DTMC model so that, instead of the robot choosing a direction to move at random,
the choice is modelled using non-determinism in an MDP. The model is shown in

3 Probabilistic Model Checking: Advances and Applications 83

Fig. 3.4 Running example: 0.4 {hazard}
an MDP M representing a
robot moving about a 3 x 2

grid : stuck

{goal}

est
{goal,} 0.4 " {goal;}

Fig.3.4. The probabilistic transition function is drawn as grouped, labelled arrows
and, when the probability is 1, it is omitted. In each state, one or more actions from
the set A = {north, east, south, west, stuck} are available, which move the robot
between grid sections. As for the DTMC model, due to the presence of obstacles,
certain directions are unavailable and in this case the obstacles can also cause the
robot to probabilistically move to an alternative grid section. We use the action stuck
to indicate that the robot cannot move in any direction in the states s, and s3. |

To reason about the behaviour of an MDP, we need the notion of strategies (also
called policies, adversaries and schedulers in other contexts). A strategy resolves the
non-determinism in the model, that is, the choices of which action to perform in each
state. This choice can depend on the history of the MDP’s execution and can be made
either deterministically or randomly.

Definition 3.7 (MDP strategy) A strategy of an MDPM = (S, 5, A, 8, L) is a func-
tion o : FPathsy— Dist(A) such that o () (a)>0 only if a € A(last(w)). The set of
all strategies of M is denoted Xy.

We classify strategies in terms of both their use of randomisation and of memory.

e Randomisation: we say that strategy o is deterministic (or pure) if o (7) is a point
distribution for all finite paths 7z, and randomised otherwise.

e Memory: a strategy o is memoryless if o () depends only on last (;r) for all finite
paths 7, and finite-memory if there are finitely many modes such that, for any r,
o (1) depends only on last(7) and the current mode, which is updated each time
an action is performed; otherwise, it is infinite-memory.

Under a strategy o € Xy of MDP M, all non-determinism of M is resolved, and
hence the behaviour is fully probabilistic. We can represent this using an (infinite)
induced discrete-time Markov chain, whose states are the finite paths of M. For
a given state s of M, we can then use this DTMC (see Sect.3.2.1) to construct a
probability measure Pry, . over the infinite paths /Pathsy (s), capturing the behaviour
of M when starting from state s under strategy o . Furthermore, for a random variable
f : IPathsy — R0, we can define the expected value Ey; ((f) of f when starting
from state s under strategy o . Formally, the induced DTMC can be defined as follows.

84 M. Kwiatkowska et al.

Definition 3.8 (Induced DTMC) For an MDP M = (S, 5, A, §, L) and strategy o €
2m for M, the induced DTMC is the DTMC M, = (FPathsw, 5, P, L’) where, for
any 7, 7' € FPathsy:

P(r, 7)) = o(m)(a) - 8(ast(m),a)(s) if 7’ =m L sforsomeac Aands € S;
’ 0 otherwise;
and L'(7) = L(last(wr)) for all = € FPathsy. Furthermore, a reward structure
r = (rs, ra) over M induces the reward structure r® = (r{, r) over M, where for
any 7, 7’ € FPathsy:

rg(m) = rs(last(w))

o n _ | ralast(m),a)ifn’ =x 5 sforsomea € Aands € S;

rp(m,) = .
0 otherwise.

An induced DTMC has an infinite number of states. However, in the case of finite-

memory strategies (and hence also the subclass of memoryless strategies), we can

construct a finite-state quotient DTMC [44].

To specify properties of MDPs, we again use the PRISM logic defined for DTMCs
in the previous section. The syntax (see Definition 3.3) is identical, and the semantics
(see Definition 3.4) is very similar, the key difference being that, for the P.,[V/]
and R, [o] operators, we quantify over all possible strategies of the MDP. The
treatment of reward operators is also adapted slightly to consider action, as opposed
to transition, reward functions.

Definition 3.9 (PRISM logic semantics for MDPs) Foran MDPM = (S, 5, A, 8, L)
and reward structure r = (rg, r4) for M, the satisfaction relation |= is defined as for
DTMC:s in Definition 3.4, except that, for any state s € S:

M, s =Pply] < Pr‘,\’,l’x{n € IPathsy(s) | M, m =y} < p forallo € Xy
M, s FR o]l & Ef (rew (p)) g forallo € Xy

and, for any path & = s9 5 51 S .o e IPathsy:

rew (I7) () = re(s)
rew’ (C=5) () Z];_:lo (rs(sj) +ra(s;, aj))
rew (C)(w) = Z?O:o (rs(s;) + ra(s;, a)))

. B o0 lfV]ENM,SJb&(P
rew' (F ¢)(m) = [z;@,_—ol (rs(sj) +ra(sj,a;)) otherwise

where my = min{j | M, 5; = ¢}.

The main components of the model checking procedure for this logic against an
MDP are computing the optimal probabilities that a path formula is satisfied and the

3 Probabilistic Model Checking: Advances and Applications 85

optimal expected values for a reward formula. More precisely we are concerned with
the following optimal values for an MDP M and state s:

def

Prm{‘;(w) = infocx, Priydm € IPathsy(s) | M, 7w =} 3.1
PR) € sup, ey, Prip,im € IPathsu(s) M, m =9} (3.2)
Epn(r,0) & infyex, Efy (e’ (0)) (3.3)
B (r,p) 5 sup,es, By (rew’ (p) (3.4)

where v is a path formula, r is a reward structure of M and p is a reward formula.

For example, verifying the property ¢ = P_,[] in state s of M can be achieved
by computing the optimal probability Pri'f () since the state s satisfies ¢ if and
only if Pry;'f () <p. Similarly to DTMC:s, rather than fixing a specific bound, we can
query the (optimal) values directly. In the case of MDPs, the syntax of the PRISM
logic is extended to include numerical queries of the form Ppin—2[¥], Pmax=2[¥1,
Ripin=ol 01 and R o[0]

Model checking for an MDP reduces to building DRAs, performing graph analy-
sis and numerical computation. As for DTMC model checking, DRAs are built to
represent path formulae. The graph analysis involves identifying states of the MDP
for which the probability is O or 1 and finding maximal end components of the MDP
(or of the product of the MDP and a DRA). Informally, end components of an MDP
are sets of states for which it possible (i.e. assuming certain non-deterministic choices
are made) to remain in forever once entered.

The numerical computation can be achieved using various methods including
solving a linear programming problem; policy iteration (which builds a sequence
of strategies until an optimal one is reached); and value iteration, which computes
increasingly precise approximations to the optimal probability or expected value.
The overall complexity for model checking is doubly exponential in the formula and
polynomial in the size of the MDP.

Further details on the techniques needed to analyse MDPs can be found in, for
example, [15, 36, 44] and in standard texts on MDPs [20, 64, 97].

3.2.3 Stochastic Multi-player Games

The final model we consider in this introductory section is stochastic multi-player
games (SMGs). These extend MDPs by allowing different players to resolve the non-
determinism (MDPs can thus be considered as 1-player stochastic games). SMGs
allow us to reason about the strategic decisions of several agents either competing
or collaborating to achieve some objective. We restrict our attention to furn-based
stochastic games, in which a single player is responsible for the non-deterministic
choices available in each state. We have the following formal definition.

86 M. Kwiatkowska et al.

Definition 3.10 (Stochastic multi-player game) A (turn-based) stochastic multi-
player game (SMG) is a tuple G = (I1, S, (S))icn1, 5, A, 8, L), where:

e (S5,5,A,94, L) represents an MDP (see Definition 3.5);
e [] is a finite set of players;
e (Si)iepr 1s a partition of S.

In a state s of an SMG G, the evolution is similar to an MDP: first an available action
is non-deterministically chosen and then the successor state is chosen according to
the distribution é (s, @). The difference is that the non-deterministic choice is resolved
by the player that controls the state s, that is, the player i € IT for which s € S;. As
for MDPs, we can define the set of finite and infinite paths FPathsg (FPathsg(s)) and
IPathsg (IPathsg(s)) of G. Furthermore, we can define reward structures for SMGs
in the same way as for MDPs (see Definition 3.6).

To resolve the non-determinism in an SMG, we again use strategies, however we
now define a separate strategy for each player of the game.

Definition 3.11 (SMG strategy) For an SMG G = (11, S, (S})iecr7, 5, A, 8,L), a
strategy o; for player i of G is a function o; : {7 | ®# € FPathsg A last(7) € S;}
— Dist(A) such that, if o;(;r)(a)>0, then a € A(last(;r)). The set of all strategies
for player i € IT in SMG G is denoted by Z’é.

For an SMG G = (11, S, (S))iem, 5, A, 8, L) and strategies oy, . .., oy for multiple
players 1, ..., k, we can combine them into a single strategy ¢ = o7y, ..., ox which
controls the non-determinism when the game is in the states S} U - - - U S;. If a com-
bined strategy o is constructed from all the players [T of G (sometimes called a
strategy profile), then the non-determinism is resolved in all the states of the game
and, as for MDPs, we can construct probability measures Prg, ; over the infinite paths

of G.

To specify properties of SMGs, we consider an extension of the PRISM logic used
earlier for DTMCs and MDPs, adding the coalition operator ((C)) from alternating
temporal logic (ATL) [6]. The result is (essentially) the logic RPATL* proposed in
[28].2

Definition 3.12 (RPATL* syntax) The syntax of RPATL* is given by:

pr=truelal=¢|pAd|(C)Puyl¥l| (C) R[]

where path formulae v and reward formulae p are defined in identical fashion to the
PRISM logic in Definition 3.3, C C [T is a coalition of players, a € AP, b e{<,
<, =2, >}, p €10, 1], ris areward structure and g € Rxy.

Intuitively, the formulae (C)) P.op[¥/] and (C)) R [p] mean that it is possible
for the players in C to collectively ensure that P.,[v] or R’Nq[p 1, respectively, is
satisfied, no matter what the other players of the game decide to do. We can also

2Strictly speaking, the definition of reward operators differs in [28].

3 Probabilistic Model Checking: Advances and Applications 87

adapt these to numerical queries, writing for example {(C)) Pmax=2[¥] to represent
the maximum probability of ¢ that the players in C can ensure, regardless of the
choices of the other players of the game.

In order to formalise the semantics of RPATL*, we define coalition games.

Definition 3.13 (Coalition game) Given an SMG G = (11, S, (S))icm, 5, A, 8, L)
and coalition of players C C I1, the coalition game of G induced by C is the sto-
chastic two-player game G¢ = ({1, 2}, S, (S, $5). 5, A, 8, L) where S| = Ujec S
and Sé = UieH\C Sl‘.

Definition 3.14 (RPATL* semantics) For an SMG G = (11, S, (S)iem, 5, A, 8, L)
and reward structure r = (rg, r) for G, the satisfaction relation k= is defined as in
Definition 3.9 except that, for any state s € S:

G, s = (C) Puplyy] < there existso; € X such that, forany o, € 5§ ,
we have Prg % { € IPathsg.(s) | G, w =¥} 0 p

G, s E(CHR_,[p] < thereexistso| € Eéc such that, for anyo, € Eéc,
we have Eg‘ff (rew” (p)) b<1 g

where G¢e = (S, (81, S5). 5, A, 8, L) is the coalition game of G induced by C.

As can be seen in Definition 3.14, model checking of RPATL* reduces to the analysis
of stochastic two-player games. The exact complexity of analysing such games is a
long-standing open problem [31], but key properties such as reachability probabilities
and expected cumulated rewards can be efficiently approximated using methods such
as value iteration [32]. The overall model checking problem can be performed in a
similar manner to the algorithms described for model checking MDPs described in
Sect. 3.2.2. For further details, see [28]. SMG model checking has been applied to
case studies across a number of application domains, including autonomous transport,
security protocols and energy management systems. See, for example, [28, 111, 116]
for details.

3.2.4 Tool Support

There are several software tools available for probabilistic model checking. One
of the most widely used of these is PRISM [80], which incorporates the majority
of the techniques covered in this chapter. In particular, it supports model check-
ing of DTMCs and MDPs, as described above, as well as probabilistic automata,
continuous-time Markov chains and probabilistic timed automata, which are dis-
cussed in later sections. PRISM-games [86] is an extension of PRISM for the verifica-
tion of SMGs. Another widely used tool is MRMC [73], which can be used to analyse
Markov chains and Markov reward models, and also has support for continuous-time
MDPs (a model combining non-deterministic, probabilistic and real-time features,
see Sect. 3.5). Other general purpose probabilistic model checking tools include the

88 M. Kwiatkowska et al.

Modest Toolset [61], iscasMc [55] and PAT [103]. More specialised tools, focus-
ing on techniques such as parametric model checking or abstraction refinement, are
mentioned in the corresponding sections of this chapter. A more extensive list of
available tools is maintained at [117].

3.3 Controller Synthesis

In this section, we describe a technique that is closely related to probabilistic
model checking: controller synthesis. For probabilistic models that include non-
determinism, such as MDPs and SMGs, there are two, dual ways that we can reason
about them. First, as done in the earlier sections of this chapter, we can verify that
the model satisfies some formally specified property for all possible resolutions of
non-determinism. Secondly, we can synthesise a controller (i.e. a means of resolving
the non-determinism) under which a formally specified property is guaranteed to
hold.

In this section, we describe controller synthesis techniques applied to MDPs. For
SMGs, model checking of the logic RPATL*, discussed earlier, provides a good basis
for controller synthesis in the context of multiple agents. Later, in Sect. 3.5, we will
illustrate controller synthesis for real-time probabilistic systems using probabilistic
timed automata.

3.3.1 Controller Synthesis for MDPs

To apply controller synthesis to a system modelled as an MDP, we use strategy
synthesis, which generates a strategy under which a particular formally-specified
property is guaranteed to be true. We focus on a subset of the PRISM logic from
Definition 3.3 comprising a single instance of a P.op[-] or R]_,[-] operator. In par-
ticular, further instances of these operators are not allowed to be nested within
path formulae or reward formulae (these cases are known to be more challenging
[13, 23]).

A formal definition of strategy synthesis is given below. For this, we use a slightly
different form of the satisfaction relation =, where we write M, o, s = ¢ to state
that property ¢ is satisfied by MDP M under the strategy o (which is essentially the
same as the satisfaction of ¢ under the induced DTMC M,,).

Definition 3.15 (Strategy synthesis) The strategy synthesis problem is: given an
MDP M with initial state 5 and a formula ¢ of the form P,,[¥] or Rqu[p] (see
Definition 3.3), find, if it exists, a strategy o* € Xy such that M, o*, 5 = ¢.

Like for probabilistic model checking of MDPs, as discussed in Sect. 3.2.2, the prob-
lem of strategy synthesis for a P[] or R, [p] operator can be solved by com-
puting an optimal value (i.e. minimum or maximum value) for ¥ or p. For example,

3 Probabilistic Model Checking: Advances and Applications 89

when attempting to synthesise a strategy for ¢ = P,[v/], we can compute Prm“;).
Then, there exists a strategy o* satisfying ¢ if and only if Prig%(y/)<p, in which
case we can take o™ to be a corresponding optimal strategy, i.e. one that achieves
the optimal value Prmif;(w). So, in general, rather than fixing a specific bound p,
we can just use a numerical query such as Ppin—2[1¥] to specify a strategy synthesis
problem, and directly compute an optimal value and strategy for it.

We already sketched the techniques required to compute optimal values for such
properties of MDPs in Sect. 3.2.2. In the sections below, we recap the required com-
putations, additionally discussing which classes of strategies need to be considered
for optimality (i.e. the smallest class of strategies guaranteed to contain an optimal
one) and the methods required to generate them.

3.3.1.1 Probabilistic Reachability

For probabilistic reachability queries Ppjn—2[F @] or Prax—2[F al, memoryless deter-
ministic strategies achieve optimal values, and so this class of strategy suffices for
strategy synthesis. Determining optimal probability values requires an analysis of
the underlying graph structure of the MDP, followed by a numerical computation
phase using, for example, linear programming, policy iteration or value iteration.

The construction of an optimal strategy o* then depends on the method used in
the numerical computation phase. Policy iteration is the most direct as an optimal
strategy is constructed as part of the algorithm. For the remaining methods, the opti-
mal strategy corresponds to selecting locally optimal actions in each state, although
maximum probabilities require care.

In the case of a bounded reachability query Ppin—o[FS* @] or Ppa—s[FSF al,
memoryless strategies do not achieve optimal values and instead we need to con-
sider the larger class of finite-memory deterministic strategies. Strategy synthesis and
the computation of optimal reachability probabilities for step-bounded reachability
corresponds to working backwards through the MDP and determining, at each step,
the actions that yields optimal probabilities in each state.

Example 4 We now return to the MDP M from Fig. 3.4 and synthesise a strategy for
the numerical probabilistic reachability query Pp.x—+[F goaly]. Therefore, we first
compute the optimal value Priy'{ (F goaly), which we find equals 0.5. Synthesising
an optimal strategy, we find the memoryless deterministic strategy (see Fig. 3.5) that
selects east in sy, south in s and east in s4 (there is no choice needed in s, or s3, and
the choice in s5 is not relevant as the target goaly has been reached).

Next, consider the bounded probabilistic reachability query Praxea[F S goals].
We find that the maximum probability equals 0.8, 0.96 and 0.99 for k = 1, 2 and 3,
respectively. In the case where k = 3, the synthesised strategy is deterministic and
finite-memory. In particular the strategy, when arriving in state sy, after 1 step, selects
east (since goaly is reached with probability 0.9). On the other hand, arriving in state
s4 after 2 steps, the strategy selects west (since otherwise goalo cannot be reached
within k—2 = 1 steps).]

90 M. Kwiatkowska et al.

Fig. 3.5 Running example: {goal,}
an MDP M representing a 4 thazard}

robot moving about a 3 x 2
grid

3.3.1.2 Reward Properties

Strategy synthesis for a numerical reward query R’ ;,_,[o] or R . _,[o] is similar
to probabilistic reachability queries. In the case of reachability rewards, i.e. when p
is of the form F a, as for unbounded probabilistic reachability, first there is a pre-
computation phase (identifying the states for which the expected reward is infinite),
and then a numerical computation phase using methods such as value iteration, pol-
icy iteration or linear programming. As for unbounded probabilistic reachability, it
is sufficient to consider the class of memoryless and deterministic strategies. For
unbounded cumulative rewards, i.e. when p is of the form C, one must additionally
identify the maximal end components containing non-zero rewards.

For bounded cumulative rewards (o = CSF) and instantaneous rewards (p = I=F)
the situation is the same as for bounded probabilistic reachability: the class of deter-
ministic finite-memory strategies are required and a strategy can be synthesised by
stepping backwards through the MDP.

Example 5 Returning to our running example we consider strategy synthesis for
the query R%“,[F goal,] where the reward structure moves returns 1 for all state-
action pairs and all state rewards are zero. This will therefore return a strategy that
minimises the expected number of moves that the robot needs to make to reach a
state satisfying goaly. We find that the minimum expected number of steps equals %
and the synthesised memoryless deterministic strategy (not represented in the figure)

chooses the actions south, east, west and north in sy, 51, s4 and ss, respectively. H

3.3.1.3 LTL Properties

We now consider strategy synthesis for a numerical query of the form Pj,—2[¥]
Or Prax—2[¥] where ¢ is an LTL formula. For a given MDP M, the problem can
be reduced to the strategy synthesis of a reachability query (see Sect.3.3.1.1) on the
product of M and a deterministic Rabin automaton (DRA) representing ¥ [36]. Since
for any strategy o we have:

Prip;(¥) = 1 —Prij;(=y)

3 Probabilistic Model Checking: Advances and Applications 91

the problem of finding a minimum probability and strategy for achieving this value
can be reduced to finding the maximum probability and corresponding strategy by
considering the negated LTL formula. Hence, for the remainder of this section we
restrict our attention to the case of maximum numerical queries.

For any LTL formula i using atomic propositions from AP, we can construct
a DRA A, with alphabet 24 that represents it [33, 108]. More precisely, we have
that an infinite path v = 5055155, - - - of M satisfies Y if and only if the infinite
word L(so)L(s1)L(s2) . . . is in the language of Ay, . To perform strategy synthesis, we
proceed by constructing the product MDP, denoted M®A,;, of M and A,,. Next we
find the maximal end components of this MDP which meet the acceptance conditions
of Ay and label the states of these components with the atomic proposition acc. This
then reduces the problem to a maximum probabilistic reachability query since:

Prys(¥) = Pryga, .5 (F &cc) .

We can now follow the approach described in Sect.3.3.1.1 to synthesise a memory-
less deterministic strategy for M®A,, which maximises the probability of reaching
accepting end components (and then stays in those end components, visiting each
state infinitely often). This strategy can then be used to construct an optimal finite-
memory deterministic strategy of M for the query Pp—o[¥].

Example 6 Returning again to the running example of a robot (Fig. 3.4), we consider
synthesising a strategy for the query P.x—2[(G —hazard) A (G F goaly)]. This cor-
responds to finding a strategy which maximises the probability of avoiding a hazard-
labelled state and visiting a goaly state infinitely often. We find that the maximum
probability equals 0.1 and that, in this case, a memoryless strategy suffices for achiev-
ing optimality. The synthesised strategy selects south in state so, which leads to state
s4 with probability 0.1. We then remain in states s4 and ss indefinitely by choosing
actions east and west, respectively. |

3.3.2 Multi-objective Controller Synthesis

We now extend the synthesis problem to multi-objective queries, this concerns finding
a strategy o that simultaneously satisfies multiple quantitative properties. We first
describe the case for LTL properties and then outline how this can be extended.

Definition 3.16 (Multi-objective probabilistic LTL) A multi-objective probabilistic
LTL property is a conjunction ¢ = Poq, p, [V1] A ... A P, [W,] where ¥y, ...,
are LTL formulae and, for 1<i<n, >; €{<, <, >, >} and p; € [0, 1]. For MDP M
and strategy o, we have M, 0, 5§ =¢ if M, 0, § |= Poy), ¥; for all 1<i<n.

The first algorithm for multi-objective probabilistic LTL strategy synthesis was
presented in [42]. Here we outline an adapted version of this, based on [45], which
uses DRAs. The overall approach is similar to standard (single-objective) LTL strat-

92 M. Kwiatkowska et al.

egy synthesis in that it constructs a product automaton and reduces the problem to
(multi-objective) reachability.

First, for each 1<i<n, we can ensure that <; is a lower bound (= or >) in each
formula P, ,,¥; by negating the formulae v; where necessary. The next step is to
build a DRA Ay, to represent each LTL formula. Using these automata we then build
the product MDPM' = M®Ay, ® - - - ®Ay,, . Foreach combination X C {1, ..., n}of
objectives we find the end components of M’ that are accepting for each of the DRAs
inthe set {A; | i € X}. A special sink state for X is then added to the product MDP M’
for X where for 1<{i<n we label this sink with acc; if and only if i € X and we add
transitions from states in the end components found to this sink state. After we have
added these components, the problem on M reduces to a multi-objective probabilistic
reachability problem on M’ of the form P, ,,F acc; A ... A P, , F acc, which can
be solved through a linear programming (LP) problem [42], or a value iteration based
solution method [46].

The class of strategies required for multi-objective probabilistic LTL is finite-
memory and randomised. A memoryless randomised strategy for the product automa-
ton M’ can be obtained, for example, directly from the solution of the LP problem
and then, similarly to LTL objectives (in Sect.3.3.1.3), we can convert this to a
finite-memory, randomised strategy for M.

We now summarise several useful extensions and improvements. For details of
the algorithms and any restrictions or assumptions that are required see the relevant
references.

Boolean combinations of LTL objectives. The approach can be extended to general
Boolean combinations of formulae, rather than just conjunctions as presented in
Definition 3.16. This is achieved by translating into disjunctive normal form [42,
45].

Expected reward objectives. One can allow unbounded cumulative reward for-
mulae in addition to LTL formulae. The method outlined above has been extended
in [45] to include such reward formulae. In addition, an alternative approach, using
value iteration, presented in [46], allows bounded cumulative reward formulae. This
approach has also been shown to provide significant efficiency gains in practice.
Numerical multi-objective queries. One can again consider numerical queries
which return optimal values rather than true or false. For example, rather than
synthesising a strategy satisfying P, ,, ¥'1 A P,), 2, we can instead find a strategy
that maximises the probability of satisfying the path formula |, whilst simultane-
ously satisfying P..,,¥». The method outlined above using linear programming is
easily extended to handle such numerical queries through the addition of an objective
function.

Pareto queries. To analyse the trade-off between multiple objectives we can con-
struct the corresponding Pareto curve or an approximation of it [46]. For example,
suppose we are interested in maximising the probabilities of two LTL formulae v/,
and v, for the MDP M, then the Pareto curve consists of the bounds (p;, p,) € [0, 11%
such that:

3 Probabilistic Model Checking: Advances and Applications 93

Fig. 3.6 Pareto curve v,
(dashed line) for 0.5

oL So
maximisation of the 0.4 Sso
probabilities of LTL ’ Ssao
formulae ¥, = G —hazard 03 ~~s~
and Y, = G F goalq (see 0.2 S~
Example 7) 0.1

OT—T—TT >

T T T T T T
0 02 04 06 0.8 1 wy,

o there exists a strategy o such that Pry, ;(¥1)=p1 and Pr{y - (¥2) > p2;
e if either bound p; or p; is increased, no strategy o exists satisfying Pry, :(¥1) 2 pi
and Pr‘,\’," s (¥2) 2> p, without decreasing the other bound.

Example 7 We return again to the robot example presented in Fig. 3.4. Recall that, in
Example 6, we considered the numerical query Pp,,,—[(G —hazard) A (G F goaly)]
and found that the optimal probability was 0.1. Instead here we consider each conjunct
of the LTL formula as a separate objective and, to ease notation, let /, = G —hazard
and ¥, = G F goaly.

Consider the numerical multi-objective query that maximises the probability of
satisfying v, whilst satisfying P> 7[]. We find that the optimal value, i.e. the
maximum probability for satisfying v, equals % ~ (0.2278. The corresponding
strategy is randomised and, in state s, chooses east with probability approximately
0.3226 and south with probability approximately 0.6774.

Finally, the Pareto curve for maximising the probabilities of the LTL formulae v,
and v, is presented in Fig.3.6. The dashed line in the figure form the Pareto curve,
while the grey shaded area below shows all points (x, y) for which there is a strategy

satisfying P [v1] A Pxy[¥n]. u

3.4 Modelling and Verification of Large Probabilistic
Systems

In practice, models of real-life systems are often large and complex, and their state
space has a tendency to grow exponentially with the size of the system itself, a
phenomenon known as the state space explosion problem.

In this section, we discuss some approaches that facilitate both the modelling and
verification of large complex probabilistic systems. We first describe higher level
modelling of systems comprising multiple components using the notion of parallel
composition. Then we describe verification techniques designed to scale up to large,
complex systems. Many such approaches exist; examples include symbolic model
checking [12, 94], partial order reduction [50], symmetry reduction [39, 77], and
bisimulation minimisation [72]. In this presentation, we focus on two particular
methods: compositional verification, using an assume-guarantee framework, and

94 M. Kwiatkowska et al.

abstraction refinement. We conclude the section with a case study that illustrates
both of these techniques.

3.4.1 Compositional Modelling of Probabilistic Systems

Complex system designs usually comprise multiple components operating in paral-
lel. For such a system, if there is probabilistic behaviour present in the system, then
an MDP is the natural mathematical model for the system as non-determinism can
be used to represent the concurrency between the components. However, for com-
positional modelling and analysis, probabilistic automata (PAs) [100, 101], a minor
generalisation of MDPs, are a more suitable formalism. The key difference is that
states of a PA can have more than one transition labelled by the same action.

Definition 3.17 (Probabilistic automaton) A probabilistic automaton (PA) is a tuple
M= (S,s,A,S3, L), where:

S is a finite set of states;

§ € S is an initial state;

A is a finite alphabet;

8 € Sx(AU{r})xDist(S) is a finite probabilistic transition relation;
L : S — 24% is a state labelling function.

The difference from Definition 3.5 is that we now have a transition relation as opposed
to a transition function and allow transitions to be labelled with the silent action t,
representing transitions that are internal to the component being represented.

The notions basic for MDPs presented in Sect. 3.2.2, such as paths and strategies,
carry over straightforwardly to PAs. Reward structures for PAs can be defined in
exactly the same way as for MDPs (see Definition 3.6), although here a strategy
chooses a particular transition (element of §) as opposed to an action in a state. The
semantics of the PRISM logic (see Definition 3.3) and corresponding model checking
algorithm presented in Sect.3.2.2 for MDPs also carry over to PAs.

We next describe parallel composition of PAs, first introduced in [100, 101].

Definition 3.18 (Parallel composition of PAs) If M; = (S;, 5;, A;, 8;, L;) are PAs for
i = 1,2, then their parallel composition M| ||M, = (S1x S5, (51, 52), AjU A3, 8, L)
is the PA where ((s1, $2), a,) € § if and only if one of the following holds:

o ac A NAy = XU, (s1,a, 1) €y and (52, a, i) € 82;
e a € Aj\As, = 1 X1y, and (s1, a, 1) € 313

o a € A)\Ay, = n, Xy and (52, a, 1) € &2;

and L((sq, 52)) = L1(s1) U Ly(s2).

The above definition allows several components to synchronise over the same action,
so called multi-way synchronisation, as used by the process algebra CSP [99]. It also
assumes that the components M; and M, synchronise over their common actions

3 Probabilistic Model Checking: Advances and Applications 95

A1 N Aj,. Definition 3.18 can easily be adapted to use other definitions of synchroni-
sation, such as the two-way synchronisation used by the process algebra CCS [89], or
to incorporate additional process algebraic operators for hiding or renaming actions.
Below, we demonstrate how a reward structure for a system can be constructed
from the reward structures of its components. In this definition we have used addition
as this is used in later case studies, however we can easily use other arithmetic
operations depending on the quantities that the reward structure represents.

Definition 3.19 IfM; = (S;,5;, A;,8;,L;) are PAs with reward structures
r; = (rs;, ra,) for i =1, 2, then the composed reward structure r = (rs, ra) for
M ||M, is such that for any (s, s2) € S1xS; anda € A; U Aj:

rs((s1,52)) = rs (s1)+rs,(s2)
ra, (81, a)+ra,(s2,a) ifa € A; N Ay
ra((s1,82),a) = ra, (51, a) ifa e Aj\A;

rAz(Sz,Cl) ifa e Az\Al.

3.4.2 Compositional Probabilistic Model Checking

We now describe an approach for compositional verification of probabilistic automata
presented in [81], based on the popular assume-guarantee paradigm. This allows the
verification of complex system to be performed through the analysis of individual
components of the system in isolation, rather than verifying the much larger complete
system. We begin by defining the underlying concepts and then illustrate two of the
assume-guarantee proof rules.

The approach is based on the use of linear-time, action-based properties ¥, which
are defined in terms of the actions that label the transitions of a probabilistic automa-
ton (or MDP). This is in contrast to the properties discussed elsewhere in this chapter,
which are defined in terms of the atomic propositions that label states.> More pre-
cisely, a property ¥ represents a set of infinite words over the set A of action labels of
a probabilistic automaton M. An infinite path o of M satisfies ¥, written M, = V¥,
if the trace of m (the sequence of actions labelling its transitions, ignoring silent t
actions) is in the set of infinite words defining ¥. Then, following the same style as
the other property specifications introduced earlier, the property P.,[¥] states that,
for all strategies of the probabilistic automaton M, the probability of a path satisfying
¥ is within the interval given by >« p.

We focus our attention here on compositional verification of a class of linear-time
action-based properties called regular safety properties.

Definition 3.20 (Regular safety property) A safety property Wp represents a set of
infinite words over an alphabet o which is characterised by a set of ‘bad prefixes’:

31n fact, state and action-labelled variants of temporal logics are equally expressive [90].

926 M. Kwiatkowska et al.

finite words of which any extension is not in the set. A regular safety property is a
safety property whose set of bad prefixes can be represented as a regular language.

Probabilistic safety properties are of the form P> ,[Wp], where Wp is aregular safety
property. These can be used to capture a variety of useful properties of probabilistic
models, including:

e the probability of no failures occurring is at least 0.99;
e cvent a always occurs before event b with probability at least 0.75;
e the probability of completing a task within k steps is at least 0.9.

A technical requirement of the compositional verification approach described here
is the use of partial strategies, which can opt to (with some probability) take none
of the available actions and remain in the current state. In [81] it is shown that by
considering only fair strategies, that is the strategies that choose an action from each
component of the system infinitely often, this requirement can be removed. We first
define the alphabet extension of a PA.

Definition 3.21 (Alphabet extension of PA) For a PA M = (S,5, A, 8, L) and set
of actions «, we extend M’s alphabet to «, denoted by the PA M[«], as follows:
M[a] = (S, 5, AU, &', L) where 8’ = 8U{(s, a, n5) | s€S A aca\A}.

The approach uses probabilistic assume-guarantee triples. These take the form
(P pa[¥al) M (P> o [WG]) where Wa, WG are regular safety properties (see Defi-
nition 3.20) and M is a PA. Informally, the triple means: ‘whenever M is part of
a system satisfying W with probability at least pa, the system satisfies ¥g with
probability at least pg’. Formally, we have the following definition.

Definition 3.22 (Probabilistic assume-guarantee triple) If W, W are regular safety
properties, pa, pag € [0, 1] bounds, M = (S, 5, A, 3, L) is a PA and ag C aa U A,
then (P>, [Wal) M (P>, [WG]) is a probabilistic assume-guarantee triple, meaning:

Vo € ZMian - (Mlaal, 0,5 = Pxp, [Wal = Mlaal, 0,5 = Px 6 [¥Wal) -

The use of M[wa], i.e. M extended to the alphabet of W, in the above is needed
to allow the assumption to refer to actions not used in M. Verifying that a triple
(P> pa[¥al) M (P, [¥G]) holds requires the use of multi-objective model checking,
as discussed in Sect.3.3.2, as the following proposition demonstrates.

Proposition 3.1 ([81]) If Wa, Wg are regular safety properties, pp, pg € [0, 1] and
M is a PA, then (P, [Wal) M (P> . [WG]) if and only if

—JoeM[aa] . (Mlaal, 0,5 E P> pu[¥al A Maal, 0,5 = P> 6 [Wal) -

Based on the definitions given above, [81] presents the following asymmetric assume-
guarantee proof rule for a two component system M ||M,.

3 Probabilistic Model Checking: Advances and Applications 97

Proposition 3.2 ([81]) If Wa, Wg are regular safety properties, pp, pag € [0, 1] and
My, M, are PAs such that ap C A and ag C Ay U ap, then the following proof rule
holds:
My, 51 = Py pa[Wal
(P pal¥al) My (P> 6 [¥G1) (ASYM)
M I Mz, (51, 52) =Py pe [WG]

Proposition 3.2 presents a method to verify the property P> ,.[¥c] on M;||M; in
a compositional fashion. More precisely, verification reduces to two sub-problems,
one for each premise of the rule:

1. computing the optimal probability of a regular safety property on My;
2. performing multi-objective model checking on M,[aa].

A limitation of the above rule is the fact it is asymmetric: we analyse the component
M, using an assumption about the component M, but when verifying M; we cannot
make any assumptions about M,. Below, we give a proof rule which does allow the
use of additional assumptions in this way.

Proposition 3.3 ([81]) IfWa,, ¥a,, Ya are regular safety properties, pa,, PA,» PG €
[0, 11 and My, M, are PAs such that aa, C Az, aa, C Ay Uap, andag C Ay Uap,,
then the following proof rule holds:

Mz, 52 E P> py, [Wa,]
(P> pa, [P, 1) My (P> (W, 1)
(P>pp, [¥a, 1) M2 (P> 0 [Wa])
M [| My, (51, 52) = P> pe (WG]

(CIrRC)

For further details of the assume-guarantee proof rules, including extensions to allow
both w-regular properties and reward-based properties, see [81].

3.4.3 Quantitative Abstraction Refinement

An alternative way to verify large, complex systems is using abstraction-refinement
techniques, which have been established as one of the most effective ways of per-
forming non-probabilistic model checking on complex systems [30]. The basic idea
is to build a small abstract model, by removing details of the complex concrete sys-
tem which are not relevant to the property of interest, which is consequently easier
to analyse. The abstract model is constructed in such a way that, when the property
of interest is verified true for the abstraction, the property also holds for the con-
crete system. On the other hand, if the property does not hold for the abstraction,
then information from the model checking process (typically a counterexample) is
used either to show that the property is false in the concrete system or to refine the
abstraction. This process forms the basis of a loop which refines the abstraction until
the property is shown either to be true or false in the concrete system.

98 M. Kwiatkowska et al.

In the case of probabilistic model checking a number of abstraction-refinement
approaches exist. D’ Argenio et al. [34] introduce an approach for verifying reach-
ability properties of PAs based on probabilistic simulation [100] and implement a
corresponding tool RAPTURE [66]. Properties are analysed on abstractions obtained
through successive refinements, starting from a coarse partition derived from the
property under study. This approach only produces lower (upper) bounds for the
minimum (maximum) reachability probabilities. Based on [34] and using predicate
abstraction [48], an abstraction-refinement framework for PAs is developed in [63,
110] and implemented in the PASS tool [53]. The framework is used for verifying
or refuting properties of the form ‘the maximum probability of error is at most p’
for a given probability threshold p. Since abstractions produce only upper bounds
on maximum probabilities, to refute a property, probabilistic counterexamples [58]
(comprising multiple paths whose combined probability exceeds p) are generated.
If these paths are spurious, then they are used to generate further predicates using
interpolation.

An alternative framework is presented in [75] where the key idea is to main-
tain a distinction between the non-determinism from the original PA and the non-
determinism introduced during the abstraction process. To achieve this, abstractions
of PAs are modelled as stochastic two player games (see Sect.3.2.3), where the two
players correspond to the two different forms of non-determinism. Analysis of these
abstract models results in a separate lower and upper bound for the property of inter-
est (e.g. an optimal reachability probability or expected reward value). These bounds
both provide quantitative measure of the quality (or preciseness) of the abstrac-
tion and an indication of how to improve it. The abstraction-refinement framework is
presented in Fig. 3.7. The framework starts with a simple, coarse abstraction (i.e. par-
tition of the state space) and then refines the abstraction until the difference between
the bounds is below some threshold value ¢. Two methods for automatically refining
abstractions are considered. The first is based on the difference between specific
strategies that achieve the lower and upper bounds. The second method differs by
considering all the strategies that achieve the bounds. In [74, 79], this game-based
abstraction and refinement framework has been used to develop verification tech-
niques for probabilistic software and probabilistic timed automata (see Sect.3.5.1),
respectively.

PA and abstract Stochastic
partition P game

A

model
checking

Bounds and
strategies

[error<e] Return
| "| bounds

[error=€]
refine

abstract

New
partition

Fig. 3.7 Quantitative abstraction-refinement framework for PAs [75]

3 Probabilistic Model Checking: Advances and Applications 99

3.4.4 Case Study: The Zeroconf Protocol

This case study concerns the ZeroConf dynamic configuration protocol for IPv4
link-local addresses [29] used to enable devices to connect to a local network. The
protocol is a distributed ‘plug-and-play’ solution to IP address configuration. This
case study was originally introduced and analysed using probabilistic model checking
in [82]. The compositional approach present in Sect. 3.4.2 and abstraction-refinement
framework present in Sect. 3.4.3 have since been used to analyse this model in [75,
81], respectively.

The protocol is used to configure an IP address for a device when it first joins a local
network. This address is then used for the communication between the device and
others within the network. When connecting to the network, a device first randomly
selects an address from the 65,024 possible local IP addresses. The device then waits
arandom time of between 0 and 2 s before sending a number of probes including the
chosen address over 4 second intervals. These probes are sent all of the other hosts
of the network and are used to check whether any other device is using the chosen
address. If the original device gets a message back saying the address is already in
use it will restart the protocol by reconfiguring. If the host repeats this process 10
times, it ‘backs off” and remains idle for at least one minute. If the host does not get
areply to any of the probes it commences to use the chosen IP address. We assume
that messages can also get lost with a fixed probability.

The model of this system studied in [81] consists of the parallel composition of
two PAs: one automaton representing a new device joining the local network and the
other representing the environment, i.e. the existing network including the devices
present in the network. Using the composition approach, [81] analysed the following
properties:

e the minimum probability that the new host employs a fresh IP address;
e the minimum probability that the new host is configured by time T';

e the minimum probability that the protocol terminates;

e the minimum and maximum expected time for the protocol to terminate.

The first two can be expressed using regular safety properties and were verified
compositionally by applying the rules presented in Propositions 3.2 and 3.3. In the
case of the final two properties, extensions of the rules to LTL and reward properties
were used.

The case study developed in [75] using the game based abstraction-refinement
described in Sect. 3.4.3 also considers a new device joining a network. The network
consists of N devices and there are M available addresses. The model is the parallel
composition of 2- N+1 component PAs: the device joining the network and N pairs
of channels for the two-way communication between the new device and each of the
configured devices. Figure 3.8 presents, for a fixed abstraction, the upper and lower
bounds obtained when calculating the maximum probability that the new device has
not configured successfully by time 7. The figure also includes the results obtained
when model checking the concrete system. The graphs demonstrate how the differ-
ences between the lower and upper bounds can be used to quantify the utility of

100 M. Kwiatkowska et al.
= o3 - = o3 -

g —— upper bound g ——upper bound|
Z 005 == actual value || Z 0.5 = gctual value
e —— lower bound - —— lower bound
° °

g 02 o 02

> >

2 2

€ 0.15 € 0.15

<] S

o o

g 0.1 g 0.1

2 2

Z 005 Z 005

] [

Rl Q

e o S o0

o 8 10 12 14 16 o 8 10 12 14 16

T (seconds) T (seconds)
(a) N=8 and M=32 (b) N=8 and M=64

Fig. 3.8 Zeroconf case study: maximum probability device not configured successfully by 7" [75]

the abstraction. For the fixed abstraction, the number of states in the abstraction is
independent of M and equals 881, on the other hand, the concrete system has 432,
185 states when M = 32 and 838, 905 states when M = 64.

3.5 Real-Time Probabilistic Model Checking

So far, we have seen discrete-time models which exhibit just probabilistic behaviour
(DTMCs) or both probabilistic and non-deterministic behaviour (MDPs and SMGs).
However, it is also often important to model the real-time characteristics and the
interplay between the different types of behaviour. Relevant application areas range
from wireless communication, automotive networks to security protocols. We will
first give an overview of probabilistic timed automata, a formalism that allows for
the modelling of systems exhibiting non-deterministic, probabilistic and real-time
behaviour and a case study using this formalism. The final part of this section concerns
continuous-time Markov chains, which are also suitable for modelling systems with
probabilistic and real-time characteristics.

3.5.1 Probabilistic Timed Automata

Probabilistic timed automata (PTAs) [17, 68, 84] extend classical timed automata [5]
with discrete probabilistic choice. Real-time behaviour is modelled through clocks
which are variables whose values range over the non-negative reals and increase at
the same rate as time. For the remainder of this section, we assume a finite set of
clocks 2. Before we give the formal definition of PTAs we require the following
notation and definitions relating to clocks.

3 Probabilistic Model Checking: Advances and Applications 101

A function v : 2~ —>]R>0 is called a clock valuation and we denote the set of all
clock valuations by R>0 For a clock valuation v € R>0, real-time delay ¢ € Ry
and set of clocks X C 2” we use v+t to denote the clock valuation obtained from v
by incrementing all clock values by ¢ and v[X:=0] for the clock valuation obtained
from v by resetting the clocks in X to 0. We let 0 denote the clock valuation that
assigns 0 to all clocks in 2". We define the set of clock constraints over 2", denoted
CC(Z), by the syntax:

Cio=true|x<d|c<x|x+c<y+d | ¢ ¢ NC

where x,y € 2" and ¢, d € N. A clock valuation v satisfies a clock constraint £,
denotedv = ¢,ifthe constraint ¢ resolves to t rue after substituting the occurrences
of each clock x with v(x).

Definition 3.23 (PTA syntax) A probabilistic timed automaton (PTA) is a tuple of
the form P = (L, [, 2, Act, inv, enab, prob, Lp) where:

e L is a finite set of locations and I € L is an initial location:

e % is a finite set of clocks;

e Act is a finite set of actions;

e inv: L—>CC(Z) is an invariant condition;

e enab : LxAct—CC(Z) is an enabling condition,

e prob : LxAct— Dist(2% xL) is a (partial) probabilistic transition function;
e Lp : L—24F is a labelling function.

A state of a PTA is a pair (/,v) € LxRﬁ such that v = inv(l). In any state (/, v),
there is a non-deterministic choice between either a certain amount of time elaps-
ing, or an action being performed. If time elapses, then the choice of time € Ry
requires that the invariant inv(/) remains continuously satisfied while time passes.
The resulting state after this transition is (/, v+¢). In the case where an action is
performed, an action a can only be chosen if it is enabled, i.e. if the clock constraint
enab(l, a) is satisfied by v. Once an enabled action a is chosen, a set of clocks to
reset and a successor location are selected at random, according to the distribution
prob(l, a).

Definition 3.24 (PTA semantics) Let P = (L,1, 2", Act, inv, enab, prob, Lp) be a
PTA. The semantics of P is defined as the (infinite-state) MDP [P] = (S, 5, A, 8, L)
where:

S = {d, v)eLx]R lv E inv()};
s=(,0);
A= R>0 U Act;
forany (/,v) € Sanda € Act U Ry, wehave §((/, v), a) = A if and only if either:

— (time transitions) a € Rxo, v+t = inv(l) for all 0<t'<a, and A = 0 y4a);
— (action transitions) a € Act, v = enab(l, a) and for each (I',V') € S:

Al vy =D { probl, a)(X,I') | X € 2% AV

102 M. Kwiatkowska et al.

0.4
{hazard} east {goal,}
X=2

stuck 0.8 : - east
: x>2

{goaly} 0.4 x:=0 west {goal,}
x=2

Fig. 3.9 Running example: a PTA P representing a robot moving about a 3 x 2 grid

e forany (/,v) € S we have L(/,v) = Lp()) U{¢ | ¢ € CC(Z) Av = ¢).

The set of atomic propositions of [P] is the union of the atomic propositions used
for labelling the locations L and the clock constraints obtained from the clocks 2 .
We now return to our running example of a robot and extend our MDP model to
exhibit real-time behaviour.

Example 8 Figure3.9 shows a PTA model of our robot moving through terrain that
is divided up into a 3 x 2 grid, extending the MDP model described in Example 3.
The PTA has two clocks x and y and each grid section is represented as a location
(with initial location /). In each location, one or more actions from the set Act =
{north, east, south, west, stuck} are again available. As before, due to the presence of
obstacles, certain directions are unavailable in some states or probabilistically move
the robot to an alternative state.

The invariant x <4 in the locations [y, /1, I4 and /5 and the fact that the clock x is
reset on all transitions entering these locations implies that at most 4 time units can
be spent in these locations. While the inclusion of the constraint x>2 in all guards
of the transitions leaving these locations, implies that the robot must remain in these
location for at least 2 time units. In addition, the inclusion of y<8 in the guards
on the transitions labelled north and south and the fact the clock y is never reset,
means that the robot can only move ‘north’ and ‘south’ during the first 8 time units
of operation. |

As for DTMCs and MDPs (see Sect. 3.2), we can define reward structures for PTAs.

Definition 3.25 (PTA reward structure) For PTA P with locations L and actions
Act, a reward structure is given by a pair r = (rp, ;) Where:

e 1 : L — Ry is a function assigning to each location the rate at which rewards
are accumulated as time passes in that location;

® rae - LxAct—Ry is a function assigning the reward of executing each action in
each location.

3 Probabilistic Model Checking: Advances and Applications 103

The location rewards of a PTA assign the rate at which rewards are accumulated as
time passes in a state, and therefore the corresponding reward structure of the MDP
[P consists of only action rewards. More precisely, in the corresponding reward
structure of [P]] we have ro((, v), t) = rp()-t and rs((I, v), a) = ra(l, a) for all
(,vyel X]Rg), t € Ryg and a € Act. PTAs equipped with reward structures are a
probabilistic extension of linearly-priced timed automata (also known as weighted
timed automata) [8, 19]. Parallel composition (see Sect.3.4) can also be extended
to PTAs [92] under the restriction that the sets of clocks of the component PTAs are
disjoint.

An important issue with regard to the analysis of models exhibiting real-time
behaviour is that of time divergence. More precisely, we do not consider executions
in which time does not advance beyond a certain point. These can be ignored on
the grounds that they do not correspond to actual, realisable behaviour of the system
being modelled [3, 7]. For a PTA P this corresponds to restricting the analysis of the
MDP [[P]] to the class of time-divergent (or non-Zeno) strategies (those strategies
for which the probability of time passing beyond any bound is 1). This clearly has an
impact on the complexity of any analysis. However, there are syntactic conditions,
derived from analogous results on timed automata [106, 107], which guarantee that
all strategies will be time-divergent, see [92] for further details.

The PRISM logic (see Definition 3.3) previously used for specifying properties
for DTMCs and MDPs can also be applied to PTAs. There is one key difference
since time is now dense as opposed to discrete: the bounds appearing in formulae
correspond to bounds on the elapsed time as opposed to bounds on the number of
discrete steps. More precisely, path formula v, US* v, holds if a state satisfying
Y, is reached before k time units have elapsed and, up until that point in time, v, is
continuously satisfied, and the reward formulae T=* and CS* represent the reward
at time instant k and the reward accumulated up until k time units have elapsed. As
the underlying semantics of a PTA is an MDP the semantics of the logic for PTAs
is as given in Definition 3.9, modified for bounded properties due to the different
interpretation for PTAs given above [92]. The logic can also be extended to allow
more general timing properties through formula clocks and freeze quantifiers [84].

There are a number of different model checking approaches for PTAs which
support different classes of properties. Each is based on first constructing a finite
state MDP and then analysing this MDP (either computing the optimal probability
of a path formula or the expected value of a reward formula). Approaches for model
checking PTAs include:

the region graph construction [84];

the boundary region graph [70];

the digital clocks method [82];

forwards reachability [84];

backwards reachability [85];

abstraction refinement with stochastic games [79].

For a discussion of the advantages and disadvantages of these approaches, see [92].

104 M. Kwiatkowska et al.

1.00
F
E —e-goall
< 0.75 —#- goal2
Q
o
Q
c 0.50
>
£
x 0.25
=
0.00

o 1 2 3 4 5 6 7 8 9 10 11 12
k

Fig. 3.10 Running example: Time-bounded probabilistic reachability for the PTA model of the
robot

Example 9 For the PTA model of the robot given in Example 8 and Fig.3.9 the
maximum probability of reaching a goal; labelled state (Ppax—2[F goal,]) is now
0.4744 as opposed to 0.5 for the MDP model (see Example 3). This is due to the
fact that the north and south actions are only available during the first 8 time units
of operation and the robot must remain in the locations ly, /1, I4 and /5 for between 2
and 4 time units. The minimum expected time to reach a goal, state equals 2.5333
and is obtained through the query R’ . _,[F goal, | where the reward structure r =
(rL, rae:) is such that »(/) = 1 and r (I, a) = 0 for for all locations / and actions a.
Finally, Fig. 3.10 plots results for the time-bounded maximum reachability properties
Prax—?[FS¥ goal,] and Ppay—2[F<* goal,] as the time bound k varies. [|

Extensions to PTAs. One way of extending PTAs is to allow more general continuous
dynamics to model hybrid systems (see Sect. 3.7). We also mention the introduction of
continuously-distributed time delays, see for example [2, 83, 88] and probabilistic
timed games (see for example [9, 70]), which can build on the success of (non-
probabilistic) timed games for the analysis of synthesis problems [18].

3.5.1.1 Case Study: Processor Task Scheduling

This PTA case study is taken from [92] and is based on the fask-graph scheduling
problem described in [22] using (non-probabilistic) timed automata. The case study
concerns determining optimal schedulers for either the (expected) time or energy
consumption required to compute the arithmetic expression D x (C x (A + B)) +
((A 4+ B) + (C x D)) using two processors (P} and P,) that have different speed and
energy requirements. Figure 3.11 presents a task graph for computing this expression
and shows both the tasks that need to be performed (the subterms of the expression)
and the dependencies between the tasks (the order the tasks must be evaluated in).
The specification of the processors, as given in [22], is as follows:

3 Probabilistic Model Checking: Advances and Applications 105

Fig. 3.11 Processor task
scheduling problem:
computing D x (C x (A +
B)) + ((A+ B) + (C x D))

time for addition: 2 and 5 picoseconds for processors P, and Ps;

time for multiplication: 3 and 7 picoseconds for processors P; and P»;
idle energy usage: 10 and 20 Watts for processors P and Ps;

active energy usage: 90 and 30 Watts for processors P, and P;.

The system is formed as the parallel composition of three PTAs—one for each
processor and one for the scheduler. In Fig.3.12a we give a timed automaton repre-
senting P;. The labels pl_add and p1_mult on the transitions represent an addition
and multiplication task being scheduled on P, respectively, while the label pI_done
indicates that the current task has been completed. The PTA includes a clock x which
is used to keep track of the time that a task has been running and is therefore reset
when a task starts and the invariants and guards correspond to the time required to
complete the tasks of addition and multiplication for P;. The reward structure for
computing the expected energy consumption associates a reward of 10 with the stdby
location and reward 90 with the locations add and mult (corresponding to the energy
usage of process P; when idle and active, respectively) and all action rewards are
0. The PTA and reward structure for processor P, are similar except for the names
of the labels, invariants, guards and reward values correspond to the specification
of P,. After forming the parallel composition, the reward structure for the expected
energy consumption then includes the addition of the reward structures for energy
consumption of P; and P,. The reward structure for computing the expected time
associates a reward of 1 with all locations of the composed system.

In [92] the model of [22] is extended in the following ways.

e A third processor Pj; that has faulty behaviour is added to the system. We assume
the faulty processor consumes the same energy consumption as P,, but is faster
(addition takes 3 picoseconds and multiplication 5 picoseconds) and has probabil-
ity p of failing to successfully complete a task. The PTA model of the Ps is given
in Fig.3.12b.

e The processors P and P, are changed to have random execution times. We assume
that, if the original time to perform a task was 7, then the time taken is now uniformly
distributed between the delays r—1, ¢ and t4-1. Figure 3.12c presents the resulting
PTA model of P;.

For each model, we synthesise the optimal schedulers for both the expected time and
energy usage to complete all tasks. To achieve this we used the numerical reward

106 M. Kwiatkowska et al.

p1_fail pl_fail m_fail

p1_done p1_done x=0 x=0
x=2 x=3 1.add ("stby | p1_mul
_a t
add stby mult : | ml<“3t <
x<2 true x=<3 . o x=
o x=0
x:=0 p1_add pl_mult x=

(a) TA model of processor Py

(c) PTA model P; with random delays

Fig. 3.12 PTAs for the task-graph scheduling case study

energy
min="?

queries R™™_ [F complete] and R
described above.

[F complete] with the reward structures

Basic model. For the basic (non-probabilistic) model, as proposed in [22], an optimal
scheduler for minimising the elapsed time to complete all tasks, takes 12 picoseconds
to complete all tasks and schedules the tasks as follows:

time [T [2[3J4[5][6[7[8[OJIOJIN[I2]13]I4[15]16 171819720
Py |taxk1| laxk3| lask5| laxk4| task6| | | | | | | | |
Py | tasky [I [T [[T]

When considering the energy consumption to complete all tasks, an optimal sched-
uler makes the following choices:

[tme JTT2[3[4[5J6[7[8]9J10]1II[12]1B3[14]15]16[17]18]19]20]
[P [raski] vasks [aske] [[[[[[[[T [T [[[1]
[P] tasky [tasks [taskg [

The above scheduler requires 1.3200 nanojoules and 19 picoseconds to complete
all tasks. Since processor P, consumes additional energy when active, the first sched-
uler described, optimising the time to complete all tasks, requires 1.3900 nanojoules.

Faulty processor. When adding the faulty processor P; we find that for small values
of p (the probability of P; failing to successfully complete a task), as P; has better
performance than P,, both the optimal expected time and energy consumption can
be improved using P;. However, as the probability of failure increases, P;’s better
performance is outweighed by the chance of its failure and using it no longer yields
optimal values. For example, below, we give an optimal scheduler for minimising
the expected time when p = 0.25 which takes 11.0625 picoseconds (the optimal
expected time is 12 picoseconds when Ps is not used). The dark boxes are used to
denote the cases when P; is scheduled to complete a task, but experiences a fault
and does not complete the scheduled task correctly.

3 Probabilistic Model Checking: Advances and Applications 107

tme [1 [2[3[4][5]6[7[8[0[10[1 [12[13][14][15]16] 1718]19]20

| |
[P] taskq] tasky | tasks | taske | [[[[[[[[[|
(pl [T T T T T T T T T T T T T T T [T []
[P] tasky [wk [[[[[[T T T T [[|

time [1 [2[3]4[5]6[7[8[0[0] I [12][13][14[15][16]17][18]19]20

: P | task] tasks | tasky | taskg| taske | T T 1T 1T 1T 1 :
(o T T T T T T T T [T T T T [T T T T]
tasky tasks [[I T T T 1]
[Gme [T 2[3[4[5]6[7[3[9[0 [N [2[B[A[B[I6][7][B]10]0]
[P | task{] tasks | tasky | tasky | tasks | taske | [[[[|
([T T T T T T T T T T T [T T [T T 1]
tasky \ rasks [I T T T 1]
[tme [TT2]3J4]5[6[7[8[9J10[II[12]13]14J15]16 17 18] 19]20]
[P taskq] tasky | tasks | taskg]| taske | [[[[[[[|
: p 1 [T T T [T T [T T T [[[[T [[T 1 :

Py | sk [N T T T [T T T T T T 7

This optimal scheduler uses the processor P; for fask, and, if this task is completed
successfully, it then uses P; for tasks. However, if the processor fails to complete
task,, P3 is instead then used for tasks with task4 being rescheduled on P;.

Random execution times. For this model, the optimal expected time and energy
consumption are 12.226 picoseconds and 1.3201 nanojoules, respectively. The opti-
mal schedulers change their decision based upon the delays of previously completed
tasks. For example, a scheduler that optimises the elapsed time starts by following
the choices for the optimal scheduler described for the basic model: first scheduling
task, followed by task; on P; and task, on P,. Due to the random execution times it
is now possible for task, to complete before rask; (if the execution times for rask|,
task, and tasks are 3, 6 and 4, respectively) and in this case the optimal decision
differs from those made for the basic model. To illustrate this we give one possible
set of execution times for the tasks and a corresponding optimal scheduling.

[Gme [T[2[3[4[5]6[7[S[0] 0[N [12 [B A [5][16[17[18][19]20]
[P] tasky | tasks [tasks | taske | [[[[[[|
[P] tasky | tasky | I N I O I I

3.5.2 Continuous-Time Markov Chains

Continuous-time Markov chains (CTMCs) are an alternative way to model systems
exhibiting probabilistic and real-time behaviour. This model type is very frequently
used in performance analysis and can be considered as a real-time extension of
DTMCs. While each transition between states in a DTMC corresponds to a discrete
time-step, in a CTMC transitions occur in real time.

108 M. Kwiatkowska et al.

Definition 3.26 (Continuous-time Markov chain) A continuous-time Markov chain
(CTMC) is atuple C = (S, §, R, L) where:

S is a finite set of states;

§ € S is an initial state;

R : §xS — Ry is a transition rate matrix;
L : S—24% is a state labelling function.

ForaCTMCC = (S, 5, R, L) and states s, s’ € S, atransition can occur from s to s’ if
and only if R(s, s")>0 and, when a transition can occur, the time until the transition is
triggered is exponentially distributed with parameter R(s, s’), i.e. the probability the
transition is triggered within r € R time-units equals 1 — e RO If more than
one transition can occur from a state, then the first transition triggered determines
the next state. This is known as a race condition.

Using properties of the exponential distribution, we can alternatively consider
the behaviour of the CTMC as follows: for any state s the time spent in the state is

exponentially distributed with rate E (s) &t > vcs R(s, s") and the probability that a
transition to state s’ is then taken equals R(s, s")/ E(s).

As for DTMCs and MDPs, an execution of a CTMC is represented as a path.
However, here, we must also consider the time at which a transition is taken. Formally,
a path of a CTMC is a (finite or infinite) sequence m = sofosf1S2f2 - .. such that
R(s;, sip1)>0and t; € R.(for all i >0. Furthermore, let time(rr, i) denote the time
spent in the (i+1)th state, that is ¢;.

To define a probability measure over infinite paths of a CTMC, we need to
extend the cylinder sets used in the probability measure construction for DTMC
(see Sect.3.2.1) to include time intervals. More precisely, if s, . .., s, is a sequence
of states such that R(s;, s;41)>0 forall 0<i <n and Iy, . . ., I, are non-empty inter-
vals in R, then the cylinder set C(so, lo, ..., I,—1, 5,) is the set of infinite paths
such thatw € C(so, lo, ..., I,—1, s,) ifand only if 7 (i) = s; and time(r, i) € I; for
all 0<ii <n and 0< j <n. We can then construct a probability measure Pr¢ g, over the
infinite paths of the CTMC. For further details on this construction see [14].

Reward structures can be defined for a CTMC and, as for PTAs, state rewards
assign the rate at which rewards are accumulated as time passes in a state. Also, as
for PTAs, when applying the PRISM logic to CTMCs, the bounds appearing in path
and reward formulae correspond to the elapsed time as opposed to the number of
steps performed. It follows that the only difference between model checking DTMCs
and CTMCs concerns the analysis of bounded properties. The standard approach for
verifying such time-bounded properties is to use uniformisation [49, 67]. For more
details on the model checking algorithms for CTMCs see, for example, [14, 78].

To express non-deterministic behaviour, CTMCs can be extended to continuous-
time Markov decision processes and related models such as interactive Markov
chains [62] and Markov automata [41]. For such models the main difference from
model checking MDPs is again when verifying bounded properties which is consid-
erable more complex in the continuous-time setting where the bounds correspond to
elapsed time as opposed to the number of discrete steps. Model checking algorithms

3 Probabilistic Model Checking: Advances and Applications 109

for such models have been developed, see for example [25], as well as temporal
logics which allow specification of more expressive timing requirements; see for
example [40].

3.6 Parametric Probabilistic Model Checking

In this section, we consider another extension to the basic technique of probabilistic
model checking which provides parametric techniques for analysing models. One
or more values in definition of the model (for example, a transition probability) or in
the property to be verified (for example, a time bound) are provided as a parameter
to the verification problem, rather than being instantiated to a specific value. For
a numerical query, parametric model checking can compute a symbolic expression
for the result, as a function of the parameters, rather than a concrete value. For
Boolean-valued queries, parameter synthesis can be applied to determine the set of
all parameter values for which the model is true.

We first consider the parametric model checking of DTMC models and, following
this, consider approaches for other probabilistic models.

3.6.1 Parametric Model Checking for DTMCs

Parametric model checking of DTMCs was first proposed by Daws [35] for the logic
PCTL. The basic idea is to represent transition probabilities as rational functions
and then use a language-theoretic approach to compute the probability of reaching
a set of target states. This is done by treating the transition probabilities as letters of
an alphabet, converting the DTMC to a finite automaton over this alphabet and then
using the state elimination method to determine a rational function representing the
probability of reaching the target.

Since the approach of [35] was first presented, a variety of extensions and imple-
mentations have been developed. For example, [54] builds on the basic ideas of
Daws, incorporating various optimisations and integrating bisimulation minimisa-
tion to improve efficiency. This was implemented in the tool PARAM [52] and later
also added to PRISM [80]. Since then, further improvements to parametric model
checking of DTMCs have been proposed [65], including the use of strongly con-
nected component decompositions and optimised approaches to the generation of
rational functions; these have been implemented in the PROPhESY tool [37].

Below, we explain the key definitions and illustrate the approach on some exam-
ples. We refer the reader to the references above for more details.

Definition 3.27 (Rational function) Let V = {x|, ..., x,} be a set of real-valued
variables. A rational function f over V is a function of the form f(xy,...,x,) =
gi(x1, ..., x,)/82(x1, ..., x,) where g and g, are polynomials each taking the form

110 M. Kwiatkowska et al.

S axkn - x,ke form € N, a; € R for 1<i<m and k; ; € N for 1<i<m and
1< j<n. The set of all rational functions over variables V is denoted Fy .

Given arational function f over the variables V, a subset V' C V of the variables
and an evaluation u : V'—R of V’, we let f[V'/u] denote the rational function
obtained from f by substituting any occurrence of a variable v/ € V' with the value
u(V). If V' =V, then u is a total evaluation and f[V’'/u] is a rational constant.

Definition 3.28 (Parametric DTMC) A parametric DTMC (PDTMC)isatuple D =
(S,5,P, L, V) where the set of states S, initial state 5§ and labelling L are as for a
DTMC (see Definition 3.1) and:

e V ={x1,...,x,}1s aset of real-valued variables called parameters;
e P: SxS — %y is a probabilistic transition matrix mapping each pair of states to
a rational function over the parameters.

A PDTMC retains the same basic structure as a DTMC, but transition probabilities
are expressed as functions of its parameters. Evaluations for this set of parameters
(satisfying certain conditions) then induce normal DTMCs.

Definition 3.29 (Induced DTMC) Let D = (S,s5,P,L, V) be a PDTMC and u :
V—R be a total evaluation of its parameters. Let P, (s, s) : S x S— R be the matrix
defined by P, (s, s) = P(s, s)[V /u]. We say that the evaluation u is well defined for D
ifP,(s,s") € [0,1]and >, (P, (s,s’) = 1 foralls,s” € S.Inthis case, the induced
DTMC of the evaluation u is the DTMCD,, = (S, 5, P,, L).

Since the behaviour of a DTMC can be qualitatively different if its underlying
transition graph changes, we assume that parameter evaluations u are graph pre-
serving, meaning that, P(s, s")#£0 implies P, (s, s")>0 for all s, s’ € S. The basic
property of interest for parametric DTMCs can then be defined as follows.

Definition 3.30 (Probabilistic reachability for PDTMCs) Let D = (S,5,P, L, V)
be a PDTMC and a € AP be an atomic proposition. The probabilistic reachability
problem is to find a rational function f € .#y such that, for any well-defined and
graph preserving evaluation u : V—R for D, we have:

fIV/ul = Pro, 5 {m € IPathsp, (5) | D,, 7 = Fa}.

Parametric probabilistic model checking of DTMCs has been applied to various prob-
lems, including model repair [16] and sensitivity analysis [43]. Below, we illustrate
its usage on a simple example.

Example 10 We return to our running example, and adapt the DTMC version of
the robot navigation model presented in Example 1 (see Fig.3.1). Figure 3.13 (left)
shows a modified version of this model, to which we have added to parameters p and
g which occur in some of the transition probabilities. The original DTMC results
from the parameter evaluation u that chooses u(p) = 0.05 and u(g) = 0.75.

3 Probabilistic Model Checking: Advances and Applications 111

{hazard} {goal,}
0.4-p

00.8-1

Probability

00.6-0.8
0.4-0.6
00.2-0.4

00-0.2

17
0.8-1
0.8
z 00.6-0.8
= 061
= 0.4-0.6
S 04
£ W 0.2-0.4
0.2 £0-0.2
o4

0
0.15 0.3 P
0.45 g6 0.75 g9
prob1 '

Fig. 3.14 Parametric model checking results for the NAND case study

We consider the property P_,[—goal, U goal,], i.e. the probability of reaching
goal 2 before goal 1. Applying parametric probabilistic model checking yields the
rational function (25-p-q 4+ 40-p — 10-q — 24)/(40-p — 34) as a result, which is
plotted for the valid ranges of p and ¢ in Fig. 3.13 (right). |

Example 11 As a second example, we revisit the NAND multiplexing case study
described in Sect.3.2.1.3. There are two parameters we consider for this case study:
err representing the probability that a NAND gate is unreliable and prob1 the proba-
bility the initial input is correct (takes the value true). In Fig.3.14, for the case
when there are five copies of the inputs and outputs (N = 5) and one restora-
tive stage (M = 1), we have plotted the probability that the error is less than 10
percent (the first property considered in Sect.3.2.1.3) as the parameters err and
probl vary. |

112 M. Kwiatkowska et al.

3.6.2 Parametric Model Checking for Other Probabilistic
Models

Parametric model checking techniques have also been developed for several of the
other probabilistic models described in this chapter. For example, Hahn et al. [54]
extend the approach described above to the analysis of MDPs, where the non-
deterministic choices are encoded as additional (binary) parameters. They found,
however, that this method was limited by the number of non-deterministic choices
available in a state and the fact that it could not be extended to nested properties.

They have since proposed an alternative method for parametric model checking
of MDPs [51]. Instead of finding a rational function corresponding to an optimal
probability or expected reward value, this approach finds parameter values for which
a given property holds (or does not hold), i.e. it solves the parameter synthesis
problem. This is achieved by repeatedly dividing the parameter space into regions
(hyper-rectangles) until regions are found over which the property of interest holds or
does not hold. Checking this requirement over a region is performed by first finding an
optimal strategy for the ‘middle’ point of the region, using standard (non-parametric)
MDP model checking of MDPs, and then performing parametric model checking on
the induced (parametric) DTMC of this strategy over the region.

Techniques also exist for CTMCs. Parametric model checking of unbounded prop-
erties for CTMCs can use the same methods as those developed for DTMCs. For
time-bounded properties, [S9] proposes an approach which approximates the set of
parameter values for which a time-bounded probabilistic reachability property holds,
based on a discretisation of the parameter space. We also mention [24, 26], which
allows for precise parametric model checking of time bounded properties of CTMCs.
This works by iteratively dividing the parameter space into regions through the com-
putation of upper and lower bound approximations for the time-bounded reachability
probability of interest over the regions.

Finally, concerning PTAs, both [11] and [69] study the problem of synthesis-
ing timing constraints of a PTA to ensure the satisfaction of a given property. The
approach of [11] is based on the inverse method for parametric (non-probabilistic)
timed automata [10], while [69] extends the forwards reachability [84] and game-
based [79] approaches for model checking PTAs.

3.7 Future Challenges and Directions

This chapter has provided an overview of probabilistic model checking and surveyed
some of the significant advances that have been made in the area in recent years.
Probabilistic model checking has shown itself to be a powerful, flexible and broadly
applicable verification technique, but a number of key challenges remain and work
continues on many fronts to improve the state of the art.

As with most areas of formal verification, a recurring limitation of probabilistic
model checking s its scalability to large, complex systems. We have discussed various

3 Probabilistic Model Checking: Advances and Applications 113

efforts to tackle this problem in earlier sections. Another related and fundamental
issue, which is true of any model-based analysis technique, is that the results of
verification are only as reliable as the model itself. For models with quantitative
aspects such as probability and time, which may be difficult to measure accurately,
this is particularly pertinent.

We conclude this chapter by highlighting some of the key challenges and research
directions in the area of probabilistic model checking, many of which aim to tackle
these issues.

Hybrid systems. Probabilistic model checking has many applications in the domain
of embedded and cyber-physical systems, for example in the verification of sensor
networks or robotic applications. In this setting, the interaction of (discrete) comput-
erised systems with their (continuous) environment becomes a crucial issue. Such
hybrid systems (or cyber-physical systems) raise new challenges because they require
more powerful models such as stochastic hybrid automata.

Hybrid automata allow both discrete behaviour and continuous flows defined
through differential equations, for example to model thermodynamics. The verifica-
tion of hybrid automata is in general undecidable, therefore the analysis is restricted
to certain subclasses and considering only approximate results. Early work on proba-
bilistic hybrid automata concerned decidability results for different subclasses [102].
Recent work [56, 113] combines abstraction approaches for non-probabilistic hybrid
automata [4, 98] with the abstraction-refinement approaches for MDPs [34, 75] dis-
cussed in Sect. 3.4. We also mention [38], where two approximation techniques for
classical hybrid automata are extended to the probabilistic case and [47] which, using
stochastic satisfiability modulo theories, presents a decision procedure for verifying
time-bounded properties.

Probabilistic software and programs. Although the modelling languages of tools
such as PRISM are sufficiently expressive for many purposes, direct support for the
probabilistic model checking of mainstream programming languages such as C or
Java or of system-level modelling languages such as SystemC will be required for
the verification of real applications. Programs in these languages yield extremely
large, or infinite state, models, which need dedicated techniques to tackle. A related
area, which has attracted interest in recent years, is the verification of probabilistic
programming languages [71], which have applications both for the specification of
randomised or probabilistic software and for the development of probabilistic models
used for inference and machine learning.

Ubiquitous computing. The vision of ubiquitous or pervasive computing sees thou-
sands of computerised devices integrating seamlessly in daily life. This emphasises
the need for techniques to ensure their correctness, but also demands the develop-
ment of new modelling formalisms and analysis techniques that can handle both the
dynamic nature and the enormous scale of these systems. One key aspect to mod-

114 M. Kwiatkowska et al.

elling ubiquitous computing devices is autonomous behaviour, as can be seen in,
for example, driverless cars and drone missions. In addition, we need to model the
constrained resources (often devices have limited memory and CPU processing and
are battery powered) and the fact that devices need to be adaptive as requirements
and the environment evolve.

Partial observability. In this chapter, we have assumed that the state of the sys-
tem and history are fully visible to a strategy when making decisions. However, in
many situations, this is unrealistic, for example, to verify that a security protocol
is functioning correctly, it may be essential to model the fact that some data held
by a participant is not externally visible, or, when synthesising a controller for a
robot, the controller may not be implementable in practice if it bases its decisions on
information that cannot be physically observed.

Partially observable MDPs (POMDPs) are a natural extension of MDPs for mod-
elling such strategies and they are widely used in areas such as planning and artificial
intelligence, but verification of POMDPs is considerably more difficult than MDPs
since key problems are undecidable [87]. Work in this area towards practical verifi-
cation of POMDPs includes [27, 93, 105].

Robustness and uncertainty. In many potential applications, such as the generation
of controllers in embedded systems, it may be difficult to formulate a precise model
of the stochastic behaviour of the system’s environment. Thus, developing appro-
priate models of uncertainty, and corresponding methods to synthesise strategies
that are robust in these environments, is important. Developing more sophisticated
approaches is an active area of research [96, 112].

Counterexamples. One final challenge is to improve the quality and usefulness
of the results that are generated by probabilistic model checking. One of the main
reasons for the success of non-probabilistic model checking is the generation of
counterexamples which provide, when the property being verified does not hold,
evidence of this violation. This evidence is usually in the form of a path demonstrating
the violation. In the probabilistic case, there is the complication that, to refute a
property, a single path is in general not sufficient as more than one path can contribute
to the probability of the property not holding. Initial research [58], focused on DTMCs
and reachability properties and generating a finite set of paths. Recent research has
focused on generating a more useful representation for counterexamples, including
regular expressions, hierarchical representations and critical sub-systems, for further
information see, for example, the survey [1].

Acknowledgements This work was supported by the ERC Advanced Investigators Grant VERI-
WARE, the EPSRC Mobile Autonomy Programme Grant EP/M019918/1, the EU FP7-funded
project HIERATIC and the DARPA-funded BRASS project.

3 Probabilistic Model Checking: Advances and Applications 115

References

1.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.
. P. Billingsley, Probability and Measure (Wiley, New Jersey, 1995)
22.

E. Abrahdm, B. Becker, C. Dehnert, N. Jansen, J.-P. Katoen, R. Wimmer, Counterexample
generation for discrete-time Markov models: an introductory survey, in Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM’14), ed. By M. Bernardo,
F. Damiani, R. Haehnle, E. Johnsen, I. Schaefer. LNCS, vol. 8483 (Springer, 2014), pp. 65-121

. R. Alur, C. Courcoubetis, D. Dill, Model-checking for probabilistic real-time systems,

in Proceedings of the 19th International Collog Automata, Languages and Programming
(ICALP’91). LNCS, vol. 510, (Springer, 1991), pp. 115-136

. R. Alur, C. Courcoubetis, D. Dill, Model checking in dense real time. Inf. Comput. 104(1),

2-34(1993)

. R.Alur, T. Dang, F. Ivancic, Predicate abstraction for reachability analysis of hybrid systems.

ACM Trans. Embed. Comput. Syst. 5(1), 152-199 (2006)

. R. Alur, D. Dill, A theory of timed automata. Theor. Comput. Sci. 126, 183-235 (1994)
. R. Alur, T. Henzinger, O. Kupferman, Alternating-time temporal logic. J. ACM 49(5), 672—

713 (2002)

. R. Alur, T. Henzinger, S. Rajamani, Symbolic exploration of transition hierarchies, in Pro-

ceedings of the 4th International Conference Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’98). LNCS, vol. 1384, (Springer, 1998), pp. 330-344

. R. Alur, S. La Torre, G. Pappas, Optimal paths in weighted timed automata. Theor. Comput.

Sci. 318(3), 297-322 (2004)

. R. Alur, A. Trivedi, Relating average and discounted costs for quantitative analysis of

timed systems, in Proceedings of the 11th International Conference Embedded Software
(EMSOFT’11) (ACM, 2011), pp. 165-174

. E. André, T. Chatain, E. Encrenaz, L. Fribourg, An inverse method for parametric timed

automata. Int. J. Found. Comput. Sci. 20(5), 819-836 (2009)

E. André, L. Fribourg, J. Sproston, An extension of the inverse method to probabilistic timed
automata. Form. Methods Syst. Des. 42(2), 119-145 (2013)

C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, M. Ryan, Symbolic model
checking for probabilistic processes, in Proceedings of the 24th International Colloquium
Automata, Languages and Programming (ICALP’97), ed. By P. Degano, R. Gorrieri,
A. Marchetti-Spaccamela. LNCS, vol. 1256 (Springer, 1997), pp. 430—440

C. Baier, M. Grofler, M. Leucker, B. Bollig, F. Ciesinski, Controller synthesis for probabilistic
systems, in Proceedings of the 3rd IFIP International Conference Theoretical Computer
Science (TCS’06), ed. By J.-J. Lévy, E. Mayr, J. Mitchell (Kluwer, 2004), pp. 493-5062

C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524-541 (2003)

C. Baier, J.-P. Katoen, Principles of Model Checking (MIT Press, Cambridge, 2008)

E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, S. Smolka, Model repair for probabilistic
systems, in Proceedings of the 17th International Conference Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’11), ed. By P. Abdulla, K. Leino. LNCS, vol.
6605 (Springer, 2011), pp. 326-340

D. Beauquier, Probabilistic timed automata. Theor. Comput. Sci. 292(1), 65-84 (2003)

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, D. Lime, UPPAAL-Tiga: time
for playing games!, in Proceedings of the 19th International Conference Computer Aided
Verification (CAV’07). LNCS, vol. 4590 (Springer, 2007), pp. 121-125

G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, Efficient guiding
towards cost-optimality in UPPAAL, in Proceedings of the 7th International Conference Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 01), ed. By T. Margaria,
W. Yi. LNCS, vol. 2031 (Springer, 2001), pp. 174-188

R. Bellman, Dynamic Programming (Princeton University Press, New Jersey, 1957)

P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, Quantitative analysis of real-time systems
using priced timed automata. Commu. ACM 54(9), 78-87 (2011)

116

23

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

M. Kwiatkowska et al.

. T. Brazdil, V. Brozek, V. Forejt, A. Kucera, Stochastic games with branching-time winning
objectives, in Proceedings of the 21th IEEE Symposium Logic in Computer Science (LICS’06)
(IEEE Computer Society, 2006), pp. 349-358

L. Brim, M. Ceska, D.V.S. DraZan, Exploring parameter space of stochastic biochemical sys-
tems using quantitative model checking, in Proceedings of the 25th International Conference
Computer Aided Verification (CAV’13). LNCS, vol. 8044 (Springer, 2013), pp. 107-123

P. Buchholz, E.M. Hahn, H. Hermanns, L. Zhang, Model checking algorithms for CTMDPs,
in Proceedings of the 23rd International Conference Computer Aided Verification (CAV’11),
ed. By G. Gopalakrishnan, S. Qadeer. LNCS, vol. 6806 (Springer, 2011), pp. 225-242

M. Ceska, F. Dannenberg, M. Kwiatkowska, N. Paoletti, Precise parameter synthesis for
stochastic biochemical systems, in Proceedings of the 12th International Conference Compu-
tational Methods in Systems Biology (CMSB’14), ed. By P. Mendes, J. Dada, K. Smallbone.
LNCS/LNBI, vol. 8859 (Springer, 2014), pp. 86-98

K. Chatterjee, M. Chmelik, R. Gupta, A. Kanodia, Qualitative analysis of POMDPs with
temporal logic specifications for robotics applications, in Proceedings of the IEEE Interna-
tional Conference Robotics and Automation, (ICRA’15) (IEEE Computer Society, 2015), pp.
325-330

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, A. Simaitis, Automatic verification of com-
petitive stochastic systems. Form. Methods Syst. Des. 43(1), 61-92 (2013)

S. Cheshire, B. Adoba, E. Gutterman, Dynamic configuration of IPv4 link local addresses.
http://www.ietf.org/rfc/rfc3927.txtwww.ietf.org/rfc/rfc3927.txt

E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refine-
ment, in Proceedings of the 12th International Conference Computer Aided Verification
(CAV’00), ed. By A. Emerson, A. Sistla. LNCS, vol. 1855 (Springer, 2000), pp. 154-169

A. Condon, The complexity of stochastic games. Inf. Comput. 96(2), 203-224 (1992)

A. Condon, On algorithms for simple stochastic games, Advances in computational complexity
theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 13, 51—
73 (1993)

M. Daniele, F. Giunchiglia, M. Vardi, Improved automata generation for linear temporal logic,
in Proceedings of the 11th International Conference Computer Aided Verification (CAV’99),
ed. By N. Halbwachs, D. Peled. LNCS, vol. 1633 (Springer, 1999), pp. 249-260

P. D’Argenio, B. Jeannet, H. Jensen, K. Larsen, in Reachability analysis of probabilis-
tic systems by successive refinements, Proceedings of the Ist Joint International Work-
shop Process Algebra and Probabilistic Methods, Performance Modelling and Verification
(PAPM/PROBMIV’01), ed. By L. de Alfaro, S. Gilmore. LNCS, vol. 2165 (Springer, 2001),
pp- 39-56

C. Daws, Symbolic and parametric model checking of discrete-time Markov chains, in Pro-
ceedings of the st International Colloquium Theoretical Aspects of Computing (ICTAC’04),
ed. By Z. Liu, K. Araki. LNCS, vol. 3407 (Springer, 2004), pp. 280-294

L. de Alfaro, Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford University,
1997

C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Abrahdm,
PROPHhESY: a PRObabilistic ParamEter SYnthesis tool, in Proceedings of the 27th Interna-
tional Conference Computer Aided Verification (CAV’15). LNCS, vol. 9206 (Springer, 2015),
pp- 214-231

J. Desharnais, J. Assouramou, Analysis of non-linear probabilistic hybrid systems, in Pro-
ceedings of the 9th Workshop Quantitative Aspects of Programming Languages (QAPL’11).
EPTCS, vol. 57 (2011), pp. 104-119

A. Donaldson, A. Miller, Symmetry reduction for probabilistic model checking using generic
representatives, in Proceedings of the 4th International Symposium Automated Technology for
Verification and Analysis (ATVA’06), ed. By S. Graf, W. Zhang. LNCS, vol. 4218 (Springer,
2006), pp. 9-23

S. Donatelli, S. Haddad, J. Sproston, Model checking timed and stochastic properties with
CSL®. IEEE Trans. Softw. Eng. 35(2), 224-240 (2008)

http://www.ietf.org/rfc/rfc3927.txtwww.ietf.org/rfc/rfc3927.txt

3 Probabilistic Model Checking: Advances and Applications 117

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

C. Eisentraut, H. Hermanns, L. Zhang, On probabilistic automata in continuous time, in
Proceedings of the 25th Annual IEEE Symposium Logic in Computer Science (LICS’10)
(IEEE Computer Society, 2010), pp. 342-351

K. Etessami, M. Kwiatkowska, M. Vardi, M. Yannakakis, Multi-objective model checking of
Markov decision processes. Logical Methods Comput. Sci. 4(4), 1-21 (2008)

A. Filieri, G. Tamburrelli, C. Ghezzi, Supporting self-adaptation via quantitative verification
and sensitivity analysis at run time. I[EEE Trans. Softw. Eng. 42(1), 75-99 (2016)

V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated verification techniques for
probabilistic systems, in Formal Methods for Eternal Networked Software Systems (SFM’11),
ed. By M. Bernardo, V. Issarny. LNCS, vol. 6659 (Springer, 2011), pp. 53-113

V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Quantitative multi-objective veri-
fication for probabilistic systems, in Proceedings of the 17th International Conference Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’11), ed. By P. Abdulla,
K. Leino. LNCS, vol. 6605 (Springer, 2011), pp. 112-127

V. Forejt, M. Kwiatkowska, D. Parker, Pareto curves for probabilistic model checking, in
Proceedings of the 10th International Symposium Automated Technology for Verification and
Analysis (ATVA’12), ed. By S. Chakraborty, M. Mukund. LNCS, vol. 7561 (Springer, 2012),
pp. 317-332

M. Frinzle, T. Teige, A. Eggers, Engineering constraint solvers for automatic analysis of
probabilistic hybrid automata. J. Logic Algebr. Progr. 79(7), 436-466 (2010)

S. Graf, H. Saidi, Construction of abstract state graphs with PVS, in Proceedings of the
9th International Conference Computer Aided Verification (CAV’97), ed. By O. Grumberg.
LNCS, vol. 1254 (Springer, 1997), pp. 72-83

D. Gross, D. Miller, The randomization technique as a modeling tool and solution procedure
for transient Markov processes. Oper. Res. 32(2), 343-361 (1984)

M. GroBer, C. Baier, Partial order reduction for Markov decision processes: a survey, in
Proceedings of the 4th International Symposium Formal Methods for Component and Objects
(FMCO’05), ed. By F. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever. LNCS, vol. 4111
(Springer, 2006), pp. 408-427

E.M. Hahn, T. Han, L. Zhang, Synthesis for PCTL in parametric Markov decision processes,
in Proceedings of the 3rd NASA Formal Methods Symposium (NFM’11). LNCS, vol. 6617
(Springer, 2011)

E.M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PARAM: a model checker for paramet-
ric Markov models, in Proceedings of the 22nd International Conference Computer Aided
Verification (CAV’10). LNCS, vol. 6174 (Springer, 2010), pp. 660-664

E.M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PASS: abstraction refinement for infi-
nite probabilistic models, in Proceedings of the 16th International Conference Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10), ed. By J. Esparza,
R. Majumdar. LNCS, vol. 6105 (Springer, 2010), pp. 353-357

E.M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric Markov models.
Int. J. Softw. Tools Technol. Trans. (STTT) 13(1), 3-19 (2011)

E.M. Hahn, Y. Li, S. Schewe, A. Turrini, L. Zhang, iscasMc: a web-based probabilistic model
checker, in Proceedings of the 19th International Symposium on Formal Methods (FM’14)
(2014), pp. 312-317

E.M. Hahn, G. Norman, D. Parker, B. Wachter, L. Zhang, Game-based abstraction and con-
troller synthesis for probabilistic hybrid systems, in Proceedings of the 8th International
Conference Quantitative Evaluation of SysTems (QEST’11) (IEEE Computer Society Press,
2011), pp. 69-78

J. Han, P. Jonker, A system architecture solution for unreliable nanoelectronic devices. IEEE
Trans. Nanotechnol. 1, 201-208 (2002)

T. Han, J.-P. Katoen, B. Damman, Counterexample generation in probabilistic model check-
ing. IEEE Trans. Softw. Eng. 35(2), 241-257 (2009)

T. Han, J.-P. Katoen, A. Mereacre, Approximate parameter synthesis for probabilistic time-
bounded reachability, in Proceedings of the IEEE Real-Time Systems Symposium (RTSS 08)
(IEEE Computer Society Press, 2008), pp. 173182

118

60.

61

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

M. Kwiatkowska et al.

H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Form. Asp. Comput.
6(5), 512-535 (1994)

. A. Hartmanns, H. Hermanns, A modest approach to checking probabilistic timed automata,
in Proceedings of the 6th International Conference Quantitative Evaluation of Systems
(QEST’09) (2009). To appear

H. Hermanns, Interactive Markov Chains and the Quest for Quantified Quality. LNCS, vol.
2428 (Springer, New York, 2002)

H.Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in Proceedings of the 20th Interna-
tional Conference Computer Aided Verification (CAV’08), ed. By A. Gupta, S. Malik. LNCS,
vol. 5123 (Springer, 2008), pp. 162-175

R.Howard, Dynamic Programming and Markov Processes (The MIT Press, Cambridge, 1960)
N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Abraham, J.-P. Katoen, B. Becker, Accelerat-
ing parametric probabilistic verification, in Proceedings of the 11th International Conference
Quantitative Evaluation of Systems (QEST’14) (2014), pp. 404420

B. Jeannet, P. D’ Argenio, K. Larsen, Rapture: a tool for verifying Markov decision processes,
in Proceedings of the Tools Day, affiliated to 13th International Conference Concurrency
Theory (CONCUR’02), ed. By 1. Cerna. Technical Report FIMU-RS-2002-05, Faculty of
Informatics Masaryk University (2002), pp. 84-98

A. Jensen, Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuar-
ietidskrift 36, 87-91 (1953)

H. Jensen, Model checking probabilistic real time systems, in Proceedings of the 7th Nordic
Workshop Programming Theory (1996), pp. 247-261

A. Jovanovic, M. Kwiatkowska, Parameter synthesis for probabilistic timed automata using
stochastic games, in Proceedings of the 8th International Workshop Reachability Problems
(RP’14), ed. By J. Ouaknine, 1. Potapov, J. Worrell. LNCS, vol. 8762, (Springer, 2014), pp.
176-189

M. Jurdzifiski, M. Kwiatkowska, G. Norman, A. Trivedi, Concavely-priced probabilistic timed
automata, in Proceedings of the 20th International Conference Concurrency Theory (CON-
CUR’09), ed. By M. Bravetti, G. Zavattaro. LNCS, vol. 5710 (Springer, 2009), pp. 415-430
J.-P. Katoen, Probabilistic programming: a true challenge in verification, in Proceedings of
the 13th International Symposium on Automated Technology for Verification and Analysis
(ATVA’15). LNCS (Springer, 2015), pp. 1-3

J.-P. Katoen, T. Kemna, 1. Zapreev, D. Jansen, Bisimulation minimisation mostly speeds up
probabilistic model checking, in Proceedings of the 13th International Conference Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’07), ed. By O. Grumberg,
M. Huth. LNCS, vol. 4424 (Springer, 2007), pp. 87-101

J.-P. Katoen, 1. Zapreev, E.M. Hahn, H. Hermanns, D. Jansen, The ins and outs of the prob-
abilistic model checker MRMC, in Proceedings of the 6th International Conference Quanti-
tative Evaluation of Systems (QEST’09) (IEEE Computer Society Press, 2009), pp. 167-176
M. Kattenbelt, M. Kwiatkowska, G. Norman, D. Parker, Abstraction refinement for prob-
abilistic software, in Proceedings of the 10th International Conference Verification, Model
Checking, and Abstract Interpretation (VM CAI’09), ed. By N. Jones, M. Muller-Olm. LNCS,
vol. 5403 (Springer, 2009), pp. 182-197

M. Kattenbelt, M. Kwiatkowska, G. Norman, D. Parker, A game-based abstraction-refinement
framework for Markov decision processes. Form. Methods Syst. Des. 36(3), 246-280 (2010)
J. Kemeny, J. Snell, A. Knapp, Denumerable Markov Chains, 2nd edn. (Springer, Heidelberg,
1976)

M. Kwiatkowska, G. Norman, D. Parker, Symmetry reduction for probabilistic model check-
ing, in Proceedings of the 18th International Conference Computer Aided Verification
(CAV’06), ed. By T. Ball, R. Jones. LNCS, vol. 4114 (Springer, 2006), pp. 234-248

M. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in Formal Methods
for the Design of Computer, Communication and Software Systems: Performance Evaluation
(SFM’07), ed. By M. Bernardo, J. Hillston. LNCS (Tutorial Volume), vol. 4486 (Springer,
2007), pp- 220-270

3 Probabilistic Model Checking: Advances and Applications 119

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.

93.

94.

95.

96.

97.

98.

M. Kwiatkowska, G. Norman, D. Parker, Stochastic games for verification of probabilistic
timed automata, in Proceedings of the 7th International Conference Formal Modelling and
Analysis of Timed Systems (FORMATS’09), ed. By J. Ouaknine, F. Vaandrager. LNCS, vol.
5813 (Springer, 2009), pp. 212-227

M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: verification of probabilistic real-time
systems, in Proceedings of the 23rd International Conference Computer Aided Verification
(CAV’11), ed. By G. Gopalakrishnan, S. Qadeer. LNCS, vol. 6806 (Springer, 2011), pp. 585—
591

M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Compositional probabilistic verification
through multi-objective model checking. Inf. Comput. 232, 38-65 (2013)

M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis of probabilistic
timed automata using digital clocks. Form. Methods Syst. Des. 29, 33-78 (2006)

M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Verifying quantitative properties of
continuous probabilistic timed automata, in In Proceedings of the 11th International Confer-
ence Concurrency Theory (CONCUR’00), ed. By C. Palamidessi. LNCS, vol. 1877 (Springer,
2000), pp. 123-137

M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time
systems with discrete probability distributions. Theor. Comput. Sci. 282, 101-150 (2002)
M. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model checking for probabilis-
tic timed automata. Inf. Comput. 205(7), 1027-1077 (2007)

M. Kwiatkowska, D. Parker, C. Wiltsche, PRISM-games 2.0: a tool for multi-objective strategy
synthesis for stochastic games, in Proceedings of the 22nd International Conference Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’16). LNCS (Springer,
2016)

O. Madani, S. Hanks, A. Condon, On the undecidability of probabilistic planning and related
stochastic optimization problems. Artif. Intell. 147(1-2), 5-34 (2003)

0. Maler, K. Larsen, B. Krogh, On zone-based analysis of duration probabilistic automata, in
Proceedings of the 12th International Workshop Verification of Infinite-State Systems (INFIN-
ITY’10). EPTCS, vol. 39 (2010), pp. 33-46

R. Milner, Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25(3), 267-310 (1993)
R. Nicola, F. Vaandrager, Action versus state based logics for transition systems, in Proceed-
ings of the LITP Spring School on Theoretical Computer Science: Semantics of Systems of
Concurrent Processes, ed. By 1. Guessarian (Springer, 1990), pp. 407419

G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, Evaluating the reliability of NAND
multiplexing with PRISM. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(10),
1629-1637 (2005)

G. Norman, D. Parker, J. Sproston, Model checking for probabilistic timed automata. Form.
Methods Syst. Des. 43(2), 164-190 (2013)

G. Norman, D. Parker, X. Zou, Verification and control of partially observable probabilistic
real-time systems, in Proceedings of the 13th International Conference Formal Modelling and
Analysis of Timed Systems (FORMATS’15), ed. By S. Sankaranarayanan, E. Vicario. LNCS,
vol. 9268 (Springer, 2015), pp. 240-255

D. Parker, Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D.
thesis, University of Birmingham, 2002

A. Pnueli, The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45-60
(1981)

A. Puggelli, W. Li, A. Sangiovanni-Vincentelli, S. Seshia, Polynomial-time verification of
PCTL properties of MDPs with convex uncertainties, in Proceedings of the 25th International
Conference Computer Aided Verification (CAV’13). LNCS, vol. 8044 (Springer, 2013), pp.
527-542

M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming
(Wiley, New Jersey, 1994)

S. Ratschan, Z. She, Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Trans. Embed. Comput. Syst. 6(1) (2007)

120

99.
100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.
115.
116.
117.

M. Kwiatkowska et al.

A.W. Roscoe, The Theory and Practice of Concurrency (Prentice-Hall, New Jersey, 1997)
R. Segala, Modelling and verification of randomized distributed real time systems. Ph.D.
thesis, Massachusetts Institute of Technology, 1995

R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes. Nordic J. Comput.
2(2), 250-273 (1995)

J. Sproston, Decidable model checking of probabilistic hybrid automata, in Proceedings of
the International Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT’00), ed. By M. Joseph. LNCS, vol. 1926 (Springer, 2000), pp. 31-45

J. Sun, Y. Liu, J.S. Dong, J. Pang, Pat: towards flexible verification under fairness, in Pro-
ceedings of the 21st International Conference Computer Aided Verification (CAV’09). LNCS,
vol. 5643 (Springer, 2009), pp. 709-714

M. Svorenova, M. Kwiatkowska, Quantitative verification and strategy synthesis for stochastic
games. Eur. J. Control 30, 15-30 (2016) .

M. Svorenovd, M. Chmelik, K. Leahy, H. Eniser, K. Chatterjee, I. Cernd, C. Belta, Temporal
logic motion planning using POMDPs with parity objectives: case study paper, in Proceedings
of the 18th International Conference Hybrid Systems: Computation and Control (HSCC’15)
(ACM, 2015), pp. 233-238

S. Tripakis, The analysis of timed systems in practice. Ph.D. thesis, Université Joseph Fourier,
Grenoble, 1998

S. Tripakis, S. Yovine, A. Bouajjan, Checking timed Buchi automata emptiness efficiently.
Form. Methods Syst. Des. 26(3), 267-292 (2005)

M. Vardi, P. Wolper, Reasoning about infinite computations. Inf. Comput. 115(1), 1-37 (1994)
J. von Neumann, Probabilistic logics and synthesis of reliable organisms from unreliable
components, in Automata Studies, ed. By C. Shannon, J. McCarthy (Princeton University
Press, 1956), pp. 43-98

B. Wachter, L. Zhang, H. Hermanns, Probabilistic model checking modulo theories, in Pro-
ceedings of the 4th International Conference Quantitative Evaluation of Systems (QEST’07)
(IEEE Computer Society Press, 2007), pp. 129-140

C. Wiltsche, Assume-Guarantee Strategy Synthesis for Stochastic Games. Ph.D thesis, Uni-
versity of Oxford, 2015

E. Wolft, U. Topcu, R. Murray, Robust control of uncertain Markov decision processes with
temporal logic specifications, in Proceedings of the IEEE 51st Annual Conference Decision
and Control (CDC’12) (Computer Society Press, 2012), pp. 3372-3379

L. Zhang, Z. She, S. Ratschan, H. Hermanns, E.M. Hahn, Safety verification for probabilistic
hybrid systems. Eur. J. Control 18(6), 572-587 (2012)

http://www.prismmodelchecker.org

http://www.prismmodelchecker.org/files/fsv-pmc/
http://www.prismmodelchecker.org/games
http://www.prismmodelchecker.org/other-tools.php

Author Biographies

Marta Kwiatkowska obtained her BSc/MSc degree in computer science from the Jagiellonian
University in Cracow, Poland, in 1980, and PhD in computer science from the University of
Leicester, UK, in 1989. She was an Assistant Professor at the Jagiellonian University from 1980
until 1988, Lecturer at the University of Leicester from 1986 until 1994, and Lecturer, Reader and
Professor in the School of Computer Science at the University of Birmingham, UK, from 1994
to 2007. Since July 2007, she has been Professor of Computing Systems in the Department of
Computer Science and Fellow of Trinity College, University of Oxford. She serves as Head of
the Automated Verification Group and Deputy Head of Research. Her research interests focus on
probabilistic modelling, verification and synthesis techniques, with applications in distributed sys-
tems, robotics, nanotechnology and biology.

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org/files/fsv-pmc/
http://www.prismmodelchecker.org/games
http://www.prismmodelchecker.org/other-tools.php

3 Probabilistic Model Checking: Advances and Applications 121

Gethin Norman is a Lecturer in Computing Science at the University of Glasgow and was
previously a senior post-doctoral researcher at the University of Oxford. He obtained a degree in
mathematics from the University of Oxford in 1994 and a PhD in computer science from the Uni-
versity of Birmingham in 1997. The focus of his research has been on the theoretical underpin-
ning of quantitative formal methods, particularly models and algorithms for real-time and proba-
bility, and quality of service properties. He is a key contributor to the probabilistic verification tool
PRISM, developing many of PRISM’s modelling case studies across a wide range of application
domains.

David Parker completed a PhD in Computer Science at the University of Birmingham in 2003
and then worked as a post-doctoral researcher, first at Birmingham and then at the University of
Oxford, between 2007 and 2012. He is currently a Senior Lecturer in Computer Science at the
University of Birmingham. His main research interests are in the area of formal verification, with
a particular focus on the analysis of quantitative aspects such as probabilistic and real-time behav-
iour, and he has published over 100 papers in this area. He also leads the development of the
widely used probabilistic verification tool PRISM.

Chapter 4
Software in a Hardware View

New Models for HW-dependent Software
in SoC Verification

Carlos Villarraga, Dominik Stoffel and Wolfgang Kunz

Abstract In current practices of SoC design a trend can be observed to integrate
more and more low-level software components into the hardware at different levels of
granularity. The implementation of important control functions is frequently shifted
from the SoC’s hardware into its firmware. This calls for new methods for verifi-
cation based on a joint analysis of hardware and software. While most techniques
of software verification operate at a hardware-independent level, this chapter elab-
orates on the possible merits of a hardware-dependent software view. The chapter
reviews a recently developed model for formal verification of low-level embedded
system software called program netlist and details on its applications. In particular,
applications for speed-independent and cycle-accurate hardware/software integra-
tion are reported. For each studied scenario, this chapter describes how the different
challenges of modeling the hardware/software interface can be solved by exploiting
the characteristics of the program netlist. For speed-independent hardware/software
interaction the equivalence checking problem is studied and results of our proposed
solution are presented. For the case of a cycle-accurate hardware/software integra-
tion, a model for hardware/software co-verification is developed and experimentally
evaluated by applying it to property checking.

4.1 Introduction

In recent years, the programmability of Systems-on-Chip (SoC) has increased con-
tinuously. This does not only allow for creating application software with growing
complexity but also changes practices at lower design levels. In particular, a trend

C. Villarraga (<) - D. Stoffel - W. Kunz

Department of Electrical and Computer Engineering, University of Kaiserslautern,
Kaiserslautern, Germany

e-mail: villarraga@eit.uni-kl.de

D. Stoffel
e-mail: stoffel @eit.uni-kl.de

W. Kunz

e-mail: kunz @eit.uni-kl.de

© Springer International Publishing AG 2018 123
R. Drechsler (ed.), Formal System Verification, DOI 10.1007/978-3-319-57685-5_4

124 C. Villarraga et al.

towards a firmware-based design style can be observed. Certain control functions of
an SoC module are no longer implemented in hardware but as firmware running on
processors instantiated particularly for this purpose. Similarly, the implementation
of SoC communication structures is shifted more and more from hardware to the
low-level software of the system.

Tight coupling of hardware and software at a low level of granularity is also
common when implementing the non-mainline functions of an SoC such as system
reset, power management and the control of infrastructures for test and diagnosis.
Therefore, also the verification of non-mainline functionality has become a concern
in industry [11, 13].

This has created new interest in techniques for formal software verification, not
only among software developers but also in the hardware design community. Tradi-
tional techniques for formal software verification, however, usually adopt a hardware-
independent view when verifying software programs written in high-level languages
such as C. This is reasonable for a wide range of applications where the main objective
is to identify bugs that are specific to the software development process. However,
in embedded system design, as a result of the trends described above, it is important
to analyze the mutual effects of hardware and software on each other. Therefore,
a hardware-dependent software view is needed where the behavior of a program is
precisely described in terms of its effect on the underlying hardware.

The models proposed here are entirely based on combinational circuits and can
be analyzed by a standard SAT solver. This is in contrast to previous research in
hardware-dependent software verification such as the work of [8] employing SMT
solving and the theory of uninterpreted functions with equality, or the work of [18]
using explicit unbounded model checking.

Most approaches reported in the literature are based on symbolic execution [3, 17]
which is a popular approach to software verification based on symbolically tracking
the individual execution paths of a program. However, due to the explicit enumeration
of the individual program paths, as pointed out in [2], analyzing the reactive behavior
of low-level embedded software with its hardware periphery is very complex. Unlike
in many cases of hardware-independent verification, the analysis can no longer be
localized to an individual path but the contribution of all possible execution paths
must be considered simultaneously. This typically leads to restrictions on the hard-
ware/software interfaces that can be modeled. The work of [8], for instance, restricts
the formulation of comparing two assembly programs to programs with very similar
control flow graphs (CFGs) that can communicate with the environment only at the
beginning and at the end of the execution. In contrast to such a scenario, Sect.4.4
describes an approach for equivalence checking of programs which are embedded
in reactive environments. The approach verifies whether two low-level software
programs interact with their environment in exactly the same way, i.e., they produce
the same sequences of outputs for every possible input sequence. In order to handle
the possibly complex interaction between hardware and software, a sequence model
of the hardware/software interface is incorporated into our computational models.
Then, a software miter can be constructed to perform SAT-based equivalence proofs.
Experimental results based on the proposed solution are presented in Sect.4.4.4.

4 Software in a Hardware View 125

In [12] it is proposed to model the combined hardware/software system in terms
of C programs. The approach is based on manually extracting models for the hard-
ware from virtual prototypes in C. Instead of describing hardware abstractly at the
software level this chapter presents an approach where the behavior of the low-level
software is described by program netlists [19] in terms its effects on the concrete
hardware implementation. Thus, the approach of [12] can be appropriate to perform
early verification of hardware/software systems during design exploration, inde-
pendently of a concrete implementation. By contrast, the approach described here
allows for the verification of concrete implementations of hardware/software designs.
This will be explained in Sect.4.2. The approach has originally been developed to
adopt a hardware-dependent but time-abstract view on the software. However, as
will be explained in Sect. 4.3, firmware-based design styles may also require a cycle-
accurate co-verification of RTL hardware and the firmware. Therefore, in Sect.4.5 a
technique is proposed that bridges two different modeling approaches, namely pro-
gram netlists, employing path-oriented techniques, as they are traditionally used in
software verification [7], and transition-based models used for hardware verifica-
tion [6, 14]. In particular, the program netlist model is extended to precisely describe
cycle-accurate functional behaviors of the processor at its interface, capturing all
interactions between hardware and software. This interface model can now be used
to connect the transition logic of the hardware at every time point with the soft-
ware model so that a joint model for hardware/software co-verification is obtained.
Experimental results are shown in Sect.4.5.3.

4.2 Program Netlists

Hardware/software co-verification becomes an important but also difficult task when
the software is reactive, i.e., when the tight interaction between the processor exe-
cuting the software and the surrounding hardware needs to be examined in sufficient
detail. A straightforward approach capable of delivering cycle-accurate precision
is to model the processor with its program and data memory at the hardware RT
level and to use standard hardware verification techniques such as Bounded Model
Checking (BMC) [6] to verify properties for this model.

Bounded Model Checking is based on a temporal unrolling of the logic circuitry
implementing the finite state machine (FSM) of the design under verification for a
finite number of time frames. The resulting computational model is used to check
properties expressible as finite sequences of logic relationships. Figure 4.1 illustrates
this unrolling. The time frames are gate-level models of the transition function and
output function of the design’s FSM. A formal property can be expressed as a propo-
sitional logic formula over arbitrary signals of the unrolled circuit and can be added
as combinational circuitry to the model, (this is not shown in Fig.4.1). The resulting
problem instance is converted to a single formula in conjunctive normal form (CNF)
and checked using a SAT solver.

126 C. Villarraga et al.

Instruction
Memory

Vi AL Yn

Fig. 4.1 Straightforward BMC-style verification approach

Obviously, this straightforward approach bears complexity challenges. The model
includes gate-level representations of the instruction memory with the software, the
data memory, the processor and the additional system hardware. Formal properties
relating to software can easily span several hundred clock cycles of behavior. How-
ever, an unrolled circuit containing several hundred instances of the shown system
model is simply not feasible, not even for small processors used in firmware-based
design styles (see Sect.4.5.1). Even if the unrolled circuit can be built and read into
the formal proof engine, the computation time for the SAT solver quickly becomes
impractical. The reason is that the unrolling implicitly models all possible executions
of the software for all possible inputs without any guidance regarding the possible
execution traces the software can take. A time frame i represents all possible system
states at clock cycle i including the possible states of the program, which, obviously,
depend on the possible program states at earlier clock cycles. The SAT solver implic-
itly enumerates all these possible states for proving the property, and, since it has no
guidance of any form, does this very inefficiently. The model can usually not be sim-
plified by constant propagation because a time frame represents not a single location
in the program but many possible locations. Approaches relying on a straightforward
BMC-style unrolling therefore can work only for small problem instances.

4 Software in a Hardware View 127

4.2.1 Basic Idea

In [19] a new model for software behavior called program netlist has been developed
that is compatible with hardware models. It efficiently represents low-level software
programs of realistic size that are reactive to the hardware, i.e., communication
may happen not only at the start and at the end of the program but also continuously
during runtime. The model is related to the BMC approach illustrated above, however,
some key obstacles to scalability are removed. The basic idea is the following. The
unrolling of the processor with its instruction and data memory is not done clock
cycle by clock cycle, replicating the full transition function for every time frame,
but rather instruction by instruction. At branching points in the software the unrolled
logic is duplicated, modeling each execution branch separately. This instruction-wise
unrolling along execution paths allows for a significant reduction in the amount of
logic that needs to be replicated: Since the actual instruction in every unrolled logic
block is known and fixed, many constants exist that can be propagated in order to
simplify the logic block so that all circuitry that is not needed for modeling the
instruction behavior is removed.

In fact, this analysis can be moved to a preprocessing step before unrolling. For a
given instruction set architecture and machine program, the behavior of the processor
can be precisely modeled for each individual instruction of the program. We call a
logic block that models atomically the effects of an individual instruction on a set
of state variables an instruction cell (IC). The set of state variables that the cell
modifies depends on the type of instruction and includes registers from the general-
purpose register file, status bits and flags as well as memory locations associated
with data variables of the program and input/output registers. (We will discuss the
used memory model shortly.) These state variables constitute the program state of
the programmable hardware/software system. We refer to the subset of these state
variables which are internal to the processor as the architectural state variables.

Instruction cells are the building blocks of the program netlist, i.e., the unrolling
of the processor’s behavior under the control of the program. We have flexibility in
the level of abstraction we choose for modeling the processor. Abstract instruction
cells can be used to capture behavior according to the programming model at the
instruction set architecture (ISA) level. We can also create instruction cells modeling
the concrete behavior of the RTL implementation of a specific processor architecture.

Figure 4.2 shows an example of an instruction cell (modeling a BRANCH instruc-
tion). It includes logic circuitry that changes the program state including architecture
registers and variables in the data memory. Instruction cells are connected together
at the Program State interfaces. Additionally, an instruction cell models the control
flow of the program using a special state variable called active. In the program netlist,
all instructions lying on an actual program execution path have their active flag set.
A BRANCH instruction as shown in Fig. 4.2 produces two possible program states,
one for the branch taken and one for the branch not taken. The active flag is distrib-
uted into the branch selected by the program, as controlled by the instruction logic
(signal J in Fig.4.2).

128 C. Villarraga et al.

Fig. 4.2 Example: '
in;gtruction cell If)or active Program State
BRANCH instruction

J Logic for
BRANCH
instruction

Y Y
(r('/i\'z)é Program State’ aciive[] | Program State’

branch not taken branch taken

Modeling the control flow in this way is crucial to the performance of SAT-based
reasoning on the program netlist as it makes execution paths explicit to the SAT solver.
By asserting or de-asserting the active signal, whole paths or path segments spanning
many time frames can be taken into or out of consideration simultaneously. This gives
significant performance improvements over an implicit, unguided enumeration of
execution paths as in the straightforward approach discussed above.

Connecting instruction cells together and duplicating paths at branches is, by itself,
not sufficient for efficiency because the resulting model can become of exponential
size in the number of branches. Instead of building a tree of instructions we create
a netlist that has the structure of a directed acyclic graph (DAG) with reconvergent
paths. As will be shown next, so-called merge cells are used for recombining paths
in the program netlist in order to avoid exponential growth of the model.

4.2.2 Model Generation

Unrolling of the program involves two steps, as illustrated in Fig. 4.3. We begin with
a representation of the control flow graph (CFG) of the program. It is obtained, e.g.,
from the machine code of the program or from an assembler program. In Fig.4.3,
the nodes in the CFG represent individual instructions. The CFG is unrolled into
an execution graph (EXG). This execution graph is then used to build the program
netlist (PN) by instantiating and interconnecting instruction cells corresponding to
the nodes in the EXG.

These two steps are not taken one after the other but instead are carried out in an
interleaved fashion. The incomplete program netlist, while it is being built, is used
to control the unrolling of the execution graph. The key idea is to determine whether
a branch can actually be taken at a particular node in the unrolling. For example,
a loop is unrolled until the loop end condition is reached. A SAT solver is used to
check whether there exist executions where the active flag of the loop-back branch

4 Software in a Hardware View 129

Control Flow
Graph (CFG)

St

(D)@«

Execution
Graph (EXG)

Program
Netlist (PN)

Fig. 4.3 Generating a program netlist

can (still) become active. Similarly, branch destination addresses can be computed
on the incomplete program netlist to trace the actual flow of control in the program.

An important component of the model building process is merging of nodes in the
execution graph. Whenever the control flow modeled in an unrolled path segment
reaches a program location that has been visited before, we do not create a new
node but instead connect the program state variables to the existing instruction cell
for that location, provided this does not introduce a cycle in the graph. This is done
using multiplexers in the program netlist called merge cells (see example in Fig. 4.3).
Merging keeps the model compact by sharing of sub-graphs and produces a DAG
with reconvergent paths (rather than a tree). Note that the sub-paths being merged in
a merge cell can never be active simultaneously. This is guaranteed by construction
of the program netlist with active flags.

4.2.3 Modeling Memory and I/0

Efficiently modeling accesses to the data memory and to the environment (e.g., to
HW peripherals) is crucial for the scalability of the method. The left-hand side of
Fig. 4.4 shows an instruction cell modeling a read or write access to data memory. The
shown selection logic creates an access path from the Load or Store instruction cell
for the given address, addr. In case of a Load, the architectural state is modified with
the selected data. In case of Store, the data memory is updated with data from the

130 C. Villarraga et al.

,,,,,,,,,

acive 1 | Arch. State | | pataMemory || [Jaciive ! Program State :

oI T ___ - - _—__ ! I Port
L%‘ . addr Y } f addr /\
ogic Tor Selection Logic for =

LOAD/STORE | <21 data | |

Input/Output [<—> |

Logic i f active |
instruction *‘{,

instruction | active

,,,,,,,,,

Fig. 4.4 Instruction cells for memory accesses and environment I/O

architectural state. Modification is enabled if the active flag is set. In order to keep the
selection logic block compact, a combined simulation/SAT-based algorithm [5, 20] is
used to compute the set of addresses the Load/Store instruction at the given program
location can actually access. This reduces the size of the selection logic greatly
because only few data memory locations need to be multiplexed for a given instruction
cell. Although, in principle, the range of addresses accessed by a program can be
huge, in the intended application domain for our technique (low-level, hardware-
dependent software) the number of addresses used by the software is usually limited
and restricted by design.

This representation of the program state can be viewed as an associative memory
model like the one proposed in [9] for formal verification of assembler code by
bounded model checking. Note, however, that in our approach the associated memory
entries are created statically during model generation and not dynamically at proof
time through value assignments in the reasoning engines. The resulting logic in the
program netlist can be much simpler and can lead to more efficient SAT reasoning
during verification. This is a direct benefit of the instruction-wise and path-oriented
unrolling of the software in the program netlist as opposed to a BMC-style unrolling
of the processing hardware as in [9].

The right-hand side of Fig.4.4 illustrates how input/output is modeled using
instruction cells. The input/output instruction cell provides an interface for the pro-
gram netlist called port.

Definition 4.1 The port of an input/output instruction cell i is a set of three logic
signals called i.addr, i.data and i.active. O

The addr signal provides the address of an environment location, e.g., a periph-
eral device register. The active flag indicates when an access occurs and data is
transferred through the data signal. Using such ports, the sequences of input and
output accesses of the software along different execution paths can be modeled. In
Sect.4.4 ports and access sequence models are used to create a software miter for
equivalence checking of reactive low-level software. In the same way as for mem-
ory accesses, a simulation/SAT-based algorithm is used to compute the possible
addresses an input/output instruction can access [20]. This is used in Sect. 4.4 for
equivalence checking to reduce the amount of logic necessary to model all possible

4 Software in a Hardware View 131

access sequences exhibited at the hardware/software interface. It is also used in
Sect.4.5 for keeping the logic needed for a cycle-accurate input/output model as
small as possible.

The program netlist model obtained in this way allows for efficient SAT-based
reasoning in applications like equivalence checking (Sect.4.4) or property check-
ing [4] for low-level embedded system software. Key to efficiency is the fact that
most of the control flow related information is computed beforehand and built into
the model. The program netlist is an explicit representation of all possible execution
paths in the software, while the data path information is still contained implicitly
in the combinational circuitry inside the instruction cells. This makes the model
particularly amenable to SAT-based proof algorithms.

4.3 Verification Scenarios for HW-dependent Software

The kinds of computational models used for hardware-dependent software verifi-
cation rely on how the examined hardware and software components are actually
integrated into the system. In the following, two main hardware/software integra-
tion scenarios are described and in Sects.4.4 and 4.5 it is presented how formal
verification can be performed for each scenario.

The first scenario is used traditionally in SoC design flows. Processor cores are
integrated into the hardware system as components of a CPU bus. They usually
communicate with the rest of the system in a speed-independent way using some
bus protocol with handshake mechanisms in order to accommodate for access laten-
cies. Speed-independent communication is key since the execution time in pipelined
processors, especially when advanced architectures based on out-of-order execution
are employed, is difficult to predict. Similarly, caches have a difficult-to-predict tim-
ing behavior and provide another reason for speed-independent bus communication.

Assuming the correct implementation of the bus protocol, as can be verified by
standard techniques of formal hardware verification, it is possible to model the soft-
ware in a time-abstract way. This is exploited in the program netlists of Sect.4.2
by creating time-abstract instruction cells. In this way, even for complex processor
architectures compact models can be obtained.

It is important to note that even though the concrete timing, in terms of HW
clock cycles, is abstracted away from the program netlist, the original ordering of
the instructions during execution is preserved in the model. This characteristic of
the program netlist is particularly important when analyzing the hardware/software
interface of reactive programs. Reactive software communicates with the environ-
ment continuously at distinct time points and the ordering in which the exchange of
information takes place is crucial for functional correctness of the system behavior.
For example, for the case of equivalence checking, as will be shown in Sect.4.4,
it needs to be proven that two different programs interact in the same way with
the environment. Therefore, verification needs to consider not only the data values
exchanged with the environment but also the ordering of the data exchange.

132 C. Villarraga et al.

Apart from equivalence checking, also property checking for time-abstract sce-
narios using program netlists has been researched in [19].

Besides conventional design styles where software and hardware are integrated by
employing CPU buses as explained above, there are also new design approaches for
which a clock cycle-accurate analysis is required. This introduces a second scenario
which is described in the following and motivates the extensions to the program
netlist model, presented in Sect.4.5.

When designing SoCs it has become increasingly popular to replace dedicated
hardware components by a number of simple processor cores whose timing behavior
is fully predictable. For example, processors in the style of the Intel 8051 or the Xilinx
PicoBlaze are popular in ASIC-based and FPGA-based design flows, respectively.
Such a design style offers advantages:

1. The design time is reduced and product updates can be made more easily by
making changes in the software.

2. Especially for FPGAs, due to a well-optimized design of the processor, the result-
ing implementation may need less chip area when compared to a conventional
implementation with standard synthesis.

The software running on the instantiated cores is usually not meant to be visible to
the users. It is provided as firmware with the design and may be loaded into a ROM.

In many cases, the cores are not directly connected to the rest of the system using
(standardized) communication interfaces like buses but instead are embedded into
the surrounding system using special interface hardware, sometimes called “wrapper
RTL”. Such design styles allow for a tight integration delivering high performance
because the exact timing of the processor hardware and its software are known at
design time. An SoC module designed in this way is shown in Fig.4.5. The module
consists of two processor cores tightly integrated with their firmware, wrapper RTL
and some additional hardware.

For such an ad hoc design style, verification is important because the hard-
ware/software interface is usually custom-designed and, thus, error-prone. As
pointed out in [21], traditional verification approaches based on instruction set hard-
ware/software co-simulation would never fully capture the entire hardware and
firmware system behavior in one tool environment. Verifying the firmware in iso-
lation, while possible, would require a hardware bus-functional model interface.
This makes the simulation of such firmware-based IPs complicated and creates the
need for an additional behavioral test bench [21]. Similarly, also a formal approach
that verifies hardware and software in separation would require the tedious task of
modeling the interface between them by a set of constraints.

Therefore, we propose a formal co-verification approach instead. The program
netlists of Sect. 4.2 are very attractive for this purpose because they can be generated
completely automatically. On the other hand, due to their abstract, non-cycle-accurate
nature, they cannot be directly integrated into the RTL descriptions of the hardware
and they do not allow for a cycle-accurate analysis. In Sect. 4.5, we therefore present
extensions to make program netlists cycle-accurate and show how to create a joint
model for formal co-verification of hardware and firmware.

4 Software in a Hardware View 133

Wrapper RTL
Processor
Output
Interface HW
e—s]
— Input .
Interface HW Fl rmware
I 1 prompt:
P— I/ load s1, ascii_h
Il serial_writ
/O state, ROM load sL, ascii e
e.g.:.Memory [=—— call serial_write
% - Banks load s1, ascii_|
p
2 9
0 £
v . Debugging HW c
o Additional HW 99Ing ~—9
5 <
et o
£ Wrapper RTL =
R o)
Processor o
JE— Output >
Interface HW Q
R)
1 o
RS
Input .
Interface HW Firmware
—_—] l | l/ isad s0,0
test s2, 2
/O State, ROM jump nz, serial
load s0,1
gégr;;(l\:emory output s1, (s0)
return
e

Fig. 4.5 Firmware-based IP core

4.4 Equivalence Checking of HW-dependent Software

During design of an embedded system, the software usually undergoes several trans-
formations. For instance, embedded software is frequently optimized, automatically
or manually, in order to meet design requirements on program execution speed,
memory footprint (code size), and power consumption. Furthermore, often during
the design or field time of a product, features are added to a given software, extending
the existing functionality. Finally, embedded software is also often ported to different
hardware platforms. For all these cases, equivalence checking is a valuable tool since
it can be used to certify that the original functionality of the software is not damaged
or altered by the applied transformations.

In this section, a fully automated method to formally prove the functional equiv-
alence of hardware-dependent programs is presented. We focus on describing the
main ideas, originally presented in [20], that enable building an efficient computa-
tional model called software miter to solve the equivalence checking problem for
reactive programs. Additionally, we extend the concept of data sequences to model
also address sequences. This extension allows us to verify, when required, the address
interleavings of the software when accessing different data environment locations.

134 C. Villarraga et al.

The equivalence criterion for the proposed method establishes that two programs
are equivalent if for any input sequence read by both programs, the output sequences
produced by the programs are equal. Input (output) sequences of a program contain
the values read from (written to) the environment and the corresponding orderings.
According to this equivalence criterion, it is not only certified that the data values
exchanged by the programs with the environment are equal but also that data are
exchanged in the exact same order. This second element of the proof is especially
relevant if the reactiveness of the software is taken into account. For taking into
account reactive behavior, as will be shown in the following, the program netlist is
extended with a global model of the input/output behavior based on access sequences.

Notice that our application domain differs from those targeting conventional trans-
formational algorithms which communicate with the environment only at two points
in time, i.e., at the beginning of execution when the inputs of the algorithm are read
and at the end of execution when outputs are returned. As a consequence, the method
presented here differs from previous techniques used to compare transformational
software such as [16].

The following general steps are carried out to check equivalence of two pro-
grams G (for “golden”) and R (for “revised”’) which may run on different hardware
platforms:

e The program netlists for G and R are generated independently from the corre-
sponding CFGs and instruction cells. For this, the process presented in Sect.4.2 is
followed.

e Each program netlist is extended with a sequence-based input/output model.
Section4.4.1 presents more details on how this model is constructed.

e A software miter is built by using the program netlists, the sequence-based
input/output model and a bijective mapping of input/output addresses from G
to R provided by the user. To construct the software miter we take advantage of
the fact that program netlists are compositional. Section4.4.2 gives more details
on this step.

e Finally, a decision procedure (e.g., a SAT solver) is called iteratively to prove the
equivalence of each mapped sequence. In Sect.4.4.3, we show how incremental
SAT solving techniques can be employed to reduce verification run time.

4.4.1 Sequence-Based Model of the HW/SW Interface

This section presents a model of the hardware/software interface which employs
the concept of input/output sequences to represent the exchange of data of the
software with its environment. As mentioned before, since the software is embedded
in a reactive environment, it is necessary to include in the model a representation
of the exchanged data values as well as the orderings describing the timing of the
data exchange. A good example of a reactive program is a software-implemented
bus agent. According to the bus specification, the bus agent transfers frames of

4 Software in a Hardware View 135

information ensuring that the transmission order of the individual fields composing
a frame is preserved.

From the software perspective, communication with the environment takes place
at input/output CPU instructions accessing environment locations which belong to
the system’s address space. In memory-mapped input/output systems, typically
load/store instructions transferring information from/to device registers in hardware
peripherals or IP cores serve this purpose. Another example can be a hardware
device controlled by a dedicated CPU port. The interface model presented here is
independent of the kind of mechanisms used by the CPU to communicate with the
environment.

We denote the set of data environment locations accessed by a given program
by A ={ai,as, ..., a,}. Each a; is an address of such a location. These locations
are read (input data location) or written (output data location) by the software to
communicate with the rest of the system. They may correspond to registers in hard-
ware devices or to shared memory locations used for exchanging data with other
software components or layers (e.g., the application layer). Note that A is actually a
subset of the set of all data locations accessed by the software. It contains only data
locations which are relevant to the external input/output behavior. Data locations cor-
responding to software variables in main memory that are not externally visible are
not contained in A. According to this, the model of the hardware/software interface
describes the sequences of accesses performed by the software only to each of the
data locations in A.

In order to represent the ordering of accesses in the sequence model for each data
location a; € A a new temporal variable 7,, is added to the program netlist. This
variable represents the position (index) of a particular element in the sequence of
accesses to a given data location a ;. We can think of it as an abstract access time point.
In the program netlist these time variables are propagated and updated uniquely at
input/output instruction cells which access a particular data location a;.

From a software perspective, the hardware/software interface is directly affected
by input/output instructions of the software, i.e., instructions that access the data
locations in A. Therefore, the first issue that needs to be solved in order to model the
hardware/software interface consists of identifying the set of input/output instruc-
tions of a given program and of determining which of the elements of A are actually
accessed by each input/output instruction. This issue can be solved easily because
after program netlist generation, the complete address space accessed by the software
is known. As stated in Sect.4.2.3, for each input/output instruction the values taken
by the port signal addr (cf. Definition4.1) are computed during generation of the
program netlist by using simulation together with enumerative SAT [20]. Therefore,
when building the sequence model, it is only necessary to check for each instruction
cell of the program netlist if the values of addr signal (cf. Fig.4.4) belong to the set
of data locations, A.

With the previous information, we define then the set of all input/output instruc-
tion cells that can access the data location a; € A as I,; = {iy, iz, ..., iy,;}. Once
input/output instruction cells are identified then the logic for them is extended with
incrementers for the abstract time variable as shown in Fig.4.6. For instance, if a

136 C. Villarraga et al.

active ! Program State !

Logic for
Input/Output
instruction

Fig. 4.6 Logic for updating time variables used for data sequences

given instruction cell can access the location a;, then, if the instruction cell is active
(i.e., the access is performed), the value of the temporal variable 7,; is incremented
by one. We denote the value of the temporal variable at the instruction cell i by i.7,, .

Based on the temporal variables we can construct the logic for each sequence
element. The k-th written data value, denoted by dataa, (k), to a given loca-
tion aj, is described by the following if-then-else construct, built for the set I,, =
{it, iz, ..., inj} of all input/output instruction cells that are able to access a;:

data,, (k) :=
if (i1.active and iy.addr = a; and i,.t,, = k) then i|.data
else if (ir.active and iy.addr = a; and iy.t,; = k) then i).data

else i, .data

The logic for data,, (k) builds a cascade of multiplexers where each multiplexer
is connected to a single input/output instruction cell (belonging to /,;). The selection
signal of each multiplexer is set to true if three conditions are met, namely, (1) the
instruction cell is active, (2) location a; is addressed and (3) the time variable has
the value k. The last two conditions are necessary because an instruction cell can
access more than one data address and, also, can perform the accesses at different
abstract time points. When the select signal of a given instruction cell’s multiplexer
is true then the data value of the sequence at time point k is assigned the value of the
data signal.

The logic for data,, (k) can be simplified because normally for a given sequence
element k just a single instruction cell or a small subset of /,;; can actually access the
interface at the abstract time point k& [20]. Therefore, not all input/output instruction
cells belonging to the set /,; need to be considered in the logic for data,; (k) and
consequently the amount of multiplexers can be reduced. As an example, assume that
a program with the CFG of Fig. 4.3 writes to an environment location at instruction
b. From the program netlist obtained (shown on the right hand side of Fig. 4.3), it can
be seen that the longest access sequence for the location accessed by instruction b has
three elements. This happens when the program takes the right-most path through

4 Software in a Hardware View 137

the execution graph, visiting the b-instruction three times. For each element of the
access sequence there is only a single b-instruction cell that can write to the location.

We implement an EXG traversal algorithm for identifying the instruction cells that
can access a particular location a; at a given time point k. The algorithm takes as
input the EXG which is topologically sorted and the information about the reachable
address space of the software. For a given location «a;, the algorithm propagates
sets of access count values, i.e., sets of possible values of the index variable Ia; as
introduced above, through the EXG in topological order beginning at the root node(s).
Whenever an instruction cell is visited that accesses address a;, every access count in
the set is incremented. The set represents the possible indexes of the elements in the
output sequence for a; that are affected by the instruction. For instructions that do not
access address a, the set of access counts is propagated without modification. After
the traversal, we can compute, for each sequence element &, the set of instruction cells,
I k 1,,, that affect k. This optimization not only reduces the size of the sequence
model but also speeds up verification run time since the decision procedure does not
waste time anymore analyzing and eventually discarding input/output instruction
cells which are now known to be irrelevant for a particular sequence element.

Another auxiliary signal also included in the sequence model is active,, (k). It is
asserted in any execution path where the k-th read or write access to a data location
a; occurs. As will be explained later, this signal helps to speed up the verification by
ensuring that only the execution paths related to the k-th access sequence point are
considered by the decision procedure in a particular proof. All other paths (if any)
related to other time points will be disregarded by the solver.

active,, (k) =
if (ii.active and i,.addr = a; and i1.lg; = k) then true
else if (iz.active and i.addr = a; and i.t,, = k) then true

else if (iy;.active and i,,.addr = a; and i, .t,; = k) then true
else false

While the previous analysis describes the sequences of data exchanges for single
data locations, in some cases it is also important to consider the interleaving of
accesses to different data locations. For example, for the bus agent introduced above,
it can be required that the initialization of the surrounding hardware takes place
before the data payload can be transferred, otherwise the hardware periphery is not
ready to communicate with the agent. Therefore, verification needs to prove that
initialization is executed before the data payload transmission takes place. For this
purpose, a model for address (data location) sequence can be employed. For the bus
agent example, the first element of the address sequence should equal the value of
the address used for initialization and the rest of the elements of the sequence should
correspond to the address used for transferring the payload and so on. The model
generation for the address sequence follows the same strategy based on incrementers
as was introduced for the data sequences (see Fig.4.6). The logic added for updating
time points of address sequences is shown in Fig.4.7. This logic is again added to

138 C. Villarraga et al.

777777777

active ' Program State !
L |

W‘ addr

Logic for
Input/Output -
instruction | _active

Fig. 4.7 Logic for updating
time variables used for
address sequences

Iud([r

data
e —

*********]
!
!

D [;u/dr

all input/output instruction cells of the program netlist. However, note that for this
case, comparators are not required as all environment locations in the set A need to
be considered simultaneously.

Likewise, the corresponding logic for each element of the address sequence is
described as follows.

addr(k) =
if (ii.active and i,.t = k) then i,.addr
else if (iy.active and iy.t = k) then iy.addr

else i, .addr

The functions for the signals data,, (k), active,, (k) and addr(k) encapsulate the
interface of the software with the environment and are next used for solving the
equivalence checking problem.

4.4.2 Software Miter

The previous model of the hardware/software interface makes it possible to formu-
late the equivalence of hardware-dependent programs in a straightforward way as
follows.

Consider two low-level hardware-dependent programs G and R. For these pro-
grams, the inputs and outputs are defined by the user as sets of input data loca-
tions X, X and output data locations Y, Y.

The user provides additionally a bijective mapping that assigns to every input
data location xg € X of program G an input data location xg € X of R. Also,
a bijective mapping assigning elements of Y to elements of Y must be provided.
Then, the program netlists for G and R and the corresponding sequence models
are created with respect to the user-defined environment locations. Finally, the two
program netlists together with their corresponding interface models are combined as
follows.

Mapped inputs are set equal by connecting every input sequence element data,, (k)
of program G with the corresponding sequence element datay, (k) of program R.

4 Software in a Hardware View 139

This ensures that the input assignments of the programs are equal as established in
the equivalence criteria defined at the beginning of this section. At this point, it is
expected that the sequence lengths are the same for both programs. If this is not the
case, then no sequence mapping is possible and the programs are not equivalent.

Similarly, for each sequence element of the mapped outputs data,, (k), data,, (k)
and their respective active signals active, (k), active,, (k) the following set compar-
isons are implemented.

eQUiV(YG, YR, k) =
(active,, (k) = active,,(k)) and 4.1)
(activey,, (k) implies data,,(k) = data,,(k))

The function equiv(yg, yg, k) can be seen as a property, in particular a Boolean
predicate. The first condition in Eq.4.1 expresses that a sequence element must be
produced by both programs under exactly the same input conditions. Remember that
both, active, (k) and active,,(k), are asserted for exactly the input conditions that
make the respective program, G or R, produce the output sequence element k. They
are deasserted if k is not produced. The second condition states that whenever the
output sequence element k is produced then its data value must be the same in both
programs.

For checking equivalence of the address interleavings the same kind of compar-
ison can be implemented for the sequence elements addrg (k) and addrg (k) of the
programs G and R, respectively.

The final model results in a software miter with a set of mapped inputs and a
vector of comparison for the outputs. It must be checked whether or not all of these
comparison outputs always yield frue. If this is the case then both programs G and R
are equivalent.

4.4.3 Equivalence Checking Using SAT

In order to compute the proofs expressed by Eq.4.1, we take each pair of mapped
outputs (yg, yg) and call the SAT solver iteratively for all related sequence points
as shown in Algorithm4.1. As for the inputs, sequence lengths for the outputs are
also expected to be the same for each environment location, i.e., for the mapped
locations yg, ygr, the corresponding sequence lengths m g, mg must have the same
value.

for k < 1tomg do
| SAT — prove : equiv(yg, YR, k)
end
Algorithm 4.1: Iterative SAT proofs for a given location

140 C. Villarraga et al.

For each iteration k the SAT solver enumerates all involved execution paths by
using the active signal mechanisms mentioned in Sect.4.2.1. The Eq.4.1 places
Boolean constraints on the active signals of the compared output sequence elements.
By taking decisions and propagating values into the active signals of the elements of
the program netlist, the SAT solver explores the consequences of these constraints on
the control flow of each of the programs, G and R. The SAT search is, thereby, guided
to consider only those execution paths that are related to the equivalence check of the
currently considered output sequence element k. By construction of our models, the
active flags in both program netlists are assigned by the SAT solver such that only
related execution paths in the two program versions are considered simultaneously.
Multiple executions paths can be implicitly considered at once. Clauses can be learned
that express relationships between corresponding execution paths in both programs.
All of this helps to significantly enhance the efficiency of the SAT proof.

It is clear that the cone of influence of the proofs in Algorithm4.1 grows incre-
mentally with k because, if an access happens at sequence index k + 1 then an access
to the same port has happened at sequence index k in the same execution path. This
means that the cone of influence of the constraint equiv(yg, yg, k + 1) contains the
cone of influence of the constraint equiv(yg, yg, k).

We can take advantage of this fact and employ incremental SAT techniques to
reuse the knowledge acquired by the SAT solver when proving equiv(yg, k) for
the subsequent proof of equiv(yg, k + 1). The individual points in the sequence of
equivalence proofs can be seen as “internal equivalences” for all later proofs and
have a similar speed-up effect as internal equivalences in combinational hardware
equivalence checking.

4.4.4 Experimental Results

The following experimental evaluation demonstrates that it is feasible to perform
equivalence checking of industrial hardware-dependent programs using the approach
presented above.

The concepts described in this section have been implemented within the formal
verification environment called FCK (Formal Checker Kaiserslautern). For building
the software miter as explained in Sect.4.4.2, FCK starts with generating the pro-
gram netlists for every program to be handled (golden and revised versions) from
the corresponding machine codes. While generating the program netlist (preprocess-
ing phase) also the memory model (Sect.4.2.3) is built. Subsequently, the hard-
ware/software interface model is constructed (Sect.4.4.1) for each of the program
netlists. Based on the mapping information provided by the verification engineer
comparison functions and verification targets are generated. If required, input map-
ping and comparison functions can be adjusted by the user. Finally, the equivalence
proofs are computed using an incremental SAT solver (MiniSAT [10] in the current
implementation). In case of a bug, FCK presents a counterexample as a pair of active

4 Software in a Hardware View 141

program traces showing a scenario in which both programs behave differently. For
every trace, the tool presents the values of the program states along active paths on
the program netlist corresponding to a given input assignment of the mapped inputs.
Note that there can be no false counterexamples because the program netlists in the
software miter exactly represent all execution paths beginning at the initial states of
the programs and there are no approximations of state sets in the model.

The following experiments are based on two relevant examples of hardware-
dependent software, namely, an industrial software implementation of the automotive
protocol LIN and a serial synchronous interface. Both examples are mainly control
driven.

All experiments are performed on an Intel Xeon E5420 CPU at 5 GHz with 16 GB
RAM.

4.4.4.1 LIN Driver

The considered driver software was originally developed by Infineon Technologies
AG and implements the LIN bus protocol for a master node. For these experiments it
was adapted to run on the open-source 32-bit five-stage pipelined processor Aquar-
ius [1]. The driver comprises about 1350 lines of hardware-dependent, low-level C
code and inline assembly. It can be configured such that transmission and reception
modes are allowed, data-length is variable up to 8 bytes, and the used IDs can be
modified. The driver interacts with the LIN bus by means of a UART containing sta-
tus, configuration and data registers. The UART is accessible as a memory-mapped
input/output device. The driver also interacts with a user application via shared mem-
ory consisting of the received data, the data to be transmitted and additional status
information (e.g., the status of the transmission). All program netlists generated for
the driver model these software features.

The described equivalence checking approach was applied to this software, con-
sidering different scenarios in which code is subjected to automated and/or manual
transformations. The GCC compiler was used applying three different optimiza-
tion levels to the source code, starting from level zero (LIN 10, cf. Table4.3) with
no optimizations being activated and increasing the aggressiveness of the compiler
optimizations up to the maximum level two (LIN 12). Engineering changes were
introduced into the code in different parts of the program (LIN modif.). For all these
cases the program versions were verified to keep the same input/output behavior.
Experiments were also conducted with a version of the driver containing an error in
the computation of the checksum (LIN error). This code was obtained based on the
code version modified by engineering changes (LIN modif.) and by making further
manual changes that introduced an error.

Table 4.1 shows the times required to generate each program netlist (preprocessing
phase). These include the times necessary to explore the address spaces accessed
by each instruction cell that interacts with the environment or with data memory.

142

Table 4.1 CPU times for model generation

C. Villarraga et al.

Program CPU time (s.)
SAT only SAT and constant propagation
LIN (10) 6828.4 26.8
LIN (11) 1087.8 12.4
LIN (12) 1016.9 11.6
LIN (modif.) 1323.0 12.9
LIN (error) 1298.2 12.1

As can be observed, constant propagation drastically reduces the CPU times. This
confirms that the memory addressing mechanisms, as they are employed here and in
similar applications, can result in a large number of constant address values so that
the generation of program netlists remains tractable even at the presence of a large
address space.

Before calling the SAT solver it was checked that all versions of the LIN driver
have the same number of access sequence points. This was a first indication that the
programs are equivalent in all cases. Table4.2 presents information on the interface
model. Times to build the access sequence, as explained in Sect.4.4.1, were negligible
since only a simple graph traversal of the EXGs are needed in order to identify
input/output instruction cells.

For each output sequence point a SAT check was then performed. Data for the
software miters and the proof times are shown in Table4.3. In all cases, except for
the comparison LIN (11) versus. LIN (error), the programs were proven equivalent

Table 4.2 Program netlists: interface model

Program No. locations No. seq. points
input output input output

LIN 6 5 25 42
SER 2 4 992 4
Table 4.3 Equivalence checking: proof results

Golden Revised Miter size Proof time Memory usage

(inst. cells) (s.) (MB)

LIN (10) LIN (11) 13764 692.3 7717.5
LIN (10) LIN (12) 13198 766.2 698.1
LIN (11) LIN (12) 11520 419.5 343.0
LIN (11) LIN (modif.) 11904 500.5 470.5
LIN (11) LIN (error) 11915 295.1 336.2
SER (orig.) SER (ported) 11760 188.2 404.6

4 Software in a Hardware View 143

according to our formulation. For the equivalence proof of LIN (11) versus. LIN
(error) a counterexample was returned by the SAT solver. This counterexample was
composed of two active execution traces: one for LIN (11) and the other for LIN
(error). The counterexample presents an input assignment to the mapped inputs of
both programs which, in the considered case, produced a mismatch of the values
written to the UART’s transmission buffer. The value written to the UART buffer
corresponded to the checksum field of the LIN-protocol and, specifically, it could be
observed that the erroneous behavior occurred at the 12th time point of the output
access sequence belonging to this buffer.

For the proofs the technique described in Sect.4.4.3 was employed. By using
internal equivalences detected by incremental SAT, CPU times could be reduced to
about 36% on average.

4.4.4.2 Serial Synchronous Interface

The interface implements a serial synchronous receiver using a round-robin scheme
that iteratively samples a clock synchronization signal and a data-input serial line.
In every transfer the data is passed byte-wise to the user application until a 32-bit
word has been received. In order to guarantee a finite unrolling a model generation
constraint was added that limits the number of sampling actions to ten (five for each
clock-phase).

The code was initially developed for the Aquarius (SER (orig.)) and was later
ported to run on the ARM7-TDMI architecture (SER (ported)). Then, the equivalence
of both versions of the code was formally proven.

The serial synchronous interface provides an interesting case study since it con-
tains a complex nested-loop structure with a high number of branches. On the other
hand, when compared to the LIN driver, this program has low traffic with data mem-
ory. Therefore, the times for the model generation in this case were dominated by the
checks on the active signals performed for path pruning at every branch during the
unrolling. The times for model generation were: 698.4 s for SER (orig.) and 645.0s
for SER (ported).

Table4.2 shows information on the interface model. Both versions of the serial
interface presented the same number of access points on the interfaces. Input sequence
points correspond to the individual samples of the serial data line and of the clock
signal. Output points of the interface relate the corresponding storing accesses of the
received data to the user application.

Table 4.3 presents the information on software miter construction and proof times.
The programs were proven to be equivalent. Due to incremental SAT run times were
reduced to 27%.

144 C. Villarraga et al.

4.5 Cycle-Accurate HW/SW Co-verification
of Firmware-Based Designs

4.5.1 Joint Hardware/Firmware Model

This section describes a model for hardware/software co-verification of firmware-
based designs. As shown in Figs.4.1 and4.5, systems are composed of processor
cores, their surrounding hardware, also called “uncore” hardware, and the software
to be executed. In the following analysis, the uncore hardware (wrapper RTL, periph-
erals and relevant IP components) should be distinguished from the core hardware
(CPU, data memory, instruction memory, and communication infrastructure) with its
software. For the sake of a simple terminology, in the following, we use the term hard-
ware only for the uncore parts of the system. In our hardware-dependent software
view, since the software behavior is described completely in terms of the core hard-
ware, the term software or firmware subsumes not only the considered program but
also the core hardware on which it is running.

Every core architecture contains input/output instructions that interact with the
uncore hardware. In our model, they are represented by input/output instruction cells
equipped with a port as introduced in Definition4.1. The model to be presented pre-
cisely describes the functional behaviors of the system cycle by cycle over finite-time
windows. For taking both the hardware and the software into account, an approach
is taken that combines two different kinds of unrollings as depicted in Fig.4.8.

On the one hand, the uncore hardware is unrolled in a classical BMC [6] fashion by
instantiating a copy of the associated transition relation at every time step (lower part
of Fig.4.8). On the other hand, the unrolled software is modeled by a program netlist,

Program Netlist merge cell

/I/O instruction cell

Timed interface model

st e

I TG 1 i TIC ! I TICha |

THIT A Hepocesors I

interface signals
S; S> Sp.1

=) HW m==p = e =) HW =

t !([ly t+1 !(,ly t+(n-1)] l

1 XY n-1)

Fig. 4.8 Mixed unrolling approach for efficient HW/SW modeling

4 Software in a Hardware View 145

instruction by instruction, representing all possible executions of the programmable
system (upper part of Fig. 4.8). Time granularity in this part of the model is given by
processor instructions and not by clock cycles.

For constructing the hardware/software model, we take advantage of the fact that
a program netlist can be instantiated as a hardware component and can be extended
with a new model of the processor’s interface that allows us to combine the program
netlist together with the hardware into a single model, as shown in Fig.4.8. For this
purpose, different simplifications are performed in order to reduce the amount of
logic required to model the processor’s interface and to ease the reasoning on the
resulting composed model. In particular, an algorithm (to be presented in the next
subsection) has been developed to statically determine the subset of input/output
instructions that can interact with the relevant system’s hardware at a specific time
point (clock cycle) of the unrolling. With this information the model of the processor
interface can be reduced because the new modeling logic depends only on these
relevant input/output instructions and not on other instructions not accessing the
interface of the processor or addressing memory spaces that do not correspond to the
relevant uncore hardware. Since this information is explicitly added to the model, the
decision procedure used to reason on the model can directly exploit this information
instead of deducing it from another more complex representation.

In general, developing such an algorithm may appear complicated. However, for
the approach proposed in the next subsection, it turns out doable since the required
algorithm can employ information readily available as a result of the generation
procedures for program netlists. In particular, when determining the set of instructions
that can be executed at a specific time point of the unrolling, the algorithm benefits
from working directly on the execution graph which contains explicit information
about the control flow of the program and its corresponding accessed memory address
space.

4.5.2 Timed Interface Model

Most of the modeling challenges of creating a combined hardware/software model
stem from the combination of two unrolling styles with different temporal resolution
(Fig.4.8). Since the hardware is unrolled in a cycle-accurate manner, state variables
and, in particular, signals connecting to the processor are already contained in the
model at every modeled time point. For the software, however, the situation is dif-
ferent because the program netlist as presented originally in [19] is a time-abstract
model. As explained in Sect. 4.2, instruction cells atomically represent how a given
ISA instruction modifies the program state, abstracting from any intermediate steps
carried out by the CPU during instruction execution. This is also true for input/output
instructions (Fig. 4.4), which do not model how the interaction between the processor
and the hardware specifically takes place in time. In the same way, even though a
program netlist represents sequences of instructions executed by the processor, the

146 C. Villarraga et al.

state of a program at a particular absolute time point is not known, because it depends
on the inputs of the program and the execution path actually taken.

These issues can be resolved by adding a cycle-accurate model of the processor’s
interface to the overall model that accurately represents the interface signals of the
processor for each time point of the unrolling. In the following, we show in detail
how such an interface model can be constructed by (1) adding new abstractions
describing the behavior of the processor’s interface and by (2) creating additional
resolution logic for deciding the time points and the values communicated between
hardware and software.

4.5.2.1 Timed Interface Cells

We define a timed interface cell (TIC) as an abstract model representing the state
of the signals belonging to the processor’s interface at a particular time point. TICs
(the yellow boxes in the “timed interface model” in Fig. 4.8) are hardware-dependent
models specific to each processor architecture. TICs can be classified into DATA-
TICs and IDLE-TICs. DATA-TICs transport input/output information such as data,
addresses and control values between the software and the relevant system hardware.
IDLE-TICs represent the hardware/software interface when there is no exchange of
information between hardware and software.

At every time frame of the unrolling, exactly one TIC is instantiated, modeling
the hardware/software interactions that can occur at that time point. A DATA-TIC is
instantiated if there is data exchange at the given time frame, otherwise an IDLE-TIC
is used. The signals of a TIC instance are connected to the corresponding copy of
the uncore hardware in the unrolling (cf. Fig.4.8).

Since an instruction can be executed at different time points, depending on the
particular path executed by the software, a single input/output instruction cell can
connect to different DATA-TICs. In the same way, a single DATA-TIC can connect to
different input/output instruction cells since for different execution paths different
input/output instruction cells can be active at the time point defined by the related
DATA-TIC. Section4.5.2.2 describes how input/output instruction cells connect to
DATA-TICs by employing resolution blocks. Contrary to DATA-TICs, IDLE-TICs
do not require connection with any instruction cell of the program netlist.

For example, in Fig.4.8 the instruction cells iy, i4, i and ig (marked in blue)
correspond to input/output instructions and therefore connect to DATA-TICs. In the
example of Fig. 4.8, the white instruction cells do not exchange data with the hardware
and therefore IDLE-TICs are instantiated in the interface model for representing
them. Note that there is no connection between IDLE-TICs and the white instruction
cells. In the case of interactions with portions of the surrounding hardware that are
irrelevant to the part of the system under verification the behavior of the interface is
also modeled using only IDLE-TICs.

Figure4.9 shows an example of how a STORE instruction writing to the hard-
ware is modeled using different TICs. (A LOAD instruction reading values from the
hardware can be represented in a similar way.) In this example, the processor has a

4 Software in a Hardware View 147

Instr. cell: iy
S.cyc [+ s'.cyc
o
S © .=
w— T ®G
°T®
XXX
-FT-=
port— | E=
g 8 3 3
&= & 0 0 W &= 0 0 0
' ¢ » = r ¢ » ® .
S{ 8y Tl @ I ol ol = =
K LI b o O kl r c O gl |
: = : > : > :
addrzx free X addr X:
data] free x data;, x:
w_sel_\ [active, A\
| t t+1 t+2

Fig. 4.9 Example of TICs for a non-pipelined multi-cycle architecture

non-pipelined three-phase multi-cycle architecture. A write is executed in the third
clock cycle. For each ISA instruction three TIC instances are needed. As shown in
Fig.4.9, the first two clock cycles are represented by IDLE-TICs since during these
clock cycles no data is exchanged. Also, there is no connection of these IDLE-TICs
with the program netlist. Data transfer happens in the third clock cycle which is
modeled by a DATA-TIC. This TIC connects the hardware signals of the third time
frame with the port of the STORE instruction cell.

The example also shows how non-determinism is used in modeling the processor’s
input/output interface through TICs: The control signal w_sel specifies the validity
of the output data data. At time points where w_sel is O the data signal is left
undetermined (modeled by an unconstrained “free” input). In this way, details of the
processor’s implementation which are not relevant to the model are abstracted away.

4.5.2.2 Input/Output Resolution Logic

If two or more input/output instructions can possibly access the interface of the
processor at the same clock cycle then extra control logic is needed to resolve which
instruction actually drives the interface signals depending on the execution path taken
in the software. Figure 4.10 shows an example where instructions iy, is and ig (from
Fig.4.8) can write to the hardware at the same clock cycle. A resolution logic block

148 C. Villarraga et al.

- merge cell
s laf
porty, .
s 1v

. port
I5
g | ig
portig
processor's v ¢ 3 . .
interface at t+14 - resolution logic
—
RL
/(L:) timed interface cell
resolved port: 1 IDATATIC
data, addr, active
<= Tl=

| v . processor's

interface signals:
data, addr

S14# HW # w_sel, r_sel

t+14 H

X, Y14

Fig. 4.10 Example of unrolled HW/SW model containing a resolution block

(RL) is instantiated that decides which of these input/output instructions cells drive
the interface signals.

The resolution logic takes as input all port signals of the involved input/output
instruction cells and decides which of them are connected to the corresponding
DATA-TIC. In general, this decision depends on the active signals values (which in
turn depend on the inputs of the program) and on whether accesses are performed at
the given clock cycle. Since the program netlist is a DAG with paths re-converging
at merge nodes, individual instruction cells in the model may belong to different
execution paths. Consequently, a single instruction cell (for example is of Fig.4.10)
can access the interface at different time points. To resolve this, we add a time variable
called cyc to the program state determining the clock cycles at which instructions
are executed. A counter incrementing the number of clock cycles is added to all
instruction cells of the model updating the value of cyc (see the instruction cell in
Fig.4.9).

If at clock cycle k the set of input/output instruction cells Wy = {iy, is, ..., i}
can access the interface then the resolution logic for the output data value (data(k))
is defined as follows.

4 Software in a Hardware View 149

data(k) :=
if (ii.active and (i.cyc = k)) then i,.data
else if (iy.active and (i,.cyc = k)) then i,.data

else if (i,,.active and (i,.cyc = k)) then i,,.data
else free

This logic describes a chain of multiplexers in which i;.data, i;.addr and i;.active
are the port signals of the instruction cell ;. For the other port signals, addr; and
activey, a similar multiplexer chain can be constructed. Input ports are handled in a
similar same way.

In order to find the set of instructions W fork = 0, ..., n — 1 (with n being the total
number of clock cycles of the unrolling) an algorithm that propagates the execution
times for each individual instruction cell through the execution graph is employed.
The algorithm takes as inputs the execution graph, the address space reached by
the program and timing information of the processor’s architecture which helps to
predict statically when instructions can be executed in time. Note that this process is
similar to the one explained in Sect.4.4.1 with the difference that here the resulting
model is cycle-accurate. The first two inputs to the algorithm were already computed
previously when generating the program netlist.

The kind of timing information needed as input depends on the particular processor
architecture. In the case of a non-pipelined multi-cycle architecture, for example, the
number of clock cycles per instruction is needed as well as the timing specific to
phases where input/output access (e.g., memory address stage) takes place. For
pipelined architectures it is additionally required to provide a description of stall
scenarios. In the following we describe the algorithm for the case of a non-pipelined
multi-cycle architecture.

The algorithm traverses the execution graph which has been topologically sorted.
Associated to every EXG node ¢ there is a set of possible execution times 7, at which
the instruction at the node can be executed. When visiting a new EXG node ¢, the
set T, is computed by taking the execution times of all predecessors and adding to
them the delay of the current instruction. (In the case of a non-pipelined architecture
this delay is a constant.) Since EXG nodes are sorted topologically, it is ensured that
when a given node is processed the execution times of all its predecessors are known.
The algorithm ends when all EXG nodes have been processed.

We consider again the example of Fig. 4.8 and assume a three-phase multi-cycle
architecture. The algorithm begins with computing 7;, = {0}, then 7;, = {3}, and
so on. When i¢ is processed, it is already known that 7;, = {12} (this is ensured
since the traversal is done respecting the topological order of the EXG), T;, = {9}
and therefore T;, = {12, 15} is computed. The algorithm can then further continue
to compute 7;, = {15, 18}. Execution times for the remaining nodes are computed
in the same way. The traversal ends once the possible execution times are calculated
fori 10.

After the algorithm finishes, in a second step, the information of the address space
reached by input/output instructions is analyzed in order to detect input/output

150 C. Villarraga et al.

instructions cells that interact with the hardware. All other instruction cells are
marked as IDLE and therefore are represented in the time interface model by a
number of IDLE-TICs instances corresponding to the clock cycles spent in these
instructions.

In our example, it can be seen that during ¢ 4 12 and ¢ + 14 instruction cells
i4, ig, ig can be executed. More specifically, since in the last phase the data is written
to the hardware it can be determined that W4 = {i4, i, ig}, as shown in Fig.4.10.
All other time points of the unrolling can be handled in the same way.

Note that this approach significantly reduces the amount of logic needed since
resolution logic blocks are instantiated only at points when they are in fact needed,
and each resolution block takes into account only relevant input/output instruction
cells.

4.5.3 Experimental Results

We consider an application domain as described in Sect. 4.3 where high predictability
of the processor’s timing behavior allows for a firmware-based design style, in which
the processor is directly integrated into the hardware without the use of a standard
bus interface.

The verification platform Formal Checker Kaiserslautern (FCK) was extended
with the algorithms and modeling elements presented in Sect.4.5.2. For program
netlist generation, FCK takes as input the machine code of the firmware and the
instruction cells modeling the core hardware. In order to generate the timed interface
model, FCK requires an RTL description of the TICs of the processor together with
the specific timing information for predicting instruction execution times. Finally an
RTL description of the uncore HW is also needed. With this information FCK fully
automatically generates the hardware/software model for verification.

The FCK backend generates the combined hardware/software model such that it
can be used as input to a standard property checker. In the following experiments the
commercial property checker OneSpin 360DV [15] was used. All experiments were
conducted on an Intel Xenon running at 2.83 GHz with 32 GB of main memory.

Two different case studies were conducted employing the PicoBlaze processor
from Xilinx. Properties were written (using OneSpin’s property language ITL) that
specify global behavior of the designs, e.g., complete transactions. For both case
studies the approach of [19] was followed extended by the techniques of Sect.4.5
to generate program netlists representing the firmware behavior. In all experiments
the approach presented in this chapter was compared with the classical hardware
bounded model checking (BMC) technique as described in Sect.4.2. The authors
are not aware of any other tools or methods reported in the literature that could be
applied in this context.

The first case study is a firmware-based implementation of a slave interface for
the Flexible Peripheral Interconnect (FPI) bus protocol. The FPI bus is a pipelined
SoC bus developed by Infineon. The slave serves to connect a peripheral device

4 Software in a Hardware View 151

Table 4.4 Characteristics of the designs and models

Design LoC PN DATA- HW state

SW HW size TICs inputs vars.
FPI slave 172 2908 380 188 113 1149
Control unit | 253 2734 474 171 18 1148

LoC HW: lines of HDL code, LoC SW: lines of assembly code,
PN size: number of instruction cells

Table 4.5 Property checking results

Property PN-based BMC-style
length time mem. time mem.
(cycles) (min.) (GB) (min.) (GB)
slave_write 461 01lm21s 1.93 45m02s 19.11
slave_read 460 01m50s 1.82 43m34s 20.78
trans_ok 729 04mO02s 1.62 TO“ 23.40°
trans_valid 700 03m04s 1.46 TO 21.05%

b

“time-out = 24h, " memory usage at time-out

with the FPI bus. It interacts synchronously with the bus and asynchronously with
the peripheral. In the system, the surrounding hardware (wrapper RTL in Fig.4.5)
captures the signals from the bus when a request occurs. Subsequently, the firmware
checks the incoming request and informs the peripheral about it. Once the answer
from the peripheral arrives, the firmware finishes the transaction by setting the correct
values on the wrapper RTL. Table4.4 summarizes the characteristics of the design
and the models. Proofs were conducted for two different safety properties slave_read
and slave_write, specifying a read and a write transaction, respectively, after a sys-
tem reset sequence. Both properties describe control and data values as specified in
the FPI bus documentation. Table 4.5 presents the results obtained for proving both
properties.

The second case study is a control unit resembling typical non-mainline function-
ality implemented with the use of firmware. The control unit interacts on one side
with a master SoC module (e.g., a processor or some other hardware module) which
sends commands to specific hardware devices through the control unit. Addresses of
the destinations (hardware units) are also sent to the control unit by the same master
SoC module. The control unit receives command and destination information, ana-
lyzes its validity (checking parity) and then synchronously sends the command to the
corresponding hardware devices. Each of the hardware devices runs an independent
finite state machine recognizing whether commands are actually intended for it or
not. In case of a match, the command is latched by the hardware unit and a control
signal is activated to indicate the arrival of the valid command. At the end, the con-
trol unit informs the master SoC module whether the transaction has been completed
successfully or not. Table4.4 summarizes the characteristics of the design and the
resulting models. Two safety properties trans_ok and trans_valid were proved. The

152 C. Villarraga et al.

first property specifies that (after a reset sequence was applied) if the data obtained
from the master SoC module is valid then at the end of the transaction the corre-
sponding commands and control signals are activated in the correct hardware unit.
The second property specifies that the correct finish condition is sent to the mas-
ter SoC module depending on the validity of the command and destination values.
Table 4.5 contains the results obtained for proving both properties.

All properties were finally proven correct after a number of system bugs had been
identified by the method and were corrected. For instance, in the FPI slave interface
there was a situation in which after the reset, the slave could be selected before the
system was properly initialized by the firmware and therefore wrong values of the
FPI control signals were issued by the interface. Also the firmware of the control
unit contained a bug due to a wrong sequence of reading operations. For a certain
execution scenario of the firmware it was possible that the acknowledge was read
after the command value. This could trigger invalid read commands by the control
unit.

As can been observed, the proposed technique outperforms a straightforward
BMC approach in all cases. The properties for the control unit turn out to be more
difficult for the property checker (i.e., for the SAT engine) than the properties for the
FPI bus. An explanation for this is that the control signals depend on the parity com-
putation performed by the firmware which increases the computational challenges
for the solver.

In both case studies, the firmware was required to react as fast as possible so as to
cause only a minimum number of wait states. Therefore, the run times for complete
transactions, in both cases, are short, resulting in program netlists of small size.
Their generation required less than 1 min in all cases. Taking into account that much
larger program netlists have already been generated successfully in [19, 20], there
is promise that also significantly larger designs integrating firmware as described in
Sect.4.5.1 can be handled.

4.6 Conclusion

This chapter described hardware-dependent modeling of software based on program
netlists. Two application scenarios for program netlists have been addressed, namely,
speed-independent communication of the processor with its periphery and cycle-
accurate integration of firmware into an SoC module.

The proposed methods benefit from information provided by program netlists
which facilitates modeling of the hardware/software interface for different time
granularities. In particular, information about the memory address spaces accessed
by the software is used to identify possible hardware/software interactions. Addi-
tionally, explicit control flow representation is employed for determining temporal
information about those hardware/software interactions.

For speed-independent communication schemes, a time-abstract model of the
hardware/software interface has been proposed for checking equivalence of two reac-

4 Software in a Hardware View 153

tive programs. For cycle-accurate integration, a time interface model is constructed
and integrated to the model for performing hardware/software co-verification.

As shown by the experiments, in both scenarios low-level software of realistic

complexity can be handled by the proposed approaches. This encourages further
investigations also in other application domains such as testing and formal safety
analysis of hardware/software systems.

References

1.
2.

10.
11.

12.

13.

14.

15.

T. Aitch, Aquarius: a pipelined RISC CPU (2003)

T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli, J. Shalev, E. Singerman, A. Tiemeyer,
M.Y. Vardi, L.D. Zuck, Formal verification of backward compatibility of microcode, in
Proceedings of the 17th International Conference on Computer Aided Verification, CAV’05
(Springer, Heidelberg, 2005), pp. 185-198

. T. Arons, E. Elster, S. Ozer, J. Shalev, E. Singerman, Efficient symbolic simulation of low level

software, in Design, Automation and Test in Europe, DATE ’08 (2008), pp. 825-830

. B. Bao, C. Villarraga, B. Schmidt, D. Stoffel, W. Kunz, A new property language for the

specification of hardware-dependent embedded system software, in Proceedings of Forum
on Specification and Design Languages (FDL), Munich, Germany, Oct 2014. (accepted for
publication)

. C. Bartsch, C. Villarraga, B. Schmidt, D. Stoffel, W. Kunz, Efficient SAT/simulation-based

model generation for low-level embedded software, in /7. GI/ITG/GMM Workshop Methoden
und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen
(MBMV) (2014), pp. 147-157

. A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDs, in Pro-

ceedings of the 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS 99 (Springer, London, 1999), pp. 193-207

. C.Cadar, K. Sen, Symbolic execution for software testing: three decades later. Commun. ACM

56(2), 82-90 (2013)

. D. Currie, X. Feng, M. Fujita, A.J. Hu, M. Kwan, S. Rajan, Embedded software verification

using symbolic execution and uninterpreted functions. Int. J. Parallel Program. 34(1), 61-91
(2006)

. D.W. Ecker, V. Esen, T. Steininger, Memory models for the formal verification of assembler

code using bounded model checking, in Proceedings of IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (2004), pp. 129 —135

N.Eén, N.Sorensson. An extensible SAT solver. in SAT (2003), pp. 502-518

A. Hazra, R. Mukherjee, P. Dasgupta, A. Pal, K. Harer, A. Banerjee, S. Mukherjee, Power-
tructor: An integrated tool flow for formal verification and coverage of architectural power
intent. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 32(11), 1801-1813 (2013)

A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy, D. Kroening, Formal co-
validation of low-level hardware/software interfaces. Formal Methods Comput. Aided Des.
(FMCAD) 2013, 121-128 (2013)

J. Koestersm, A. Goryachev, Verification of non-mainline functions in today’s processor chips.
in Proceedings International Design Automation Conference (DAC), DAC’14 (ACM, New
York, 2014), pp. 1:1-1:3

M.D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, W. Kunz, Unbounded protocol
compliance verification using interval property checking with invariants. IEEE Trans. Comput.
Aided Des 27(11), 2068-2082 (2008)

Onespin Solutions GmbH. Germany. OneSpin 360MV. http://www.onespin-solutions.com

http://www.onespin-solutions.com

154 C. Villarraga et al.

16. A. Pnueli, M. Siegel, E. Singerman, Translation validation, in Proceedings of the 4th Interna-
tional Conference on Tools and Algorithms for Construction and Analysis of Systems, TACAS
"98 (Springer, London, 1998), pp. 151-166

17. C.S. Pasareanu, W. Visser, A survey of new trends in symbolic execution for software testing
and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339-353 (2009)

18. B. Schlich, Model checking of software for microcontrollers. ACM Trans. Embed. Comput.
Syst. 9(4), 36:1-36:27 (2010)

19. B. Schmidt, C. Villarraga, T. Fehmel, J. Bormann, M. Wedler, M. Nguyen, D. Stoffel, W. Kunz,
A new formal verification approach for hardware-dependent embedded system software, IPSJ
Transactions on System LSI Design Methodology (Special Issue on ASPDAC-2013), vol. 6
(2013), pp. 135-145

20. C.Villarraga, B. Schmidt, C. Bartsch, J. Bormann, D. Stoffel, W. Kunz, An equivalence checker
for hardware-dependent software, in 1/ ACM-IEEE International Conference on Formal Meth-
ods and Models for Codesign (2013), pp. 119-128

21. M. Wedler, E. Cabrill, S. Graham, L. Patrick, Using formal verfication for HW/SW co-
verification of an FPGA IP core. Xcell Journal (Xilinx, Inc.) 0, 56-61 (2012)

Author Biographies

Carlos Villarraga received his undergraduate degrees in electrical and electronics engineering in
2002 and master degree in microelectronics and computer engineering in 2006 from Universidad
de los Andes, Bogota, Colombia. In 2016, he obtained the Ph.D. degree at the Electrical & Com-
puter Engineering at Technische Universitit Kaiserslautern. Currently he holds a post-doctoral
position at the same university. His current research interest includes formal verification of embed-
ded hardware/software systems.

Dominik Stoffel received the Dipl.-Ing. degree from the University of Karlsruhe, Germany, in
1992, and the Ph.D. degree from the Goethe University Frankfurt, Germany, in 1999. From 1993
to 1994, he was a Research and Development Engineer with Mercedes-Benz, Stuttgart, Germany,
in the development of testing methodology for automotive electronics. From 1994 to 1998, he was
with the Max-Planck Fault-Tolerant Computing Group, Potsdam, Germany. From 1998 to 2001,
he was a research scientist at the University of Frankfurt/Main. Since 2001, he is a research sci-
entist at the Department of Electrical & Computer Engineering at Technische Universitit Kaiser-
slautern, where he became a professor in 2012. He conducts research in the area of design and
verification of embedded systems and systems-on-chip. He has a special interest in methodolo-
gies based on formal verification of hardware and low-level software.

Wolfgang Kunz received the Dipl.-Ing. degree in Electrical Engineering from the University of
Karlsruhe, Germany, in 1989 and the Dr.-Ing. degree in Electrical Engineering from the Univer-
sity of Hannover, Germany, in 1992. From 1993 to 1998, he was with Max Planck Society, Fault-
Tolerant Computing Group at the University of Potsdam, Germany. From 1998 to 2001, he was
a professor of Computer Science at the Goethe University Frankfurt, Germany. Since 2001, he
is a professor at the Department of Electrical & Computer Engineering at Technische Universitét
Kaiserslautern. The focus of his current research activities is on design and verification of Embed-
ded Systems and Systems-on-Chip (SoC). Research topics include formal verification of hardware
and hardware-dependent software, system-level design flows, safety analysis and design for power
closure.

Chapter 5
Formal Verification—The Industrial
Perspective

Raik Brinkmann and Dave Kelf

5.1 Introduction

Although formal technology has been applied to verification for many years, its
widespread adoption has been limited. However, recently formal verification has
become a key component within modern design flows. So what has changed? Several
trends have driven adoption of formal techniques (see e.g. [1-7]).

Clearly, more powerful underlying technology is a key driver for formal adoption,
allowing the expansion of the scope of application. Such advancements include im-
provements in basic algorithms, such as Boolean Satisfiability (SAT), as well as more
powerful SAT-based model checking techniques, such as Bounded Model Checking
(BMC) and IC3. While these advancements are mainly driven by academic research,
they are quickly adopted by the industry, leveraging them into commercial tools.
While formal adoption is increasing, the demand for further improvements on this
level is relentless.

A key problem with formal adoption in the past was the inaccessibility of this
approach to a wider audience because of a plethora of different and complex modeling
concepts and mechanisms. While still complex, the availability of standard design
and verification languages that work across many tools in the design flow such as
VHDL, SystemVerilog, PSL (Property Specification Language), and SVA (System
Verilog Assertions) facilitates formal adoption. It allows the more complex concepts
to be hidden underneath a common framework that is more accessible to design and
verification engineers. Using these standards on an industrial scale further lowers the
barrier of entry for formal, as it makes the creation of automated tools a worthwhile

R. Brinkmann (X)) - D. Kelf ()
OneSpin Solutions, Munich, Germany
e-mail: raik.brinkmann @ onespin-solutions.com

D. Kelf
e-mail: dave.kelf @onespin-solutions.com

© Springer International Publishing AG 2018 155
R. Drechsler (ed.), Formal System Verification, DOI 10.1007/978-3-319-57685-5_5

156 R. Brinkmann and D. Kelf

endeavor. In Sect.5.2 we will look at some automated formal techniques, ranging
from early design analysis, to SoC integration and implementation.

While automation is a key driver for the widespread adoption of formal, au-
tomation can’t yet solve the functional verification problem if the specification is
informal. In this case, the standard practice is to break down the specification into
ever-smaller functional components, and to manually capture these components using
formal properties. These formal properties are then verified against the implemen-
tation. This constitutes the classic model checking approach, referred to as formal
Assertion-Based Verification (ABV). Driven by advanced formal algorithms, the
scope of model checking has steadily increased over the past two decades, making
more and more designs accessible to formal ABV. With increased adoption, ques-
tions of solution convergence, predictability, and quantification of verification be-
come more important. Another important question relates to the adequacy of standard
property languages for manual and automated inspection, regarding completeness
and consistency. In Sect. 5.3 we will give an overview of functional formal verifica-
tion practices and how these challenges can be addressed.

New integrated circuit applications create additional design and verification chal-
lenges. In particular, the convergence of advanced data processing, wireless connec-
tivity, and re-configurability in high-reliability applications such as advanced driver
assistance systems (ADAS), wireless sensor networks, smart factories, and other
IoE domains has an impact on how systems are designed and verified. For example,
higher levels of abstraction, and the need to ensure functional safety and hardware
security add to verification complexity. In these areas new verification approaches
and technologies are needed in order to keep up with demand. In Sect.5.4 we will
investigate some recent industry trends and verification solutions that address them.

5.2 Automating Design Verification with Formal

In order to increase design productivity and agility while facilitating designer creativ-
ity, early detection of design issues, the automation of recurring verification tasks, and
prevention of functional regressions throughout the design refinement process are
key components. We will look at examples of automated formal usage throughout the
design process, from RTL design entry, to the block integration and implementation
phases.

5.2.1 Design Inspection

The early elimination of bugs in an IC development process saves time and resources.
This places pressure on component designers to perform more verification. However,
given traditional simulation-based verification techniques, the ultimate result of this

5 Formal Verification—The Industrial Perspective 157

trend is designers spending more time creating stimulus and getting involved with
overall verification, and less on creative design.

The agile software development movement has proposed a more interactive de-
velopment methodology, in an attempt to restore creativity and reduce administrative
boundaries. These ideas translate well into the IC hardware design process in general,
but require new thinking in terms of verification techniques.

Today, design teams employ varying solutions to get their code right. These in-
clude manual inspection, linting tools to highlight possible errors and coding issues,
and both interactive and batch simulation. While simulation allows design opera-
tion to be observed, it requires a fair amount of setup and testbench creation. Linting
reduces setup overhead, and performs a useful but relatively “dumb” check that high-
lights possible errors, however it requires sifting through lots of data to identify real
issues.

Successful adoption of agile principles in hardware design requires the automation
of verification, and regular review of design artifacts is key. Here, formal technology
can be of great value. We will now look at three examples, property generation,
operational inspection, and activation analysis.

5.2.1.1 Property Generation

A broad range of bugs may be introduced into design blocks either by coding acci-
dents or a misunderstanding of expected Verilog or VHDL semantic operation. Some
coding problems can be identified through the use of Linting, while most will re-
quire simulation. Many bugs will only be detected late in the process, almost certainly
leading to a large expenditure of debug resources to repair. In particular, the VHDL
and Verilog/System Verilog standards allow for a range of coding scenarios that can
lead to bugs. For example, consider an array with n elements, accessed through an
index that can potentially have values beyond the [0, n — 1] range, e.g., a 6-element
array indexed by a 3-bit signal. In the case of VHDL, the standard prescribes that
a simulator must generate a Fatal Design Error (FDE) and stop running if during a
simulation the array is indexed out of its bounds. Of course, this requires stimulus to
be executed to allow its discovery during RTL simulation. In the case of Verilog the
standard prescribes the generation of X states in this scenario, requiring the problem
to be stimulated and the cause of the X state propagated to testbench checks. In both
cases a synthesized netlist will have a defined behavior that does not match the RTL
simulation semantics, which can lead to the issue being hidden at the netlist level.
This issue is easy to accidently create, and can be hard to detect during simulation,
or will often be buried as one of many “out-of-bound access” warnings in a linting
log file.

Instead of simply analyzing the code structure with the risk of many false positive
errors, formal tools can generate formal properties that catch these unwanted scenar-
ios by inspecting the actual operation of the code, and automatically check if these
scenarios are reachable. Unlike linting, a formal tool eliminates log files and many
false warnings and produces a simulation trace that can be debugged. As compared

158 R. Brinkmann and D. Kelf

Fig. 5.1 Array. . reg [2:0] i; Lint: This code “might” result
out-of-bounds inspection reg [5:0] array; in out of bounds access

versus lintin
g always @(posedge clk) Inspect: Design operation
for (i=0 ; i<=5; i=i+l) does not resultin an

array[i] <= 1; out-of-bounds access

to the simulation, the formal tool will consider ALL possible operational details au-
tomatically without the need for stimulus. For example, if the design is capable of
an out of bounds access, the error will be flagged and the code driver creating that
mechanism will be highlighted without relying on the user to provide simulation test
vectors that trigger this scenario (see Fig.5.1).

Another classic scenario that often produces a Simulation-Synthesis Mismatch
(SSM) is the misuse, in Verilog, of the Synopsys “Full-Case” and “Parallel Case”
pragmas. These pragmas instruct the synthesis tool that certain logic optimizations
can be safely made in order to improve area and timing. However, they have no
effect on the RTL simulation semantics and if the designer has made a mistake, for
example using the Parallel-Case pragma in a case statement with branches that are
not mutually exclusive, the behavior of the synthesized netlist may potentially not
match the RTL semantics.

Two keywords have been introduced in SystemVerilog, “unique” and “priority”,
to mitigate this problem. The use of the keyword unique is equivalent to using both
the Parallel-Case and Full-Case pragmas. The use of the keyword priority is similar
to using the Full-Case pragma. The advantage is that the standard prescribes that a
simulator must issue a warning if a scenario is hit where the case statement does
not respect the unique or priority semantics. This will help in flagging a problem,
but once again the scenario must be uncovered by the simulation stimulus. To cover
this scenario, the formal tool will synthesize assertions whenever this style of case
statement is used, for both the SystemVerilog key words and RTL synthesis pragmas.
It will then exhaustively check that the code has been correctly written and that no
simulation-synthesis mismatches can occur (Fig.5.2).

There are in fact many of these cases, where classic RTL errors may be avoided
by the judicious use of formal apps. The creation of design intent assertions from
RTL code is a good example of automated formal verification. Automatic formal
design inspection can check for a number of design issues, examining code operation
for real problems, rather than code syntax for possible issues. It saves hours of
manual analysis while detecting tougher bugs. Integrated into nightly regressions, it

Fig. 5.2 Parallel-case case (1'bl) // synopsys parallel case
example il: ol = 1'bl;
i2: 02 = 1'bl; | Canil andi2 be
default : —_active simultaneously?
begin
ol = 1'b0;
o2 = 1'b0;

end

5 Formal Verification—The Industrial Perspective 159

automatically and reliably shortens the time between the introduction of issues and
detection.

5.2.1.2 Operational Inspection

The early elimination of bugs in an IC development process saves time and energy.
This places pressure on component designers to perform more verification. However,
given traditional simulation-based verification techniques, the ultimate result of this
trend is designers spending more time creating stimulus and getting involved with
overall verification, and less on creative design.

In contrast, the Agile software development movement has proposed a more in-
teractive development methodology in an attempt to restore creativity and reduce
administrative boundaries. Agile suggests an interactive model where designers cre-
ate, quickly test, and integrate small, valuable code sections. These ideas translate
well into the IC hardware design process in general, but require new thinking in
terms of verification techniques.

What is required is a verification solution with a low setup and usage overhead
that demonstrates design operation without even having to consider stimulus cre-
ation, and automatically track real design issues in depth. Using formal technology,
it is possible to generate witnesses from properties describing some desired design
operation. These very simple properties (e.g., assume reset goes low then high) are
typically specified using some graphical or textual input method that is much simpler
than standard property specification languages. Instead of directly writing complex
sequential properties, a tool can generate properties from these alternative mecha-
nisms, eliminating the need for the user to learn a formal property language, thus
increasing design productivity. A multitude of desired design operations is typically
kept as a list of scenarios, each reflecting a particular operational aspect. A key ad-
vantage of these scenarios is that they are more robust in the face of implementation
changes in the design than traditional directed simulation tests. This is because the
actual bit wiggling of the inputs driving the design can be regenerated by the formal
tool automatically.

In this manner, one can observe design operation with no or little stimulus, which
allows a designer to see what is going on in the code quickly and effortlessly. In this
way test creation is automated, and can even improve later simulation if necessary.

5.2.1.3 Activation Analysis

Deadlocks in finite-state machines, unreachable code, and stuck signals are major
concerns when developing and integrating RTL components. Usually they point to
functional errors or misinterpreted integration conditions that render certain design
functionalities inactive. These might include miscalculated branching conditions,
incorrect wiring, or interlocking conditions. These errors cannot reliably be detected
using simulation, which can only demonstrate the activation of certain design func-

160 R. Brinkmann and D. Kelf

Fig. 5.3 FSM coverage Cas‘; (zgate)
'b00: nstate

example 2'b01: nstate 'bl1;

2'bl1l0: nstate 'b00;

2'bll: if (ack) | Canthisbranch

nstate = 2'b10;— po covered?

else \

nstate = 2'bll;

N

'b01;

oo
N

N

endcase

tions, but can never prove the opposite case, the inability of such design sections to
be activated.

Formal is the only technology that can prove the absence of capability, that is,
it is able to show that it is impossible to activate some function. This information
is useful both for debugging these conditions, as well as creating coverage waivers
for simulation if the function is indeed not relevant in the context of the design
(e.g., design sections used for debug and not in normal operation). If it is possible
to activate a function, a formal approach will find out and construct a sequence of
stimulus that demonstrates the activation. The generated trace can then be used for
the interactive analysis of design behavior, or the creation of a simulation test bench.

Typical activation checks automated by formal are code reachability checks, finite-
state machine checks, and signal toggle checks:

1. Code Reachability Checks target each branch of input source code, and check
whether the branching condition can be activated. Both if-then-else and switch-
ing conditions (case) are considered, and the default behavior analyzed. This is
particularly helpful to avoid don’t-care conditions, via explicit X assignments,
that could lead to simulation-synthesis mismatches and other hazards.

2. Finite-State Machine (FSM) Checks verify that each transition of an FSM can be
performed, that no code deadlocks exist, and that the FSM correctly returns to an
initial state on reset (Fig.5.3). FSMs can be automatically identified in the input
source code. The checks can be performed across the entire design function, and
can include other FSMs that might interact with the machine under consideration.
This is particularly helpful for finding unwanted interlocking conditions between
multiple FSMs.

3. Toggle Checks analyze the switching capability of signals in the design. The
checks depend on the type of the signal. For example, in case of a Boolean signal,
it is useful to check if it can transition from O to 1, and from 1 to 0. For other signal
types such as numeric and enumerated signal types other checks are appropriate.

Typically, activation checks are used during early design stages to analyze newly
written design functions. If a function cannot be activated, it suggests incorrectly
coded execution and branching conditions. During functional verification, activation
checks can be helpful to analyze simulation coverage holes. Additionally, during IP
integration, if design functions can no longer be activated after integrating a block,
this suggests a problem with the assumptions regarding the integration conditions,
wiring, etc.

5 Formal Verification—The Industrial Perspective 161

5.2.2 IP Integration Verification

Another aspect that drives formal adoption is increased use of System-on-Chip (SoC)
methodologies. A SoC methodology drives designers to create individual compo-
nents, which are then integrated onto an SoC platform, which in turn is verified
continuously in lengthy regression simulation runs. This approach also produces a
higher demand for pre-verified functional blocks of intellectual property (IP), al-
lowing the integration of pre-verified components into an SoC. A modern SoC will
also contain a number of processors and specific hardware and IP blocks, which
are connected through on-chip bus interfaces. Almost every block in an electronic
design contains a series of registers. These registers are used to configure, control,
and monitor the operation of the block, often loaded or read from a system processor
utilizing a related driver software function.

This IP integration methodology has created a whole new class of automated for-
mal tools, or formal “apps” to verify SoC connectivity, on-chip-protocol compliance
of IP blocks, register map validation at the hardware—software interface, data trans-
port issues, the propagation of uninitialized states and others. It is critical to eliminate
as many bugs as possible prior to components being released into the regression sim-
ulation run, as tracking down bugs at this point is extremely expensive. The key to
success is the automation of recurring verification tasks based on standards, such as
SystemVerilog and IP-XACT. Formal Apps are ideal for this purpose.

5.2.2.1 On-Chip Protocols

A number of standard on-chip bus protocols, such as OCP, AHB, AXI, and other
standards are in use today in modern SoCs. These protocols often involve complex
sequences of transactions and signal manipulations. When integrating IP blocks,
especially those obtained from third party sources, it is critical that inter-block com-
munication mechanisms work properly under all conditions. Many device issues are
rooted in the failures of these mechanisms, and the resulting bugs can be hard to
track down and fix.

The common method to test on-chip protocols is through simulation. However, to
fully exercise an interface, large stimulus files must be created. Ensuring that all the
unique combinations of transactions are fully exposed requires hours of simulation
time and is hard to achieve given the many operational permutations. This is an ideal
application for a formal-based solution, which can test all possible communication
transactions in a specific protocol without the need to specify every single one of
them.

Pre-designed formal property sets in conjunction with formal assertion-based
verification, can be applied in a fully automated manner to a bus interface and will
perform a thorough, exhaustive test of this interface with no requirement for the
creation of stimulus. Instead of writing a new set of properties, pre-designed property
sets are reused and simply instantiated on a specific design under verification. The

162 R. Brinkmann and D. Kelf

) [afr e [a]p 4 4

Fig. 5.4 AHB protocol debug display

assertions can expose the existence of specific violations, or formally prove that the
interface is performing correctly. The formal tool is also able to trace the operation of
the protocol on a particular design example, providing a visual simulation waveform-
like display that may be used to inspect behavior (Fig.5.4)

In order to maximize reuse and interoperability, formal verification IP is usually
created using standard assertion languages like SystemVerilog Assertions (SVA).
However, many industry applications only provide a readable interface to their IP,
and encrypt the interior to protect their property, which limits the reuse within the
design flow.

5.2.2.2 Register Map Validation at the Software Interface

IP blocks communicate to software through a range of software accessible registers.
Some blocks may contain hundreds of registers, with a nested implementation to
handle addressing. The register addresses are defined by a memory or register map,
a common document used throughout hardware, software, system/IP integration,
and verification engineering to ensure consistency. This map might form part of a
specification in the case of the IP block coming from a third party.

A very common source of errors in a system is a mismatch between some aspect
of a register and its specification. Although this would seem to be a relatively triv-
ial issue, it can cause many wasted hours spent in debug, particularly because the
problem might not manifest itself until the block software driver is operating with
application software, at which point multiple engineering functions are involved with
disassociated knowledge of the system. Carefully reading a modern memory map
specification to ensure system consistency takes many hours, and is extremely error
prone given the typically large number of registers.

Today, register operation is often checked using simulation, which is inadequate
for this purpose as it is entirely dependent on the quality of stimulus, which leads
to missed issues. An exhaustive analysis of register behavior is required where all
register interaction, operation, and consistency is tested completely. In simulation a
series of read and write interactions would require testing for each register, as well
as ensuring that registers behave independently of each other, clearly requiring a po-

5 Formal Verification—The Industrial Perspective 163

Fig. 5.5 IP-XACT Register <spirit:memoryMap>
map segment <spirit:name>System_APB</spiritname>
<spirit:addressBlock>
<spirit:name>vcore</spirit:name>
<spirit:baseAddress>0x8000</spirit:base Address>
<spirit:range>0x2c</spirit:range>
<spirit:width>16</spirit:width>
<spirit:register>
<spirit:name>debug</spirit:name>
<spirit:description>debug register</spirit:description>
<spirit:addressOffset>
0x0
</spirit:addressOffset>
<spirit:size>16</spirit:size>

tentially large stimulus file. An exhaustive check may only be reliably accomplished
with a formal solution, which eliminates the need to create a stimulus file all together.

A register specification is often provided for a system using a standard such as
the IEEE-1685 IP-XACT format, an XML meta-data representation designed to ease
the integration of IP (see Fig.5.5). This standard is machine-readable and provides
an easier way to check for register consistency, providing an ideal input into the
formal verification process. From this specification, the formal tool can automatically
generate a set of assertions and verify those assertions to a formal verification engine.

A formal register map verification app reads in an RTL description of a block to be
tested, together with an IP-XACT file or some other format, that specifies the block’s
registers, and performs an exhaustive comparison to ensure absolute consistency,
by generating automatically a set of assertions and applying those assertions to
a formal verification engine. This way, the entire behavior of the register can be
formally verified, including its location in the address map, offset location based on a
block’s base address, register width, and read/write capability, any special extensions
provided by the designer, the enumeration of the register, and other attributes included
in the specification. For example, in case of nested registers, address mapping should
also be verified. Other typical properties of registers include read only, read and reset
to one or zero, validation of write only registers, and other typical interactions.
Usually, registers that must be updated within specific time periods and behavior on
reset may also be tested. Optionally, checks for the absence of registers, or register
bits that should be present according to the specification, can be performed.

Some register tools use the IP-XACT format to generate register hardware. In
these cases, it has been proven to still be important to verify generated implemen-
tations for various situations, including: validating a change to the register map or
underlying design, incorrect signal connection, issues with block address bus sizes,
extra validation of hierarchical address mapping schemes, and even some RAM tests.

In a typical Systems-on-Chip registers are accesses from the software/processor
side through a bus interface, running an on-chip protocol, such as AMBA, AHB,
and APB. In order to verify the correct operation of the registers through the bus
interface, the use of protocol verification IP (see above) is mandated.

164 R. Brinkmann and D. Kelf
5.2.2.3 SoC Connectivity

The wiring of multiple functional blocks through the hierarchical layers of a design
is a tedious and error-prone task. Errors in signal naming conventions, switched
positions in port lists, incorrectly matched bus bit positions, and many other fault
conditions produce seemingly simple errors that can waste hours of time if undetected
until later in the engineering process. On occasions these can be missed completely,
resulting in an expensive device re-spin.

The connectivity issue is further compounded by modern interconnect structures
(see Fig.5.6). Complex bus protocols with transaction-level signal propagation,
Network-on-Chip (NoC) channels, crossbar and bus bridges, for example, mask
signal connections throughout a system, making the verification of correct device
connectivity hard and time consuming to establish.

Connection behavior also requires testing, for example, connectivity during reset
and power domain switching, a device placed into a test configuration that switches
connectivity, and connection options based on control register values. Specialized
tools may also be used to automatically establish connections and this process also
requires verification. Tracking these issues down using simulation is unreliable as
the stimulus used must cover every connection style and behavior in an exhaustive
fashion, ensuring linkage through complex interconnect structures throughout the
design. The creation of such a test set is also time consuming and error prone.

Formal verification provides an easy way to automate a mechanism to solve this
issue. Utilizing a range of machine-readable formats such as connectivity specifica-
tions and tables (including spreadsheets), interconnect assertions can be generated
that may evaluate connections through the most complex of design structures. Run-
ning the design with these assertions through a formal proof engine provides an
exhaustive test of all interconnects listed in the table. What appears to be a trivial
task gets a bit more complicated if conditional connections, and configurable con-
nections need to be considered, especially when a connection is gated and controlled
through register settings, or potentially overridden through device reset or similar
events changing the design state.

Fig. 5.6 Connectivity

checking through bus -
8 & 2Cache DSP Controller

structures
Algorithm
Accelerator
WP Core HP Core

‘-, WP Support HW Custom
& RAM / ROM Device

Security Sub-system

5 Formal Verification—The Industrial Perspective 165

If an issue is found with a connection, a simulation trace is generated that high-
lights the problem to allow its inspection. This waveform trace highlights issues
regardless of the connection mechanism, allowing for hard to understand connection
problems to be observed. In a formal setting, it is possible to quickly ensure that
a complete system platform is wired correctly with virtual connections evaluated,
eliminating one of the most common reasons for project delays and faulty silicon.

5.2.2.4 Uninitialized (X) State Propagation

Verifying the absence of undefined signal (or X) states, or the conditions that cause
them in HDL designs is a critical but often complex operation. However, X states can
indicate some of the most dangerous bugs and, as such, analysis to protect against
them is a critical component of any verification program.

In general, in both Verilog and VHDL designs, the “X” state is used to depict
a signal state that is either undefined or unknown, or has been specifically set in a
“don’t care” condition. X states can occur due to a variety of reasons, many of which
indicate an error condition, and once they do occur can propagate through the design.
Often an X state can indicate problems with system or component reset, or gated
clocking schemes. On occasion X states may be expected and tolerated, at least for
a certain number of clock cycles, and are sometimes used to track other problems.
These don’t care states are caused generally by explicit X assignments, the testing
of a partial reset sequence, or X states being propagated from the input ports. These
situations also require verification.

X states are notorious for indicating unusual, corner-case bug conditions and, as
such, creating the right stimulus, which might have to control a broad range of signals
over a large number of sequential operations, can be very difficult. Thus, simulation
for X propagation tracking is unreliable, as the simulation stimulus may not drive
the RTL design into a state sequence that produces the X state condition. Similarly,
the use of Linting tools and other mechanisms to find harmful X states often does
not produce the desired result due to a variety of restrictions. In contrast, formal
verification is ideal for X propagation analysis, given the exhaustive nature of the
technique.

X propagation issues are further compounded by the nature of the HDL standards
that can lead to “X Optimism.” Standard Verilog, SystemVerilog, and VHDL will
sometimes mask the propagation of X states through gated logic and other code
where the path through the logic on which an X state would travel is disabled, a
potentially optimistic scenario. For example, an AND function with a 0 on one
input and an X on the other may have a simulated output of 0 (optimistic) or an X
(pessimistic) depending on the simulation treatment of the design and the purpose
of the simulation, see Fig.5.7.

For some conditions it is desirable for the X state to propagate through a logic
block if it appears on the input, regardless of the other inputs and the logic design.
The X Optimism level of the verification analysis requires a level of controllability
to ensure that a particular X state in question is evaluated correctly, given the design.

166 R. Brinkmann and D. Kelf

) if (sel && en) nand nandO0 (.a(sel),

(X . —_ X 1 X
Xincondition 7 .1t <= 1'b0; .b(en)
treated as false | 1 1

< else .y(result)) ;
¢ X
|' result is 1 | ~ :iesult <= 1'bl; . resultis X J

Fig. 5.7 X Optimism and pessimism examples

Many formal tools can be directed to create a model that has no X optimism and
minimizes X pessimism, making it possible to analyze X propagation issues on the
RT level.

Packaged formal apps can provide assertions to trap potential X state conditions,
and many possible bugs may be found with relative ease. X Propagation Apps provide
a robust and effective circuit analysis that highlights all the issues in a design that
could lead to X state propagations. Because it is formal, it does not rely on simulation
test stimulus generating the required coverage to find all X states. Some X prop apps
use 4-state-logic formal analysis, allowing for easy debug and root cause analysis.

A typical X propagation app creates assertion sets that then are utilized by a formal
engine to test for the reliable execution of reset and clock signals, examine design
coding for common issues that lead to X states, check control logic that can mask
common problems in other verification forms, plus other analysis options. Coding
situations that could lead to an X state, include: divide by zero, array access attempt
that could go out of the defined array bounds, uninitialized signals, case statements
with incomplete assignments, and function that does return a value.

5.2.2.5 Data Transport Verification

In modern electronic systems, ensuring the correct transfer of data between and
through components has become a complex challenge. The intermixing of multiple
bus types that employ complex protocols, including Network-on-Chip (NOC) and
bus bridge solutions, can often lead to a range of data errors. Furthermore, the preser-
vation of data integrity in many design applications is of paramount importance. The
verification of data transport using traditional simulation-based environments can
often lead to transport issues not being identified, due to the likelihood that simula-
tion stimulus will not provide an exhaustive test. As such, this is an ideal application
for a formal-based solution, in this case a “Scoreboarding” App, where data transfer
may be exhaustively checked without the need for simulation stimulus.

The use of Scoreboarding has become commonplace in many verification envi-
ronments. Scoreboarding is an analysis function that tests for the correct transfer
of data through electronic components of different types (Fig.5.8). The mechanism
has applications in many types of design with data transport activity, for example,
communications designs making use of FIFO queues with logic to compare header
and control word detail, bus systems of all types, including Network-on-Chip solu-

5 Formal Verification—The Industrial Perspective 167

Fig. 5.8 Scoreboard

. ABC ABB
tracking IO values Design Under Test

tions, data encoding and decoding blocks tested together to ensure no data blocks
are corrupted, etc.
A Scoreboarding App can test for a number of data transport issues, including:

Data corruption within a block

Data misrouted or lost in some other fashion within a block

Data duplication within a block to produce multiple outputs

Data incorrectly reordered

Data “ghosting” where data is apparently output without having been input
Communication interruption or scrambling

Ensuring that once data is input it will eventually appear on the output

The final issue on this list is particularly interesting as it highlights an advantage
of formal over simulation. A Scoreboarding App can prove that a specific data word
will eventually emerge from a block, a characteristic that may be recognized as a
“liveness” property. Simulation-based solutions cannot make this guarantee unless
the data emergence observation is actually made during a simulation run.

5.2.2.6 Clock Domain Crossing (CDC) Checks

As integrated circuits became larger, the clocking signals used to cycle the design
logic became very difficult to manage. Delays in the clock lines would lead to signal
timing issues and managing the clock tree around the device, lining the clocks up
with the bus and other long connections became very unreliable. To maintain clock
integrity, modern integrated circuits make use of multiple clock domains. Within the
domain the clock signal is kept at a constant rate with minimal delays, and then each
domain is treated as an asynchronous unit versus others in the device. There can be
100 s of domains in a modern SoC.

As these domains are asynchronous to each other, signals transitioning between
the domains may be clocked by a sending domain, right before being again clocked by
areceiving domain, or visa versa, creating signal glitches. This can lead to instability
in the clocking flips flops causing circuit failure, and even oscillations. Circuitry has
to be built in that handles glitches in the signals with respect to the domain clocks.
Ensuring that all transitioning signals are handled correctly in all circumstances is a
very complex task in simulation.

As such, one of the first formal apps to be produced was the so-called “Clock
Domain Crossing” or CDC checker. This app, in general, has two functions. The

168 R. Brinkmann and D. Kelf

first is to locate all possible signals in a design that could suffer from CDC issues.
The second is to make sure that for all timing possibilities that the synchronizing
circuitry responds correctly, suppressing the glitch for all combinations of sending
and receiving clocks. The CDC checker essentially works by considering tiny timing
increments in both clocks and treating them as separate states, analyzing the circuitry
for its response to those states. Formal is ideal for this task as it can process these
differing states in an exhaustive fashion.

The CDC checker has made safe clock domain usage possible in these large
devices and is now extensively used by all semiconductor companies producing
even reasonably small devices, right up to the largest of ICs.

5.2.3 Verification of Design Transformations

Throughout the design process, several transformations are applied to the design,
including manual changes in order to optimize functions, as well as automated steps
such as logic synthesis of RTL and place and route of netlists. There are different
types of hardware bugs that may be introduced into an Integrated Circuit (IC). Design
bugs introduced through human error during implementation are invariably elimi-
nated during functional verification. Other systematic issues, on the other hand, like
those introduced by the automated design refinement tools, are typically not directly
checked by the functional verification process. These issues can be hard to detect,
and damaging if they make it into the final device.

5.2.3.1 Logic Equivalence Checking

A primary example of formal verification has been logic equivalence checking, which
has become a mandatory step in modern ASIC design flows. This application has
become so popular, that often the terms formal verification and logic equivalence
checking are used synonymously. Formal Equivalence Checking (EC) is used to
eliminate synthesis errors in designs, by comparing the design with itself at different
levels of abstraction. It is common to verify RTL input versus post synthesis gate level
and P&R net list, as this must be “signed-off” before committing it to fabrication.
This check, originally accomplished using simulation, eliminates systematic errors
introduced by automated design refinement steps. The advent of formal verification-
based Equivalence Checking for ASIC design provided an exhaustive comparison of
the gate level to RTL code. As the RTL code has been verified, the overall solution
provides a reliable method to commit the design to fabrication.

For ASIC synthesis, in general the synthesis tool converts register elements to flips
flops and the combinational logic between these register elements is maintained as
gates. EC tools that compare pre- and post- synthesis representations create a mapping
between register elements and flips flops, and then compare the combination logic
functionality in between.

5 Formal Verification—The Industrial Perspective 169

Technically, logic equivalence checking verifies the correctness of design trans-
formations of logic functions between a number of registers. In order to verify such
transformations formally, first a mapping between inputs and outputs of two design
representations, and a mapping between state holding elements of both representa-
tions is established. If the mapping is complete and the logic functions between these
mapping points are proven to be equivalent, the whole of the two design representa-
tions is equivalent. A lot of research has been put into handling more and more logic
design transformations efficiently, allowing for robust commercial solutions.

5.2.3.2 Sequential Logic Equivalence Checking

Logic equivalence checking cannot solve all design transformation verification tasks.
In particular, it cannot handle sequential optimizations or other transformations that
change the state representation of the design. For example, this method breaks down
if the registers are changed between the representations, or moved relative to the
combinational logic functional units.

The reason is that logic equivalence checking relies on the complete mapping of
internal states. Once the state representation is changed, such a mapping can’t be
established and logic equivalence checking must fail. In this case, sequential logic
equivalence checking is needed. A typical example for sequential design transfor-
mations and changes to the state representation is logic synthesis with re-timing and
RTL design refactoring (Fig.5.9).

Sequential equivalence checking mainly follows a conventional logic verification
flow: design setup, mapping and comparison, and optional debug. However, the
mapping of internal states is relaxed. In particular, the pairing of RTL to gate flops
does not need to be complete to provide conclusive results. This is achieved by
comparing the output behavior of the designs sequentially, starting from some initial
state until a fixed point is reached, and no new design behavior can be observed.
In case of nonequivalence the advantage is that, in contrast to logic equivalence
checking, the sequential comparison allows the generation of counterexample traces

Fig. 5.9 Sequential versus
combinatorial EC

- oL
>]
[L

Combinatorial

170 R. Brinkmann and D. Kelf

for some compare points, independent of the mapping of other compare points.
Consequently, mismatches can be debugged much more easily.

Once a block has been proven to operate correctly, a designer may wish to op-
timize some section, maybe to improve the coding style, reduce the gate count or
streamline operation. As code is synthesized the resulting netlist might consume too
much power or violate a timing constraint. Later in the process, an ECO may be
required in a netlist without resynthesizing from the original RTL blocks. All these
operations also benefit from a quick validation of functional equivalence. Without
formal equivalence checking, an engineer must execute an entire simulation regres-
sion run for any change. This often requires a lot of time and may also need additional
stimulus, with no guarantee that an exhaustive functional check will be performed.
By formally comparing the overall functional relationship, sequential equivalence
checking is able to exhaustively compare two descriptions for common functionality,
pinpointing differences if they occur.

5.2.3.3 Sequential Equivalence Checking for FPGA Synthesis

FPGAs make use of a static hardware matrix, where the ratio of registers to inter-
register logic is somewhat fixed. To drive the highest quality designs, state-of-the-art
automated design flows leveraging aggressive optimizations are employed. Examples
of such optimizations include:

e Register duplication and merging

FSM re-encodings for power optimizations and functional safety
TRM optimizations (triple modular redundancy)

Generation of asynchronous feedback loops

Use of IO cells and different bus resolution schemes

Fixed gated clocks

DSP block optimizations

Shift register logic optimizations, including reset registers

Use of FPGA RAM/ROM blocks, including Distributed- & Block-RAM
Power optimizations, such as retiming

Pipelining and pipeline retiming

The combination of these optimizations on a varied range of Register Transfer
Level (RTL) code styles can lead to the introduction of errors. These errors can occur
in unexpected ways, are often time consuming to detect, and potentially destructive.
Examples for such errors include:

e Bus connection reordering

e Coincident read discrepancies

e Wrong FSM re-encoding

e Undriven or unconnected wires

e Incorrectly coded pipeline logic

e Incorrect IP parameter settings (Block RAMs, DSPs)

5 Formal Verification—The Industrial Perspective 171

e Clock gating and low power issues
e Place and route connection issues
e Addition unspecified logic

Traditionally the only way to find these errors is heavy regression testing on the
FPGA itself, with thorough testing that examines every possible operational scenario.
This requires many days of stimulus creation and execution, with no guarantee of
RTL to gate equivalence. Equivalence Checking is commonly used for ASIC design,
but until recently it has not been possible in FPGA due to the nature of the sequential
optimizations employed. It is now being leveraged for the same purpose in large
Field-Programmable Gate Array (FPGA) designs.

5.3 Assertion-Based Verification of IP Blocks

Engineers often write directed tests that provide stimuli to a design-under-verifica-
tion (DUV) to test different pieces of functionality and check that DUV responds as
expected. Each test is directed at verifying a particular feature. As designs become
more complex it becomes harder to cover all the possible scenarios and corner cases
of the DUV. This is where typically advanced testbench automation comes into play to
increase coverage and confidence. However, developing good constrained random
testbenches and tuning them towards achieving very high coverage of the design
functionality is anything but easy or a low-effort task. Therefore, many engineering
teams have explored further enhancements in their verification flows, such as adding
assertions and leveraging formal techniques. These have proven particularly effective
for the verification of control and data transport blocks, as well as verifying complex
scenarios hard to recreate during simulation.

5.3.1 Assertions in the Verification Flow

Over the past couple of years, assertion language standards, such as SystemVerilog
Assertions (SVA) and the Property Specification Language (PSL) have been inte-
grated into the major HDLs: SVA included in the Verilog standard in 2005, and PSL
integrated into the VHDL 2008 standard. This standardization has been accompanied
by a wide support of SVA or PSL in EDA tools, allowing engineers to reap significant
benefits by adopting the new assertion features of the HDLs. While writing asser-
tions requires additional effort, many engineering teams have recognized that they
considerably shorten debug cycles by improving error localization and observability.
Thus, adding a few simple assertions like “no FIFO overflow” or “no simultaneous
read and write request” during the design phase of a block pays off later in the flow.
Note that for adding such simple assertions, engineers do not need a deep knowledge

172 R. Brinkmann and D. Kelf

of the intricacies of SVA or PSL. They can ramp up quickly because the coding of
such simple assertions pretty much corresponds to RTL coding and documentation.

While it is widely accepted that assertions actually improve the verification flow,
the major question is how to put assertions to best use. There are several aspects
to this question, namely how to use assertions to verify nontrivial temporal aspects
of the design and secondly, the question of whether adding a formal tool to achieve
exhaustive verification of the assertions actually pays off. However, most leading
semiconductor companies have deployed formal verification teams, clearly antici-
pating a significant return on investment.

5.3.1.1 Signal-Level Assertions

The major part of standards like SVA and PSL are tailored toward expressing temporal
behavior; after all, simple combinational statements can be expressed in RTL. The
main idea to express temporal behavior in SVA or PSL is borrowed from regular
expressions, a concept well understood in computer sciences. However, assertions
that express temporal behavior can be relatively cryptic and hard to understand. For
example, what does:

“req |=> (ack[=5] within (pending[*wait])) ##1 done”

exactly mean? So while SVA provides the means to express complex temporal
behavior, actually understanding how to code such SVA, and ensuring the assertion
actual describes the intent, requires advanced training and significant experience.

An additional complication of temporal SVAs lies in debugging. The failure of
a simple combinational assertion is easy to understand and to debug with common
RTL debugging techniques and corresponding engineering skills. However, analyz-
ing the failure of temporal assertions is an entirely different matter. Tools typically
show the cycle where an assertion triggers, the cycles during which the assertion
is “active”, and finally the cycle where it “fails”. Understanding why the displayed
waveform violates the assertion is often a mind-twisting problem requiring a lot of
expertise. After all, when writing temporal assertions, it is quite common that the first
attempt of encoding the desired behavior was slightly incorrect. Hence, the engineer
is presented with a counterexample that shows perfectly legal design behavior, but
for some reason violates the assertion—maybe because the operator precedence does
not correspond to the engineer’s expectations, changing the meaning of the assertion
in an unintended, subtle way.

So in summary, while SVA and PSL were designed to express complex temporal
behavior, significant training and hands-on experience is required to verify and de-
bug temporal design aspects by assertions with cryptic regular expressions. In other
words, using full-fledged PSL and SVA is not the best way to use assertions—it is
simply too error prone and tedious.

5 Formal Verification—The Industrial Perspective 173
5.3.1.2 RTL Style Assertions

In order to put assertions to better use, many engineering teams have combined
the ease of use of simple combinational assertions with the familiar coding and
debugging of RTL. Instead of using regular expressions to express temporal aspects,
counters and FSMs are added to the verification code in plain RTL. For example,
in order to distinguish legal input sequences from illegal ones, an FSM is encoded
that “accepts” the legal input sequences and flags illegal sequences by entering an
“error” state. After coding this in RTL, the corresponding assertion is once again
a simple combinational one: just make sure that this FSM never enters the error
state. So the combination of a simple assertion with some RTL in the verification
code allows temporal behavior to be intuitively expressed. This really looks like the
perfect solution as in addition to RTL coding knowledge, only minor SVA knowledge
is required. Simulating such a temporal assertion has only a marginal performance
overhead for the small piece of RTL code added to the simulation and debugging is
similar to regular RTL code debug. Therefore, SVA with RTL for temporal aspects
is much easier to adopt than full-fledged SVA/PSL.

There is one major drawback of the RTL-based solution, namely that the temporal
behavior is really captured on a low, cycle-by-cycle execution level. In other words,
while you may be able to “see” from full-fledged SVA that the sequence of events it
covers is a “request”, followed by 4 beats “valid”, and finally an “acknowledge”, the
corresponding RTL version is much longer and features an FSM and some counters.
It is easy to make mistakes using this RTL style, such as incorrectly encoding an
FSM transition or forgetting to reset a counter.

So the use of RTL code within an assertion can make the assertion easier to
understand and write, but is often inefficient and can lead to more mistakes, which
are harder to detect.

5.3.1.3 Bug Hunting in Corner-Case Scenarios

A common use of formal techniques in today’s designs is to test for a complex
scenario and/or a corner-case operation that is hard to set up in simulation. As the
design becomes large, attempting to drive the design state to a certain scenario using
simulation stimulus can be a very long and laborious process. Essentially, the design
must be reset and then executed, potentially over many cycles, to allow multiple
sections of the design to get to a common point where some system-wide corner-
case behavior is exhibited.

As previously noted, with formal an assertion maybe written that describes this
corner-case directly, and asks the question “will the design fail in this situation?” As
the formal tool has a representation of every possible state the design might transition
through, the assertion will have the effect of testing exactly the right corner-case state,
and exhaustively checking to ensure that the operation described will occur.

174 R. Brinkmann and D. Kelf

This use mode has been traditionally been described as “bug-hunting,” where
the engineer is looking for specific bugs around these corner-case states. However,
this use model goes well beyond this description, ensuring that a broad range of
operational scenarios occur correctly and verifying a very common source of bugs.

5.3.2 Verification Planning

For systematic assertion application, it is natural to encode functional requirements
from the specification as assertions. For example, a protocol specification often lists
anumber of rules about the protocol inputs and outputs that are canonical candidates
for temporal assertions. In addition, it is common to use assertions in a similar fashion
to directed tests by anticipating operational corner cases and writing assertions that
describe certain events that should never happen in these corner cases. A typical
example is a counter that is not supposed to wrap from its maximum value back to
zero. In this case an assertion may be included that tests the case where the counter
is 0, no attempt is made to decrement it. This is similar to a directed test of the
scenario “counter is empty”, which has a fair chance of finding an issue with the
wrapping counter if such an issue exists. In contrast to the functional requirements,
these white-box assertions are not derived from the spec, but from knowledge of the
RTL implementation and its corner cases. It is common that a large number of such
assertions are developed, and it is also clear that some corner cases will not been
covered by these assertions.

Beyond these typical assertions, methodologies widely vary in practice. Somehow,
the general recipe is “the more assertions, the better”. However, there is typically no
way to assess what a newly added assertion contributes to the verification process,
or if any additional scenarios are verified at all. Ideally, an engineer would like to
systematically increase coverage by adding new assertions, and ideally know upfront
how many assertions are needed in order to verify a certain block.

To sum up, it is quite common to develop a relatively large number of assertions
for a block. These assertions do not systematically increase coverage, and it requires
considerable expertise and insight into the RTL implementation in order to decide
which assertions to develop.

In recent years, capacity and usability of formal tools has increased to such an
extent that most hurdles for a wider adoption have been removed. However, the
question still remains exactly how the results from a formal tool contribute to overall
verification coverage. With simulation-based verification as the driving engine, it
is hard to assess the impact of the exhaustive verification of some assertions to the
overall verification status.

The EDA industry has spent significant effort in bridging the gap between formal
tools and simulation coverage, for example by standardizing a universal coverage
database API (Accellera’s Unified Coverage Interoperability Standard or UCIS) de-
signed to collect and collate results from dynamic and static tools. Even with this
standard the actual impact of an exhaustively verified assertion on simulation cov-

5 Formal Verification—The Industrial Perspective 175

erage still cannot be quantified in meaningful and intuitive terms. This leads to a
perception that adding formal analysis to the design and verification flow increases
quality at the cost of increasing verification effort. It would actually be more desirable
to save simulation effort by adding formal analysis, thus improving quality lever-
aging the same overall verification effort, or simply achieving the same verification
quality faster.

The state of the art in verification planning is evolving considerably, particularly
driven by the recent requirements of Safety Critical designs that must adhere to strict
regulations. Planning techniques that break up an overall set of requirements, and
then ensure that these requirements are individually tested by the most appropriate
verification platform (simulation, formal, emulation, etc.) are commonplace. The
back annotation of functional coverage information on to these individual tests is a
key component of this process. The use of assertions often makes this process easier,
and the coverage of these assertions is discussed in the next section.

5.3.3 Quantitative Analysis and Coverage

Verification Coverage has become a necessity, and is required to measure verification
progress, and to what level the design has been covered. It is an increasingly critical
component of modern verification environments. Unfortunately, the topic of effective
models to measure accurate coverage remains hotly debated across the industry.
Current coverage techniques providing approximations and insight as to verification
progress and quality, but not an exact measure of “completeness.” Most companies
have settled on these metrics to monitor progress.

An ideal coverage measure would relate to functional coverage, or the level of
which the design functionality has been covered. Testing the design verification
against the specification would appear to provide such a metric, but who is to say the
specification is complete? Nevertheless, functional coverage techniques are com-
monly used and these fit well with formal as assertions may be written to mimic
specification detail.

Code coverage, that is the measurement of the verification of code elements, is in
general a much easier metric to calculate, especially for simulation. While it is not
a clear match to design functionality, it is generally accepted that if a high number
of code elements have been tested, the verification process is of a high quality.
Although code coverage is a common coverage mechanism used with simulation, it
can be inherently harder to measure during formal verification than simulation, as
the formal algorithm, in general, does not directly track code execution.

When considering formal coverage, it is important to differentiate between “con-
trollability” and “observability”. Controllability measures the effectiveness of the
stimulus in activating aspects of the design functionality. Controllability is impor-
tant in simulation, but is less of an issue in formal as the entire state space of the
design is already essentially activated. However, it is possible to “over-constrain” the

176 R. Brinkmann and D. Kelf

Fig. 5.10 Coverage se (f jte
classificarions Cawe

verification
hOIe fsm_state next <= idle;

constrained
code

dead
code

verification run, which may mean that important design functionality does not get
considered In the formal process, so this is still a factor for controllability coverage.
Observability is important for both simulation and formal, and measures how well
possible issues are detected by the testbench checks, or assertions. Effective formal
coverage is focused around observability metrics, ensuring that all functionality is
covered by appropriate assertions.
Figure 5.10 shows different coverage classifications, including:

e Verified code: code that has been verified using at least one assertion

e Verification hole: code that is controllable and should be verified, but has not been
covered by any assertions.

e Constrained code: code that is not controllable, i.e., a constraint has been provided
that stops these lines from being considered as part of the verification process.

e Dead code: Code that can never be activated from an input. This is often caused
by a design error, or in some cases is intentional

The primary formal coverage mechanisms in use today are as follows:

“Assertion Coverage” is a simple indication of assertion pass/failure, bounded
proofs, and other quality metrics that may be passed back to a verification planning
tool. Its limitation is that it only provides information on the status of the assertions,
and not the coverage of the design code.

5 Formal Verification—The Industrial Perspective 177

“Cone of Influence (COI) Coverage” is based on the activation of design logic
that drives a particular signal. This is a somewhat conservative metric, which is
reasonably easy to compute. However, it suffers from the accuracy issue that some
of the design logic may be optimized differently in various formal engines, or may
not be related to the design functionality of the covered design section.

“Proof Core” coverage is a variant on COI where the cone of influence is pruned
down to focus the coverage effort on a specific section that actually drives the line
of interest. This increases accuracy, but still suffers from some of the original COI
issues, and is harder to calculate.

“Mutation Analysis” coverage is based on the concept is that if a testbench covers a
specific code item, then a change in the code item should be detected by the testbench
checks. As such, if each line of code in the design is slightly changed (or mutated)
and the verification rerun, the difference in testbench behavior accurately indicates
line coverage. It can be applied equally well to simulation and formal, producing a
consistent coverage model between the two. It is very accurate but requires a lot of
computation. Mutation analysis is used extensively in the software test space, and
has become popular in hardware as well.

“Fault Observation Coverage” is a variant on Mutation Analysis. It uses the same
principle and also provides a similar code coverage metric, which may be collated
with simulation models. Instead of mutating the design itself, the design is unchanged,
but a stuck at 1 or O fault is overlaid to hold signals to specific values, thereby
modifying their behavior. If an assertion picks up this modified behavior, the signal
or line is considered covered. Fault observation coverage is a model-based approach
that directly works on the formal model rather than the original source code. This
reduces the computation overhead of the algorithm by restricting its application to
formal only.

5.4 Challenges Ahead

Semiconductor design is constantly changing, driven both by the continuous re-
duction in silicon geometries, as depicted by the famous Moore’s Law, as well as
new design requirements for applications made possible by the increase in comput-
ing power of these devices. Current applications for which new requirements are
emerging including automotive electronics, Internet-of-things (IoT) technologies,
advanced data processing compute farms, mobile applications, and others.

The use of Formal Verification has an impact on a number of the necessary re-
quirements for these market segments, and in some cases is seen as a necessity. Key
design flow trends for which formal technology is ideal includes:

(a) High-Level Design

(b) High Reliability & Safety
(c) HW Security

(d) Low Power Devices

178 R. Brinkmann and D. Kelf

5.4.1 High-Level Design

High-Level Synthesis (HLS) (aka behavioral synthesis) transforms algorithmic and
potentially untimed design models often written in SystemC and C++ to fully timed
Register Transfer Level (RTL) design blocks. HLS tools are particularly popular as
a method to rapidly generate design components with varying microarchitectures,
while optimizing algorithm-processing datapaths rapidly and effectively. This pro-
vides substantial benefits in terms of flexibility and time-to-market. Consequently,
HLS is now in use at many large semiconductor and electronic systems companies,
particularly those involved with applications that are heavily Digital Signal Process-
ing (DSP), Image Processing, or Communications Processing oriented.

However, the verification options for SystemC and C++ designs have not kept pace
with the synthesis technology. Simulation-style verification of HLS code is largely
performed by compiling and debugging the design representation, linked with the
Accellera OSCI SystemC Class Library, in a similar fashion to software test. Due to
the limited availability of SystemC tools, much of the verification task is performed
on the resulting synthesized RTL code, introducing a level of indirection that makes
correcting issues at the SystemC/C++ level complex and time consuming.

The primary verification requirement is to allow thorough verification of algorith-
mic code prior to synthesis, in order to ensure that the abstract algorithm implementa-
tion is tested and fully optimized against the original specification, as well as avoiding
long debug cycles. In addition, artifacts of the SystemC standard, for example the
lack of an unknown, or X, state, potential race conditions between threads, etc., result
in further ambiguity that must be eliminated before synthesis. Specific issues related
to this abstract design level may be easily tackled with the right verification methods,
improving final design quality.

While formal verification is not an ideal approach for design blocks that are
performing heavy arithmetic computation, it is extremely useful in solving the above
issues. Hardware issues, such as the detection of uninitialized value propagation,
or the effects of undefined operations (e.g., array out-of-bounds) may be effectively
detected using formal automated apps at the SystemC level. In addition, algorithmic-
specific verification tasks can also be addressed using formal. A good example is the
automated arithmetic overflow check, which allows for the inspection of number
precision across algorithmic datapaths.

5.4.2 High Reliability and Safety Critical Systems

The use of “fail-safe” electronic components in safety critical systems is now
commonplace through many electronics industry sectors, including Automotive,
Aerospace, Power Generation, Defense, and Medical devices. Governed by a range
of regulatory standards, the verification of these systems, in general, must be proven
to be as rigorous as possible. In addition, to guarantee the safe operation of these

5 Formal Verification—The Industrial Perspective 179

Some Module

Normal Design Function

Event propagate

Stimulus

activate Strobe
Fault

Result Checker

observe

Fault Handling /
Redundancy

Alarm Output

Fault Detection / Checkers

Safety Function

Fig. 5.11 Fault propagation in a safety critical design

systems, safety mechanisms are integrated that ensure a reliable, deterministic reac-
tion to random hardware failures when the device is operating in the field. These too
must be verified to operate correctly and trap operational hardware faults.

It is hard to demonstrate that simulation-only verification solutions can provide
the required degree of coverage necessary to guarantee safety. The exhaustive nature
of formal verification solutions makes it a natural fit for these designs. However,
additional capability must be included to prove design reliability and failsafe oper-
ation. Design reliability can be shown by utilizing advanced coverage techniques to
demonstrate that any “systematic” bug (a bug introduced during the development
process) in the design would indeed be detected by a series of assertions, executed
on a formal platform.

To validate safety mechanisms that trap and resolve “random” field problems, the
ISO 26262 and other standards demand a quantitative analysis of random hardware
failures and their outcomes. Part of this analysis comprises the injection of faults into
the gate level models of integrated circuits during verification to prove that faults will
be detected by a safety function (Fig.5.11). These gate-level models can be complex
and contain numerous possible fault scenarios.

Formal Verification clearly has application in this area. The discovery of System-
atic issues essentially requires the use of effective verification practices described
throughout this chapter, together with a high degree of coverage measurement to
ensure quality.

Random errors, that is those that occur during the operation of the device due
usually to external affects, require the implementation of special capability on the
design itself to trap and eliminate the effect of these errors. It is important that the
operation of these circuit elements is also verified, and this requires the injection of
faults around the design, and observing that the faults cannot propagate beyond the
safety mechanisms. In addition to this verification process, diagnostic coverage must
also be performed to record the proportion of design structures that have been tested

180 R. Brinkmann and D. Kelf

to be fault tolerant. Formal techniques may be employed to provide both functions,
and the exhaustive nature of the technology lends itself to this application.

5.4.3 Hardware Security

The issue of hardware security is becoming a major concern for many IC development
projects. For a large number of applications, an attack on the operation of a device
by a malicious party is both easier to accomplish than may be thought, and can result
in catastrophic business implications.

Formal Verification has been used as the basis for various hardware security
testing tools that can test for several different security properties, such as isolation,
noninterference, and the presence of timing/digital side channels. These tools can
ensure that both security confidentiality and integrity are being enforced on any given
part of your hardware design, as follows:

Confidentiality—The secrecy of a cryptographic key is often the crux of the se-
curity scheme. Ensuring that this key is kept confidential from less trusted parts of
the chip is an important area of concern. Formal security tools can prove it can never
flow to any part of a system that is designated as “untrusted” (Fig.5.12). This means
that, regardless of what software is running on the system, the key is provably safe
from being leaked.

Integrity—For many applications, a common device may be responsible for the
operation of both critical and noncritical components. For instance, in new automotive
vehicles, the same system may be responsible for the operation of the brake system as
well as the satellite radio. Formal security tools can test for different noninterference

L2 Cach

HP Core WP Core
Algorithm
Accelerator
WP Core WP Core

Network on Chip_ e
WP Support HW Custom
& RAM / ROM Device

Security Sub-system

Can this key make it to the output

Fig. 5.12 Checking for protected key vulnerabilities

5 Formal Verification—The Industrial Perspective 181

properties to prove that one part of the system will never have an effect on another
part, whether it is through explicit changes in values or differences in response time.

5.4.4 Low-Power Devices

The subject of low-power has become ubiquitous in electronics, with all applications
requiring some level of power control. The obvious and most critical applications are
mobile and other battery operated devices, or systems that are powered from sources
of reduced energy such as solar power. However, all electronic devices can benefit
from sensible power control as it can only improve the overall final product. One
particular electronic sector where low powered devices are sure to be important is
that of the “Internet of Things” or IoT. It has been assumed that many IoT systems
will require remote sensors that are able to record some information and transmit it
wirelessly to a central station, all on the power of a solar cell or one charge, multi-
year battery. These applications may well drive a new level of power optimization in
electronic systems.

There are many strategies for reducing the power consumption of devices, and
these can be controlled both from the system software or the hardware itself. One
of the most common is the powering down of sections of an IC that are not in use,
for example ARM’s “Big Little” processor configuration, which employs a small
processor for general device operation, but can switch on a large processor for bursts
of heavy data processing.

The switching in and out of sections, or “power domains”, of a device can be a
complex business. The power domain must be activated and brought up to operational
levels, reset, and then connected into the system while the rest of the device continues
to function without missing a step. This process may vary considerably depending on
the status of other parts of the system and the operation to which the activated power
domain will be deployed, and this in turn leads to a lot of operational permutations
to be verified.

Formal techniques are being used to test the power up and correct reset sequences
of power domains. Apps previously described such as X propagation are very useful
in this regard, to ensure that unwanted artifacts of a power domain reset sequence
do not corrupt the smooth operation of the rest of the device. Checks may also
be performed on control communication sequences and register operation once the
power domain is running, to ensure that the right information is provided and the
domain status is correct in any circumstances.

It is unclear if IoT will bring new requirements to this field. Certainly, the power
problem is getting worse and more sophisticated control mechanisms mean greater
degrees of verification. One change that has occurred is more control from the higher
layers of the software protocol stack through a control processor, which has reduced
previous hardware control, and somewhat reduced the effectiveness of early power
standards such as the Unified Power Format (UPF).

182 R. Brinkmann and D. Kelf

References

1. Formal verification tool and service vendor websites. OneSpin Solutions: www.onespin.com Ca-
dence Design Systems: https://www.cadence.com/content/cadence-www/global/en_US/home/
tools/system-design-and-verification/formal-and-static-verification.html Synopsys: https://
www.synopsys.com/verification/static-and-formal- verification.html Mentor Graphics: https://
www.mentor.com/products/fv/questa-formal/ IBM: https://www.research.ibm.com/haifa/
projects/verification/Formal_Methods-Home/ Oski Technology: http://www.oskitechnology.
com

2. FormalWorld.org: A website dedicated to formal verification, http://www.formalworld.org

3. M. Bartley, Test and verification formal day conference, http://www.testandverification.com/
conferences/formal-verification-conference/, 2013-’16

4. Center for Electronic Systems Design, University of Berkley. Introduction to formal verification,
https://embedded.eecs.berkeley.edu/research/vis/doc/VisUser/vis_user/node4.html

5. J. Cooley, How engineers feel about formal verification: Dac report #1, http://www.deepchip.
com/items/dac16-01a.html, 2016

6. J. Hogan, Formal verification primer, http://www.deepchip.com/items/0558-01.html, 2016

7. V. Singhal, These five principles define formal verification, http://electronicdesign.com/eda/
these-five-principles-define-formal-verification, 2015

Author Biographies

Raik Brinkmann co-founder of OneSpin Solutions, was named president and CEO in May 2012.
He brings to this role more than 15 years of broad expertise in management, verification and
industrial R&D, having served at companies in both Europe and the U.S. Previously, as vice
president of OneSpin’s software development, he successfully turned the company’s fundamen-
tal scientific and engineering innovations into state-of-the-art, award-winning EDA tools. Prior to
OneSpin, Brinkmann worked in the formal verification group at Infineon Technologies in Mu-
nich. Previously, at Siemens, he conducted industrial research projects on formal verification at the
company’s Corporate Research Labs in the U.S. and Germany. He began his career in the systems
verification group at Siemens Public Communication Networks, and later focused on hardware
emulation, formal verification and systems-on-a-chip design. Dr. Raik Brinkmann holds a Diplom
Informatiker from the Clausthal Technical University, Germany and a Dr.-Ing. (equivalent to a
Ph.D. degree) from the Department of Electrical Engineering at the University of Kaiserslautern,
Germany.

Dave Kelf is the Vice President of Marketing at OneSpin. Previously to OneSpin he was pres-
ident and CEO of Sigmatix, Inc. He worked in various roles in sales and marketing at Cadence
Design Systems, and was responsible for the Verilog and VHDL verification product line. As vice
president of marketing at Co-Design Automation and then Synopsys, Kelf oversaw the success-
ful introduction, standardization and growth of the SystemVerilog language, before running mar-
keting for Novas Software, the hardware debug solution leaders, which became Springsoft (now
Synopsys). With his strong engineering background, he has also held positions in various industry
bodies, including the Treasurer of Accellera. Kelf holds a Master of Science degree in Microelec-
tronics from Brunel University of West London and an MBA from Boston University.

www.onespin.com
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.synopsys.com/verification/static-and-formal-verification.html
https://www.synopsys.com/verification/static-and-formal-verification.html
https://www.mentor.com/products/fv/questa-formal/
https://www.mentor.com/products/fv/questa-formal/
https://www.research.ibm.com/haifa/projects/verification/Formal_Methods-Home/
https://www.research.ibm.com/haifa/projects/verification/Formal_Methods-Home/
http://www.oskitechnology.com
http://www.oskitechnology.com
http://www.formalworld.org
http://www.testandverification.com/conferences/formal-verification-conference/
http://www.testandverification.com/conferences/formal-verification-conference/
https://embedded.eecs.berkeley.edu/research/vis/doc/VisUser/vis_user/node4.html
http://www.deepchip.com/items/dac16-01a.html
http://www.deepchip.com/items/dac16-01a.html
http://www.deepchip.com/items/0558-01.html
http://electronicdesign.com/eda/these-five-principles-define-formal-verification
http://electronicdesign.com/eda/these-five-principles-define-formal-verification

	Preface
	Acknowledgements
	Contents
	Editors and Contributors
	1 Formal Techniques for Verification and Coverage Analysis of Analog Systems
	1.1 Introduction
	1.2 State of the Art
	1.3 State-Space Description
	1.3.1 Solving a DAE System
	1.3.2 Analog Transition System

	1.4 Verification Methodology
	1.4.1 Model Checking
	1.4.2 Analog Specification Language (ASL)
	1.4.3 ASL-Example: Verification of Oscillation and Oscillator Voltage Sensitivity
	1.4.4 Model Checking of an SRAM Cell

	1.5 State Space Coverage
	1.5.1 State-Space Coverage Calculation
	1.5.2 Coverage Maximization Algorithm
	1.5.3 Path Planning

	1.6 λ State-Space Coverage
	1.7 Coverage Analysis and Optimization Results
	1.7.1 Detailed Case Study of a Level-Shifter Circuit

	1.8 System-Level Verification
	1.8.1 System Refinement and Verification

	1.9 Conclusion
	References

	2 Verification of Incomplete Designs
	2.1 Introduction
	2.2 Preliminaries
	2.3 Incomplete Combinational Circuits
	2.3.1 The Partial Equivalence Checking Problem (PEC)
	2.3.2 SAT-based Approximations
	2.3.3 QBF-based Methods
	2.3.4 DQBF-based Methods

	2.4 Incomplete Sequential Circuits
	2.4.1 BMC for Incomplete Designs
	2.4.2 Model Checking for Incomplete Designs

	2.5 Conclusion
	References

	3 Probabilistic Model Checking: Advances and Applications
	3.1 Introduction
	3.2 Probabilistic Model Checking
	3.2.1 Discrete-Time Markov Chains
	3.2.2 Markov Decision Processes
	3.2.3 Stochastic Multi-player Games
	3.2.4 Tool Support

	3.3 Controller Synthesis
	3.3.1 Controller Synthesis for MDPs
	3.3.2 Multi-objective Controller Synthesis

	3.4 Modelling and Verification of Large Probabilistic Systems
	3.4.1 Compositional Modelling of Probabilistic Systems
	3.4.2 Compositional Probabilistic Model Checking
	3.4.3 Quantitative Abstraction Refinement
	3.4.4 Case Study: The Zeroconf Protocol

	3.5 Real-Time Probabilistic Model Checking
	3.5.1 Probabilistic Timed Automata
	3.5.2 Continuous-Time Markov Chains

	3.6 Parametric Probabilistic Model Checking
	3.6.1 Parametric Model Checking for DTMCs
	3.6.2 Parametric Model Checking for Other Probabilistic Models

	3.7 Future Challenges and Directions
	References

	4 Software in a Hardware View
	4.1 Introduction
	4.2 Program Netlists
	4.2.1 Basic Idea
	4.2.2 Model Generation
	4.2.3 Modeling Memory and I/O

	4.3 Verification Scenarios for HW-dependent Software
	4.4 Equivalence Checking of HW-dependent Software
	4.4.1 Sequence-Based Model of the HW/SW Interface
	4.4.2 Software Miter
	4.4.3 Equivalence Checking Using SAT
	4.4.4 Experimental Results

	4.5 Cycle-Accurate HW/SW Co-verification of Firmware-Based Designs
	4.5.1 Joint Hardware/Firmware Model
	4.5.2 Timed Interface Model
	4.5.3 Experimental Results

	4.6 Conclusion
	References

	5 Formal Verification---The Industrial Perspective
	5.1 Introduction
	5.2 Automating Design Verification with Formal
	5.2.1 Design Inspection
	5.2.2 IP Integration Verification
	5.2.3 Verification of Design Transformations

	5.3 Assertion-Based Verification of IP Blocks
	5.3.1 Assertions in the Verification Flow
	5.3.2 Verification Planning
	5.3.3 Quantitative Analysis and Coverage

	5.4 Challenges Ahead
	5.4.1 High-Level Design
	5.4.2 High Reliability and Safety Critical Systems
	5.4.3 Hardware Security
	5.4.4 Low-Power Devices

	References

