
Chapter 2
Hierarchical Decomposition of Extended
Triangulation for Fingerprint Indexing

Abstract In biometric identification systems, the identity corresponding to the query
image is determined by comparing it against all images in the database. This exhaus-
tive matching process increases the response time and the number of false positives
of the system. This chapter presents an efficient indexing algorithm for fingerprint
databases to improve the search speed and accuracy of identification. A variant of
Delaunay triangulation called extended triangulation is used to make the system ro-
bust against distortions. Then the triangles are partitioned into groups such that the
retrieval algorithm searches in reduced space of the database. Experiments are con-
ducted on different fingerprint databases, and the results show that while maintaining
high hit rate the proposed method achieves lower penetration rate than what existing
methods achieve.

Keywords Fingerprint · Delaunay triangulation · Extended triangulation · Hierar-
chical decomposition

2.1 Introduction

Nowadays, the increasing use of biometrics for personal identification in various
applications has lead to increase of some large-scale biometric databases in real time
[1–9]. However, identifying a user on such huge databases using a linear matching
process makes the system extremely slow. Boro et al. [10] extracted the minutiae
points of the fingerprints and mapped them into a hash table using geometric hashing
[11]. Similarly, Hunny et al. [12] extracted the key features of iris using scale invariant
feature transform [13, 14] and mapped them with the help of geometric hashing.
However, the above methods require high computational and memory costs as each
feature is inserted multiple times into the hash table to handle the intra-class natural
variations. The triplets have been successfully used to index biometric databases
[15, 16]. The triplet-based techniques have proven more powerful than point-based
techniques, as the uncertainty of feature points and intra-class natural variations do
not affect the angles of a triangle. In this chapter, we propose an efficient triangulation-
based approach for indexing fingerprint databases. This work enhances the Delaunay
triangulation to make the system robust against biometric distortions.
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2.2 Indexing Framework

The proposed indexing approach follows these steps: extraction of minutiae features
from fingerprint images. Then, for each fingerprint, its Delaunay triangulation is
computed using the extracted minutiae features. Next, a robust representation is
defined for the fingerprints known as extended triangulation which is a enhanced
model of Delaunay triangulation [17]. Finally, the computed extended triangulation
is classified such that the retrieval algorithm searches in reduced space of the database.
The overview of the indexing framework is shown in Fig. 2.1. Various steps involved
in the indexing process are discussed in the following:

2.2.1 Minutiae Extraction

In this work, the minutiae are considered as the key features for the fingerprints. The
minutiae points considered are (i) bifurcation points and (ii) end points. A bifurcation
point is a point where the ridge forks or diverges into branch ridges. An end point
is a point where a ridge ends abruptly. To extract the minutiae features from the
fingerprint images, we used the Nuerotechnology VeriFinger SDK [18]. A sample
fingerprint and its extracted minutiae are shown in Fig. 2.2 (bifurcation points are
represented with circle symbol and end points are represented with square symbol).

Let p = (x, y, t, θ) be a minutiae feature point of a fingerprint, where (x, y) is its
position in the fingerprint, t is its type (fork or end), and θ is its orientation or angle
with respect to x-axis. The process of computing the minutiae orientation is shown
in Fig. 2.3. The orientation of a minutiae point (either bifurcation or end) is measured
by calculating the angle between the tangent to the ridge line at the minutiae position
and the x-axis.

Fig. 2.1 Overview of the proposed approach
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(a) (b)

Fig. 2.2 aA sample fingerprint bRetrieved minutiae (circle- bifurcation points; square- end points)

(a) (b)

Fig. 2.3 Minutiae position and its orientation extraction process

2.2.2 Computation of Delaunay Triangulation

Once the minutiae features have been extracted, their Delaunay triangulation is com-
puted. Let P = {p1, p2, ..., pn} be the set of extracted minutiae points from a fin-
gerprint. Then the Delaunay triangulation T of minutiae set P is a maximal planar
subdivision in which no edge connecting two vertices can be included to it without
destroying its planarity. Delaunay triangle contains no other point of P in its circum-
circle. Figure 2.4 shows the Delaunay triangulation of the minutiae for one of the
fingerprints. The motivation of using Delaunay triangulation in this work is that the
Delaunay triplets possess certain unique properties compared to other topological
structures [19–21], including the following:
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Fig. 2.4 Triangulation for a sample fingerprint [22]: a Delaunay triangulation; b Structure of the
Delaunay triangulation after missing a minutiae point (missing minutiae is shown with star); c
Extended triangulation

1. Delaunay triangulation partitions a whole region into many smaller pieces and
exactly describes the closest neighbor structures of minutiae.

2. Insertion of a new point in a Delaunay triangulation affects only the triangles
whose circum circles contain that point. As a result, noise affects the Delaunay
triangulation only locally [20];

3. The Delaunay triplets are not skinny which is desirable as the skinny triangles
lead to instabilities and errors.

4. The Delaunay triangulation creates only O(n) triangles when compared to the
approaches in Germain et al. [15] and Bhanu et al. [16] which uses all possible
triangles of minutiae set in the fingerprint, and therefore O(n3) triangles have
to be compared during indexing. Hence, computing cost greatly decreases using
Delaunay triangulation.

5. Compared to other topological structures, the Delaunay triangulation is less sen-
sitive to distortion.

However, the noise seriously affects the Delaunay triangulation structure which
is a common problem in image processing. Figure 2.4a, b shows one such example
with spurious minutiae for two fingerprints of the same user. So, to minimize this,
the Delaunay triangulation is enhanced to form a new structure called extended
triangulation [17].

2.2.3 Retrieval of Extended Triplet Set

Let T be the Delaunay triangulation of a fingerprint with minutiae set P =
{p1, p2, ..., pn}, and G = {P, E} is its Delaunay graph; where E is its edge set.
Before defining the extended triangulation of P , let we first explore the triangular
hull of a point pi ∈ P . Let Ni = {p j |(pi , p j ) ∈ E} be the set of neighborhood
minutiae of pi in the Delaunay graph G. Then the triangular hull of pi denoted by
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Hi is the Delaunay triangulation of Ni . Now, the extended Delaunay triangulation
S = {T∪H1∪H2∪..∪Hn} [17]. The extended triangulation for a fingerprint is shown
in Fig. 2.4c. It can be seen that the extended triangulation is more robust against dis-
tortions. For example, Fig. 2.4a shows the Delaunay triangulation of a fingerprint.
Figure 2.4b shows the changes in structure of the triangulation due to missing of a
minutiae point. This results in false rejection. However, the extended triangulation
(Fig. 2.4c) contains the triangles of both Fig. 2.4a, b. In other words Fig. 2.4c shows
T and the triangular hull Hx that is formed when feature x is missed, i.e., T ∪ Hx .
From this example, we can say that, even when the system fails to extract feature x
(i.e., missing minutiae) at the time of identification, the corresponding triangles can
be found in the extended set and increases the accuracy. Note that this is not possible
with Delaunay triangulation. Further, this is also true for fake minutiae [22].

The extended triangulation contains more triangles than Delaunay triangulation,
i.e., |S| ≥ |T | (Fig. 2.4). But |S| ∈ O(n) like Delaunay triangulation [17]. The
following theorem proves this.

Theorem 1 The number of triangles in S is O(n) [17].

Proof The number of triangles in S can be given as follows:

|S| ≤ |T | +
n∑

i=1

|Hi |. (2.1)

The number of triangles in a Delaunay triangulation T of n points can be bounded
by 2n−1, i.e., |T | = 2n−1 [17, 19]. This is also true with the case of each triangular
hull Hi . So, |Hi | = 2di − 1, where di is degree of the pi . Hence, Eq. 2.1 can be
transformed as follows:

|S| ≤ (2n − 1) +
n∑

i=1

(2di − 1),

≤ 2n − 1 + 2
n∑

i=1

di − n,

≤ n − 1 + 2
n∑

i=1

di .

(2.2)

According to handshaking lemma of graph theory, the sum of the degrees of all

the vertices of a graph is equal to twice the number of edges, i.e.,
n∑

i=1
di = 2|E | [23].

So, Eq. 2.2 can be transformed as follows:

|S| ≤ n − 1 + 4|E |. (2.3)
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Further, according to Euler’s formula, the number of edges (E) for a planar graph
with vertices (n) ≥ 3 is less than or equal to 3n − 6, i.e., |E | ≤ 3n − 6 [23]. Thus,
Eq. 2.3 can be transformed to Eq. 2.4:

|S| ≤ n − 1 + 4(3n − 6)

≤ 13n − 25.
(2.4)

From Eq. 2.4, we have |S| ≤ 13n − 25, proving that |S| ∈ O(n). ��

2.2.4 Hierarchical Decomposition of Extended Set

In the next step, the extended triangles of the fingerprint are classified based on the
combination of type of minutiae at the vertices of each triangle. Figure 2.5 shows an
example of an extended triangle. Let α1, α2, and α3 are the minimal, medial, and
maximal angles in the triangle, respectively. The vertices of the triangle are labeled
as V1, V2, and V3 corresponding to the angles α1, α2, and α3. For example, the vertex
with α1 is labeled as V1. The remaining vertices are labeled accordingly. Then, based
on the combination of types of minutiae at the vertices V1, V2, and V3 of the triangle,
it is classified into one of eight types as depicted in Table 2.1.

2.2.5 Enrollment

This section explains the process of enrolling (or storing) a fingerprint into an index
table. Note that the fingerprint is represented with an extended triangle set S. For each
triangle in S, an index X and a feature vector f are computed as shown in Eq. 2.5,

Table 2.1 Hierarchical decomposition of extended triangles

Triangle class Minutiae typea

tc V1 V2 V3

1 b b b

2 b b e

3 b e b

4 b e e

5 e b b

6 e b e

7 e e b

8 e e e
ab-bifurcation point, e-endpoint
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Fig. 2.5 Minutiae triangle

Fig. 2.6 Relative orientation of a minutiae [22]

where tc is the triangle class, l1, l2, l3 are the lengths of each side of the triangle such
that l1 ≥ l2 ≥ l3 and φ1,φ2,φ3 are the relative orientations of minutiae points at
vertices V1, V2, and V3, respectively:

X = (tc,α1,α2)

f = (l1, l2, l3,φ1,φ2,φ3).
(2.5)

The process of computing the relative orientation of a triplet minutiae at vertices
(Vi , Vj , Vk) is shown in Fig. 2.6. The relative orientation φi of minutiae at vertex Vi

is defined in Eq. 2.6, where β1
i and β2

i are the angles that the orientation vector (θi )
of minutiae at vertex Vi makes with its incident edges, i.e., ViVj and ViVk :

φi = β1
i − β2

i . (2.6)
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In the next step, the triplet is enrolled into a 3D index table (I SP ACE) using its
index X . The 3D index table is shown in Fig. 2.7a. The index table size is chosen as
max(tc)×max(α1)×max(α2) bins, where 1 ≤ tc ≤ 8, 0 ≤ α1 ≤ 180, 0 ≤ α2 ≤
180. Further, it can be seen that each bin has two lists:

• Iid List—This list stores the fingerprint ids of the triplets which are mapped (i.e.,
indexed) to this particular bin;

• FV List—This list stores the feature vectors of the mapped triplets.

Enrolling of a triangle into the I SP ACE is shown in Eq. 2.7, where X is the index
space location (i.e., bin) where the triplet to enroll; Iid represents the image identity
to which the triplet belongs; and f is the feature vector of the triplet [22]. Note that
the first dimension (say triplet class) partitions the 3D index space into eight classes
(2D tables). This is shown in Fig. 2.7a:

I SP ACE[X ].Iid List ← Iid
I SP ACE[X ].FV List ← f.

(2.7)

The process of enrolling a triplet into the I SP ACE is illustrated with an example:
Let X = (4, 50, 65) be the index of one of the triplets of an image x and f be its feature
vector. Using X , the indexing algorithm access the (4,50,65)th bin of the I SP ACE
and places x and f at the Iid List and FV List of it respectively. In other words,
the algorithm maps to the (50, 65)th location in the 4th partition of the I SP ACE
and store the triplet’s feature vector f and its image identity x in the lists provided
(Fig. 2.7b).

The remaining triangles in extended set are also enrolled into the I SP ACE
likewise. We repeat this process for other fingerprints in the database. Finally, note
that more than one triangle may map to the same bin of I SP ACE because different
triangles may have same index. In other words, some bins of the I SP ACE may
receive multiple triangles. Hence, the insertion of image identity Iid along with the
feature vector f into the I SP ACE helps to eliminate the false matches. The indexing
mechanism is given in Algorithm 2.1.

Algorithm 2.1 Indexing: Fingerprint enrollment into the index space
1: INPUT: x : Input fingerprint, S: Extended triplet set of x , and I SP ACE : Index space.
2: OUTPUT: A: Updated I SP ACE .
3: for each extended triplet of fingerprint x do
4: tc ← i , where 1 ≤ i ≤ 8. // Compute the triplet’s class tc
5: f ← (l1, l2, l3,φ1,φ2,φ3). // Compute triplet’s feature vector f
6: X ← (tc,α1,α2). //X is triplet’s index in I SP ACE
7: I SP ACE[X ].Iid List ← x .
8: I SP ACE[X ].FV List ← f
9: end for
10: RETURN Updated I SP ACE
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(a)

(b)

Fig. 2.7 a Proposed 3D Index space (I SP ACE) structure, b Process of enrolling a triplet into the
I SP ACE : A triplet with index (4, 50, 65) is stored into the (50, 65)th location (shown with color)
of the 4th partition in the I SP ACE , where f is the feature vector of the triplet and x is its image
identity
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2.3 Query Identification

Query identification is the process of retrieving a small set of candidates C from the
I SP ACE which are most similar to it. To do this, first, the extended triangle set of
the query is computed as discussed in Sect. 2.2.3. Then, the triangles in the retrieved
extended set are classified as discussed in Sect. 2.2.4. Let a query fingerprint consist
of n triplets in its extended set S. For each triplet in S, its index and feature vector
are computed.

Let X = (tc,α1,α2), f = (l1, l2, l3,φ1,φ2,φ3), and tc be the index, feature
vector, and class of a enrolled triplet, respectively. Let X ′ = (t ′c,α′

1,α
′
2), f ′ =

(l ′1, l ′2, l ′3,φ′
1,φ

′
2,φ

′
3) and t ′c be the index, feature vector, and class of a enrolled

triplet, respectively. The index X ′ of the query triplet is used to access the I SP ACE
and retrieve a set of fingerprints from the Iid List of that bin, whose triplet feature
vectors satisfy the set of conditions given in Eq. 2.8 as successful correspondences
to the query triplet, where Tl and Tφ are predefined thresholds. In other words, two
triangles are said to be matched, iff their feature vectors are similar. Let these retrieved
image identities are stored into a temporary list L:

|l1 − l ′1|, |l2 − l ′2|, |l3 − l ′3| < Tl,

and |φ1 − φ1
1|, |φ2 − φ1

2|, |φ3 − φ1
3| < Tφ.

(2.8)

Note that the image acquisition and preprocessing is sensitive to noise and dis-
tortions, and the features of the two images of same user may be shifted or missed.
Therefore, the retrieval systems need to consider the triplets not only from the mapped
bin but also from its nearest bins. The image identities in the nearest bins (i.e., pre-
defined neighborhood λ) that satisfy the conditions given in Eq. 2.8 are retrieved and
stored into L .

Illustration: Let X ′ = (6, 65, 40) be the index of a query triplet and f ′ be its feature
vector. First, the retrieval algorithm maps to the (65,40)th location in the 6th partition
of the I SP ACE . Then, it compares the feature vector of the query triplet, i.e., f ′
with each feature vector found in the FV List of the bin, and retrieves all the Iids
from Iid List whose triplet feature vectors are similar to query triplet. The retrieval
algorithm also retrieves the Iids from predefined λ which satisfy the conditions in
Eq. 2.8. Let λ =1, i.e., window size is 3 × 3 (shown in Fig. 2.8). Hence, the range of
locations is from (64, 39) to (66, 41) (shown in Fig. 2.8). All these retrieved image
identities (Iids) are stored into temporary list L .

Similarly, this process is repeated for each query triplet and the selected fingerprint
ids Iids are retrieved into temporary list L . In the next step, the number of occurrences
(i.e., Votes) of each fingerprint identity, i.e., Iid in L , is counted and forms the set
as {(Iid , VotesIid )}, where Iid is the image identity and VotesIid is the number of
occurrences of Iid in L . Finally, the Iids whose Votescore greater than a threshold
(T ) are retrieved as similar fingerprints (i.e., candidate set C) to the query. The vote
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Fig. 2.8 Range of locations considered in the I SP ACE , to retrieve the similar triplets for a query
triplet

score of an image identity represented as VotescoreIid is defined in Eq. 2.9, where
VotesIid is the number of corresponding matched triangles between q and Iid , and
n is the number of query triangles. The retrieval method is given in Algorithm 2.2:

VotescoreIid =
(
VotesIid

n

)
× 100. (2.9)

2.4 Experimental Results

To study the effectiveness of the proposed indexing approach, a number of experi-
ments have been conducted on FVC fingerprint databases. This section describes the
experiments carried out and the results observed.
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Algorithm 2.2 Fingerprint identification: Retrieving similar fingerprints for a query
1: INPUT: q: Query fingerprint, S: query’s Extended triplet set, I SP ACE : Index space, λ: pre-

defined neighborhood, T : matching threshold
2: OUTPUT: C : Set of similar fingerprints.
3: for each extended triplet of q do
4: F ← { }, Im ← { }
5: tc ← i , where 1 ≤ i ≤ 8.
6: f ← (l1, l2, l3,φ1,φ2,φ3).
7: X ← (tc,α1,α2). //X is triplet’s index i.e., bin location in I SP ACE

// Retrieve the identities from the mapped bin and its neighbors
8: for j = α1 − λ to α1 + λ do
9: for k = α2 − λ to α2 + λ do
10: F ← F ∪ I SP ACE[tc, j, k].FV List
11: Im ← Im ∪ I SP ACE[tc, j, k].Iid List
12: end for
13: end for

// Select the identities whose triplets are equal to query triplet
14: for l=1 to |F | do
15: f ′ ← F.l
16: if f ′

� f then
17: L ← L ∪ Im.l.
18: end if
19: end for
20: end for
21: Select the Iid s in L whose Votescore ≥ T as similar to q and retrieve them into C .
22: RETURN C

2.4.1 Parameter Selection

Selection of appropriate values for different parameters involved in the system is
critical for achieving its best performance. One such important parameter is the se-
lection of neighborhood size (λ) (Sect. 3.3). By fixing the matching threshold T , an
experiment is conducted with various λ sizes starting from 0 to 6, and the correspond-
ing MR and PR are recorded for every λ (Table 2.2). The relationship between MR,
PR, and λ is shown in Figs. 2.9 and 2.10 for FVC 2002 and FVC 2004 fingerprint
databases, respectively. It is observed that the PR increases with the λ while MR
decreases. But for a real-time application, both MR and PR should be low. Hence, an
optimal value for the λ should be chosen such that the system achieves low MR as
well as low PR. Therefore, the optimum λ value is chosen as where the two curves
intersects, i.e., MR = PR.

In the experiment, for FVC 2002 DB1 and FVC 2004 DB4 databases, the optimum
λ size obtained is in and around 3 (i.e., window size is 7 × 7). For FVC 2002 DB2,
FVC 2002 DB3, FVC 2004 DB1, and FVC 2004 DB2, the optimum λ value is in
and around 4 (i.e., window size is 9 × 9). In case of FVC 2002 DB4, the optimum
λ value is 5 (i.e., window size is 11 × 11). Table 2.3 shows the optimum λ value
obtained for different databases.

http://dx.doi.org/10.1007/978-3-319-57660-2_3
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Table 2.2 Effect of neighborhood size on the indexing performance
λ 2002DB1 2002DB2 2002DB3 2002DB4 2004DB1 2004DB2 2004DB4

MR PR MR PR MR PR MR PR MR PR MR PR MR PR

0 28.45 10.23 32.14 14.23 45.42 15.93 45.56 9.81 42.54 12.69 32.17 8.86 26.65 9.89

1 26.12 10.54 31.05 15.23 40.52 16.26 39.42 12.65 40.15 14.32 29.47 11.26 24.42 9.51

2 20.08 12.75 28.26 17.45 37.19 17.64 34.18 15.26 35.48 16.54 24.20 12.13 17.26 10.87

3 15.11 14.42 26.11 20.92 32.15 19.05 32.45 20.32 28.65 19.09 19.87 15.04 13.42 12.86

4 11.32 16.55 24.21 23.98 24.69 23.18 28.96 24.58 23.09 21.86 16.91 18.82 10.68 15.26

5 8.26 19.36 23.65 26.09 20.54 29.04 26.35 27.28 17.08 26.40 16.08 20.15 9.86 19.04

6 5.32 20.89 23.03 27.68 18.23 35.45 25.24 28.86 12.75 30.24 15.32 21.86 9.12 21.31
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Fig. 2.9 Effect of neighborhood size on the indexing performance for FVC 2002 databases

2.4.2 Results

Once the optimum λ value is chosen, an experiment was conducted to evaluate the
performance of the proposed indexing technique for different databases. At various
threshold (T ) values, we determine the MR and PR of the system. The relationship
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Fig. 2.10 Effect of neighborhood size on the indexing performance for FVC 2004 databases

Table 2.3 Optimum neighborhood size (λ) obtained for different databases

Database Optimum λ value Window size

FVC 2002 DB1 3 7 × 7

FVC 2002 DB2 4 9 × 9

FVC 2002 DB3 4 9 × 9

FVC 2002 DB4 5 11 × 11

FVC 2004 DB1 4 9 × 9

FVC 2004 DB2 4 9 × 9

FVC 2002 DB4 3 7 × 7

between MR, PR, and T is plotted in Figs. 2.11 and 2.12 for FVC 2002 and FVC
2004 fingerprint databases, respectively. It is observed that, for small values of T,
MR is low and PR is high which is not desirable. On the other hand, increasing the T
value decreases the PR but it increases the MR, which is also not desirable. High PR
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Fig. 2.11 Performance of the proposed indexing approach on FVC 2002 databases

results in more search time, while high MR results in a less secure system. However,
as noted earlier, an effective identification system should have low MR as well as PR.
Hence, the performance of the system at MR = PR is recorded (Figs. 2.11 and 2.12).

It is observed that, for FVC 2002 DB1, at MR = PR, the system achieves a PR
and MR of 1.28%. In other words, the system searches only 1.28% of the database
and genuine image is identified (i.e., HR) with an accuracy of 98.72% (i.e., 100–
1.28%). Further, the system achieves a PR and MR of 1.68, 10.65, 4.24, 9.7, 6.55
and 9.47% for FVC 2002 DB2, FVC 2002 DB3, FVC 2002 DB4, FVC 2004 DB1,
FVC 2004 DB2, and FVC 2004 DB4 databases, respectively. The PR and HR of the
proposed system at MR = PR are shown in Table 2.4 for different databases.

2.4.3 Comparison with Other Related Approaches

In the next experiment, we compared the performance of the proposed approach with
Delaunay triplets [20] and Extended triplet approaches [17]. Figures 2.13 and 2.14
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Fig. 2.12 Performance of the proposed indexing approach on FVC 2004 databases

Table 2.4 PR and HR (i.e., HR = 100 − MR) of the proposed system at MR = PR for different
databases

Database PR(%) HR(%)

FVC 2002 DB1 1.28 98.72

FVC 2002 DB2 1.68 98.32

FVC 2002 DB3 10.65 89.35

FVC 2002 DB4 4.24 95.76

FVC 2004 DB1 9.7 90.3

FVC 2004 DB2 6.55 93.45

FVC 2002 DB4 9.47 90.53

show the results of different approaches on FVC 2002 and FVC 2004, respec-
tively. The PR of the proposed approach is less compared to Delaunay and extended
triangulation-based approaches for most of the datasets. This shows that the parti-
tioning of the index space results in reducing the search space during identification.
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Fig. 2.13 Comparison of the proposed approach with other approaches over FVC 2002 Databases

2.4.4 Retrieval Time

We analyze the retrieval time of the proposed approach with big-O notation. Let n
be the number of triplets in the extended set of query image q; and N be the number
of images in the database. Note that n 
 N , as seen from Algorithm 2.2, for a given
query triplet t :

• First, we compute its class tc, its feature vector f , and its index X . Note that each
of these takes O(1) time.

• Next, we retrieve all the Iids from Iid Lists corresponding to the bins from X − λ
to X + λ into a set named “Im”. This process takes O(1) time.

• Then, a set of Iids are retrieved from the Im into a temporary list L , whose triplet
feature vectors are similar to query triplet feature vector. Let m be the size of the
Im. This process requires O(m) time. Note that m 
 N .
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Fig. 2.14 Comparison of the proposed approach with other approaches over FVC 2004 Databases

Hence, the total time required for each query triplet to retrieve the Iids from the
index space into the temporary list L is O(m) time. Note that there are n triplets in
the extended set of the query image. So, this retrieval process takes O(nm) time.

Finally, we count the number of occurrences of each Iid in L and select top-
ranked ones into a candidate set C . Let the size of L is p, where p 
 N . This
process requires O(p) time. Hence, the total retrieval time for a query image can be
approximated as O(nm) + O(p).

2.5 Summary

In this chapter, an efficient indexing algorithm using hierarchical decomposition of
extended triplets is proposed. It has been shown that the proposed algorithm performs
better for the fingerprint databases. The decomposition of extended triplets pro-
vides better classification in the database, and further reduces search space. Without
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increasing the computing cost, the extended triangulation reduces the search space
and increases the response time as it produces only O(n) triplets. Further, this new
representation is more robust against distortions compared to all other structures.
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