
Chapter 27
High Aerosol Acidity Despite Declining
Atmospheric Sulfate Concentrations:
Lessons from Observations
and Implications for Models

A. Nenes, R.J. Weber, H. Guo, P. Vasilakos, A. Russell, A. Bougiatioti
and N. Mihalopoulos

Abstract Particle acidity affects aerosol concentrations, chemical composition,
toxicity and nutrient bioavailability. We present a summary of thermodynamic
analysis of comprehensive observations of ambient aerosol collected over the US
and E.Mediterranean to understand the levels and drivers of aerosol pH. We find
that acidic aerosol in the fine mode is ubiquitous, with levels that range between 0
and 2 throughout most of the data examined. The strong acidity is largely from the
large difference in volatility between sulfate (the main acidic compound, which
resides completely in the aerosol phase) and ammonia (the main neutralizing agent,
which partitions between aerosol and gas-phase). This counterintuitive, but ther-
modynamically consistent finding explains why aerosol acidity in the southeastern
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United States has not decreased over the last decades, despite a 70% reduction in
sulfates and a constant ammonia background. We then demonstrate that evaluation
of model-predicted pH is critical for model predictions of semi-volatile species,
e.g., nitrate.

27.1 Acidic Fine Mode Aerosol Is Ubiquitous

Particle acidity affects aerosol concentrations, chemical composition, toxicity and
nutrient bioavailability. Aerosol acidity depends on particle composition, concen-
tration, humidity levels, and temperature. Sulfate is the primary strong acid found in
the fine mode and is neutralized throughout most of the atmosphere by volatile gas
phase ammonia; regionally, non-volatile cations found in seasalt and dust (such as
K, Na, Ca and Mg) also neutralize sulfate. Understanding the levels and drivers of
acidity as a function of particle size, location and time is critical for understanding
many aerosol processes that depend on pH.

In situ particle pH measurement is not possible for complex ambient aerosol, and
so-called “pH proxies” (cation-anion molar ratios, ion balances) are largely inac-
curate for determining pH (Guo et al. 2015; Hennigan et al. 2015; Guo et al. 2016;
Weber et al. 2016). Application of thermodynamic equilibrium models, such as
ISORROPIA-II (Fountoukis and Nenes 2007) however yield plausible pH predic-
tions that can largely reproduce observed aerosol liquid water content and
semi-volatile partitioning of NH3, HNO3 and HCl (Guo et al. 2015, 2016, 2017;
Bougiatioti et al. 2016, 2017). When applied to comprehensive observations of
ambient aerosol collected over the US and E.Mediterranean, thermodynamic
analysis reveals that acidic aerosol in the fine mode is ubiquitous, with levels that
range between 0 and 2 throughout most of the data examined (Table 27.1). This
behavior arises primarily from the large difference in volatility between sulfate,
which resides exclusively in the aerosol, and ammonium which always needs to
partition with the gas phase to attain equilibrium. For this reason (and as long as
non-volatile cations are not present in large quantity), acidity tends to slightly
increase with decreasing sulfate levels—even if total ammonia remains about
constant. This highly intuitive, but thermodynamic consistent behavior, explains
why aerosol acidity has not reduced over time in regions like the southeastern
United States, where sulfate has decreased by 70%, but ammonia concentrations
have not changed (Weber et al. 2016).

27.2 Importance of Aerosol pH for Model Simulations

Regional and global aerosol models are routinely used to predict aerosol formation
for air quality, climate and other studies. The large uncertainty of aerosol simual-
tions can only be reduced if the sensitivity of predicted aerosol to emissions is
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correctly captured. A good representation of aerosol pH is critical for this, given
that many aerosol processes and the semivolatile partitioning of compounds like
nitrate and chloride can be strongly impacted by pH biases. Models are never
evaluated in terms of their ability to predict pH, so we advocate strongly for such
evaluations be carried out in future modeling studies—especially since aerosol pH
distributions from ambient data analysis is becoming increasingly available in the
literature. To illustrate the importance of pH bias, we focus on aerosol inorganic
nitrate predictions—an aerosol species that historically has been very difficult to
capture in models and regionally important for air quality and climate forcing.

Meskhidze et al. (2003) and Guo et al. (2016) showed that there is “window” of
pH values (that depends on the temperature and the amount of liquid water, but
typically between 1.5 and 3; Guo et al. 2017; Bougiatioti et al. 2017), within which
aerosol inorganic nitrate concentration is susceptible to shifts and uncertainties in
pH. As a consequence, aerosol nitrate concentrations can increase considerably
when the pH shifts within this “window”, so that aerosol pH prediction biases may
precondition the model to be positively (if pH is too high) or low (if pH is too low)
biased in terms of nitrate prediction skill. When below this “pH sensitivity win-
dow”, aerosol nitrate is almost nonexistent and relatively insensitive to emissions
(and pH biases); when above the window, almost all nitrate resides in the aerosol
phase, and directly responds to emissions.

To demonstrate the influence of pH prediction biases, we analyze CMAQ
simulations over the continental US, for “current day” (2011) emissions (Vasilakos
et al. 2017; Fig. 27.1) by comparing pH predictions against the observational
dataset presented in Table 27.1. pH values predicted by CMAQ agree relatively
well with observations, but tend to overpredict pH during the winter. We then

Table 27.1 Comparisons between different studies for particle pH, and meteorological condi-
tions. All pH calculations carried out with the ISORROPIA-II thermodynamic model (Fountoukis
and Nenes 2007), as described in the respective references

Campaign CalNex SOAS SENEX WINTER FAME-12 NOA-13

Altitude Ground Ground Aircraft Aircraft Ground Ground

PM size
cut

1 (2.5) μm 2.5 μm 1 μm 1 μm 1 μm 1 μm

Year 2010 2013 2013 2015 2012 2013

Season Summer Summer Summer Winter Summer-Autumn Winter

Location SW US SE US SE US NE US Finokalia,
Greece

Athens,
Greece

RH, % 79 ± 17
(87 ± 9)

74 ± 16 72 ± 9 58 ± 19 57 ± 11 80 ± 9

T, °C 18 ± 4
(18 ± 3)

25 ± 3 22 ± 3 0 ± 8 27 ± 3 12 ± 3

pH 1.9 ± 0.5
(2.7 ± 0.3)

0.9 ± 0.6 1.1 ± 0.4 0.8 ± 1.0 1.3 ± 1.1 2.4 ± 0.8

Reference Guo et al.
(2017)

Guo et al.
(2015)

Xu et al.
(2016)

Guo et al.
(2016)

Bougiatioti et al.
(2016)

Bougiatioti
et al. (2017)
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express the partitioning fraction, εNO3 (i.e., molar ratio of aerosol to gas + aerosol)
for nitrate on a monthly basis for the CMAQ cells over the Eastern US (white
rectangle in Fig. 27.1). Given that T conditions do not change significantly over
one month, most of the partitioning fraction data closely follows a “sigmoid”, that
has a functional form given by Meskhidze et al. (2003) (Fig. 27.2).

Once the sigmoidal fits are obtained for each simulated month, we then deter-
mine the uncertainty in εNO3, ΔεNO3, that corresponds to a given uncertainty in
aerosol pH from the sigmoids. Here, we arbitrarily pick the pH uncertainty, ΔpH, to
be 0.5 units around the average pH of the month. The uncertainty in εNO3 is then

Fig. 27.1 Simulated annual average pH with CMAQ for “current day” emissions (Vasilakos et al.
2017). The rectangle defines the region for nitrate prediction bias analysis shown in Figs. 27.2
and 27.3

Fig. 27.2 CMAQ-simulated partitioning fraction for nitrate, εNO3, against pH for the month of
September (left panel) and December (right panel), with “current day” emissions (Vasilakos et al.
2017). Blue symbols represent model simulations, while the red curve corresponds to the sigmoid
fit. The yellow square symbols on each subplot denote the average pH for the month and domain
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expressed as uncertainty in aerosol nitrate, by multiplying the ΔεNO3 with the total
monthly average nitrate (aerosol + gas) from CMAQ. The results of this analysis is
shown in Fig. 27.3, which shows the uncertainty in aerosol nitrate, Δ[NO3], as a
function of the pH uncertainty. From the figure it becomes clear that pH uncer-
tainties during summertime or early fall (September) lead to minor impacts on
aerosol nitrate levels, because the sensitivity of εNO3 for the September-average pH
is very low (Fig. 27.2a). Wintertime nitrate levels, however, can be quite sensitive
to pH shifts (Fig. 27.2b), giving up to ∼1 μg m−3 aerosol nitrate uncertainty in
December for ΔpH = ± 0.5 units around the monthly average (Fig. 27.3). The
regional responses can be larger, depending on where you are on the partitioning
“sigmoid” (the maximum sensitivity to pH biases occurs around where εNO3 = 0.5)
and the total amount of nitrate in the gridcell.

27.3 Conclusions

Thermodynamic analysis of ambient observations show that acidic fine mode
aerosol is ubiquitous in many regions of the globe, and a consequence of the
thermodynamic partitioning of the major neutralizing agent, ammonia, between the
aerosol and gas phase. As a consequence, the expectation that aerosol nitrate will
increase as sulfate levels drop may be unfounded for many regions of the globe. We
show that aerosol pH, never evaluated in models, needs to be considered for models
to correctly capture aerosol responses to precursor emissions. Otherwise, important
biases in predictions (here, demonstrated for inorganic nitrate) will result if pH
levels are biased in models.
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