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6.1 Introduction

The application of the Internet of Things (IoT) paradigm to the urban environment is
of particular relevance as it responds to important societal needs and trends [1]. The
push to provide solutions toward a functional and efficient Smart City architecture
is demonstrated by the large number of academic and industrial endeavors, as
well as initiatives from city administrations. For instance, IBM, Siemens, Cisco,
ABB, Alcatel-Lucent, Toshiba, and Google have undergoing projects that aim at
the development of smart interconnected systems, as well as established city-wide
endeavors involving cities in the USA, Europe, and Asia [2, 3].

Current IoT architectures rely on two extremes. On the one hand, enterprise
computing largely relies on hauling all the data to the cloud to leverage the cost-
benefits and efficiency of a high-capacity storage and compute platform in the data
centers [4, 5]. On the other hand, mission-critical applications, such as self-driving
cars and autonomous robots, largely rely on local computation for their decision-
making because of stringent low latency requirements. In the urban IoT and Smart
City scenarios, a city-wide deployment of IoT technologies poses several inherent
conceptual and technical challenges that are not resolved by those two extreme
architectures. For instance, the transportation of raw streams of data from personal
mobile sensors, video surveillance systems, traffic monitoring systems, and other
relevant systems to city-scale data centers would require an enormous amount of
bandwidth, and energy drain from mobile devices, and would likely result in service
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disruption at the wireless edge of the network. Similarly, in a full-scale and mature
urban IoT scenario, centralized real-time processing of this large and heterogeneous
set of data streams is not feasible.

Edge computing is an architecture that uses end-user clients and one or more
near-user edge devices collaboratively to store substantial amounts of data, process
compute-intensive tasks, communicate jointly to reduce interference, and carry
out management tasks cooperatively to improve application performance. In such
edge computing architectures, any device with compute, storage, and networking
capabilities can serve as a near-user edge device. The end-user clients and various
edge devices can exist in a hierarchy alongside the existing cloud-based architecture
to improve the overall system performance. This notion of edge computing is also
referred to as “Edge analytics” in [6] or “Fog computing” in [7]. Edge computing
solves four key challenges by executing tasks near the edge of local access networks.
First, it pools underutilized resources of edge devices in terms of storage or compute
capabilities and minimizes the network overhead of hauling data to the cloud.
Second, it provides context awareness as application level details are available near
the client at the network edge. Thirdly, it enables real-time response with latency
in the order of tens of milliseconds by processing near the network edge instead
of relying on the cloud, where the multi-hop architecture of the network core may
result in undesirable delays. Finally, the software stacks on edge devices can be
upgraded in an agile manner without modifying the software stacks in the cloud or
core network.

Innovative city-wide architectures should make the best use of those new
paradigms, which have the potential to lead to a significant advancement in how
data are acquired, transported, and processed over large-scale systems. In particular,
there should be a strong interconnection between information acquisition, data
communication, and processing across the many geographical and system scales
involved. This interconnection can dramatically reduce network load, while signif-
icantly improve the quality of Smart City services and reduce response latency.
For instance, data fusion and processing performed within or at the edge of
local wireless networks can inform data filtering and resource allocation strategies
(Fig. 6.1).

The rest of the chapter is organized as follows. Section 6.2 further discusses
the design challenges. Section 6.3 presents the architecture and discusses its
main components, namely information acquisition and compression, content-aware
networking, and information availability. Section 6.5 concludes the chapter.

6.2 Design Challenges

Large cities face many challenges, including traffic congestion, public safety
concerns, high energy use, sanitation, public internet connectivity, and providing
baseline municipal services. A major issue in establishing smart cities is availability
of ubiquitous broadband bandwidth and connectivity. While most modern cities
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Fig. 6.1 The urban IoT interconnects systems and citizens to provide innovative services

have one or more cellular networks providing adequate coverage, these networks
are often designed to have capacity and peak bandwidth limits that just meet the
needs of their existing subscribers. This leaves a relatively small, and time-varying,
amount of bandwidth for the advanced municipal services envisioned in the Smart
City paradigm.

A critical need in modern cities, which is also the focus of Smart city efforts,
is safety and security. In the Smart City, this need is addressed by a large
and distributed network of sensors and systems. Municipal networks may carry
sensitive data (i.e., police dispatches) and operate life-critical systems (e.g., smart
transportation, collision avoidance applications, first responder communications,
etc.), and therefore must be both secure and reliable. Traffic monitoring applications
require constant traffic flow updates at each road and intersection to manage road
congestion and diverting traffic flows from accident areas.

Related to safety and security, illustrative of the technical challenges of building
city-scale systems is video monitoring and surveillance. Smart cities, retail stores,
public transport, and enterprises increasingly rely on camera sensors to improve
safety and security, identify unauthorized access, and increase reliability of their
infrastructure. Local processing does not lend itself to successful deployment,
whereas the sheer bandwidth of data being collected over a large-scale network
makes it impractical to transport all the data to the cloud to obtain real-time insights.
City-scale deployments (such as on traffic lights) and remote areas do not have
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enough bandwidth to upload high-data rate video streams. Many applications such
as real-time tracking and detection of intruders pose strict latency constraints on
such infrastructure. Additionally, privacy constraints must be maintained so that the
video does not reveal a person’s identity to any unauthorized parties. Advanced
distributed analytics provides the opportunity to build real-time, latency-sensitive
distributed surveillance systems that maintains privacy. We can leverage nearby
nodes to intelligently partition video processing between edge devices colocated
with cameras and the cloud so as to enable real-time tracking, anomaly detection,
and interesting insights from data collected over long time intervals.

Finally, a smart city can also capitalize on the crowdsourced information
collected from its citizens using their mobile sensors. For instance, crowdsourced
information can be used to estimate parking availability, neighborhood security,
wireless signal strength, and congestion in public spaces.

We summarize the key challenges in building a city-wide infrastructure that can
capitalize on large sensor systems installed in the city as well as the crowdsourced
sensors: (a) scarce wireless bandwidth—Available wireless bandwidth is scarce
for multiple sensors to coexist with existing wireless services while a wired
infrastructure requires heavy investments, (b) low latency—Low response latency
is critical to applications such as traffic monitoring, where hauling all the data to
the cloud to obtain insights can take several minutes to an hour, (c) efficiency—
A city would require petabytes of storage if it were to transport all the sensor
data streams to a single data center, where most of the data would not be useful
except to obtain summaries or detect abnormal events. Energy efficiency also
favors local computation because the radio transmit power required to continu-
ously communicate collected data often drains the sensors and mobile devices in
crowdsourced environments, and (d) privacy—Local storage and computation can
maintain privacy of the individual sensor streams collected from different entities
compared to a centralized solution that aggregates data in a single place. Finally, it
is much easier to maintain context of the information closer to the sensor than in a
centralized place.

6.3 Edge-Assisted Architecture

Based on the challenges described in the previous section, we contend that edge
computing is a key component of such architecture, as it interconnects information
acquisition, communication, and computation systems to create a flexible multiscale
architecture, where all the components interoperate to maximize efficiency in terms
of trade-off between latency, network utilization, energy constraints, and system
performance. Intelligence, then, can permeate all the scales of the communication
and computation system to enable flexible and adaptive operations targeted to city-
wide tasks. The main features of the architecture are:
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• Computation-Aware Information Acquisition—Edge computing will be the main
engine of a distributed intelligent system for adaptive information acquisition.
The objective is to preselect and compress data sources across sensor systems
to minimize network load and energy expense. The key is to develop algorithms
capable of locally removing information which is not needed to accomplish the
global computational objective. Note that a similar rationale is used in current
algorithms for the compression of multimedia streams, where “information” not
usable by humans is removed. In the Smart City context, information irrelevant to
the application algorithms can be eliminated. However, different from the former
case, in the latter case the needed information is dependent on time-varying
parameters such as the computational objective, and the state of the observed
system.

• Content- and Processing-Aware Networking—In Smart City systems, the objec-
tive is to maximize the rate of usable data delivered to the computational
resources performing the processing. Edge devices connected to local base
stations and access points will enable the implementation of content and
processing-aware resource allocation techniques and interference control mech-
anisms. Interference control can take the form of transmission power and rate
control, or channel access control. In both cases, the network manager must be
aware of the needs of the application algorithms.

• Effective information availability—Edge computing will place data at the edge of
the network, thus improving local availability and searchability over a distributed
and heterogeneous infrastructure. To this aim, portable semantic structures need
to be maintained at all the scales of the system.

In this section, we present the components of the architecture and discuss our
preliminary results.

6.3.1 Information Acquisition and Compression

The low-latency link between the edge resources and local sensorial systems enables
system-wide messaging determined at the local network scale. The proposed edge-
assisted architecture uses this messaging to empower the Urban IoT system with
the ability to intelligently and adaptively select relevant data. We contend that
the cooperation of devices at different scales is critical to achieve this objective.
In fact, whereas IoT devices have all their individual data available, the edge
processor may have compressed and corrupted versions of data from a multitude of
individual sensors. Thus, the architecture needs to implement messaging to provide
contextual information to individual sensors, which will evaluate the relevance of
their local data and determine transmission decisions and data compression rate.
The data selection and compression system can be seen as a distributed processing
system, where heterogeneous agents cooperate to provide critical information to
the final application. We logically divide this part of the architecture into adaptive
compression and distributed computing components.
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Fig. 6.2 The edge-assisted architecture interconnects information acquisition, communication
infrastructures, and processing resources at multiple scales. Blue and green arrows represent the
bidirectional exchange of data and control

Adaptive Compression: One of the key observations to make is that in a sensor-
rich, and large-scale, environment where applications have specific computational
tasks (e.g., detecting an event), not all the information is needed at the final
controller. Conversely, in order to minimize network load and energy expense in
the mobile and low-power devices, only necessary information should be pushed
through the communication infrastructure (Fig. 6.2).

However, such selection and compression is challenging, due to the scale and
heterogeneity of the system, which induces a mismatch between the information
available to the individual sensors and the final controller. Being close to the network
edge, edge computing can bridge these two extreme scales and support efficient and
informed local data selection and compression.

Adaptive compression compresses the sensor streams based on their relevance or
importance to the application goal. The incoming sensor stream data is filtered and
compressed adaptively. The sensors themselves might lack the compute capability
or the storage for prior trained models. However, they extract useful features from
sensor streams and communicate them to an edge device. The edge device uses prior
trained models to analyze the relevance or priority of the content and signals it back
to the sensors for adaptive compression.
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Fig. 6.3 Time series and
cumulative distribution
function (CDF) of a count of
the number of faces a
state-of-the-art vision
algorithm detects during a
busy period at an office
building. (a) Face count time
series. (b) Face count CDF

A system, called Vigil [8], illustrates this concept for video monitoring and real-
time video surveillance applications. The application goal is to detect the times
and detected faces in a busy office hall while the network bandwidth is constrained
from the camera device to the central processor. Figure 6.3a shows the number of
faces detected at the peak lunch hour, while Fig. 6.3b shows that less than 20%
of the collected video in a busy office hall contains relevant information (e.g.,
moving objects), thus rendering its transportation to the central processor useless.
This system uses this insight to implement adaptive compression where the edge
device in conjunction with the camera nodes prioritizes the frames with detected
faces while sending them over the network.

Note that adaptive compression schemes provide additional gains over MPEG-
4 video compression schemes because they are content aware. While standard
MPEG-4 video compressions work well for streaming to the web or television, they
are not effective for application goals requiring computer vision because artifacts
due to spatial and temporal compression impair the effectiveness of algorithms
(e.g., object detection, classification, and tracking). Importantly, the activation of
the sensor could depend on the state of the observed environment, where more
information may be needed if contextual information changes (e.g., a partially
hidden moving object is detected). Furthermore, edge computing can be used to
interconnect heterogeneous sensor systems, so that bandwidth-demanding sensors
(e.g., video capture) are activated based on information from low-bandwidth sensors
(e.g., acoustic and motion sensors).

Additionally, the design of adaptive data representation and compression
schemes is needed to make them more robust and resilient to the impairments
of the wireless channel. This design should be driven by the final objective of
processing, where more relevant features, determined based on contextual and local
information, are more protected.

Distributed computing among edge devices: The information selection and
compression architecture is based on the notion of distributed intelligence. The
flexibility granted by edge computing architectures can play an important role in
the realization of the envisioned architecture.

In edge computing, a network of sensors and edge devices can be leveraged
to allocate computing functions based on their capabilities without requiring the
individual sensors to share their sensor streams. This can be extremely valuable
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Fig. 6.4 Multi-camera system with distributed classifiers for context-aware local data filtering or
selection

in scenarios where the local context can be better established from a group of
edge devices and where the storage can be offloaded to a nearby device. The key
advantage is that it eliminates the need of using the backhaul network to collect the
state information.

At the same time, it brings two new aspects that often come up in distributed
computing: (a) synchronization of different sensor streams to fuse or correlate them
together when collected from devices with different clocks, and (b) the granularity
of temporal scales to share the information between the edge devices. In the video
monitoring example, the video streams largely need to be matched only with respect
to detected events or objects when the goal is identifying anomalies or drawing
useful insights.

Local computational resources can effectively interconnect individual sensors
(e.g., cameras in multi-camera systems), enabling the pruning of these high-
bandwidth data streams when only a subset of them is sufficient to perform the
tasks dictated by the city applications. Vigil [8], a real-time distributed wireless
surveillance, deploys distributed computing across cameras in addition to adaptive
compression to improve the system performance. Figure 6.4 illustrates the general
architecture. Vigil runs an intra-cluster algorithm across different cameras overlook-
ing the same geographical area to determine the most valuable frames from cameras
within a cluster and to eliminate redundant observations, capturing the same objects,
to minimize communication bandwidth without actually exchanging the redundant
frames. Figure 6.5 illustrates the gains of such an approach. Note that the bandwidth
required at low activity level (at most 16 Kbit/s) is lower than the available per-
camera wireless capacity and therefore, both Vigil and Round-Robin achieve more
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Fig. 6.5 Accuracy of intra-cluster frame selection in system name relative to a single-camera
system and a multi-camera system with round-robin scheduling. Error bars show standard deviation
of the experiment in varying wireless conditions

Fig. 6.6 Example of a frame filtered with a Haar feature-based pedestrian classifier. (a) Input
frame. (b) Filtered frame

than 90% accuracy, while the single camera suffers because of lack of sufficient
spatial coverage. Similar results are observed for medium activity level, except
Vigil outperforms other approaches when the available per-camera wireless capacity
50 kbps is lower than the bandwidth required for medium activity level (at most
80 kbps). Finally at high activity level, the bandwidth required is much higher than
the available per-camera wireless capacity and we observe 23–30% gains for Vigil
compared to Round-Robin because Vigil prioritizes those frames across cameras
that maximize the application accuracy.

Extending this reasoning, we studied the energy-bandwidth trade-off in an edge-
assisted system, where the video acquisition device is capable of running a simple
classification algorithm to eliminate redundant information within each frame. The
objective, then, is to transmit to the edge processor only regions within the frames
necessary to the global data analysis goal. In the considered setup, the device
implements a cascade classifier [9] to select portions of individual frames containing
objects of interest (e.g., pedestrians).

Figure 6.6 shows an example of frame before and after the classifier is applied. It
can be seen that the classifier mistakenly locates pedestrians in portions containing
other objects. This is due to the need to keep the classifier as simple as possible
to run on devices with limited computational power while preserving the frame
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Fig. 6.7 Size of unaltered (a) and filtered (b) frames in compressed video stream as a function of
their object density. Black lines depict the corresponding 95% quantiles

output rate. The false positives increase the bitrate requirements when the classifier
is activated but do not harm the performance of the remote video processor, which
will eventually exclude them by using a more powerful classifier. However, the
classifier correctly includes the pedestrian in the picture.

Figure 6.7 depicts the size of the output frames after compression when the
classifier is active and inactive. This measure is instrumental to the adaptation
framework, as it allows individual sensors to estimate the bandwidth required by
the two actions. It can be observed that when the density of objects in the picture is
small, the output frame size is much smaller compared to the case when the classifier
is inactive. In principle, a perfect classifier would filter out the entire picture when
pedestrians are not present. In the practical classifier implemented in our study,
when density is smaller than 0:2, the frame size is reduced by a factor of 2 to 10.
When the density is large, the activation of the classifier does not correspond to
a benefit in terms of output data rate, while increasing energy consumption. The
solid lines correspond to the 95% quantile which is used for activation/deactivation
decisions.

However, as shown in Fig. 6.8, the video streaming pipeline from the end-device
including the classifier requires more power for a longer time with respect to the
pipeline without the classifier. There is, thus, an important trade-off between energy
spent by edge devices and bandwidth required to stream necessary information to
edge and cloud resources. Object density also influences the number of operations
necessary to process frames. The energy trade-off is obviously important when
mobile devices are considered. However, the overall power consumed by sensors
is certainly a central issue in city-scale architectures, where thousands of sensors
are deployed.
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Fig. 6.8 Power consumed by a Raspberry Pi when streaming the video with and without classifier.
The clusters of increased power corresponds to group of 60 frames. The first sequence of clusters
corresponds to the case where the classifier is used, which increases both energy and execution
time

Figure 6.9 depicts exemplar traces for the proposed bandwidth adaptive tech-
nique for the two loads. Red lines show the maximum bandwidth available to the
end-device in each case, black lines show the actual bandwidth used by the end-
device, and gray lines show the bandwidth necessary to transmit unfiltered stream.
The strides where the end-device made decision to filter frames are highlighted in
green. The effect of bandwidth variations on the output rate are apparent, where a
bandwidth insufficient to support the predicted output rate for the current density
leads to the activation of the classifier. This action causes visible reduction of the
output rates in the plots.

Assistance by the edge processor, then, optimizes the energy-bandwidth trade-
off. In the simplest setup, the available bandwidth reported by the local network
managers can be used as a constraint, which determines the activation and deactiva-
tion of the classifier at the end-device, and how many stages are used. This decision
is assisted by the edge, which reports to the end-device the current object density—
which can be computed only if the full classifier is used—to enable the prediction
of future bandwidth and energy associated with the number of stages performed
locally. Note that the local classifier can be re-programmed online to adapt to time-
varying application objectives.

6.3.2 Content-Aware Wireless Networking

As discussed in the previous section, an efficient information acquisition architec-
ture is a key component of the urban IoT architecture. However, the transportation
of relevant information to the edge computing resource can be a challenging and
delicate task due to the complexity and heterogeneity of modern communication
infrastructures. Importantly, the urban IoT traffic will share the same network
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Fig. 6.9 Exemplars of bandwidth traces for streaming adaptively filtered frames in the scenarios of
low (a), medium (b), and high (c) network load. Red lines show the maximum bandwidth available
to the end-device in each case, black lines show the actual bandwidth used by the end-device,
and gray lines show the bandwidth necessary to transmit unfiltered stream. The strides where the
end-device decided to filter frames are highlighted in light gray

resource with that generated from traditional applications and services. Thus, the
communication resources available to the urban IoT may vary over time and be
scarce in peak hours. Furthermore, the coexistence of these data streams over a
heterogeneous network sharing the same channel resource will make interference
control difficult in the physical layer. Hence, we need smart and adaptive network
management and aggregation techniques to effectively handle this difficult coexis-
tence.

Mutual interference between information streams can be mitigated by designing
access protocols generating specific content-based interference patterns. The main
idea behind our approach is to make networking and transmission protocols aware
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Fig. 6.10 In city-scale video processing, artifacts induced by spatial and temporal compression
can severely impair the performance of detection and tracking algorithms

of the content being transported and the structural properties of its encoding.
This minimizes the loss of relevant information to the processing algorithms given
the current state of the observed system.

Our recent work [10, 11] demonstrated the effectiveness of information-centric
techniques in coexistence scenarios, where Wi-Fi Device-to-Device (D2D) com-
munications coexist with Frequency Division Duplex (FDD) Long-Term Evolution
(LTE) cellular communications on the same bandwidth [12]. The application
scenario is city monitoring, where video data streams from surveillance camera
systems are processed by real-time edge computational resources to perform
object detection and activity recognition [13]. Interference may cause artifacts that
would significantly impair the performance of detection and tracking objects (see
Fig. 6.10).

Current standards prescribe simple techniques to regulate coexistence in the
unlicensed and licensed band. For instance, Wi-Fi and LTE coexistence is realized
by implementing listen-before-talk mechanism, where one of the two technologies
is prioritized by forcing the other idle when the former is active [14–17]. We
contend that more flexible strategies are needed to support the operations of the
urban IoT and facilitate coexistence with existing services. For the coexistence in
licensed bands, recent work proposes scheduling and interference control strategies
that limit the Signal-to-Interference-plus-Noise-Ratio (SINR) at the cellular base
stations [18–20]. However, these techniques often require instantaneous channel
knowledge and may result in packet loss when coordination between networks is
not perfect. Our design revolves around the notion of utility of data within the
stream, where utility variables are computed, exchanged, and processed by the
cloud, edge, and end-device resources. The colocation of the edge computation
resource and network controllers such as base stations and access points allows to
establish a direct exchange of information between them. The edge, then, processes
and communicates the utility to associated network controller, which determines
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channel allocation and transmission strategy of the connected end-devices based
on the current network state. However, the operations of this class of protocols
require information about content being transmitted and processing state. To this
aim, content and state information should be shared with network transmitters
and resource management units to create content-specific interference patterns and
resource allocation.

Conforming with the 3rd Generation Partnership Project (3GPP) standard for
proximity services [21], we choose a topology where an end host is transmitting
real-time data on the uplink of LTE to the Internet for computation and processing,
and two mobile devices in proximity are connected with each other with network-
assisted D2D communications. The LTE end-user is streaming real-time video on
uplink by Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) toward
the edge resource. The LTE base station (element Node B—eNodeB) scheduler
allocates resource blocks for data transmission and assigns modulation and power
based on channel quality and interference [22]. When the D2D communication
interferes with the LTE uplink, the channel quality degrades and the LTE receiver
will more likely fail to decode the packet. Note that interference from the D2D link
may influence the modulation and transmission power of the User Equipment (UE).

Video compression techniques exploit spatial and temporal similarities in indi-
vidual frames and across video. In the most efficient compression standard, H.264
creates Group of Pictures (GoP) composed of reference (I-Frame) and differential
(P- and B-Frames) frames. Reference frames transport the whole picture, whereas
differential frames encode differences with respect to the reference. When an
encoded frame is damaged, due to spatial compression, it affects the transform
coefficients which leads to the corruption in the decoded image. The spatial
propagation of errors may create artifacts that are detected as objects or impair the
ability of the algorithm to detect existing objects. If a reference frame is corrupted,
the effect propagates through the entire GoP. When a differential frame is damaged,
the effect is smaller compared to loosing part of a reference frame, as key features in
the following frames may be recovered using the reference frame. In the proposed
framework, we use a simple notion of utility based on frame class, where the edge
decompresses the video stream prior to processing and signals to the eNodeB when
a reference or differential frame begins. Based on this information and channel
statistics, the eNodeB determines the transmission probability of the D2D link.
Thus, channel access in the local network is regulated based on the transmitted
data, and based on the feedback from the computation algorithm consuming the
data stream.

Figure 6.11 shows object detection probability as a function of the throughput of
the D2D link for fast and slow fading channels, where the data stream transports
a video from a parking lot surveillance camera. The content-based transmission
probability scheme (Frame Determined Transmission Probability—FDTP) is com-
pared with the case where the D2D transmits with Fixed Probability (FP). In the
considered case, video transmission consumes the entire LTE bandwidth, and the
D2D link would starve if listen-before-talk is used. The lines are obtained by varying
the transmission probabilities. For comparable object detection performance, the
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Fig. 6.11 Object detection probability vs D2D throughput in low speed and high speed fading
scenario

FDTP scheme grants significant throughput increase to the D2D link, thus enabling
coexistence on the same resource. Our study in [10] shows that the efficiency of
coexistence, measured as application performance over throughput of the D2D link,
is maximum in specific transmission power and probability regions.

6.3.3 Information Availability

While the sensors themselves can use the data they collect to make intelligent
decisions, the edge devices and the cloud have access to a larger pool of sensor
data from multiple sensors and at multiple timescales. Thus, the cloud and the
edge devices can assist in making intelligent decisions that individual sensors might
be incapable of making. Further, since the cloud has longer range information in
temporal scales, it can understand the traffic patterns and other unexpected events
such as roadwork or accidents, to plan more efficient paths in traffic monitoring
scenarios.

Existing literature relies on aggregating the data in the cloud or a cluster of
thousands of servers that can be indexed to enable structured or nonstructured
data queries. The cloud-based models are heavily used for applications such as
web search, advertising, social networking, and photo repositories to enable users
to query data or draw insights. These models largely rely on distributed dataflow
systems and programming models, e.g., Map-Reduce [23] and Spark [24]. Sensor
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data and video data can be especially challenging to search in, for example,
existing methods to analyze the video feeds in real time or post facto do not scale
and are error-prone. The vision pipelines must be carefully handcrafted for cloud
execution by the engineers requiring their focus on nitty gritty details such as how to
parallelize, in which order to execute the modules, etc. Similarly, existing dataflow
systems such as Spark require analogous handcrafting of user-defined modules as
they lack query optimization. Supporting ad hoc queries or post facto analysis on
stored video or scaling to a large number of cameras remain key open problems.

A recent research paper proposes a system Optasia [25] that brings together
advances from two areas: machine vision and big data analytics systems. This
convergence leads to an efficient query answering system over many cameras.
The system demonstrates a modularized approach to building vision processing
components for applications such as classifying vehicles by color and type, reidenti-
fying vehicles across cameras, tracking lane changes, identifying license plates, etc.
This modularized implementation allows the dataflow system to de-duplicate and
parallelize the processing.

To address the challenge of scaling to a rich set of ad hoc queries and to many
cameras, Optasia casts the problem as an application of a relational parallel dataflow
system and wraps the above-described vision modules inside some well-defined
interfaces (processors, reducers, and combiners). This makes querying efficient and
fast for a city-wide deployment of cameras by decomposing the vision analytic
tasks. Each vision module is expressed as a composition of the corresponding
relational operators (select, project, aggregate, and Cartesian product). End-users
simply declare their queries over the modules in a modified form of SQL. Then,
the query optimizer reuses optimization rules and translates user queries into
appropriate parallel plans over several different vision modules. The primary
advantages of this combination are: (1) ease-of-use for end-users, (2) decoupling
of roles between end-users and the vision engineers: the vision engineers can
ignore pipeline construction and need only focus on efficiency and accuracy of
specific modules, and (3) automatic generation of appropriate cloud execution plans
that, among other things, de-duplicate similar work across queries and parallelize
appropriately.

Evaluation on traffic videos from a large city on complex vision queries shows
high accuracy for Optasia with many fold improvements in query completion
time and resource usage relative to existing systems. Figure 6.12a plots the ratio
of the query completion time for Optasia with query optimization against a
version of Optasia that has no query optimization, for single queries on a parking
garage video feed. We see that, with query optimization, Optasia is roughly 3�
faster. Further, the query completion time of Optasia remains constant as dataset
sizes increase illustrating the fact that the query optimization sets the degree-of-
parallelism correctly. The large gains arise from de-duplicating the work in the
vision modules (e.g., generating histogram-of-gradient features, etc.).

Within this area, several challenges must be solved to develop systems such that
make information readily available at city-scale and can answer queries in real-time.
In the multiscale edge architecture we proposed, in addition to analyzing sensor
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(a) (b)

Fig. 6.12 In Optasia [25], Query Optimization reduces the query completion time significantly
for both amber alert and Re-ID (a) as the number of input videos increases for each query. Further,
query optimization ensures the most efficient cluster resource utilization in terms of processing
time (b)

streams, the key challenge is that we need to search, identify anomalies, trigger
alerts, and draw insights from the data collected over a multitude of edge nodes.
To enable efficient ways to search over a multitude of distributed sensors, the key
questions we must answer are: (a) How do we represent different spatial regions
in the environment at the urban scale?, (b) How does the cloud obtain information
about regions at different resolutions?, and (c) How do intermittently connected
sensors transmit sensor information from these regions in a loss-resilient manner
over the wireless channel?. One approach is similar to the compression approach
used by Graphics community, where they use “Octree” to compress 3D content,
especially point clouds to represent 2D spatial grids. Recent works [26] have shown
that the approach extends to collecting and querying the sensory data collected by
the self-driving cars. An alternate approach relies on Named Data Networking to
name information objects and make them easy to query by other objects.

An additional challenge that arises in drawing insights from a multitude of
sensors is to ensure appropriate access control mechanisms and respect data privacy
where needed. Thus, computation techniques that are privacy-preserving, such as
secure multiparty computation [27] or differential privacy [28], can be extremely
useful in data aggregation over a variety of sources.

6.4 Related Work

Several architectures have been proposed which process Smart City data in the
cloud [4]. Related to the application case discussed herein, in [29], an adaptive
architecture to discover the topology of a distributed multi-camera system is pre-
sented. Mitton et al. [5] proposes a general cloud-based architecture for distributed
sensor systems in the Smart City.
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Edge and fog computing techniques have been considered to effectively reduce
the load generated to the central communication and computation infrastruc-
ture [6, 7, 30, 31]. However, the solutions explored so far solely focus on data
processing, without an in-depth analysis of information acquisition, representation,
and transportation solutions needed to increase efficiency and achieve a sustainable
technology.

Another line of work [32, 33] aims to reduce the latency of uploading data to the
cloud, by partitioning computation tasks between mobile sensors and the cloud for
personal mobile devices. Odessa [32] supports interactive perception applications
by dynamically offloading parts of computation tasks from mobile devices to the
cloud. A recent system Gabriel [33] targets a similar class of augmented reality
applications based on a cloudlet architecture, which comprises computation devices
located at the edge of network to reduce network latency.

Sensor selection in microscale sensor networks, e.g., see [34], and in-network
compression, e.g., [35], have been the focus of intense work. However, we contend
that these approaches do not directly apply to the urban IoT scenario. Although these
works provide solid theoretical and system design basis, the involved multisystem,
multiscale urban IoT architecture requires significant conceptual and practical
advancements.

6.5 Conclusions

In this chapter, we proposed a novel architecture supporting urban IoT operations
based on our prior results and experimental experience. One of the main contribu-
tions is the notion that the information acquisition, networking, and computation
logical components of the urban IoT should be interconnected and conjointly
operate to make city-wide applications feasible. The proposed architecture, then,
is based on a notion of intelligence that pervades all the layers and devices
operating in the urban IoT and uses edge computing as a key element to bridge the
local fine-time scale of sensors to the coarser topological and temporal operations
of the cloud. We introduced the notion of context and computation-aware data
selection and compression to maximize the efficiency of the communicated data for
specific applications and processing tasks. We introduced the concept of content-
aware networking protocols that tune channel access and transmission based on
the representation and relevance of the data travelling over the network. Finally,
we argued that the presented layered architecture will facilitate information search
and improve its availability.
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