Adopting Test Automation on Agile Development Projects:
A Grounded Theory Study of Indian Software
Organizations

Sulabh Tyagi'™”, Ritu Sibal', and Bharti Suri’

! Netaji Subhash Institute of Technology, Delhi University, New Delhi, India
sulabhtyagi2k@yahoo.co.in, ritusib@hotmail.com
2 Guru Gobind Singh Indraprastha University, New Delhi, India
bhartisuri@gmail.com

Abstract. The role of test automation in Agile Software Development projects
is of paramount importance. It is absolutely necessary to automate tests on agile
projects as the number of test cases will continue to grow with each successive
sprint. Through a Grounded Theory study involving 38 agile practitioners from
18 different software organizations in India, we identified five key challenges
faced by agile practitioners and different strategies to overcome those challenges
while practicing test automation. Understanding these challenges and strategies
would help agile teams in streamlining their test automation practices.

Keywords: Test automation - Test driven development - Agile software
development - Grounded theory

1 Introduction

The widespread use and popularity of agile methodologies are primarily due to their
ability to produce quality software in less time with limited manpower. Most of the
software industries are using scrum and XP methodologies of agile software develop-
ment. Testing is an integral part of development in agile projects rather than a distinct
Software Development Life Cycle (SDLC) phase [1].

Software test automation refers to the activities and efforts that intend to automate
engineering tasks in a software test process using well-defined strategies and systematic
solution [2]. According to [3] test automation is one of the most effective solution for
projects which have strict deadlines as it speeds up the test execution and increases the
test coverage.

Automation on a scrum project is not optional, for a team to sprint effectively and
deliver value quickly, it needs to rely heavily on test automation [4]. Crispin and Gregory
[5] argued that test automation is the key factor for successful agile software develop-
ment and the core of agile testing. In a study by Puleio’s [6] test automation was seen
as a key factor in agile testing to keep development and testing in synchronization. It is
evident from the above studies that test automation is a crucial ingredient of agile soft-
ware development projects. Further, a study from Collins [7] reported that test

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 184-198, 2017.
DOLI: 10.1007/978-3-319-57633-6_12

Adopting Test Automation on Agile Development Projects 185

automation works very well if the agile teams find the right way to implement test
automation in their projects and presented some strategies to minimize the risk during
test automation implementation.

The objective of this study is to create an understanding on different challenges faced
by agile practitioners while adopting test automation on agile projects and to present
some possible strategies to overcome those challenges. To provide more empirical
insight in this area, a grounded theory study has been conducted that involved 38 agile
practitioners from 18 different software organizations in India. We hope our research
will help in understanding the issues while adopting test automation on agile projects
and streamlining it through proper strategies.

The rest of the paper is structured as follows: in the next section a brief overview of
the Grounded Theory is presented; the third section describes the findings of this study;
the fourth section discusses these findings; the fifth section presents limitations of this
study and the last section concludes the paper.

2 Research Method

2.1 Grounded Theory

Grounded Theory (GT) is a systematic research method where prominence is on the
generation of theory that derived from systematic and rigorous analysis of data [8, 9].
The emphasis in GT is on new theory generation which means rather than beginning
with a pre-conceived theory in mind, the theory evolves during the research process
itself and thus the product of continuous interplay between data collection and analysis
of that data [10].

Which version of ground theory. Glaser GT states that researchers should start with the
general ‘area of interest’ and beginning a GT study with specific research questions can
lead to pre-conceived ideas or hypothesis of the research phenomena [11]. Other two
versions of GT are Straussin GT [12] and Charmaz’s constructivist GT [13]. This study
employed the Glaserian version as our objective was to find out the issues from the real
life experience of the agile practitioners related to our general area of interest i.e. Agile
Project Management rather than imposing our own pre-conceived ideas and concerns
that could influence this study and also due to plenty of resources available on Glaserian
GT [8]. GT has been chosen as our research method for many reasons. Firstly, agile
software development focuses on people and interactions, and GT, allows us to study
social interactions and the behavior of people. Secondly, GT is most suited to areas of
research that have not been explored in detail, and according to our knowledge, the
research studies on test automation practices in agile software development is also
scarce. Thirdly, GT focuses on theory generation rather than extending or verifying
existing theories [14]. Finally, GT is being liberally used to study the agile teams [11,
15-18]. Following Glaser’s guidelines, the study started with a general area of interest
— Agile project management — rather than beginning with a specific research problem.
Problems and its key concerns will emerge in the initial stages of data analysis and it
did [19].

186 S. Tyagi et al.

2.2 Data Collection

Data collection in GT is guided through theoretical sampling whereby researchers iter-
atively collect and analyze their data to decide what data to collect next and where to
find the data [20]. A GT study requires the theoretical sampling to be continued until
theoretical saturation is reached that is when no more new concepts or categories emerge
from the data, and further data collection would be a waste of time [21].

Recruiting Participants. This study involved 38 agile practitioners from 18 different
software organizations in India with size varied from 50 to 200,000 employees located
in Bengaluru, Mumbai, Pune, Noida and Gurgaon. The project duration varied from 6
to 36 months and team size varied from 7 to 20 people on different projects with wide
range of domains like software consultancy, e-commerce platforms. Due to ethical
considerations and to keep our participants identity confidential, we used codes P1 to
P38 to identify our participants. Table 1 shows the participants and project details of
this research study. We contacted members of Agile Software Community of India [22]
and also took part in Agile India 2016 International Conference [23] on Agile that
provided us the platform to collaborate with many agile practitioners across India and
abroad. Many practitioners agreed to be a part of our research and participated in this
study.

Interviews. Face-to-face semi-structured interviews were conducted with agile practi-
tioners using open-ended questions over a period of eighteen months. Normally, each
interview lasted for about one hour and was scheduled at the mutually agreed location.
The interviews were audio recorded with the consent from the participants on ensuring
full confidentiality, so that we could concentrate on the conversation. Ten participants
were interviewed from four different software organizations in first phase of our study.
Interview began with warm up questions regarding participants experience, their roles,
nature of duties and different agile project management practices in their respective
projects. Each participant had a 34 or more years of hands-on experience on either
scrum, XP or both. Initial sample of participants comprised Scrum Masters, Developers,
Product Owners (PO’s) and Testers. Then we progressed to our second phase of inter-
views and expanded our sample participants to Senior Management people (Chief Tech-
nical Officer, Vice-President), Agile coaches and Devops to gain the well rounded
perspective from participants, also the set of questions were gradually modified as per
Glaser [20] to achieve theoretical saturation of our core category - Adopting Test Auto-
mation. After completion of each interview, it was transcribed and analyzed line by line
to identify key points, codes, concepts and categories. Data collection and its analysis
were performed iteratively. Constant comparison of interview transcripts helped us in
guiding future interviews, and then we continuously fed back the analysis of interviews
and observations from our study into the emerging results. All the data was personally
collected and analyzed by the primary author so that consistency can be maintained in
the application of GT.

Observations. We also performed passive observations in two projects denoted as
Sigma and Delta in two different Indian software organizations denoted as X and Y. X

Adopting Test Automation on Agile Development Projects 187

Table 1. Summary of participants and project details. (Agile Position: Agile Coach (AC), Chief
Technical Officer (CTO), Developer (DEV), Devops (DO), Product Owner (PO), Scrum Master
(SM), Senior Agile Coach (SAC), Senior Developer (SD), Senior Quality Analyst (SQA), Senior
Tester (ST), Test Analyst (TA), Tester (TES), Vice-President (VP)

Participant Agile Position/ | Project distri- | Agile method | Domain Team size Project dura- Sprint duration
(Code) Experience bution location tion (Mos) (Wks)
(yrs)
P1, P2 TES/3, SM/10 | India-UK Scrum Finance 10-12,16-18 | 12,24 2
P3, P4 ST/4, PO/5 India-USA Scrum & XP Network 10 10to 12 2-3
Mgmt. Serv-
ices
P5, P10 SM/6, ST/5 India-South Scrum & XP Insurance 12-14, 12 8-10, 15-16 34
East Asia
P6 TES/4 India-Europe Scrum & XP Mobile Retail | 18 18-20 34
P7, P8 TES/3, SD/5 India-USA Scrum & XP E-Commerce 14 12-14 1-2
P9 SD/4 India-Australia | Scrum & XP Banking & 20 24 34
Finance
P11, P12 AC/12, India-USA - Scrum & XP Software 14-15,18-20 | 12-14,15-16 |24
CTO/16 Australia Consultancy &
Services
P13, P14 ACX2/8,10 | India-New Scrum & XP IT & Agile 7-8 36 2-3
Zealand Training
P15 DEV/3 India-UK Scrum & XP Telecom 12-13 42 34
P16, P17 TA/5, VP/12 India-UK Scrum & XP Insurance 9-10 12 2-3
P18, P19 SM/7, AC/8 India-Western | Scrum Health Care 18-19 24 34
Europe
P20, P21 TES/3.5, DO/4 | India-USA Scrum & XP Energy 10-12 36 34
Metering Solu-
tions
P22, P23 TES/4, India-Canada Scrum & XP Finance 9-10, 12 24, 18-20 34
DEV/4.5
P24, P25 ST/5.5, TA/5 India-Australia | Scrum & XP E-Commerce 10, 9-10 12, 12-14 1-2,2-3
P26 SQA/4 India-South Scrum Information 8-9 18 34
East Asia- Security
Australia
P27 TES/3.5 India-Western | Scrum ‘Web Portal 12-13 10-12 1-2
Europe
P28 SM/8 India-Western | Scrum & XP IT & Agile 10-12 12-14 2-3
Europe Training
P29, P30 SM/10, VP/12 | India-USA Scrum & XP IT Infrastruc- 12-14 16-18 2-3
ture
P31 SAC/12 India-Europe Scrum & XP IT & Agile 8-9 24 3
Training
P32 SM/6 India-Europe Scrum & XP Agile Training | 10-11 12 34
P33 PO/3 India-Europe Scrum & XP Finance 12-13 15-16 2-3
P34 ST/4.5 India-UAE Scrum Banking & 15-18 24 2-3
Finance
P35 TES/4 India-USA Scrum Telecom 10-11 10-12 34
P36, P37 SM/7,DEV/4 | India-USA Scrum & XP E-Commerce 12-14,18-19 | 6-8,18 2-3
1-2
P38 PO/4.5 India-UK Scrum & XP Telecom 20 12-14 2-3

is into smart metering and energy management solutions with presence in over 30 coun-

tries and Y is into e-commerce business with presence in over 4 countries.

Observation period in Sigma and Delta was 8 and 6 months respectively. Sigma was
practicing agile mainly blend of scrum and XP from past 3 years but Delta was relatively
new to agile and practicing scrum from past 1 year. We observed daily stand ups, sprint

188 S. Tyagi et al.

retrospectives, sprint review meetings, end sprint demos, pair programming practices,
daily smoke and regression tests and we had taken field notes along the way about our
observations and transcribed them for analysis. Moreover, we compared the codes
emerged during observations with the codes from the interviews that helped us in
achieving triangulation. The interview data was further strengthened by our observations
from these two projects.

2.3 Data Analysis

Coding. Following Glaser’s two successive stages of substantive coding: open and
selective coding, we began our data analysis with open coding. It helps us in directing
our research by identifying a core category and serves as the initial step of the theoretical
analysisin GT [14]. Then, selective coding was performed to identify the categories that
were related to the core and to ascertain theoretical saturation.

Constant Comparative Method. Here, codes are compared with other codes to produce
concepts, codes are compared further with concepts to produce new concepts and finally
concepts are compared with other concepts to produce categories [14].

Memoing. Memos are written notes to log reflections between data, codes and their
relationships as they occur in researchers mind [20]. In our case, we wrote memos as
soon as we had some ideas about emerging codes and their relationships.

Phase 1: Identifying the core category. We commenced phase 1 of our interviews on
our general area of interest “Agile Project Management” and performed open coding on
data that generated initial codes, which guided us on further data collection as per theo-
retical sampling process of classic GT [20]. We continued collecting and analyzing our
data iteratively that gradually led us to our core category i.e. “Adopting Test Automa-
tion” on agile projects.

Open Coding. Inopen coding interview transcripts are being analyzed in detail and key
points are identified from each interview transcript [24]. In the next step, key points are
collated and particular code is assigned to each key point [25]. Code is a phrase used to
summarize the key point in 2 to 3 words. Using the constant comparative method, the
codes from each interview were compared constantly with the codes from the same as
well as from other interviews and also with data based on our observations and written
memos. The constant comparison and grouping of similar codes lead to the second level
of abstraction, called concepts. Further, this method is repeated on concepts to produce
the third level of abstraction, called categories.

Open coding was ended on identifying our core category “Adopting test automa-
tion”. Two potential near core categories were also emerged like “Quality work
delivery” and “Manage changing requirements”, but we selected “Adopting test auto-
mation” as our category as it is related to most other categories in a meaningful way.
An example of open coding process is shown in Table 2 that depicts the emergence of
our core category from the combined analysis of interviews and observations.

Adopting Test Automation on Agile Development Projects

189

Table 2. Example of Open Coding Process

Open coding Interview Quotation — P5, Scrum Observation (Org.: Y, Project: Delta)
Master

Statement/Field | “Most important question...whether | Acceptance testing was practiced

note or not your project is truly time manually till sprint 3, consuming lot
driven, whether or not you are of time and effort. UI changes were
delivering high quality product, time | frequent due to constant new product
is speed for us and we can achieve | launches, decision to automate
that [speed and quality] by embracing | acceptance tests, acceptance tests
automation.” automation started

Key point Need for timely delivery of quality | Manual acceptance consumes time
products, Achieving speed, Quality | and effort, Frequent UI changes,
through automation Automating acceptance tests

Code Timely delivery, Quality products, | Time and effort loss, Constant UL
Embracing automation changes, Acceptance tests

automation

Concept Achieving quality and speed by Achieving speed by embracing
embracing automation automation

Category Adopting test automation

Phase 2: Refining the core category. As per theoretical sampling process, selecting
new interviewees and sites for data collection should come from the results of the coding
process [14]. We progressed into phase 2 and continued our data collection process.

Table 3. Example of selective coding process

Selective coding

Interview Quotation — P6, Tester

Observation (Org.: X, Project:
Sigma)

Statement/Field note

& changes...has accumulation
effect on our tests too...which

to maintain [test scripts]”

“Our project...lot of business logic,
we handle lot of features additions

makes them grow in numbers with
every sprint and it is really difficult

Frequent change requests received
from the customers, constant addi-
tion, modification of page
elements, effect on test scripts
size, making test script mainte-
nance difficult for the team

Key point Adding new features, Test scripts | Frequent change requests,
continue to grow, Difficulty in test | Constant changes in test scripts,
script maintenance Difficulty in test script mainte-

nance

Code Grow in test scripts, Difficulty in | Constant test script changes, Diffi-
maintaining test scripts culty in maintaining test scripts

Concept Difficulty in test script maintenance | Difficulty in test script mainte-

nance

Category Test script maintenance

Selective Coding. Here, only those interview transcripts were coded that were related
to our core category i.e. “Adopting Test Automation”. Constant comparative method

190 S. Tyagi et al.

was used on interview transcripts and observations to find out codes, concepts and finally
the categories related to our core. Table 3 shows an example of selective coding
process.

The other concepts and categories emerged in a similar manner which sheds light
on the problems faced by agile teams while adopting test automation. Observations
gathered from the two projects were also analyzed and compared to the concepts derived
from the interviews. It was found that our observations supported the data provided in
the interviews, thereby strengthening our interview data. During our data analysis one
more set of concepts emerged that formed the strategies used by agile teams in order to
overcome those challenges as described in the present study. Figure 1.a shows different
levels of data abstraction using GT and Fig. 1.b explains the emergence of category
choosing the right tool from underlying concepts.

Category Choosinga tool to support different
interfaces, devices & platforms

Concept Choosinga tool to automate
T different testtypes
Code Choosinga tool to automate\’
I continuous integration & #» | Choosingthe right tool

deployment /
Key Point Choosinga tool to automate
regression testing
Choosinga tool to support scripting
Interview Transcript
1.a 1.b

Fig. 1. a. Different levels of data abstraction in GT. b. Emergence of category choosing the right
tool from concepts

Determining Theoretical Saturation. The selective coding continues until the
researcher has sufficiently integrated the core category and its connections to other rele-
vant categories [20]. On reaching a stage where further data collection and its analysis
were leading us to the same categories with no new data, we found out that our categories
have reached saturation. Then we started sorting the theoretical memos conceptually
and this process is called sorting that forms the theoretical outline of our study.

The last step in GT is generating a theory also know as Theoretical Coding. It
involves the conceptualization of how different categories and their associated properties
relate to each other as hypothesis so that can be integrated into a theory [19, 26]. We
followed Glaser’s guidelines and performed theoretical coding at the later stages of
analysis [14].

Table 4 shows different concepts and categories that form the challenges and corre-
sponding concepts that form the adopted strategies while practicing test automation on
agile projects. Also, the number within the parenthesis indicates the number of inter-
viewees who referred these challenges/strategies. As the codes, concepts, and categories

Adopting Test Automation on Agile Development Projects 191

emerge directly from the data, which is collected from the real world, the resulting theory
is grounded within the context of the data [17].

Table 4. Strategies adopted on different agile projects

Challenges Strategies
Choosing the right tool (26) e Know your test automation requirements, Know your tool
14

o Cost Benefit Analysis (CBA) (11)

Managing test environment (15) | ¢ Upfront planning for managing test environment (11)
e Virtualization (10)

Test script maintenance (18) e Automation testing framework (12)
e Page Object Model (POM) (8)

Mindset toward automation (17) | ¢ Engender automation awareness (12)
e ROI evaluation (11)

Effective communication (16) | e One team approach (10)

In the following section, we present the research findings from our study. Selected
interview quotations are provided under each category to better explain it in the present
context. Our results are grounded further by key points, codes, and concepts from the
interviews as well as the observations from two agile projects. It is difficult to describe
here in detail due to space reasons.

3 Results: Adopting Test Automation on Agile Projects

In this section, we present our grounded theory: Strategies used by agile practitioners
while adopting test automation in their projects. We have selected quotations from our
study to explain the challenges faced by agile teams and strategies opted by them.

3.1 Challenge 1: Choosing the Right Tool

Test automation is very important right from the start of any agile project. It is essential
to know the project requirements, which tests needs to be automated and what tools are
needed. Agile practitioners admitted that while transitioning to scrum and XP, they were
still using traditional record and playback tool but results were highly unsatisfactory.

Other associated concerns include choosing a tool for automating continuous inte-
gration and deployment, automating acceptance and regression tests and a tool for
effective test management.

“Output of sprint N has to combine with sprint N + 1, daily defect fixes that continuously check
in to the code, this whole process is continuous integration (Cl), it also takes lot of time, and
only by automating our CI process we could survive our project deadlines.” — P10, Senior Tester

Choice of test automation tool particularly in agile projects is a very crucial decision as
if you would end up choosing a wrong tool with the partial or incomplete evaluation; it may

192 S. Tyagi et al.

lead to loss of efforts spent in each sprint, loss of licensing fees as well as loss of automa-
tion opportunities. In order to prevent these losses, some strategies were used to overcome
the problem of choosing the right tool. Two adopted strategies are explained below:

Strategy 1: Know your Test Automation Requirements, Know your Tool. One
should be scrupulous while choosing a test automation tool in agile projects. Agile teams
should understand their project needs and then decide on test automation tool, it is
imperative to first know the exact automation requirements of the projects like test types
(unit, acceptance, regression, etc.) needs to be performed, coding languages to be used
on the project and suitability of choosing between licensed and open source tools; it is
good to choose a tool based upon the compatibility with the application under test (AUT).

“A lot of licensed and open source tools are available...You must know that what you want to
do with that [Tool] and for what [purpose] as requirements may vary depending on project size,
cost and allocated time.”— P16, Test Analyst

Strategy 2: Cost Benefit Analysis (CBA). Cost of the tool is also one of the important
deciding factors in most agile projects. Licensed tools have certain benefits over open
source tools like good user support, sufficient training material and ease of use but that
comes with the cost.

“...would be using that [tool], whether it’s a licensed or open source it depends on CBA (Cost
to benefit analysis) of that tool w.r.t our project.” — P32, Scrum Master

It is always better to know what test types needs to be automated, tools utility with
project needs, its ability to integrate with other project and defect management tools.

3.2 Challenge 2: Managing Test Environment

The ultimate aim of any agile project is to deliver quality product and test automation
plays an important role in adding that quality to the product in such short sprint durations.
Keeping test environment as close as possible to production environment ensures the
quality of the test automation. Agile teams were facing difficulties while creating
multiple test environments for every different configuration, platforms and workflows.

“Why it is worth to have Test Automation in agile projects because it helps you in achieving
your quality objectives, test environment should be a replica of your live [production] environ-
ment...if you practice this then the code that go into upper [production] environment would meet
quality criteria.” — P13, Agile Coach

Strategy 3: Upfront Planning for Managing Test Environment. Testing whether it
is automation or manual is only been successful when performed in the proper test
environment. In agile, it is very common to have multiple test environments, multiple
configurations for the single business application so upfront planning for managing test
environment is very important.

Adopting Test Automation on Agile Development Projects 193

«

. important to have upfront plan for managing your test environments... by maintaining
spreadsheets containing all our test environment related information like different configura-
tions, different test devices and test data used by those devices, any database related information
and continuously update it.” — P29, Scrum Master

Strategy 4: Virtualization. It serves an important strategy in managing issues related
to test environment management. Virtual machine setup provides that additional space
to both developers and testers to test their application under test (AUT). It was used to
reduce the overhead caused by different OS and hardware configurations.

“...by using virtual machines test environments can be created according to the requirement
and the scope of the test... Above all it is scalable and has on demand access which reduces our
burden of managing test environment.”— P25, Test Analyst

Participants were using a document to gather different test environment requirements
to plan for managing their existing environment or building a new. VMware worksta-
tions were also used for managing test environments related issues.

3.3 Challenge 3: Test Script Maintenance

For every new addition or modification in feature, test script needs to be modified and
maintained for the entire duration of the projects with multiple sprints and this was a
challenge for them.

“...The scale of regression testing grows with each sprint and so does the test scripts, so how
you would add more test cases to the existing regression test suite? How you maintain those
scripts?” — P34, Senior Tester

Maintainability of code was a big issue, many participants worked on web based
applications where test script was created by identifying web page elements and their
associated properties, so if any page element whether it is a dropdown box or submit
button had changed then they needed to track and modify that script.

Strategy 5: Automation Testing Framework. Majority of our participants admitted
that having a good automation testing framework solved their test script maintenance
problem to the larger extent. Automation testing framework is an engine that runs your
automation test scripts with the help of some tool like Selenium or Unified Functional
Tester (UFT) to test your application under test. Most commonly used frameworks were:
Data driven framework — modular functions are stored in external files and called by
test scripts; Keyword driven framework — keyword is assigned to every user action (like
button click), stored in a spreadsheet and called by test scripts; Hybrid framework —
combination of data and keyword driven frameworks; and Behaviour driven framework
— creating examples to describe the user behavior while using the application under test.

Strategy 6: Page Object Model (POM). Another technique used by many agile prac-
titioners to make test script maintenance easier was Page Object Model (POM) approach.
Here, each web page element (button, text box) is modeled as an object within the test
code and represents as one class.

194 S. Tyagi et al.

3.4 Challenge 4: Mindset Toward Automation

Whenever any project is transitioning to agile then it is important to have support from
the management so that every team member proactively put up his concern and ask for
any assistance that is needed to overcome any constraint regarding implementing test
automation. They need to understand that test automation is a long term investment and
should support the team by providing enough budget and time.

“Transition to agile...need support from your senior management particularly when you
embrace test automation in agile...have realistic expectations from the team and...accept initial
failures and invest in terms of tools or trainings...only this kind of thinking can encourage use
of test automation in any agile project.” — P20, Tester

Strategy 7: Engender Automation Awareness. Agile teams need a shift in their
thinking while adopting test automation. They should know the merits and demerits of
having test automation in their projects and how to use it [test automation] effectively.

“When you wrap test automation around agile...not easy to adapt as your team won’t have that
thinking that agile demands...to create automation awareness in your team...try to create it by
providing coaching, workshops or short trainings on test automation in agile environment.” —
P13, Agile Coach

Strategy 8: ROI Evaluation. Senior management should provide the required infra-
structure and environment necessary to conduct effective test automation practices.
Eleven of our participants used ROI (Return on Investment) evaluation to get their
support. ROI calculation is based on evaluating the benefits of test automation with
respect to its implementation costs in terms of tool cost, manpower cost, time needed to
build required infrastructure for automation.

3.5 Challenge 5: Effective Communication

Many participants admitted that lack of communication in their teams often results in
poor automation planning, late feedbacks and wrong automation effort estimates. Test
automation is teamwork and should be taken care of by both developers and testers.

“...have to consider a lot many things...plan automation, what features to automate in each
sprint, when to start automation and one thing is crucial...conversation element - PO talking to
developers, testers talking to developers and creating a wonderful coordination with effective
communication.” — P38, Product Owner

While implementing test automation, it is very important for developers and testers
to collaborate with each other, testers should help developers in designing unit test cases
and developers should help testers in automating acceptance tests. The more they
communicate more effective test automation would become.

Strategy 9: One Team Approach. One team approach was the key crusader in
building effective communication between testers, developers and PO’s as mentioned
by ten agile practitioners. Many agile teams were giving much emphasis to have proac-
tive communication with each other including both verbal and written communication

Adopting Test Automation on Agile Development Projects 195

so that every team member developed this feeling that they are working together as one
single team not as separate entities.

“When you automate...expected to not only report defects but also to communicate [defects]
effectively to the development team and track it till closure. When you have that [proactive
communication] surrounding your team that keeps everyone in one loop then results are more
than satisfactory.” — P32, Scrum Master.

If there is any defect then it should be properly determined whether it is because of
script or actually a test case has failed and it can only be possible when testers proactively
talk to developers and also send a mail to team’s group mail id for better information
flow.

4 Discussion and Related Work

Agile projects have daily rounds of unit tests, integration tests, acceptance tests and
continuous deployment. The serious effect of not having perfect test automation in place
forms the rationale behind our study.

The choice of the right tool from a plethora of available tools is a decisive step
towards successful test automation. This is confirmed by studies of Oliveira [27] and
Collins [28]. If one tool is not working well for the project, in the next iteration, agile
teams should try something new [28]. Yoder [29] discussed the importance of selecting
automation tools and when automated tests should be run under “Automate First”
pattern.

The implications of managing test environment and test script maintenance revealed
by our findings are also supported by a number of studies. Deak [30] highlights a number
of negative factors that influence testing like insufficient number of test environments
and weak infrastructure. Karhu [31] contributes test environment, test maintenance and
implementation time as key concerns about test automation infrastructure. Fewester
et al.’s study [32] mentioned negative impact on test automation cost due to improperly
managed test script maintenance cost. Bach [33] advocates the benefits of test automa-
tion over maintenance cost of constantly changing test scripts suite.

For successful test automation, management should be open to test automation prac-
tices and their financial benefits in spite of time constraints. Late testing mindset need
to be changed to early testing mindset in agile environment [34] and management
support is also desired in terms of having realistic expectations from the test automa-
tion [35].

According to [34] efficient communication and interaction between testers and
developers improved both testing and development, eventually improving information
flow and efficiency in process. Graham [36] suggested active participation of testers in
requirement reviews along with developers for performing test planning in parallel.
Yoder [29] also reported whole team approach as one of the pattern for agile quality
mindset.

196 S. Tyagi et al.

5 Limitations

The inherent limitation with grounded theory research study is that the research findings
are grounded in the specific contexts that are explored in the research. Data triangulation
was used for reducing researcher bias, as we gathered the data from two sources, namely,
interviews and observations that may yield more reliable data than using a single data
source. The context in this research was governed by our choice of research destinations
and the availability and accessibility of agile practitioners to participate in this study.
We do not claim that our findings are universally applicable to all the agile projects
practicing test automation, however, they accurately characterize the contexts studied.

6 Conclusion

A Grounded Theory study has been conducted over a period of eighteen months that
involved 38 agile practitioners from 18 software development organizations in India.
This study investigated the test automation adoption from the specific perspective of
agile practitioners through their real life project experiences using GT. Unlike most of
the participant organizations, some of them were recently transitioned to agile software
development methods. However, all of them were striving to build good test automation
infrastructure for their projects. During the study, we discovered the various challenges
and strategies adopted thereof by agile teams while establishing good test automation
practices in their projects. Main contribution of this paper is towards understanding the
key challenges while adopting test automation in agile projects and providing some
widely used strategies to overcome those challenges. This study can be utilized by agile
software development teams to have a plan of action and streamline the test automation
to get maximum benefits. We acknowledge this fact that all challenges and strategies
adopted by software development organizations practicing test automation in agile
projects may not have emerged in this study. This may also serve as the foundation for
conducting future studies in the same area.

Acknowledgments. Our big thanks to all agile practitioners for participating in this study. This
research is supported by our institute’s TRF academic grant. Thanks to Prof. Yogesh Singh for
his immense support and guidance.

References

1. Sayed, I.N.: The case of agile testing. White Paper, cognizant 20-20 insights (2016). https://
www.cognizant.com/InsightsWhitepaper. Last accessed 08 Jan 2016

2. Gao, J., Tsao, J., Wu, Y.: Testing and Quality Assurance for Component-Based Software.
Artech House, Boston (2003)

3. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Management, and
Performance. Addison-Wesley, Boston (1999)

4. Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn. pp. 314—
316. Addison-Wesley Professional, Boston (2009)

https://www.cognizant.com/InsightsWhitepaper
https://www.cognizant.com/InsightsWhitepaper

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Adopting Test Automation on Agile Development Projects 197

. Gregory, J., Lisa, C.: More Agile Testing. Addison-Wesley, Upper Saddle River (2015)
. Puleio, M.: How not to do Agile testing. In: Proceedings of the Conference on AGILE 2006

(AGILE 2006), pp. 305-314. IEEE Computer Society, Washington, DC (2006). doi:http://
dx.doi.org/10.1109/AGILE.2006.34

. Collins, E., Lucena Jr., F.: Strategies for agile software testing automation: an industrial

experience. In: Proceedings of the 2012 IEEE 36th Annual Computer Software and
Applications Conference Workshops (COMPSACW 2012), pp. 440-445. IEEE Computer
Society, Washington, DC (2012)

. Glaser, B.: Grounded theory institute: methodology of Barney G Glaser (2010). http:/

groundedtheory.org/. Last accessed 28 Nov 2015

. Hoda, R., Noble, J., Marshall, S.: Agile undercover: when customers don’t collaborate. In:

XP 2010, Norway, pp. 73-87 (2010)

Goulding, C.: Grounded Theory: A Practical Guide for Management, Business and Market
Researchers. Springer, Berlin (2002)

Dorairaj, S., Noble, J., Malik, P.: Understanding team dynamics in distributed agile software
development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 47-61. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30350-0_4

Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 4th edn. Sage, London (2015)

Charmaz, K.: Constructing Grounded Theory, 2nd edn. Sage (2014)

Glaser, B.: Basics of Grounded Theory Analysis: Emergence vs. Forcing. Sociology Press,
Mill Valley (1992)

Dorairaj, S., Noble, J., Malik, P.: Understanding lack of trust in distributed agile teams: a
grounded theory study. In: 16th International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012), pp. 81-90. IET (2012)

Hoda, R., Noble, J., Marshall, S.: Organizing self-organizing teams. In: ICSE 2010, pp. 285-
294. ACM, South Africa (2010)

Martin, A., Biddle, R., Noble, J.: The XP customer team: a grounded theory. In: Proceedings
of the AGILE Conference, pp. 57-64 (2009)

Whitworth, E., Biddle, R.: The social nature of Agile teams. In: Agile 2007, pp. 26-36. IEEE
Computer Society, USA (2007)

Glaser, B.: Doing Grounded Theory: Issues and Discussions. Sociology Press, Mill Valley
(1998)

Glaser, B.: Theoretical Sensitivity: Advances in Methodology of Grounded Theory. Sociology
Press, Mill Valley (1978)

Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, Aldine (1967)

Agile Software Community of India. http://www.agileindia.org/. Last accessed 12 June 2016
Agile India 2016. http://www.2016.agileindia.org/. Last accessed 10 Feb 2016

Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded theory:
guidelines for grounded theory studies in information systems. Inf. Syst. J. 20(4), 357-381
(2010)

Georgieva, S., Allan, G.: Best practices in project management through a grounded theory
lens. Electron. J. Bus. Res. Methods 6(1), 43-52 (2008)

Glaser, B.: The Grounded Theory Perspective III: Theoretical Coding. Sociology Press, Mill
Valley (2005)

Oliveira, J.C., Gouveia, C., Filho, R.Q.: A way of improving test automation cost-
effectiveness. In: CAST. EUA, Indianapolis (2006)

http://dx.doi.org/10.1109/AGILE.2006.34
http://dx.doi.org/10.1109/AGILE.2006.34
http://groundedtheory.org/
http://groundedtheory.org/
http://dx.doi.org/10.1007/978-3-642-30350-0_4
http://www.agileindia.org/
http://www.2016.agileindia.org/

198

28.

29.

30.

31.

32.

33.
34.

35.

36.

S. Tyagi et al.

Collins, E., Lucena Jr., F.: Software test automation practices in agile development
environment: an industry experience report. In: Proceedings of the 7th International Workshop
on Automation of Software Test (AST 2012), pp. 57-63. IEEE Press, Piscataway (2012)
Yoder, J.W., Wirfs-Brock, R., Washizaki, H.: QA to AQ part six: being agile at quality
“Enabling and Infusing Quality”. In: HILLSIDE Proceedings of 23rd Conference on Pattern
Languages of Programs, October 2016

Deak, A.: A comparative study of testers’ motivation in traditional and agile software
development. In: Product — Focused Software Process Improvement, pp. 1-16 (2014)
Karhu, K., Repo, T., Taipale, O., Smolander, K.: Empirical observations on software testing
automation. In: Proceedings of the 2nd International Conference on Software Testing,
Verification, and Validation (ICST 2009), Denver, Colo, USA, pp. 201-209 (2009)
Fewster, M.: Common Mistakes in Test Automation, Grove Consultants (2001). https://
www.stickyminds.com/sites/default/files/presentation/file/2013/01 TAU_M5.pdf. Last
accessed 02 Feb 2016

Bach, J.: Test automation snake oil. Windows Tech. J., 40-44 (1996)

Taipale, O., Smolander, K.: Improving software testing by observing practice. In: Proceedings
of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering (ISESE
2006), pp. 262-271. ACM, New York (2006). doi:http://dx.doi.org/
10.1145/1159733.1159773

Kettunen, V., Kasurinen, J., Taipale, O., Smolander, K.: A study on agility and testing
processes in software organizations. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis, pp. 231-240 (2010)

Graham, D.: Requirements: requirements and testing: seven missing-link myths. IEEE Softw.
19(5), 15-17 (2002). doi:10.1109/MS.2002.1032845

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license

and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.stickyminds.com/sites/default/files/presentation/file/2013/01TAU_M5.pdf
https://www.stickyminds.com/sites/default/files/presentation/file/2013/01TAU_M5.pdf
http://dx.doi.org/10.1145/1159733.1159773
http://dx.doi.org/10.1145/1159733.1159773
http://dx.doi.org/10.1109/MS.2002.1032845
http://creativecommons.org/licenses/by/4.0/

	Adopting Test Automation on Agile Development Projects: A Grounded Theory Study of Indian Software O ...
	Abstract
	1 Introduction
	2 Research Method
	2.1 Grounded Theory
	2.2 Data Collection
	2.3 Data Analysis

	3 Results: Adopting Test Automation on Agile Projects
	3.1 Challenge 1: Choosing the Right Tool
	3.2 Challenge 2: Managing Test Environment
	3.3 Challenge 3: Test Script Maintenance
	3.4 Challenge 4: Mindset Toward Automation
	3.5 Challenge 5: Effective Communication

	4 Discussion and Related Work
	5 Limitations
	6 Conclusion
	Acknowledgments
	References

