
Teaching Agile Methods to Software Engineering
Professionals: 10Years, 1000 Release Plans

Angela Martin1, Craig Anslow2(B), and David Johnson3

1 Xero, Wellington, New Zealand
angela.m.martin@gmail.com

2 School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New Zealand

craig@ecs.vuw.ac.nz
3 Oxford E-Research Centre, University of Oxford, Oxford, UK

david.johnson@oerc.ox.ac.uk

Abstract. Agile methods are an essential resource for software engi-
neers. The Agile movement evolved out of industry and is the common
approach to software development today. Teaching Agile methods chal-
lenges students’ working attitudes, where putting Agile into practice is
not possible through simply applying methods prescriptively, but by hav-
ing an Agile mindset. In this paper we present and discuss our experiences
over the last decade of teaching a novel intensive Agile methods week long
course as part of a professional Masters of Software Engineering degree
programme at the University of Oxford. We describe the typical shape
of the course, discuss how students experience Agile values and manage-
ment practices to foster an Agile mindset, and provide student feedback
indicating a consistently positive response to our approach at teaching
Agile methods to software engineering professionals. Our reported expe-
riences and material can help other educators who want to run similar
courses and adapt where required.

Keywords: Agile software development · Experience report · Group
work · Graduate programs · Software engineering professionals

1 Introduction

Since the introduction of the Agile Manifesto, Agile methods in software engi-
neering have gained popularity year on year, and today Agile is not just com-
monplace, but often expected as a standard industry practice in software devel-
opment teams. Agile methods were evolved by and are applied by industry [6].
This growth in applying Agile principles in the software industry went hand-
in-hand with a growth in Agile training being offered to software engineering
professionals in the work place, as well as more recently in undergraduate and
some graduate computer science and software engineering degrees.

The University of Oxford Software Engineering Programme (SEP) was estab-
lished in 1993 and exists to create strong connections between theory and prac-
tice in software engineering and to make the expertise of the university available
c© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 151–166, 2017.
DOI: 10.1007/978-3-319-57633-6 10



152 A. Martin et al.

to those who wish to study part-time while continuing in full-time employment.
Most students on SEP are practicing software engineering professionals who
often already have university degrees or extensive industry experience. Week-
long intensive courses in a variety of subjects are offered, with up to 16 students
per class. Each student must take 10 courses in any order over a four year period
and are used as credit towards a Masters’ degree (MSc) in Software Engineering
awarded by the University of Oxford. In 2007 the Agile Methods (AGM) course1

was introduced in response to the growing needs for software engineering pro-
fessionals to understand and introduce Agile in their work places.

Teaching Agile methodologies often focuses on learning a particular
method [6], such as Scrum [14] or XP [2]. It was recognized that the inten-
sive nature of the week long part-time courses at Oxford made it difficult for
an in-depth dive into the variety of Agile methods and practices to fit into the
short time span of an individual course. To this end, the Agile Methods course
is devised to bring students into an Agile mindset – through a combination of
(1) coupling lectures with simulated exercises of Agile management practices,
(2) critical analysis and debate around case studies on Agile adoption, and (3)
hands-on approach of Agile practices within the classroom.

In this paper, we present an approach to teaching Agile to software engineer-
ing professionals and discuss our experiences over the last 10 years of delivering
the course. We give a course outline describing the pre-course assignment, case
studies, lecture content, group exercises, post-course assignment, and finally dis-
cuss lessons learned from teaching the course over a long period of time. Other
educators who wish to run similar courses can learn from our experiences and
material reported in this paper and adapt where required.

2 Course Outline

The Agile Methods course aims to give an overview of Agile to software engi-
neering professionals and help them understand and adopt an Agile mindset.
The learning objectives of the course are as follows: (1) compare and contrast
the different agile methods, (2) determine the suitability of agile methods for a
particular project and organization, (3) evaluate how well a project is following
agile principles, and assist the project to become more agile (where appropri-
ate), (4) understand the relationship between the customer and the development
team in agile projects and the responsibilities of both communities, and (5) how
to foster organizational change to build better software.

The course is scheduled for a week and spans five consecutive days (Monday
to Friday), where each day is timetabled from 0900 to 1730, except for Friday
where the class concludes at lunch time (see Table 1 for an example Agile Meth-
ods course schedule). The week long class is split into discrete time boxes, with
three sessions in the mornings, and three in the afternoons, concluding each day
with a learning stand up. Each time box consists of a lecture, an exercise, or a
case study discussion, with breaks in between each session.
1 https://www.cs.ox.ac.uk/softeng/subjects/AGM.html.

https://www.cs.ox.ac.uk/softeng/subjects/AGM.html


Teaching Agile Methods to Software Engineering Professionals 153

Table 1. An example University of Oxford Agile Methods (AGM) course schedule.
Encoding: Lectures – yellow, Group Exercises – blue, Case Study – green. Three sessions
in the morning and three in the afternoon followed by a learning stand-up. Small coffee
and tea breaks happen between each session.

Time Monday Tuesday Wednesday Thursday Friday

0900-1000 Introduction Case Case Case Case
Study Study Study Study

1015-1115 Agile XP Empirical Personas Retrospectives
Manifesto Research

1130-1230 Communication Release Planning Lean User Retrospective
& User Stories & Kanban Stories Q&A, Survey

1230-1330 Lunch Lunch Lunch Lunch Lunch
1330-1430 Case Case Case Estimation

Study Study Study

1445-1545 Scrum Iteration Planning Kanban Release
& Estimation Game Planning

1600-1700 Marshmallow Coffee Machine Kanban Iteration
Challenge Game Game Cont’d Planning

1700-1730 Learning Learning Learning Learning
stand-up stand-up stand-up stand-up

The only prerequisite is that a student must be already enrolled in the SEP.
To cover enough Agile background material and different methods we use Agile
Software Development Ecosystems [8] as the text book. A pre-study assignment
is given to each student to help them prepare in advance of the teaching week
and a post-course assignment as the student’s assessment.

2.1 Pre-study Assignment: Case Study

It is important for students to begin their study about Agile in advance of the
teaching week, and we cater for this by sending them an assignment four weeks
in advance of the course. One of the main themes that the course explores is that
of Agile adoption; and not just the idealized version of Agile adoption, but the
in-the-trenches realities of Agile adoption. We incorporate a case-based learning
approach which is common in MBA programs [7].

Students are assigned a case study on Agile adoption and prepare a short
presentation to be delivered during the class, followed by a mediated class dis-
cussion. Table 1 highlights the case study presentations schedule in green and
Sect. 6 lists the case studies for the 2016 course editions. The case study papers
are Agile adoption experience reports from past XP and Agile conferences. The
case studies involves students actively discussing different industry-based case
studies that focus on different organizations that go through an Agile adop-
tion process. No single case study describes an easy Agile adoption story; each
highlights a different discussion point around adoption or organizational change.

Each student presents their case study once throughout the week for up to 30
mins. The student summarizes the paper and leads a discussion. The students are



154 A. Martin et al.

asked to first present on who the organization is, who the author is and what their
role is within the organization, and what they are trying to achieve or improve in
the organization. The class then discusses what should the organization do based
on this information. The presenter then describes what the authors actually did
and what the outcome of the case study was. Finally, the class discusses if what
the authors did made sense, if something different should be recommended, and
compares this study with other case studies that have already been presented.

This case-based learning approach enables students to gain an appreciation
of how difficult Agile adoption is at an organizational level. By discussing a
range of case studies we aim to equip students with knowledge of a broad range
of situations that may arise and be able to think critically about where Agile
methods can and should be applied in practice.

2.2 Lectures

During the week lectures are delivered that fit into one hour time boxes and
consist of presentations and class exercises. Throughout the week we disperse
the lectures among case study sessions and group exercises, to keep class activity
varied and to ensure the theory is backed up with practical exercises. Table 1
highlights the lectures in yellow.

Agile Manifesto. After an introductory lecture, we present the Agile manifesto
and the 12 underlying principles. We focus on the main idea of the manifesto that
is: We are uncovering better ways of developing software by doing it and helping
others do it. We emphasize the importance of the main items of the manifesto,
discuss the principles of the manifesto and give some examples to illustrate these
principles and values. Finally, we finish the lecture with some of the common
misconceptions about Agile methodologies and from our own experience such as
If you’re going to adopt Agile development, you should do it 100% and Switching
to Agile development offers excellent immediate benefits.

Agile Methods. We present lectures on time-boxed methods in Agile, where we
give an overview of both Scrum and XP. For each method we give an overview
of the main features, the different practices and roles that team members have,
and explain the core values and contributions. In both methodologies we focus
on explaining delivering business value with regular steps, monitoring features
delivered, and adjusting plans according to results. Then we discuss balancing
allowing the business to change their mind while the development team continues
to get work done on a stable scope. We present the different team roles, different
practices such as sprints/iterations, maintaining a product backlog, planning,
daily meetings, and iteration reviews. We emphasize the values of Agile teams:
commitment, focus, openness, respect, and courage. Scrum and XP have similar
and overlapping structures, roles, and values. There are however some subtle
differences that we highlight in the Scrum and XP lectures, for example where
XP has a greater emphasis on engineering practices such as pair programming
and Test-Driven Development (TDD). We feel it is important to cover both
of these time boxed methodologies, as Agile training frequently champions one



Teaching Agile Methods to Software Engineering Professionals 155

method over the other. Our approach is to give students an understanding of
what Agile methodologies are available to them, with a view to helping them to
think in an Agile mindset and not focus on just the methods. We additionally
give overviews of other methods including: Kanban, Lean, Crystal, DSDM, and
CRISP-DM.

Release and Iteration Planning. Understanding user stories is a an impor-
tant aspect to software release planning in Agile. Not only are they used to elicit
requirements from customers and communicate ideas among a team, they are
used as units of customer value. In Agile, delivering customer value is a priority,
and by creating user stories teams can plan releases, as well as iterations, around
maximizing value for their customers. We present lectures on how to generate
personas (fictional end-users as a focus for delivering value to somebody) and
use them in-turn to generate candidate user stories. We then show how to esti-
mate the amount of work a user story might require to be implemented. One
of the key things we try and get across is that user stories are not all equal,
and that an estimation of the amount of work required to implement one varies
from team to team. Estimation is difficult, and requires team discussion and
agreement, and we illustrate this idea with students playing Planning Poker2,
among other methods, to estimate animal points (see Fig. 1(a)). We then show
how user stories with estimates can be used to plan releases (e.g. a release after
4 week sprints) by selecting a series of user stories that delivers minimum demon-
strable value for customers (in order to receive feedback in as short a time as
possible). At the same time iteration planning (e.g. weekly) is discussed to show
how an Agile team should aim to have working software as early as possible and
often. Coupled with the team release planning exercise, our aim is to put stu-
dents through the motions of becoming customer-focused and in the mindset of
team collaboration to achieve goals in an iterative manner. We also discuss how
to effectively track progress during release and iteration planning using various
techniques such as information radiators (e.g. burn down/up charts).

Guest Lectures. We typically invite expert guest lecturers (industry practition-
ers or other academics) to deliver specialist content. In particular we have had
lectures on Example Driven Development (xDD) (e.g. TDD, ATDD, BDD), Lean
& Kanban, change management, and empirical research on how Agile methods
are used in practice.

Retrospectives. The final lecture is on retrospectives, where we typically have
a guest lecture present and then perform a retrospective exercise with the class.
This lecture focuses on the ideas from Derby and Larsen [5] and Kerth [9].
Once the retrospective has completed, the post-course assignment (Sect. 2.4) is
explained and handed out and then finally students conduct a course survey
which is used for course evaluation purposes.

2 http://www.planningpoker.com/.

http://www.planningpoker.com/.


156 A. Martin et al.

2.3 Group Exercises

One of the key approaches we take with teaching our Agile Methods course is
to encourage peer learning and learning-by-doing. To reinforce the lectures stu-
dents participate in a number of exercises, working as pairs and groups. Table 1
highlights the group exercises in blue.

Communication. We explain to the students how important it is to commu-
nicate effectively with customers on Agile projects by illustrating the customer
design cartoon3. To reinforce this message the students complete a communi-
cation exercise – Offing the Off-Site Customer 4. This exercise involves pairs of
students where one acts as a “customer” and the other as a “programmer”. The
aim of the exercise is for the programmer to elicit requirements from the cus-
tomer in order to draw a diagram of the product vision on paper (see Fig. 1(b)).
The customers are given a drawing that they need to communicate to the pro-
grammers to recreate, without visually communicating the drawing. The exercise
is played out over two rounds. In the first round the customers must only com-
municate with the programmer via handwritten text messages on index cards.
In the second round, the customers and programmers are allowed to use ver-
bal communication. After each round, the students reflect on the experiences of
trying to communicate the drawings between them. The point of this exercise
is to suggest that people in close proximity to each other with minimal phys-
ical barriers have a better chance of communicating effectively. We encourage
the students to think about their own work place and to find a way to set up
environments to encourage regular and meaningful collaboration.

Prototyping. To get a feel of prototyping with time-boxed methods, students
complete the Marshmallow Challenge5 and are asked to prototype a fully func-
tioning coffee machine out of cardboard based on ideas from Cockburn [4] (see
Fig. 1(c)). The goal of the coffee machine exercise is to try Scrum for an iteration
and then walk a mile in a product owner’s shoes as part of a second iteration.
The students are divided into teams (up to four). During the first iteration the
teams have 7 min to write stories about how the machine will work and prepare
materials (e.g. boxes, tape, scissors, cups, water). For each iteration they have
5 min to plan what stories they will implement, followed by 10 min to design and
implement the stories, and finally a group presentation to the class. The purpose
of this exercise is to get the students to work in a simulated environment as a
team in a time-boxed manner, and to understand that prototyping and early
releases only need to demonstrate a concept to a customer to deliver value.

Agile Debate. To help students gain a better understanding of the differences
between the Scrum and XP methodologies we ask them to perform a debate. The
class is separated into two sides: Scrum and XP. We give them two well-known,

3 http://projectcartoon.com.
4 http://www.jamesshore.com/Presentations/OffingTheOffsiteCustomer.html.
5 http://www.tomwujec.com/design-projects/marshmallow-challenge/.

http://projectcartoon.com
http://www.jamesshore.com/Presentations/OffingTheOffsiteCustomer.html
http://www.tomwujec.com/design-projects/marshmallow-challenge/


Teaching Agile Methods to Software Engineering Professionals 157

and highly contrasting, quotes, from Martin Fowler6 and Ken Schwaber7 as the
basis for their arguments. The students use the session to come up with their
own arguments and perform the debate with the lecturer as the adjudicator. The
aim of the debate is for the students to understand that there is no silver-bullet
when it comes to applying and adopting Agile methods.

Kanban Game. To help students gain an appreciation of the Kanban method
we get them to play the getKanban8 board game (see Fig. 1(d)). getKanban is a
physical board game designed to teach the concepts and mechanics of Kanban
for software development in a classroom setting. Each team can have up to six
people. Each team has a playing board representing a Kanban task board, and
a collection of story cards representing work to be done. Teams compete to
maximise profit by optimizing the flow of work. We simulate the game for up to
21 days. During the game the teams construct charts based on data from the
game including a Cumulative Flow Diagram, a Run Chart, and a Lead Time
Distribution Chart. To help make the game more realistic there are a number
of simulated events that occur throughout the game that challenge the teams
(e.g. a developer needs to attend a training course) and require them to make
various system design, prioritization, and resource allocation decisions. We allow
a couple of hours to play the game and have a debrief session at the end to help
students understand the intricacies of the method.

Team Release Planning. Building on the accompanying lecture sessions, stu-
dents carry out a team release planning exercise which covers most of Thursday.
This puts into practice everything they have been taught about Agile. In this
exercise, we split the students into groups of no more than four per team. In
this exercise, we do not mandate any team structure – we allow the students to
self-organize, much like a real Agile team would be expected to do. The lecturer
sets a particular domain area (e.g. solve London’s transport issues) in which each
team can then pick their own idea for a small product or service. They create
a release plan (including personas and user stories) over four weeks and four
time-boxes on a card wall, with the aim of being able to release a first version
of their product to a customer after the four weeks. At the end of the exercise,
each team presents their release plan to the rest of the class (see Fig. 1(e)).

Retrospective. A retrospective on the course is performed on the last day where
an external guest lecturer usually facilitates. Students record their thoughts
about the course on post-it notes into three categories: positive, could be better,
and aspects that were a surprise. Students place the ideas into different days of
the course on a card wall based on the timetable (see Fig. 1(f)). The facilitator
walks through the card wall and identifies and discusses key themes. The aim of
this exercise is for students to reflect upon what they have learned.

Learning Stand-up Meeting. At the end of each day the students perform
a learning stand-up meeting similar to a daily stand-up meeting (see Fig. 1(g)).
6 http://martinfowler.com/bliki/FlaccidScrum.html.
7 http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/.
8 https://getkanban.com/.

http://martinfowler.com/bliki/FlaccidScrum.html
http://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-and-scrum-2/
https://getkanban.com/


158 A. Martin et al.

(a) Estimation: plan-
ning poker with ani-
mal cards.

(b) Communication: customers &
programmers diagrams.

(c) Prototyping: cardboard
coffee machine.

(d) getKanban board game. (e) Team Release
Planning Exercise.

(f) Retrospective on the
class.

(g) Learning Standup that happens at the end of each day.

Fig. 1. Agile methods course – some sample class exercises that simulate some key
points about different Agile practices including: estimation, communication, prototyp-
ing with cardboard, Kanban, release planning, class retrospectives, and daily learning
stand up meetings.

The stand-up meeting is for each student to address the questions like they would
in a daily stand-up, hence fostering Agile team values of openness, respect, and
courage. The questions focus on what have they learned during the day and
what they would like to learn. Students write answers on post-it notes, present
them to the group, and then put them on a learning card wall.



Teaching Agile Methods to Software Engineering Professionals 159

2.4 Course Assignment: Essay and Release Plan

The course is assessed with an assignment where students are given six weeks to
develop a mock four-week release plan and complete an essay. The release plan
is based on a fictitious product idea (e.g. develop an application for a hospital
to help support children who suffer from a medical condition like autism). The
release plan is documented as a report, outlining the different personas, user
stories (based on one persona), and the release plan itself, similar to the team
planning exercise performed in class. They need to include the rationale for
deciding the team’s capacity for each sprint, and why they think that this release
plan makes the most sense for the customer. Developing the release plan in the
assignment aims to assess what the students learned in class, and we ask them
to reflect on this aspect comparing with their experience on the team release
planning exercise. The essay involves comparing and contrasting different Agile
adoption paths from two of the case studies (Sects. 2.1 and 6). One question
that students are asked to address is, “is there a one-size fits all Agile adoption
strategy?” The assignments are assessed following a marking guide9 where all
submissions are awarded a numerical grade between 0 and 100, interpreted as
follows: 0 and 49 denotes a fail, 50 and 69 denotes a pass, and 70 and 100 denotes
excellence. Most students are awarded a pass, some with excellence, and few with
fail; and grades are released approximately six weeks from submission. Students
can defer submitting the assignment and wait for a later edition, but this is rare.

3 Discussion

Teaching the AGM course over the last decade has given us in-depth experiences
from which to draw upon, that we would like to share. Throughout the duration
of this course, we have gathered student feedback to help inform and evolve the
course along the way, as well as having gathered formal feedback from students,
some of which we now discuss.

Lectures. One of the biggest challenges in designing this course is catering for
the intensive nature of the course delivery. While there are just over 30 h of
face-to-face time allocated to the course, we were conscious not to overwhelm
students with only lectures. To this end, about a third of the class time was
allocated for lectures, broken up with exercises and case study discussion ses-
sions. While lectures are useful for delivering information to students, our key
aim was to enable the Agile mindset. In this case, we put further emphasis on
learning-by-doing with hands-on exercises and class discussion. For each lecture,
we ensured that a relevant exercise or case study followed. Keeping the lectures
to a planned limit of only one hour per session we felt also deferred any feel-
ings of fatigue or boredom, which is vitally important in a short but intensive
learning environment. The students found the theory was important to learn
and appreciated the lecture content on empirical studies of Agile project teams
which showed evidence about the use of different practices within industry.
9 http://www.cs.ox.ac.uk/softeng/handbook/examinations.html.

http://www.cs.ox.ac.uk/softeng/handbook/examinations.html


160 A. Martin et al.

Group Exercises. The exercises were carefully chosen to help the students
put into practice, or to help them quickly understand, the lecture material. As
discussed above, the lectures were normally paired with relevant exercises or
case studies. For example, to take the learning from the release planning lecture
and put it into practice, we would follow the lecture with an exercise on story
estimation. Each of the exercises aimed to teach important aspects about the
different Agile methods. The communication exercise highlights the importance
of fast and frequent customer feedback. The prototyping exercise looks at how
Agile teams are formed and how to respond to change. The estimation exercise
put the use of abstract story points into practice on non-software artifacts to help
understand that estimation is a team effort and not a formula that is uniformly
applied. The Kanban board game exercise aims to demonstrate the Kanban
method and allows students to put the method in action to understand workflow.

Team Release Planning Exercise. The team release planning exercise
involves putting into practice the learning from all the previous lectures and
exercises. We encouraged the students to self-organize and gave them reminders
and guidance on the course material. We mainly left them to make their own
decisions on how to plan their product releases. This exercise always proves to
be the most challenging for the students, as it was designed to simulate the
real planning of a hypothetical product or service, where the exercise often took
many hours or a whole day. The task also requires a level of creativity that many
students were uncomfortable with, but it was essential to move them away from
their comfort zone in order to get into an Agile mindset where all members of a
team should be able to feel they can contribute.

Assignments. The assignment tasks mirrored much of what was taught during
the class, where students are asked to write a short essay comparing and con-
trasting two case studies, and then to create a release plan similar to their team
release planning exercise. The essay question was generally straight forward as
the case study presentations and debates prepared students well for this part
of the assignment. The release planning exercise, however, proved challenging
for many. The main difficulty in this task was that in class it was done as a
group exercise, while in the assignment the students were asked to do a similar
plan but on their own. Some students took the initiative to simulate the group
environment by asking work colleagues to carry out the collaborative parts of
the exercise, such as estimation. Others on occasions, however, fell back into
old habits or forgot the learning in class and strayed on a tangent to what was
expected. The creativity aspect of the release planning exercise, on occasions,
proved problematic, where students either could not come up with an idea for
a product that was suitable to generate a good number of personas and user
stories, or that sometimes a student would get carried away and produce an
assignment submission that was all about their great idea, but little in substance
for demonstrating what they learned in class. What we learned is that setting
such an assignment, care should be taken to ensure the students remember they
need to focus and demonstrate their learning in their submissions.



Teaching Agile Methods to Software Engineering Professionals 161

Practical Approach to Teaching Agile. The design of the class delivery
gives students a practical approach to an Agile environment. The time-boxed
class sessions planned throughout the week reflects how sprints or iterations
are planned in time-boxed Agile methods such as Scrum and XP. We used pair-
stairs10 to encourage students to pair with their colleagues during the week, much
like when applying the XP practice of pair programming. The daily learning
stand-up reflects the practice of daily stand-up meetings in a Scrum or XP team.
The use of visual cues around the classroom to learning material, but also to the
collective class experiences such as in the prototyping and the release planning
exercises, provides the tactile experience that Agile working environments give.
Finally, getting the students to perform the retrospective exercise gives them the
experience of participating in a realistic retrospective.

Evolving Agile Teaching Content. One of the things we have observed that
is changing in the students over the last few years is that more students attend-
ing the course identify themselves as already having Agile training, or as being
Agile practitioners in their organizations. This reflects what we see today in the
software industry – that Agile is no longer a niche, and is an expected workplace
practice in software engineering teams. To this end we have taken the opportu-
nity, through the retrospectives, to be Agile in our planning of the course itself,
and to take on board “customer feedback” from our students and make continual
changes based on this feedback. For example we have introduced new games and
techniques into the course such as the getKanban board game and used more
recent and up to date Agile adoption case studies over time.

Student Feedback. Over each iteration of the Agile Methods course, as dis-
cussed earlier, feedback is gained by putting students through a retrospective
exercise at the end of the teaching week to help inform any changes to the next
instance of the class. Alongside this, students have been returning student feed-
back questionnaires since 2010, where overwhelmingly the feedback has been
positive. The students were asked to rate between 1 (strongly disagree) and 5
(strongly agree) their level of agreement on 12 statements, for example:

– The lectures added significant value to the course material
– The lectures included valuable contributions from other students in class
– The exercises helped me to understand the topics covered in the lectures

The aggregate and average score over the time period for which we have data
is 4.32 out of 5 based on 132 completed questionnaires11 (see Fig. 2). The last
three editions of the course feedback scored the most highly and were above
the SEP all courses average of 4.55, at 4.6, 4.73, and 4.66 respectively. This
feedback shows some perceived evidence that the course structure and content
has matured where students are generally satisfied with what is being delivered.

While the feedback was generally positive, there were however some negative
comments on the course content in the feedback questionnaires. Many of these
10 http://pairstair.com.
11 Statements and raw data located in https://tinyurl.com/AGM-Student-Feedback.

http://pairstair.com
https://tinyurl.com/AGM-Student-Feedback


162 A. Martin et al.

Fig. 2. AGM course evaluation as perceived feedback by students since 2010. Black –
average score for each AGM course by the students. Red – average score for all AGM
courses. Blue – average score for all SEP courses. Last three editions scored the highest.
(Color figure online)

focused on the fact that given such a short space of time allocated in class, there
was far too broad material in the Agile space to impart in further depth onto
the students. In particular, we received comments such as:

“The course content is not enough to stretch 5 days.”
“The large amounts of material made timing difficult.”
This is a clear acknowledgment that the amount of material around Agile

methods makes teaching the subject very difficult, especially in an intensive
teaching environment. There was some skepticism about the game-like exercises,
however, on further reflection with students several weeks after the course had
completed even those students acknowledged that they had taken on board the
learning from the exercises when they returned to their own organizations to
share their new-found knowledge around Agile. Some of the positive comments
we received included:

“Excellent way of teaching! You have expanded my horizon and gave me an
excellent introduction to Agile.”

“One of the best courses I have studied at Oxford. The lecturer and their use
of guests made the course better and maybe of benefit to other courses! Initially
I had doubts about the lecturer coming from industry but for this course it works
better as they can draw on experience.”

“A useful course with a timeliness of current industry trends.”
“Good and helpful lecturers. The idea of students studying and presenting a

case study is brilliant and helped a lot with understanding and discussing.”



Teaching Agile Methods to Software Engineering Professionals 163

We have kept the Agile Methods course content timely by consciously putting
Agile into practice in how we prepare and deliver the Agile Methods course itself.
Feedback, in particular via the retrospective exercise, has allowed us to keep the
course up to date with student and industry needs.

4 Related Work

Related work has mainly focused on teaching Agile to undergraduate and gradu-
ate students as part of computer science and software engineering curriculum’s.
The majority of these courses are typically group based projects, last 10–16
weeks, and teach Scrum and or XP. Our work reports on teaching a novel Agile
methods course to software engineering professionals that are already working
within industry and likely already have a degree, potentially in a computing
subject, or have extensive software industry experience.

Lu and DeClue [12] discuss how Agile skills improve the marketability of
new graduates. They also highlight the challenges posed in teaching Agile to
undergraduates that stem from prerequisite experience and maturity. These
challenges include fostering Agile approaches to skills such as communication,
self-organization, and teamwork, where students who have less experience in a
workplace may find mastery of these skills more difficult.

A panel at SIGCSE 2016 [3] raised a number of issues for teaching Agile
methods in software engineering courses at a variety of computer science pro-
grams. The panel focused only on undergraduate university teaching (100 to 400
levels), hence novices to Agile with limited development experience.

Anslow et al. [1] reported their experience of teaching Agile methods to
undergraduate and graduate students and presented a course outline along with
associated teaching materials. They recommended not to teach the course to
different levels simultaneously due to the nature of different levels of assessment
required, abilities of the students, and additional administrative overheads.

Steghöfer et al. [16] reported on their efforts to improve teaching Agile, and
Scrum in particular. They aimed to teach in a realistic manner but without
encountering the technical difficulties of creating a real product by introducing
exercises decoupled from software, such as LEGO Scrum.

Kropp et al. [10,11,13] looked at the status of Agile in education and indus-
try and proposed a competency model on which to base integration of Agile
into undergraduate teaching at two different universities. They found the most
difficult competencies to teach are Agile values and management practices which
they put significant emphasis on. Our AGM course also focuses on values and
management practices and we have a complimentary course that focuses on Agile
engineering practices12 such as TDD and continuous integration.

Soundararajan, et al. [15] developed an advanced graduate-level course (to
non-software professionals) in Agile software engineering at Virginia Tech. Their

12 http://www.cs.ox.ac.uk/softeng/subjects/APE.html.

http://www.cs.ox.ac.uk/softeng/subjects/APE.html


164 A. Martin et al.

course has similarities to our approach where they focus on Agile product devel-
opment, host guest talks from industry experts, and encourage students to
present and debate Agile case studies within the class.

5 Conclusions

For today’s computer science students who look towards entering a career in
software engineering, skills beyond programming and technical excellence are
essential. For any new graduate entering the tech industry, knowledge of Agile
is essential. We hope that by sharing our extensive experiences in teaching Agile
we can help foster excellence in Agile methods education in formal educational
settings, such as in high school, university degree programs, and perhaps also in
industrial training. From our experiences in teaching the Agile Methods course
at the University of Oxford, we can extract many aspects of what we taught
to graduate students that could be applied in any Agile teaching course. We
believe that putting Agile theory into practice with a hands-on approach will
lead to more effective learning. Based on the material reported in this paper
other academics who wish to run similar courses can learn from our experiences.

6 Agile Methods: Case Study Papers for 2016

P1. M. Albisetti. Launchpad’s quest for a better and agile user interface. In
XP, pages 244–250. Springer, 2010.

P2. K. Boekhout. Mob programming: find fun faster. In XP, pages 185–192.
Springer, 2016.

P3. C. Fry and S. Greene. Large scale agile transformation in an on-demand
world. In AGILE, pages 136–142. IEEE, 2007.

P4. S. Hublikar and S. Hampiholi. Pause, reflect and act, the pursuit of con-
tinuous transformation. In XP, pages 201–208. Springer, 2016.

P5. M. Keeling. Put it to the test: Using lightweight experiments to improve
team processes. In XP, pages 287–296. Springer, 2010.

P6. T. Little, F. Greene, T. Phillips, R. Pilger, and R. Poldervaart. Adaptive
agility. In AGILE, pages 63–70. IEEE, 2004.

P7. S. McCalden, M. Tumilty, and D. Bustard. Smoothing the transition from
agile software development to agile software maintenance. In XP, pages
209–216. Springer, 2016.

P8. B. Pieber, K. Ohler, and M. Ehegötz. University of Vienna’s u:space turn-
ing around a failed large project by becoming agile. In XP, pages 217–225.
Springer, 2016.

P9. D. Poon. A self funding agile transformation. In AGILE, pages 342–350.
IEEE, 2006.

P10. M. Rajpal. Lessons learned from a failed attempt at distributed agile. In
XP, pages 235–243. Springer, 2016.

P11. N. Robinson. A technical story. In AGILE, pages 339–343. IEEE, 2007.



Teaching Agile Methods to Software Engineering Professionals 165

P12. K.H. Rolland, V. Mikkelsen, and A. Næss. Tailoring agile in the large:
Experience and reflections from a large-scale agile software development
project. In XP, pages 244–251. Springer, 2016.

P13. C. Sudbery. How XP can improve the experiences of female software devel-
opers. In XP, pages 261–269. Springer, 2016.

P14. A. Takats and N. Brewer. Improving communication between customers
and developers. In AGILE, pages 243–252. IEEE, 2005.

P15. I. Tsyganok. Pair-programming from a beginner’s perspective. In XP,
pages 270–277. Springer, 2016.

P16. B. Victor and N. Jacobson. We didn’t quite get it. In AGILE, pages 271–
274. IEEE, 2009.

Acknowledgments. Thanks to Jeremy Gibbons and Jim Davies from the Software
Engineering Programme at the University of Oxford for their support. Thanks to guest
lectures by Antony Marcano, Duncan Pierce, Lazaro Wolf, and Robert Biddle. Thanks
to Rob Chatley for expert advice. Thanks to Clint Sieunarine and Ross Gales for being
teaching assistants.

References

1. Anslow, C., Maurer, F.: An experience report at teaching a group based agile
software development project course. In: SIGCSE, pp. 500–505. ACM (2015)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison
Wesley, Reading (2004)

3. Campbell, J., Kurkovsky, S., Liew, C.W., Tafliovich, A.: Scrum and agile methods
in software engineering courses. In: SIGCSE, pp. 319–320. ACM (2016)

4. Cockburn, A.: Agile Software Development: The Cooperative Game. Addison Wes-
ley, Boston (2006)

5. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Pragmatic
Bookshelf, Raleigh (2006)

6. Hazzan, O., Dubinsky, Y.: Why software engineering programs should teach agile
software development. SIGSOFT Softw. Eng. Notes 32(2), 1–3 (2007)

7. Lee, S.H., Lee, J., Liu, X., Bonk, C.J., Magjuka, R.J.: A review of case-based
learning practices in an online MBA program: a program-level case study. Educ.
Technol. Soc. 12(3), 178–190 (2009)

8. Highsmith, J.: Agile Software Development Ecosystems. Addison Wesley, Boston
(2002)

9. Kerth, N.L.: Project Retrospectives: A Handbook for Team Reviews. Dorset House
Publishing Co., New York (2001)

10. Kropp, M., Meier, A.: Teaching agile software development at university level:
Values, management, and craftsmanship. In: International Conference on Software
Engineering Education and Training (CSEET), pp. 179–188. IEEE (2013)

11. Kropp, M., Meier, A.: New sustainable teaching approaches in software engineering
education. In: EDUCON, pp. 1019–1022. IEEE (2014)

12. Lu, B., DeClue, T.: Teaching agile methodology in a software engineering capstone
course. J. Comput. Sci. Coll. 26(5), 293–299 (2011)



166 A. Martin et al.

13. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabora-
tion and values: agile software development in large student teams. In: International
Conference on Software Engineering Education and Training (CSEET), pp. 76–80.
IEEE (2016)

14. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Pearson, Upper
Saddle River (2001)

15. Soundararajan, S., Chigani, A., Arthur, J.D.: Understanding the tenets of agile
software engineering: Lecturing, exploration and critical thinking. In: SIGCSE,
pp. 313–318. ACM (2012)

16. Vogel, B., Kilamo, T., Kurti, A.: Teaching distributed agile development to software
professionals: a flexible approach. In: European Conference on Software Architec-
ture Workshops, ECSAW, pp. 31:1–31:8. ACM (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Teaching Agile Methods to Software Engineering Professionals: 10Years, 1000 Release Plans
	1 Introduction
	2 Course Outline
	2.1 Pre-study Assignment: Case Study
	2.2 Lectures
	2.3 Group Exercises
	2.4 Course Assignment: Essay and Release Plan

	3 Discussion
	4 Related Work
	5 Conclusions
	6 Agile Methods: Case Study Papers for 2016
	References


