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Preface

This book presents an introduction to morphogenetic computing. The idea of
morphogenetic computing came from conflicts and uncertainty situations that grow
up when we compare two incompatible universes as local universe and global
universe, neural universe and Boolean function universe, database sink and source
incompatibility fuzzy logic in the many values. For example, in recursion process
we cannot find convergence, in neural network we are in local minimum, and in
genetics we have a lot of instability and do not understand fully. So we must create
a fundamental new approach to computation by which we can move from uncer-
tainty, inconsistency and imprecision to a more logical stable and consistent situ-
ation. Fuzzy set, active sets and other many valued logic can be used to make
reasoning in conflicts and uncertain situations but cannot reach the fundamental aim
to have consistency and coherence. In morphogenetic computing, we have uncer-
tainty which is only one step of the knowledge and the other is to establish coherent
situation. Morphogenetic computing uses recursion with invariance just as in
physics where experiments generate conflicts, but after we discover new models for
nature where the experiments are not inconsistent but logically consistent. In this
book in different situations, we show how to enter conflicts and try to escape from
the conflicts and uncertain situations. We argue that global and local relation,
defects in crystal non Euclidean geometry database with source and sink, genetic
algorithm, neural network all become more stable and efficient when we use
morphogenetic computing, where the morphogenetic means globality or mor-
phology, field theory and other topics.

Brescia, Italy Germano Resconi
Shanghai, China Xiaolin Xu
Shanghai, China Guanglin Xu
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Chapter 1
Database and Graph Theory

This book presents an introduction to morphogenetic computing [27–35]. The idea
of morphogenetic computing came from conflicts and uncertainty situations that
grow up when we compare two incompatible universes as local universe and global
universe, neural universe and Boolean function universe, database sink and source
incompatibility fuzzy logic in the many values. This chapter presents the database
and graph theory. Figure 1.1 is the original E-R diagram of the database including
5 entities. R is the original relation matrix representing the relations between
entities [16].

Then, the relationship matrix between entities is given (as 1.1), where {Entity1,
Entity2, …, Entityn} is set of Entities, ei,j is the relationship between Entityi and
Entityj, if there is a bi-connect of between Entityi and Entityj, ei,j is 1, otherwise, ei,j
is 0.

R Entity1 Entity2 Entity3 . . . Entityn
Entity1 e1;1 e1;2 e1;3 . . . e1;n
Entity2 e2;1 e2;2 e2;3 . . . e2;n
Entity3 e3;1 e3;2 e3;3 . . . e3;n
. . . . . . . . . . . . . . . . . .
Entityn en;1 en;2 en;3 . . . en;n

2
6666664

3
7777775

ð1:1Þ

When we give a name to any entity we have the graph as illustrated in Fig. 1.2.
We can show the above database in matrix (oriented graph) as illustrated below

1.2.

R class classroom enrollment teacher student
class 0 1 1 1 0
classroom 1 0 0 0 0
enrollment 1 0 0 0 1
teacher 1 0 0 0 0
student 0 0 1 0 0

2
6666664

3
7777775

ð1:2Þ

© Springer International Publishing AG 2017
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That can be represented as 1.3.

Rv ¼

0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775

class
classroom
enrollment
teacher
student

2
66664

3
77775
¼

ðclassroom; enrollment; teacherÞ
class

ðclass; studentÞ
class

enrollment

2
66664

3
77775

ð1:3Þ

The difference between 1.2 and 1.3 representation on the database in Fig. 1.2 is that
the first is a static representation, the second is a dynamical representation where we
can see the initial set of entities and the final set of entities. We remark that the
initial set includes individual names but the final vector includes sets of entities.
Any set of entities in output has one common entity with the initial entity set.
Because one entity as initial value is associated with other entities, the transfor-
mation is a many value process with intrinsic uncertainty in fact from one entity we
have different possible entities as final entities (bifurcation). In the database we

Fig. 1.1 Database scheme

class

classroom

teacher

enrollment

student

Fig. 1.2 Database with names
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introduce a selection rule for which in the given initial entity we select one and only
one final element. The selection rule is included in the query that we write in the
given initial entity.

1.1 Graph as a Space of Entity Attributes as Sink,
Source, and Transit

The database graph in Fig. 1.2 can be written as a superposition of source and sink
entities 1.4.

Rv ¼ ðAe1 þBe2Þv ð1:4Þ

In an explicit way we have 1.5.

Rv ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

¼

ðclassÞ
ðclassroomÞ
ðenrollmentÞ
ðteacherÞ
ðstudentÞ

2
6666664

3
7777775
e1 þ

ðclassroom; enrollment; teacherÞ
ðclassÞ

ðclass; studentÞ
ðclassÞ

ðenrollmentÞ

2
6666664

3
7777775
e2

¼

ðclassÞe1 þðclassroom; enrollment; teacherÞe2
ðclassroomÞe1 þðclassÞe2

ðenrollmentÞe1 þðclass; studentÞe2
ðteacherÞe1 þðclassÞe2

ðstudentÞe1 þðenrollmentÞe2

2
6666664

3
7777775

¼

e1 e2 e2 e2 0

e2 e1 0 0 0

e2 0 e1 0 e2
e2 0 0 e1 0

0 0 e2 0 e1

2
6666664

3
7777775

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

ð1:5Þ

where e1 are all source elements and e2 are all sink elements for any
relationship. We remark that any relationship can write as a superposition of two
states one is the source state and the other is the sink state. We see that the relation
R can also be written in this way 1.6.

1 Database and Graph Theory 3



R ¼

e1 e2 e2 e2 0
e2 e1 0 0 0
e2 0 e1 0 e2
e2 0 0 e1 0
0 0 e2 0 e1

2
66664

3
77775

ð1:6Þ

Given a row of the previous matrix 1.7.

R ¼

e1 e2 e2 e2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775

ð1:7Þ

This represents a divergent condition from class. In fact from the class as source
we go to teacher, classroom, enrollment that are sink. The graphical representation
is shown as Fig. 1.3.

Now the associate column is shown as 1.8

R ¼

e1 0 0 0 0
e2 0 0 0 0
e2 0 0 0 0
e2 0 0 0 0
0 0 0 0 0

2
66664

3
77775

ð1:8Þ

In this case any column is a convergent set of entities that are convergent into the
entity class. In a graph way we have (Fig. 1.4)

From the entity “class” we have divergence and convergence, so “class” is the
neutral element that includes the two states in the same entity. The row and the
column has “class” as intersection so “class” belongs to the row and to the column
of the matrix.

class teacher

classroom

enrollment

Fig. 1.3 Class as a source
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when e1 = 1 and e2 = −1 we have the incident matrix 1.9 that the element is
negative when one node is the departure, and the element is positive when one node
is the arrival.

R ¼

�1 1 1 1 0
1 �1 0 0 0
1 0 �1 0 1
1 0 0 �1 0
0 0 1 0 �1

2
66664

3
77775

ð1:9Þ

Now we know that the Laplacian matrix of R is 1.10.

L ¼ RTR ¼

�1 1 1 1 0

1 �1 0 0 0

1 0 �1 0 1

1 0 0 �1 0

0 0 1 0 �1

2
6666664

3
7777775

T �1 1 1 1 0

1 �1 0 0 0

1 0 �1 0 1

1 0 0 �1 0

0 0 1 0 �1

2
6666664

3
7777775

¼

4 �2 �2 �2 0

�2 2 1 1 0

�2 1 3 1 �2

�2 1 1 2 0

1 0 �2 0 2

2
6666664

3
7777775

ð1:10Þ

We know that Laplacian matrix gives a lot of information for the graph. Now we
can extend the definition of the Laplacian matrix as 1.11.

class teacher

classroom

enrollment

Fig. 1.4 Class as a sink
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L ¼ RTR ¼

e1 e2 e2 e2 0

e2 e1 0 0 0

e2 0 e1 0 e2
e2 0 0 e1 0

0 0 e2 0 e1

2
6666664

3
7777775

T e1 e2 e2 e2 0

e2 e1 0 0 0

e2 0 e1 0 e2
e2 0 0 e1 0

0 0 e2 0 e1

2
6666664

3
7777775

¼

e21 þ 3e22 e1e2 þ e2e1 e1e2 þ e2e1 e1e2 þ e2e1 e22
e1e2 þ e2e1 e21 þ e22 e22 e22 0

e1e2 þ e2e1 e22 2e21 þ e22 e22 e1e2 þ e2e1
e1e2 þ e2e1 e22 e22 e21 þ e22 0

e22 0 e1e2 þ e2e1 0 e21 þ e22

2
6666664

3
7777775

ð1:11Þ

Because we have the transport matrix we multiply the convergent part of one
entity with the convergent part of another entity and superpose the convergent parts.
For example the multiplication of the convergent part of the same entity “class” we
have 1.12.

class
e1
e2
e2
e2
0

2
6666664

3
7777775

class
e1
e2
e2
e2
0

2
6666664

3
7777775
¼

class2

e21
e22
e22
e22
0

2
6666664

3
7777775

ð1:12Þ

And the superposition of the convergent parts is 1.13.

e21 þ e22 þ e22 þ e22 ¼ e21 þ 3e22 ð1:13Þ

Given two different entities we have the product of the convergent parts. The
first column are entities that converge to class from classroom, teacher and
enrollment, the second column are entities that converge on the classroom that is
only one from class. The products are common links that converge to class and that
converge to classroom.

6 1 Database and Graph Theory



class

class e1
classroom e2
enrollment e2
teacher e2
student 0

2
666666664

3
777777775

classroom

class e2
classroom e1
enrollment 0

teacher 0

student 0

2
666666664

3
777777775

¼

ðclassÞðclassroomÞ
class e1e2
classroom e2e1
enrollment 0

teacher 0

student 0

2
666666664

3
777777775

ð1:14Þ

The column “class” has the set of ordered convergent elements.

class ¼ class; classroom; enrollment; teacherð Þ

The column “classroom” has the set of ordered convergent elements.

classroom ¼ class; classroomð Þ

The ordered intersection is

ðclassÞðclassroomÞ ¼ ðclassÞðclassÞ ¼ e1e2; ðclassroomÞðclassroomÞ ¼ e2e1ð Þ

The product of class and classroom give us all the common convergent links
including the state e1 that is the neutral element and is divergent and convergent in
class and classroom. In a graph way we have Fig. 1.5.

class 
(1) e1e2 

Teacher

class-
room(2) e2e1

enrollment

e1

e2

e2

e1

Fig. 1.5 The product of class
and classroom

1.1 Graph as a Space of Entity Attributes as Sink, Source, and Transit 7



To explain in more specific way, we can decompose relation R as 1.15.

R1 class classroom enrollmnet teacher student

class 0 1 1 1 0

classroom 0 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

þ

R2 class classroom enrollmnet teacher student

class 0 0 0 0 0

classroom 1 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

þ

R3 class classroom enrollmnet teacher student

class 0 0 0 0 0

classroom 0 0 0 0 0

enrollment 1 0 0 0 1

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

þ

R4 class classroom enrollmnet teacher student

class 0 0 0 0 0

classroom 0 0 0 0 0

enrollment 0 0 0 0 0

teacher 1 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

þ

R5 class classroom enrollmnet teacher student

class 0 0 0 0 0

classroom 0 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 1 0 1 0 0

2
666666664

3
777777775

ð1:15Þ

For the five relations we can see that given an entity whose column values are all
zero, that means no any other entity in this relation has access to the entity but from
the entity in the row we have many other entities so the entity is a source but is not a
sink. Reversely we have the entity whose row values are all zero but the column
values are not. That means other entities in this relation have access to the entity but

8 1 Database and Graph Theory



there is no relation from the entity so in this situation the entity is a sink. For
example in R1 class is a source, and classroom, enrollment and teacher are sinks.
Because we have only one row different from zero values, we have only one source
at the time or e1 and many different sinks or e2. Now we also introduce the transit.
We can see in this decomposition 1.16.

R12 class classroom enrollmnet teacher student
class 0 1 1 1 0

classroom 1 0 0 0 0
enrollment 0 0 0 0 0
teacher 0 0 0 0 0
student 0 0 0 0 0

2
6666664

3
7777775

ð1:16Þ

In the previous decomposition we have that classroom has the column and row
with values not all zero. So classroom is a transit element that connects class with
itself. In fact from class as a source we go to classroom as a sink but classroom is also
a source that go to the class as a final sink. Now we have that R12 can write as 1.17.

R12 class classroom enrollmnet teacher student

class 0 1 1 1 0

classroom 1 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775
¼

R1 class classroom enrollmnet teacher student

class 0 1 1 1 0

classroom 0 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

þ

R2 class classroom enrollmnet teacher student

class 0 0 0 0 0

classroom 1 0 0 0 0

enrollment 0 0 0 0 0

teacher 0 0 0 0 0

student 0 0 0 0 0

2
666666664

3
777777775

ð1:17Þ

For a path that moves from class to class room and from class room go to class
again, we have that the path is a superposition of four states. The first state is the
source for the first link, the second state is the sink for the first link, the third state is

1.1 Graph as a Space of Entity Attributes as Sink, Source, and Transit 9



the source for the second link ad the fourth state is the sink for the second link. The
two links are superpose in the path. In fact we have

ðclass; classroomÞ !
e1
!
e2
ðclassroom; classÞ

where

Link1 ¼ ðclass; classroomÞ ¼ class ! classroom

Link2 ¼ ðclassroom; classÞ ¼ classroom ! clas

So

ðclass; classroomÞe1 þðclassroom; classÞe2 ¼ ðLink1Þe1 þ ðLink2Þe2
and
Link1 ¼ ðclassÞe1 þðclassroomÞe2
Link2 ¼ ðclassroomÞe1 þðclassÞe2

and

ðclassÞe1e1 þðclassroomÞe2e1 þðclassroomÞe1e2 þðclassÞe2e2
That can be written in this simple way.

R1R2 ¼ ðclassÞe11 þðclassroomÞe21 þðclassroomÞe12 þðclassÞe22
where e11 is the first initial value for the first step, e21 is the final value for the first
step, e12 is the initial value for the second step and e22 is the final value for the
second step. In conclusion, to represent two joined steps we use four dimensions
space, and for only one step we use two dimensions.

When we join source and sink with many different transit entities, we move from
two dimensions to four, eight and so on dimensions.

1.2 Derivative, Variation and Chain by the Reference
e1 and e2

Given the chain

( )f x ( )f x h+ + +( 2 )f x h ( 3 )f x h

10 1 Database and Graph Theory



Difference when e1 = −1, e2 = 1

f ðxÞe1 þ f ðxþ hÞe2 ¼ f ðxþ hÞe2 � f ðxÞe1 ¼ Df ¼ direction

ðf ðxÞe1 þ f ðxþ hÞe2Þe1 þðf ðxþ hÞe1 þ f ðxþ 2hÞe2Þe2
¼ ðf ðxþ hÞ � f ðxÞÞe1 þðf ðxþ 2hÞ � f ðxþ hÞÞe2
¼ �ðf ðxþ hÞ � f ðxÞÞþ ðf ðxþ 2hÞ � f ðxþ hÞÞ ¼ D2f ¼ curvature

½ðf ðxþ hÞ � f ðxÞÞe1 þðf ðxþ 2hÞ � f ðxþ hÞÞe2�e1
þ ½ðf ðxþ 2hÞ � f ðxþ hÞÞe1 þðf ðxþ 3hÞ � f ðxþ 2hÞÞe2�e2 ¼ D3f ¼ Torsion

Variation of the product by the reference e1 and e2

f ðxÞgðxÞe1 þ f ðxþ hÞgðxþ hÞe2
¼ f ðxÞgðxÞe1 þ f ðxþ hÞgðxþ hÞe2 þ f ðxÞgðxþ hÞðe1 þ e2Þ
¼ f ðxÞðgðxÞe1 þ gðxþ hÞe2Þþ gðxþ hÞðf ðxÞe1 þ f ðxþ hÞe2Þ

We remember that

f ðxÞgðxþ hÞðe1 þ e2Þ ¼ 0

1.2 Derivative, Variation and Chain by the Reference e1 and e2 11



Chapter 2
Crossover and Permutation

Given the permutation P

P ¼ 1 2 3 . . . n� 1 n
p1 p2 p3 . . . pn�1 pn

� �

Given the two crossovers

U ¼
A B

C a a

D b b

2
64

3
75 ! DA CB

b a

� �

U ¼
A B

C a a

D b b

2
64

3
75 ! CA DB

a b

� �

We have the elementary permutation

P ¼ a b
b a

� �

For more simple crossover we can create the matrix M

M ¼ a a
b b

� �

© Springer International Publishing AG 2017
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where we have two parents and two genes so we have the crossover ab; ba that are
the terms of the permutation. For three parents and three genes we have the six
possible crossovers from the three parents.

M ¼
a a a
b b b
c c c

2
4

3
5 ! abc; acb; bac; bca; cab; cba

The permutation matrix is

ah;k ¼ dh;pk ; where
dk;pk ¼ 1

dh;pk ¼ 0; h 6¼ k

�

For example, given the permutation P,

P ¼ 1 2 3
p1 ¼ 2 p2 ¼ 1 p3 ¼ 3

� �

the permutation matrix is A.

A ¼
p1 p2 p3

k1 0 1 0
k2 1 0 0
k3 0 0 1

2
664

3
775 !

0 1 0
1 0 0
0 0 1

2
4

3
5

With the permutation matrix we permute the columns by multiplication of R at
the right. We have

RA ¼
e11 e12 e13
e21 e22 e23
e31 e32 e33

2
4

3
5 0 1 0

1 0 0
0 0 1

2
4

3
5 ¼

e12 e11 e13
e22 e21 e23
e32 e31 e33

2
4

3
5

So we get RA by right multiplication R with permutation matrix A. And we get
AR by left multiplication R with permutation matrix A.

AR ¼
0 1 0
1 0 0
0 0 1

2
4

3
5 e11 e12 e13

e21 e22 e23
e31 e32 e33

2
4

3
5 ¼

e21 e22 e23
e11 e12 e13
e31 e32 e33

2
4

3
5

What is the difference between RA and AR?
In RA, Column 1 and Column 2 of R are swapped. Whereas in AR, Row 1 and

Row 2 are swapped.

14 2 Crossover and Permutation



We write the difference between RA and AR as 2.1.

0 1 0

1 0 0

0 0 1

2
64

3
75

e11 e12 e13
e21 e22 e23
e31 e32 e33

2
64

3
75�

e11 e12 e13
e21 e22 e23
e31 e32 e33

2
64

3
75

0 1 0

1 0 0

0 0 1

2
64

3
75

¼
e21 e22 e23
e31 e32 e33
e31 e32 e33

2
64

3
75�

e12 e11 e13
e22 e21 e23
e32 e31 e33

2
64

3
75

¼
e21 � e12 e22 � e11 e23 � e13
e31 � e21 e32 � e22 e33 � e23
e31 � e31 e32 � e31 0

2
64

3
75

ð2:1Þ

2.1 Right Product RA

Given Relation R and permutation matrix A,we have RA (2.2).

R ¼

0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775 A ¼

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

RA ¼

1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 0
0 0 1 0 0

2
66664

3
77775 ð2:2Þ

1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 0
0 0 1 0 0

2
66664

3
77775

class
classroom
enrollment
teacher
student

2
66664

3
77775 !

classþ enrollmentþ teacher
classroom

classroomþ student
classroom
enrollment

2
66664

3
77775

And the relation in the database of Fig. 1.2 becomes that in Fig. 2.1.
In Fig. 2.1, the changes of relations just happen on the entities directly related to

entity class (represented as 1) and entity classroom (represented as 2), the reason for
this is because multiplying permutation matrix A at the right of R makes R the first
two columns swap. This leads to the disappearance of some relations and the
generation of some new relations. For example, originally there is the relation from
enrollment to class (from 3 to 1) and there is no relation from enrollment to

2 Crossover and Permutation 15



classroom (from 3 to 2), after permutation, the relation from enrollment to class
(from 3 to 1) disappears and relation from enrollment to classroom (from 3 to 2)
emerges. From the diagram, we also find the relations between 3 and 5, and those
between 4 and 5 don’t change on the grounds that relations between them have
nothing to do with entity 1 and entity 2. Further it is not difficult to find that the
number of relations doesn’t change. The reason for this is that we just swap the two
columns of Matrix R, not cause any change on the number of 1 in the relation RA.
So, from the permutation above, what conclusion can we make? In RA we have that
ei;j ! ei;pj or in a graphic way we have Fig. 2.2.

Here

k 1 2 3
pk 2 1 3

� �

In the right product RA the initial entity is the same, but the final element
changes for the permutation.

We give the relations change of database.
We know that teacher has access to class but at one time he wants to have access

to another entity as classroom so we permutate class with classroom and we use the
permutation A in a way to change all the other entities to satisfy teacher without
changing the number of relations. So we have Fig. 2.3.

student 5  class 1 teacher 4  

classroom 2  enrollment 3  

Fig. 2.1 The database scheme with right product

i k

ei,k

ei,pk

pk 

ak,pk

Fig. 2.2 Right product RA
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2.2 Left Product AR

The product AR changes the rows so we have 2.3

AR ¼

1 0 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775 ð2:3Þ

1 0 0 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775

class
classroom
enrollment
teacher
student

2
66664

3
77775 !

class
classroomþ enrollmentþ teacher

classþ student
class

enrollment

2
66664

3
77775

So the relation in the database of Fig. 1.2 becomes that in Fig. 2.4.
In AR, the final entity is the same, but the initial element changes for the

permutation.
We give the relations change of database.
Initially we can find the relevant teacher via class. Now on some occasions that

we are urged to find the teacher, going to the relevant classroom is the only way. So
by permutation, we get the relation between classroom and teacher. So we have
Fig. 2.5.

teacher

classroom

class

permutation

Fig. 2.3 Permutate class with classroom by right product

class 1 

classroom 2  

teacher 4 

enrollment 3  

student 5  

Fig. 2.4 The database scheme with left product

2.2 Left Product AR 17



When we permute two entities by some way, all relations related to the two
entities change correspondingly, although some relations change may not be nec-
essary. So the graph will change.

teacher

classroom

class

permutation

Fig. 2.5 Permutate class
with classroom by left product
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Chapter 3
Similarity Between Graphs in Database
by Permutations

Given the relationship matrix R (3.1) that reflects the connection among entities.

R Entity1 Entity2 Entity3 . . . Entityn
Entity1 e1;1 e1;2 e1;3 . . . e1;n
Entity2 e2;1 e2;2 e2;3 . . . e2;n
Entity3 e3;1 e3;2 e3;3 . . . e3;n
. . . . . . . . . . . . . . . . . .
Entityn en;1 en;2 en;3 . . . en;n

2
6666664

3
7777775

ð3:1Þ

Then permutation matrix A has been created. With two relations R and two
permutations, we can built the commutative diagram Fig. 3.1.

We remark that when R1A1 ¼ A2R2 the diagram becomes a commutative dia-
gram for which the relations of similarity between two databases is shown as 3.2.

R1 ¼ A2R2A
�1
1 ð3:2Þ

We remember that permutation matrix has always the inverse, so we have 3.3.

R2 ¼ A�1
2 R1A1 ð3:3Þ

Example 3.1 We have the Relation Fig. 3.2.
We represent it with R2.

R2 ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775
e1 þ

0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775
e2

0
BBBB@

1
CCCCA

© Springer International Publishing AG 2017
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After R2 is given the permutation with permutation matrix A1 and A2, we have R1.

A1 ¼

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
; A2 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

2
6666664

3
7777775

R1 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
A1e1 þ

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
A2e2

0
BBBBBB@

1
CCCCCCA

The relation R1 is represented with Fig. 3.3.
Particular case for the diagram.

Fig. 3.1 The change of sources and sinks to give equivalent graphs

Fig. 3.2 Sources and sinks in the database
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(1) A1 ¼ A2 ¼ A

R1 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
Ae1 þ

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
Ae2

0
BBBBBB@

1
CCCCCCA

¼ A

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

For

A ¼

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

ð2Þ A1 6¼ A2; R1 ¼ R2

Fig. 3.3 Permutation of the sources states e1 and permutation of the sinks states e2 in the database

3 Similarity Between Graphs in Database by Permutations 21



For

A1 ¼

0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

We have

A2 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
Re1 þ

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
Re2

0
BBBBBB@

1
CCCCCCA

¼ R

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

For R ¼

0 1 1 1 0
1 0 0 0 0
1 0 0 0 1
1 0 0 0 0
0 0 1 0 0

2
66664

3
77775
, We have

A2 ¼

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

¼

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e1 þ

1 0 1 1 0

0 1 1 1 0

0 1 0 0 1

0 1 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2
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Chapter 4
Morphogenetic and Morpheme Network
to Structured Worlds

4.1 Morpheme Networks

In Fig. 4.1 we show the chaotic structure of the language before the building of the
network of morphology.

Morphemes are the smallest meaningful parts of words and therefore represent a
natural unit to study the evolution of words. Using a network approach from
bioinformatics, we examine the historical dynamics of morphemes, the fixation of
new morphemes and the emergence of words containing existing morphemes. We
find that these processes are driven mainly by the number of different direct
neighbors of a morpheme in words (connectivity, an equivalent to family size or
type frequency) and not its frequency of usage (equivalent to token frequency).

As morphemes are also relevant for the mental representation of words, this
result might enable to establish a link between an individual’s perception of lan-
guage and historical language change. Methods developed for the study of bio-
logical evolution might be useful for the analysis of language change.

The factors driving language change can be classified as internal and external
ones. The internal factors are the physical conditions, like the physiology of the
human speech organs and psychological factors like perception, processing and
learning of language. On the other hand, the external factors are for example
expressive use, prestige and stigma, education and language contact. In the case of
words it was shown quantitatively, that the parts which compose a word. So called
morphemes are the minimal meaning bearing units of words. As one word can be
built by multiple morphemes, one morpheme can be found in different words. The
study of how these morphemes can be combined to yield words is the central
question of morphology. In this descriptive structural linguistic view, morphemes
are seen as discrete units which are combined to build words. There has connec-
tionists approaches assume that ‘the same general principles that govern phono-
logical and semantic processing of whole words and sentences govern the
processing of the subparts of words commonly called morphemes of such residual

© Springer International Publishing AG 2017
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effects by exploiting an analogy of words and proteins which enabled the appli-
cation of an approach from bioinformatics. Usually, arguments in favor of one or
the other model are drawn from psycholinguistic studies of well selected small sets
of words.

For analyzing the morphemes and their relationships, we used an approach
which was successfully applied to the analysis of proteins and domains, the
structural, functional and evolutionary units of proteins. Like a morpheme in words,
one domain can be found in different proteins and one protein can harbor many
domains. We used this analogy to build morpheme networks. Here, morphemes are
nodes which are connected if they can be found next to each other in at least one
word, see Fig. 4.2.

Figure 4.3 illustrates the lexical network. Perceived pictures (e.g., of a dog)
directly activate concept nodes and perceived words (e.g., DOG) directly activate

Fig. 4.1 Chaotic unstructured language
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lemma, morpheme, and phoneme nodes, after which other nodes become activated
through spreading activation. The dashed lines indicate grapheme-to-phoneme
correspondences. Thus, our focus is on formatives, which ‘recur in the morpho-
logical analysis of word-forms’ independent of whether or not they are also mor-
phemes. This fits well to the algorithm implemented by Morfessor 1.0, which
searches for the optimal concise set of units Connectivity, Not Frequency,
Determines the Fate of a Morpheme every word in the data can be formed by
concatenation of some unit A network was built for each word list with morphemes
as nodes and an undirected edge between morphemes if they occur side by side in a

Fig. 4.2 Morpheme network

Fig. 4.3 Hierarchical structure for the word DOG
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word. Thus, when analyzing the word ‘beautifulness’, no edge between ‘beauti’ and
‘ness’ would be drawn, as these are no direct neighbors. Analyses with directed
edges (according to reading order) gave similar results.

4.2 Loop and General Similarity and Conflicts
and Inconsistency in Graph Space

The system axiom in A. Wayne Wymore is that any system element or entity has
one name. In cloud computing with uncertainty, any entity can have two or more
conflicting names. At any entity we associate n ports in input and n ports in output
with different names. All ports in a network is represented by a matrix in which for
any row we have all names in input and output for one entity and for any column
we have the names in the same states for all the entities. Morphogenetic of a
network by cross over transformations of a prototype permutation (crossover)
invariants (virus as a chemical network).

4.3 Vector Representation of Graph Inconsistency

Morphic has two basic elements, one is relationship, and the other is node.
Additionally, there is no order in the Morphic.

Figure 4.4 is a relation graph including 5 nodes. Here nodes do not represent
particular meanings, but one node is different from the others. The accessible
relation in abstract way is R1.

a d 

b c

e 
Fig. 4.4 Relation graph with
5 nodes
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R1 ¼

from=to a b c d e
a 0 1 1 1 0
b 1 0 0 0 0
c 1 0 0 0 1
d 1 0 0 0 0
e 0 0 1 0 0

2
6666664

3
7777775

We remark that the matrix represents nodes that receive edges or send edges. So
we begin with one node in the column that is the initial node of the edge and
another node in the row receiving the edge. In fact we have the edges ei;j or ai ! aj,
where ai is the starting node and aj is the final node. We also remark that any node
has two different functions, one is the final node and the other is the start node. So
in accord with the table, any node can be represented in Fig. 4.5.

So the original graph of the data base in Fig. 4.4 can be drawn in this abstract
way (Fig. 4.6).

Example 4.1 Given the relation R ¼
R a b c
a 0 1 1
b 1 0 0
c 1 0 0

2
664

3
775

Figure 4.7 shows the entities that send information to other entities.
Figure 4.8 shows the entities that receive information from other entities.
So Relation R is split into two parts (Fig. 4.9).
Now we present the commutative graphs that include the relations R and its

transformed relation by permutation or transformation of “out” and “in” of the
entities in Fig. 4.10.

Where

A ¼
0 1 0
0 0 1
1 0 0

2
4

3
5; B ¼

0 1 0
1 0 0
0 0 1

2
4

3
5

Columns con-
vergent elements 

Rows divergent 
elements 

Fig. 4.5 Convergent and divergent part of the same entity
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The previous diagram can be redrawn in Fig. 4.11.
And the relation T is given by the inconsistent graph Fig. 4.12.
Where the same entity has two different names. Now we change the relationship

in a way to transform an inconsistent or conflicting graph into a consistent graph. So
we have the relation T.

T ¼
T b a c
b 0 1 1
c 1 0 0
a 1 0 0

2
664

3
775

a a d d e e

b b c c

Fig. 4.6 Coherent graph that represents the rows and columns in the R1

a b

c

Fig. 4.7 Relation that
represents to send information
to other entities

a b

c

Fig. 4.8 Relation that
represents to receive
information from other
entities
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a a b b

c c

a b

c

a b

c

R

Fig. 4.9 Separation of a graph into sources and sinks

a b

c

b c

a

b a

c

a b

c R

T

A
B

Fig. 4.10 Transformation of the sources entities and sinks entities
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When we order the rows and columns we have the consistent relation T (4.1).

T b a c
b 0 1 1
c 1 0 0
a 1 0 0

2
664

3
775 !

T b a c
a 1 0 0
b 0 1 1
c 1 0 0

2
664

3
775 !

T a b c
a 0 1 0
b 1 0 1
c 0 1 0

2
664

3
775 ð4:1Þ

Figure 4.13 shows the coherent graph after the two different permutations.
From conflicting situation we can return to coherent state by a compensation

process that changes the position of the relationship. Table 4.1 is a coherent table
with a new morpho. So the change of the rows and columns is compensatory
operation that changes an incoherent or conflicting situation with the same graph or

R

A B

T A – B R = 0T

Fig. 4.11 Commutative graph for the transformation of the sources and the transformation of the
sinks

a a b b

c c

Fig. 4.13 Change of the
links to generate a coherent
graph for which any entity
source and sink has the same
name

b b c a

c a 

Fig. 4.12 Incoherent graph
where the sources and the
sinks for the same entity has
two different names. The
entity has two different names
one in conflict with the other.
The links are always the same
but the entities are incoherent

30 4 Morphogenetic and Morpheme Network to Structured Worlds



morpho into a new graph. The incoherence means that the permutation of the “out”
element with fixed “in” element in the same morpho or graph generate defects or
errors or conflicts between database and permutation. Then we have the commu-
tative graph Fig. 4.14.

Figure 4.14 can be represented in this simple way (Fig. 4.15).
The relation T is shown in Fig. 4.16.

a b

c

b c

a

b c

a

a b

c R

T

A
A

Fig. 4.14 Change of sources and sinks

R

A A

R A – A R = [ R , A ] = 0T

Fig. 4.15 Commutative graph for Fig. 4.14

b b c c

a a

Fig. 4.16 Coherent graph
with sinks and sources for any
entity the same name
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The difference between R and T is that with the same graph the entities are
coherent but permuted. So R and T are similar or isomorphic. For the table relation
we have

T ¼
T b c a
b 0 1 1
c 1 0 0
a 1 0 0

2
664

3
775

That is consistent because any entity has only one name for the two parts. One
goes to other entities, the other arrives from other entities. So we have (4.2).

T b c a
b 0 1 1
c 1 0 0
a 1 0 0

2
664

3
775 !

T b c a
a 1 0 0
b 0 1 1
c 1 0 0

2
664

3
775 !

T a b c
a 0 1 0
b 1 0 1
c 0 1 0

2
664

3
775 ð4:2Þ

In a graph way we have the coherent graph after the two different permutations.
The relation T is not equal to relation R but is equivalent. We have coherence that
the graph change of the database does not lead to the change of the internal morpho.
This means that the new database with a new organization of accessible relations is
different because it has a different meaning, however, the new meaning or acces-
sibility has the same morpho or internal properties. In another word, any reasoning
or path of questions and answers is not equal but has the same structure.

4.4 From Inconsistent to Consistent Data by Map
Reduction in Big Data

Any cluster in parallel with the others is separate in clusters with the same attributes
as color or shuffle. The last part took cluster with the same color and built big
clusters with the same attribute or color. This part is denoted reduction. Now the
incoherent set of data is transformed in a set of coherent data by reduction
(Fig. 4.17).

Table of colors as attributes and objects is the cluster of coherent data.

values Red Yellow Blue
data1 a11 a12 a13
. . . . . . . . . . . .

datan a1n a2n a3n

2
664

3
775
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The map reduction creates the fundamental reference for the big data color space
image or space of attribute as we can see in Figs. 4.18 and 4.19.

4.5 Simple Electrical Circuit as Database Graph Structure

The electrical circuit graph is made by two cycles joining one with the other by the
resistor R2. So the graph of the electrical circuit can, in a schematic way, is given by
the structure in Figs. 4.8, 4.20 and 4.21.

The relation between nodes of the electrical circuit (topology) is given by the
matrix 4.3.

Fig. 4.17 Big data with its attribute in different colors is separate in cluster or map (Color figure
online)

Fig. 4.18 With map
reduction we can fix the big
data main reference where we
can create any type of
geometry and trans formation
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node1 node2 node3
node1 0 1 0
node2 1 0 1
node3 0 1 0

2
664

3
775 ð4:3Þ

Now with the source, sink space we define the incident matrix or relation
between nodes in this way (4.4).

Fig. 4.19 Given a graph with sinks and sources that is incoherent. The same entity or point has
two different names for the sink and source state. Now we know that any point or entity is a unity
that has only one name. This is the incoherence condition as we have in the big data structure. Now
with the map reduction we can transform the two dimensional incoherent graphs into a coherent
graph for which any point is a cluster or sources and sinks with the same name as attribute. So we
have a morpho transformation

Fig. 4.20 Electrical network with electrical generator (active part), flow of currents and resistors

12 3

Fig. 4.21 Graphic scheme of the electrical circuit where we have two cycles. The node 2 is the
first generator and the resistor R1. The node 3 is the generator with resistor R3, the node 1 is the
resistor R2
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1 0 0
0 1 0
0 0 1

2
4

3
5e1 þ

0 1 0
1 0 1
0 1 0

2
4

3
5e2 ¼

e1 e2 0
e2 e1 e2
0 e2 e1

2
4

3
5 ð4:4Þ

The second row of the matrix indicates that in the electrical circuit graph we
have one source and two sinks. Because we want to eliminate the bifurcation
element we split the second row into two rows with one source and only one sink.
So we have the formal transformation of the matrix in this way (4.5).

e1 e2 0
e2 e1 e2
0 e2 e1

2
4

3
5 !

e1 e2 0
e2 e1 0
0 e1 e2
0 e2 e1

2
664

3
775 ð4:5Þ

Now we compute the possible trajectories in the network by 4.6.

e1ð1Þ e2ð2Þ 0
e2ð4Þ e1ð3Þ 0
0 e1 e2
0 e2 e1

2
664

3
775;

e1 e2 0
e2 e1 0
0 e1ð1Þ e2ð2Þ
0 e2ð4Þ e1ð3Þ

2
664

3
775 ð4:6Þ

So the two trajectories are cycles. For any cycle includes a generator, which is an
external element of the circuit that takes energy from external source and introduces
this energy into the electrical circuit, the cycle is not closed. So we open any cycle
in a single path with initial element or pure source, one transit element with one
source and one sink, and one pure sink. So we have the path (Figure 4.22).

Where the first row is the connection between the pure source and the sink of the
transit node. The second row is the connection between the source of the transit and
the pure sink of the path. In Fig. 4.9 we have the transformation of a cycle into a
path. In a matrix form we have the row reduction (4.7).

e1 e2 0
e2 e1 0
0 e1 e2
0 e2 e1

2
664

3
775 ! e1 e2 0

0 e1 e2

� �
ð4:7Þ

2 1 3

Fig. 4.22 The graph in
Fig. 4.8 with two cycles is
transformed in one path
that moves from 3 to 1
and then to 2
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In the original matrix, because we want to open the cycles we eliminate the
second row and the fourth row. So the two cycles become two links one for any
cycle. When we want to put in evidence the two links of the cycles and the flows in
the rows we take the transport matrix of the reduction matrix so we have 4.8.

e1 0
e2 e1
0 e2

2
4

3
5 !

c1 c2
1 1 0
2 1 1
3 0 1

2
664

3
775 ð4:8Þ

where c1 and c2 are the links that substitutes the cycles. Now for the flows and
voltages Kirchhoff laws we have 4.9.

i1
i1 þ i2 ¼ i

i2

2
64

3
75 ¼

1 0

1 1

0 1

2
64

3
75 i1

i2

� �
;

E1

E2

� �
¼ 1 1 0

0 1 1

� � v1
v

v2

2
64

3
75 ¼ v1 þ v

vþ v2

� � ð4:9Þ

We can see that the connection matrix is the same matrix generated by the
source, sink space when we eliminate the cycle and substitute it for links and paths.
Now in the path we separate the three entities in two parts, one for the sources and
the other for the sink so we have Fig. 4.23.

Fig. 4.23 For the voltages we have one path and for the current we have the reverse path
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Now for the same generator we have two resistors R2, R3 with the same current
so we improve the previous graph with the two resistors in Fig. 4.24.

Fig. 4.24 Bond graph by sources and sinks any entity is a power system where the currents and
voltages are connected as sinks and sources in agreement with Kirchhoff and path in the entity
relation
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Chapter 5
Formal Description and References
in Graph Theory

5.1 Formal Description of Relationships

Given the relation R

R ¼
0 1 1
1 0 0
1 0 0

2
4

3
5

We split the relation into two parts shown in Fig. 5.1.
The first part is the start part and the second part is the final part. Now the first

part is the vector
a
b
c

2
4

3
5 the second part is the vector

ðb; cÞ
a
a

2
4

3
5. Formally we can

assume that the first vector is the values of coordinate e1 and the second vector is
the values of the coordinates e2. So the graph can be represented symbolically as
follows (5.1).

R ¼
a
b
c

2
4

3
5e1 þ

ðb; cÞ
a
a

2
4

3
5e2 ð5:1Þ

Or we can also write it as (5.2).

R ¼
1 0 0
0 1 0
0 0 1

2
4

3
5e1 þ

0 1 1
1 0 0
1 0 0

2
4

3
5e2

0
@

1
A

a
b
c

2
4

3
5 ¼

ae1 þðbþ cÞe2
be1 þ ae2
ce1 þ ae2

2
4

3
5 ð5:2Þ

For the commutative diagram we have Fig. 5.2.
We have the formal description of the commutative diagram as (5.3).

© Springer International Publishing AG 2017
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1 0 0

0 1 0

0 0 1

2
64

3
75Ae1 þ

0 1 1

1 0 0

1 0 0

2
64

3
75e2

0
B@

1
CA

a

b

c

2
64

3
75 ¼

Aae1 þðbþ cÞe2
Abe1 þ ae2
Ace1 þ ae2

2
64

3
75

¼
be1 þðbþ cÞe2

ce1 þ ae2
ae1 þ ae2

2
64

3
75

ð5:3Þ

The change of the initial value e1 does not lead to the change of the final value
which is comparable at the vector convergent graph Fig. 5.3.

We can represent the previous initial value transformation also in this way
(Fig. 5.4).

And for the graph transformations we have (5.4) and (5.5).

a b

c

a b

c R

Fig. 5.1 Separation of the graph (relation) in sources and sinks

a b

c

b c

a

a b

c

a b

c R

T

A
I

Fig. 5.2 Sources, sinks and transformations
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Ae1

a

b

c

2
64

3
75 ¼

0 1 0

0 0 1

1 0 0

2
64

3
75e1

a

b

c

2
64

3
75 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75e1 þ

0 1 0

0 0 1

1 0 0

2
64

3
75e2

0
B@

1
CAe1

a

b

c

2
64

3
75

¼
1 0 0

0 1 0

0 0 1

2
64

3
75e1 þ

0 1 0

0 0 1

1 0 0

2
64

3
75e2

0
B@

1
CAe1

a

b

c

2
64

3
75

ð5:4Þ

1 0 0

0 1 0

0 0 1

2
64

3
75Ae1 þ

0 1 1

1 0 0

1 0 0

2
64

3
75e2

0
B@

1
CA

a

b

c

2
64

3
75

¼
1 0 0

0 1 0

0 0 1

2
64

3
75e1

0
B@

0
B@ þ

0 1 0

0 0 1

1 0 0

2
64

3
75e2

1
CAe1 þ

0 1 1

1 0 0

1 0 0

2
64

3
75e2

1
CA

a

b

c

2
64

3
75

ð5:5Þ

And we have the commutative Fig. 5.5.
If we have the formal description as 5.6.

Aa

a
c

Fig. 5.3 Change of the
source with the same sink

Aa

a

c

Fig. 5.4 The initial value
transformation
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1 0 0
0 1 0
0 0 1

2
4

3
5e1 þ

0 1 1
1 0 0
1 0 0

2
4

3
5Be2

0
@

1
A

a
b
c

2
4

3
5 ¼

ae1 þBðbþ cÞe2
be1 þBae2
ce1 þBae2

2
4

3
5

¼
ae1 þðcþ aÞe2

be1 þ be2
ce1 þ be2

2
4

3
5 ð5:6Þ

We have it shown in Fig. 5.6.
And Fig. 5.7 shows the non-coherent graph.
Or in an explicit way we have the conflicting graph Fig. 5.8.

a b

c

a b

c

a b

c

a b

c R

T

A

I

b c

a

Fig. 5.5 Split of the transformation A first we transform the sources, after the sinks and after we
have the final transformation A
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 a  b 

 c 

 a  b 

 c 

 b  c 

 a 

 a  b 

 c R 

T 

I 
B 

Fig. 5.6 Change of the sinks with the same sources

a Ba b Bb

Bc c

Fig. 5.7 The non-coherent
graph given by the
transformation of the sinks

a c b a

b c

Fig. 5.8 The conflicting
situation
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Now we change the relation in a way to have compensation and non-conflicting
graph Fig. 5.9.

With the analogy of the vector representation we have Fig. 5.10.
Or in a more complete way we have Fig. 5.11.
At the end we have 5.7

a a b b

c c

Fig. 5.9 Non-conflicting
situation

Ba

c
a

Fig. 5.10 With the same
sources, we change the sinks

Ba

c
a

Fig. 5.11 With the same
source we change the sinks by
a vector sum
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1 0 0

0 1 0

0 0 1

2
64

3
75Ae1 þ

0 1 1

1 0 0

1 0 0

2
64

3
75Ae2

0
B@

1
CA

a

b

c

2
64

3
75

¼
1 0 0

0 1 0

0 0 1

2
64

3
75e1 þ

0 1 1

1 0 0

1 0 0

2
64

3
75e2

0
B@

1
CAA

a

b

c

2
64

3
75

¼
Aae1 þAðbþ cÞe2

Abe1 þAae2
Ace1 þAae2

2
64

3
75 ¼

be1 þðaþ bÞe2
ce1 þ ae2
ae1 þ ae2

2
64

3
75 ð5:7Þ

So the relation R ¼
1 0 0
0 1 0
0 0 1

2
4

3
5e1 þ

0 1 1
1 0 0
1 0 0

2
4

3
5e2

0
@

1
A is the same but we

change the name of the entities in this way A
a
b
c

2
4

3
5 and we have Fig. 5.12.

The graph has no conflicts. In the explicit way we have Fig. 5.13.
The relationships are the same and are coherent with the new graph when we

only change the name of the entities. With coordinates we have Fig. 5.14.
Where the change moves from one vector (relationship) to another equivalent or

parallel.

Aa Aa Ab Ab

Ac Ac

Fig. 5.12 Change in the
same way the sources and the
sinks

b b c c

a a

Fig. 5.13 When we change
the sources and the sinks in
the same way, the graph is
always coherent. Source and
sink of the same entity has the
same name
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5.2 Topological Inconsistency

Given the path on the sphere Fig. 5.15.
Where the tangent vector is comparable with the relationship in the data base.

After the cycle we can not return to the same relationship (tangent). This means that
there is a conflict between the initial point and the final point. The mining of this
conflict is that we use the same relation R that we use in three dimensional space
where there is not constraint for the surface where we have constraint. So on the
surface of the sphere we cannot have information of the curvature. This constraint
as curvature is beyond our possibility and this creates the conflict. Now if we make
the same cycle in the three dimensional space without constraint, the conflict will
disappear. In conclusion, conflict appears because we use representations that do
not take care of the constraints.

Aa

b
a

Ab

Fig. 5.14 Parallel
transformation when we
change the sources and the
sink in the same way

Fig. 5.15 The vector in the
cycle on the sphere cannot
return to the same vector so
for the point A the sink and
the source for the same point
or entity are different. This
creates an incoherent graph
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5.3 Inconsistency in Crystal Structure

Figure 5.16a, b is another non-coherent situation. In Fig. 5.16a the ideal network is
mapped in crystal with curvature so we have incoherence in a loop similar to the
sphere incoherence for vectors so we have the disclination defect in crystal struc-
ture. In Fig. 5.16b in a loop the same point is split into two parts, one for the source
and the other for the sink. This defect is denoted dislocation because the same entity
or point is dislocated in two different parts.

There is a sphere and a cylinder (Fig. 5.17).
The sphere cannot reduce to a cylinder because any vector that starts to a point or

source after a loop becomes a sink vector whose direction is different from the
direction of the source vector. In the cylinder the source and sink vectors after a
loop are equal so at any point we have coherent loops.

When any entity is a point, the local coordinates show the three points where we
can move to join one point with another point or one entity with another entity.
Now we can see that locally there is no difference between the cylinder and the
sphere. But globally one is not similar to the other. In fact at the polo Nord and Sud
the two databases are completely different. We remark that at the same point Polo
we have many different directions.

Let’s take an example to explain the conflict situation. Given an elastic ring
(Fig. 5.18), the ring can be seen as the joining together of infinite points.

Fig. 5.16 a X is the angle between the vector source and the vector sink in the same point as in
the sphere (dislocation). b In a loop the same point is split in two parts one for the source and the
other for the sink
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Originally the ring is a coherent structure and has no conflict. If we cut the ring
at some joint, the connection of points is broken and two planes around the cutting
point emerge. When we rotate the two planes with a certain angle at the same time,
the ring is deformed and uncertainty is generated which decides what geometry
topology the circle will be twisted. The uncertainty can be seen as dilemma or
conflict. For small values of the twist, the ring will be deformed a little bit without
out of two dimension space. For sufficiently high twist, the elastic ring will start
writhing out of the plane which all composing points change into three-dimension
space. As it is shown in Fig. 5.19.

To eliminate the conflict or uncertainty, we can apply two compensating ways.
One way is to give the ring some force or pressure to make it restore to the original
dimension space. The other way is to keep the ring in the multi-dimensional space
and make it reach the stable state when deformed (Fig. 5.20).

Fig. 5.18 Two rings are cut in one part. At the left the two cut surfaces are under the same force
but at the right the two surface are under two different torque forces. So the source and the sink
forces are coherent when they are under the same force, and are incoherent when they are under
two different forces. So at the left for the same surface we have a stress situation that is the
mechanical image of the inconsistency in logic

Fig. 5.17 The sphere and cylinder
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Fig. 5.19 The incoherent ring with internal stress is free to move to compensate the morpho or its
form in a way to eliminate the internal stress or incoherence and give us the coherent ring with new
forms. So the morpho or form changes in a way to give us coherent structure without internal force
or stress. This is comparable with the database incoherence or conflict

Fig. 5.20 In the transformation the source and sink for a point or entity are the same before and
after the transformation. This is similar to the database transformation with the same operator for
the source and the sink in any point or entity
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In the global map or parallel transport, any close loop is transformed in a close
loop. At any path before the transformation we have an equivalent path after the
transformation. From coherent loop we move to another coherent loop. Any loop
before and after the transformation is coherent.
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Chapter 6
Logic of Conflicts and Active Set
with Uncertainty and Incoherence

An active set is a unifying space being able to act as a “bridge” for transferring
information, ideas and results between distinct types of uncertainties and different
types of applications. An active set is a set of agents who independently deliver true
or false values for a given proposition. An active set is not a simple vector of logic
values for different propositions, the results are a vector but the set is not. The
difference between an ordinary set and active set is that the ordinary set has passive
elements with values of the attributes defined by an external agent. In the active set,
any element is an agent that internally defines the value of a given attribute for a
passive element. Agents in the active set with a special criterion give the logic value
for the same attribute. So agents in many cases are in a logic conflict and this
generates semantic uncertainty on the logic evaluation. Criteria and agents are the
two variables by which we give different logic values to the same attribute or
proposition. Active set is beyond the modal logic. In fact, given a proposition in
modal logic we can evaluate the proposition only when we know the worlds where
the proposition is located. When we evaluate one proposition in one world we
cannot evaluate the same proposition in another world. Now in epistemic logic any
world is an agent that knows the proposition is true or false. The active set is a set of
agents as in the epistemic logic but is different from modal logic because all the
agents (worlds) are not separate but are joined in the evaluation of the given
proposition. In active set for one agent and one criterion we have one logic value
but for many agents and criteria the evaluation is not single true or false but is a
matrix of true and false. This matrix is not only a logic evaluation as in the modal
logic but gives us the conflicting structure of the active set evaluation. Matrix agent
is the vector subspace of the true or false agent multidimensional space. Operations
among active sets include operations in the traditional sets, with fuzzy set and rough
set as special cases. The agents multi dimensional space to evaluate active set
include also the Hilbert multidimensional space where it is possible to simulate
quantum logic gate. New logic operations are possible as fuzzy gate operations and

© Springer International Publishing AG 2017
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more complex operations as conflicting solving, consensus operations, syntactic
inconsistency, semantic inconsistency and knowledge integration. In the space of
the agents evaluations morphotronic geometric operations are the new frontier to
model new types of computers, new type of model for wireless communications as
cognitive radio. In conclusion, active set opens the new possibility and new models
for the logic.

6.1 Agents and Logic in the Epistemic Logic

Epistemic logic is the logic which formalizes knowledge of agents. Among many
applications it is used in game theories and economic behaviour in databases and in
verifying cryptographic protocols shared knowledge, common knowledge.
Epistemic logic is also known as the logic of knowledge, it deals with modalities,
which are not part of traditional logic and which modify the meaning of a propo-
sition. For instance such a modality is the knowledge modality: “agent Alice knows
that…”, written K. Alice. There is one knowledge modality Ki for each agent i, so
when there are n agents, there are n knowledge modalities. From the Ki’s, one can
build two new modalities, namely a modality Eg of shared knowledge, which
modifies a proposition p into a proposition Eg(p) which means that “everyone in the
group g knows p” and a modality Cg of common knowledge. Cg(p) would say “p is
known to everybody in the group g” in a very strong sense since knowledge about p
is known at every level of knowledge. Slightly more precisely, if g is the group of
agents and p is a proposition, Eg(p) is the conjunction over the i 2 g of the Ki(p)
and Cg(p) means something like “everybody knows p and everybody knows that
everybody knows p and… and everybody knows that everybody knows that
everybody knows…that everybody knows p…” This infinite conjunction is handled
by making Cg(p) a fix point. A typical example of common knowledge is traffic
regulation. When, as a car driver, you enter an intersection you know that the
person on your left will let you go, moreover you know that she knows that you
have the right to go and you are sure (you know) that she will not go because she
knows that you know that she knows that you have the right to go etc. Actually you
pass an intersection with a car on your left, because there is a common knowledge
between you as a driver and the driver of the other car on the rule of priority. But
those who travel have experienced the variability of the common knowledge. Take
a stop sign. In Europe it means that the person which has a stop sign will let the
other to pass the intersection. In some countries, the stop sign is just a decoration of
intersections. In the USA, the common knowledge is different since there are
intersections of two crossing roads with four stop signs and this has puzzled more
than one European. One main goal of epistemic logic is to handle properly those
concepts of knowledge of an agent, shared knowledge and common knowledge. So
we have the Epistemic logic evaluation 6.1.
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KaðpÞ ¼ Agent 1 2 3
Logic value true false true

� �
ð6:1Þ

where the proposition p is true for the agent 1, false for the agent 2 and true for the
agent 3. Any agent in epistemic logic is completely separate from the others and
any evaluation is given only when we know the agents as worlds. No conflict is
possible because the agents are not considered together but one at the time as for the
world in the modal logic.

6.2 Concepts and Definitions of Active Set

In the previous historical background we have vector evaluations but without any
conflict because one evaluation is apart from the others. So p can be true in one
situation and false in another but the two situations are not superposed so no
conflict is possible. Only in quantum mechanics we can have superposition of
different states where the proposition p can be both false and true. Now in quantum
gate we use superposition and inconsistency only when we want to make a massive
parallel computations. But when we want to measure the computation result, the
superposition collapses and we always come back to a total separation of the states
that is in agreement with the consistent classical logic by which we can make
computation in the Boolean algebra. Now in a recently works on the agents appears
the possibility to have inconsistent and conflict logic system where we can choose
the consensus situation to come back to the classical and consistent true or false
logic from inconsistency and also knowledge integration where we can know the
logic value for complex propositions. Recently Cognitive radio system uses
inconsistency to have a wireless efficient system. The aim of this chapter is to define
a new type of set, that includes classical set theory, fuzzy set, set in evidence theory
and rough set.

6.3 Properties and Definition of the Active Set

Any active set is a set of superpose agents, and any agent gives a value for the same
proposition p. Active set appears similar to the Epistemic logic evaluation but the
difference is that it is connected with the superposition of the world or agents whose
judgment is not related to one agent but to the set of agents. We recognize active set
elements in the vote process where all agents together give votes for the same
person. In general the vote process is a conflicting vote because we have positive
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and negative votes for the same person. In epistemic logic this is impossible
because we want to know where is the agent that gives a positive or negative
judgment and this is possible without any conflict because we know the name of the
agents. In active set, the set of agents is independent of the name that gives the
judgment that must be only one for the set of agents. Now when all the agents
obtain a consensus, they together give the same logic value so the conflict disap-
pears and we have the classical non conflicting situation. The same is for knowl-
edge integration where agents must be taken to integrate its actions to create the
wanted knowledge integration. So now we begin with the formal description of the
active set theory. Given three agents with all possible sets of logic values (true,
false) one for any agents. So at any set of agent we have a power set of all possible
evaluation for the proposition p. For example given three agents, the active set is a
set of three agents with 8 sets of possible logic values for the same proposition p
(as 6.2).

XðpÞ ¼ Agent 1 2 3

Logic value true true true

� �
;

Agent 1 2 3

Logic value true true false

� �
;

Agent 1 2 3

Logic value true false true

� �
;

Agent 1 2 3

Logic value false true true

� �
;

Agent 1 2 3

Logic value false false true

� �
;

Agent 1 2 3

Logic value false true false

� �

Agent 1 2 3

Logic value true false false

� �
;

Agent 1 2 3

Logic value false false false

� �

ð6:2Þ

In a more formal way we have 6.3.

SSðpÞ ¼ A;XðpÞjA = set of agents;XðpÞ ¼ power set 2A of the evaluations
� �

ð6:3Þ

Given the proposition p, we denote as Criteria C one of the possible evaluation p
in the set X(p). For example with three agents we have eight criteria to evaluate the
proposition itself so we can write 6.4.
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Xðp;C1Þ ¼
Agent 1 2 3

Logic value true true true

� �
;

Xðp;C2Þ ¼
Agent 1 2 3

Logic value true true false

� �
;

Xðp;C3Þ ¼
Agent 1 2 3

Logic value true false true

� �
;

Xðp;C4Þ ¼
Agent 1 2 3

Logic value false true true

� �
;

Xðp;C5Þ ¼
Agent 1 2 3

Logic value false false true

� �
;

Xðp;C6Þ ¼
Agent 1 2 3

Logic value false true false

� �

Xðp;C7Þ ¼
Agent 1 2 3

Logic value true false false

� �
;

Xðp;C8Þ ¼
Agent 1 2 3

Logic value false false false

� �

ð6:4Þ

We remark that the set of Criteria is a mathematical lattice. For the previous
example we have Fig. 6.1.

Operations
The agents set A is an ordinary set with normal intersection union and comple-
mentary operator. For the logic evaluation we have two different operations.

C1

C2 C3 C4

C5 C6 C5

C8

Fig. 6.1 Lattice of the
uncertainty with different
criteria
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(1) Operation among criteria for the same proposition. Because we have the same
proposition with two different criteria, we cannot compose the logic values that
are heterogeneous. So we have the rule 6.5.

Ci � Cj ¼
Agent 1 2 . . . n
Ci v1;1 v1;2 . . . v1;n
Cj v2;1 v2;2 . . . v2;n

0
@

1
A ð6:5Þ

So we increase the dimension of the space of the evaluation. For example, given
ten agents and two criteria we have 6.6.

Xðp;Ci;CjÞ ¼
Agents 1 2 3 4 5
p;Ci f f t t f
p;Cj t t f t f

0
@

1
A ð6:6Þ

In a graphic way we have Fig. 6.2.

(2) For two different propositions p and q we have the composition rule for the
active set (as 6.7).

Xðp ^ q;CÞ ¼ Agents 1 2 . . . n

p;C v1;p v2;p . . . vn;p

� �
^ Agents 1 2 . . . n

q;C v1;q v2;q . . . vn;q

� �

¼ Agents 1 2 . . . n

p; q;C v1;p ^ v1;q v2;p ^ v2;q . . . vn;p ^ vn;q

� �

ð6:7Þ

Xðp _ q;CÞ ¼ Agents 1 2 . . . n

p;C v1;p v2;p . . . vn;p

� �
_ Agents 1 2 . . . n

q;C v1;q v2;q . . . vn;q

� �

¼ Agents 1 2 . . . n

p; q;C v1;p _ v1;q v2;p _ v2;q . . . vn;p _ vn;q

� �

ð6:8Þ

p

false
false

true
false

true
true

false
true

Ci

Cj

Fig. 6.2 Two dimensional
evaluation for two different
criteria for five agents and the
same proposition p
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Example 6.1

Xðp) = Agents 1 2 3 4 5 6

values t t t f f f

� �
; Xðq) = Agents 1 2 3 4 5 6

values t t t t f f

� �

Xðp _ q) =
Agents 1 2 3 4 5 6

values t t t t f f

� �
;

Xðp ^ q) =
Agents 1 2 3 4 5 6

values t t t f f f

� �

The two logic operators are sensible to the order of the agents as a list for the
negation operator we have 6.9.

Xð:pÞ ¼ Agents 1 2

value a1ð:v1Þþ ð1� a1Þðv1Þ a2ð:v2Þþ ð1� a2Þðv2Þ
�

. . . n

. . . anð:vnÞþ ð1� anÞðvnÞ

� ð6:9Þ

Example 6.2

XðpÞ ¼ Agents 1 2 3 4 5 6
values f f f t t t

� �

For

if a ¼ Agents 1 2 3 4 5 6

values 1 1 1 1 1 1

� �
then Xð:p) = Agents 1 2 3 4 5 6

values t t t f f f

� �

if a ¼ Agents 1 2 3 4 5 6

values 1 1 1 0 1 1

� �
then Xð:p) = Agents 1 2 3 4 5 6

values t t t t f f

� �

if a ¼ Agents 1 2 3 4 5 6

values 1 1 0 1 1 1

� �
then Xð:p) = Agents 1 2 3 4 5 6

values t t f f f f

� �

When all the values of a are equal to one, all the agents change its value in the
negation operation. When one a is zero for the true values one true value agent does
not change and all the others change. So in the end the number of agents with true
value in the negation operation is more than in the classical negation for any agent.
On the contrary, if a is zero for one agent with false value, the number of the true
value in the negation is less than the classical negation for any agent.
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6.4 Aggregation Rule for Active Set

Given an active set, we associate to any active set evaluation a number by an
aggregation function that can be linear or non linear. For the linear case the
aggregation can be simple aggregation or can be weighted aggregation. For
example for simple linear aggregation rule we have the aggregation rule 6.10.

for Xðp;C1Þ ¼
Agent 1 2 3

Logic value true true true

� �

lðp;C1Þ ¼ 1
3
truej i þ 1

3
truej i þ 1

3
truej i ¼ 1

3
þ 1

3
þ 1

3
¼ 1

for Xðp;C2Þ ¼
Agent 1 2 3

Logic value true true false

� �

lðp;C2Þ ¼ 1
3
truej i þ 1

3
truej i þ 1

3
falsej i ¼ 1

3
þ 1

3
þ 1

3
0 ¼ 2

3

ð6:10Þ

Where Q is the linear superposition of the logic value for the active set.

6.5 Fuzzy Set by Active Set

The probability calculus does not incorporate explicitly the concepts of irrationality
or agent’s state of logic conflict. It misses structural information at the level of
individual objects, but preserves global information at the level of a set of objects.
Given a dice the probability theory studies frequencies of the different faces
E = {e} as independent (elementary) events. This set of elementary events E has no
structure. It is only required that elements of E be mutually exclusive and complete,
and there is no other possible alternative. The order of its elements is irrelevant to
probabilities of each element of E. No irrationality or conflict is allowed in this
definition relative to mutual exclusion. The classical probability calculus does not
provide a mechanism for modelling uncertainty when agents communicate (col-
laborates or conflict). Below we present the important properties of sets of
conflicting agents at one dimension Let X(x) the active set for the proposition x and
|X(x)| be the numbers of agents for which proposition x is true we have

Given two propositions a and b when

If jX að Þ \j jX bð Þj then p ¼ a and q ¼ b

If jX bð Þ \j jX að Þj then p ¼ b and q ¼ a

So we order the propositions from the proposition with less number of true value
to the proposition with maximum of true values (Fig. 6.3)
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( )qΩ

( )pΩ

Ω ∧

( )Ω ¬ ∧

( )

p q

p q

p q

( )

Ω ∧¬

Fig. 6.3 Fuzzy rules and
Active sets

XðpÞj j ¼ 4

XðqÞj j ¼ 5

XðpÞj j\ XðqÞj j
maxð XðpÞj j; XðqÞj jÞ ¼ XðqÞj j
minð XðpÞj j; XðqÞj jÞ ¼ XðqÞj j

XðpÞ ¼ Agents 1 2 3 4 5 6 7 8

values f f t t t t f f

� �

XðqÞ ¼ Agents 1 2 3 4 5 6 7 8

values f t t f t t f t

� �

XðpÞj j ¼ 4; XðqÞj j ¼ 5

We have

Xðp ^ qÞ ¼ Agents 1 2 3 4 5 6 7 8

values f f t f t t f f

� �

Xðp _ qÞ ¼ Agents 1 2 3 4 5 6 7 8

values f t t t t t f t;

� �

Xðp ^ qÞ ¼ 3j j; Xðp _ qÞ ¼ 6j j

Now we know that

q _ ðp ^ :qÞ ¼ ðq _ pÞ ^ ðq _ :qÞ ¼ q _ p

p ^ :ðp ^ :qÞ ¼ p ^ ð:p _ qÞ ¼ ðp ^ :pÞ _ p ^ q ¼ p ^ q

But because when q is false and p is true we adjoin one logic value true at q to
obtain p or q. So when we repeat this process many times for any agent we have
that at the number of true values for q we must adjoin other true values for which q
is false but p is true. In conclusion we have
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Xðp _ qÞj j ¼ XðqÞj j þ Xð:q ^ pÞj j ¼ maxð XðqÞj j; XðpÞj j þ Xð:q ^ pÞj j For any
operation we have that when q is false and p is true we eliminate one element for
which p is true. In conclusion when we repeat this for many times we have

Xðp ^ qÞj j ¼ XðpÞj j � Xð:q ^ pÞj j ¼ minð XðqÞj j; XðpÞj j þ Xð:q ^ pÞj j

In one word, in the active set we can find the Zadeh rule again when p and not q
is always false.

Zadeh rule

Xðp ^ qÞj j ¼ minð XðqÞj j; XðpÞj j
Xðp _ qÞj j ¼ maxð XðqÞj j; XðpÞj j

So when the agents for which p is true are also the agents for which q is true. In a
graphic way we have Fig. 6.4.

We can also remark that the minimum rule is the maximum possible value for
AND and the maximum rule is the minimum possible value for OR. We can see
that for the previous example we have

for Xðp ^ :qÞj j ¼ 1

Xðp ^ qÞj j ¼ minð XðpÞj j; XðqÞj jÞ � Xðp ^ :qÞj j ¼ 4� 1 ¼ 3

Xðp _ qÞj j ¼ maxð XðpÞj j; XðqÞj jÞ þ Xðp ^ :qÞj j ¼ 5þ 1 ¼ 6

For the negation we have the Zadeh rule

Xð:pÞj j ¼ n� XðpÞj j

When we divide agents with the number n, we have the traditional rule

lð:pÞ ¼ Xð:pÞj j
n

¼ 1� XðpÞj j
n

¼ 1� lðpÞ

( )qΩ

( )pΩ

( )p qΩ ∧
( )p qΩ ¬ ∧

Fig. 6.4 Zadeh fuzzy rules
and active sets
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In this situation all the agents in the negation change all the logic values in a
synchronic way. But when we have the Sugeno rule

Xð:pÞj j ¼ lð:pÞn ¼ 1� lðpÞ
1þ klðpÞ n ¼ 1� XðpÞj j

n

1þ k XðpÞj j
n

n ¼ n
n� XðpÞj j
nþ k XðpÞj j

where k = [−1, /] when we change the lambda parameters for n = 6 and X (p) = 3
we have the negation value (Fig. 6.5).

When k = 0 all the agents change their logic values. So before we have three
true values and three false values for the negation we have the same values again
but are reversed. For

if k ¼ 0; Xð:pÞj j ¼ n� XðpÞj j ¼ 6� 3 ¼ 3

if k\0; Xð:pÞj j[ n� XðpÞj j
if k[ 0; Xð:pÞj j\n� XðpÞj j

When k is negative, agents with true values do not change, when k is positive,
agents with false values do not change. In conclusion, t-norm and t-conorm and
fuzzy negation can be simulates inside the active set.

6.6 Theory of Inconsistent Graph and Active Set

Given the inconsistent graph Fig. 6.6
We have the active set definition.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6
N

0

F λk 3,  ( )

1−1 λk

Fig. 6.5 Change of the
Sugeno negation value for the
change of lambda parameter
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valueðaLÞ ¼
agents entity1 entity2 entity3
value T F F

� �

valueðbLÞ ¼
agents entity1 entity2 entity3
value F T F

� �

valueðcLÞ ¼
agents entity1 entity2 entity3
value F F T

� �

valueðaRÞ ¼
agents entity1 entity2 entity3
value F T F

� �

valueðbRÞ ¼
agents entity1 entity2 entity3
value F F T

� �

valueðcRÞ ¼
agents entity1 entity2 entity3
value T F F

� �

When we compose the left active sets with the right active set by logic equiv-
alence operation we have

agents entity1 entity2 entity3
value T F F

� �
¼ agents entity1 entity2 entity3

value F T F

� �

! agents entity1 entity2 entity3
value F F T

� �

agents entity1 entity2 entity3
value F T F

� �
¼ agents entity1 entity2 entity3

value F F T

� �

! agents entity1 entity2 entity3
value T F F

� �

agents entity1 entity2 entity3
value F F T

� �
¼ agents entity1 entity2 entity3

value T F F

� �

! agents entity1 entity2 entity3
value F T F

� �

For consistent graph Fig. 6.7.

a c b a

b c

Fig. 6.6 The nodes are
inconsistent
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We have

agents entity1 entity2 entity3
value T F F

� �
¼ agents entity1 entity2 entity3

value T F F

� �

! agents entity1 entity2 entity3
value T T T

� �

agents entity1 entity2 entity3
value F T F

� �
¼ agents entity1 entity2 entity3

value F T F

� �

! agents entity1 entity2 entity3
value T T T

� �

agents entity1 entity2 entity3
value F F T

� �
¼ agents entity1 entity2 entity3

value F F T

� �

! agents entity1 entity2 entity3
value T T T

� �

For consistent graph the logic equivalence for active sets gives the value which
is always true. So we have no conflicts.

a a b b

c c

Fig. 6.7 The nodes are
consistent
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Chapter 7
Cycles, Sinks, Sources and Links Products

In Chap. 1, we have given the representation of relation with sinks and sources in
database. In this chapter, we use a new instrument to give a method for modelling a
graph with cycles, sinks and sources by the external product.

Depending on the relationship, every entity in database can be split into two
parts, the first part is the source, and the second one is the sink. How to represent
the two parts in mathematics is a big problem. In Chap. 1, we gave the represen-
tation of relations as 7.1.

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 1 1 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

¼

ðclassÞe1 þðclassroomþ enrollmentþ teacherÞe2
ðclassroomÞe1 þðclassÞe2
ðenrollmentÞe1 þðclassþ studentÞe2
ðteacherÞe1 þðclassÞe2
ðstudentÞe1 þðenrollmentÞe2

2
6666664

3
7777775

ð7:1Þ

A more simple example is 7.2

1 0
0 1

� �
e1 þ 1 1

1 1

� �
e2

� �
a
b

� �
¼ ae1 þ ae2 þ be2

be1 þ ae2 þ be2

� �
ð7:2Þ

The network can be represented in Fig. 7.1.

© Springer International Publishing AG 2017
G. Resconi et al., Introduction to Morphogenetic Computing,
Studies in Computational Intelligence 703, DOI 10.1007/978-3-319-57615-2_7
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We have four links given by the vector of the links

ae1 þ ae2
be1 þ be2
ae1 þ be2
be1 þ ae2

2
664

3
775 ¼

f1
f2
f3
f4

2
664

3
775

We remark that ðe1 þ e2Þa is a self loop because the entity a includes a sink and a
source together, the same for ðe1 þ e2Þb. The tensor product of the vector is

ae1 þ ae2
be1 þ be2
ae1 þ be2
be1 þ ae2

2
6664

3
7775

ae1 þ ae2
be1 þ be2
ae1 þ be2
be1 þ ae2

2
6664

3
7775
T

¼

ðae1 þ ae2Þðae1 þ ae2Þ ðae1 þ ae2Þðbe1 þ be2Þ
ðbe1 þ be2Þðae1 þ ae2Þ ðbe1 þ be2Þðbe1 þ be2Þ
ðae1 þ be2Þðae1 þ ae2Þ ðae1 þ be2Þðbe1 þ be2Þ
ðbe1 þ ae2Þðae1 þ ae2Þ ðbe1 þ be2Þðbe1 þ ae2Þ

2
6664

ðae1 þ ae2Þðae1 þ be2Þ ðae1 þ ae2Þðbe1 þ ae2Þ
ðbe1 þ be2Þðae1 þ be2Þ ðbe1 þ be2Þðbe1 þ ae2Þ
ðae1 þ be2Þðae1 þ be2Þ ðae1 þ be2Þðbe1 þ ae2Þ
ðbe1 þ ae2Þðae1 þ be2Þ ðbe1 þ ae2Þðbe1 þ ae2Þ

3
7775

For the value ðae1 þ ae2Þðbe1 þ be2Þ we have the connected conflicting graph
Fig. 7.2.

But we know that the two links are not connected in fact. With compensation we
have the consistent graph Fig. 7.3.

a a b b

Fig. 7.1 Relations with each
node having two parts

a b b a

Fig. 7.2 Conflicting graph

a a b b
Fig. 7.3 Compensate graph
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For the values

ðae1 þ be2Þðbe1 þ ae2Þ !
abe21
a2e1e2
b2e2e1
bae22

2
664

3
775 ¼

sources
extreme

connection
sin ks

2
664

3
775

we have the consistent connected graph Fig. 7.4.
Now because the initial value ae1 and the final value ae2 have the same name,

the previous value is a loop. When we build the graph of the consistent links we get
the evolution connection table R.

R f1 f2 f3 f4
f1 1 0 1 0
f2 0 1 0 1
f3 1 0 0 1
f4 0 1 1 0

2
66664

3
77775

For this we have the second order graph Fig. 7.5 generated by two links
connection.

a a b b

Fig. 7.4 Consistent graph

f1 f1 f2 f2

f3 f3 f4 f4

Fig. 7.5 Second order graph
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7.1 Study of Sink Property

For the relation shown in Fig. 7.6,
We have the table

Data ðclassÞe2 ðclassroomÞe2 ðenrollmentÞe2 ðteacherÞe2 ðstudentÞe2
ðclassÞe1 0 1 1 1 0
ðclassroomÞe1 0 0 0 0 0
ðenrollmentÞe1 1 0 0 0 1
ðteacherÞe1 1 0 0 0 0
ðstudentÞe1 0 0 0 1 0

2
6666664

3
7777775

There is no link starting from classroom to other entities, so classroom is a sink.
We recognize the sink because all the row values of the sink are equal to zero. So
we have

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 1 1 0

0 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

class

classroom

enrollment

theacher

student

2
6666664

3
7777775

¼

ðclassÞe1 þðclassroomþ enrollmentþ teacherÞe2
ðclassroomÞe1
ðenrolmentÞe1 þðclassþ studentÞe2
ðteacherÞe1 þðclassÞe2
ðstudentÞe1 þðenrollmentÞe2

2
6666664

3
7777775

enrollment

class

teacher

classroom

Student
Fig. 7.6 Relation in database
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When we multiply for the sink we have

½ðclassÞe1 þðclassroomÞe2�½ðclassroomÞe1�

7.2 Study of Source Property

For the relation shown in Fig. 7.7, we have the table.

class classroom enrollment teacher student
class 0 1 1 0 0
classroom 1 0 0 0 0
enrollment 1 0 0 0 1
teacher 1 0 0 0 0
student 0 0 1 0 0

2
6666664

3
7777775

From teacher, we can go to class but no entity goes to teacher. All values of
teacher column in the relation are equal to zero. So teacher is a source.

And

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 1 1 0 0

1 0 0 0 0

1 0 0 0 1

1 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

¼

ðclassÞe1 þðclassroomþ enrollmentÞe2
ðclassroomÞe1 þðclassÞe2
ðenrollmentÞe1 þðclassþ studentÞe2
ðteacherÞe1 þðclassÞe2
ðstudentÞe1 þðenrollmentÞe2

2
6666664

3
7777775

enrollment

class
teacher

classroom

student
Fig. 7.7 Teacher is a source
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When we multiply for the source we have

½ðteacherÞe1 þ ðclassÞe2�½ðclassÞe1 þðclassroomþ enrollmentÞe2�

7.3 Both Sink and Source

The sink entity can be seen (accessible) from all the other entities but from the sink
entity it is impossible to see the other entities. For the source entity we have dual
property. From the source it is possible to see all the other entities but all the others
cannot see the interior information of the source. Now in database it is possible to
have sink and source entities together. Figure 7.8 is the example.

The from/to relation is

class classroom enrollment teacher student
class 0 0 1 1 0
classroom 1 0 0 0 0
enrollment 1 0 0 0 1
teacher 0 0 0 0 0
student 0 0 1 0 0

2
6666664

3
7777775

We can see that teacher is a sink and classroom is a source.

7.4 Cycle in the Database

When no sink or source is present in a graph or sub-graph, there must be cycles
included. For example, in the following relation, there are one sink and one source.

class teacher

classroom

student

enrollment

Fig. 7.8 Sink and source
together
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1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
e1 þ

0 0 1 0 0

1 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 1 0 0

2
6666664

3
7777775
e2

0
BBBBBB@

1
CCCCCCA

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

¼

e1 0 e2 0 0

e2 e1 0 0 0

e2 0 e1 0 e2
0 0 0 e1 0

0 0 e2 0 e1

2
6666664

3
7777775

class

classroom

enrollment

teacher

student

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

¼

ðclassÞe1 þðenrollmentÞe2
ðclassroomÞe1 þðclassÞe2
ðenrollmentÞe1 þðclassþ studentÞe2
ðteacherÞe1
ðstudentÞe1 þðenrollmentÞe2

2
6666664

3
7777775

Now in the sub-graph (class, enrollment), (student, enrollment), the table is

class classroom enrollment teacher student
class 0 0 1 0 0
classroom 0 0 0 0 0
enrollment 1 0 0 0 0
teacher 0 0 0 0 0
student 0 0 0 0 0

2
6666664

3
7777775

class classroom enrolment teacher student
class 0 0 1 0 0
classroom 0 0 0 0 0
enrolment 0 0 0 0 1
teacher 0 0 0 0 0
student 0 0 0 0 0

2
6666664

3
7777775

There is no sink and source. So we have the cycles.

e1ð1Þ 0 e2ð2Þ 0 0
0 0 0 0 0
e2ð4Þ 0 e1ð3; 1Þ 0 e2ð2Þ
0 0 0 0 0
0 0 e2ð4Þ 0 e1ð3Þ

2
66664

3
77775

class
classroom
enrollment
teacher
student

2
66664

3
77775
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A graph has no cycle when any entity is a sink or a source or a transit between
sink and source. In this situation we have a lattice (partial order) for which we move
from source to sink without the possibility to come back (cycle or loop). Given the
relation without cycles.

class classroom enrolment teacher student
class 0 1 1 1 0
classroom 0 0 0 0 0
enrolment 0 0 0 0 1
teacher 0 0 0 0 0
student 0 0 0 0 0

2
6666664

3
7777775

or

class classroom enrolment teacher student
class e1 e2 e2 e2 0
classroom 0 e1 0 0 0
enrolment 0 0 e1 0 e2
teacher 0 0 0 e1 0
student 0 0 0 0 e1

2
6666664

3
7777775

We have that class is a source, classroom is a sink, enrollment is a transit, teacher
is a sink, and student is a sink. The transit moves from class (source) to student
(sink) so we have the lattice (Fig. 7.9).

class

classroom teacher enrollment

student

Fig. 7.9 Lattice in the graph
of data base
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7.5 Graph as a Space with Reference

Given the set of paraboles Fig. 7.10.
We see that in the three cases we respectively have two geometric intersections,

one tangent intersection and no intersection. The first situation is given by the
equation x2 � 1 ¼ 0. The second situation is given by the equation x2 ¼ 0. And the
last situation is given by the equation x2 þ 1 ¼ 0. For the last situation, we have no
coherent and consistent solutions. In mathematics, given a polynomial equation,
when there is no coherent solution, a new unity and coordinate is invented asso-
ciated with the impossible operation i ¼ ffiffiffiffiffiffiffi�1

p
that is defined as imaginary coor-

dinate. Now we know that any entity is a unity and has only one name. So we
cannot give two different names for one entity. This appears similar to the previous
paradox so we solve the paradox in a similar way. We introduce one unity denoted
source and the other unity denotes sink. So the same entity is inconsistent because
we give two different names at the same entity. The entity can be represented by
two dimensional space with two different attributes. The first is source (as e1) and
the other is sink (as e2). As for the complex number we have a ¼ xþ iy. For graph
theory we have f ¼ xe1 þ ye2.

Where, f is the relationship from the source part of the entity x to the sink part of
the entity y. So any entity is split into two parts “sink” as e1 and “source” as e2.
Now in the complex number we have an algebra of the unities for which we have
the multiplication table 7.3.

� 1 i
1 1 i
i i �1

2
4

3
5 ð7:3Þ

So we can define the external and the internal product for the graph coordinate e1
and e2.

Fig. 7.10 The set of paraboles
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external product :

ext ei ej
ei 0 eiej
ej �eiej 0

2
64

3
75

internal product :

int ei ej
ei 1 0

ej 0 1

2
64

3
75

Now we give other possible operations.

Example 7.1
Given the Fig. 7.11

general

� e1 e2 . . . en
e1 a11 a12 . . . a1n
e2 a21 a22 . . . a2n
. . . . . . . . . . . . . . .

en an1 an2 . . . ann

2
6666664

3
7777775

Group product

� e1 ¼ 1 e2 ¼ �1

e1 ¼ 1 1 �1

e2 ¼ �1 �1 1

2
64

3
75;

� 1 �1 i �i

1 1 �1 i �i

�1 �1 1 �i i

i i �i �1 1

�i �i i 1 �1

2
6666664

3
7777775

where, the relationship is

ae1 þ ae2
be1 þ be2
ae1 þ be2
be1 þ ae2

2
664

3
775

In two-dimensional space, there is (Fig. 7.12).

a a b b

Fig. 7.11 Coherent graph
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7.6 External Product

Given the relationships

a ¼ e1v1 þ e2v2
b ¼ e1v2 þ e2v3

We have

ab ¼ ðe1v1 þ e2v2Þðe1v2 þ e2v3Þ
¼ e1e1ðv1v2Þþ e1e2ðv1v3Þþ e2e1ðv2v2Þþ e2e2ðv2v3Þ

when we use the external product

eiej ¼ �ejei
eiei þ eiei ¼ 0

eiei ¼ 0

and

ab ¼ e1e2ðv1v3Þ � e1e2ðv2v2Þ ¼ e1e2ðv1v3 � v2v2Þ

The table of the product is

ext e1v1 þ e2v2 e1v2 þ e2v3
e1v1 þ e2v2 0 ðv1v3 � v2v2Þe1e2
e1v2 þ e2v3 ðv2v2 � v1v3Þe1e2 0

2
4

3
5

a b

a

b

e1

e2
Fig. 7.12 Two-dimensional
representation
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To compute the elements we use the determinant form.

det
v1 v2
v2 v3

� �
¼ v1v3 � v2v2

Determinant provides an easy way to compute the product between
relationship. When we permute the column in the determinant we have

det
v2 v1
v3 v2

� �
¼ v2v2 � v1v3

For a chain of three elements we have

abc ¼ ðe1v1 þ e2v2Þðe1v2 þ e2v3Þðe1v3 þ e2v4Þ ¼ 0

In fact, for the product, we have almost two equal elements so the product of
three is equal to zero. How to explain the result? When e1 is a query and e2 is an
answer, we say for any answer, there is one and only one question, and for any
question, there is one and only one answer. It is impossible to have two queries and
only one answer, and also impossible to have two answers with only one query
because this has no meaning. This is why the previous product is always false or
zero. In the ordinary query and answer system we have no memory because we
have only one question at one time and then the answer. We cannot have the
memory of two queries (source) and one answer (sink). For the source and sink
space we can give a differential form to the superposition of the source sink space
and the external product in differential calculus. Given the two relationships for
which we have formal entities whose name is a differential operator and the other at
the name we have the differential operation for the same function. So

a ¼ v1e1 þ v12e2 ¼
@

@x
e1 þ @

@y
e2

� �

b ¼ v22e1 þ v3e2 ¼ @f
@x

e1 þ @f
@y

e2

� �

So the external product of two relationship is

ab ¼ ðv1e1 þ v12e2Þðv22e1 þ v3e2Þ ¼ e1e2ðv1v3 � v12v
2
2Þ

¼ e1e2
@

@x
@f
@y

� @

@y
@f
@x

� �

The parallel condition is given by the expression
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ab ¼ ðv1e1 þ v12e2Þðv22e1 þ v3e2Þ ¼ e1e2ðv1v3 � v12v
2
2Þ

¼ e1e2
@

@x
@f
@y

� @

@y
@f
@x

� �
¼ 0

We know that the identity ð @@x @f@y � @
@y

@f
@xÞ ¼ 0 or parallel condition which can be

written also in this way

@

@x
@f ðx; yÞ

@y

� �
¼ @

@y
@f ðx; yÞ

@x

� �

We remark that if the previous coherent condition is true we have the famous
integral property (exact differentiable form)

df ¼ @f ðx; yÞ
@y

dxþ @f ðx; yÞ
@x

dy

In fact we have

f ¼
Z

df ¼
Z

@f ðx; yÞ
@x

dxþ
Z

@f ðx; yÞ
@y

dy

and

@f ðx; yÞ
@y

¼ @

@y

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
¼
Z

@

@y
@f ðx; yÞ

@x
dxþ

Z
@

@y
@f ðx; yÞ

@y
dy

@f ðx; yÞ
@x

¼ @

@x

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
¼
Z

@

@x
@f ðx; yÞ

@x
dxþ

Z
@

@x
@f ðx; yÞ

@y
dy

If

@

@x
@f ðx; yÞ

@y
¼ @

@y
@f ðx; yÞ

@x

then

@f ðx; yÞ
@y

¼ @

@y

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
¼
Z

@

@x
@f ðx; yÞ

@y
dxþ

Z
@

@y
@f ðx; yÞ

@y
dy

@f ðx; yÞ
@x

¼ @

@x

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
¼
Z

@

@x
@f ðx; yÞ

@x
dxþ

Z
@

@y
@f ðx; yÞ

@x
dy

That with particular condition is an identity. Now we prove the reverse
condition.

7.6 External Product 77



If

df ¼ @f ðx; yÞ
@x

dxþ @f ðx; yÞ
@y

dy

then

f ¼
Z

@f ðx; yÞ
@x

dxþ
Z

@f ðx; yÞ
@y

dy

@f ðx; yÞ
@y

¼ @

@y

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
@f ðx; yÞ

@x
¼ @

@x

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �
@

@x
@f ðx; yÞ

@y

� �
¼ @

@x
@

@y

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �� �
@

@y
@f ðx; yÞ

@x

� �
¼ @

@y
@

@x

Z
@f ðx; yÞ

@x
dxþ

Z
@f ðx; yÞ

@y
dy

� �� �

and
@

@x
@f ðx; yÞ

@y

� �
¼ @

@y
@f ðx; yÞ

@x

� �

The data base form

v22e1 þ v3e2 ¼ @f
@x

e1 þ @f
@y

e2

� �

is denoted gradient. The divergence of a vector function indicates how much of the
field flows outward from a given point. Figure 7.13a shows a function that has
divergence. Note that the divergence of a vector field is itself a scalar. If the vector
field is a velocity field then a positive divergence implies the mass at the point

Fig. 7.13 Derivatives of vector functions. a An irrotational vector field has only divergence (no
curl). b A solenoidal vector field has only curl (no divergence)
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decreases. Think about a tank of compressed gas emptying out; the volume of the
container remains constant but the amount of gas inside the tank diminishes as gas
flows outward.

7.7 Internal Product for Multidimensional Many Sources,
and Many Sinks Space

Given the internal product
if i ¼ j then eiej ¼ 1

if i 6¼ j then eiej ¼ 0

we have

ab ¼ @

@x
e1 þ @

@y
e2

� �
@f
@x

e1 þ @f
@y

e2

� �
¼ @

@x
@f
@x

þ @

@y
@f
@y

The product is the divergence. The curl of a vector field indicates the amount of
circulation about each point. Figure 7.13b shows a vector field that has curl. The
curl of a velocity field is called the vorticity. Note that the curl is itself a vector. To
find its direction, we use the “right-hand rule”: Curl the fingers of your right hand
along the direction of the vectors and your thumb will point along the direction of
the curl. In Fig. 7.13b, the curl points out of the page. The fundamental theorem of
vector calculus states that you can represent a vector field as the sum of an irro-
tational part (which has no curl) and a solenoidal part (which has no divergence).

7.8 Segment Type, Surface Type, Volume Type
and Others in Graphs

We know that the area of the parallelogram generated by two vectors is given by the
product of the norm of one vector and the distance of the perpendicular line of the
other vector. It is shown in Fig. 7.14.

We can consider a surface as a measure of independence between vectors. When
the vectors are independent, they are orthogonal and the surface assumes the
maximum value. Given the vector v, its orthogonal vector is

w ¼ ðI � vðvTvÞ�1vTÞ ¼ I � QðvÞ

and

wv ¼ ðI � vðvTvÞ�1vTÞv ¼ 0
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In fact with a little algebra we have

wv ¼ ðI � vðvTvÞ�1vTÞv ¼ v� vðvTvÞ�1vTv ¼ 0

To compute the surface generated by the two general vectors (Fig. 7.15) we
must have an algorithm that creates the orthogonal projection of one vector into the
other. Now we know that the operator

Q ¼ v1ðvT1 v1Þ�1vT1

Project v2 into v1 and we have

Qv2 ¼ v1ðvT1 v1Þ�1vT1 v2

With the property

Qv1 ¼ v1ðvT1 v1Þ�1vT1 v1 ¼ v1

The projection of v1 on itself is equal to v1. We have also that

QðQv2Þ ¼ v1ðvT1 v1Þ�1vT1 v1ðvT1 v1Þ�1vT1 v2 ¼ v1ðvT1 v1Þ�1vT1 v2 ¼ Qv2

The projection of the projection is again the same projection. Now we can see
that

2 2Q v v−

2Qv

2v

1v

Fig. 7.15 Operational form
of the projection operator

w 

v

area w v

Fig. 7.14 The area of the
parallelogram generated by
two vectors
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ðQv2 � v2ÞTQv2 ¼ ððQv2ÞT � vT2 ÞQv2 ¼ ðvT2QTQv2 � vT2Qv2Þ

but
QT ¼ Q

and
vT2Q

TQv2 � vT2Qv2 ¼ vT2QQv2 � vT2Qv2 ¼ vT2Qv2 � vT2Qv2 ¼ 0

Example 7.2

v1 ¼
a1
a2

� �
; v2 ¼

b1
b2

� �
; base ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1
a2

� �T a1
a2

� �s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q

Qv2 � v2 ¼ 1
a21 þ a22

a2ða1b2 � b1a2Þ
�a1ða1b2 � b1a2Þ
� �

; ðQv2 � v2ÞTðQv2 � v2Þ ¼ ða1b2 � b1a2Þ2
a21 þ a22

height = [Qv2 � v2ÞTðQv2 � v2Þ�1=2 ¼ ða1b2 � b1a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

p ¼ copula

surface ¼ height � base ¼ a1b2 � b1a2 ¼ det
a1 b1
a2 b2

� �

The copula has the geometric image as height but gives us the degree of inde-
pendence. Because

v2 � Qðv1Þv2 ¼ ðI � Qðv1ÞÞv2
and

D ¼ ½ðv2 � Qðv1ÞÞv2�T ½ðv2 � Qðv1ÞÞv2�
¼ vT2 � vT2 ðQðv1Þv2Þ � ðQðv1Þv2ÞTv2 þðQðv1Þv2ÞTQðv1Þv2
¼ vT2 � vT2 ðQðv1Þv2Þ � ðQðv1Þv2ÞTv2 þ vT2 ðQðv1ÞÞv2
¼ vT2 � ðQðv1Þv2ÞTv2 ¼ vT2 � vT2Qðv1Þv2 ¼ vT2 ðI � Qðv1ÞÞv2

From the previous expression we can have the example

Qðv1Þv2 ¼ cos2ðaÞ cosðaÞ sinðaÞ
cosðaÞ sinðaÞ sin2ðaÞ

� �
cosðbÞ
sinðbÞ

� �

I � Qðv1Þ ¼
1 0

0 1

� �
� cos2ðaÞ cosðaÞ sinðaÞ

cosðaÞ sinðaÞ sin2ðaÞ

� �

¼ sin2ðaÞ cosðaÞ sinðaÞ
cosðaÞ sinðaÞ cos2ðaÞ

" #
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and

D ¼ vT2 ðI � Qðv1ÞÞv2

¼ cosðbÞ
sinðbÞ

� �T 1 0

0 1

� �
� cos2ðaÞ cosðaÞ sinðaÞ

cosðaÞ sinðaÞ sin2ðaÞ

� �
cosðbÞ
sinðbÞ

� �
¼ sin2ða� bÞ

Given the product operator

ab ¼ ðe1v1 þ e2v2Þðe1v3 þ e2v4Þ ¼ ðv1v4 � v2v3Þe1e2
¼ det

v1 v2
v3 v4

� �
e1e2 ¼ ðv1v4 � v2v3Þe1e2 ¼ De1e2

In fact we have

D2 ¼ det
cosðaÞ sinðaÞ
cosðbÞ sinðbÞ

� �� �2

¼ ðcosðaÞ sinðbÞ � sinðaÞ cosðbÞÞ2

¼ sin2ða� bÞ

For the DEPENDENCE we have the expression

Dependence ¼ ðQv2ÞTðQv2Þ

Example 7.3

Given v1 ¼ cosðaÞ
sinðaÞ
� �

; v2 ¼ cosðbÞ
sinðbÞ
� �

We have the dependence operator E in this way

Qðv1Þ ¼
cosðaÞ
sinðaÞ
� �

cosðaÞ
sinðaÞ
� �T cosðaÞ

sinðaÞ
� � !�1

cosðaÞ
sinðaÞ
� �T

¼ cos2ðaÞ cosðaÞ sinðaÞ
cosðaÞ sinðaÞ sin2ðaÞ

� �

Qðv1Þv2 ¼ cos2ðaÞ cosðaÞ sinðaÞ
cosðaÞ sinðaÞ sin2ðaÞ

� �
cosðbÞ
sinðbÞ
� �

¼ cosða� bÞ cosðbÞ
sinðbÞ

� �
E ¼ Dependence ¼ ðQðv1Þv2ÞTQðv1Þv2 ¼ vT2Qðv1ÞTQðv1Þv2
¼ vT2Qðv1ÞQðv1Þv2 ¼ vT2Qðv1Þv2
¼ cos2ða� bÞ
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For the dependence and independence we can give more information in this way.
Given

E ¼ Dependence ¼ vT2Qðv1Þv2 ¼ b

D ¼ Independence ¼ vT2 ðI � Qðv1ÞÞv2 ¼ h

Vectors in two dimensions

Qðv1Þ ¼ a1
a2

� �
a1
a2

� �T
a1
a2

� � !�1
a1
a2

� �T
¼ a21 a1a2

a1a2 a22

� �

and for v2 ¼ b1
b2

� �
we have

vT2Qðv1Þv2 ¼
ða1b1 þ a2b2Þ2

a21 þ a22
¼ ðaTbÞ2

aTa

So

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT2Qðv1Þv2

q
¼ ða1b1 þ a2b2Þ2

a21 þ a22
¼ a1b1 þ a2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22
p ¼ vT1 v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

p
cosðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

q
cosðaÞ

So we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT2Qðv1Þv2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22

p ¼ cosðaÞ

and

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT2Qðv1Þv2

q
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q
¼ a1b1 þ a2b2 ¼ vT1 v2

For the scalar product

vT2 ðI � Qðv1ÞÞv2 ¼
X

Y

� �T 1 0

0 1

� �
� p1

p2

� �
p1
p2

� �T p1
p2

� � !�1
p1
p2

� �T0
@

1
A X

Y

� �

¼ X

Y

� �T p22 �p1p2
�p1p2 p21

" #
X

Y

� �
1

p21 þ p22
¼ independence
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and

S2 ¼ X

Y

� �T p22 �p1p2
�p1p2 p21

" #
X

Y

� �
¼
X
i;j

gi;jX
iX j

dS2 ¼ dx

dy

� �T p22 �p1p2
�p1p2 p21

" #
dx

dy

� �
¼
X
i;j

gi;jdx
idy jsurface geodesic

vT2Qðv1Þv2 ¼
ðXp1 þ Yp2Þ2

p21 þ p22
¼ dependence

and for the orthogonal projection we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT2 ðI � Qðv1ÞÞv2

q
¼ b2a1 � a2b1 ¼ S ¼ Surface

7.9 Orthogonality

Given the vector v, its set of orthogonal vectors are

w ¼ ðI � vðvTvÞ�1vTÞ ¼ I � QðvÞ

and
wv ¼ ðI � vðvTvÞ�1vTÞv ¼ 0

When

v ¼ a1
a2

� �

w ¼ ðI � vðvTvÞ�1vTÞ ¼ 1
a21 þ a22

a22 �a1a2
�a1a2 a21

" #

¼ 1
a21 þ a22

a2
a2
�a1

� �
a1

�a2
a1

� �� �

Now at the vector v are associate two orthogonal vectors (columns of w).
The surfaces for the vectors

a2
�a1

� � �a2
a1

� �
orthogonal to

a1
a2

� �
are

S1 ¼ det
a1 a2
a2 �a1

� �
¼ �ða21 þ a22Þ

S2 ¼ det
a1 a2
�a2 a1

� �
¼ a21 þ a22
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In fact we have

S ¼ ðbaseÞðheightÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�a2Þ2 þ a21

q
¼ a21 þ a22

The orthogonal vectors are independent from the original vector. The surface
changes when we change the direction of the orthogonal vector. In a graphic way
we have (Fig. 7.16).

Example 7.4
The two orthogonal vectors

a1
a2

� �
¼ cosðaÞ

sinðaÞ
� � �a2

a1

� �
¼ � sinðaÞ

cosðaÞ
� �

are the radius vector and tangent vector to a circle (Fig. 7.17).
Given the relationship (segment type in database)

a ¼ e1v1 þ e2v2
b ¼ e1v3 þ e2v4

We represent them in Fig. 7.18.
And

ab ¼ e1e2ðv1v4Þ � e1e2ðv3v2Þ ¼ e1e2ðv1v4 � v3v2Þ

By the coordinate form we have Fig. 7.19.
The product e1e2 is a new dimension in the database whose entity value v1v4 �

v2v3 is a surface type value in the database. So we have three dimensions. This is
motivation for which we denote external graph product analogous to with the
external product in the differential forms that increase the dimension of the space.

(a1,a2)

(-a2,a1)

S

Fig. 7.16 Maximum are for
orthogonal vectors
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The new dimension makes two relationship comparable. When the two relation-
ships are equal, the coordinate e1e2 assumes value zero. When the relationships are
orthogonal, the new coordinate assumes maximum value. In Fig. 7.20 we show
how to compare two relationships in this way.

When the two relationships are adjacent we have

ab ¼ e1e2ðv1v4Þ � e1e2ðv2v2Þ ¼ e1e2ðv1v4 � v2v2Þ

cos( ), sin( )α α

Fig. 7.17 Orthogonal vector
as tangent to the cycle

e1 e2 e1 e2

V1 V2 V3 V4
Fig. 7.18 The relationship

v1v4 – v3v2 v1

v2

v3

v4

e1

e2

e1e2

Fig. 7.19 Product of source
sink elements or states
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When the two relationship form a loop we have

ab ¼ e1e2ðv1v1Þ � e1e2ðv2v2Þ ¼ e1e2ðv1v1 � v2v2Þ

7.10 Multidimensional Graph Space

Given one source point in a graph, from it we move to n sinks. In this situation we
have the space

a ¼ e1v1 þ e2v2 þ e3v3 þ � � � þ e3vnþ 1

where a is a n bifurcation system. The bifurcation gives us the possibility to
increase input and output of the two dimension into output e1 and inputs ej of many
dimensions (Fig. 7.21).

e1 e2V1

e1 e2V2

V3

V4

Fig. 7.20 The comparison of
the two relationships

e1

e2

e3

e4

e5e6

Fig. 7.21 Inputs and outputs
of many dimensions
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We can also represent it in Fig. 7.22 with entity.
Bifurcation system is analogous to neuron system (Fig. 7.23).
We show the external product in three dimensional space, Given the elements

a ¼ e1v1 þ e2v2 þ e3v3
b ¼ e1v2 þ e2v3 þ e3v4
c ¼ e1v3 þ e2v4 þ e3v5

The product by two elements is

ab ¼ ðe1v1 þ e2v2 þ e3v3Þðe1v4 þ e2v5 þ e3v6Þ
¼ e1e2v1v5 þ e1e3v1v6 þ e2e1v2v6 þ e2e3v2v4 þ e3e1v3v4 þ e3e2v3v5
¼ e1e2v1v5 þ e1e3v1v6 � e1e2v2v6 þ e2e3v2v4 � e1e3v3v4 � e2e3v3v5
¼ e1e2ðv1v5 � v2v6Þþ e1e3ðv1v6 � v3v4Þþ e2e3ðv2v4 � v3v5Þ

¼ e1e2 det
v1 v2
v6 v5

� �
þ e1e3 det

v1 v3
v4 v6

� �
þ e2e3 det

v2 v5
v3 v4

� �

Fig. 7.23 Many sinks (dendrite) many sources (Axon) in neuron model

e2 e3 e4 …. e1

Dendrite

Axon

Fig. 7.22 Space of multiple sinks
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The e2e3 means the join connection of two answers between two different
bifurcations. So e2v2 belongs to the first bifurcation and e3v4 belongs to the second
bifurcation. The product of the two is connection of v2 as the first answer or e2 as a
query through v2, e1 and v4 as the second answer or e3. Now the same for v3 that is
the second answer in the first bifurcation and v5 that is the first answer in the second
bifurcation. The two elements are not connected with relationship but are in
entanglement situation or synchronic situation (correlate state). We remark that it is
impossible to consider the repetition of two questions e1 or two answers e2 or two
answers e3. When we split any entity into three parts we have two parts associated
with the different inputs (or sinks) and one part for the output (or sources). In
Fig. 7.24, we have the two periodic lattice structure.

For three components e1, e2, e3 in the bifurcation, e1 is the question and e2 and e3
are two synchronic or entangled answers. For three dimensions, we have the three
product.

abc ¼ ðe1v1 þ e2v2 þ e3v3Þðe1v4 þ e2v5 þ e3v6Þðe1v7 þ e2v8 þ e3v9Þ

¼ e1e2e3 det

v1 v4 v7
v2 v5 v8
v3 v6 v9

2
64

3
75

Figure 7.25. is the image of the external product in the graph theory.

v2

e1e3

e2 e3

v3

v4

e3 e1

v1

e2

e2

e2 e3 e1

e1

e2 e3 e1

v5

Fig. 7.24 Three dimensional space for sinks and source
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a1 ¼
x

x1
x2

2
64

3
75; a2 ¼

y

y1
y2

2
64

3
75; a3 ¼

1

1

1

2
64
3
75

a1a2a3 ¼ ðxe1 þ x1e2 þ x2e3Þðye1 þ y1e2 þ y2e3Þðe1 þ e2 þ e3Þ
¼ ðxyÞe1e1e1 þðx1yÞe2e1e1 þðx2yÞe3e1e1 þðxy1Þe1e2e1 þðx1y1Þe2e2e1
þðx2y1Þe3e2e1 þðxy2Þe1e3e1 þðx1y2Þe2e3e1 þðx2y2Þe3e3e1 þðxyÞe1e1e2
þðx1yÞe2e1e2 þðx2yÞe3e1e2 þðxy1Þe1e2e2 þðx1y1Þe2e2e2 þðx2y1Þe3e2e2
þðxy2Þe1e3e2 þðx1y2Þe2e3e2 þðx2y2Þe3e3e2 þðxyÞe1e1e3 þðx1yÞe2e1e3
þðx2yÞe3e1e3 þðxy1Þe1e2e3 þðx1y1Þe2e2e3 þðx2y1Þe3e2e3
þðxy2Þe1e3e3 þðx1y2Þe2e3e3 þðx2y2Þe3e3e3

and in a more complete way we have

a1a2a3¼ðxe1þx1e2þx2e3Þðye1þy1e2þy2e3Þðe1þe2þe3Þ
¼ðx2y1Þe3e2e1þðx1y2Þe2e3e1þðx2yÞe3e1e2þðxy2Þe1e3e2þðx1yÞe2e1e3
þðxy1Þe1e2e3¼½�ðx2y1Þþðx1y2Þþðx2yÞ�ðxy2Þ�ðx1yÞþðxy1Þ�e1e2e3

¼det

x y 1

x1 y1 1

x2 y2 1

2
64

3
75ðe1e2e3Þ¼ðxðy1�y2Þþyðx2�x1Þþ det

x1 y1
x2 y2

� �
Þe1e2e3¼0

Fig. 7.25 Straight line model by external product
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or

xðy1 � y2Þþ yðx2 � x1Þþ det
x1 y1
x2 y2

� �
¼ 0

Example for Lie derivative LX

For special case of the source, sink multi-dimensional space reference we have

Xf ¼ X1
@f
@x1

þ � � � þXn
@f
@xn

¼ ðX1e1 þ � � � þXnenÞf

Yf ¼ Y1
@f
@x1

þ � � � þ Yn
@f
@xn

¼ ðY1e1 þ � � � þ YnenÞf
XðYf Þ ¼ LXðYf Þ ¼ ðX1e1 þ � � � þXnenÞ½ðY1e1 þ � � � þ YnenÞf �
½ðX1e1 þ � � � þXnenÞðY1e1 þ � � � þ YnenÞ�f þ
ðY1e1 þ � � � þ YnenÞ½ðX1e1 þ � � � þXnenÞf � ¼ ðLXYÞf þ YðXf Þ
XðYf Þ � YðXf Þ ¼ ðLXYÞf
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Chapter 8
A New Interpretation of the Determinant
as Volume and Entropy

Given the projection operator

Qx ¼ ZPðPTZPÞ�1PTx

where

x ¼

x1
x2
. . .

xn

2
6664

3
7775

V2
nþ 1 ¼ det

p1;1 . . . p1;n x1
p2;1 . . . p2;n x2
p3;1 . . . p3:n x3
. . . . . . . . . . . .

pm;1 . . . pm;n xm

2
6666664

3
7777775

T p1;1 . . . p1;n x1
p2;1 . . . p2;n x2
p3;1 . . . p3:n x3
. . . . . . . . . . . .

pm;1 . . . pm;n xm

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

¼ det

P
i
p2i;1

P
i
pi;1qi;2 . . .

P
i
pi;1xiP

i
pi;1qi;2

P
i
p2i;2 . . .

P
i
pi;2xi

. . . . . . . . . . . .P
i
pi;1xi

P
i
pi;2xi . . .

P
i
x2i;1

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

When V2
n is the square of the n level of volume. When n = 0 we have zero order

or point. When n = 1 we have the distance between two points. When n = 2 we
have the surface of two dimensions. When n = 3 we have the volume. When n = 4
we have volume in the four dimensional space. At the level n we have volume in
the n dimensional space.

© Springer International Publishing AG 2017
G. Resconi et al., Introduction to Morphogenetic Computing,
Studies in Computational Intelligence 703, DOI 10.1007/978-3-319-57615-2_8
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Example 8.1 Given the set of variables or samples

Ai ¼ pi;1 pi;2 . . . xi½ �

The entries in the column vector

A ¼
A1

A2

. . .
Am

2
664

3
775

The volume square matrix is

V2 ¼ ATA ¼
X
i;j

Gðpk;hÞxixj

For the surface of two dimensions, we have

A ¼

A1

A2

. . .

Am

2
6664

3
7775 ¼

p1 x1
p2 x2
. . . . . .

pn xn

2
6664

3
7775; ATA ¼

p1 x1
p2 x2
. . . . . .

pn xn

2
6664

3
7775
T p1 x1

p2 x2
. . . . . .

pn xn

2
6664

3
7775 det

p1 x1
p2 x2
. . . . . .

pn xn

2
6664

3
7775
T p1 x1

p2 x2
. . . . . .

pn xn

2
6664

3
7775

0
BBBB@

1
CCCCA

¼

x1
x2
. . .

xn

2
6664

3
7775
T p2 þ p3 þ � � � pn �p1p2 . . . �p1pn

�p1p2 p1þ p3 þ � � � pn . . . �p2pn
. . . . . . . . . . . .

�p1pn �p2pn . . . p1 þ p2þ � � � pn�1

2
6664

3
7775

x1
x2
. . .

xn

2
6664

3
7775

So the metric for two dimensional surface square value embedded in n dimen-
sion is

GðpÞ ¼
p2 þ p3 þ � � � pn �p1p2 . . . �p1pn

�p1p2 p1 þ p3 þ � � � pn . . . �p2pn
. . . . . . . . . . . .

�p1pn �p2pn . . . p1 þ p2 þ � � � pn�1

2
664

3
775

And
S2 ¼Pi;j GðpÞxix j where S is surface variable embedded in n dimensional

space.
Figure 8.1 shows the movement of surface vector.
Figure 8.2 shows the surface vector rotates as an elicoidal system.
We remember that in Euclidean space we have the one dimension metric in n

dimensional space.
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A ¼

A1

A2

. . .

Am

2
6664

3
7775 ¼

x1
x2
. . .

xn

2
6664

3
7775; ATA ¼ det

x1
x2
. . .

xn

2
6664

3
7775
T x1

x2
. . .

xn

2
6664

3
7775

0
BBBB@

1
CCCCA ¼ x21 þ x22 þ � � � þ x2n ¼ d2

Fig. 8.1 Volume dynamics

Fig. 8.2 The rotation of the
surface in a circle
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Now we give a new interpretation to the determinant as volume and also
entropy. In fact we have

D ¼

A1 �
P
j
A1;j

A2 �
P
j
A2;j

. . .

Am �P
j
An;j

2
6666666664

3
7777777775
¼

A1 � l1

A2 � l2

. . .

Am � lm

2
6666664

3
7777775

the covariance matrix R is the matrix whose (i, j) entry is the covariance

Ri;j ¼ covðAi;AjÞ
¼ DTD

¼

P
j
ðAj1 � l1ÞðAj1 � l1Þ

P
j
ðAj1 � l1ÞðAj2 � l2Þ . . .

P
j
ðAjn � l1ÞðAjn � lnÞP

j
ðAj1 � l1ÞðAj2 � l2Þ

P
j
ðAj1 � l1ÞðAj1 � l1Þ . . .

P
j
ðAjn � l1ÞðAjn � lnÞ

. . . . . . . . . . . .P
j
ðAjn � l1ÞðAjn � lnÞ

P
j
ðAjn � l1ÞðAjn � lnÞ . . .

P
j
ðAj1 � l1ÞðAj1 � l1Þ

2
6666664

3
7777775

The inverse of this matrix,
P�1 is the inverse covariance matrix, also known as

the concentration matrix or precision matrix. Differential entropy and log deter-
minant of the covariance matrix of a multivariate Gaussian distribution have many
applications in coding, communications, signal processing and statistical inference.
We consider in the high dimensional setting optimal estimation of the differential
entropy and the log-determinant of the covariance matrix. We first establish a
central limit theorem for the log determinant of the sample covariance matrix in the
high dimensional setting where the dimension p(n) can grow with the sample size n.
An estimator of the differential entropy and the log determinant is then considered.
We remember that the determinant of the covariant metric is a volume so we can
associate the volume with entropy by log operation.

Proposition For the orthogonal projection we have

xTðI � Qðp1; . . .; pnÞx ¼
V2
nþ 1

V2
n

Proof For
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QðpÞ ¼ pðpTpÞ�1pT ; p ¼ p1
p2

� �
; x ¼ x1

x2

� �

V2
2 ¼ x1

x2

� �
1 0

0 1

� �
� p1

p2

� �
p1
p2

� �T p1
p2

� � !�1
p1
p2

� �T0
@

1
A x1

x2

� �
V2
1

¼ ðp1x2 � p2x1Þ2
p21 þ p22

V2
1

but

V2
1 ¼ p1

p2

� �T p1
p2

� �
¼ p21 þ p22

So

V2
2 ¼ ðp1x2 � p2x1Þ2

Example 8.2

det
p1 x1
p2 x2

� �T
p1 x1
p2 x2

� � !
¼ ðp1x2 � p2x1Þ2 ¼ V2

2

For Fig. 8.3, we can compute the projection operator by volume in the multi-
dimensional space.

for

V2
nþ 1 ¼ ½xTðI � QðpÞÞx�V2

n

xTx� xTQðpÞx ¼ V2
nþ 1

V2
n

and

xTQðpÞx ¼ xTx� V2
nþ 1

V2
n

¼ ðxTxÞV2
n � V2

nþ 1

V2
n

where

2( ( ))Tx I Q p x h− =

2 2 2
1 2p p b+ =

Fig. 8.3 The projection
operator can be computed by
volume
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Vnþ 1 ¼ detðAÞ ¼ det

p11 p12 . . . x1
p21 p22 . . . x2
p31 p32 . . . x3
. . . . . . . . . . . .
pn1 pn2 . . . xm

2
66664

3
77775

0
BBBB@

1
CCCCA

where det is the symbol for determinant of a matrix A. When the matrix is a
quadratic matrix we have the simple expression.

V2
nþ 1 ¼ det

p11 p12 . . . x1
p21 p22 . . . x2
p31 p32 . . . x3
. . . . . . . . . . . .
pn1 pn2 . . . xm

2
66664

3
77775

0
BBBB@

1
CCCCA det

p11 p12 . . . x1
p21 p22 . . . x2
p31 p32 . . . x3
. . . . . . . . . . . .
pn1 pn2 . . . xm

2
66664

3
77775

0
BBBB@

1
CCCCA

When we have a rectangular matrix we have

V2
nþ 1 ¼

X
j

ðdetAjÞ2

where Aj is the quadratic minor of the matrix A. When we compute the quadratic
form xTQðpÞx we can found the matrix of coefficients or projection operator QðpÞ.
Example 8.3 is for the computation of the projection operator.

A ¼
p1
p2
p3

2
64

3
75

quadratic minors of A

A1 ¼ p1;A2 ¼ p2;A3 ¼ p3
So

V2
1 ¼ ½detðA1Þ�2 þ ½detðA2Þ�2 þ ½detðA3Þ�2
¼ p21 þ p22 þ p23
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QðpÞ ¼ pðpTpÞ�1pT

p ¼
p1
p2
p3

2
64

3
75; x ¼

x1
x2
x3

2
64

3
75; A ¼

p1 x1
p2 x2
p3 x3

2
64

3
75

quadratic minors of A

A1 ¼
p1 x1
p2 x2

� �
; A2 ¼

p1 x1
p3 x3

� �
; A3 ¼

p2 x2
p3 x3

� �
So

V2
2 ¼ ½detðA1Þ�2 þ ½detðA2Þ�2 þ ½detðA3Þ�2

¼ ðp1x2 � p2x1Þ2 þðp1x3 � p3x1Þ2 þðp2x3 � p3x2Þ2

det

p1 x1
p2 x2
p3 x3

2
64

3
75
T p1 x1

p2 x2
p3 x3

2
64

3
75

0
B@

1
CA ¼ det

p21 þ p22 þ p23 p1x1 þ p2x2 þ p3x3
p1x1 þ p2x2 þ p3x3 x21 þ x22 þ x23

" #

¼ ðp1x2 � p2x1Þ2 þðp1x3 � p3x1Þ2 þðp2x3 � p3x2Þ2

So we have

xTQðpÞx ¼ xTpðpTpÞ�1pTx ¼ V2
1 x

Tx� V2
2

V2
1

¼ ðp21 þ p22 þ p23Þðx21þ x22 þ x23Þ � ½ðp1x2 � p2x1Þ2þ ðp1x3 � p3x1Þ2þ ðp2x3 � p3x2Þ2�
p21 þ p22 þ p23

¼ ðp21 þ p22 þ p23Þðx21þ x22 þ x23Þ � ½ðp1x2 � p2x1Þ2þ ðp1x2 � p3x1Þ2þ ðp2x3 � p3x2Þ2�
p21 þ p22 þ p23

¼ ðp1x1þ p2x2 þ p3x3Þ2
p21 þ p22 þ p23

For a direct calculus we have

xTQðpÞx ¼ xTpðpTpÞ�1pTx

¼
x1
x2
x3

2
64

3
75
T p1

p2
p3

2
64

3
75

p1
p2
p3

2
64

3
75
T p1

p2
p3

2
64

3
75

0
B@

1
CA

�1
p1
p2
p3

2
64

3
75
T x1

x2
x3

2
64

3
75

¼ ðp1x1 þ p2x2 þ p3x3Þ2
p21 þ p22 þ p23
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Remark

xTQðpÞx ¼ xTx� V2
nþ 1

V2
n

¼ ðxTxÞV2
n � V2

nþ 1

V2
n

The examples above shows that the project of x can be obtained through volumes
(Vn and Vnþ 1) which is easier to be computed through determinants. We have
Fig. 8.4.

We compute the volume Vnþ 1 by adding the values of all quadratic minors of
the matrix A together. If vectors are three-dimensional, we have three quadratic
minors.

A1 ¼ p1 x1
p2 x2

� �
; A2 ¼ p1 x1

p3 x3

� �
; A3 ¼ p2 x2

p3 x3

� �
;

And a cube is formed with six surfaces, but actually only three components
because each pair of surface is parallel. We get the value of each surface by
calculating its determinant. Since each pair of surface which is parallel has the same
value as opposite direction, the sum of the values of all surfaces should be zero. If
vectors are two-dimensional, we can get two surfaces with opposite directions and
the same value, the sum of the values of all surfaces is also zero.

For the three dimensions we have

Qðp; qÞ ¼ pðpTpÞ�1pT ; p ¼
p1 q1
p2 q2
p3 q3

2
64

3
75; x ¼

x1
x2
x3

2
64

3
75

p1 

p2 

p
3 

x3 

x2 

x3 

x1 

x1 

x2 

p1 

p3 

p2 

Fig. 8.4 Determinant minor
image by a cube
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x1
x2
x3

2
64

3
75
T

1 0

0 1

� �
�

p1 q1
p2 q2
p3 q3

2
64

3
75

p1 q1
p2 q2
p3 q3

2
64

3
75
T p1 q1

p2 q2
p3 q3

2
64

3
75

0
B@

1
CA

�1
p1 q1
p2 q2
p3 q3

2
64

3
75
T x1

x2
x3

2
64

3
75V2

2 :

¼

det

p1 q1 x1
p2 q2 x2
p3 q3 x3

2
64

3
75
T p1 q1 x1

p2 q2 x2
p3 q3 x3

2
64

3
75

0
B@

1
CA

ðp1x2 � p2x1Þ2 þðp1x2 � p3x1Þ2 þðp2x3 � p3x2Þ2
V2
2

¼ det

p1 q1 x1
p2 q2 x2
p3 q3 x3

2
64

3
75
T p1 q1 x1

p2 q2 x2
p3 q3 x3

2
64

3
75

0
B@

1
CA

¼ det

p21 þ p22 þ p23 p1q1 þ p2q2 þ p3q3 p1x1 þ p2x2 þ p3x3
p1q1 þ p2q2 þ p3q3 q21 þ q22 þ q23 q1x1 þ q2x2 þ q3x3
p1x1 þ p2x2 þ p3x3 q1x1 þ q2x2 þ q3x3 x21 þ x22 þ x23

2
64

3
75

0
B@

1
CA ¼ V2

3

For non orthogonal projection we have the projection.

QðZ; aÞ ¼ Z11 Z12
Z21 Z22

� �
a1
a2

� �
a1
a2

� �T Z11 Z12
Z21 Z22

� �
a1
a2

� � !�1
a1
a2

� �T

for
b1
b2

� �
¼ Z11 Z12

Z21 Z22

� �
a1
a2

� �

QðZ; aÞ ¼ Z11 Z12
Z21 Z22

� �
a1
a2

� �
a1
a2

� �T Z11 Z12
Z21 Z22

� �
a1
a2

� � !�1
a1
a2

� �T

QðZ; aÞ ¼ b1
b2

� �
a1
a2

� �T b1
b2

� � !�1
a1
a2

� �T
¼ Qðb; aÞ

Figure 8.5 is the geometric image for two dimensional space.

½ðI � Qða; bÞÞx�T ½ðI � Qða; bÞÞx� ¼ ½AB�2

bTb ¼ ½CB�2

½QðaÞb�T ½QðaÞb� ¼ ½CD�2

½ðI � QðbÞÞx�T ½ðI � QðbÞÞx� ¼ ½AE�2

And

S2 ¼ CD½ �2 AB½ �2¼ CB½ �2 AE½ �2
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And

AB½ �2¼ CB½ �2 AE½ �2
CD½ �2 ¼ ½ðI � Qða; bÞÞx�T ½ðI � Qða; bÞÞx�

Example

½ðI � Qða; bÞÞx�T ½ðI � Qða; bÞÞx�

1 0

0 1

� �
� b1

b2

� �
a1
a2

� �T b1
b2

� � !�1
a1
a2

� �T0
@

1
A

T

1 0

0 1

� �
� b1

b2

� �
a1
a2

� �T b1
b2

� � !�1
a1
a2

� �T0
@

1
A

¼ det
b1 x1
b2 x2

� �� �2 a21 þ a22
ða1b1 þ a2b2Þ2

¼ S2
a21 þ a22

ða1b1 þ a2b2Þ2

where,

a21 þ a22
ða1b1 þ a2b2Þ2

is internal element to the oblique projection operator. Now for the projection
operator property (dependence) we have

ða1b1 þ a2b2Þ2
a21 þ a22

¼ a1
a2

� �
a1
a2

� �T a1
a2

� � !�1
a1
a2

� �T b1
b2

� �

¼ ½QðaÞb�T ½QðaÞb� ¼ ½CD�2

b

a

x

A

BC

D

Fig. 8.5 Area of the triangle
by oblique projection
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So for OBLIQUE projection we have

ðI � Qða; bÞÞxj j2 ðQðaÞÞbj j2 ¼ det
b1 x1
b2 x2

� �� �2

Now the bifurcation is a three dimensional element. Two different bifurcations
are given by the two vectors

p ¼
p1
p2
p3

2
4

3
5; x ¼

x1
x2
x3

2
4

3
5

And

xTðQðpÞÞx ¼
x1
x2
x3

2
64

3
75
T p1

p2
p3

2
64

3
75

p1
p2
p3

2
64

3
75
T p1

p2
p3

2
64

3
75

0
B@

1
CA:�1

p1
p2
p3

2
64

3
75
T x1

x2
x3

2
64

3
75

¼
x1
x2
x3

2
64

3
75
T

p21 p1p2 p1p3
p1p2 p21 p2p3
p1p3 p2p3 p21

2
64

3
75

x1
x2
x3

2
64

3
75 1
p21 þ p22 þ p23

¼ ðx1p1 þ x2p2 þ x3p3Þ2
p21 þ p22 þ p23

¼ ðxTpÞ2
pTp

vT2 ðI � Qðv1ÞÞv2 ¼
X

Y

Z

2
64

3
75
T 1 0 0

0 1 0

0 0 1

2
64

3
75�

p1
p2
p3

2
64

3
75

p1
p2
p3

2
64

3
75
T0

B@
1
CA

X

Y

Z

2
64

3
75 : 1

det
p1
p2
p3

2
4

3
5
T p1

p2
p3

2
4

3
5

2
4

3
5

¼

X
Y
Z

2
4

3
5
T

p21 þ p22 þ p23 � p21 �p1p2 �p1p3
�p1p2 p21 þ p22 þ p23 � p22 �p2p3
�p1p3 �p2p3 p21 þ p22 þ p23 � p23

2
4

3
5 X

Y
Z

2
4

3
5

p21 þ p22 þ p23

¼ ðXp2 � p1YÞ2 þðZp1 � p3XÞ2 þðZp2 � p3YÞ2
p21 þ p22 þ p23

We remark that we can find the projection operator from the determinant.
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S2 ¼ det

X p1
Y p2
Z p3

2
64

3
75
T X p1

Y p2
Z p3

2
64

3
75

0
B@

1
CA ¼ ðXp2 � p1YÞ2 þðZp1 � p3XÞ2

þðZp2 � p3YÞ2 ¼
X
i;j

gi;jX
iX j

where the metric g is a parametric metric

gðp1; p2; p3Þ ¼
p2 þ p3 �p1p2 �p1p3
�p1p2 p1 þ p3 �p2p3
�p1p3 �p2p3 p2 þ p1

2
64

3
75

Volume ¼ det
x1 p1 q1
x2 p2 q2
x3 p3 q3

2
4

3
5

0
@

1
A ¼ ðI � Qðp; qÞxÞj j2ðSurfaceÞ2

where

Qðp; qÞx ¼
p1 q1
p2 q2
p3 q3

2
4

3
5 p1 q1

p2 q2
p3 q3

2
4

3
5
T p1 q1

p2 q2
p3 q3

2
4

3
5

0
@

1
A

�1
p1 q1
p2 q2
p3 q3

2
4

3
5
T x1

x2
x3

2
4

3
5

8.1 De Bruijn Graph Evolution by Skew Product

Given the structure (Fig. 8.6)
Network at low level

M ¼
a b

a 1 1

b 1 1

2
64

3
75;

V ¼ 1 0

0 1

� �
e1 þ

1 1

1 1

� �
e2

� �
a

b

� �
¼ aðe1 þ e2Þ be2

be2 bðe1 þ e2Þ

� �

Second level

skew ae1 þ ae2 ae1 þ be2 be1 þ ae2 be1 þ be2
ae1þ ae2 ðae1 þ ae2Þðae1 þ ae2Þ ðae1þ ae2Þðae1 þ be2Þ ðae1 þ ae2Þðbe1 þ ae2Þ ðae1 þ ae2Þðbe1 þ be2Þ
ae1þ be2 ðae1 þ be2Þðae1 þ ae2Þ ðae1þ be2Þðae1 þ be2Þ ðae1 þ be2Þðbe1 þ ae2Þ ðae1 þ be2Þðbe1 þ be2Þ
be1þ ae2 ðbe1 þ ae2Þðae1 þ ae2Þ ðbe1þ ae2Þðae1 þ be2Þ ðbe1 þ ae2Þðbe1 þ ae2Þ ðbe1 þ ae2Þðbe1 þ be2Þ
be1þ be2 ðbe1 þ be2Þðae1 þ ae2Þ ðbe1þ be2Þðae1 þ be2Þ ðbe1 þ be2Þðbe1 þ ae2Þ ðbe1 þ be2Þðbe1 þ be2Þ

2
6666664

3
7777775
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The SKEW PRODUCT gives us the FILTER that separates parts of the graph in
a way to know if two relationships are coupled by a common element (relationships
are adjacent) we can also see if two relationships form a cycle and many other
properties for composition of chains.

skew ae1 þ ae2 ae1 þ be2 be1 þ ae2 be1 þ be2
ae1 þ ae2 ða2 � a2Þe1e2 ðab� a2Þe1e2 ða2 � abÞe1e2 ðab� abÞe1e2
ae1 þ be2 ða2 � abÞe1e2 ða2 � abÞe1e2 ða2 � b2Þe1e2 ðab� b2Þe1e2
be1 þ ae2 ðab� a2Þe1e2 ðb2 � a2Þe1e2 ðab� abÞe1e2 ðb2 � abÞe1e2
be1 þ be2 ðab� abÞe1e2 ðb2 � abÞe1e2 ðab� b2Þe1e2 ðb2 � b2Þe1e2

2
66664

3
77775

In the line graph, there is adjacence to 1 and no adjacence to zero. The line graph
that connects two different relationships has 8 elements generating from the original
4 elements. See

skew ae1 þ ae2 ae1 þ be2 be1 þ ae2 be1 þ be2
ae1 þ ae2 1 1 0 0
ae1 þ be2 0 0 1 1
be1 þ ae2 1 1 0 0
be1 þ be2 0 0 1 1

2
66664

3
77775

Fig. 8.6 Graph evolution
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That is the second generation of the initial graph. Now we can repeat again the
same process and we can have any type of graph evolution. Another example of
evolution is given by Fig. 8.7.

The evolution of the previous graph can be obtained again by the source, sink
skew product space.

Fig. 8.7 Other graph evolution system
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Chapter 9
Morphogenetic Computing in Genetic
Algorithms

9.1 Projection Instrument as Formal Sink Source Change
with Invariance

9.1.1 Mophogenetic Transformation

For the multidimensional space S the transformation of vector X in this space is
obtained by a quadratic matrix A. So we have (9.1).

Y ¼ A X ð9:1Þ

where Y is the output, X is the input and A is the system (Fig. 9.1).
The output Y is a dependent variable and X is the independent variable or free

variable. When A is a quadratic non-singular matrix we can change the direction
and Y becomes the independent variable and X the dependent variable. So we have
Fig. 9.2.

Or (9.2).

X ¼ A�1Y ð9:2Þ

The variable Y is an expected output and X is the expected input. For the relation
(9.1) and (9.2) we have the loop (9.3).

Y ¼ A X ¼ A A�1Y
� � ¼ Y ð9:3Þ

Given the expected input Y we compute the expected input and after we compute
the real Y by AX. In the previous case the initial value of Y is equal to the final Y
by inverse matrix of the system A. Because the system is a quadratic non-singular
matrix the expected output becomes real.

© Springer International Publishing AG 2017
G. Resconi et al., Introduction to Morphogenetic Computing,
Studies in Computational Intelligence 703, DOI 10.1007/978-3-319-57615-2_9
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9.1.2 Inverse Problem in Systems with Different Numbers
of Inputs and Outputs

If A is a rectangular matrix the transformation (9.2) has no meaning. For example,
given

A ¼
1 0
1 1
0 1

2
4

3
5; y ¼

y1
y2
y3

2
4

3
5

We have

Ax ¼
1 0
1 1
0 1

2
4

3
5 x1

x2

� �
¼

x1
x1 þ x2
x2

2
4

3
5 ¼

y1
y2
y3

2
4

3
5 ð9:4Þ

Form two inputs x ¼ x1
x2

� �
we compute the values of three outputs y ¼

y1
y2
y3

2
4

3
5.

In an explicit way we have the system (9.5)

x1 ¼ y1
x1 þ x2 ¼ y2
x2 ¼ y3

8<
: ð9:5Þ

We try to solve the system by substitution (9.6).

y1 þ y3 ¼ y2 ð9:6Þ

In a graphic way we have Fig. 9.3.
We see that the variables in input disappear and between output variables we

have a condition or constraint. So among the three values of the output, only two
values are free and the third value is not free.

With Eq. (9.1), we try to build the inverse system of (9.1) when matrix A is
rectangular.Wemove from two dimensions to three dimensions by the up operator A.

A 
X YFig. 9.1 The input and

output on system A

A-1 
Y XFig. 9.2 The reverse of input

and output system
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Because the inverse of A does not exist, we introduce an operator B and
have (9.7).

BA ¼ Identity ð9:7Þ

One of the possible solutions of Eq. (9.7) where B is the unknown operator or
matrix is

B ¼ ðATAÞ�1AT ð9:8Þ

In fact we have

ðATAÞ�1ATA ¼ Identity

And for the vector y as source or input we have

Qy ¼ ABy ¼ AðATAÞ�1ATy

when

B ¼ A�1

Qy ¼ y

ð9:9Þ

For (9.4) and (9.5) system, we begin with y ¼
y1
y2
y3

2
4

3
5 as free variable input in

three dimensional space. With the operator AT, we move from three-dimensional
space to two dimensional space.

ATy ¼
1 0
1 1
0 1

2
4

3
5
T y1

y2
y3

2
4

3
5 ¼ 1 1 0

0 1 1

� � y1
y2
y3

2
4

3
5 ¼ y1 þ y2

y2 þ y3

� �
¼ ATY ð9:10Þ

The operator AT A is a 2 � 2 dimension. In fact for (9.4) and (9.5) we have

A

x1

x3

y1

y3

y2 = y1 + y3
32

Fig. 9.3 Inputs and outputs with different numbers
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ATA ¼
1 0
1 1
0 1

2
4

3
5
T 1 0

1 1
0 1

2
4

3
5 ¼ 1 1 0

0 1 1

� � 1 0
1 1
0 1

2
4

3
5 ¼ 2 1

1 2

� �
ð9:11Þ

And

ðATAÞ�1ATy ¼ 2 1

1 2

� ��1 y1 þ y2
y2 þ y3

� �
¼ 1

3

2 �1

�1 2

� �
y1 þ y2
y2 þ y3

� �

¼ 1
3

2y1 þ y2 þ y3
y1 þ y2 þ 2y3

� �
¼ x1

x2

� �
¼ x

ð9:12Þ

In the end, we have the last passage

Qy ¼ Ax ¼ 1
3

1 0
1 1
0 1

2
4

3
5 2y1 þ y2 þ y3

y1 þ y2 þ 2y3

� �
¼ 1

3

2y1 þ y2 þ y3
2y1 þ y2 þ y3 þ y1 þ y2 þ 2y3

y1 þ y2 þ 2y3

2
4

3
5

ð9:13Þ

where we combine the components of the vector y in a way to have the invariant
form (9.5). In fact, the second component of Qy is the sum of the first plus the third.
As a system process we have Fig. 9.4 where we generate a vector Qy from many
types of the vectors y for which the invariant is always true. Figure 9.4 shows the
complete process and the inverse process that we generate a new y or Qy from x
and we come back to x from y, which satisfies the invariant form.

Given the module of the difference between internal and external values in
(9.14).

D ¼ ðy� AxÞTðy� AxÞ ð9:14Þ

A 

(AT A)-1 

Q
y

A
T 

y
source

2 3

3 2

3 UP

DOWN

3 

Q
y

Fig. 9.4 Conceptual filter or morpho filter
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Now we choose among all vectors which satisfy invariant form (9.6), the dis-
tance between y and Ax has the minimum. So we have

D ¼ ðy� AxÞTðy� AxÞ ¼ yTy� yTAx� ðAxÞTyþðAxÞTðAxÞ ð9:15Þ

To compute the minimum, we make the derivatives of the previous form

@D
@xj

¼ �yTA
@x
@xj

� @xT

@xj
ATyþ @xT

@xj
ATAxþ xTATA

@x
@xj

ð9:16Þ

where

x ¼

x1
. . .

xj
xjþ 1

. . .

xp

2
666666664

3
777777775

and
@x
@xj

¼

0

. . .

1

0

. . .

0

2
666666664

3
777777775
¼ vj;

@xT

@xj
¼ 0 . . . 1 0 . . . 0½ � ¼ vTj

ð9:17Þ

We have

@D
@xj

¼ 0

for yTAvj þ vTj A
Ty ¼ vTj A

TAxþ xTATAvj

But because we have the following scalar property.

P ¼ aTb ¼ ðaTbÞT ¼ bTa ð9:18Þ

The previous expression can be written as follows.

vTj ðATyÞ ¼ vTj ðATyÞ
h iT

¼ ðATyÞTvj ¼ yTAvj

vTj ðATAbÞ ¼ vTj ðATAxÞ
h iT

¼ ðATAxÞTvj ¼ xTj ðATAÞTvj ¼ xTj ðATAÞvj
ð9:19Þ

We have

yTAvj þ vTj A
Ty ¼ 2vTj A

Ty

vTj A
TAxþ xTATAvj ¼ 2vTj A

TAx

and

2vTj A
Ty ¼ 2vTj A

TAb
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whose solution is

ATy ¼ ATAx

x ¼ ðATAÞ�1ATy

And

Ax ¼ Qy ¼ AðATAÞ�1ATy ð9:20Þ

By the pseudo-inverse property we can find among all possible vectors there
exists the given invariant vector and the minimal distance between the given or
wanted output y as sources and the internal value with given property.

9.2 Geometric Image of the Pseudo-Inverse

We remark that the operator Q ¼ AðATAÞ�1AT is a projection operator for which
(Fig. 9.5)

Q2 ¼ AðATAÞ�1ATAðATAÞ�1AT ¼ AðATAÞ�1AT ¼ Q ð9:21Þ

Another possible solution for (9.7) is

Z ¼ ðBTAÞ�1BT ð9:22Þ

And

ðBTAÞ�1BTA ¼ Identity

x ¼ ZAx ¼ ðBTAÞ�1BTðAxÞ
Qy ¼ AðBTAÞ�1BTy

ð9:23Þ

where Qy is an oblique projection operator.

(1- Q)y

y

=
Qy

x1

x2

s1

s2

s3

z

Fig. 9.5 Geometric image of
the projection operator
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Given the operator A, the pseudo inverse is (9.24)

ðBTAÞ�1BT ð9:24Þ

In fact we have

ðBTAÞ�1BT ½A� ¼ Identity ð9:25Þ

Now for the previous pseudo inverse we have (9.26)

AðBTAÞ�1BT ½AX� ¼ AX ð9:26Þ

Or better

AðBTAÞ�1BTy ¼ Qy

and

AðyÞðBTAðyÞÞ�1BTy ¼ QðyÞ y

That can be represented by the input and output system (conceptual filter). So we
have a non-linear projection operator where the internal operator is function of the
external input value for which we have (9.27).

AðyÞðBTAðyÞÞ�1BTy ¼ QðyÞy ¼ z

AðzÞðBTAðzÞÞ�1BTAðyÞðBTAðyÞÞ�1BTy ¼ QðzÞQðyÞy
AðzÞðBTAðzÞÞ�1BTz

ð9:27Þ

Example 9.1 For the two dimensional space we have

Y ¼
1
3
2
3

" #
; B ¼

ffiffi
2

p
2ffiffi
2

p
2

" #
; A ¼

ffiffi
3

p
2
1
2

" #

The geometric representation of the projection operators is shown in Fig. 9.6.
In Fig. 9.6, orthogonal projection is

A ATA
� ��1

ATY ¼ Q1Y ;

Oblique projection is

A BTA
� ��1

BTY ¼ Q2Y

The chip figure is shown in Fig. 9.7.
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Another possible solution for (9.7) is

B ¼ ðATZAÞ�1AT ; y ¼ ZAx; BZA ¼ ðATZAÞ�1ATZA ¼ Identity ð9:28Þ

And

ZAx ¼ ZAðATZAÞ�1ATðZAxÞ; Qy ¼ ZAðATZAÞ�1ATy ð9:29Þ

Morphogenetic-Chip is shown in Fig. 9.8.
So the first projection operator is orthogonal to the N = I − Q1 and the second

N = I − Q2 is orthogonal to the orthogonal projection Qy into B. The orthogonal
space to A is

N1 ¼ I � Q1ð Þ ð9:30Þ

Y
A 

Q2 Y 

B 

Q1 Y 

90°

90°
NY

Fig. 9.6 Geometric image of
orthogonal projection and
oblique projection

A

(BT A)-1 

Qy

BT y 

2 3 

3 
2 

3 
UP

DOWN

Universe

3 

Qy

Fig. 9.7 The chip figure of Example 9.1
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In fact we have

AT I � A ATA
� ��1

AT
	 


¼ AT � ATA ATA
� ��1

AT ¼ 0 ð9:31Þ

N1 is orthogonal to A and is the null space whose dimension is N − n, where n
is the dimension of the column space A and N is the dimension of the multidi-
mensional space.

Example 9.2 For

A ¼
ffiffi
2

p
2ffiffi
2

p
2

" #
; N ¼ I � AðATAÞ�1A ¼

1
2 � 1

2

� 1
2

1
2

" #

In a graphic way we have Fig. 9.9.

ZA

(ATZA)-1 

Ax

AT y 

x 3 

3 
2 

3 UP

DOWN

Qy

Fig. 9.8 Morphogenetic-Chip

O 
9

0°

Fig. 9.9 The two orthogonal
vectors of A
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9.3 Simple Genetic Algorithm Subject to Constraint
[22, 23, 25, 26, 35]

The GA has been used in many machine-learning contexts, such as evolving
classification rules, evolving neural networks, classifier systems, and automatic
programming. In may of these cases there is no closed-form fitness function; the
evaluation of each individual (or collection of individuals) is obtained by running it
on the particular task being learned. The GA is considered to be successful if an
individual, or collection of individuals has satisfactorily learned the given task. The
lack of a closed-form fitness function in these problems makes it difficult to study
GA performance rigorously. Thus, much of the existing GA theory has been
developed in the context of optimization in which the GA is considered to be
successful if it discovers a single bit string that represents a value yielding an
optimum (or near optimum) of the given function. In this part we create close form
or invariant for fitness functions or for other functions. The first closed form or
constrain is the normalization property for which we have (9.32).

p1 þ p2 þ � � � þ pn ¼ 1 ð9:32Þ

Other can be average values by (9.33).

f ðxÞh i ¼
X
i

pif ðxiÞ ¼ k ð9:33Þ

Or in a more general form (9.34)

Fðp1; . . .; pnjq1; . . .; qmÞ ¼ k ð9:34Þ

9.3.1 Genetic Selection Algorithm in Two Dimensional State
Subject to Normalize Constraint

Based on the morphogenetic transformation in mathematical appendix, we can get
the selection of morphogenetic evolution in the following way. Given two states 1
and 0 so we have the state space.

S = {1, 0}
Now we know that at any state we can associate one probability for which we

have the invariant property or constraint.
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f ðp1; p2Þ ¼ p1 þ p2 ¼ 1 ð9:35Þ

So for the invariant property we have (9.36)

df
dt

¼ dp1
dt

@f
@p1

þ dp2
dt

@f
@p2

¼ 0 ð9:36Þ

In the special case of Eq. (9.36) we have (9.37).

Df ¼
dp1
dt
dp2
dt

" #T @f
@p1
@f
@p2

" #
¼ 0 ð9:37Þ

So we have (9.38).

Df ¼
dp1
dt
dp2
dt

" #T
1
1

� �
¼ 0 ð9:38Þ

For the orthogonal vectors we have (9.39).

dp1
dt
dp2
dt

" #
¼ 1 0

0 1

� �
� 1

1

� �
1
1

� �T
1
1

� � !�1
1
1

� �T
¼ 1

2
1 �1
�1 1

� �
ð9:39Þ

The variation of the probability has two possible directions, one is down and the
other is up on the line where the invariant form is (9.40). So we have two systems of
differential equation for which (9.40) is invariant. The two systems of differential
equations are

dp1
dt ¼ 1

2
dp2
dt ¼ � 1

2

(
;

dp1
dt ¼ � 1

2
dp2
dt ¼ 1

2

(
ð9:40Þ

Whose solutions are (9.41).

p1 ¼ 1
2 tþ c1

p2 ¼ � 1
2 tþ c2

(
;

p1 ¼ � 1
2 tþ c3

p2 ¼ 1
2 tþ c4

(
ð9:41Þ

In Fig. 9.10, we can see the variation of the probability down from p(t) to Tp(t).
We have the simplex space given of the line where (9.40) is true. Now we begin

with the initial vector p(t) and we move from p(t) to the final vector.

Tp ¼ F1 0
0 F2

� �
p1
p2

� �
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where T is the Michael Vose transformation for selection in the simple genetic

algorithm. The selection vector or fitness vector is
F1

F2

� �
. The operator that moves

from p(t) to Tp(t) in the line of probability for which (9.40) is true, is an oblique
projection given by the operator.

AðpðtÞÞðBTAðpðtÞÞÞ�1BTyðtÞ ¼ QðpðtÞÞ pðtÞ ¼ pðtþ 1Þ ð9:41Þ

For the very simple example we have

p ¼ p1
p2

� �
; AðpÞ ¼ F1 0

0 F2

� �
p1
p2

� �
; B ¼ 1

1

� �

The recursion process with constraint is given by the expression (9.42).

p1ðtþ 1Þ
p2ðtþ 1Þ
� �

¼ F1 0

0 F2

� �
p1ðtÞ
p2ðtÞ
� �

1

1

� �T F1 0

0 F2

� �
p1ðtÞ
p2ðtÞ
� � !�1

1

1

� �T p1ðtÞ
p2ðtÞ
� �

¼
F1p1ðtÞ

F1p1ðtÞþF2p2ðtÞ ðp1ðtÞþ p2ðtÞÞ
F2p2ðtÞ

F1p1ðtÞþF2p2ðtÞ ðp1ðtÞþ p2ðtÞÞ

2
4

3
5

ð9:42Þ

The expression is the same of the M.D. Vose and J.E. Rowe with the difference
that we use the expression of the oblique projection where the transformation of the
probability is orthogonal to the vector B for which the probability constraint of the
normalization is always true. So the transformation is always subject to normal-
ization constraint in any moment. In fact we can see that for any step we have that
the invariant form or constraint is always true.

Fig. 9.10 The relation
between p(t) and p(t + 1)
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p1 þ p2 ¼ 1; and pðtþ 1Þ ¼
F1p1ðtÞ

F1p1ðtÞþF2p2ðtÞ
F2p2ðtÞ

F1p1ðtÞþF2p2ðtÞ

" #
;

Where

F1p1ðtÞ
F1p1ðtÞþF2p2ðtÞ þ

F2p2ðtÞ
F1p1ðtÞþF2p2ðtÞ ¼ 1

B ¼ 1
1

� �
, so for the property of the oblique projection any projection or

movement is orthogonal to the vector B as we can see in the differential equations
for the probability constraint in Eq. (9.43).

F1

F2

� �
¼

@f
@p1
@f
@p2

" #
¼ 1

1

� �
ð9:43Þ

We have

p ¼ p1
p2

� �
;AðpÞ ¼ 1 0

0 1

� �
p1
p2

� �
¼ p1

p2

� �
¼ p;B ¼ 1

1

� �

So the projection of p into the vector A(p) is again p because p belongs to the
vector A(p). So

B ¼
@f
@p1
@f
@p2

" #
¼ 1

1

� �

defines the invariance property as the orthogonality between the velocity vector of p
and B. The vector A(p) is the aim of the oblique projection that starts from p. When
A(p) = p the initial and final value of the projection are the same so any initial value
of the probability is a fixed value in the recursion process. So we have (9.44).

QpðtÞ ¼
F1p1ðtÞ

F1p1ðtÞþF2p2ðtÞ
F2p2ðtÞ

F1p1ðtÞþF2p2ðtÞ

" #
¼ p1

p2

� �
¼ pðtÞ ð9:44Þ

where we have the two fixed points

p1
p2

� �
¼ 1

0

� �
;

p1
p2

� �
¼ 0

1

� �
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Now there are many possible ways which are orthogonal to B. In fact we have
two possible ways to be orthogonal given by the two vectors.

dp1
dt
dp2
dt

" #
¼ 1

2
1
�1

� �
;

dp1
dt
dp2
dt

" #
¼ 1

2
�1
1

� �

In a graph way we have Fig. 9.11.

When F1 [F2 we have that
p1
p2

� �
¼ 1

0

� �
is a stable point and

p1
p2

� �
¼ 0

1

� �
is

an unstable point as we can see by the expression (9.45).

F1p1ðtÞ
F1p1ðtÞþF2p2ðtÞ

F2p2ðtÞ
F1p1ðtÞþF2p2ðtÞ

" #
� p1

p2

� �
¼

F1p1ðtÞ
F1p1ðtÞþF2p2ðtÞ � p1

F2p2ðtÞ
F1p1ðtÞþF2p2ðtÞ � p2

" #
¼

F1
F1p1ðtÞþF2p2ðtÞ � 1
	 


p1
F2

F1p1ðtÞþF2p2ðtÞ � 1
	 


p2

2
4

3
5

ð9:45Þ

In a graphic way we have Fig. 9.12.

The projection of
F1 0
0 F2

� �
1
1

� �
¼ F1

F2

� �
¼ F into the orthogonal vector

1
�1

� �
is

QF ¼ 1
�1

� �
1
�1

� �T
1
�1

� � !�1
1
�1

� �T
F1

F2

� �
¼ 1

2
F1 � F2

�ðF1 � F2Þ
� �

Because F1 [F2 the projection has the same direction of the movement of the
evolution. With the previous projection we can create another constraint in the

Fig. 9.11 Two possible ways
to be orthogonal
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initial condition in a way to make a right direction to the evolution to obtain the
maximum of the probability for the maximum value of the fitness function in a
rapid way. So we choose the initial condition with the given rule.

pð0Þ ¼ 1
2

1
1

� �
þ 1

2
F1 � F2

�ðF1 � F2Þ
� �

Dt

Figure 9.13 is the image of the initial condition.

When F1\F2 we have that
p1
p2

� �
¼ 1

0

� �
is an unstable point and

p1
p2

� �
¼ 0

1

� �
is a stable point (Fig. 9.14).

B

F

Fig. 9.12 Evolution process
to the best feet values F

Fig. 9.13 The initial
condition
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We introduce the same initial condition by projection operator.

pð0Þ ¼ 1
2

1
1

� �
þ 1

2
F1 � F2

�ðF1 � F2Þ
� �

Dt

Because now F1\F2 the direction of the initial value of the probability is the
reverse to the previous case so the initial probability constraint controls the
direction of the evolution in a way to be directed to the stable point where we have
the maximum value of the fitness function.

The stability or instability of the fixed points is the function of the position of the
fitness function. For example, given

p ¼
1
4
3
4

" #
; A ¼ 4 0

0 1

� � 1
4
3
4

" #

We have the process Fig. 9.15.
For initial condition directed to the stable point we have

p ¼
3
4
1
4

" #
; A ¼ 4 0

0 1

� � 3
4
1
4

" #

We have the evolution (Fig. 9.16).

B

F

Fig. 9.14 Evolution back to
the feet values F
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9.3.2 Three Dimension Selection Evolution Subject
to the Normalize Constraint

Example 9.3 For n = 3 we have the constraint.

p1 þ p2 þ p3 ¼ 1

And the evolution subject to constraint is shown in (9.46).

F1 0 0

0 F2 0

0 0 F3

2
64

3
75

1

1

1

2
64
3
75

1

1

1

2
64
3
75
T F1 0 0

0 F2 0

0 0 F3

2
64

3
75

1

1

1

2
64
3
75

0
B@

1
CA

�1
1

1

1

2
64
3
75
T p1ðtÞ

p2ðtÞ
p3ðtÞ

2
64

3
75

¼

F1p1ðtÞ
F1p1ðtÞþF1p1ðtÞþF1p1ðtÞ

F2p2ðtÞ
F1p1ðtÞþF1p1ðtÞþF1p1ðtÞ

F3p3ðtÞ
F1p1ðtÞþF1p1ðtÞþF1p1ðtÞ

2
6664

3
7775 ¼

p1ðtþ 1Þ
p2ðtþ 1Þ
p2ðtþ 1Þ

2
64

3
75

ð9:46Þ

Fig. 9.15 Probability
evolution to the best feet
value in red
(color figure online)

Fig. 9.16 Evolution of the
probability when we change
the initial probability values
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where the fixed points are

p1 ¼
1
0
0

2
4
3
5; p2 ¼

0
1
0

2
4
3
5; p3 ¼

0
0
1

2
4
3
5

Given the gradient vector

f ¼ p1 þ p2 þ p3; rf ¼
@f
@p1
@f
@p2
@f
@p3

2
64

3
75 ¼

1
1
1

2
4
3
5

The basis orthogonal vectors to the gradient are obtained by the expression
(9.47).

dp1
dt
dp2
dt
dp3
dt

2
64

3
75 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5�

1
1
1

2
4
3
5 1

1
1

2
4
3
5
T 1

1
1

2
4
3
5

0
@

1
A

�1
1
1
1

2
4
3
5
T

¼ 1
3

2 �1 �1
�1 2 �1
�1 �1 2

2
4

3
5

ð9:47Þ

It can be represented by Fig. 9.17.
The three column vectors are not independent. Only two vectors are indepen-

dent. So we have

H ¼
2 �1
�1 2
�1 �1

2
4

3
5 1
3
:

It can be given by Fig. 9.18.

Fig. 9.17 Three possible
evolution process of the
probability for three possible
best feet values
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Given the transformation

F1 0 0
0 F2 0
0 0 F3

2
4

3
5 1

1
1

2
4
3
5 ¼

F1

F2

F3

2
4

3
5

We have the initial direction constraint.

pð0Þ ¼
1
3
1
3
1
3

2
64
3
75þDp ¼

1
3
1
3
1
3

2
64
3
75þ

2
3 � 1

3

� 1
3

2
3

� 1
3 � 1

3

2
64

3
75

2
3 � 1

3

� 1
3

2
3

� 1
3 � 1

3

2
64

3
75
T 2

3 � 1
3

� 1
3

2
3

� 1
3 � 1

3

2
64

3
75

0
B@

1
CA

�1 2
3 � 1

3

� 1
3

2
3

� 1
3 � 1

3

2
64

3
75
T

F1

F2

F3

2
64

3
75Dt ¼

1
3
1
3
1
3

2
64
3
75þ

2
3F1 � 1

3F2 � 1
3F3

� 1
3F1 þ 2

3F2 � 1
3F3

� 1
3F1 � 1

3F2 þ 2
3F3

2
64

3
75Dt

ð9:48Þ

For the eight populations (000), (001), (010), (011), (100), (101), (110), (111),
the initial probabilities are

Fig. 9.18 Two independent
evolution process for the
probability
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�1
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8 � F3þ 7
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�1
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1
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The morphogenetic eight behaviors of the probabilities in the ordinates for the
eight populations is shown in Fig. 9.19.

Where only the last population with the maximum fitness assumes the maximum
value of the probability in 20 generations. The fitness vector is

F ¼

F1

F2

F3

F4

F5

F6

F7

F8

2
66666666664

3
77777777775
¼

3
2
2
1
2
1
1
4

2
66666666664

3
77777777775

Fig. 9.19 Evolution of the probability for 8 fitness values
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9.4 Selection, Mutation and Crossover Evolution Subject
to the Normalize Constraint and Initial Probability
Constraint

Given the mutation transformations (9.49) (M.D. Vose and J.E. Rowe)

ð1� lÞ2 ð1� lÞl ð1� lÞl l2

ð1� lÞl ð1� lÞ2 l2 ð1� lÞl
ð1� lÞl l2 ð1� lÞ2 ð1� lÞl

l2 ð1� lÞl ð1� lÞl ð1� lÞ2

2
664

3
775 ¼ U ð9:49Þ

where

F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

2
664

3
775 ¼ F

And the composition is (9.50).

UF ¼
ð1� lÞ2 ð1� lÞl ð1� lÞl l2

ð1� lÞl ð1� lÞ2 l2 ð1� lÞl
ð1� lÞl l2 ð1� lÞ2 ð1� lÞl

l2 ð1� lÞl ð1� lÞl ð1� lÞ2

2
6664

3
7775

F1 0 0 0

0 F2 0 0

0 0 F3 0

0 0 0 F4

2
6664

3
7775

¼
F1ð1� lÞ2 F2ð1� lÞl F3ð1� lÞl F4l2

F1ð1� lÞl F2ð1� lÞ2 F3l2 F4ð1� lÞl
F1ð1� lÞl F2l2 F3ð1� lÞ2 F4ð1� lÞl

F1l2 F2ð1� lÞl F3ð1� lÞl F4ð1� lÞ2

2
6664

3
7775

ð9:50Þ

So the evolution with the normalization constraint is (9.51).

f ¼ p1 þ p2 þ p3 þ p4 ¼ 1
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p1ðtþ 1Þ
p2ðtþ 1Þ
p3ðtþ 1Þ
p4ðtþ 1Þ

2
6664

3
7775 ¼

F1ð1� lÞ2 F2ð1� lÞl F3ð1� lÞl F4l2

F1ð1� lÞl F2ð1� lÞ2 F3l2 F4ð1� lÞl
F1ð1� lÞl F2l2 F3ð1� lÞ2 F4ð1� lÞl

F1l2 F2ð1� lÞl F3ð1� lÞl F4ð1� lÞ2

2
6664

3
7775

p1ðtÞ
p2ðtÞ
p3ðtÞ
p4ðtÞ

2
6664

3
7775

1

1

1

1

2
6664
3
7775
T

F1ð1� lÞ2 F2ð1� lÞl F3ð1� lÞl F4l2

F1ð1� lÞl F2ð1� lÞ2 F3l2 F4ð1� lÞl
F1ð1� lÞl F2l2 F3ð1� lÞ2 F4ð1� lÞl

F1l2 F2ð1� lÞl F3ð1� lÞl F4ð1� lÞ2

2
6664

3
7775

p1ðtÞ
p2ðtÞ
p3ðtÞ
p4ðtÞ

2
6664

3
7775

0
BBBB@

1
CCCCA

�1
1

1

1

1

2
6664
3
7775
T p1ðtÞ

p2ðtÞ
p3ðtÞ
p4ðtÞ

2
6664

3
7775

ð9:51Þ

And the initial condition is given by the expression (9.52).

dp1
dt
dp2
dt
dp3
dt
dp4
dt

2
6664

3
7775 ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775�

1
1
1
1

2
664
3
775

1
1
1
1

2
664
3
775
T 1

1
1
1

2
664
3
775

0
BB@

1
CCA

�1
1
1
1
1

2
664
3
775
T

¼ 1
4

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

2
664

3
775 ð9:52Þ

Given the transformation (9.53)

F1ð1� lÞ2 F2ð1� lÞl F3ð1� lÞl F4l2

F1ð1� lÞl F2ð1� lÞ2 F3l2 F4ð1� lÞl
F1ð1� lÞl F2l2 F3ð1� lÞ2 F4ð1� lÞl

F1l2 F2ð1� lÞl F3ð1� lÞl F4ð1� lÞ2

2
664

3
775

1
1
1
1

2
664
3
775

¼
F1ð1� lÞ2 þF2ð1� lÞlþF3ð1� lÞlþF4l2

F1ð1� lÞlþF2ð1� lÞ2 þF3l2 þF4ð1� lÞl
F1ð1� lÞlþF2l2 þF3ð1� lÞ2 þF4ð1� lÞl
F1l2 þF2ð1� lÞlþF3ð1� lÞlþF4ð1� lÞ2

2
664

3
775 ð9:53Þ

We have the projection on the orthogonal independent vectors in a way to
establish a direction constraint on the initial value of the probability.
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pð0Þ ¼

0:25

0:25

0:25

0:25

2
6664

3
7775þDp ¼

0:25

0:25

0:25

0:25
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3
7775

þ
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� 1
4 � 1
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4

2
6664

3
7775
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4 � 1
4

� 1
4
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4 � 1

4
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4
3
4

� 1
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4

2
6664

3
7775
T 3

4 � 1
4 � 1

4

� 1
4

3
4 � 1

4

� 1
4 � 1

4
3
4

� 1
4 � 1

4 � 1
4

2
6664

3
7775

0
BBBB@

1
CCCCA

�1

3
4 � 1

4 � 1
4

� 1
4

3
4 � 1

4

� 1
4 � 1

4
3
4

� 1
4 � 1

4 � 1
4

2
6664

3
7775
T

F1ð1� lÞ2 þF2ð1� lÞlþF3ð1� lÞlþF4l2

F1ð1� lÞlþF2ð1� lÞ2 þF3l2 þF4ð1� lÞl
F1ð1� lÞlþF2l2 þF3ð1� lÞ2 þF4ð1� lÞl
F1l2 þF2ð1� lÞlþF3ð1� lÞlþF4ð1� lÞ2

2
6664

3
7775Dt

For the cross over transformation we have the probability matrix (9.54) for the
state (00), (01), (10), (11)

Mð00Þ ¼

1 1
2

1
2

1
4

1
2 0 1

4 0
1
2

1
4 0 0

1
4 0 0 0

2
6664

3
7775 ¼ 1 1

2
1
2 0

" #
� 1 1

2
1
2 0

" #
;

Mð01Þ ¼

0 1
2 0 1

4
1
2 1 1

4
1
2

0 1
4 0 0

1
4

1
2 0 0

2
6664

3
7775 ¼ 1 1

2
1
2 0

" #
� 0 1

2
1
2 1

" #

Mð10Þ ¼

0 0 1
2

1
4

0 0 1
4 0

1
2

1
4 1 1

2
1
4 0 1

2 0

2
6664

3
7775 ¼ 0 1

2
1
2 1

" #
� 1 1

2
1
2 0

" #
;

Mð11Þ ¼

0 0 0 1
4

0 0 1
4

1
2

0 1
4 0 1

2
1
4

1
2

1
2 1

2
6664

3
7775 ¼ 0 1

2
1
2 1

" #
� 0 1

2
1
2 1

" #

ð9:54Þ

They are associated to four isomorphic graphs (Fig. 9.20).
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Mð00Þ ¼
1 1

2
1
2

1
4

1
2 0 1

4 0
1
2

1
4 0 0

1
4 0 0 0

2
664

3
775 ¼ 1 1

2
1
2 0

� �
� 1 1

2
1
2 0

� �
;

So for the children probability to be in the state (00) is (9.55).

pð00Þ ¼ p1p1 þ 1
2
p1p2 þ 1

2
p2p1 þ 1

2
p1p3 þ 1

2
p3p1 þ 1

4
p1p4

þ 1
4
p4p1 þ 1

4
p2p3 þ 1

4
p3p2 ¼ p1p1 þ p1p2 þ p1p3 þ 1

2
p1p4 þ 1

2
p2p3

ð9:55Þ

When we repeat the similar process for all the four matrices we have the
crossover non-linear transformation of the probability (9.56)

p00ðtþ 1Þ
p01ðtþ 1Þ
p10ðtþ 1Þ
p11ðtþ 1Þ

2
6664

3
7775 ¼

p1ðtþ 1Þ
p2ðtþ 1Þ
p3ðtþ 1Þ
p4ðtþ 1Þ

2
6664

3
7775

¼

p21ðtÞþ p1ðtÞp2ðtÞþ p1ðtÞp3ðtÞþ 1
2 p1ðtÞp4ðtÞþ 1

2 p2ðtÞp3ðtÞ
p22ðtÞþ p2ðtÞp1ðtÞþ p2ðtÞp4ðtÞþ 1

2 p2ðtÞp3ðtÞþ 1
2 p1ðtÞp4ðtÞ

p23ðtÞþ p3ðtÞp1ðtÞþ p3ðtÞp4ðtÞþ 1
2 p3ðtÞp2ðtÞþ 1

2 p1ðtÞp4ðtÞ
p24ðtÞþ p4ðtÞp2ðtÞþ p4ðtÞp3ðtÞþ 1

2 p4ðtÞp1ðtÞþ 1
2 p2ðtÞp3ðtÞ

2
6664

3
7775 ¼ C

ð9:56Þ

The morphogenetic evolution process is given by the combination of fitness,
mutation and crossover transformation in this symbolic expression (9.57).

00
P1

01
P2

10
P3

11
P4

Fig. 9.20 Cross over graph
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pðtþ 1Þ ¼ fP
j fiðtÞ

; f ¼ CUSpðtÞ ð9:57Þ

p21ðtÞþ p1ðtÞp2ðtÞþ p1ðtÞp3ðtÞþ 1
2 p1ðtÞp4ðtÞþ 1

2 p2ðtÞp3ðtÞ
p22ðtÞþ p2ðtÞp1ðtÞþ p2ðtÞp4ðtÞþ 1

2 p2ðtÞp3ðtÞþ 1
2 p1ðtÞp4ðtÞ

p23ðtÞþ p3ðtÞp1ðtÞþ p3ðtÞp4ðtÞþ 1
2 p3ðtÞp2ðtÞþ 1

2 p1ðtÞp4ðtÞ
p24ðtÞþ p4ðtÞp2ðtÞþ p4ðtÞp3ðtÞþ 1

2 p4ðtÞp1ðtÞþ 1
2 p2ðtÞp3ðtÞ

2
664

3
775 ¼ C

We have the M.D. Vose and J.E. Rowe complex transformation for which we
can give the same genetic evolution process subject to normalized constraint and
also the initial probability constraint.

T ¼ C � U � S

9.5 Beyond the Normalized Constraint

Given the set of invariants averages invariance and normalization.

p1 þ p2 þ � � � þ pn ¼ 1
p1F1 þ p2F2 þ � � � þ pnFn ¼ Fh i

� � �
p1f1 þ p2f2 þ � � � þ pnfn ¼ fh i

8>><
>>: ð9:58Þ

We have the Jacobian

J ¼
1 F1 . . . f1
1 F2 . . . f2
. . . . . . . . . . . .
1 Fn . . . fn

2
664

3
775

And the genetic evolution subject to constraint is (9.59)

pðtþ 1Þ ¼ TpðtÞðJTTpðtÞÞ�1JT ð9:59Þ
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9.6 Conclusion

We applied morphogenetic to genetic algorithm which provides a new method to
address the core issues in GA. Using projection theorem, morphogenetic first gives
the direction of the search which is able to address the convergence problem, and
then, it starts the search for optimal solutions from the global perspective which
would avoid to mistake local optimal solutions for global optimal solutions.
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Chapter 10
Neural Morphogenetic Computing
and One Step Method

10.1 One Step Back Propagation to Design
Neural Network

Systems design is the process of defining the architecture, components, modules,
interfaces, and data for a system to satisfy specified requirements [11, 14, 15]. One
step back propagation is a method to design a neural network to satisfy specific
Boolean function in output. This is and was the main problem in a percetron neural
system and in the classical back propagation. In the classical learning process in
neural network we begin with a random values of the parameters and with an
iteration program we compute the neural parameters to learn the wanted Boolean
function. With the learning program the neural network evolve in time to the
wanted goal. Different algorithm have different degrees of evolvability or number of
steps to calculate the parameters to satisfy specific Boolean function. Specific
programs and functions have different degrees of evolvability. We know that with a
given input in the neuron we have Boolean functions where the number of steps
have no limit and the evolvability is zero. Other function can be solved by
parameters in only one step so the evolvability is one. When the evolvability is zero
back propagation in an empirical way adjoin new hidden variables and layers to
solve the Boolean function. Because in back propagation we use the descendent
gradient to control the evolution of the system when the gradient is zero we have a
singularity in the method for which we are trapped in a local minimum. In this case
the system converges to a Boolean that does not satisfy the specific requirements. In
this chapter we suggest a one step method without the evolution process. Given a
set of N inputs to the neuron whose values are one and zero. We have different
evaluations for the inputs. The first type of evaluation gives the basis sets of inputs
or factors where only one input assumes the value one and all the other values zero.
So this basis type of inputs are N and the independent set of inputs or factors. Given
the basis set of N inputs with a superposition operation of different independent set

© Springer International Publishing AG 2017
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of inputs we can generate many other inputs that are dependent from the basis
elements as in the coordinate system of the basis vectors of N dimensions.

We compute the weights of the connections and the hidden units which are not
part of the input or output in one step. We know neural networks classical back
propagation can learn their weights and biases using the gradient descent algorithm
unsupervised and the cost function. In this chapter the one step back propagation uses
pure algebraic methods to compute the neuron parameters where the cost function
and gradient are not useful. We compute again the neuron parameters as in the
classical back-propagation and simpler methods such as the perceptron-convergence
procedure but without convergent procedure with only algebraic one step algorithm.
With the new one step method we can also compute the parameters for associative
memory, Hopfield neural network, Kohonen self organizing maps and pattern
memory. The one step back propagation defines a Boolean vector of 1 and 0 values
as output and a set of Boolean vectors as input. The input set of the vectors are part of
a multidimensional vector space and are the reference that we use in the one step
method. The reference given by the input vectors is in general non orthogonal and the
vectors of the reference are not unitary vectors. In this method we use massive
parallel process where all possible inputs which values are one or zero are given by a
set of vectors in a multidimensional space. Tor two inputs the input space has
dimension 4 for thee input the dimensions space has 8 dimensions and so on. We
remember that the number of Boolean function that we want to implement by neural
network for two inputs are 16, for three inputs are 256 for four inputs are 65,536. The
number of the Boolean function grows up more than the dimension of the space.
Now the designed Boolean function that we want to implement by the neural net-
work is the initial part of the algorithm and back we want to use the input space to
compute the weights and threshold of the neuron. The neuron parameters are com-
puted without a recursive method of approximation but with a simple use of the
vector algebra. At the first the algorithm use a special operator denoted projection
operator that can project the output vector into the vector space of the possible inputs.
Now the values of the general coordinates in the special input space are the weights
of the neuron. Given the weights we can compute the output vector by the weighted
linear combination of the input vectors. The output is a general vector which value
are numbers. To rebuilt the designed output function we compute the threshold value
by the average of the maximum value for output which designed value is zero and the
minimum value of all the values which designed value is one. In many case the
parameters and the threshold cannot compute the designed Boolean function. When
we cannot rebuilt the designed function we introduce new hidden layers in this way.

First this chapter begins with back propagation whose weights and bias are
computed with a new method denoted projection methods or one step method. Then
we compute with the same method the associative memory parameters. Associative
memory is a good example of the rules and data fusion. In the classical associative
memory we use orthonormal property of the input samples. Now we show that this
property is not always necessary. So we move from associative memory to prop-
agators. After the associative memory we study self associative memory as
Hopfield neural network. The unsupervised Kohonen self-organizing maps is
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included in projection method as special cases. Aims or intentions can be repre-
sented by special samples, Boolean functions, images, input vectors or other sys-
tems that we want to implement in the physical model of the brain which is a
special part of the universe where rules can change.

10.2 Supervised Neural Network by Projection Method
[17–19, 21]

Given one neuron with two inputs and one output, shown in Fig. 10.1.
We compute the weights and threshold of the neuron. Given A the input vectors,

w the weights, and Y the desired vector,

A ¼
0 0
1 0
0 1
1 1

2
664

3
775; Y ¼

0
1
0
0

2
664

3
775;

we have Eq. (10.1).

Aw ¼ Y ð10:1Þ

or

0 0
1 0
0 1
1 1

2
664

3
775 w1

w2

� �
¼

0
1
0
0

2
664

3
775

What we want to solve is to get the weights by the input and desired function Y.
According to the previous equation, we get the weights w by (10.2).

0
1
0
0

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

0
1
0
1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

2

0
0
1
1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Fig. 10.1 The neuron with
two inputs and one output
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ATAw ¼ ATY ;

w ¼ ðATAÞ�1ATY
ð10:2Þ

And

w ¼ ðATAÞ�1ATY ¼
2
3� 1
3

� �

With w we can compute the projection QY of Y into the input world A by (10.3).

Aw ¼ AðATAÞ�1ATY ¼ QY ð10:3Þ

QY ¼ Aw ¼
0 0
1 0
0 1
1 1

2
664

3
775

2
3� 1
3

� �
¼ 2

3

0
1
0
1

2
664

3
775� 1

3

0
1
0
1

2
664

3
775 ¼ w1A1 þw2A2 ¼

0
2
3� 1
3

1
3

2
664

3
775

ð10:4Þ

For the projection operator the linear combination of the column vectors in
(10.4) assumes the minimal value of difference QY-Y among all possible linear
combinations.

Because the neuron-like neuron can be given biases by introducing an extra
input to each unit which always has a value of 1, the weight h on this extra input is
called the bias and is equivalent to a threshold of the opposite sign. To compute the
threshold we use the expression (10.5).

h ¼ min½ðQYÞY � þmax½ðQYÞð1� YÞ�
2

ð10:5Þ

In the previous example we have

h ¼ min½0; 23 ; 0; 0� �max½0; 0;� 1
3 ;

1
3�

2
þmax½0; 0;� 1

3
;
1
3
� ¼

2
3 � 1

3

2
þ 1

3
¼ 1

2

Calling the output yj we can write (10.6).

yj ¼ f ½R
i
wiXi;j � h� ð10:6Þ

Where f is the step function (actually known as the Heviside function) and

f ðxÞ ¼ 1 x [ 0

f ðxÞ ¼ 0 x � 0
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In this situation no hidden neurons are necessary. With projection operator we
find the strength of the connections with the desired output without iteration pro-
cess. Among the eight desired functions Y in (10.7), only

Y ¼
0
1
1
0

2
664

3
775

cannot be solved by projection operator.

Y ¼
0
0
0
0

2
664

3
775;

0
1
0
0

2
664

3
775;

0
0
1
0

2
664

3
775;

0
0
0
1

2
664

3
775;

0
1
1
0

2
664

3
775;

0
1
0
1

2
664

3
775;

0
0
1
1

2
664

3
775;

0
1
1
1

2
664

3
775 ð10:7Þ

Now,

A ¼
0 0
1 0
0 1
1 1

2
664

3
775; Y ¼

0
1
1
0

2
664

3
775

This is a XOR Boolean function. We compute QY by the projection operator
(10.8).

QY ¼ ðAðATAÞ�1ATÞY ¼

0
1
3
1
3
2
3

2
66664

3
77775 and Q = AðATAÞ�1AT ð10:8Þ

So in this case it is impossible to solve the neuron problem.

10.3 Conflict Situation in Supervised Neural Network
with Compensation

In the previous problem we have for A and Y we have for the XOR the matrices.

A ¼
0 0
1 0
0 1
1 1

2
664

3
775; Y ¼

0
1
1
0

2
664

3
775
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Where we have only two free variables, and the other are zero or linear com-
binations of the two free variables. In fact we have (10.9).

Aw ¼
0 0
1 0
0 1
1 1

2
664

3
775 w1

w2

� �
¼

0
w1

w2

w1 þw2

2
664

3
775 ð10:9Þ

So we can put

w ¼ w1

w2

� �
¼ 1

1

� �

And

Aw ¼
0 0
1 0
0 1
1 1

2
664

3
775 1

1

� �
¼

0
1
1
2

2
664

3
775

When we compare with the original Y we have (10.10)

Aw� Y ¼
0 0
1 0
0 1
1 1

2
664

3
775 1

1

� �
�

0
1
1
0

2
664

3
775 ¼

0
0
0
2

2
664

3
775 ð10:10Þ

The last value of the difference is 2 and is the contradiction term for which we
cannot solve the neuron problem. In a more simple way we show the contradiction
directly. Given the abstract form of the neuron composition in this form

0 0
1 0
0 1
1 1

2
664

3
775 w1

w2

� �
¼

0
w1

w2

w1 þw2

2
664

3
775

For which we have the possible output

0
w1 � h
w2 � h

w1 þw2 � h

2
664

3
775 ¼

0
Y1
Y2

Y1 þ Y2 þ h

2
664

3
775
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But for the XOR function we have the output Y ¼
0
1
1
0

2
664

3
775 But this generates the

conflict because

ðY1 [ 0; Y2 [ 0Þ ! ðY1 þ Y2Þ[ 0

And this is in contradiction with the Boolean constraint in XOR function for
which

ðY1 þ Y2Þþ h\0

For Y1 þ Y2 [ 0 and h[ 0 the previous expression is impossible.
So we adjoin a new column with 1 in this point where we have contradiction. In

conclusion with the new input we have the network (10.11).

A0 ¼
0 0 0
1 0 0
0 1 0
1 1 1

2
664

3
775; Y ¼

0
1
1
0

2
664

3
775 ð10:11Þ

Where we have three free variables with w ¼
1
1
�2

2
4

3
5; h ¼ 0:5, QY ¼

0
1
1
0

2
664

3
775 for

Y ¼
0
0
0
1

2
664

3
775 and A ¼

0 0
1 0
0 1
1 1

2
664

3
775 with the projection method we have w ¼

1
3
1
3

� �
and the

threshold 0.5, So QY ¼
0

1=3
1=3
2=3

2
664

3
775

We can build this neural network (Fig. 10.2).

1/3

1/3

1

1 

-2 
1/2

X1

2X

Y

Fig. 10.2 Weights and bias
for the Boolean function XOR
by the projection method
without cost function and
descendent gradient
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Example For the three inputs neuron we have (10.12).

A ¼

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

2
66666666664

3
77777777775

; Y ¼

0
1
1
0
1
0
0
1

2
66666666664

3
77777777775

ð10:12Þ

With three free variables, we assume w to be:

w ¼
w1

w2

w3

2
4

3
5 ¼

1
1
1

2
4

3
5

And

D ¼ Aw� Y ¼

0
0
0
2
0
2
2
2

2
66666666664

3
77777777775

Where D is the difference between Aw and Y. When we adjoin the difference to
the input values A, we have that for (10.13).

A ¼

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 2
0 0 1 0
1 0 1 2
0 1 1 2
1 1 1 2

2
66666666664

3
77777777775

; Y ¼

0
1
1
0
1
0
0
1

2
66666666664

3
77777777775

ð10:13Þ

We have w ¼ ðATAÞ�1ATY ¼
1
1
1
�1

2
664

3
775and (10.14)
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QY ¼ AðATAÞ�1ATY ¼

0
1
1
0
1
0
0
1

2
66666666664

3
77777777775

ð10:14Þ

The previous basis A can be split in this way.

A ¼

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 2
0 0 1 0
1 0 1 2
0 1 1 2
1 1 1 2

2
66666666664

3
77777777775

¼

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 1 1 1
0 1 1 1 1
1 1 1 1 1

2
66666666664

3
77777777775

But because the last two columns are equal we can write the new basis in this
way.

A ¼

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

2
66666666664

3
77777777775

In (10.15) we have the elements to compute the weights of the neural network.
So

A ¼

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

2
66666666664

3
77777777775

; Y ¼

0
1
1
0
1
0
0
1

2
66666666664

3
77777777775

ð10:15Þ

The weights and the projection do not change. So we have again the same result.
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We have w ¼ ðATAÞ�1ATY ¼
1
1
1
�1

2
664

3
775 and QY ¼ AðATAÞ�1ATY ¼

0
1
1
0
1
0
0
1

2
66666666664

3
77777777775

Now we want to solve by neural network the function.

Y ¼

0
0
0
1
0
1
1
1

2
66666666664

3
77777777775

ð10:16Þ

With the projection operator we have

w ¼ 3
8

1
1
1

2
4

3
5 and h ¼ 0:563

So we have the result as Fig. 10.3.
We show the neural network parameters in Fig. 10.4.
Now we show another example. For the three input neuron we have

Fig. 10.3 Function Y and function of the projection or QY. We see that the two functions with the
bias are equal
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A ¼

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

2
66666666664

3
77777777775

; Y ¼

0
0
1
1
0
1
0
1

2
66666666664

3
77777777775

ð10:17Þ

With projection method we have Fig. 10.5.

So QY cannot solve the neuron problem with w ¼
0:5
0:5
0

2
4

3
5; h ¼ 0:5

So we must adjoin a new column. For w ¼
w1

w2

w3

2
4

3
5 ¼

1
1
1

2
4

3
5 we have

X1

X2

X3

Y
-1

1

1

1

0.375

3/8

3/8

3/8

0.563

Fig. 10.4 Neural network with weights and bias for the function 01101001 with projection
method

Fig. 10.5 Projection method for the Boolean function 00111010 the QY cannot obtain the wanted
function Y
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D ¼ Aw� Y ¼

0
1
0
1
1
1
2
2

2
66666666664

3
77777777775

Where D is the difference between Aw and Y. When we adjoin the difference to
the input values A, we have that for

A ¼

0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 2
1 1 1 2

2
66666666664

3
77777777775

; Y ¼

0
0
1
1
0
1
0
1

2
66666666664

3
77777777775

We have w ¼ ðATAÞ�1ATY ¼
1
1
1
�1

2
664

3
775 and QY ¼ AðATAÞ�1ATY ¼

0
0
1
1
0
1
0
1

2
66666666664

3
77777777775

So we solve the neuron problem. Now because the projection operator is a linear
weighted composition of the columns of A, when we split A in two parts the linear
combination cannot change and we can solve the neuron in the same way. So for D
we have the two columns.

D ¼

0
1
0
1
1
1
2
2

2
66666666664

3
77777777775

!

0 0
1 0
0 0
1 0
1 0
1 0
1 1
1 1

2
66666666664

3
77777777775

For the property of the projection operator we have the new basis A.
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A ¼

0 0 0 0 0
1 0 0 1 0
0 1 0 0 0
1 1 0 1 0
0 0 1 1 0
1 0 1 1 0
0 1 1 1 1
1 1 1 1 1

2
66666666664

3
77777777775

; Y ¼

0
0
1
1
0
1
0
1

2
66666666664

3
77777777775

The weights and the projection do not change. So we have again the same result.

We have w ¼ ðATAÞ�1ATY ¼

1
1
1
�1
�1

2
66664

3
77775; h ¼ 0:5 and

QY ¼ AðATAÞ�1ATY ¼

0
0
1
1
0
1
0
1

2
66666666664

3
77777777775

Now for the two new columns we have

A ¼

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

2
66666666664

3
77777777775

; Y ¼

0
1
0
1
1
1
1
1

2
66666666664

3
77777777775

With projection method we have Fig. 10.6.

So QY cannot solve the neuron problem with w ¼
0:5
0:5
0:5

2
4

3
5; h ¼ 0:25.

For the second ne column we have
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A ¼

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

2
66666666664

3
77777777775

; Y ¼

0
0
0
0
0
0
1
1

2
66666666664

3
77777777775

With projection method we have Fig. 10.7.

So QY cannot solve the neuron problem with w ¼ 1
8

�1
3
3

2
4

3
5; h ¼ 0:5.

So we have the network for the Boolean function 00110101 (Fig. 10.8).
So we have the maximum of the stability QY = Y. Now when we reduce the

number of columns we have

Fig. 10.6 Projection method for the first new column

Fig. 10.7 Projection method for the second new column
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A ¼

0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

2
66666666664

3
77777777775

With the projection method we have Fig. 10.9.

With w ¼ 1
5

2
4
6
�4

2
664

3
775; h ¼ 0:5.

So we have only one neuron but with less stability and less neurons. The neural
network is (Fig. 10.10).

X

X

X

Y

-1

1

1

1

0.50.5

0.5

0.5

0.25

0.5

-1/8

3/8
3/8 -1

Fig. 10.8 Neural network for the Boolean function 00110101

Fig. 10.9 Solution of the function 00110101 with the projection method with only one new
column. QY is different from Y but with the bias we can have that QY = Y and we solve the
neural network problem
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10.4 Evolvability and One Step Method
in Neural Network

In the classical learning process in neural network we begin with a random values
of the parameters and with an iteration program we compute the neural parameters
to learn the wanted Boolean function. With the learning program the neural network
evolve in time to the wanted goal. Different algorithms have different degrees of
evolvability or number of steps to calculate the parameters to satisfy specific
Boolean function. We know that with a given input in the neuron we have Boolean
functions where the number of steps have no limit and the evolvability is zero.
Other functions can be solved by parameters in only one step so the evolvability is
one. When the evolvability is zero back propagation in an empirical way adjoins
new hidden variables and layers to solve the Boolean function. Because in back-
propagation we use the descendent gradient to control the evolution of the system
when the gradient is zero we have a singularity in the method for which we are
trapped in a local minimum. In this case the system converges to a Boolean that
does not satisfy to the specific requirements. In this chapter we suggest a one step
method without the evolution process. The neuron has N inputs whose values are
one and zero. The sets of the inputs whose value is one are the subsets of the all
possible inputs to the neurons. The empty set is the input where all the inputs are
equal to zero. The subsets of the inputs with only one element equal to one and all
the others equal to zero are the basic or elements of the input values. All the other
subsets are the union of the basic subsets. Because the number of the subsets for a
set with N elements are 2N this is the number of all possible types of inputs where
any input is a vector of N elements whose value is one or zero. Now we can
transform any Boolean input vector in one integer number and for the number order
0, 1, 2, …, 2N − 1. we can create a matrix A of ordered inputs. At any individual
input we associate a column vector whose dimension is 2N and at any set of inputs
at the same time we associate a row vector with dimension N. The matrix M is a set
non orthogonal column vectors that we denote as the column space. Now given the
vector space of the columns the linear combinations of the column vectors generate

X1

X2

X3

Y

-1

1

1

1

0.5

0.5

-1/8

3/8
3/8 -1

Fig. 10.10 Neural network with only new hidden neuron to solve the Boolean function 00110101
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all the space. Given a specific Boolean vectors V we search the best weights of the
linear combination of the column vectors and by threshold process give back the
specific function V. If we find the weights we find the relation between the inputs to
the specific Boolean function in the neuron. The algorithm of the projection makes
it possible give the result. We can prove that if the projection method can find by
vector calculus the solution of the neuron problem, any previous methods that use
recursion methods can find the same result. The difference is that the projection
method is one step method and all the others are many steps methods. When the
projection method cannot solve the problem that the evolvability assumes the value
zero, we cannot solve the problem in any case and with any method (percetron
problem). As in the classical back propagation we must adjoin hidden layer to solve
the problem, to solve this problem we transform the set of column vector into
integer numbers P obtained by the superposition of the column vectors with the
weights all equal to one. After we subtract from the vector P the vector V, the new
vector D is adjoined to the previous input to obtain N + 1 column vectors. The new
column space includes the vector V as a linear combination of the N + 1 vectors.
Now we split the vector D in a set of vectors with value one and zero. So now the
column space is N + h that solves again the neuron problem. When we delete part
of the new columns we eliminate layers for which we can again solve the neuron
problem with threshold value but with less and less of stability. In conclusion now
with the projection method we compute the layers in back propagation in a way to
transform a non-evolvable system to evolvable with different degree of stability. At
the same time with algebraic one step method we can compute the wanted neural
parameters. We begin with a very simple neural system to show the one step
method.

Aw ¼ Y
ATAw ¼ ATY ;

w ¼ ðATAÞ�1ATY
Aw ¼ AðATAÞ�1ATY ¼ QY

We can show that QY is the projection of Y into the column space of the
rectangular matrix A. Because the neuron-like neuron can be given biases by
introducing an extra input to each unit which always has a value of 1, the weight h
on this extra input is called the bias and is equivalent to a threshold of the opposite
sign. To compute the threshold we use the expression (10.18).

h ¼ min½ðQYÞY � þmax½ðQYÞð1� YÞ�
2

yj ¼ f ½R
i
wiXi;j � h�

ð10:18Þ

Given the matrix A and the Y as the specific function we take for the weights
w as all equal to one so we have the vector D
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D ¼ Aw� Y

That is the new internal input or layer to adjoin at the matrix A of all the possible
inputs. Table 10.1 shows input and output vectors.

When A is the matrix of the input with four columns and 16 rows and Y is the
assigned output Y, we compute the weights w ¼ 0:65; 0:15; 0; 15; 0:15½ � and the
threshold value is h ¼ 0:625. The output values can be compared with the com-
puted values so we have the results (Fig. 10.11).

Table 10.1 Neuron input and output vectors

Neuron
input 1

Neuron
input 2

Neuron
input 3

Neuron
input 4

Neuron
output

State 0 0 0 0 0 0

State 1 1 0 0 0 1

State 2 0 1 0 0 0

State 3 1 1 0 0 1

State 4 0 0 1 0 0

State 5 1 0 1 0 1

State 6 0 1 1 0 0

State 7 1 1 1 0 1

State 8 0 0 0 1 0

State 9 1 0 0 1 1

State 10 0 1 0 1 0

State 11 1 1 0 1 1

State 12 0 0 1 1 1

State 13 1 0 1 1 0

State 14 0 1 1 1 1

State 15 1 1 1 1 1

Fig. 10.11 Function Y and projection QY. The projection operator cannot generate the same
function Y
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We can see that with only Eqs. (10.1), (10.2) and (10.3) we can find the assigned
function in the Table 10.1. So we adjoin new inputs to the neuron to solve the
problem. We adjoin a column to the previous table so we have Table 10.2.

For the previous inputs we have Aw = Y where A is the matrix of the five inputs
and w ¼ 1 1 1 1 �1½ �. Now we can split the input D in three inputs with the
one zero Boolean values. So we have Table 10.3.

The input 5 can be obtained by the inputs 1, 2, 3, 4 with the weights w ¼
0:2 0:45 0:45 0:45½ �; h ¼ 0:325 the graph is (Fig. 10.12).
The input 6 cannot solve with the inputs 1, 2, 3, 4 but with the expression (10.6)

we see that D = input 7 so we have the inputs 1, 2, 3, 4, 7 for which we have the
weights w ¼ �0:063 0:542 0:188 0:188 0:417½ �; h ¼ 0:604 and the result
is (Fig. 10.13).

For the output 7 can solve with the inputs 1, 2, 3, 4 with the weights w ¼
0:15 �0:1 0:15 0:15½ �; h ¼ 0:325 the result is (Fig. 10.14).
For the previous inputs we have Aw = Y where A is the matrix of the five inputs

and w ¼ 1 1 1 1 �1 �1 �1½ �; h ¼ 0:5 (Fig. 10.15).

Table 10.2 Neuron input and output and layer D vectors

Neuron
input 1

Neuron
input 2

Neuron
input 3

Neuron
input 4

Neuron
input D

Neuron
output

State 0 0 0 0 0 0 0

State 1 1 0 0 0 0 1

State 2 0 1 0 0 1 0

State 3 1 1 0 0 1 1

State 4 0 0 1 0 1 0

State 5 1 0 1 0 1 1

State 6 0 1 1 0 2 0

State 7 1 1 1 0 2 1

State 8 0 0 0 1 1 0

State 9 1 0 0 1 1 1

State 10 0 1 0 1 2 0

State 11 1 1 0 1 2 1

State 12 0 0 1 1 1 1

State 13 1 0 1 1 3 0

State 14 0 1 1 1 2 1

State 15 1 1 1 1 3 1
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When we eliminate the column 5 and 6 we have the inputs 1, 2, 3, 4, 7 so we
have the results w ¼ 0:781 0:063 0:281 0:281 �0:875½ �; h ¼ 0:5 and the
result is (Fig. 10.16).

The neurons networks are (Figs. 10.17, 10.18 and 10.19).

Table 10.3 Neuron input and output and D expansion vectors

Neuron
input 1

Neuron
input 2

Neuron
input 3

Neuron
input 4

Neuron
input 5

Neuron
input 6

Neuron
input 7

Neuron
output

State 0 0 0 0 0 0 0 0 0

State 1 1 0 0 0 0 0 0 1

State 2 0 1 0 0 1 0 0 0

State 3 1 1 0 0 1 0 0 1

State 4 0 0 1 0 1 0 0 0

State 5 1 0 1 0 1 0 0 1

State 6 0 1 1 0 1 1 0 0

State 7 1 1 1 0 1 1 0 1

State 8 0 0 0 1 1 0 0 0

State 9 1 0 0 1 1 0 0 1

State 10 0 1 0 1 1 1 0 0

State 11 1 1 0 1 1 1 0 1

State 12 0 0 1 1 1 0 0 1

State 13 1 0 1 1 1 1 1 0

State 14 0 1 1 1 1 1 0 1

State 15 1 1 1 1 1 1 1 1

Fig. 10.12 Comparison from the 5 column and the same computed by 1, 2, 3, 4 inputs
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Fig. 10.13 Comparison from the 6 column and the same computed by 1, 2, 3, 4, 7 inputs

Fig. 10.14 Comparison from the 7 column and the same computed by 1, 2, 3, 4 inputs

Fig. 10.15 Output by 1, 2, 3, 4, 6, 7 inputs

Fig. 10.16 Output by 1, 2, 3, 4, 7 inputs
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7
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Fig. 10.17 Neural network
with the inputs 1, 2, 3, 4,
5, 6, 7

1

2

3

4

6

7

out

Fig. 10.18 Neural network
with the inputs 1, 2, 3, 4, 6, 7

1

2

3

4

7

out

Fig. 10.19 Neural network
with the inputs 1, 2, 3, 4, 7
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10.5 Associative Memory by One Step Method [5]

At any given point the state of the neural network is given by the activity pattern
produced by input and output vectors. Neurons update their activity values based on
the inputs they receive (over the synapses). Figure 10.20 shows the neural network
with three input vectors and one output vector on the right.

The linear associator is one of the simplest and first studied associative memory
model. Figure 10.21 is the network architecture of the linear associator.

In Fig. 10.21, all the m input units are connected to all the n output units via the
connection weight matrix W = [wij]m�n where wij denotes the synaptic strength of
the unidirectional connection from the ith input unit to the jth output unit.

Given the representation xk
!¼ ½xk1; xk2; . . .xkm�T , yk!¼ ½yk1; yk2; . . .ykn�T , for the

jth component ykj j ¼ 1; 2; . . .n, we have (10.19).

ykj ¼ ½wj1ðkÞ;wj2ðkÞ; . . .;wjmðkÞ�

xk1
xk2
. . .

xkm

2
6664

3
7775 ð10:19Þ

(10.25) can be written in the form of (10.20).

ykj ¼
Xm
i¼1

wjiðkÞxki ð10:20Þ

Fig. 10.20 The neural
network with neuron-like
and synapse-like
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Or (10.21)

yk1
yk2
. . .

ykn

2
6664

3
7775 ¼

w11ðkÞ w12ðkÞ . . . w1mðkÞ
w21ðkÞ w22ðkÞ . . . w2mðkÞ
. . . . . . . . . . . .

wn1ðkÞ wn2ðkÞ . . . wnmðkÞ

2
664

3
775

xk1
xk2
. . .

xkm

2
6664

3
7775 ð10:21Þ

It is the connection weight matrix W that stores the q different associated pattern
pairs {(xk, yk) | k = 1, 2, …, q}. For every associative pattern k, xk!! yk

!, We have
(10.22).

yk
!¼ wðkÞ��!

xk
! ð10:22Þ

Building an associative memory is nothing but constructing the connection
weight matrix W that when an input pattern is presented, the stored pattern asso-
ciated with the input pattern is retrieved. So we call the set of components

W correlation memory matrix M
!
, which can be represented as (10.23).

M
!¼

Xq
k¼1

wðkÞ��! ð10:23Þ

So we have Y
! ¼ M

!
X
!
:

The process of constructing the connection weight matrix is called encoding.

During encoding the weight values of the correlation matrix M
!

for a particular
associated pattern pair (xk, yk) are computed as (10.24).

W ¼
X

yk
!xTk
! ð10:24Þ

Or it can be also written like (10.25).

Fig. 10.21 The network of
the linear associator
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M
!¼ ½y1!; y2

!; . . .; yq
!�

xT1
!

xT2
!

. . .

xTq
!

2
6666664

3
7777775
¼ Y

!
XT
�! ð10:25Þ

So Y
! ¼ M

!
X
! ¼ Y

!
XT
�!

X
!

And XT
�!

X
!

= Identity.

For example, if X ¼
x11 x12 x13
x21 x22 x23
. . . . . . . . .
xn1 xn2 xn3

2
664

3
775, and u1 ¼

x11
x21
. . .

xn1

2
6664

3
7775;

u2 ¼

x12
x22
. . .

xn2

2
6664

3
7775;u3 ¼

x13
x23
. . .

xn3

2
6664

3
7775, X is represented X ¼ u1 u2 u3½ �. Since

XT
�!

X
!

= Identity,

u1
u2
u3

2
4

3
5 u1 u2 u3½ � ¼ Identity

So we have uiui ¼ 1 and uiuj ¼ 0 i 6¼ j, which means if the input patterns are
mutually orthogonal, perfect retrieval can happen.

The associative memory is a propagator that propagates the information form
input X to output Y with the rule

Y ¼ WX:

Now given the sample Yk ¼ WXk, if Yk ¼ A;Xk ¼ B, we have A ¼ WB. Since A
can be written in form (10.26) by one step matrix method

A ¼ AðBTBÞ�1BTB ð10:26Þ

We have (10.27)

W ¼ AðBTBÞ�1BT ð10:27Þ

When the input samples B are orthogonal we have (10.28).
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W ¼ ABT ð10:28Þ

This is the classical associative expression.

Example 10.1

A ¼
y11 y12
y21 y22
y31 y32

2
4

3
5;B ¼

x11 x12
x21 x22
x31 x32

2
4

3
5

So we have (10.29) one step matrix method

W ¼ AðBTBÞ�1BT ¼
y11 y12
y21 y22
y31 y32

2
4

3
5 x11 x12

x21 x22
x31 x32

2
4

3
5
T x11 x12

x21 x22
x31 x32

2
4

3
5

0
@

1
A

�1
x11 x12
x21 x22
x31 x32

2
4

3
5
T

¼ wi;j

ð10:29Þ

The samples in input B define the invariants or rules to be satisfied in the
transformation and the samples in output give us the type of transformation that we

want to generate. In fact given the inputs B ¼
x11 x12
x21 x22
x31 x32

2
4

3
5 ¼

1 1
2 1
3 1

2
4

3
5, we have

the input invariance (10.30).

ðx32 � x22Þ � ðx22 � x12Þ ¼ x32 � 2x22 þ x12 ¼ 0

ðx31 � x21Þ � ðx21 � x11Þ ¼ x31 � 2x21 þ x11 ¼ 0
ð10:30Þ

That means the components of the input vectors are in the straight line. Since the
samples are points in the straight line, the output vectors are points in the straight
line.

Now when the output samples are transformations of the inputs as A ¼ XB, We
have (10.31).

W ¼ XBðBTBÞ�1BT ¼ XBðBTBÞ�1BT ð10:31Þ

The parameters W of the associative memory can be written in (10.32).

W ¼ XBðBTBÞ�1BT ¼ XQ ð10:32Þ

Where Q is the projection operator of the vector p into the input space sample B.
In fact we have
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Q ¼ BðBTBÞ�1BT

Q2 ¼ BðBTBÞ�1BTBðBTBÞ�1BT ¼ Q
ð10:33Þ

For A = B we have (10.34).

Wy ¼ BðBTBÞ�1BTy ¼ BðBTBÞ�1BTy ð10:34Þ

For y ¼
1
1
4

2
4

3
5, We give the association of external vector and its projection as

Fig. 10.22. Blue line represents external vector (Xk), and red line is the vector (Yk)
with the straight line property generated by projection operator.

Where the Xk and Yk are associated. They are not equal because the external
vector is not be in agreement with the rules in B that are straight lines.

For A = 2B, we have Fig. 10.23. We also have a red straight line but with the
expansion of the coordinate space (X ¼ 2).

Example 10.2 If X ¼ RðaÞ ¼
cosðaÞ sinðaÞ 0
� sinðaÞ cosðaÞ 0

0 0 1

2
4

3
5 is the rotation operator and

B ¼
x11 x12
x21 x22
x31 x32

2
4

3
5 ¼

1 1
2 1
3 1

2
4

3
5

We have (10.35)

0 0.5 1 1.5 2
0

2

4

6

88

0.25

Yk

Xk

2.10 k

Fig. 10.22 The association
of external vector and its
projection
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W¼AðBTBÞ�1BT¼XQ

¼
cosðaÞ sinðaÞ 0
�sinðaÞ cosðaÞ 0

0 0 1

2
64

3
75

x11 x12
x21 x22
x31 x32

2
64

3
75

x11 x12
x21 x22
x31 x32

2
64

3
75
T x11 x12

x21 x22
x31 x32

2
64

3
75

0
B@

1
CA

�1
x11 x12
x21 x22
x31 x32

2
64

3
75
T

¼
cosðaÞ sinðaÞ 0
�sinðaÞ cosðaÞ 0

0 0 1

2
64

3
75

q11 q12 q13
q21 q22 q23
q31 q32 q33

2
64

3
75

¼
q11cosðaÞþq21sinðaÞ q12cosðaÞþq22sinðaÞ q13cosðaÞþq23sinðaÞ
�sinðaÞq11þcosðaÞq21 �sinðaÞq12þcosðaÞq22 �sinðaÞq13þcosðaÞq23

q31 q32 q33

2
64

3
75

ð10:35Þ

In the associative memory we compute the weights as an operator (memory) that
include invariance. So any association generate in output elements of the same
universe with the same rules or invariance. In digital computer we have passive
memory in brain or morphogenetic computing we have data but also rules. Any
input to the brain is changes in a way to have new data associate to the input with
the internal rule at the memory.

10.6 Hopfield Neural Network and Morphogenetic
Computing as One Step Method [7]

The Hopfield Network (1982) can be represented by Fig. 10.24.
Where we can see that Hopfield neural network is a self or bidirectional (loop) of

neural network. As described above, in the associative memory we have

0 0.5 1 1.5 2
0

2

4

6

88

1

Yk

Xk

2.10 k

Fig. 10.23 The projection
with the expansion of the
coordinate (colour figure
online)
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W ¼ YXT

In Hopfield neural network X = Y so we have

W ¼ XXT

Because

X ¼ CðxkÞ ¼ field vector

Hopfield Network Basis

CsðxkÞ ¼ set of field vectors

fields for n neurons (positions xk) and correlations as projection operators for
orthogonal set of fields is (10.36).

wi;j ¼

w1;1 w1;2 . . . w1;n

w2;1 w2;2 . . . w2;n

. . . . . . . . . . . .

wn;1 wn;2 . . . wn;n

2
6664

3
7775

¼

C1ðx1Þ C2ðx1Þ . . . Cpðx1Þ
C1ðx2Þ C2ðx2Þ . . . Cpðx2Þ
C1ðx3Þ C2ðx3Þ . . . Cpðx3Þ
. . . . . . . . . . . .

C1ðxnÞ C2ðxnÞ . . . CpðxnÞ

2
6666664

3
7777775

C1ðx1Þ C2ðx1Þ . . . Cpðx1Þ
C1ðx2Þ C2ðx2Þ . . . Cpðx2Þ
C1ðx3Þ C2ðx3Þ . . . Cpðx3Þ
. . . . . . . . . . . .

C1ðxnÞ C2ðxnÞ . . . CpðxnÞ

2
6666664

3
7777775

T

¼ R
s
CsðxiÞCsðxjÞ

ð10:36Þ

Fig. 10.24 Hopfield network
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We remember that wij is the connection element or self associative memory.

Aw ¼

Fðx1Þ
Fðx2Þ
Fðx3Þ
. . .

FðxnÞ

2
6666664

3
7777775
¼

C1ðx1Þ C2ðx1Þ . . . Cpðx1Þ
C1ðx2Þ C2ðx2Þ . . . Cpðx2Þ
C1ðx3Þ C2ðx3Þ . . . Cpðx3Þ
. . . . . . . . . . . .

C1ðxnÞ C2ðxnÞ . . . CpðxnÞ

2
6666664

3
7777775

w1

w2

. . .

wp

2
6664

3
7775

¼ w1

C1ðx1Þ
C1ðx2Þ
C1ðx3Þ
. . .

C1ðxnÞ

2
6666664

3
7777775
þw2

C2ðx1Þ
C2ðx2Þ
C2ðx3Þ
. . .

C2ðxnÞ

2
6666664

3
7777775
þ � � � þwp

Cnðx1Þ
Cnðx2Þ
Cnðx3Þ
. . .

CnðxnÞ

2
6666664

3
7777775

ð10:37Þ

For the extension of the associative memory we can enlarge the Hopfield model
with a more complex projection operator where X are not orthonormal set of vectors.

w ¼ ðATAÞ�1AF

F� ¼ AðATAÞ�1AF ¼ WF ¼ QF
ð10:38Þ

In conclusion, the novel Hopfield–Like network has the property to be non
Euclidean, memory matrix. Self associative memory is given by general projection
operator where the elementary basis vectors X are dependent on each other and
there is the correlation among the elementary basis fields.

10.7 Kohonen Self Organizing Maps by Morphogenetic
Computing [1–3]

Given the set of points with three dimensions vectors of weights wij in Fig. 10.25.
The basic principle of the Self-Organizing Map is to adjust these weight vectors

until the map represents a picture of the input data set. The goal of learning in the
Self-Organizing Map is to cause different parts of the network to respond similarly
to certain input patterns. Figure 10.26 shows the principle of input and output in
Self-Organizing Map.

In morphogenetic computing and one step method the similarity between input
vectors X and weights vectors W can be obtained by the projection operator Q.

QW ¼ XðXTXÞ�1XTW ð10:39Þ

For the orthogonality of the projection operator the QW vectors of weights is at
the minimum of the projection space of the inputs.
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Example 10.3 Given the input vectors

x1 ¼
1
1
0
0

2
664

3
775; x2 ¼

0
0
0
1

2
664

3
775;X ¼

1 0
1 0
0 0
0 1

2
664

3
775

w1 ¼
0:7
0:2
0:5
0:9

2
664

3
775;w2 ¼

0:1
0:7
0:3
0:6

2
664

3
775;w3 ¼

0:32
0:4
0:3
0:63

2
664

3
775;W ¼

0:7 0:1 0:32
0:2 0:7 0:4
0:5 0:3 0:3
0:9 0:6 0:63

2
664

3
775

So we have

QW ¼

1 0

1 0

0 0

0 1

2
6664

3
7775

1 0

1 0

0 0

0 1

2
6664

3
7775

T 1 0

1 0

0 0

0 1

2
6664

3
7775

0
BBBB@

1
CCCCA

�1
1 0

1 0

0 0

0 1

2
6664

3
7775

T 0:7 0:1 0:32

0:2 0:7 0:4

0:5 0:3 0:3

0:9 0:6 0:63

2
6664

3
7775

¼

0:45 0:4 0:36

0:49 0:4 0:36

0 0 0

0:9 0:6 0:63

2
6664

3
7775

Fig. 10.25 Set of points in Kohonen self organise map with three dimensions weigths
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The weights

wij ¼
0:45 0:4 0:36
0:49 0:4 0:36
0 0 0
0:9 0:6 0:63

2
664

3
775

are the most similar weights to the input data given the initial random values.

Example 10.4 The following is the canonical form by projection operator as a
particular case of Kohonen network modeled by morphogenetic computing.

Given the input vectors

X ¼
1 1
1 �1
�1 1
�1 �1

2
664

3
775 and the weights W ¼

1 1
1 �1
�1 1
�1 �1

2
664

3
775þ

0:5 1
0:5 1
0:5 1
0:5 1

2
664

3
775 ¼ X þD

Fig. 10.26 The principle of input and output in Self-Organizing Map
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We have the new weights

QW ¼

1 1

�1 1

1 �1

�1 �1

2
6664

3
7775

1 1

�1 1

1 �1

�1 �1

2
6664

3
7775

T 1 1

�1 1

1 �1

�1 �1

2
6664

3
7775

0
BBBB@

1
CCCCA

�1
1 1

�1 1

1 �1

�1 �1

2
6664

3
7775

T

1 1

1 �1

�1 1

�1 �1

2
6664

3
7775þ

0:5 1

0:5 1

0:5 1

0:5 1

2
6664

3
7775

0
BBB@

1
CCCA ¼

1 1

�1 1

1 �1

�1 �1

2
6664

3
7775

The projection operator changes the weights in a way to eliminate the given
translation to be equal to input vectors.

In Fig. 10.27, the input vectors are the black points symmetric to the origin. The
diamond points are non-symmetric and the Kohonen neurons that assume the same
black point position after the projection operator. Now we rotate and translate W to
get Fig. 10.28. The non-symmetric point or neurons assume the same property
(symmetry) of the input vectors but are not equal (similar) to the input symmetric
vectors or points.

After the projection, QW has the same symmetry of the input vector. In con-
clusion, the projection operator is like the self organizing maps that preserves the
form or properties (symmetry) of the input vector. The similarity means the same
morphology in the morphogenetic computing.

2 1 0 1 2 3
2

0

2

3

2−

Xk 1,

Wk 1,

QWk 1,

32− Xk 0, Wk 0,, QWk 0,,

Fig. 10.27 The position
before rotation of W
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10.8 Morphogenetic Computing Learning with Noising
to Learn Patterns and Retrieve Patterns

In many cases we have to compute the weights that are orthogonal to the given
input data. In fact for neural associative memory the goal is to design a neural
network capable of memorizing a large set of patterns from a data set X (learning
phase), and recalling them later in presence of noise (recall phase). Each pattern
x ¼ x1; x2; . . .:; xnf g is a vector of length n or a field, our focus is to memorize the
patterns with strong local correlation among the entries. More specially, we divide
the entries of each pattern x into L overlapping subpatterns due to overlaps, a
pattern node can be a member of multiple subpatterns. We denote the ith subpattern

by xi ¼ xi1; x
i
2; . . .:; x

i
ni

n o
the Fig. 10.23 gives the example of the pattern and sub

pattern (Fig. 10.29).
The learning process is given by the weight matrix W for which we have the

orthogonal condition (10.40).

Wixi ¼ 0 ð10:40Þ

The weights wi;j is the dual space of the subpatterns system. Now with the
projection operator it is possible to compute these weights with only one step as
shown in (10.41).

W ¼ wi;j ¼ I � X½XTX��1XT ð10:41Þ

In fact we have (10.42)

2 1 0 1 2 3
2

0

2

3

2−

Xk 1,

Wk 1,

QWk 1,

32− Xk 0, Wk 0,, QWk 0,,

Fig. 10.28 The position after
rotation of W
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WX ¼ ðI � X½XTX��1XTÞX ¼ 0 ð10:42Þ

Example 10.5 Given the pattern x ¼
0
1
1
0

2
664

3
775. It includes two sub patterns

x1 ¼
0
1
0
0

2
664

3
775; x2 ¼

0
0
1
0

2
664

3
775.

Now the weights are

W ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775�

0 0
1 0
0 1
0 0

2
664

3
775

0 0
1 0
0 1
0 0

2
664

3
775

T 0 0
1 0
0 1
0 0

2
664

3
775

0
BB@

1
CCA

�1
0 0
1 0
0 1
0 0

2
664

3
775

T

¼
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2
664

3
775

To retrieve the sub pattern from the weights W, we compute the inverse process.

Fig. 10.29 Any box is sub
pattern of the wave
interference figure
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X ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775�

1 0
0 0
0 0
0 1

2
664

3
775

1 0
0 0
0 0
0 1

2
664

3
775

T 1 0
0 0
0 0
0 1

2
664

3
775

0
BB@

1
CCA

�1
1 0
0 0
0 0
0 1

2
664

3
775

T

¼
0 0
1 0
0 1
0 0

2
664

3
775

Now when we have a pattern with noise given by expression (10.43)

yi ¼ xi þ ei ð10:43Þ

We can detect the noise because we have (10.44)

Wy ¼ WxþWei ¼ Wei ð10:44Þ

So we can clean the sub-partner form its noise and retrieve the original pattern x.
The task of a neural associative memory is to retrieve a set of previously memorized
patterns from their noisy versions by using a network of neurons. We show that
with the projection operator we can easily solve the previous problems that are
similar to the Convolutional Neural Associative Memories.

10.9 Conclusion

In this chapter we show that supervised and unsupervised neural network can be
computed by a new model, projection method, that takes care of the invariance or
rules in the samples as parts of special universe. In traditional physical system rules
are modeled by symbolic differential equations that we solve to find the behavior of
elements in the physical universe. Now we know that these differential equations
are very abstract and difficult to find the wanted behavior, and the brain cannot use
differential equations or symbolic expressions as we know in traditional mathe-
matical sense. The brain uses samples that include the universal rules in the implicit
way. With samples we can build associative memory with traditional orthonormal
property or propagator that extends the traditional associative memory. Now the
brain takes sensor input information and associative internal structure that changes
the sensor information in a way to have internal data that satisfy the rules which are
previously learned by samples of input and output (associative memory or memory
with rules). So we think that for digital memory in the computer and associative
memory the former is a passive memory and the latter is an active memory that
changes the data in a way to include the rules of the external universe or envi-
ronment in an implicit way. With extension of the associative memory we include
Hopfield neural network, Kohonen self-organizing maps, pattern recognition and
supervised neuron. For supervised neuron we create a new algorithm by which it is
possible to avoid most of the problems of back propagation. The difference between
the brain and universal physics is that rules in the physical part are fixed and unable

168 10 Neural Morphogenetic Computing and One Step Method



to be changed, in the brain there are also rules as in the physical universe but we can
control the rules to obtain our aims by projection method that solve possible
contradiction in the implementation of the rules. Solutions is evident in the brain as
expansion with new neurons or by new type of neural network parameters. We see
that we can have different levels of solutions. The first solve completely all possible
contradictions with a maximum number of neurons, the second solve the contra-
diction but with a bias or threshold, the third solve again the contradiction by
threshold but the instability of the system increase. From the first to the last levels
we solve always the contradiction with a reduction of the neurons numbers but
when the number of the neurons decrease we obtain solutions of the same problem
but we increase the instability so the neural network became more and more sen-
sible to the noise.
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