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Abstract. Counting problems with easy decision are the only ones
among problems in complexity class #P that are likely to be (randomly)
approximable, under the assumption RP �= NP. TotP is a subclass of #P
that contains many of these problems. TotP and #P share some com-
plete problems under Cook reductions, the approximability of which does
not extend to all problems in these classes (if RP �= NP); the reason is
that such reductions do not preserve the function value. Therefore Cook
reductions do not seem useful in obtaining (in)approximability results
for counting problems in TotP and #P.

On the other hand, the existence of TotP-complete problems (apart
from the generic one) under stronger reductions that preserve the func-
tion value has remained an open question thus far. In this paper we
present the first such problems, the definitions of which are related to
satisfiability of Boolean circuits and formulas. We also discuss implica-
tions of our results to the complexity and approximability of counting
problems in general.

1 Introduction

Since Valiant introduced #P [25], the class of functions that count the num-
ber of accepting paths of a NPTM (Nondeterministic Polynomial Time Turing
Machine), many counting classes arose in the literature. In [20] the class #PE
was defined, as a subclass of #P that contains all functions of #P with easy
decision version, that is, for a function f ∈ #PE the problem “f(x) �= 0?” is
in P. #PE contains important problems such as Permanent [25], a special
case of which is equivalent to counting perfect matchings in bipartite graphs.
Another well known member of #PE is #DNF-Sat, i.e. the problem of count-
ing satisfying assignments to DNF boolean formulas; for more such problems see
[26]. Notably it was shown in [25,26] that Permanent, #DNF-Sat, as well as
several problems presented in [26] are #P-complete, showing that counting is
likely to be harder than decision (existence checking) for all these problems.

A subclass of #PE, namely TotP, was defined as the class of functions that
count the total number of computation paths of the computation tree of a binary
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NPTM minus one [16]. Equivalently, for f ∈ TotP, f(x) is the number of branch-
ings of the computation tree of a binary NPTM. TotP contains Permanent
and #DNF-Sat, as well as all self-reducible problems of #PE under a natural
notion of self-reducibility for counting problems. It is intriguing that problems
in TotP have varying approximability status. In particular, TotP contains well
approximable problems (e.g. #DNF-Sat), not approximable (within a polyno-
mial factor) problems unless NP = RP (e.g. #IS that is the number of indepen-
dent sets of all sizes), and also problems of yet unknown approximability status,
conjectured to be “intermediate” (e.g. #BIS that is the number of independent
sets of all sizes of bipartite graphs).

It is known that #PE contains TotP [16] and moreover that TotP is exactly
the Karp closure of self-reducible functions of #PE [21]. There is a great number
of self-reducible problems with easy decision which are therefore in TotP: count-
ing matchings, computing the determinant of a matrix, computing the partition
function of several models from statistical physics, like the Ising and the hard-
core model, counting colorings of a graph with a number of colors greater than
the maximum degree, counting bases of a matroid, computing the volume of
a convex body, counting independent sets, and many more. TotP-completeness
results can shed light to the complexity and approximability of all these problems
and help treat such questions in a uniform way.

Regarding completeness results, as mentioned above, there are several #P-
complete problems, which belong to TotP and therefore are TotP-complete under
Cook reductions. More precisely, TotP and #P are interreducible under Cook
reductions [16,17].

On the other hand, the situation is different when completeness under Karp
(parsimonious) reductions is considered. In particular, there is no #P-complete
problem in TotP, unless P = NP. For example, Permanent cannot be #P-
complete under Karp reductions unless P = NP. Furthermore it also seems
unlikely that Permanent is TotP-complete under Karp reductions. This is
because such reductions preserve approximability and Permanent admits a
FPRAS, while other problems in TotP, like #IS, are not likely to do so, as they
are AP-interreducible with #Sat [9]. In this perspective completeness results
in TotP and classes inside TotP may shed light on approximability of many
counting problems.

In this paper, we present a first TotP-complete problem under parsimo-
nious reductions, namely #Monotone-Circuit-Sat: given the encoding of a
monotone circuit with respect to a specific partial order (to be defined later),
compute the number of inputs for which the circuit accepts. Then we reduce this
to other problems, proving them to be also TotP-complete under parsimonious
reductions. Finally we discuss some implications of our results in the last section.

1.1 Related Work

In recent years there has been great interest in classifying the approximation
complexity of counting problems. This interest derives from the fact that very
few counting problems have been proved to be in FP. At the same time the
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counting problems in #P with NP-complete decision version cannot have a poly-
nomial time approximation, unless P = NP. Moreover in [9] it was proved that
these problems are complete for #P under approximation-preserving reductions.
Thus there is no FPRAS for any of them, unless NP = RP. Counting problems
that could have efficient approximation algorithms (FPRAS, FPTAS) are count-
ing problems with easy decision version. Such algorithms for counting problems
can be found in [8,12,14,15]. Especially, the steady progress in determining the
complexity of counting graph homomorphisms [10] contributed to the study of
approximation counting complexity. Also the connection of counting problems
with statistical physics have led to important results in this area [1–3,11].

Regarding subclasses of #P, counting classes like #L, SpanL [4], #PE [20],
TotP [16], #RΣ2 [23], #RHΠ1 [9] have been defined. A significant open question
concerns the relation between each of these classes and the problems that admit a
FPRAS. We are particularly interested in the class TotP, which is related to other
subclasses of #P in the following way: FP ⊆ SpanL ⊆ TotP ⊆ #PE ⊆ #P.

Furthermore, TotP is equal to IFLN
t , the class of interval size functions defined

on total p-orders with efficiently computable lexicographically nearest function
[7]. This was based on [13], in which Hemaspaandra et al. defined classes of
interval size functions and characterized #P in terms of such functions.

2 Preliminaries

The model of computation is the nondeterministic polynomial-time bounded
Turing machine (NPTM), i.e. there is some polynomial p such that for any
input x from an alphabet Σ∗, all computation paths have length at most p(|x|),
where |x| is the length of the input. In [25] Valiant introduced the class #P:

Definition 1. Let R be a polynomial-time decidable binary relation and p a
polynomial. Let f be the function such that given x ∈ Σ∗, f(x) =

∣
∣{y : |y| =

p(|x|) ∧ R(x, y)}∣∣. #P is the class of all these functions. Equivalently, #P =
{accM : M is a NPTM}, where accM (x) = #accepting paths of M on input x.

The decision version of a function f ∈ #P is the following problem: Given x,
is f(x) nonzero? Equivalently, is there at least one accepting path of M on input
x? For each function f the related language Lf = {x : f(x) > 0} can be defined.
If a function f corresponds to the counting version of a search problem (i.e. f
counts how many solutions are there for a given instance) then Lf corresponds
to the existence of a solution.

Definition 2. TotP = {totM : M is a NPTM}, where totM (x) = #(all compu-
tation paths of M on input x) − 1.

A second class of functions with similar properties was introduced in [20].
#PE is the class that contains all the functions in #P such that their decision
version is polynomial-time decidable.

Definition 3. #PE = {f : f ∈ #P and Lf is polynomial time computable}.
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Reductions between functions can be defined in a similar manner to the
Cook/Turing and Karp/many-one reductions between languages. The latter kind
of reduction is often called parsimonious, when referring to functions that count
the number of solutions to NP problems. We use the terms “Cook” and “Karp”,
as shortcuts for “poly-time Turing” and “poly-time many-one” respectively:

Definition 4. Polynomial-time reductions between functions:

– Cook (poly-time Turing) f ≤p
T g: f ∈ FPg.

– Karp (poly-time many-one) f ≤p
m g: ∃h ∈ FP, ∀x ∈ Σ∗ f(x) = g(h(x)).

The relations among #P, #PE and TotP were explored in [21]. The notion
of self-reducibility is crucial for this investigation.

Definition 5. A function f : Σ∗ → IN is called poly-time self-reducible if there
exist polynomials r and q, and polynomial time computable functions h : Σ∗ ×
IN → Σ∗, g : Σ∗ × IN → IN, and t : Σ∗ → IN such that for all x ∈ Σ∗:

(a) f(x) = t(x) +
∑r(|x|)

i=0 g(x, i)f(h(x, i)), that is, f can be processed recursively
by reducing x to h(x, i) (0 ≤ i ≤ r(|x|)), and

(b) the recursion terminates after at most polynomial depth (that is,
f
(

h(...h(h(x, i1), i2)..., iq(|x|))
)

can be computed in polynomial time).
(c) |h(...h(h(x, i1), i2)..., iq(|x|)| ∈ O

(

poly(|x|)).
Note that if |h(x, i)| < |x| for every x and i, 0 ≤ i ≤ r(|x|), then requirement (b)
holds trivially. Moreover, (c) requires that f must be computed only on inputs
of polynomial length in |x|, which also holds if h is of decreasing length.

Theorem 1 [21]. (a) FP ⊆ TotP ⊆ #PE ⊆ #P. The inclusions are proper
unless P = NP.
(b) TotP is the Karp closure of self-reducible #PE functions.

Although, TotP, #PE and #P are Cook-equivalent, they are not Karp equiv-
alent unless P = NP. This means that:

– Under Karp reductions, #P-complete, #PE-complete and TotP-complete
problems constitute disjoint classes, unless P = NP.

– Under Cook reductions, TotP-complete problems are contained in #PE-
complete problems which are contained in #P-complete problems.

In order to fully classify a problem, we need to prove that it is complete for a
class under Karp reductions. As it can be easily observed, the fact that a problem
is #P-complete under Cook reductions does not give enough information about
its complexity, since it could belong in TotP. Cook reductions blur structural
differences between classes.

In the rest of this section, we present definitions and observations useful for
the main proof of this paper.
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A tree is called (a) binary if every node has at most two children, (b) full
binary if every node has either zero or two children, (c) perfect binary if it is
binary, all interior nodes have two children and all leaves have the same depth.

Let M be a NPTM. We can modify M , without changing the total number
of its paths, so that it has at most two nondeterministic choices at each step.
Therefore, the computation of M on input x can be seen as a binary tree TM(x),
i.e. a branching is created in the computation tree whenever M has to select
between two choices. If there is only one choice for some state-symbol combina-
tion, we consider that the tree has no branching at this point. We conclude that
we can restrict ourselves to full binary computation trees. So, it is not hard to
see that totM (x) = #(all paths of M on input x) − 1 = #branchings of TM(x).

Furthermore, the nondeterministic choices of the computation of M can be
represented as a binary string y (a left branching corresponds to “0” and a right
branching to “1”). When we write M(x, y) we refer to the output of the Turing
machine M on input x and nondeterministic choices y. Specifically, M(x, y) = 1
if M accepts x with nondeterministic choices y, and M(x, y) = 0 otherwise.

In the following sections we make use of two mappings from natural numbers
to binary strings, as well as a special partial order on natural numbers.

Definition 6. We define the tree partial order, denoted by ≤tree, of IN as fol-
lows. It is reflexive and transitive and, if y = 2x+1 or y = 2x+2 then x ≤tree y.

Note that the graph of this partial order is an infinite perfect binary tree
denoted by T , the nodes of which are labeled with natural numbers, in such a
way that the left to right BFS traversal of this tree yields the natural order of
IN (assuming that the left child of x is 2x + 1 and the right one is 2x + 2). Its
root is labeled with 0, and x ≤tree y if and only if y is a descendant of x on this
tree. The structure of T is illustrated in Fig. 1.

Using the notion of the infinite tree T we can define mappings between nat-
ural numbers and strings:

Definition 7. 1. path : IN → {0, 1}∗. It maps n to the binary string that
describes the path that starts from the root of T and ends at the node with
label n. For example, path(3) = 00, path(9) = 010, path(0) = ε, where ε is
the empty string.

2. num : {0, 1}∗ → IN. It is defined as the inverse mapping of path.
3. bink : {0, 1, . . . , 2k − 1} → {0, 1}k. It maps n to its binary representation

padded with leading zeros, so as to have length k. For example, bin6(3) =
000011, bin4(9) = 1001, and bin3(9) is not defined.

In addition, bin−1
k is the inverse of bink. For simplicity, we slightly abuse

notation and use bin and bin−1, when the length of the binary representation is
clear from the context. The functions path, num, bink and bin−1

k are polynomial-
time computable.

Definition 8. If we restrict ≤tree on {0, 1, . . . , 2k−1} and apply bink, we obtain
a partial order of {0, 1}k, which, abusing notation, we also denote by ≤tree.

Let T k denote the complete binary tree representing ≤tree on {0, 1}k; an
illustration of T 3 is given in Fig. 2.
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Fig. 2. Tree T 3.

3 #Monotone-Circuit-Sat is TotP-complete Under Karp
Reductions

In this section we define a new counting problem and we prove that it is TotP-
complete. Let Cn denote a Boolean circuit (see [5]) with n input gates, and let
Cn(z) be the output of Cn on input z ∈ {0, 1}n.

Definition 9. We call a Boolean circuit Cn non-increasing with respect to ≤tree

if for every x, y ∈ {0, 1}n, x ≤tree y implies that Cn(x) ≥ Cn(y).

Definition 10. #Monotone-Circuit-Sat, denoted also by f#MC

Input: A Boolean circuit Cn, non-increasing with respect to ≤tree.
Output: f#MC(Cn) := |{y ∈ {0, 1}n : Cn(y) = 1}|, i.e. the number of satisfying
assignments for Cn.

3.1 #Monotone-Circuit-Sat is TotP-hard

We prove that the function f#MC is TotP-hard by reducing the computation of
any function h ∈ TotP to f#MC .

The key observation is the following. There is a NPTM M such that for any
input x, h(x) = totM (x); let TM(x) denote the corresponding computation tree.
Consider extending TM(x) to a perfect binary tree SM(x) with the same height,
so that all leaves of the original TM(x) tree and all their descendants are labeled
“halting”. Therefore h(x) = #(branching nodes of TM(x)) = #(non-“halting”
nodes of SM(x)).

We construct a circuit C non-increasing w.r.t. ≤tree, such that the number
of accepting inputs of C equals h(x). The idea is to describe a bijection between
inputs of C and paths from the root to nodes of SM(x). C accepts an input if
and only if the corresponding path ends at a non-“halting” node of SM(x), which
in turn corresponds to a branching node of TM(x).

Theorem 2. If h ∈ TotP then h ≤p
m f#MC .

Proof. Let h ∈ TotP, and M the corresponding binary NPTM. Recall that for
every input x, h(x) = totM (x) = #branchings of TM(x), where TM(x) is the
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computation tree of M(x). Let p be a polynomial bounding the running time of
M , thus the height of TM(x) is at most p(|x|). Given the description of M we
can construct a NPTM M ′ such that for every input x of M :

(i) TM ′(x) is a perfect binary tree of height p(|x|) + 1.
(ii) #(accepting paths of M ′(x)) = #(branchings of TM(x)).
(iii) For y1, y2 ∈ {0, 1}p(|x|)+1, if y1 ≤tree y2, then M ′(x, y1) ≥ M ′(x, y2).

In order to describe M ′ we make use of the functions path and bin defined in
Definition 7. The operation of M ′ on input x proceeds as follows:

1. Guess a binary string y of length p(|x|) + 1. Let ny = bin−1(y).
2. Compute z = path(ny).
3. Simulate M on input x and nondeterministic choices z.

– If the simulation reaches a halting state of M (possibly using only a prefix
of z), then output 0.

– If the simulation uses all bits of z without reaching a halting state of M ,
then output 1.

We now show that properties (i), (ii), (iii) hold:

(i) The computation tree of M ′ is a perfect binary tree of height p(|x|) +
1, since the only nondeterministic choices are made in Step 1 (Step 3 is
deterministic).

(ii) The number of accepting paths of M ′ equals the number of branchings of
M , since M ′ outputs 1 if and only if z corresponds to a computation path
of M ending at a branching; recall that bin and path are bijective.

(iii) To prove the third property, it suffices to show that for all y1, y2 such that
y1 ≤tree y2 we have M ′(x, y1) = 0 ⇒ M ′(x, y2) = 0. If y1 ≤tree y2, then
z1 = path(bin−1(y1)) is a prefix of z2 = path(bin−1(y2)). This means that
whenever M ′ simulates M with nondeterministic choices determined by
z2, it first passes through the same states as when it simulates M with
nondeterministic choices determined by z1. So, M ′(x, y1) = 0 means that
the simulation of M reaches a halting state using (some of) the bits of
z1. Thus the remaining bits of z2 are ignored and 0 is returned, therefore
M ′(x, y2) = 0.

In order to complete the proof, we have to construct for each input x of h a
circuit Cx

n with n = p(|x|) + 1 input gates, that simulates the computation of
M ′ on input x, i.e. for all y ∈ {0, 1}n, Cx

n(y) = M ′(x, y). It is well known
that such a construction can be done in polynomial time (see e.g. [22, pp. 171–
172]). Cx

n is non-increasing w.r.t. ≤tree since M ′ has this property (due to (iii)).
Thus, we have that |{y ∈ {0, 1}n : Cx

n(y) = 1}| = #accM ′(x) = totM (x), i.e.
f#MC(Cx

n) = h(x) so the reduction is parsimonious. �
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3.2 #Monotone-Circuit-Sat Is in TotP

By Theorem 1(b), it suffices to prove that f#MC is a self-reducible #PE function.

Proposition 1. f#MC ∈ #PE.

Proof sketch. It is not difficult to see that f#MC ∈ #P. Moreover, the decision
version is easy since it suffices to simulate Cn on input 0n. �
Proposition 2. f#MC is self-reducible.

Proof sketch. For proving that f#MC is self-reducible, the intuition is that the
number of satisfying assignments of a circuit Cn non-increasing w.r.t. ≤tree,
equals 0 iff 0n is not a satisfying assignment. Otherwise it is equal to (the number
of satisfying assignments that lie on the left subtree of Tn) + (the number of
satisfying assignments that lie on the right subtree of Tn) +1. The proof consists
of showing that we can efficiently construct two circuits non-increasing w.r.t.
≤tree: C0

n−1, with values compatible with the values of Cn on the left subtree of
Tn, and C1

n−1 the corresponding for the right. �
Corollary 1. f#MC ∈ TotP.

Remark. Note that f#MC is a “promise” problem, since it is not known how to
check if a circuit is non-increasing w.r.t. ≤tree. This is not an essential issue, as
we can extend the function f#MC on non-valid inputs to be equal to totM (x),
where M is the NPTM implied by the membership of f#MC in TotP (on valid
inputs).

4 More TotP-complete Problems

In this section we will show several problems to be TotP-complete. The proofs,
omitted due to space limitations, will appear in the full version of the paper.

Definition 11. Let U be a partially ordered set. A subset V ⊆ U is called a
lower-set (downwards closed) if for all y, x ∈ U , (y ∈ V and x < y) ⇒ x ∈ V .

Definition 12. Let a circuit Cn with n input gates. We will call a subset V of
{0, 1}n accepting for Cn if for all x ∈ V , Cn(x) = 1.

Definition 13. We define the problem Max-Lower-Set-Size.
Input: A circuit Cn with n input gates.
Output: The size of the maximum lower set w.r.t. ≤tree, that is accepting for Cn.

Theorem 3. The problem Max-Lower-Set-Size is TotP-complete.

In the following we assume that each n ∈ IN is encoded by path(n), and let
T be the infinite perfect binary tree representing ≤tree on IN (Fig. 1).

The next problem is intuitively the problem of counting the number of nodes
of a subtree S of T , where S is given in a succinct way, i.e. not explicitly, but
rather by a predicate that tells us whether a node v of T belongs to S.
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Definition 14. Size-of-Subtree, denoted by fss

Input: (MA, u ∈ IN, 1k, 1t) where MA is a deterministic TM computing a predi-
cate A : IN → {0, 1} and t ∈ IN.
Output: The size of the maximal subtree of S with root u, where S = {v ∈ T |
distance(u, v) ≤ k,A(v) = 1 and A(v) is computed by MA in at most t steps}.
Theorem 4. fss is TotP-complete.

We next show another TotP-complete problem which is a special case of
#Sat. Namely, the valid input formulas have the following special properties
based on a clustering of the space of solutions {0, 1}n, where each cluster contains
all assignments with their first k variables fixed to some values: (a) there is at
most one satisfying assignment in each cluster, and it is easy to decide whether
such an assignment exists and, if so, easy to find it, and (b) if we label each cluster
according to their fixed values, then there is a certain kind of monotonicity among
the clusters, described below.

Definition 15. 1. For a 3-CNF formula φ and k ∈ IN we define fk
φ : {0, 1}k →

IN such that fk
φ (a) = #(satisfying assignments of φ with prefix a) for a ∈

{0, 1}k.
2. A 3-CNF formula φ with n variables is called (k, n)-clustered-monotone for

some k ≤ n, if for every a, b ∈ {0, 1}k such that a ≤tree b, fk
φ (a) = 0 implies

fk
φ (b) = 0.

Definition 16. 1. Y = {(1k, 1n, φ,M, 1t) | k, n, t ∈ IN, φ ∈ Φ, deterministic
TM M : {0, 1}k × Φ → IN},where Φ is the set of 3-CNF formulas on n
variables.

2. U ⊂ Y is the set of tuples (1k, 1n, φ,M, 1t) where φ is (k, n)-clustered
monotone, and M is a deterministic TM s.t. ∀a ∈ {0, 1}k, M(a, φ) =
#(satisfying assignments of φ with prefix a), and t is an upper bound for
the running time of M on every a, and on the given φ.

Note that in the above definition, the operation of the TM M is differentiated
w.r.t. whether the instance is on U or Y \ U . In U we have the promise that φ
is clustered monotone and that M counts the number of satisfying assignments
in each clusters. In Y , both φ and M can be arbitrary.

Definition 17. #Clustered-Monotone-Sat, denoted by f#CMS

Input: y = (1k, 1n, φ,M, 1t) ∈ Y

Output: f#CMS(y) =
{

#satisfying assignments of φ , if y ∈ U
∑

a∈S M(a, φ) , if y ∈ Y \ U

where S ⊆ T k is the largest subtree of T k containing 0k s.t. ∀a ∈ S [M(a, φ) > 0
and M(a, φ) is computed within t steps].

Theorem 5. f#CMS is TotP-complete.

By introducing #Clustered-Monotone-Sat, which is a special case of
#Sat, the intuition we want to capture is the following. Every problem in TotP
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is reduced, as made clear from the above proof, to a 3-CNF formula that is
clustered monotone, and for all formulas created in this way we have an efficient
algorithm that returns the number of satisfying assignments in each cluster. So
this TotP-complete special case of #Sat is much more structured than the #P-
complete version. This fact, combined with other known results concerning the
approximability of counting problems, may have interesting consequences, as we
will discuss in the next section.

It is also worth noting that #Clustered-Monotone-Sat is a special case
of another #Sat variant which is SpanP-complete: given a formula φ on n
variables, and a number k ≤ n, compute the number of satisfying assignments
that are different in the first k variables [19].

5 Discussion on Approximability Implications

On the Approximability of TotP. It is known that there are problems in
TotP, e.g. #IS (as shown in [21]), that do not admit a FPRAS unless NP = RP
[9], not even a polynomial factor approximation. This follows from the fact that
for self-reducible problems a polynomial factor approximation would yield a
FPRAS [24].

However, it turns out that the class TotP admits some kind of polyno-
mial time approximation: the problem Size-of-Subtree is a special case of
the backtracking-tree problem, studied in [18]; in that paper Knuth proposed
a randomized algorithm. By appropriate adaptation we can use it to approxi-
mate Size-of-Subtree. The expected output value of the algorithm is exactly
the desired value, but the variance can be exponential in the worst case. Thus
this algorithm would not yield a FPRAS. Approximation algorithms under other
notions of approximability for Size-of-Subtree were studied in [6].

The TotP-completeness of Size-of-Subtree under Karp reductions implies
that the above algorithmic results can be applied to every problem in TotP.
Recall that TotP contains self-reducible hard counting problems with easy deci-
sion version [21]. On the other hand these simple algorithms are essentially the
best we can hope for, unless NP = RP, since #IS belongs to TotP.

On the Approximability of #P and Connections to Statistical Physics.
Another interesting implication comes from the TotP-completeness of the prob-
lem #Clustered-Monotone-Sat (Definition 17), i.e. the problem of counting
the number of satisfying assignments of formulas such that: (a) a solution can
easily be found if one exists, and (b) their set of solutions is connected in a spe-
cific way as described before Definition 15. Combining this completeness result
with the fact that #Sat can be reduced to #IS ∈ TotP (i.e. counting inde-
pendent sets) by a reduction that preserves approximability [9], we get that
approximating the number of satisfying assignments of an arbitrary formula is
as difficult as approximating the number of satisfying assignments of a formula
with the above properties.

This is particularly interesting since there is a series of papers that relate
counting complexity to statistical physics [1–3], from which we know that, for the



Completeness Results for Counting Problems with Easy Decision 65

“difficult” instances of Sat, the set of satisfying assignments is widely scattered
in the space of all assignments (i.e. the boolean hypercube of n dimensions), and
this scattering might be responsible for the hardness of Sat. Our results show
that we can reduce (with an approximation-preserving reduction) an arbitrary
instance with a set of solutions that are disconnected and for which it is hard to
find even one solution, to an instance with a set of solutions that are connected
in a way that we have described explicitly, and for which we can easily find one
solution.

This can be viewed in two ways: For an optimist it shows that approximating
#Sat may be not so difficult after all (e.g. perhaps NP = RP). On the other
hand, a pessimist may conclude that #Sat is not only hard in general, but also
(by such “hardness amplification”) even seemingly easy (e.g. structured) cases
would possess the same hardness.

6 Conclusion and Open Problems

We have made an important step towards a better understanding of the com-
plexity class TotP by presenting problems that are TotP-complete under par-
simonious reductions. However, these problems are not among the well-studied
problems in TotP such as #IS, Permanent, etc. The completeness of such
problems constitutes an intriguing open question. Note that, if Permanent is
TotP-complete under parsimonious reductions, then NP = RP.

Another interesting direction would be to explore the approximability status
of the problems presented in this paper. The positive approximability of these
problems would transfer to every problem in TotP.
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