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Abstract. The concept of an evolutionarily stable strategy (ESS), intro-
duced by Smith and Price [4], is a refinement of Nash equilibrium in
2-player symmetric games in order to explain counter-intuitive natural
phenomena, whose existence is not guaranteed in every game. The prob-
lem of deciding whether a game possesses an ESS has been shown to
be ΣP

2 -complete by Conitzer [1] using the preceding important work by
Etessami and Lochbihler [2]. The latter, among other results, proved
that deciding the existence of ESS is both NP-hard and coNP-hard. In
this paper we introduce a reduction robustness notion and we show that
deciding the existence of an ESS remains coNP-hard for a wide range
of games even if we arbitrarily perturb within some intervals the pay-
off values of the game under consideration. In contrast, ESS exist almost
surely for large games with random and independent payoffs chosen from
the same distribution [11].

Keywords: Game theory · Computational complexity · Evolutionarily
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1 Introduction

1.1 Concepts of Evolutionary Games and Stable Strategies

Evolutionary game theory has proven itself to be invaluable when it comes to
analysing complex natural phenomena. A first attempt to apply game theoretic
tools to evolution was made by Lewontin [3] who saw the evolution of genetic
mechanisms as a game played between a species and nature. He argued that
a species would adopt the “maximin” strategy, i.e. the strategy which gives it
the best chance of survival if nature does its worst. Subsequently, his ideas were
improved by the seminal work of Smith and Price in [4] and Smith in [12] where
the study of natural selection’s processes through game theory was triggered.
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They proposed a model in order to decide the outcome of groups consisting of
living individuals, conflicting in a specific environment.

The key insight of evolutionary game theory is that a set of behaviours
depends on the interaction among multiple individuals in a population, and
the prosperity of any one of these individuals depends on that interaction of its
own behaviour with that of the others. An evolutionarily stable strategy
(ESS) is defined as follows: An infinite population consists of two types of infi-
nite groups with the same set of pure strategies; the incumbents, that play the
(mixed) strategy s and the mutants, that play the (mixed) strategy t �= s. The
ratio of mutants over the total population is ε. A pair of members of the total
population is picked uniformly at random to play a finite symmetric bimatrix
game Γ with payoff matrix AΓ . Strategy s is an ESS if for every t �= s there
exists a constant ratio εt of mutants over the total population, such that, if ε < εt

the expected payoff of an incumbent versus a mutant is strictly greater than the
expected payoff of a mutant versus a mutant. For convenience, we say that “s is
an ESS of the game Γ”.

The concept of ESS tries to capture resistance of a population against
invaders. This concept has been studied in two main categories: infinite pop-
ulation groups and finite population groups. The former was the one where this
Nash equilibrium refinement was first defined and presented by [4]. The lat-
ter was studied by Schaffer [10] who shows that the finite population case is a
generalization of the infinite population one. The current paper deals with the
infinite population case which can be mathematically modelled in an easier way
and in addition, its results may provide useful insight for the finite population
case. (For an example of ESS analysis in an infinite population game see the full
version [5].)

1.2 Previous Work

Searching for the exact complexity of deciding if a bimatrix game possesses an
ESS, Etessami and Lochbihler [2] invent a nice reduction from the complement
of the clique problem to a specific game with an appointed ESS, showing that
the ess problem is coNP-hard. They also accomplish a reduction from the sat
problem to ess, thus proving that ess is NP-hard too. This makes impossible
for the ess to be NP-complete, unless NP= coNP. Furthermore, they pro-
vide a proof for the general ess being contained in ΣP

2 , the second level of the
polynomial-time hierarchy, leaving open the question of what is the complexity
class in which the problem is complete.

A further improvement of those results was made by Nisan [8], showing
that, given a payoff matrix, the existence of a mixed ESS is coDP-hard. (See
Papadimitriou and Yannakakis [9] for background on this class.) A notable con-
sequence of both [2] and [8] is that the problem of recognizing a mixed ESS, once
given along with the payoff matrix, is coNP-complete. However, the question of
the exact complexity of ESS existence, given the payoff matrix, remained open.
A few years later, Conitzer finally settles this question in [1], showing that ess
is actually ΣP

2 -complete.
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On the contrary, Hart and Rinott [11] showed that if the symmetric bimatrix
game is defined by a n×n payoff matrix with elements independently randomly
chosen according to a distribution F with exponential and faster decreasing tail,
such as exponential, normal or uniform, then the probability of having an ESS
with just 2 pure strategies in the support tends to 1 as n tends to infinity. In
view of this result, and since the basic reduction of [2] used only 3 payoff values,
it is interesting to consider whether ESS existence remains hard for arbitrary
payoffs in some intervals.

1.3 Our Results

In the reduction of Etessami and Lochbihler that proves coNP-hardness of ess
the values of the payoffs used, are 0, k−1

k and 1, for k ∈ N. A natural question
is if the hardness results hold when we arbitrarily perturb the payoff values
within respective intervals (in the spirit of smoothed analysis [13]). In our work
we extend the aforementioned reduction and show that the specific reduction
remains valid even after significant changes of the payoff values.

We can easily prove that the evolutionarily stable strategies of a symmetric
bimatrix game remain the exact same if we add, subtract or multiply (or do all
of them) with a positive value its payoff matrix. However, that kind of value
modification forces the entries of the payoff matrix to change in an entirely
correlated manner, hence it does not provide an answer to our question. In
this work, we prove that if we have partitions of entries of the payoff matrix
with the same value for each partition, independent arbitrary perturbations of
those values within certain intervals do not affect the validity of our reduction.
In other words, we prove that determining ESS existence remains hard even if
we perturb the payoff values associated with the reduction. En route we give
a definition of “reduction robustness under arbitrary perturbations” and show
how the reduction under examination adheres to this definition.

In contrast, [11] show that if the payoffs of a symmetric game are random
and independently chosen from the same distribution F with “exponential or
faster decreasing tail” (e.g. exponential, normal or uniform), then an ESS (with
support of size 2) exists with probability that tends to 1 when n tends to infinity.

One could superficially get a non-tight version of our result by saying that
(under supposed continuity assumptions in the ESS definition) any small pertur-
bation of the payoff values will not destroy the reduction. However, in such a case
(a) the continuity assumptions have to be precisely stated and (b) this does not
explain why the ESS problem becomes easy when the payoffs are random [11].

In fact, the value of our technique is, firstly, to get as tight as possible ranges
of the perturbation that preserve the reduction (and the ESS hardness) without
any continuity assumptions, secondly, to indicate the basic difference from ran-
dom payoff values (which is exactly the notion of partition of payoffs into groups
in our definition of robustness, and the allowance of arbitrary perturbation within
some interval in each group), and finally, the ranges of the allowed perturbations
that we determine are quite tight. For the reduction to be preserved when we
independently perturb the values (in each of our partitions arbitrarily), one must
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show that a system of inequalities has always a feasible solution, and we manage
to show this in our final theorem. Our result seems to indicate that existence of
an ESS remains hard despite a smoothed analysis [13].

An outline of the paper is as follows: In Sect. 2 we define the robust reduction
notion and we provide a reduction, based on the one from [2], that is essentially
modified in order to be robust. In Sect. 3 we give our main result and Sect. 4
refers to further work and conclusions.

1.4 Definitions and Notation

Background from Game Theory. A finite two-player strategic form game
Γ = (S1, S2, u1, u2) is given by finite sets of pure strategies S1 and S2 and
utility, or payoff, functions u1 : S1 × S2 �→ R and u2 : S1 × S2 �→ R for the
row-player and the column-player, respectively. Such a game is called symmetric
if S1 = S2 =: S and u1(i, j) = u2(j, i) for all i, j ∈ S.

In what follows, we are only concerned with finite symmetric two-player
strategic form games, so we write (S, u1) as shorthand for (S, S, u1, u2), with
u2(j, i) = u1(i, j) for all i, j ∈ S. For simplicity assume S = 1, . . . , n, i.e.,
pure strategies are identified with integers i, 1 ≤ i ≤ n. The row-player’s payoff
matrix AΓ = (ai,j) of Γ = (S, u1) is given by ai,j = u1(i, j) for i, j ∈ S,
so BΓ = AT

Γ is the payoff matrix of the column-player. Note that AΓ is not
necessarily symmetric, even if Γ is a symmetric game.

A mixed strategy s = (s(1), . . . , s(n))T for Γ = (S, u1) is a vector that defines
a probability distribution on s and, in the sequel, we will denote by s(i) the
probability assigned by strategy s on the pure strategy i ∈ S. Thus, s ∈ X,
where X =

{
s ∈ R

n
≥0 :

∑n
i=1 s(i) = 1

}
denotes the set of mixed strategies in Γ ,

with R
n
≥0 denoting the set of non-negative real number vectors (x1, x2, . . . , xn).

s is called pure iff s(i) = 1 for some i ∈ S. In that case we identify s with i. For
brevity, we generally use “strategy” to refer to a mixed strategy s, and indicate
otherwise when the strategy is pure. In our notation, we alternatively view a
mixed strategy s as either a vector (s1, . . . , sn)T , or as a function s : S �→ R,
depending on which is more convenient in the context.

The expected payoff function, Uk : X × X �→ R for player k ∈ 1, 2 is given
by Uk(s, t) =

∑
i,j∈S s(i)t(j)uk(i, j), for all s, t ∈ X. Note that U1(s, t) = sT AΓ t

and U2(s, t) = sT AT
Γ t. Let s be a strategy for Γ = (S, u1). A strategy t ∈ X

is a best response to s if U1(t, s) = maxt′∈X U1(t′, s). The support supp(s) of s
is the set {i ∈ S : s(i) > 0} of pure strategies which are played with non-zero
probability. The extended support ext-supp(s) of s is the set {i ∈ S : U1(i, s) =
maxx∈X U1(x, s)} of all pure best responses to s.

A pair of strategies (s, t) is a Nash equilibrium (NE) for Γ if s is a best
response to t and t is a best response to s. Note that (s, t) is a NE if and only
if supp(s)⊆ ext-supp(t) and supp(t)⊆ ext-supp(s). A NE (s, t) is symmetric if
s = t.

Definition 1 (Symmetric Nash equilibrium). A strategy profile (s, s) is a
symmetric NE for the symmetric bimatrix game Γ = (S, u1) if sT AΓ s ≥ tT AΓ s
for every t ∈ X.
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A definition of ESS equivalent to that presented in Subsect. 1.1 is:

Definition 2 (Evolutionarily stable strategy). A (mixed) strategy s ∈ X is
an evolutionarily stable strategy (ESS) of a two-player symmetric game Γ if:

1. (s, s) is a symmetric NE of Γ , and
2. if t ∈ X is any best response to s and t �= s, then U1(s, t) > U1(t, t).

Due to [7], we know that every symmetric game has a symmetric Nash equi-
librium. The same does not hold for evolutionarily stable strategies (for example
“rock-paper-scissors” does not have any pure or mixed ESS).

Definition 3 (ESS problem). Given a symmetric two-player normal-form
game Γ , we are asked whether there exists an evolutionarily stable strategy of Γ .

Background from Graph Theory. An undirected graph G is an ordered pair
(V,E) consisting of a set V of vertices and a set E, disjoint from V , of edges,
together with an incidence function ψG that associates with each edge of G an
unordered pair of distinct vertices of G. If e is an edge and u and υ are vertices
such that ψG(e) = {u, υ}, then e is said to join u and υ, and the vertices u and
υ are called the ends of e. We denote the numbers of vertices and edges in G by
υ(G) and e(G); these two basic parameters are called the order and size of G,
respectively.

Definition 4 (Adjacency matrix). The adjacency matrix of the above undi-
rected graph G is the n × n matrix AG := (auυ), where auυ is the number of
edges joining vertices u and υ and n = υ(G).

Definition 5 (Clique). A clique of an undirected graph G is a complete sub-
graph of G, i.e. one whose vertices are joined with each other by edges.

Definition 6 (CLIQUE problem). Given an undirected graph G and a number
k, we are asked whether there is a clique of size k.

As mentioned earlier, in what follows, R
n
≥0 denotes the set of non-negative

real number vectors (x1, x2, . . . , xn) and n = |V |.
Theorem 1 (Motzkin and Straus [6]). Let G = (V,E) be an undirected
graph with maximum clique size d. Let Δ1 =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = 1

}
. Then

maxx∈Δ1 xT AGx = d−1
d .

Corollary 1. Let G = (V,E) be an undirected graph with maximum clique size
d. Let Aτ,ρ

G be a modified adjacency matrix of graph G where its entries with
value 0 are replaced by τ ∈ R and its entries with value 1 are replaced by ρ ∈ R.
Let Δ1 =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = 1

}
. Then maxx∈Δ1 xT Aτ,ρ

G x = τ + (ρ − τ)d−1
d .

Proof. xT Aτ,ρ
G x = xT [τ · 1 + (ρ − τ) · AG] x = τ + (ρ − τ) · xT AGx, where 1 is

the n×n matrix with value 1 in every entry. By Theorem1 the result follows. 	
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Corollary 2 (Etessami and Lochbihler [2]). Let G = (V,E) be an undirected
graph with maximum clique size d and let l ∈ R≥0. Let Δl =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = l

}
. Then maxx∈Δl

xT AGx = d−1
d l2.

2 Robust Reductions

Definition 7 (Neighbourhood). Let v ∈ R. An (open) interval I(v) = [a, b]
(I(v) = (a, b)) with a < b where a ≤ v ≤ b, is called a neighbourhood of v of
range |b − a|.
Definition 8 (Robust reduction under arbitrary perturbations of
values). We are given a valid reduction of a problem to a strategic game that
involves a real matrix A of payoffs as entries aij. A consists of m partitions,
with each partition’s entries having the same value v(t), for t ∈ {1, 2, . . . ,m}.
Let I(v(t)) �= ∅ be a neighbourhood of v(t) and w(t) ∈ I(v(t)) be an arbitrary
value in that neighbourhood. The reduction is called robust under arbitrary per-
turbations of values if it is valid for all the possible matrices W with entries w(t).

For a first extension based on the reduction of [2], see the full version [5].

2.1 A Robust Reduction from the Complement of CLIQUE to ESS

In the sequel we extend the idea of Etessami and Lochbihler [2] by replacing
the constant payoff values they use with variables, and finding the intervals they
belong to in order for the reduction to hold. We replace the zeros and ones of
their reduction with τ ∈ R and ρ ∈ R respectively. We also replace their function
λ′(k) = 1 − 1

k with λ(k) = 1 − 1
kx , where k ∈ N and x ≥ 3. Note that we can

normalize the game’s payoff values in [0, 1] and retain the exact same ESSs.
Given an undirected graph G = (V,E) we construct the following game

Γ x
k,τ,ρ(G) := (S, u1) for suitable τ < ρ to be determined later. Note that from

now on we will only consider rational τ and ρ so that every payoff value of the
game is rational.

S = V ∪ {a, b, c} are the strategies for the players where a, b, c /∈ V .
n = |V | is the number of nodes.

– u1(i, j) = ρ for all i, j ∈ V with (i, j) ∈ E.
– u1(i, j) = τ for all i, j ∈ V with (i, j) /∈ E.
– u1(z, a) = ρ for all z ∈ S − {b, c}.
– u1(a, i) = λ(k) = 1 − 1

kx for all i ∈ V .
– u1(y, i) = ρ for all y ∈ {b, c} and i ∈ V .
– u1(y, a) = τ for all y ∈ {b, c}.
– u1(z, y) = τ for all z ∈ S and y ∈ {b, c}.
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Theorem 2. Let G = (V,E) be an undirected graph. The game Γ x
k,τ,ρ(G) with

– ρ ∈
(
1 + nx−1−2x

2xnx−1(n−1) , 1 + (n+1)x−n2x

2x(n+1)x(n−1)

]
and

τ ∈ [
(1 − ρ)(n − 1) + 1 − 1

nx−1 , 1 − 1
2x

)
or

– ρ ∈
(
1 + (n+1)x−n2x

2x(n+1)x(n−1) , +∞
)

and

τ ∈
[
(1 − ρ)(n − 1) + 1 − 1

nx−1 , (1 − ρ)(n − 1) + 1 − n
(n+1)x

)

has an ESS if and only if G has no clique of size k.

Proof. Let G = (V,E) be an undirected graph with maximum clique size d. We
consider the game Γ x

k,τ,ρ(G) defined above. Suppose s is an ESS of Γ x
k,τ,ρ(G).

For the reduction we will prove three claims by using contradiction, that
taken together show that the only possible ESS s of Γk,τ,ρ(G) is the pure strat-
egy a. Here we should note that these three claims hold not only for the afore-
mentioned intervals of τ and ρ, but for any τ, ρ ∈ R for which τ < ρ. 	

Claim 1. The support of any possible ESS of Γ x

k,τ,ρ(G) does not contain b or c
(supp(s) ∩ {b, c} = ∅).

Suppose supp(s) ∩ {b, c} �= ∅.
Let t �= s be a strategy with t(i) = s(i) for i ∈ V, t(y) = s(b) + s(c) and

t(y′) = 0 where y, y′ ∈ {b, c} such that y �= y′ and s(y) = min{s(b), s(c)}. Since
u1(b, z) = u1(c, z) for all z ∈ S,

U1(t, s) =
∑
i∈V

t(i)U1(i, s) + (t(b) + t(c))U1(b, s) + t(a)U1(a, s),

U1(s, s) =
∑
i∈V

s(i)U1(i, s) + (s(b) + s(c))U1(b, s) + s(a)U1(a, s),

which yields U1(t, s) = U1(s, s) and so t is a best response to s. Also,

U1(s, t) =
∑
i∈V

s(i)U1(i, t) + (s(b) + s(c))U1(b, t) + s(a)U1(a, t),

U1(t, t) =
∑
i∈V

t(i)U1(i, t) + (t(b) + t(c))U1(b, t) + t(a)U1(a, t),

which yields U1(s, t) = U1(t, t). But this is a contradiction since it should be
U1(s, t) > U1(t, t) as s is an ESS.

Claim 2. The support of any possible ESS of Γ x
k,τ,ρ(G) contains a (supp(s) � V ).

Suppose supp(s) ⊆ V .
Then, we denote by AG the adjacency matrix of the graph G.

U1(s, s) =
∑

i,j∈V

s(i)s(j)u1(i, j) = xT Aτ,ρ
G x

≤ τ + (ρ − τ)
d − 1

d
(by Corollary 1)

< ρ = U1(b, s) for every ρ > τ.
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But this is a contradiction since s is an ESS and therefore a NE. From Claim1
and Claim 2, it follows that a ∈ supp(s), i.e. s(a) > 0.

Claim 3. s(a) = 1.

Suppose s(a) < 1.
Since (s, s) is a NE, a is a best response to s and a �= s. Then U1(s, a) =∑

z∈supp(s) s(z)u1(s, a) = ρ = U1(a, a). But this is also a contradiction since it
should be U1(s, a) > U1(a, a) as s is an ESS.

Therefore, the only possible ESS of Γ x
k,τ,ρ(G) is the pure strategy a. Now we

show the following lemma, which concludes also the proof of Theorem 2.

Lemma 1. The game Γ x
k,τ,ρ(G) with the requirements of Theorem2 has an ESS

(strategy a) if and only if there is no clique of size k in graph G.

Proof. We consider two cases for k:
Case 1: d < k. Let t �= a be a best response to a. Then supp(t) ⊆ V ∪ {a}.
Let r =

∑
i∈V t(i). So r > 0, (t �= a) and t(a) = 1−r. Combining Corollaries 1

and 2 we get,

U1(t, t) − U1(a, t) =
∑

i,j∈V

t(i)t(j)u1(i, j) + r · t(a) · ρ

+ t(a) · r · kx − 1
kx

+ t(a)2 · ρ −
[
r · kx − 1

kx
+ t(a) · ρ

]

≤
[
τ + (ρ − τ)

d − 1
d

]
r2 + r(1 − r) · ρ

+ (1 − r)r
kx − 1

kx
+ (1 − r)2 · ρ − r

kx − 1
kx

− (1 − r) · ρ

=
r2

d
E, where E = τ − (1 − ρ)(d − 1) − (1 − d

kx
)

If we can show that E < 0 then strategy a is an ESS. We show why E < 0:
Let’s define the following function: f(k, d, ρ) = (1 − ρ)(d − 1) + 1 − d

kx with
the restrictions: k ≥ d + 1, 1 ≤ d ≤ n, x ≥ 3.
By minimizing f(k, d, ρ) with respect to k and d, we end up to 2 cases determined
by the interval to which ρ belongs. So,

τ∗ = min
k,d

f(k, d, ρ) =

⎧
⎪⎨
⎪⎩

1 − 1
2x , if ρ ≤ 1 + (n+1)x−n2x

2x(n+1)x(n−1)

(1 − ρ)(n − 1) + 1 − n
(n+1)x , if ρ > 1 + (n+1)x−n2x

2x(n+1)x(n−1)

Therefore, we can demand τ to be strictly less than τ∗, making U1(t, t)−U1(a, t)
negative. We conclude that when d < k then strategy a is an ESS.

Case 2: d ≥ k. Let C ⊆ V be a clique of G of size k. Then t with t(i) = 1
k

for i ∈ C and t(j) = 0 for j ∈ S \ C is a best response to a and t �= a, and
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U1(t, t) =
∑

i,j∈C

t(i)t(j)u1(i, j) =
(k − 1)ρ + τ

k
,

U1(a, t) =
kx − 1

kx
. Then,

U1(t, t) − U1(a, t) =
1
k

[
τ − (1 − ρ)(k − 1) − (1 − 1

kx−1
)
]

=
1
k

E′, where E′ = τ − (1 − ρ)(k − 1) − (1 − 1
kx−1

)

If E′ ≥ 0 then a cannot be an ESS. We explain why E′ ≥ 0:
Let’s define the following function:

y(k, ρ) = (1 − ρ)(k − 1) + 1 − 1
kx−1

, with the restrictions: k ≤ d.

Then we define the function z(d, ρ):

z(d, ρ) = max
k

y(k, ρ) = (1 − ρ)(d − 1) + 1 − 1
dx−1

so, τ∗∗ = max
d

z(d, ρ) = (1 − ρ)(n − 1) + 1 − 1
nx−1

,

Now, given that τ needs to be at least τ∗∗ but strictly less than τ∗ the
following should hold:

(1 − ρ)(n − 1) + 1 − 1
nx−1

< 1 − 1
2x

, or equivalently, ρ > 1 +
nx−1 − 2x

2xnx−1(n − 1)

So we conclude that when d ≥ k then strategy a is not an ESS. This completes
the proof of Lemma 1 and Theorem 2. 	

Corollary 3. The ess problem with payoff values in the domains given in
Theorem2 is coNP-hard.

3 Our Main Result

Now we can prove our main theorem:

Theorem 3. Any reduction as in Theorem2 for x = x0 ≥ 3 from the com-
plement of the clique problem to the ess problem is robust under arbitrary
perturbations of values in the intervals:

τ ∈
[
1 − 1

2x0
− D, 1 − 1

2x0
− D + B

)
,

ρ ∈
(

1 +
(n + 1)x0 − n2x0

2x0(n + 1)x0(n − 1)
, 1 +

(n + 1)x0 − n2x0

2x0(n + 1)x0(n − 1)
+ A

)
,

λ ∈
[
1 − 1

kx0
, 1 − 1

kx1

]
,

where x1 ∈ (x0, x0 logn(n + 1)), C = (n+1)x0−nx1

nx1−1(n+1)x0 (n−1)
, D = C(n − 1), any

A ∈ (0, C) and B = (C − A)(n − 1).
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Proof. We denote three partitions of the game’s payoff matrix U : Uτ , Uρ, Uλ

disjoint sets, with Uτ ∪ Uρ ∪ Uλ = U and values τ, ρ, λ of their entries respec-
tively. Each set’s entries have the same value. For every λ ∈ [

1 − 1
kx0 , 1 − 1

kx1

]
there is a x = − logk(1 − λ) in the interval [x0, x1] such that λ = 1 − 1

kx , where
x0 ≥ 3 and x1 ∈ (x0, x0 logn(n+1)). We will show that, for this x, any reduction
with the values of τ, ρ in the respective intervals stated in Theorem 2, is valid.

In Fig. 1, we show the validity area of τ depending on ρ with parameter x,
due to Theorem 2. The thin and thick plots bound the validity area (shaded) for
x = x0 and x = x1 respectively.

While x increases, the parallel lines of the lower and upper bound of τ move
to the right, the horizontal line of the upper bound of τ moves up, and the
left acute angle as well as the top obtuse angle of the plot move to the left (by
examination of the monotonicity of those bounds with respect to x).

The lower bound of τ for an x = x′ > x0 equals the upper bound of τ for
x = x0, when x′ = x0 logn(n + 1). Thus, for all x ∈ (x0,x0 logn(n + 1)) there
is a non-empty intersection between the validity areas. We have picked
an x = x1 ∈ (x0, x0 logn(n + 1)).

τ

ρ1

1 + nx1−1−2x1
2x1nx1−1(n−1)

1 + nx0−1−2x0
2x0nx0−1(n−1)

1 + (n+1)x1−n2x1
2x1(n+1)x1(n−1)

1 + (n+1)x0−n2x0
2x0(n+1)x0(n−1)

1

1 − 1
2x1

1 − 1
2x0

1 − 1
2x1 − (n+1)x1−nx1

nx1−1(n+1)x1

1 − 1
2x0 − (n+1)x0−nx0

nx0−1(n+1)x0

Fig. 1. The validity area of τ and ρ with parameter x.
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τ

ρ

1 − 1
2x0

(1 − ρ)(n − 1) + 1 − 1
nx1−1

1 + (n+1)x0−n2x0
2x0(n+1)x0(n−1)

ρC

D

A

C

B

(1 − ρ)(n − 1) + 1 − n
(n+1)x0

ϕ

Fig. 2. Detail of the validity areas’ intersection and the ρ, τ robust area (shaded).

In Fig. 2, we show a zoom-in of the intersection of the validity areas of Fig. 1.
Let the intersection of lines: 1− 1

2x0 , (1−ρ)(n−1)+1− 1
nx1−1 be at point ρ = ρC .

Then, ρC =1− 1
2x0(n − 1)

− 1
nx1−1(n − 1)

. So, C =
(n + 1)x0 − nx1

nx1−1(n + 1)x0(n − 1)
.

From the upper bound of τ as a function of ρ we can see that tan ϕ = n − 1.

Thus, D = C tan ϕ, or equivalently, D =
(n + 1)x0 − nx1

nx1−1(n + 1)x0
.

Now we can pick any A ∈ (0, C). So, it must be
B = (C − A) tan ϕ, or equivalently, B = (n − 1)(C − A).

For the rectangle with sides A,B shown in Fig. 2, the reduction is valid for
all x ∈ [x0, x1], thus for all λ ∈ [

1 − 1
kx0 , 1 − 1

kx1

]
. This completes the proof. 	


4 Conclusions and Further Work

In this work we introduce the notion of reduction robustness under arbitrary
perturbations within an interval and we provide a generalized reduction based
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on the one in [2] that proves coNP-hardness of ess. We demonstrate that our
generalised reduction is robust, thus showing that the hardness of the problem
is preserved even after certain arbitrary perturbations of the payoff values of
the derived game. As a future work we would like to examine the robustness of
reductions for other hard problems, especially game-theoretic ones.
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