
On the Combinatorial Power
of the Weisfeiler-Lehman Algorithm

Martin Fürer(B)

Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA

furer@cse.psu.edu

Abstract. The classical Weisfeiler-Lehman method WL[2] uses edge
colors to produce a powerful graph invariant. It is at least as pow-
erful in its ability to distinguish non-isomorphic graphs as the most
prominent algebraic graph invariants. It determines not only the spec-
trum of a graph, and the angles between standard basis vectors and
the eigenspaces, but even the angles between projections of standard
basis vectors into the eigenspaces. Here, we investigate the combinator-
ial power of WL[2]. For sufficiently large k, WL[k] determines all com-
binatorial properties of a graph. Many traditionally used combinatorial
invariants are determined by WL[k] for small k. We focus on two funda-
mental invariants, the number of cycles Cp of length p, and the number
of cliques Kp of size p. We show that WL[2] determines the number of
cycles of lengths up to 6, but not those of length 8. Also, WL[2] does not
determine the number of 4-cliques.

Keywords: Weisfeiler-Lehman algorithm · Graph invariants · Counting
cycles · Graph isomorphism

1 Introduction

1.1 Weisfeiler-Lehman Method

Two graphs are isomorphic, if there is a bijection of their vertices mapping
edges to edges and non-edges to non-edges. An automorphism of a graph is an
isomorphism from the graph to itself. The graph isomorphism problem is closely
connected to the graph automorphism problem. Two connected graphs G and
G′ with disjoint vertex sets are isomorphic, iff their union has an automorphism
mapping one vertex of G into a vertex of G′. Obviously in this case, all vertices
of G are mapped to vertices of G′.

The most natural and most practical way to detect that two graphs are not
isomorphic is vertex classification [17]. The idea is to give different colors to two

M. Fürer—This work was partially supported by NSF Grant CCF-1320814. Part of
this work has been done while visiting Theoretical Computer Science, ETH Zürich,
Switzerland.

c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 260–271, 2017.
DOI: 10.1007/978-3-319-57586-5 22

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 261

vertices whenever it is obvious that neither of them can be mapped to the other
one by an isomorphism. Thus vertex classification could start by coloring the
vertices by their degree. One can easily go further. If one vertex u has more
neighbors of a certain degree than another vertex v, then obviously u and v
should also be colored differently.

A simple way to capture these observations, is to start with all vertices of
G = (V,E) having the same color, and then refining the coloring in rounds. In
round i+1, vertices u and v receive different colors, if they already had different
colors in round i, or if the multisets of colors of neighbors of u and v in round i
are different.1 During each round some color classes are split into two or more
classes, until this process stops after at most n = |V | rounds. Nowadays, this
method of vertex classification is also known as WL[1]. It is at the heart of all
software tools for graph isomorphism testing.

The classical Weisfeiler-Lehman method WL[2] [18], classifies edges in a sim-
ilar way. Still, it is a bit more involved. In fact, all ordered pairs of vertices are
classified, not just the edges. In other words, we can think of handling a complete
directed graph with colored edges, including self-loops in all vertices.

At the start, the edges of the complete graph are partitioned into 3 color
classes: the previous edges, the previous non-edges, and the self-loops. In round
i + 1 every directed edge (u, v) is colored with a pair whose first component is
its previous color, and whose second component is the multiset of all pairs of
previous colors on paths of length 2 from u to v. In each round, the actually
occurring colors are lexicographically ordered and replaced by an initial segment
of the natural numbers. This time, after O(n2) rounds, the algorithm stops,
because a stable coloring is reached, i.e., no color class of edges is further divided.

Sometimes, it is useful to keep for each round the mapping assigning to each
detailed color (pair of old color and some multiset) a simplified color (small
integer). We refer to this information as the definition of colors.

It has been noticed that WL[2], has a natural k-dimensional extension WL[k]
by various researchers, including some authors of [8] who tried to prove that
WL[k] solves the graph isomorphism problem for graphs of degree at most k.
It seems that the first published definition of WL[k] has been in [7]. The CFI
algorithm [8] has introduced and popularized the term WL[k] at the suggestion of
Babai as an editor to honor the influence of Weisfeiler and Lehman [18] towards
the development of this algorithm.

Weisfeiler and Lehman did not use the WL[k] algorithm, but extended WL[2]
by individualizing a sequence of vertices. A sequence v1, . . . , v� is individualized
by giving a unique color to each vertex of the sequence before the WL[k] algo-
rithm starts. Note that WL[k+�] is at least as powerful as doing WL[k] for every
possible individualization of � vertices.

WL[k] is defined as follows. The initial color W 0(v1, . . . , vk) is according to
the isomorphism type of (v1, . . . , vk). To be precise, (u1, . . . , uk) is isomorphic
to (v1, . . . , vk) if

1 A multiset differs from a set by assigning a positive integer multiplicity to each
element.

262 M. Fürer

– for all i, j, ui = uj , iff vi = vj , and
– for all i, j, {ui, uj} ∈ E, iff {vi, vj} ∈ E.

For each coloring f : V k → C and each w ∈ V , define the operation

sift(f, (u1, u2, . . . , uk), w))
= 〈f(w, u2, . . . , uk), f(u1, w, . . . , uk), . . . , f(u1, u2, . . . , w)〉.

Hence, sift(W i, (u1, u2, . . . , uk), w)) is the k-tuple of W i colors of the k-tuples
arising from substituting w in turn for each of the k positions in (u1, u2, . . . , uk).
Thus, intuitively in each round of WL[3], triangles T are colored by the multiset
of the triples of colors used on the triangular faces of the tetrahedra with one
face being T . To be precise, actually ordered triples of vertices are used instead
of triangles. Now the next color of (u1, u2, . . . , uk) is

(f(u1, u2, . . . , uk),multiset{sift(f, (u1, u2, . . . , uk), w) | w ∈ V }).

It should be noticed that for every k, WL[k + 1] is at least as powerful as
WL[k], because every stable coloring C of the k+1-tuples defines a stable coloring
C′ of the k-tuples by C′(v1, . . . , vk) = C(v1, . . . , vk, vk), i.e., by just repeating the
last component. Thus for example WL[2] does not only color the edges, but also
the vertices. The color of a vertex v shows up as the color of the self-loop at v.
The stable partition of the k-tuples of vertices produced by WL[k +1] is at least
as fine as that produced by WL[k], because WL[k] produces the coarsest stable
partition of the k-tuples.

1.2 Graph Invariants

A graph invariant is any function defined on graphs whose value is constant
on classes of isomorphic graphs. In particular, the value does not depend on
the enumeration of the vertices. In other words, a graph invariant is a function
defined on adjacency matrices whose value does not change, when the same
permutation is applied to the rows and columns of an adjacency matrix.

Many simple combinatorial graph invariants are often used to quickly con-
clude that two graphs are non-isomorphic. Some such invariants are, the number
of vertices n, the number of edges m, the number of triangles, the degree (max-
imum number of neighbors of any vertex), the multiset of degrees of vertices.
Graph invariants can also be just boolean properties like being bipartite, being
connected, being acyclic, or containing a given graph as a subgraph or induced
subgraph.

Some more complicated invariants are obtained by counting cliques and
cycles. We use the words path and cycle to refer to a simple path or simple
cycle respectively (i.e., an open or closed vertex disjoint path). More precisely,
we refer to the set of their edges. Thus, e.g., a K3 consists of 1 cycle.

Let Cv
k be the number of k-cycles with one vertex being v. Now the multiset of

all Cv
k for fixed k and varying over all v ∈ V is a nice invariant. Similar invariants

are obtained by varying over all edges instead of vertices, and by considering

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 263

k-cliques instead of k-cycles. We will mainly focus on the graph invariants #k-
cliques, the total number of subsets of k vertices forming a complete graph, and
#k-cycles, the number of cycles of length k which are occurring in the given
graph.

The ultimate combinatorial invariant is obtained by the WL[k] method. Its
strength increases with k, and it determines the isomorphism type for k = n.
We call the invariant WL[k] too. The invariant consists of the multiset of colors
of k-tuples in the stable refinement, together with all the definitions of colors
occurring during the coloring rounds.

A graph invariant identifies a graph G in a class of graphs, if all graphs in the
class with the same invariant as G are isomorphic to G. In other words, up to
isomorphisms, G is the only graph in the class with this invariant. A graph
invariant identifies a graph G, if it identifies G in the class of all graphs. An
invariant identifies a class of graphs, if it identifies all graphs G of this class in
the class of all graphs. For example, the spectrum does not identify the trees,
while the lexicographically first adjacency matrix (varying over all enumerations
of the vertices) identifies all graphs. Of course, no fast algorithm is known to
compute the lexicographically first adjacency matrix of a graph.

WL[n] trivially identifies all graphs of size at most n. On the other hand, even
WL[1] is sufficient to identify almost all graphs [5]. In fact, for almost all graphs,
WL[1] stops after the second round with all vertices receiving distinct colors. The
remaining graphs can be handled sufficiently fast to obtain an O(n2) expected
time algorithm [6] (linear in the input size of a random graph). Even almost all
regular graphs can be identified by WL[2], resulting in a linear expected time
algorithm for identifying the regular graphs [15]. In general, it is difficult to find
instances of graphs that are not easily identified. One source of such graphs are
strongly regular graphs, which are the graphs where WL[2] stops immediately
after assigning the initial colors without doing any refinements.

Algebraic graph invariants are among the most widely studied invariants.
Examples of algebraic invariants are the spectrum (the multiset of eigenvalues
of the adjacency matrix), the Laplacian spectrum, the multiset of angles of the
standard basis vectors with the eigenspace for a given eigenvalue. The standard
basis vectors are those with a component 1 in one vertex and components 0 in
all other vertices. Note that multisets rather than n-tuples have to be used here,
because in general no ordering of the vertices can be defined in an invariant way.

The standard algebraic graph invariants have a low distinguishing power,
compared to strong combinatorial invariants. Already WL[2] determines the
spectrum. The WL[2] color of a vertex determines the lengths of the projec-
tions of its standard basis vectors into the eigenspaces, and the WL[2] color of
an edge determines the angle between the projections of its endpoints [11] (see
also [12]). The spectrum of the k-th power of a graph G is more powerful than
the spectrum of G itself, but not as powerful as WL[2k] [2].

1.3 The Graph Isomorphism Problem

The graph isomorphism problem, i.e., testing whether two graphs are isomorphic
is not known to be in P, but not believed to be NP-complete, as this would have

264 M. Fürer

strange consequences like the collapse of the polynomial hierarchy. Babai [3,4]
has recently shown the graph isomorphism problem to be in pseudo-polynomial
time (i.e., in time 2(log n)O(1)

). This result builds on the milestone work of Luks
[16], who proved that graphs of bounded degree can be tested in polynomial
time. These results rely heavily on group theoretical methods. Since the early
eighties the author was involved in an oral debate, whether combinatorial meth-
ods could solve the bounded degree case too. In particular, it was open whether
WL[k], with k being the degree of the graph, could solve the bounded degree
graph isomorphism problem. This would be a very natural algorithm, running in
polynomial time, or more precisely, in time O(nk+1 log n). It was even not clear
whether a constant k would be sufficient for all graphs. Some support for this
possibility was provided by the result that WL[5] always makes at least some
progress [9,13,14] except for some known trivial cases.

These questions have been answered by the CFI result [8]. It shows that
WL[k] requires k = Ω(n) in order to identify all graphs of size n. We now
introduce this construction, since we use it for our proofs later. It starts with
an arbitrary graph H called the global graph. For the Ω(n) result, H has to be
an expander graph, but any low degree graph can be used for the construction.
Here we only describe the interesting case of H being regular of degree 3. We
show how to produce two similar graphs G and ˜G from H. The graphs G and ˜G
are not isomorphic, but WL[2] uses edge colors with the same multiplicities.

1. Every vertex v of H is replaced by 4 vertices v0, v1, v2, v3 of G arranged
counterclockwise in the corners of a square, but without the edges of the
square. Note, that there are 3 partitions of {v0, v1, v2, v3} into two subsets of
vertices of size two:
(a) Bottom {v0, v1}, Top {v2, v3},
(b) Left {v0, v3}, Right {v1, v2},
(c) Slash {v0, v2}, Backslash {v1, v3},

2. Consider every edge {u, v} of H to consist of 2 directed edges (u, v) and (v, u).
For every vertex u of H label the 3 outgoing edges in an arbitrary way with
the 3 partitions a, b, c, from above.

3. Now introduce 8 edges of G to replace every edge {u, v} of H. For example,
if (u, v) is labeled a, and (v, u) is labeled b, then the bottom u-nodes are
connected to the left v-nodes, and the top u-nodes are connected to the right
v-nodes. In other words, the edge {ui, vj} is introduced, if either i ∈ {0, 1}
and j ∈ {0, 3}, or i ∈ {2, 3} and j ∈ {1, 2}.

Finally, ˜G is constructed from G by picking an arbitrary edge of H and
flipping the corresponding connections in G. In the previous example, the bottom
u-nodes would be connected to the right v-nodes, and the top u-nodes would be
connected to the left v-nodes.

Fact 1. The location of a flip is undefined. It can easily be moved from an edge
incident to a vertex v of H to any of the other edges incident on v by doing
a Bottom-Top ({v0, v1} ↔ {v2, v3}) exchange and/or a Left-Right ({v0, v3} ↔
{v1, v2}) exchange. In several steps, the flip can be moved to any edge in the
same connected component.

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 265

Fact 2. Only the parity of the flips matter. If G is manipulated by introducing
an even number of flips, we obtain a graph isomorphic to G. If G is manipulated
by introducing an odd number of flips, we obtain a graph isomorphic to ˜G.

1.4 Summary of Main Results

In this paper, we study the power of WL[2] in comparison with the graph invari-
ants #k-cliques and #k-cycles for different values of k. In the next section we
study the positive results. For cliques we only have the trivial result that 3-cliques
are identified by WL[2]. For cycles, astonishingly WL[2] is much more powerful.
Of course, 3-cycles and 4-cycles are identified, but surprisingly also 5-cycles and
6-cycles are identified. Section 3 contains the negative result for 4-cliques, and
Sect. 4 is devoted to the negative result for 8-cycles.

2 Positive Results

Recall that we use the words path and cycle to refer to the set of edges of a
simple path or cycle. Walks (not necessarily simple paths) and closed walks are
not so interesting in our context. For example, for regular graphs, their numbers
are determined by the graph size and the degree. It is not hard to see that WL[2]
can easily count walks and closed walks of any length. More interesting is the
task of counting (simple) paths and cycles.

We say that WL[k] counts the number of j-cycles or solves the problem #j-
cycles, if it produces a multiset of colors (including their definitions) that is only
produced for graphs that have exactly the same number of j-cycles. In the same
way, we define WL[k] counting the number of j-cliques or solving the #j-clique
problem. Similarly, we say that an edge {u, v} knows a certain number, if the
color of (u, v) and its definition determines that number.

Theorem 1. WL[2] counts the number of triangles.

Proof. Obviously, WL[2] trivially counts the number of triangles. After 1 round,
every edge knows the number of triangles it is involved in. Therefore, the multiset
of all colors of edges determines the total number of triangles. If cj edges are
involved in j triangles, then the total number of triangles is 1

3

∑n−2
j=1 cjj. ��

For #k-cliques, this trivial positive result is all we get. For #k-cycles we can
do much better. But first we look at the problem of counting the number of
paths of length 4 between a given pair of vertices. This could easily be used to
show that WL[2] also counts the total number of paths of length 4. We don’t
treat counting the paths of length 5, as it can be done along the lines of the
#6-cycles problem. Counting the paths of length k < 5 is easy.

We say that a coloring algorithm WL[k] computes a function or decides a
property of graphs, if the multiset of stable colors of the k-tuples determines
the function value or the property respectively. This means that whenever two

266 M. Fürer

graphs have the same multiset of colors, then they agree in the function value
or the property respectively.

Here, having the same multiset of colors of k-tuples can be defined in two
equivalent ways.

– The two graphs are colored simultaneously, i.e., when the names of the colors
are reduced to small integers, a small integer abbreviates the same long name
in both graphs. In this scenario, there is no need to retain the color definitions.

– Each graph is colored separately, but the definitions of the colors are included.
The two graphs must have the same number of equally defined colors. Here,
it is important to include an additional color definition, when the color parti-
tion is already stable. A key example consists of two strongly regular graphs
with the same number of vertices and edges, but with different parameters λ
(number of common neighbors of adjacent vertices) and μ (number of common
neighbors of non-adjacent vertices). In each graph the edge coloring is stable
from the beginning, as even the first refinement round has no effect. But the
new colors in the two graphs have different definitions.

Similarly, we define what it means for a k-tuple to know a function value or
a property. It means that WL[k] colors the k-tuple with a color (including its
definition) that only shows up when the function has this value or the graph has
this property respectively.

Lemma 1. WL[2] can count the number of paths of length 4 between any pair
of vertices.

Proof. We show that every edge (u, v) knows the number of paths of length 4
from u to v. Let p�

uv be the number of paths of length � from u to v. Every vertex
pair (u, v) knows p1uv from the start and p2uv after 1 round. For all �1, �

′
1 ∈ {0, 1}

and �2, �
′
2 ∈ N, after 2 rounds, (u, v) knows

n�1�2�′
1�′

2
:= #{w | w /∈ {u, v} ∧ pi

uw = �i ∧ pi
wv = �′

i for i ∈ {1, 2}}.

Then (u, v) knows the number of paths of length 4 from u to v, which is
∑

�1,�2,�′
1,�′

2

n�1�2�′
1�′

2
(�2 − p1uv �′

1)(�
′
2 − p1uv �1) −

∑

x∈V \{u,v}
p1ux(d(x) − 2)p1xv,

where d(w) is the degree of vertex w. Of course, (u,w) knows d(w) after 1 round.
For the correctness of this formula, notice when combining all paths of

length 2 from u to w with all paths of length 2 from w to v, we also encounter
two kinds of undesirable walks. First, we don’t allow the paths of length 2 from
u to w through v and from w to v through u. Finally, we subtract all walks
u, x, w, x, v for any vertex x. ��
Theorem 2. WL[2] solves #k-cycles for k ≤ 6.

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 267

Proof. For k = 4 the result is easy. Every edge e can count the number of
quadrangles of which it is a diagonal. In one round the edge e = (u, v) knows
the number of common neighbors n(e) = p2uv. Then the over all number of
quadrangles is 1

2

∑

e∈E

(

n(e)
2

)

.
For k = 5 the result follows from the lemma. Every pair (u, v) knows the

number p4uv of paths of length 4 from u to v, and it knows whether u and v are
adjacent. Thus (u, v) knows in how many 5-cycles it is involved.

k = 6 is the interesting case. Any closed path v0, v1, . . . , v5, v0 of length 6 can
be broken down into a path of length 4 and a path of length 2 from v0 to v4.

In order to count the number of 6-cycles, we count for every fixed pair (v0, v4)
with v0 �= v4 the number of 6-cycles H = v0, v1, v2, v3, v4, v5, v0 which are sub-
graphs of the given graph G for variable v1, v2, v3, v5. From now on the pair
(v0, v4) is fixed. Let #H be the number of such subgraphs H. Let #H(∗) be
the number of subgraphs consisting of a path v0, v1, v2, v3, v4 of length 4 and a
path v0, v5, v4 of length 2 where v5 might possibly be identified with v1, v2, or
v3. Let H[u1 = w1, . . . , up = wp] be any graph obtained from a graph of type H
by identifying ui with wi for 1 ≤ i ≤ p. Then

#H = #H(∗) − #H(v1 = v5) − #H(v2 = v5) − #H(v3 = v5).

After 1 round, the pairs (v0, v2), (v2, v4), and (v0, v4) all know the number
of paths of length 2 between them. After 2 rounds, the pair (v0, v4), also knows
the number p4v0v4

of paths v0, v1, v2, v3, v4 of length 4 from v0 to v4 by Lemma 1.
Thus after 2 rounds, the pair (v0, v4) knows #H(∗) = p2v0v4

p4v0v4
, which is

the number of pairs of paths v0, v1, v2, v3, v4 and v0, v5, v4. Not every such pair
of paths can be combined to a 6-cycle. We have to subtract the number of cases,
where v5 is equal to one of the vertices v1, v2, or v3.

Let’s compute #H(v2 = v5). After 1 round (v0, v2) and (v2, v4) know the
number of triangles in which they participate. These numbers are p1v0v2

p2v0v2

and p1v2v4
p2v2v4

respectively. After 2 rounds, (v0, v2) (for varying v2) knows the
multiset of these pairs of numbers. If v0 is adjacent to v4, then each triangle
count is too high by 1, because (v0, v2) also counts the triangle v0, v2, v4 and
(v2, v4) also counts the triangle v2, v4, v0. Both these triangles don’t contribute
to a collection of pairs of paths v0, v1, v2, v3, v4 and v0, v5, v4 intersecting only in
the endpoints and in v2 = v5. Thus the number of bad subgraphs H(v2 = v5) is

#H(v2 = v5) =
∑

v2∈V \{v0,v4}
(p1v0v2

p2v0v2
− p1v0v4

)(p1v2v4
p2v2v4

− p1v0v4
).

This number is known to (v0, v4) after 2 rounds.
Now we compute #H(v1 = v5) of bad subgraphs with v1 = v5 for fixed v0

and v4, and varying v1, v2 and v3. Let #H(v1 = v5, ∗) be the number of graphs
obtained from a graph of type H(v1 = v5) by possibly identifying v2 or v3 with
v0. Then we have

#H(v1 = v5) = #H(v1 = v5, ∗)−#H(v1 = v5, v0 = v2)−#H(v1 = v5, v0 = v3).

268 M. Fürer

For � ∈ {1, 2, 3} every pair (u, v) knows the number p�
uv of paths of length �

from u to v after � − 1 rounds. Thus in particular, after 2 rounds (v0, v1) knows
p1v0v1

and p2v0v1
, (v1, v4) knows p3v1v4

, and (v0, v4) knows p1v0v4
and p2v0v4

. Thus

#H(v1 = v5, ∗) =
∑

v1∈V \{v0,v4}
p1v0v1

p3v1v4
p1v1v4

.

It is easy to see that

#H(v1 = v5, v0 = v2) =
(

p2v0v4

2

)

,

because v0 and v2 are opposite corners of a square, and

#H(v1 = v5, v0 = v3) = p1v0v1
p1v0v4

p1v1v4
(p2v0v1

− 1).

After 2 rounds, the pair (v0, v4) knows #H(v1 = v5, v0 = v2) and #H(v1 =
v5, v0 = v3).

The computation of #H(v3 = v5) is completely analog.
Now we determine the number #H(v2 = v5). Let #H(v2 = v5, ∗) be the

number of graphs obtained from a graph of type H(v2 = v5) by possibly identi-
fying v1 with v3. Then we have

#H(v2 = v5) = #H(v2 = v5, ∗) − #H(v2 = v5, v1 = v3).

After 1 round (v0, v2) and (v2, v4) know the number of triangles in which they
participate. These numbers are p1v0v2

p2v0v2
and p1v2v4

p2v2v4
respectively. After 2

rounds, (v0, v2) (for varying v2) knows the multiset of these pairs of numbers. If
v0 is adjacent to v4, then each triangle count is too high by 1, because (v0, v2) also
counts the triangle v0, v2, v4 and (v2, v4) also counts the triangle v2, v4, v0. Both
these triangles don’t contribute to a collection of pairs of paths v0, v1, v2, v3, v4
and v0, v5, v4 intersecting only in the endpoints and in v2 = v5. Thus the number
of bad subgraphs for v2 = v5 is

#H(v2 = v5, ∗) =
∑

v2∈V \{v0,v4}
(p1v0v2

p2v0v2
− p1v0v4

)(p1v2v4
p2v2v4

− p1v0v4
).

This number is known to (v0, v4) after 2 rounds.
Here, we hit a complication when we want to compute #H(v2 = v5, v1 = v3).

The subgraph H(v2 = v5, v1 = v3) is a square with a diagonal form v1 to v2.
The other corners are v0 and v4. The pair (v0, v4) does not know #H(v2 =
v5, v1 = v3). Therefore, (v0, v4) might not know the number of 6-cycles in which
the distance from v0 to v4 on the cycle is 2. Luckily, we don’t have to know
this number, but only their sum over all (v0, v4). Thus instead of counting the
number of H(v2 = v5, v1 = v3) for fixed v0 and v4, we count this number for
fixed v1 and v2. This number nv1v2 is 0, if v1 and v2 are not adjacent and

(

p
2

)

for
p = p2v1v2

otherwise, and the pair (v1, v2) knows this number. Thus instead of
computing the sum of #H(v2 = v5, v1 = v3) over all pairs (v0, v4), we compute
the sum of nv1v2 over all (v1, v2) obtaining the same result. ��

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 269

3 WL[2] Does Not Count 4-Cliques

Proposition 1. For k ≥ 2 every k-tuple (and thus also every vertex) knows the
multiset of colors of all k-tuples of vertices of the same graph.

Note that the result does not hold for k = 1.
The definition of “knowing” immediately implies the following.

Corollary 1. For k ≥ 2 two graphs agree in the color of one k-tuple, iff they
agree in the multiset of colors of all k-tuples.

We consider the CFI construction with the global graph being the simplest
regular degree 3 graph, the 4-clique K4. Assume, the vertices v0, . . . , v3 are
arranged in consecutive corners of a square. For the vertices of G, we use double
indices. The vertex vij is the jth vertex in the ith corner (i, j ∈ {0, 1, 2, 3}).
Assume, we have assigned partition a to (vi, vi+1 mod 4), and partition c to
(vi+1 mod 4, vi). Thus partition b is assigned to the 4 diagonal directions.

For every global graph H, WL[2] produces edge colors with the same multi-
plicities in the nonisomophic graphs G and ˜G produced by the CFI construction
[8]. In fact this is the purpose of this construction. In our case with H = K4,
this is immediately clear, as the two graphs are strongly regular. Thus we have
just 3 edge colors, one for original edges, one for non-adjacent disjoint pairs, and
one for self-loops.

We say that two invariants are incomparable, if neither of them implies the
other.

Theorem 3. G and ˜G differ in their number of occurrences of the subgraph K4.
WL[2] is incomparable with the invariant #4-cliques.

Proof. Consider ˜G having the flip along the {v1, v3} diagonal edge. In both, G

and ˜G start with v00. It is adjacent to v10 and v13. The vertices v00 and v10 are
adjacent to v20 in both G and ˜G. Likewise, the vertices v00 and v20 are adjacent
to v30 in both G and ˜G. Finally, v30 is adjacent to v20 forming a clique in G,
but v30 is not adjacent to v20 forming no clique in ˜G. Likewise, for every start
in one of the vertices of v0, there are two neighbors in v1. Then there are twice
unique common neighbors of two previously chosen vertices both in G and ˜G.
Finally in G the chosen vertices in v3 and v1 are adjacent, but not in ˜G.

Considering some automorphisms, this can be verified by checking 2 cases
instead of 8. The result is G has 8 K4, while ˜G has none, even though the edge
colors have the same multiplicities in G and ˜G.

That counting K4 is sometimes weaker than WL[2] is trivial, e.g., take a path
of length 2 and a 3-cycle. ��

4 Difficult Cycles

We show that WL[2] does not identify cycles of length 8. We give a clear argu-
ment about where to look for counter examples. But the actual example is cre-
ated by computer.

270 M. Fürer

Table 1. The number of cycles of length n in G and ˜G

n Not twisted Twisted n Not twisted Twisted

1 0 0 9 34368 33920

2 48 48 10 91296 92256

3 32 32 11 211968 216192

4 60 60 12 417264 423216

5 288 288 13 670464 674304

6 1248 1248 14 822528 824448

7 4032 4032 15 678912 680960

8 11952 11688 16 284112 281232

It is difficult to find a counter example, because WL[2] is very powerful and
identifies almost all graphs. Thus we use again our example from the previous
section. The non-isomorphic graphs G and ˜G are created with the CFI method
from a tetrahedron. As the single flip in ˜G can be pushed into any edge it is
clear that the 2 graphs have the same number of occurrences of any subgraph
that does not involve all the edges of the global graph. The global graph is a
K4. It has 6 edges, but the shortest closed walk through all edges has length
8. Thus the shortest cycles that might have a different count in G and ˜G are
necessarily of length at least 8. Indeed we succeed. For all even lengths k between
the minimum 8 and the maximum 16 (Hamiltonian cycles), the counts in G and
˜G are different.

As our graphs are small, we can use a pretty brute force algorithm to count
the cycles starting at a fixed vertex. For each of the two graphs, the count Cv

k

(the number of k cycles through any given start vertex v) does not depend on
the chosen start vertex, because both graphs are vertex transitive. #k-cycles,
the total number of cycles of length k is n times Cv

k divided by the length k of
the cycles.

Theorem 4. WL[2] does not identify the number of 8-cycles.

Proof. By Computer. ��
Table 1 is the output of the Cycle Count program. It shows that for lengths

up to 7, the number of cycles is equal in the two graphs. Starting at length 8,
the number of cycles differ, i.e., WL[2], cannot count the number of 8-cycles. We
knew that for this pair of graphs, the numbers have to be the same for lengths
up to 6, because the graphs G and ˜G are constructed such that WL[2] does not
detect any difference between them. It is open whether WL[2] can always count
the number of 7-cycles.

Interestingly enough, there is other evidence that the complexity changes
after 7. For k ≤ 7, Alon et al. [1] can count k-cycles in time O(nω), where
ω < 2.373 [19] is the exponent of matrix multiplication, while Flum and Grohe
[10] show that with k as a parameter the problem of counting k-cycles is #W-
complete.

On the Combinatorial Power of the Weisfeiler-Lehman Algorithm 271

References

1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

2. Alzaga, A., Iglesias, R., Pignol, R.: Spectra of symmetric powers of graphs and the
Weisfeiler-Lehman refinements. J. Comb. Theory Ser. B 100(6), 671–682 (2010)

3. Babai, L.: Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547
(2015)

4. Babai, L.: Graph isomorphism in quasipolynomial time (extended abstract). In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC), pp. 684–697. ACM (2016)

5. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980)

6. Babai, L., Kučera, L.: Graph canonization in linear average time. In: Proceedings
of the 20th Annual Symposium on Foundations of Computer Science (FOCS), pp.
39–46. IEEE Computer Society Press (1979)

7. Babai, L., Mathon, R.: Talk at the South-East Conference on Combinatorics and
Graph Theory (1980)

8. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992)

9. Cameron, P.J.: 6-transitive graphs. J. Comb. Theory Ser. B 28(2), 168–179 (1980)
10. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM

J. Comput. 33(4), 892–922 (2004)
11. Fürer, M.: Graph isomorphism testing without numerics for graphs of bounded

eigenvalue multiplicity. In: Proceedings of the 6th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 624–631 (1995)

12. Fürer, M.: On the power of combinatorial and spectral invariants. Linear Algebra
Appl. 432(9), 2373–2380 (2010)

13. Gol’fand, Y.Y., Klin, M.H.: On k-regular graphs. In: Algorithmic Research in Com-
binatorics, pp. 76–85. Nauka Publ., Moscow (1978)

14. Klin, M.C., Pöschel, R., Rosenbaum, K.: Angewandte Algebra. Vieweg & Sohn
Publ., Braunschweig (1988)

15. Kučera, L.: Canonical labeling of regular graphs in linear average time. In: Proceed-
ings of the 28th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 271–279. IEEE Computer Society Press (1987)

16. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25, 42–65 (1982)

17. Read, R.C., Corneil, D.G.: The graph isomorphism disease. J. Graph Theory 1(4),
339–363 (1977)

18. Weisfeiler, B. (ed.): On Construction and Identification of Graphs. Lecture Notes
in Mathematics. Springer, Berlin (1976). With contributions by A. Lehman, G. M.
Adelson-Velsky, V. Arlazarov, I. Faragev, A. Uskov, I. Zuev, M. Rosenfeld and B.
Weisfeiler

19. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference (STOC), pp.
887–898. ACM (2012)

	On the Combinatorial Power of the Weisfeiler-Lehman Algorithm
	1 Introduction
	1.1 Weisfeiler-Lehman Method
	1.2 Graph Invariants
	1.3 The Graph Isomorphism Problem
	1.4 Summary of Main Results

	2 Positive Results
	3 WL[2] Does Not Count 4-Cliques
	4 Difficult Cycles
	References

