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Abstract. We investigate the multi-agent pathfinding (MAPF) prob-
lem with n agents on graphs with n vertices: Each agent has a unique
start and goal vertex, with the objective of moving all agents in paral-
lel movements to their goal s.t. each vertex and each edge may only be
used by one agent at a time. We give a combinatorial classification of all
graphs where this problem is solvable in general, including cases where
the solvability depends on the initial agent placement.

Furthermore, we present an algorithm solving the MAPF problem in
our setting, requiring O(n2) rounds, or O(n3) moves of individual agents.
Complementing these results, we show that there are graphs where Ω(n2)
rounds and Ω(n3) moves are required for any algorithm.

1 Introduction

Pathfinding for single agents on a graph is a well studied problem. Dijkstra’s
algorithm provided a solid foundation in 1959 [1] and since then, several more
specialized adaptations have been conceived, such as the A∗ algorithm [2] for
grids and hierarchical pathfinding using the ability to pre-process maps. The
applications for multi -agent pathfinding have grown numerous in the recent
decades.

Movies such as The Lord of the Rings want to display huge armies clash-
ing, but without paying an actor for each combatant [3]. Real-time strategy
games incorporate larger and larger amounts of units and players expect pre-
dictable and efficient unit movement [4]. Building safety researchers can predict
the movement and behaviour of human crowds during an emergency evacuation
through simulation [5]. Pathfinding on graphs has also drawn attention in robot-
ics, where it is applied to the problem of multi-robot path planning [6]. Another
related field is routing in networks, where deadlock-free forwarding (pathfinding)
of packets (agents) is of interest [7].

In this paper, we focus our attention on the most congested pathfinding
case, where n agents are to be routed on n-vertex graphs, advancing the work
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of [8,9]. Motivated by real-world capacity constraints, but also following classical
pathfinding research [10], we allow each edge and vertex to be used by only
one agent at a time. A precise problem definition is given in Sect. 2, where we
formalize the multi-agent pathfinding (MAPF) problem in the form of a labeling
problem. Notwithstanding, we invite the reader to first study the background
Sect. 1.1.

A main interest of this article is on classifying graphs where the MAPF
problem is generally solvable with combinatorial criteria: That is, for any two
initial and desired placements of agents, is there a valid sequence of moves solving
the corresponding MAPF problem?

In Sect. 3, we give a clear-cut combinatorial classification of all graphs where
this problem is solvable in general, including cases where the solvability depends
on the initial agent placement. In the subsequent Sect. 4, we then give an
algorithm1 solving the MAPF problem in O(n2) rounds and O(n3) agent moves.
Furthermore, we provide a class of graphs where any algorithm will require Ω(n2)
rounds and Ω(n3) agent movements, matching our upper bounds. We conclude
with a summary in Sect. 5.

1.1 Background

One of the earliest scientific works on multi-agent pathfinding on graphs is by
Johnson and Story [11]: They studied the famous 15-puzzle, where 15 agents
1, 2, . . . , 15 are placed on a 4 × 4-grid, and only one agent may move at a time
to a currently unoccupied neighboring vertex. The authors showed that exactly
half of the starting positions are not solvable, if the goal is to order the agents in
an increasing pattern from 1 to 15, with the lower right vertex being unoccupied,
and also studied larger grids – with Wilson showing the connection to alternating
groups [12]. In more recent times, it was shown that finding the fastest solution
for feasible problems is NP-hard already on grids, cf. [13,14].

The model of the 15-puzzle, where one agent moves at a time to an unoccu-
pied neighboring vertex, has been studied by numerous people in various commu-
nities. One such piece of work that this article draws foundations and techniques
from, in particular for lower bounds, is Coordinating Pebble Motion On Graphs,
The Diameter Of Permutation Groups, And Applications by Kornhauser, Miller,
and Spirakis. Two versions exist, one is the Master’s Thesis of Kornhauser which
is available as a technical report [15]. A more compact version was published at
FOCS in 1984 [10], omitting some proofs. Even though Kornhauser uses a dif-
ferent model where no rotations are allowed and enforcing one unoccupied node,
we arrived at the same upper and lower bounds of O(n3), respectively Ω(n3)
agent moves. Our proof of the Ω(n3) lower bound in our model is very similar to
that of Kornhauser, as noted in Sect. 4.4. While their results are from the 1980’s,
Röger and Helmert [16] pointed out in 2012 that these findings solve some open
problems in the robotics community and are still relevant in current research.

1 Yu and Rus [8] also give a MAPF algorithm, cf. second to last paragraph of Sect. 1.1.
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The same model as in this article was previously studied by Yu and Rus in
Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning
Algorithms [8]. The authors provided an algorithm to check if a graph instance
is solvable, but did not give combinatorial criteria for feasibility as provided by
us. Hence, they could also not provide statements about when exactly half of
the MAPF problems are solvable, as we did in Sect. 3.3. Yu and Rus also give
a MAPF algorithm, differing from our methods, for which they prove an upper
bound that is equivalent to our O(n2) upper bound on the number of rotations.
However, they did not show the lower bounds.

Lastly, Driscoll and Furst published a paper [9] in 1983 that gives a O(n2)
upper bound on the diameter of a class of permutation groups. While Driscoll
and Furst’s paper does not relate permutations to multi-agent pathfinding, our
problem is in said class of permutation problems, and Driscoll and Furst’s upper
bound directly applies to the number of rotations in our problem. Driscoll and
Furst also provide a generating set that leads to a tight lower bound, however
this generating set can not be related to MAPF problems in the model discussed
in this article, since it relies on two-cycles as generators.

2 Model

In this section we will first formally introduce the problem of multi-agent
pathfinding, before providing some mathematical preliminaries for the concepts
of permutations and permutation groups. We then use these tools to reformulate
the MAPF problem as a labeling problem in Sect. 2.1. Multi-agent pathfinding
(MAPF) on a graph describes a problem where k agents are distributed on ver-
tices of a graph G(V,E) with n vertices. Each agent has a destination, its goal
vertex. Agents can move over edges to neighboring vertices. The problem is to
find a sequence of moves, such that eventually all agents are on their goal vertex.
In the problems studied here, there is always exactly one agent on each vertex,
i.e., k = n. The movement of the agents is constrained by the following rules:

– At any given time, no more than one agent can be on any vertex.
– Any edge can only be used by one agent at a time, i.e., neighboring agents

may not swap places.

The only permitted moves are thus rotations on graph cycles.

Definition 1 (rotation). In a rotation on a graph cycle v1, . . . , vm, the agent
on a vertex vi moves to the vertex vi+1 if i ∈ {1, . . . , m − 1} or the vertex v1 if
i = m.

To keep the terminology consistent with other works in Computer Science and
Mathematics, we will be dealing with labeled graphs instead of agents on graphs:

Definition 2 (labeling). Let L = {1, 2, 3, . . . , |V |} be the set of labels. A label-
ing of a graph G(V,E) is a bijective function l : V → L.
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Problems where objects are reordered are typically associated with the math-
ematical theory of permutations and permutation groups. In the following, we
will give some of the basic definitions and results from those fields.

Definition 3 (permutation). Let X = 1, . . . , n. A permutation is a bijective
function π : X → X.

There are multiple established notations for permutations. In the two-line nota-
tion one writes for each element x in the first row its image π(x) in the second
row:

π =
(

l1 l2 l3 . . . ln−1 ln
π(l1) π(l2) π(l3) . . . π(ln−1) π(ln)

)

The second notation used here is the cycle notation: Starting from some
element x ∈ X, one writes the sequence

(
x π(x) π(π(x)) . . .

)
of successive images

under π. The sequence is continued until x would appear again. Starting at a
new element not observed yet, we do the same, and write it in a new pair of
parentheses. This is repeated until every element is written down once.

Example 1.
(

1 2 3 4 5 6 7
1 5 7 2 4 3 6

)
could be written as

(
1
) (

2 5 4
) (

3 7 6
)
.

Cycles of length one are omitted, the above permutation then reads as(
2 5 4

) (
3 7 6

)
. Next, a pair of labels is called an inversion, if the order of said

labels is changed by the permutation.

Definition 4 (inversion). (li, lj) is an inversion of π, if li > lj and π(li) <
π(lj).

Definition 5 (parity of a permutation). The parity of a permutation is the
parity (odd or even) of the number of inversions it contains.

Definition 6 (composition of permutations). Two (and, iteratively, any
number of) permutations can be composed: π1◦π2 = π1π2 = π2(π1(x)) ∀x ∈ X.

The set of all permutations on 1, . . . , n with operation ◦ form the group Sn.
An important subgroup of Sn is the alternating group An. It is the subgroup
of Sn which contains all even permutations. It contains exactly half of the n!
elements of Sn. We need the following lemma to see that closure is satisfied for
An, which is proven in numerous textbooks on the subject, such as [17]:

Lemma 1. The composition of even permutations is even.

We can conclude by recursion, that the composition of any number of even per-
mutations will again result in an even permutation. The set of even permutations
is thus closed under composition.
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2.1 Reformulation of the MAPF Problem

The permitted operations in our model are rotations. They can be interpreted
as an element of Sn. We refer to Fig. 1 for an introductory case explained in
Example 2.

Example 2. If we label the bow-tie graph with labels as in Fig. 1, we can write
the permutations corresponding to the rotations in cycle notation, e.g.:

– clockwise rotation in the left cycle: πL− =
(
1 3 2

) (
4
) (

5
)

=
(
1 3 2

)
,

– counterclockwise rotation in the right cycle: πR+ =
(
1
) (

2
) (

3 4 5
)

=
(
3 4 5

)
,

In fact, rotations in our model always correspond to permutation cycles. (But
not all permutation cycles correspond to a valid move.) It is thus justified to
reformulate the MAPF problem:

3

1

2 4

5

Fig. 1. Labeled bow-
tie graph, consisting
of two odd cycles of
length three.

Main Idea. Let πgoal be the permutation that represents
the goal labeling and let PG be the set of permutations that
correspond to a valid rotation.

Find a sequence πr1 , . . . , πrm
, where πri

∈ PG such
that

πr1 ◦ πr2 ◦ . . . ◦ πrm
= πgoal (1)

This problem has a solution if and only if πgoal is an
element of the group generated by PG.

Lemma 2. Rotations on graph cycles with even length correspond to odd permu-
tations. Rotations on odd-length graph cycles correspond to even permutations.

Proof. Rotations on graph cycles with length i correspond to permutation cycles
of the same length i. It is known, cf. [17], that cyclic permutations of even length
correspond to odd permutations and vice-versa. Therefore odd i give rise to even
permutations, even i to odd ones. ��

3 Necessary and Sufficient Combinatorial Criteria
for Solvability

We will begin this section with Theorem 1, where we specify necessary and suf-
ficient combinatorial criteria for graphs on which the MAPF problem can be
generally solved.

Definition 7. The MAPF problem is generally solvable on a graph G, if the
MAPF problem is solvable on G for any combination of an initial labeling with
a goal labeling.

Theorem 1. The MAPF-problem on a graph G with n ≥ 2 vertices is generally
solvable, if and only if the following conditions hold:
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1. G is 2-edge-connected,
2. G contains at least two cycles,
3. G contains a cycle of even length.

In the following Sect. 3.1, we address the necessity of these criteria. Then, in
Sect. 3.2, we point out that graphs fulfilling the criteria are indeed solvable, i.e.,
the conditions are sufficient.

Lastly in this section, we address in Sect. 3.3 that half of the MAPF problems
are still solvable if the particular requirement that a graph must contain an even-
length cycle is not satisfied.

3.1 The Combinatorial Conditions in Theorem 1 are Necessary

We defer the proof of conditions 1 and 2 to the full version of this article.
Condition 3 is proven in the following lemma.

Lemma 3. The MAPF-problem on a graph G is not generally solvable, if the
graph does not contain an even-length cycle.

Proof. Assume Graph G contains only odd-length cycles. Lemma 2 then implies
that all πri

of Eq. 1 are even. Using Lemma 1, we see that the permutation
problem can not be solved for odd πgoal and we will always stay in An. ��
In fact, as we will see in Sect. 3.3, all problems corresponding to even πgoal are
solvable, when this last constraint is not satisfied. That is, exactly half of all
problems are still solvable in that case.

3.2 The Combinatorial Conditions in Theorem 1 are Sufficient

In this section, we show that the MAPF problem on the graphs specified in
Theorem 1 are indeed generally solvable. We will show that on such graphs it
is possible to exchange any two labels while leaving all other labels unaffected.
In terms of permutations this amounts to being able to express 2-cycles as a
sequence of the permutations corresponding to the permitted rotations. (cf. our
main idea). Since the set of all 2-cycles generates Sn (cf. [17]), this will conclude
the proof of Theorem1.

3.2.1 Swapping Two Labels in a Generally Solvable Graph

Lemma 4. Let

πa×b(x) =

⎧⎪⎨
⎪⎩

b ifx = a
a ifx = b
x otherwise

π(l1,l2)→(s1,s2)(x) =

⎧⎪⎨
⎪⎩

s1 if x = l1

s2 if x = l2

x′ otherwise
where x′ in π(l1,l2)→(s1,s2) is arbitrary, with the constraint that π(l1,l2)→(s1,s2) is
bijective.

Then,
πl1×l2 = π(l1,l2)→(s1,s2)πs1×s2π

−1
(l1,l2)→(s1,s2)

(2)
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Proof. To make notation less cumbersome, we will denote π(l1,l2)→(s1,s2)

by π. The right hand side of Eq. 2 can be rewritten as ππs1×s2π
−1 =

π−1(πs1×s2(π(x))). We distinguish cases:

Case x 	= l1 ∧ x 	= l2: Then, π(x) = x′. Since x′ 	= s1 and x′ 	= s2 we have
πs1×s2(x

′) = x′. We can then plug these values in as follows:

π−1(πs1×s2(π(x))) = π−1(πs1×s2(x
′)) = π−1(x′) = x

Case x = l1: π(l1) = s1 and πs1×s2(s1) = s2:

π−1(πs1×s2(π(x))) = π−1(πs1×s2(s1)) = π−1(s2) = l2

Case x = l2: analogously

In all cases, we have π−1(πs1×s2(π(x))) = πl1×l2(x), concluding the proof. ��
In other words, if we can swap a specific pair of labels (s1 and s2) without

affecting other labels, and we are able to move any pair of labels (l1 and l2) to
the position of the aforementioned labels, we can effectively swap any two labels
by means of Eq. 2. It remains to prove that we can express some π(l1,l2)→(s1,s2)

and the suitable πs1×s2 for any l1 and l2 by means of the permitted rotations.

Lemma 5. For any cycle c1 in a graph that is 2-edge-connected with at least
two cycles, one of the following two options holds:

1. There is a cycle c2 with which it shares exactly one vertex or
2. There are 2 vertices in c1 with 3 vertex-disjoint paths between them.

The proof of this lemma is deferred to the full version of this article. According to
this lemma, finding πs1×s2 for all 2-edge-connected graphs can be done by finding
πs1×s2 in each of the stated cases. We will now demonstrate how swapping is
possible in either case.

3.2.2 Swapping Labels in Cycles Sharing Exactly One Vertex
Let Cnl,nr

denote a graph consisting of two cycles, with sizes nl and nr, respec-
tively, that share exactly one vertex. As there are two cycles, four operations
are permitted, namely rotations in both directions on either cycle. πL− denotes
the permutation associated with a clockwise rotation in the left cycle, πL+ the
permutation associated with a counterclockwise rotation in the left cycle. πR+

and πR− are the analogous counterparts in the right cycle. Algorithm1 describes
a procedure to swap the labels l1 and m in Cnl,nr

.

Lemma 6. If nl is even, Algorithm1 terminates.

Proof. The permutations associated with the basic rotations that we use can
readily be written down in cycle notation:

πL− =
(
l1 m lnl−1 . . . l2

)
πR+ =

(
r1 r2 . . . rnr−1 m

)
πR− =

(
r1 m rnr−1 . . . r2

)
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Building on these, we can write down the composed permutations of the
algorithm:

πinit = πR−πL−πL−πR+πL−

=

(
l1 l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 m r1 r2 r3 . . . rnr−2 rnr−1

lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

)

πstep = πR−πL−πR+πL−

=

(
lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

lnl−4 lnl−2 lnl−1 r1 m l1 l2 . . . lnl−8 lnl−7 lnl−6 lnl−3 lnl−5 r2 r3 . . . rnr−2 rnr−1

)

Assuming nl is even, πstep reads in cycle notation:

πstep =
(
l1 r1 lnl−2 lnl−4 . . . l2 m lnl−1 lnl−3 . . . l3

)

We left out nl

2 − 4 labels with each “. . . ”, namely li’s with even i in the left
case and with odd i in the right. Note that the labels l1, . . . , lnl−3 always take
the place of the label with an index that is larger by 2. If nl was odd, nl − 1
would be even and lnl−1 would be in the cycle much earlier, such that not all
labels would be in the same cycle.

Applying a cyclic permutation k-fold has step the labels k steps forward in
the order of the cycle. For each label x in the permutation cycle we can count
k positions to the right in the cyclic representation of πstep to find πk

step(x). In

this way, we find π
nl
2 −1

step :

π
nl
2 −1

step =

(
lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

m l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 . . . rnr−2 rnr−1

)

We’ve written down π
nl
2 −1

step such that it is easy to see that

πinitπ
nl
2 −1

step =

(
l1 l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 m r1 r2 r3 . . . rnr−2 rnr−1

m l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 . . . rnr−2 rnr−1

)

Which is our goal permutation. That is, after nl

2 − 1 repetitions of the loop in
Algorithm 1, we are at the desired configuration, and the algorithm terminates.

��

Algorithm 1. Swapping
Two Labels in Cnl,nr

π := πR−πL−πL−πR+πL−

πstep := πR−πL−πR+πL−

while π 	= πgoal do
π := ππstep

3.2.3 Swapping Labels in a Cycle Con-
taining 2 Vertices with Three Paths
Between Them
In the case when there are two vertices with
three vertex-disjoint paths between them,
swapping two labels is simpler, and possible
with just 3 rotations. One possibility of per-
forming such a swap is illustrated in Fig. 2.
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3.2.4 Travelling to Swapspot
It remains to express π(l1,l2)→(s1,s2) for any l1, l2, s1 and s2, where the initial
vertices of s1 and s2 are neighbors. We will do this in two phases. First, we move
l1 and l2 such that they are neighbors. Then, these neighbors are moved to the
place where they can be swapped. For details, we refer to the full version.

3.3 Solvable Problems on Not Generally Solvable Graphs

We have now specified the class of graphs on which the MAPF problem is gen-
erally solvable. On those that are not generally solvable, some problems are still
solvable. In the cases where a graph is not 2-edge connected, one can consider
each 2-edge connected component separately, as no label can cross bridges. The
solvable problems are then those where the labels only travel within subgraphs
that fulfill the constraints of Theorem1. Another case is when there is only
one cycle present, where the solvable problems are exactly those obtained by
rotations on this cycle.

However, if a graph is still 2-edge connected and contains at least two cycles,
but only contains cycles of odd length, a more interesting observation can be
made. In fact, exactly half of the problems can still be solved. In Sect. 3.2 we
presented a method to express 2-cycles as a sequence of the permitted rotations.
Without the presence of even cycles, it is possible to express 3-cycles with a
very similar method. Recall that 3-cycles are a generating set of the alternating
group An, which contains half of the elements of Sn. The details of 3-cycling are
deferred to the full version.

4 Algorithms, Lower and Upper Bounds

1

1

1

(a) Original setting

1

1

1

(b) After top rotation

1

1

1

(c) After outside rotation

1

1

1

(d) After bottom rotation

Fig. 2. Swapping in graphs with two vertices with
three vertex-disjoint paths between them.

In this section, we use the
mechanisms studied so far to
construct an algorithm that
solves the MAPF problem in
O(n3) label movements and
O(n2) rotations. We will also
present a class of graphs,
on which the MAPF prob-
lem cannot be solved with less
than Ω(n3) label movements
and Ω(n2) rotations, mean-
ing that our algorithm is opti-
mal in terms of the asymp-
totic number of operations in
the worst case.
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4.1 Complexity Measures

The complexity of a solution to the problem can be described in different ways.
In this chapter we will investigate the complexity with respect to three related
measures. An upper bound on the length of the sequence of permutations found
by the algorithm is given in all three measures, and a class of graphs is given
on which these upper bounds for all three measures are tight in an asymptotic
sense.

One way of describing the complexity of a solution is that of the total number
of rotations. In this case, every rotation increases the complexity by one. This is
effectively the length of the sequence found in our main idea. For some problem
instances, rotations can be performed in parallel. On these problems, measuring
the complexity with the number of rotations might not give a good representation
of the running time. The number of rounds thus can be used as a second measure.
However, the algorithms used in this paper never use the possibility of parallel
rotations. Therefore here, the number of rotations equals the number of rounds.
As we will see, our lower bounds are tight regardless. Lastly, the number of label
movements is studied. That is, the number of rotations a label was involved in,
summed up over all labels.

4.2 The Algorithm

We have established the notions of swapping and 3-cycling labels. Using these
mechanisms we can directly build an algorithm:

1. As long as there are labels in the wrong place, pick one wrongly placed label,
say a. Then, pick the label b := πgoal(a).

2. Set c to be an arbitrary incorrectly placed label such that a 	= c and
πgoal(a) 	= c. If no such c can be found, a and b are the only wrongly placed
labels left, and we swap them. If swapping is not possible, the problem is not
solvable. (Since the solution is only one swap away, πgoal is not in An.)

3. If a c is found, 3-cycle a, b and c. Since this only moves wrongly placed labels,
and fixes the position of a, this decreases the overall number of wrongly placed
labels by at least one.

4. Repeat until all labels are at the right place.

Note that by better choices of a,b and c, we can fix at least two labels with
every 3-cycle. However, this leads to a sequence of operations of the same asymp-
totic length.

4.3 Upper Bound on Number of Operations

Lemma 7. Swapping two labels and 3-cycling three labels without affecting any
other labels both take O(n) rotations.

For a full proof, we refer to the full article. The gist is that there is a constant
number of steps involved, each with a complexity in O(n) rotations. These com-
plexities are mainly determined by the length of paths and cycles in the graph.
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Theorem 2. The Algorithm described in Sect. 4.2 terminates in O(n2) rota-
tions, O(n2) rounds and O(n3) label movements.

Proof. Since on n labels and n vertices, there can be at most n wrongly placed
labels, and we fix at least one with every 3-cycle and every swap, we will need
at most n such operations. In other words, the added number of 3-cycles and
swaps performed is in O(n).

We have seen in Lemma 7 that both swapping and cycling take O(n) rota-
tions. Having O(n) swaps or cycling operations costing O(n) rotations each,
we get the claimed overall bounds of O(n2) rotations. Clearly, each rotation
moves at most n labels, which directly implies the upper bound of O(n3) label
movements.

The worst case in terms of number of rounds, is when all rotations are done
sequentially. Therefore, an upper bound on the number of rotations is also an
upper bound on the number of rounds. I.e., the upper bound of O(n2) rotations
directly implies an upper bound of O(n2) rounds. ��

4.4 Lower Bound on Number of Operations

Fig. 3. Graph LBn for the proof of
the lower bound

We will now give a class of graphs and
a MAPF problem on which any algorithm
takes at least Ω(n2) rotations, Ω(n2) rounds
and Ω(n3) label movements, providing lower
bounds that are asymptotically tight. The
class of graphs is the same as Kornhauser
et al. [10] used for their model.

Consider the graph of Fig. 3, that is the
cyclic graph on n vertices with an added edge between the �n

2 �-th and the
�n

2 + 2�-th vertex. We denote this graph by LBn.

4.4.1 Rotations and Rounds
Lemma 8. There is a MAPF problem on LBn for which any solution requires
Ω(n2) rotations.

Proof. Assume n to be odd. We define di to be the semi-circular distance
between label i and label i + 1. The semi-circular distance is the shortest path
between the labels on the cyclic graph, that does not use the added edge. The
di are maximal for di = �n

2 �, and are at least 1.
Following Kornhauser et al. [10], we define the notion of entropy as E =∑�n
2 �

i=1 di. We chose an initial labeling, for which E = �n
2 �2, with our goal config-

uration having E = �n
2 �. There are six permitted operations on LBn: A rotation

on the outer cycle, denoted by A, a rotation on the cycle
(�n

2 � �n
2 � + 1 �n

2 � + 2
)
,

denoted by B and a rotation on the cycle not including �n
2 � + 1, denoted by C,

as well as their respective inverses A−1, B−1 and C−1. We can study the effect
of the three operations on the entropy. Clearly, A and A−1 do not change the
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entropy. Rotating B or C can only change the di that include the labels on
vertices �n

2 �, �n
2 � + 1 and �n

2 � + 2, and by at most 2 each. Each rotation thus
decreases E by at most 12. Having E = �n

2 �2 at the beginning and E = �n
2 �

at the goal configuration, we can say that we need at least �n
2 �2−�n

2 �
12 ∈ Ω(n2)

operations. ��
Lemma 9. There is a MAPF problem on LBn for which any solution requires
Ω(n2) rounds.

Proof. Since all three cycles in LBn pairwise share vertices, only one rotation can
be performed at a time. Therefore, the lower bound on the number of rotations
from Lemma 8 is also a lower bound for the number of rounds. ��

4.4.2 Label Movements
We now look at the number of label movements.

Lemma 10. There is a MAPF problem on LBn where any solution requires
Ω(n3) label movements.

Proof. We can assume that in an optimal solution, no more than one consecutive
operation is performed on cycle B. (Since, e.g., BB can be replaced by B−1,
B−1B by doing nothing at all, consecutive operations on B indicate non-optimal
solutions.) We thus know, that after each operation on B, there will be one on
either A or C. Thus, if there are m operations, at least �m

2 � operations are
performed on A and C. Those require at least n − 1 label movements. (Namely,
if C is moved.) As any solution will use at least Ω(n2) rotations, so will a solution
that is optimal with respect to label movements. Hence, (n − 1)�Ω(n2)

2 � ∈ Ω(n3)
is a lower bound for the number of label movements. ��

5 Conclusion

We studied combinatorial classifications and algorithms for the multi-agent
pathfinding (MAPF) problem on graphs G with n agents. We proved that the
MAPF problem is only generally solvable, if the graphs G are 2-edge-connected,
contain at least two cycles, and contain at least one cycle of even length. Should
the last of these three combinatorial conditions be violated, we showed that
exactly half of the MAPF problems on these graphs are solvable.

Furthermore, we specified an algorithm that solves feasible MAPF problems
in O(n2) operations or O(n3) agent-movements. We also specified a class of
graphs, where at least Ω(n2) operations or Ω(n3) agent-movements are required,
meaning that on general graphs, our algorithms are asymptotically optimal.
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