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Abstract. A complete weighted graph G = (V, E, w) is called Δβ-
metric, for some β ≥ 1/2, if G satisfies the β-triangle inequality, i.e.,
w(u, v) ≤ β · (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . Given a Δβ-
metric graph G = (V, E, w) and a center c ∈ V , and an integer p, the
Δβ-Star p-Hub Center Problem (Δβ-SpHCP) is to find a depth-2
spanning tree T of G rooted at c such that c has exactly p children and
the diameter of T is minimized. The children of c in T are called hubs. For
β = 1, Δβ-SpHCP is NP-hard. (Chen et al., COCOON 2016) proved that
for any ε > 0, it is NP-hard to approximate the Δβ-SpHCP to within a
ratio 1.5− ε for β = 1. In the same paper, a 5

3
-approximation algorithm

was given for Δβ-SpHCP for β = 1. In this paper, we study Δβ-SpHCP
for all β ≥ 1

2
. We show that for any ε > 0, to approximate the Δβ-

SpHCP to a ratio g(β) − ε is NP-hard and we give r(β)-approximation
algorithms for the same problem where g(β) and r(β) are functions of β.

If β ≤ 3−√
3

2
, we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial

time solvable. If 3−√
3

2
< β ≤ 2

3
, we have r(β) = g(β) = 1+2β−2β2

4(1−β)
.

For 2
3

≤ β ≤ 1, r(β) = min{ 1+2β−2β2

4(1−β)
, 1 + 4β2

5β+1
}. Moreover, for β ≥ 1,
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we have r(β) = min{β+ 4β2−2β
2+β

, 2β+1}. For β ≥ 2, the approximability
of the problem (i.e., upper and lower bound) is linear in β.

1 Introduction

The hub location problems have various applications in transportation and
telecommunication systems. Variants of hub location problems have been defined
and well-studied in the literatures (see the two survey papers [1,15]). Suppose
that we have a set of demand nodes that want to communicate with each other
through some hubs in a network. A single allocation hub location problem requests
each demand node can only be served by exactly one hub. Conversely, if a demand
node can be served by several hubs, then this kind of hub location problem
is called multi-allocation. Classical hub location problems ask to minimize the
total cost of all origin-destination pairs (see e.g., [27]). However, minimizing the
total routing cost would lead to the result that the poorest service quality is
extremely bad. In this paper, we consider a single hub location problem with
min-max criterion, called Δβ-Star p-Hub Center Problem which is different
from the classic hub location problems. The min-max criterion is able to avoid
the drawback of minimizing the total cost.

A complete weighted graph G = (V,E,w) is called Δβ-metric, for some
β ≥ 1/2, if the distance function w(·, ·) satisfies w(v, v) = 0, w(u, v) = w(v, u),
and the β-triangle inequality, i.e., w(u, v) ≤ β ·(w(u, x)+w(x, v)) for all vertices
u, v, x ∈ V . (If β > 1 then we speak about relaxed triangle inequality, and if
β < 1 we speak about sharpened triangle inequality.) Let u, v be two vertices in
a tree T . Use dT (u, v) to denote the distance between u, v in T . Define D(T ) =
maxu,v∈T dT (u, v) called the diameter of T . We give the definition of the Δβ-
Star p-Hub Center Problem as follows.

Δβ-Star p-Hub Center Problem (Δβ-SpHCP).
Input: A Δβ-metric graph G = (V,E,w), a center vertex c ∈ V , and a

positive integer p, |V | ≥ 2p + 1.
Output: A depth-2 spanning tree T ∗ rooted at c (called the central hub) such

that c has exactly p children (called hubs) and the diameter of T ∗,
D(T ∗), is minimized.

Here, we assume that the number of non-hubs is at least as many as the
number of hubs, i.e., |V | ≥ 2p + 1. The assumption |V | ≥ 2p + 1 is reasonable
because in real applications, a hub could be a post office or an airport, and a
non-hub could be a mail post, a customer, or a passenger.

The Δβ-SpHCP problem is a general version of the original Star p-Hub
Center Problem (SpHCP) since the original problem assumes the input
graph to be a metric graph, i.e., β = 1. We use SpHCP to denote the Δβ-
SpHCP for β = 1. Yaman and Elloumi [28] showed that SpHCP is NP-hard and
gave two integer programming formulations for the same problem. Liang [24]
showed that SpHCP does not admit a (1.25 − ε)-approximation algorithm for
any ε > 0 unless P = NP and gave a 3.5-approximation algorithm. Recently,
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Chen et al. [17] reduced the gap between the upper and lower bounds of approx-
imability of SpHCP. They showed that for any ε > 0, to approximate SpHCP
to a ratio 1.5 − ε is NP-hard and gave 2-approximation and 5

3 -approximation
algorithms for SpHCP.

The Single Allocation p-Hub Center Problem was introduced in [14,
26] which is similar to SpHCP with min-max criterion and well-studied in [16,18,
23,25]. The difference between the two problems is that the Single Allocation
p-Hub Center Problem assumes that hubs are fully interconnected. Thus,
for the Single Allocation p-Hub Center Problem, the communication
between hubs is not necessary to go through a specified central hub c.

If β = 1, Δβ-SpHCP is NP-hard and even NP-hard to have a (1.5 − ε)-
approximation algorithm for any ε > 0 [17]. In this paper, we investigate the
complexity of Δβ-SpHCP parameterized by β-triangle inequality. The motiva-
tion of this research for β < 1 is to investigate whether there exists a large sub-
classes of input instances of Δβ-SpHCP that can be solved in polynomial time
or admit polynomial-time approximation algorithms with a reasonable approx-
imation ratio. For β ≥ 1, it is an interesting issue to see whether there exists
a polynomial-time approximation algorithm with an approximation ratio linear
in β.

The well-known concept of stability of approximation [10,12,22] is used in
our study. The idea behind this concept is to find a parameter (characteris-
tic) of the input instances that captures the hardness of particular inputs. An
approximation algorithm is called stable with respect to this parameter, if its
approximation ratio grows with this parameter but not with the size of the
input instances. A nice example is the Traveling Salesman Problem (TSP) that
does not admit any polynomial-time approximation algorithm with an approx-
imation ratio bounded by a polynomial in the size of the input instance, but is
3
2 -approximable for metric input instances. Here, one can characterize the input
instances by their “distance” to metric instances. This can be expressed by the
β-triangle inequality for any β ≥ 1

2 .
In a sequence of papers [2,3,5,9–11,13], it was shown that one can partition

the set of all input instances of TSP into infinitely many subclasses according to
the degree of violation of the triangle inequality, and for each subclass one can
guarantee upper and lower bounds on the approximation ratio. Similar studies
were performed for the problem of constructing 2-connected spanning subgraphs
of a given complete graph whose edge weights obey the β-triangle inequality [6],
and for the problem of finding, for a given positive integer k ≥ 2 and an edge-
weighted graph G, a minimum k-edge- or k-vertex-connected spanning subgraph
[7,8], demonstrating that for these problems the β-triangle inequality can serve
as a measure of hardness of the input instances.

In Table 1, we list the main results of this paper. We prove that for any ε > 0,
to approximate Δβ-SpHCP to a ratio g(β) − ε is NP-hard where β ≥ 3−√

3
2 and

g(β) is a function of β. We give r(β)-approximation algorithms for Δβ-SpHCP.
If β ≤ 3−√

3
2 , we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial time

solvable. If 3−√
3

2 < β ≤ 2
3 , we have r(β) = g(β). For 2

3 ≤ β ≤ 1, r(β) =
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Table 1. The main results where Δβ-SpHCP cannot be approximated within g(β) and
has an r(β)-approximation algorithm.

β Lower bound g(β) Upper bound r(β)

[ 1
2
, 3−√

3
2

] 1 1

( 3−√
3

2
, 2
3
] 1+2β−2β2

4(1−β)
1+2β−2β2

4(1−β)

[ 2
3
, 0.7737 . . .] 5β+1

4
1+2β−2β2

4(1−β)

[0.7737 . . . , 1] 5β+1
4

1 + 4β2

5β+1

[1, 2] β + 1
2

β + 4β2−2β
2+β

[2, ∞) β + 1
2

2β + 1

min{ 1+2β−2β2

4(1−β) , 1+ 4β2

5β+1} and g(β) = 5β+1
4 . Moreover, for β ≥ 1, we have r(β) =

min{β + 4β2−2β
2+β , 2β + 1} and g(β) = β + 1

2 . For β ≥ 2, the approximability of
the problem (i.e., upper and lower bound) is linear in β.

For a vertex v in a tree T , we use NT (v) to denote the set of vertices adjacent
to v in T and NT [v] = NT (v)∪{v}. Let f(v) be the parent of v in T and f(v) = v
if v is the root of T . Let T ∗ be an optimal solution of Δβ-SpHCP in a given β-
metric graph G = (V,E,w). For a non-hub x in T ∗, we use f∗(x) to denote the
hub in T ∗ that is adjacent to x. We use T̃ to denote the best solution among
all solutions in T where T is the collection of all solutions satisfying that all
non-hubs are adjacent to the same hub for Δβ-SpHCP in a given β-metric graph
G = (V,E,w).

We close this section with the following theorem. Due to the limitation of
space, we omit the proof.

Theorem 1. Let β > 3−√
3

2 . For any ε > 0, to approximate Δβ-SpHCP to a
factor g(β) − ε is NP-hard where

(i) g(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 2
3 ;

(ii) g(β) = 5β+1
4 if 2

3 ≤ β ≤ 1;
(iii) g(β) = β + 1

2 if β ≥ 1.

2 Polynomial Time Algorithms

In this section, we show that for 1
2 ≤ β ≤ 3−√

3
2 , Δβ-SpHCP can be solved in

polynomial time. Besides, we give polynomial time approximation algorithms
for Δβ-SpHCP for β > 3−√

3
2 . For 3−√

3
2 < β ≤ 2

3 , our approximation algorithm
achieves the factor that closes the gap between the upper and lower bounds of
approximability for Δβ-SpHCP.

Due to the limitation of space, we omit some proofs in this section.
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Lemma 1. Let 1
2 ≤ β < 1. Then the following statements hold.

(i) There exists a solution T̃ satisfying that all non-hubs are adjacent to the
same hub and D(T̃ ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗).
(ii) There exists a polynomial time algorithm to compute a solution T such that

D(T ) = D(T̃ ).

According to Lemma 1, we obtain the following results.

Lemma 2. Let 1
2 ≤ β ≤ 0.7737 . . .. Then the following statements hold.

1. If β ≤ 3−√
3

2 , then Δβ-SpHCP can be solved in polynomial time.
2. If 3−√

3
2 < β ≤ 0.7737 . . ., there is a 1+2β−2β2

4(1−β) -approximation algorithm for
Δβ-SpHCP.

Proof. Let T ∗ denote an optimal solution of the Δβ-SpHCP problem. According
to Lemma 1, there is a polynomial time algorithm for Δβ-SpHCP to compute a
solution T such that D(T ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗).

If β ≤ 3−√
3

2 , D(T ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗) = D(T ∗).

If 3−√
3

2 < β ≤ 0.7737 . . .,

D(T ) ≤ max{1,
1 + 2β − 2β2

4(1 − β)
} · D(T ∗) =

1 + 2β − 2β2

4(1 − β)
· D(T ∗).

This completes the proof. ��

Lemma 3. Let 0.7737 . . . ≤ β ≤ 1. Then, there is a (1 + 4β2

5β+1 )-approximation
algorithm for Δβ-SpHCP.

Proof. It is not hard to see that Algorithm 1 runs in polynomial time. Let T ∗ be
an optimal solution of Δβ-SpHCP. In this lemma, we show that for 0.7737 . . . ≤
β ≤ 1, Algorithm 1 returns a solution T such that D(T ) ≤ (1 + 4β2

5β+1 ) · D(T ∗).
Let � be the largest edge cost in T ∗ with one end vertex as a hub and the other
end vertex as a non-hub. Note that both Algorithm APX1 and Algorithm APX2
guess all possible edges (y, z) to be the longest edge in T ∗ with y as a hub and z
as a non-hub. Let T1 and T2 be the best solutions returned by Algorithm APX1
and Algorithm APX2, respectively.

Claim 1. D(T1) ≤ D(T ∗) + 4β�.

Proof of Claim. We first show that for any two hubs u, v in T1, dT1(u, v) =
w(u, c) + w(v, c) ≤ D(T ∗). Let T ∗ be an optimal solution of Δβ-SpHCP. Let
f∗(u) and f∗(v) be the parents of u and v in T ∗ respectively.

If f∗(u) �= f∗(v), there are three cases.
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Algorithm 1. Approximation algorithm for Δβ-SpHCP (G, c).

(i) Run Algorithm APX1.
(ii) Run Algorithm APX2.
(iii) Return the best solution found by Algorithms APX1 and APX2.

Algorithm APX1

Guess the correct edge (y, z) where w(y, z) = � is the largest edge cost in an optimal
solution T ∗ with y as a hub and z as a non-hub. Let U := V \ {c} and h1 = y. Let
T1 be the tree found by the following steps and H be the set of children of c in T1.
Initialize H = ∅.
(i) Add edge (h1, c) in the tree T , let H := H ∪ {h1}, and let U := U \ {h1}.
(ii) For x ∈ U , if w(h1, x) ≤ �, add edges (x, h1) in T and let U := U \ {x}.
(iii) While i = |H| + 1 ≤ p and U �= ∅,

– choose v ∈ U , let hi = v, add edge (hi, c) in T , let U := U \ {v}, and let
H := H ∪ {hi};

– for x ∈ U , if w(x, hi) ≤ 2β�, then add edge (x, hi) in T and U := U \ {x}.
(iv) If |H| < p and U = ∅, we change the shape of T by selecting p − |H| vertices

closest to c from the second layer to be the children of c, call the new tree T1;
otherwise let T1 := T .

Algorithm APX2

Guess the correct edge (y, z) where w(y, z) = � is the largest edge cost in an optimal
solution T ∗ with y as a hub and z as a non-hub. Let T2 be the tree found by the
following steps.

(i) Let y be the child of c in T2.
(ii) Pick (p − 1) vertices {v1, v2, . . . , vp−1} closest to c from U \ {y, z}. Let NT2(c) =

{y, v1, v2, . . . , vp−1}.
(iii) Let all vertices in U \ {v1, v2, . . . , vp−1, y} be the children of y.

– Suppose that f∗(u) = c and f∗(v) �= u. Then

dT1(u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(c, f∗(v)) + w(f∗(v), v)
= dT ∗(u, v) ≤ D(T ∗).

– Suppose that f∗(u) = c and f∗(v) = u. Since w(u, v) ≤ 2β�, v is selected as a
hub in Step (iv) of Algorithm APX1. Since in Step (iv), the algorithm select
(p − |H|) vertices closest to c from the second layer as hubs, there exists y′

which is a hub in T ∗ and a non-hub in T1 satisfying w(y′, c) ≥ w(v, c). Thus,

dT1(u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(y′, c) = dT ∗(u, y′) ≤ D(T ∗).

– Suppose that f∗(u) �= c. Then

dT1(u, v) = w(u, c) + w(v, c)
≤ w(u, f∗(u)) + w(f∗(u), c) + w(c, f∗(v)) + w(f∗(v), v)
= dT ∗(u, v) ≤ D(T ∗).



158 L.-H. Chen et al.

If f∗(u) = f∗(v) = c, dT1(u, v) = dT ∗(u, v) ≤ D(T ∗).
If f∗(u) = f∗(v) �= c, then at most one of u, v is selected as a hub in Step (iii)

of Algorithm APX1 since w(u, v) ≤ 2β�, or both u and v are selected as hubs in
Step (iv).

Suppose that u is selected as a hub in Step (iii) and and v is selected as a
hub in Step (iv). We see that in Step (iv), the algorithms select (p−|H|) vertices
closest to c from the second layer as hubs. Thus, there exists y′ which is a hub
in T ∗ and a non-hub in T1 satisfying w(y′, c) ≥ w(v, c). We obtain that

dT1(u, v) = w(u, c) + w(v, c) ≤ dT ∗(u, c) + w(y′, c) = dT ∗(u, y′) ≤ D(T ∗).

Suppose that both u, v are selected as hubs in Step (iv). We see that in
Step (iv), the algorithm selects (p − |H|) vertices closest to c from the second
layer as hubs. Thus, there exist y1, y2 which are hubs in T ∗ and non-hubs in T1

satisfying w(y1, c) ≥ w(u, c) and w(y2, c) ≥ w(v, c). We obtain that

dT1(u, v) = w(u, c) + w(v, c) ≤ w(y1, c) + w(y2, c) = dT ∗(y1, y2) ≤ D(T ∗).

Notice that each non-hub v in T1 is adjacent to a hub f(v) in T1 if w(v, f(v))
≤ 2β�.

Thus, for u, v in T1, dT1(u, v) ≤ D(T ∗)+4β� and D(T1) ≤ D(T ∗)+4β�. This
completes the proof of the claim. �
Claim 2. D(T2) ≤ max{D(T ∗), (D(T ∗) − �) + β(D(T ∗) − �)}.

Proof of Claim. Let T ∗ be an optimal solution. For a vertex v, use f∗(v) to
denote the parent of v in T ∗. Notice that Algorithm APX2 guesses all possible
edges (y, z) to be a longest edge in T ∗ with one end vertex as a hub and the other
end vertex as a non-hub. In the following we assume that w(y, z) = � is the largest
edge cost in T ∗ with y as a hub and z as a non-hub. Since Algorithm APX2 picks
(p − 1) vertices closest to c, y is a hub in both T ∗ and T2, and w(y, z) = �, we
see that for any hub v in T2, dT2(v, y) ≤ D(T ∗) − �.

For two non-hubs u, v in T2, we have the following three cases.

– f∗(u) = f∗(v) = y, we see that dT2(u, v) = dT ∗(u, v) ≤ D(T ∗).
– f∗(u) = y and f∗(v) �= y, we see that

dT2(u, v) = w(u, y)+w(v, y) ≤ �+β ·dT ∗(v, y) ≤ �+β · (D(T ∗)− �) ≤ D(T ∗).

– f∗(u) �= y and f∗(v) �= y, we see that

dT2(u, v) = w(u, y) + w(v, y) ≤ β · dT ∗(u, y) + β · dT ∗(v, y)
≤ 2β(D(T ∗) − �) ≤ (D(T ∗) − �) + β(D(T ∗) − �).

For a non-hub u and a hub v in T2, there are two cases.

– If f∗(u) = y, we see that

dT2(u, v) = w(u, y) + dT2(v, y) ≤ � + D(T ∗) − � = D(T ∗).
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– If f∗(u) �= y, we see that

dT2(u, v) = w(u, y) + dT2(v, y) ≤ β · (D(T ∗) − �) + (D(T ∗) − �).

For two hubs u, v in T2, u �= y and v �= y, we see that dT2(u, v) ≤ D(T ∗) since
y is a hub in T ∗ and Algorithm APX2 picks the other (p − 1) vertices closest to
c as hubs.

Thus, D(T2) ≤ max{D(T ∗), (D(T ∗) − �) + β(D(T ∗) − �)}. This completes
the proof of the claim. �

Notice that if �
D(T ∗) ≥ β

1+β , D(T2) = D(T ∗). Thus, the worst case approxi-

mation ratio happens when �
D(T ∗) < β

1+β .

If �
D(T ∗) < β

1+β , D(T2) ≤ D(T ∗)−�+β(D(T ∗)−�). We see that the approxi-

mation ratio of Algorithm 1 is r(β) = min{ D(T1)
D(T ∗) ,

D(T2)
D(T ∗)}. The worst case approx-

imation ratio of Algorithm 1 happens when D(T1) = D(T2), i.e.,

D(T ∗) + 4β� = (D(T ∗) − �) + β · (D(T ∗) − �)

We obtain that �
D(T ∗) = β

5β+1 . Thus,

r(β) = min{ D(T1)
D(T ∗) ,

D(T2)
D(T ∗)} ≤ min{1 + 4β2

5β+1 , 1 − β
5β+1 + β(1 − β

5β+1 )}
= 1 + 4β2

5β+1 .

This completes the proof. ��

In Lemma 4, we prove that if 1 ≤ β ≤ 2, Algorithm 1 is a (β + 4β2−2β
2+β )-

approximation algorithm for Δβ-SpHCP.

Lemma 4. Let 1 ≤ β ≤ 2. Then, there is a (β + 4β2−2β
2+β )-approximation algo-

rithm for Δβ-SpHCP.

If β ≥ 2, we give Algorithm 2 to solve Δβ-SpHCP and prove that Algorithm 2
is a (2β + 1)-approximation algorithm in Lemma5.

Lemma 5. Let β ≥ 2. Then, there is a (2β + 1)-approximation algorithm for
Δβ-SpHCP.

Proof. Let T ∗ be an optimal solution of Δβ-SpHCP. Let (c, q) be the longest
edge incident to c in T ∗, w(c, q) = �0, i.e., �0 = maxv∈NT∗ (c){w(v, c)}. Let �1
and �2 be the largest and second largest edge costs in T ∗ with one end vertex as a
hub and the other end vertex as a non-hub. Note that it is possible that �1 = �2.
Our algorithm is presented as Algorithm 2. Line 1 of Algorithm 2 guesses the
values of �0, �1 and �2. We certainly do not know their exact values. However,
since each of them has only polynomially many possible values, we can run the
algorithm for all of their possible values and take the best solution. Therefore,
in the following we assume that we know �0, �1 and �2. It is easy to see that
D(T ∗) ≥ �0 + �1 and D(T ∗) ≥ �1 + �2.
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Algorithm 2. Approximation algorithm for Δβ-SpHCP (G, c).

1. Guess the correct values of �0, �1 and �2. Their meanings are provided in the proof.
2. H ← {v ∈ V \ {c} | w(v, c) ≤ �0}.
3. Create an instance J of the k-center problem with forbidden centers, in which

V \ {c} is the set of input vertices, H is the set of allowed centers, k = p, and
the distance function (satisfying the β-triangle inequality) is the restriction of w
to V \ {c}.

4. Apply the greedy approximation algorithm for the k-center problem with forbidden
centers (Algorithm3), to obtain an approximate solution of J . Assume that H∗ ⊆
H is the set of centers opened in the solution.

5. return the solution that opens H∗ as the set of p hubs and assigns each vertex in
V \ {c} to its nearest hub in H∗.

Algorithm 3. Approximation algorithm for k-center with forbidden centers.

1. // Let C be the input vertex set, C′ ⊆ C be the set of allowed centers, and w be the
distance function on C satisfying the β-triangle inequality. Assume w.l.o.g. that
k ≤ |C′|.

2. R ← C; S ← ∅.
3. while R �= ∅ and |S| < k do
4. Choose an arbitrary vertex v ∈ C′ ∩ R.
5. B(v) ← {u ∈ R | w(u, v) ≤ β(�1 + �2)}.
6. R ← R \ B(v); S ← S ∪ {v}.
7. end
8. if |S| < k and R = ∅ then
9. select an arbitrary vertex set S′ ⊆ (C′ \ S) of size k − |S|; S ← S ∪ S′.

10. return S

Let T denote the solution returned by Algorithm 2. We next prove that
Algorithm 2 is indeed a (2β + 1)-approximation algorithm for Δβ-SpHCP by
establishing an upper bound of D(T ). According to our choice of �0, the set
H defined in line 2 contains all hub nodes in the optimal solution NT ∗(c), i.e.,
NT ∗(c) ⊆ H. In Line 3, we create an instance J of the k-center problem with
forbidden centers. This problem is defined as follows: The input consists of a
set C of demand points in a space satisfying the β-triangle inequality, a set
C ′ ⊆ C of allowed centers, and an integer k. The goal is to open k centers in C ′

such that the maximum distance between any vertex in C and its nearest center
among the k opened centers is minimized. This problem is a generalization of
the ordinary k-center problem (in which C ′ = C), and is a special case of the
k-supplier problem (in which C ′ may not be a subset of C) [19–21]. There is
a simple greedy approximation algorithm for this problem, which is presented
in Algorithm 3. Its analysis is standard and is similar to that of the traditional
k-center problem (see [19–21]), and thus is omitted here.



On the Complexity of the Star p-hub Center Problem 161

Hence, by applying the greedy approximation algorithm (Algorithm 3) to
implement line 4 of Algorithm 2, we obtain a solution H∗ of J with objective
value at most β(�1 + �2), that is,

max
v∈V \{c}

min
h∈H∗

w(v, h) ≤ β(�1 + �2). (1)

In Line 5 of Algorithm 2, a solution is returned that opens H∗ as the set of
p hubs. For each v ∈ V \ (H∗ ∪ {c}), let f ′(v) := arg minh∈H∗ w(v, h); i.e., f ′(v)
is the hub in H∗ assigned to v in the solution returned by the algorithm. Let �′

1

and �′
2 be the largest value and second-largest value in the multiset {w(v, f ′(v)) |

v ∈ V \ {c}}. By inequality (1), we have �′
1 + �′

2 ≤ 2β(�1 + �2).
Let x, y ∈ V \ {c} be the nodes achieving the maximum path length in T ,

i.e., dT (x, y) = D(T ). It suffices to show that D(T ) ≤ (2β + 1) · D(T ∗).
If f ′(x) = f ′(y), then D(T ) = w(x, f ′(x)) + w(y, f ′(y)) ≤ �′

1 + �′
2.

If f ′(x) �= f ′(y), then

D(T ) = w(x, f ′(x)) + w(f ′(x), c) + w(f ′(y), c) + w(y, f ′(y)) ≤ �′
1 + 2�0 + �′

2

where we use w(h, c) ≤ �0 for all h ∈ H by our choice of H. Combine with the
fact that D(T ∗) ≥ �0 + �1 and D(T ∗) ≥ �1 + �2, we always have

D(T ) ≤ 2�0 + �′
1 + �′

2

≤ 2�0 + 2β(�1 + �2)
≤ 2(�0 + �1) + (2β − 1)(�1 + �2) (using �2 ≤ �1)
≤ 2 · D(T ∗) + (2β − 1) · D(T ∗)
= (2β + 1) · D(T ∗),

which indicates that Algorithm 2 is a (2β + 1)-approximation algorithm for Δβ-
SpHCP. This completes the proof. ��

We close this section with the following theorem.

Theorem 2. Let β ≥ 1
2 . There exists a polynomial time r(β)-approximation

algorithm for Δβ-SpHCP where

(i) r(β) = 1 if β ≤ 3−√
3

2 ;
(ii) r(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 0.7737 . . .;

(iii) r(β) = 1 + 4β2

5β+1 if 0.7737 . . . ≤ β ≤ 1;

(iv) r(β) = β + 4β2−2β
2+β if 1 ≤ β ≤ 2;

(v) r(β) = 2β + 1 if β ≥ 2.

3 Conclusion

In this paper, we have studied Δβ-SpHCP for all β ≥ 1
2 . We showed that for

any ε > 0, to approximate Δβ-SpHCP to a ratio g(β) − ε is NP-hard where



162 L.-H. Chen et al.

g(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 2
3 ; g(β) = 5β+1

4 if 2
3 < β ≤ 1; g(β) = β + 1

2 if
β ≥ 1. Moreover, we gave r(β)-approximation algorithms for the same problem.
If β ≤ 3−√

3
2 , we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial time

solvable for β ≤ 3−√
3

2 . If 3−√
3

2 < β ≤ 2
3 , we have r(β) = g(β) = 1+2β−2β2

4(1−β) .

For 2
3 ≤ β ≤ 1, r(β) = min{ 1+2β−2β2

4(1−β) , 1 + 4β2

5β+1}. For β ≥ 1, we have r(β) =

min{β + 4β2−2β
2+β , 2β +1}. In the future work, it is of interest to extend the range

of β for Δβ-SpHCP such that the gap between the upper and lower bounds of
approximability can be reduced.
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22. Hromkovič, J.: Stability of approximation algorithms for hard optimization prob-
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